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l .  Introduction 

In  our previous paper [11], we discussed various decompositions of addit ive set 

functions in Eucl idean space. Our main  object was to  show how a system of Haus-  

dorff  measures could be used to analyse a given set function, as far as is possible, 

into components,  which were uniform in a certain sense. I n  the present work, we use 

the  results of a series of papers [5, 8, 9, 12, 13] to correct and extend some of the 

results obtained in [11]. 

We continue to restrict  our a t tent ion to the system :~ of those continuous com- 

pletely addit ive set functions F,  having a finite value F(E) for every set E in the 

field B of all Borel subsets of a fixed closed rectangle I 0 in k-space. I t  is clear t h a t  

the  analysis extends immediate ly  to a-finite set functions, defined for Borel sets in 

Eucl idean k-space. 

I n  the first three sections of [ l l ] ,  we worked with a single Hausdorff  measure 

funct ion h(t), and we obtained a unique decomposit ion of a set funct ion F of :~ into 

three components,  one strongly continuous with respect to h-measure, one, no t  only 

absolutely continuous with respect to  h-measure, bu t  also concentrated on a set of 

a-finite h-measure, and one concentrated on a set of zero h-measure. The extensions 

and  refinements of this work, which we made in [13] will be vital  for the sequel. 

I n  the last t h r e e  sections of [11] we introduced a system l:  of Hausdorff  measure 

functions ](t), which was total ly  ordered by  the relation -( ,  defined by:  

/•g, if g(t)//(t)--->O, as t - + + 0 .  

We first studied the special case, when 1~ is the system of functions 

t ~ ( 0 < a < k ) ,  
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and then turned to the case when E is maximal. In  these studies, we analysed a set- 

function F of :~ into a sequence of components, corresponding to certain sections of 

E, and a residual component with a "continuous C-dimension spectrum". While our 

main theorems (Theorems 3 and 6) are correct, the second of them (Theorem 6) cannot 

be regarded as satisfactory. Unfortunately, there is an error in the proof, tha t  F(1 s) is 

continuous on the right, given in Lemma 10. The faulty lemma led to our introducing 

an unsatisfactory definition for a set-function with a "continuous E-dimension spec- 

t rum";  a set-function satisfying our conditions would not, as far as we know, neces- 

sarily have the essential property of having no component which should naturally be 

associated with a section of E. 

In  this paper, we correct and extend the analysis we made previously. The re- 

sults we obtain are rather more complicated than those they replace. We find tha t  

they depend essentially on the various properties of the system E, and on the nature 

of the sections of E considered. We defer any detailed description, until after we 

have introduced the necessary concepts. The results may  be described, in general 

terms, by saying that,  provided that  the system E has appropriate density properties, 

we can analyse a set function F of ~ into: 

(a) a sequence of isolated components corresponding to functions h of E; 

(b) a sequence of isolated components corresponding to sections of E having no 

countable basis; 

(c) a residual set function having no component belonging to any function or 

section of E. 

We give an example to show tha t  the components corresponding to sections of E 

having no countable basis may  be non-zero; but  we have to leave unanswered some 

interesting questions concerning these components. 

2. Scales of  functions 

Let ~ be the system of all positive functions h(t), defined for t >0 ,  continuous 

monotonic increasing, and with limt-~+0 h ( t ) =  O. When h and g belong to ~ ,  we write 

h ~ g ,  

if 0 < lim inf g(t)/h(t)  <~ lim sup g(t) /h(t)  < + oo ; 
t--~.+O t--~+O 

and h < g, 

if lim g(t)/h(t)  = O. 
t---~ + 0 
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We say t h a t  h and  g in ~4 are comparable ,  if 

h-<g, or h,.~g, or g-<h; 

and t h a t  they  are monotonical ly  comparable  if, in addition, the rat io  h(t)/g(t) is 

monotonic  for all sufficiently small  posi t ive t. 

We  list some properties,  in t roduced in [5] and [8], which m a y  hold for a subset  

s of ~4. 

(P1) I f  g, h E ~, then  g and  h are comparable .  

(P*) I f  g, h E s  t hen  g and  h are monotonical ly  comparable .  

(P2) The funct ion ~ is in L. 

(P3) I f  g , h ~ s  and ~, fl are real numbers ,  and g~h~E~ ,  then  g~h~Es 

(Pa) I f  g, h E C  and g 4 h ,  then  g is not  equivalent  to h. 

(Ps) I f  h E ~  and h is comparable  wi th  each e lement  of i:, then  h is equivalent  

to  a t  least  one e lement  of l:. 

(Pc) I f  h E ~ ,  there  is a t  least  one g in I: wi th  g-<h. 

(PT) I f  hE:/ /  and  h-<t ~, there  is a t  least  one g in l: wi th  h-<g-<t k. 

(P1.) I f  11, l~ . . . . .  ul, u~ . . . .  E ~  and 11-<12-< ...-<l~-< . . . . . .  -<urn-< . . . -<u2-<u 1, there is 

a g in i: wi th  ll -<12 -< .. . -< l~ -< .. . -< g..< . .. -< u,~ -< . . . -< u2 -< u 1. 

(1)11) I f  h E ~  and ll, 12.. .EF~ and ll -<12 -< ... -< l~ -< .. .  -< h , there is a g in C with  

l~ -<12 -< . . .  -< l~ -< . . . -< g -< h .  

These conditions do not  correspond exact ly  with those given in [5] and  [8], since 

there  we were concerned with  functions which might  t end  to 0 or to  + ~ or to  a 

finite l imit  as the variable tended  to + co; bu t  the  differences are trivial.  

A set  I~ of functions of ~ will be called a monotone  scale of functions, if it 

satisfies (P1), (P*), (P2) and  (P3)- A scale wi th  p rope r ty  (P4) is irreducible;  one wi th  

(1)5) is max ima l ;  one with  (Pc) and  (PT) is dense;  and  one wi th  (Pc), (1)7), (1)10) and  

(Pll) is s t rongly dense. 

The ma in  result  which we obta ined  with  the  help of P. Erd5s  in [5] and  [8] is: 

T~EOREM A. The  con t inuum hypothesis impl ies  the existence of a monotone scale 

which is irreducible, m a x i m a l  and strongly dense, 

Remark .  I t  is also shown in [8] t h a t  every  max ima l  scale I: has the  p rope r ty  

(P10), and  the same simple proof shows t h a t  such a scale i: has the p roper ty  ob ta ined  

f rom (P10) by  replacing one or bo th  of the sequences /1, 12 . . . . .  or ul, u 2 . . . .  b y  a single 

e lement  of 1:. 
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At this stage we require one further definition. Two subsets L, R of an irreduc- 

ible scale s are said to form a section of l~, if: 

L has no maximal element, 

L N R = o ,  L U R = ~ ,  

and hiE.L, h~ E R implies hl'~ h ~. 

We return to study and classify the sections of strongly dense irreducible monotone 

scales in w 5. 

3. Bands  assoc iated  wi th  a sect ion  in a scale  o f  m e a s u r e  funct ions  

Let s be an irreducible maximal scale of functions of ~4. Let s be a section of 

~: into two sets L~, R~. In [11] we associated two pairs of complementary bands(1) 

in ~ with the section s. Let R~ denote the set obtained by removing from R~ its 

least element, if it has one. Then as in [11] we introduce: 

1. C~ is the class of set functions F of :~, which are s-continuous; that  is, those 

set functions such that  F(E)=0,  for any E E ]~, for which there is at least 

one h E s with h - re(E) = 0; 

2. St is the class of set functions F of :~, which are s-singular; that  is, those 

set functions, for which there is some E 0 in ]~, such that  

.F(E) =F(E N E0), (1) 

and E 0 = O ~ l E i ,  where, for each E~, there is some h~ in L~, for which h~- 

m(E~) = 0; 

3. C* is the class of set functions F of :~, which are strongly s-continuous; that  

is, those set functions such that, if E EB, and h - m ( E ) = 0 ,  for every hER~, 

then F(E) =0;  

4. S* is the class of set functions F of :~, which are almost s-singular; that  is, 

those set functions, for which there is some E o in ]~, such that (1) holds, 

and h - m ( E o ) = 0 ,  for every h in R~. 

In [11], we showed that C~, ,~ and C*, $* are pairs of complementary bands 

in ~. In  order to obtain a more complete analysis, we now define two further classes: 

5. C** is the class of set functions F of :~, which are hyper s-continuous; that  

is, those set functions which can be expressed as F = ~ 1  F,, with ~i~176 IF tl(I0) 
convergent, and each Fi being hrcontinuous, for some h, in R~; 

(1) This concept is explained later in this section. 
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6. S** is the class of set functions F of :~, which are hypo  s-singular; t h a t  is, 

for each h in R~, there is a set E 0 in B, such tha t  h - m ( E o ) = O ,  and (1) is 

satisfied. 

The system ff of sections s of l :  is ordered in a natura l  way; we write s <  t, if 

the corresponding left-hand sets Ls and Lt satisfy L s ~ L t ,  the inclusion being proper. 

I t  is clear, from the definitions, that ,  for any  sections u, s, t, of 9", with t <  s <  u, 

we have 

C~ ~ Cs** ~ Cs* ~ C -  ~tr"  n**. }, 
S~ ~ S~** ~ S* ~ Ss ~ S~*. (2) 

Our first object  is to  prove tha t  C** and S** form a pair of complementary  

bands in :~. This could be done directly for the space :~, bu t  we prefer to prove a 

more general theorem about  collections of bands  in a UMB-lattice, and then obtain  

our  results as a part icular  case. To this end, we recall the concept  of a Banach 

lattice, with a uniformly monotone  norm, and show tha t  :~ is such a lattice. 

As explained in [ l l ] ,  :~ is a vector  lattice, t ha t  is a part ial ly ordered linear 

space with a lattice structure.  Further ,  :~ is conditionally complete: t ha t  is, every 

subset ~ c :~, which is bounded above, has a least upper  bound F 0 in :~. I f  R is any  

conditionally complete vector lattice, we call a subset ~ of R a band, if: 

(i) ~ is a vector subspace of R; 

(ii) if GE'U, then  every F of ~ with JFJ~<JGJ is also in ~ ;  

(iii) ~ is a sublattice of R, which is conditionally complete; t ha t  is, every subset 

of ~ ,  which is bounded above in R, has its least upper  bound in 

lying in ~ .  

Here, in (ii), the element IFI  is defined(1) by  

I '1 u { - F } .  
I n  a slightly more general context,  Birkhoff ([1] p. 232) calls such a set a closed/-ideal.  

I f  a vector lattice is also a Banach space, with the same vector  structure,  and 

with a norm related to the lattice structure by  the condition that ,  

if iF j<IGI, then IIFJI<JJGJJ, (3) 

it is called a Banach  lattice (see [1]). I t  is easy to  verify tha t  :~ is a Banach lattice, 

under  the norm 
IIFII = IFI (z0). (4) 

(1) Note added to proof The same symbols have been used for the lattice operations of join and 
meet for as the set operations of union and intersection; but this should cause no confusion. 
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Following Birkhoff [1], we call a norm in a Banach lattice uni[ormly monotone 

when, given s > 0 ,  one can find ~ > 0 ,  so tha t  if F>~0, G~>0, and H F I I = I ,  then 

[IF+Glib< [[FI]+(~ implies []GII-~<~. I t  is clear tha t  :~ satisfies this condition, for, in 

:~, if F~>0, G~>0, then 

I I F +  GII = G(Z,,)= IIFII + II GII. 

Any Banach lattice, which is a conditionally complete lattice, and which has a uni- 

formly monotone norm, will be called a UMB-lattice. 

In  [11] we used some general theorems about  conditionally complete lattices, 

which we now repeat for reference purposes. We recall that  two elements F,  G in a 

vector lattice are said to be complementary, if 

I '1 n IGI = 0 .  

THEOREM B. I /  ~ is a conditionally complete vector lattice, and 11 is a subset 

o/ ~, the set ~ o/ all elements o/ ~, which are complementary to every element o/ 11, 

is a band in R. I /  11 is also a band, then 11 consists o/ all the elements o/ ~ which 

are complementary to every element o/ ~. 

This theorem follows almost immediately from the definitions; see N. Bourbaki [3], 

or S. Bochner and R. S. Phillips [2]. I f  11 and ~ are bands in ~, each consisting 

of all the elements in }~ complementary to all the elements of the other, we say 

tha t  they are complementary bands in ~.  The following fundamental  decomposition 

theorem follows: 

THEOREM C. Given two complementary bands 111, 11~ in a conditionally complete 

vector lattice ~, each element F o/ ~ can be expressed uniquely as 

F=FI+F , 

where F 1 E l l  I and lv ~ E 112. 

Further IF[ = IF1[ + IF21. 

The existence and uniqueness of the decomposition is essentially due to Riesz [7]. 

I f  F1, F 2 are complementary elements of any  vector lattice, then 

IF,+&I=J&I+IF I. 

(This result is well known: a proof can be easily constructed using the identities on 

page 19 of Bourbaki [3].) 
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so tha t  

for all i. 

THEOREM D. Any  band in a conditionally complete Banach lattice is closed under 

the metric. 

Proof. Suppose tha t  ~/ is a band and tha t  ~ is the complementary band. Let  F 

be any limit point of "U. Then there is a sequence $1, F 2 . . . .  in ~ converging in 

norm to F. Let  G belong to ~. Then as G, _~ belong to complementary bands, 

IGI n I ~ l : l l o l  n i v i - I o l  n ,v, ll 

<IiFI-IF~II<-<IF-V~I, 
II IOI n IEI I1~ I I~ ' -  ~,11, 

Hence IGI n I F I = O  and F is complementary to G. Thus V belongs to the 
band complementary to ~, i.e:, to ~ .  Thus ~ is closed under the metric. 

We also need 

THEOREM E. I /  a set ~ in a UMB-lattice R satis/ies the conditions: 

(i) ~ is a vector subspace o/ ~, which is closed under the metric; 

(ii) i/ G E ~ ,  then every F o/ ~ with ]F[~<IG] also belongs to "tl; 

then it is a band in ~. 

Remark. In  Birkhoff's terminology, this says tha t  an /-ideal in a UMB-lattice, 

which is closed under the metric, is a closed /-ideal. 

Proo/. I t  suffices to prove tha t  ~/ is conditionally complete. Now, by (i), the 

set ~/ is a sub-Banach space of }~. Further,  if F and G belong to ~ ,  then, by (ii), 

we have IFI and IGI in ~/. Thus I F I + I G [ E ~ /  by  (i). But  

IFnol~<lFl+lol, 
IFU OI~<IFI+IGI, 

so tha t  by  (ii) we have 

F N G E ~  and F O G E Y .  

Thus ~ is a sub-lattice of ~. 

Now suppose tha t  ~ is a subset of ~ which is bounded above by  an element 

R 0 of ~. Let  V 0 e ~ and consider the system ~ of finite joins 

V oo V l o . . . U  V~ (k>~O). 

is a directed set contained in ~/ with 

Vo <~ W <~ R o, 
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for all WET~O. Hence, by [1], Theorem 11, page 249, the directed set ~0 converges 

metrically to some element, U 1 say, of }~. As ~ c ~/, and ~ is closed under the metric, 

UIE ~/. Further U 1 is the least upper bound of ~0 in ~. Consequently ~/ is condi- 

tionally complete, as required. 

These two results enable us to prove 

TH]~OR]~M F. Suppose ~ is a UMB-lattice and ~ is a band in ~ /or each ~ in 

an index set Y. Then 

is a band in ~. Further, the closure under the metric o/ the vector space generated by 

the union 
U~= 

is a band in ~, and is the least band in ~ containing this union. 

Remark. We shall only need the special case when the bands ~ with ~ E :7 are 

nested (i.e., are totally ordered by the relation of set inclusion). In this case, the 

result follows almost immediately from Theorems B, D and E; but  the general result 

seems to be sufficiently interesting to justify its special proof. 

Proo/. I t  follows immediately from the definitions that  

n ~  
is a band in ~. 

Let  Q be the closure under the metric of the vector space generated by the union 

U ~ .  
gey  

I t  follows, from Theorem D, that  any band in ~, containing this union, must also 

contain Q. Hence it suffices to prove that  Q is a band in ~. But  Q satisfies the 

condition (i) of Theorem E. So it suffices to prove that  Q satisfies the condition (ii) 

of Theorem E. 

We first prove that,  if ~/ and ~0 are two vector spaces in ~ satisfying condi- 

tion (ii) of Theorem E, then the vector space ~Lq generated by the union of ~ / an d  ~O 

also satisfies this condition. Suppose that  W EW and F in ~ satisfies IFI ~< IW]. Then 

W = U  I + V  1 with U 1E~/ and V 1E~. Further 

F+ ~ I F I < [ U I  + VII~IUII[ - IVI] ,  

and U2=]UllEU, V2=[VIIEV. 
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Hence F + = F  +N (U  s + V  s ) = U  s + ( F  + - U  s) NV s. 

Wri te  u3  = { ( F  + - Us) n V~} n 0 

V3 = { ( F  + - U2) n Vs} u o. 

Then F + = U s+ U s+ V 3. 

Also 0 < - U~ = ( ( U s  - F +) U ( - V~)) U 0 < U~, 

and 0 ~ V  3={(F  + - U 2 )  N Vs}U0~<V2, 

so that  U 3E~ ,  V 3E~ and F +E]0.  

Similarly F - E ~ 0  and so does F = F + + F  -. 

Applying this result inductively we see that  the vector space generated by the 

union of any finite collection of the sets ~ with a E :1 satisfies the condition (ii) of 

Theorem E. 

Now suppose that  G E Q, and that  F in ~ satisfies IF[ ~<]G I. As G~ Q, we have 

G = lim Gi, 
i-->~ 

j(i) 

where for each i, Gi = ~ G~k, 
k = l  

G~ e N~(~.~) (k = 1, 2 . . . . .  j(i)), 

~(i, k) e Y (k = 1, 2, ..., i(i)). 

Since 0~<F + ~<]G], 0~< - F -  ~< [GI, we have 

I F - F  + NIG~I+(-F )NIG~i I=IF  + N I G t - F  + NIG, I - ( -F- )NIGt - ( -F- )NIG, I I  

<~211GI- IG ,  I I < ~ 2 I a - G , I .  

So I I F - F  + n IG, I + ( - F  ) n IG, I l l~<2] l a -~ , l l .  

Thus F is the limit in norm of the sequence 

H~=F +NIG~I-(-F-)NIG~I ( i = 1 , 2  . . . .  ). 

But, for each i, the vector space generated by the sets 

~ . ~  (]~ = 1, 2 . . . . .  i(i)), 

satisfies condition (ii) of Theorem E. 
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So F+nlGil and ( -F- )nlG,  l 
lie in this vector space and thus belong to Q. Consequently Hi, i =  l, 2 . . . .  an( 

F =  lim~_.~ Ht belong to the closed vector space Q. This completes the proof. 

We now return to the s tudy of the space :7 of additive set functions. We prow 

T H ~ . O ~  G. For any section s o/ ~, the sets C** and S** are complementar~ 

bands in ~. 

Proo/. Suppose s is the section Ls, Rs of ~/. For each h in R's, the class C(h)oJ 

h-continuous set functions, and the class $(h) of h-singular set functions form com. 

plementary bands in ~7. So, by Theorem F, the set 

S**= fl S(h) 
a~n d 

is a band in ~. 

Let  (~ be the closure under the norm of the vector space generated by  the union 

O C(h). aeas" 

Now every element in this union is complementary to each element of S**. I t  follows 

that  each element of Q is also complementary to each element of S**. But  each 

element of ~, which is complementary to each element of Q, lies in $ ( h ) f o r  all 

hER's, and so lies in S**. Thus S** is the band complementary to the set Q. But, 

by  Theorem F, the set Q is a band in ~. Hence S** and Q are complementary 

Cs �9 bands in ~, and it remains to identify (2 and ** 

Since every F of ~ of the form 
oo 

F =  YG, 
i=1 

F with ~$=1 I I i  II convergent, and with F, e C(h~), for some hi in R;, is clearly in Q, we 

have C** c Q. 

Now, if F E Q ,  we have 

F = lim G ,  
t-~Oo 

for some sequence 

union 

G 1, G~, ... of set. functions in the vector space generated by the 

U C(h). (5) 
h~R~ 

Replacing G1, G 2 . . . .  by a suitable sub-sequence H1, H 2 . . . . .  and writing H 0 = 0, we have 
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F = ~ (Hi-  Ht-1), 
i = 1  

with  ~ H H , -  H~-lll 

convergent .  Now, for each i, 

F, = H, - H,_I 

lies in the vector space generated by  the union (5), and  so has a representat ion as 

a finite sum 
i ( t ) l  

kf f i l  

with  F~k e C(h~k) (k = 1, 2 . . . .  , ](i)), 

and  h~kER's ( k=  1, 2 . . . .  , ](i)). 

Thus  Q ** Cs , and the  theorem is proved. 

4. The first decomposition theorems 

As in section 3, let /: be an irreducible maximal  scale of functions of ~//. I n  

this section, we show how a funct ion F of :7 can be expressed as a sum of compo- 

nents,  associated with sections s of the system 9' consisting of all sections of E, and  

a residual component  having what  we : sha l l  call a continuous dimension spectrum. 

We first prove 

THEOREM 1. Given any set /unction F E ~  and any section s o/ F~, there is a 

unique decomposition 
F = F~ ~) + F~ 8) + W ) + F~ ~), 3 

where F~ s) is hyper s-continuous, F~ ~ is strongly s-continuous and hypo s-singular, F~ ~) is 

s-continuous and almost s-singular, and F~ ~) is s-singular. Further 

IFI = [Fi~)[ + IFh~)l + F (~)~ + ]Fs 

Remark. The decomposit ion of this theorem is apparent ly  finer than  t h a t  of 

Theorem 5 of [11]; the  set funct ion F~)+F~ ~) above corresponds to the first compo- 

nent  of the decomposit ion given in [11]; bu t  we know of no example with F~s)#0. 

Thus  we have been unable to decide whether  or not  the class C* t3 $** is always void. 

Note  that ,  if ~ 6 L~, then necessarily 

F = F(4 ~ F~ ~) = F (~) - F (~) - 0 2 - -  3 - -  �9 

See also the remark at  the end of section 8. 

1 5  - -  6 3 2 9 1 8  Acta mathematica 1 0 9 .  I m p r i m 6  l e  1 4  j u i n  1 9 6 3 .  
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Proo/. By the definitions, the results of [1], and Theorem G, the pairs {Cs, S~}, 

{C*, S*} and {C**, S**}, are pairs of complementary bands in :~, and satisfy 

C~ cC~ =C~, 

S** ~ S* ~ S~. 

The result now follows, on applying Theorem C three times. 

We now need to know how the decomposition of Theorem 1 depends on the 

section s of 1:. We can define left and right continuity in the norm topology of :~ 

relative to the order topology of ~. If F(s) is a set function of :~ defined for s in ~r, 

we say that  F(s) is continuous on the right at s, if, for each c > 0 ,  there is a u 

in ~r, such that  

[[F(s)-F(t)l[<~, for all t in ~ with s < t < u .  

Continuity on the left is defined similarly, and the discontinuities on the left and 

right of a function with a simple jump discontinuity are defined in the natural way. 

TH~ORE~ 2. In  the decomposition o/ Theorem 1, 

-[[F7)I[ and [IF[~)l] 

are monotonic increasing /unctions o/ s, the /unction F~ s) is continuous on the right, and 

F(4 ~) is continuous on the le/t. The sections s, where-F(1 ~) and F(4 s) are discontinuous 

coincide, and at such a section -F(1 s) has a simple jump discontinuity on the felt and 

F(4 ~) has a simple jump discontinuity on the right, these discontinuities being equal and 

having the value 

Remark 1. This result, as Lemma 10 of [11] was alleged to, follows from use of 

the methods of w of [11], but, in view of the lacuna we have found in the proof 

of Lemma 10, it  seems best to give the proof in some detail. 

Remark 2. Since IIFll=IFI(Io) and IFI is non-negative for all $'e:~, the fact 

that  -I[F(I~)[[ and [IF~)]] are monotonic increasing implies that  -IF(I~' I (E) and [F(4~) I (E) 

are monotonic increasing for all E E B. 

Proo/. Suppose that  s and t are sections of E with s<  t. Let  

IFI = [ Is'I + [ + I + IF(:f ,  

F (  t ) IF[=[FT)[+]F~t)I+IF~~ , , 
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be the corresponding decompositions of IF[,  provided by  Theorem 1. Now, by  the 

inclusion relations (2), the function ]F(~)I is hyper s-continuous. Further, by  Theorem l, 

we have a decomposition 

where G~ ~), i =  1, 2, 3, 4, are all non-negative, and where G~ s) is hyper  s-continuous, 

G~ ~) is strongly s-continuous and hypo s-singular, G~ ~) is s-continuous and almost 

s-singular, and G~ ~) is s-singular. Since the decomposition of IFI with respect to the 

section s is unique, we have the identification 

I F~') I = G~ ~) (i = 2, 3, 4). 

Since G~ s) is non-negative, we have 

II FiS)ll = I Fis)I ( I 0 )  = IFi"l (x0) + Gi s, (I0) 

Thus -II~Is ' I I  is monotonic increasing. Similariy IIF(:II is monotonic decreasing. 

Now we study the behaviour of F(1 t), for t in ~ to the right of a section s E ffl 

The function F(~ s) itself is hyper  s-continuous and so has a representation 

r 1 6 2  

F{ ~) =t~lG~, 

with ~~ convergent, and with each Gt being hi-continuous, for some h, in the 

class R~ associated with the section s. For each e > O, we can choose a positive in- 

teger k, so tha t  
oo  

Let h = min {h 1, h2 . . . .  , hk}. 

Then h e R~. 

I f  Rs has no minimal element, then R~ = Rs has no minimal element. On the 

other hand, if Rs has a minimal element, then Rg was formed by  removing it, and 

it follows from the maximal i ty  of s tha t  R~ has no minimal element. 

Thus we can choose g in R~, with 9Kh, and we shall still have elements r in R~, 

with r-<g. Let u be the section of 1: formed by taking the left class to be all the 

functions r of /: with r-<g. Then s<u, and g belongs to the right class of u. 
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Consider a ny  section t in T, with 

8 < t < u .  

As g belongs to the r ight class of t, and 

g < h ~  ( i = 1 , 2  . . . . .  k), 

k 

the set funct ion ~ Gt 
5 = 1  

is hyper  t-continuous. The set funct ion 

H =  ~ Gt 
t = k + l  

has a decomposition in the canonical form 

H = H(~ ) + H(~ t) + H(~ ) + H(4 t). 

The set function ~ - F (s) + F (s) + F(4 s) i x - -  $ 3 

is hypo  s-singular and  so /-singular for any  1 in the modified r ight  class R~ of s. 

Taking 1 to he in R~ and also in the  modified left class of t we see t h a t  K is 

t-singular. Thus comparing the decomposit ion 

F = G, + H f  ) ~ ~- 1~2~(t) + H(t,s + {Hf  ) + K}, (6) 

with the decomposition with respect to the section t provided by  Theorem 1, we have 

k 

F i  ') = 7 G, + H i  ~). 
i = l  

Hence HFI t ) -  FT)II = IIH~ t) + H (t)+3 H(t), '<~ I[HII < e. 

This proves the cont inui ty  of F(1 t) on the  r ight  at  t = s. 

But  it also follows from the decomposit ion (6) tha t  

F(t) _ ~( t )  + K .  
4 - -  1 ~ 4  

H e n c e  I[F(4 t) - F (s)2 - F ( s ' -  Fs = llH(?l[ < llHIl < 

This proves tha t  F(4 t) has a simple discontinui ty F (s) ~-F (s) 2 " 3 on the r ight  at  t = s ,  or is 

continuous on the r ight at  t = s in the case when $'(28)+ F~ ~)= 0. 

We remark that ,  if it is possible to choose h in R~ so tha t  

h-Kh~ ( i = 1 , 2 , 3  . . . .  ), 
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then  the  above  proof  shows t h a t  

F(1 ~ ) :  ~<,s), ~ )  = 0, ~(~> = 0, 

F<~> = F i  ~) + F<3 ~> + F + ,  

for all  t wi th  s <  t ~ u .  Thus, in th is  ease, F(1 t) and  F(4 t) are  cons tan t  and  F(~ t) and  F(s t> 

vanish  in an  open in te rva l  to  the  r igh t  of t = s. 

W e  now s t u d y  the  behav iour  of F(4 t), for t in  7 .  The  funct ion  F(4 ~) is i tself  s-sin- 

gular.  So F~ ~) is concen t ra ted  on a set  E o in B and  

E o = (~ E~ 

where,  for each i there  is some h~ in Ls for which h i -  m ( E ~ ) =  0. W i t h o u t  loss of 

genera l i ty  we m a y  assume t h a t  the  sets E~ are  d i s jo in t  Borel  sets. Now, wr i t ing  

o~ (E)  = F(~ s> ( ~  n E,) ,  

we have  F(4 s)= ~ Gi, 
i=1 

a n d  ~I1 = = I FiS~L (E~) = IIFi~'[[ < + ~ .  
z =  t = '  

The a rgumen t  now paral le ls  t h a t  used in the  discussion of F(~ t). F o r  each e > 0, 

we can choose a pos i t ive  integer  k so t h a t  

Then  h = m a x  {h I, h 2 . . . .  , hk} 

belongs to  L~. F u r t h e r  L~ has  no m a x i m a l  element .  So we can cons t ruc t  a sect ion u 

in ~ wi th  u < s hav ing  a func t ion  g wi th  h-~ g in i ts  lef t  class. 

Consider any  t in ~ wi th  
u < t < s .  

As g belongs to  the  left  class of t, and  

h~-<g (i = 1, 2 . . . . .  lc), 

k 

the  set  funct ion  ~ G~ 
i - 1  

is t-singular.  The set funct ion 

H =  ~ Gi 
i = k + l  
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has  a canonical  decomposi t ion,  say  

H ---- La lrJ'(t) ~- ~2rr(t) + H(t)a + H(~ 

wi th  respect  to  the  sect ion t. The  set  funct ion  

K = F i  ~) + F ?  ) + F~ ~) 

is s-continuous.  So K is / -cont inuous for each l EL s. Since t <  s, K i s / - c o n t i n u o u s  for 

a t  leas t  one l in R~. Hence  K is h y p e r  t -cont inuous.  Compar ing  the  decompos i t ion  

F = {Hf  ) + K} + H~ ~ ~ - - a  J- u(t) + H(4 t) + a ,  

wi th  the  decomposi t ion  of Theorem l ,  we ob ta in  the  iden t i f ica t ion  

F i  ~ = H i  ~ + K ,  

F~t)= H(~ t), 

k 

F(, ') = H(, ') + ~ a , .  
t=l  

I t  now follows, as above,  t h a t  F(4 ~ is cont inuous  on the  left  a t  t = s, and  t h a t  F(1 t) has  

a s imple d i scon t inu i ty  -F (~  s) -F (8  s) on the  left  a t  t = s, or  is cont inuous  on the  left  

a t  t = s in the  case when F(~)+ F(a ~)= O. 

Fur the r ,  if i t  is possible  to  choose h in L~ so t h a t  

hc<h ( i = 1 , 2 , 3  . . . .  ) 

t hen  F(lt) = F(lS) + ~(s) + ~(s) 
.L' 2 z ' $  , 

for  al l  t wi th  u<~t<s. 

Combining the  above  

Theorem 2. 

F~ ~) = 0,  ~ '  = 0,  F', ~ = F(, ~), 

resul ts  we see t h a t  we have  comple ted  the  proof  of 

Two new concepts  are  now necessary.  

D E F I N I T I O N .  I /  S E ~  and F E ~ ,  then F is said to have the exact C.dimeusion s, 

i~ F is s.continuous and hypo s-singular. 

D E F I n I T I O n .  A set /unction F o/ :~ is said to have a di//use C-dimension spec- 

trum, i/ there is no set /unction G o/ :~ with 0 <IGI <, IF[ having an exact C-dimension. 
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These definitions are intended to supersede the definitions given in section 6 

of [1], which we now regard as being inappropriate. But  the examples of section 5 

of [1] are still relevant, and provide examples of set functions having exact C-dimen- 

sion s, and of a set function having a diffuse C-dimension spectrum, on taking l~ to 

be any irreducible maximal scale of functions. 

Tl~e following theorem characterizes the set functions, with a diffuse JC-dimension 

spectrum, in terms of their behaviour under decomposition. 

THEOREM 3. A set /unction F o/ :~ has a di//use L-dimension spectrum, i/, and 

only i/, its decomposition 
F = Fi ') + F~ ~) + F~ ~) + F~ ~), 

/or t in [~, satis/ies one o/ the /ollowing equivalent conditions: 

(1) F~ t) is continuous /or all t in •; 

(2) F (t)~ --_F (t)=a 0 /or all t in if; 

(3) F~ 0 is continuous /or all t in ft. 

Proo/. I t  follows immediately, from Theorem 2, that  the three conditions are 

equivalent. 

If the condition (2) fails, there is a t in if, with, either 

~( t )  ~.  F~t)~=0, or ~'3 ~--. 

Then 0 < IF~ t)] + I.F(st)[ <~ IF(it) l + IF~t)l + (t) 

~( t )  while IF~t)l + -~8 is t-continuous and hypo t-singular. Hence F does not have a diffuse 

E-dimension spectrum. 

On the other hand, if F does not have a diffuse s spectrum, there 

is a t in ff and a G in ~ with 

0<lal<l~l, 
G being t-continuous and hypo t-singular. Now we can write 

IFI~IGI+IHI, 
where H = I F ] - ] G ] .  Decomposing IF], IGI and IHI with respect to the section t, 

and comparing the two resulting decompositions of /F I, we have 

[F~t)[ + ~.~(t)~ = iGht)[ + ~,8~-(~) + I H(~)[ + ]H (~) 

~>la~)l+ a(o~ =IGI>0. 

Thus the condition (2) fails. This completes the proof. 

We are now in a position to state the main theorem of this section. 
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T ~ O R ~ M  4. Given any irreducible maximal scale s o/ /unctions o/ ~4 and any 

set /unction F in ~, there is a finite or enumerable sequence sl, s 2 . . . .  o/ distinct sec- 

tions o/ E, and a decomposition 

F = F (d) + F(~ ~') + F (~') + F (~') + F ('~) + 3 2 3 - . .~  (7) 

where F <~) has a di//use C-dimension spectrum, F~ ~ is strongly s~-continuons and hypa 

s~-singular, and F~ ~) is s~-continuons and almost s~-singular, /or i = l, 2 . . . . .  The set of 

the sections s~, and the decomposition (apart /rom the order o/ its terms) are uniquely 

determined by F. 

Proo/. The result follows, muta t i s  mutandis ,  from the proof of Theorem 3 of [11]. 

The changes required are clear; in particular,  it is necessary to work with the func- 

t ion II_F~t)ll+[]F(at)l[ of the section t i n  ~r in place of the function IF(2 ~)] ( I0)of  the real 

variable ~. 

This theorem should be regarded as a more appropriate  version of Theorem 6 

of section 6 of [11]. I n  the earlier version, the components  F~ ~) were lumped together  

with the component  F (d), with the result t ha t  the component ,  said to have a diffuse 

E-dimension spectrum, did not  deserve this description. 

The remainder  of this paper  will be concerned with the fur ther  s tudy  of the  

decomposit ion of (7). We shall investigate the types  of sections s, for which the 

components  F(~ s) and F(s s) can be non-zero; we shall also show that ,  in certain circum- 

stances, components  of the decomposit ion are isolated in a certain sense. 

5. Sections in a scale o f  functions 

Let  E be an irreducible maximal  scale of functions of ~ .  Let  ff be the system 

of sections of E. A set Q of functions of E will be said to form a r ight  basis for  

a section s in ~r, if L~ is precisely the set of functions h of E, which satisfy h-<q 

for all q in O. Note  tha t  every section s has the corresponding set R~ as a r ight  

basis. Also, if a finite set of functions is a r ight  basis for a section s, then the  

smallest of the functions of the set is the minimal element of R~, and the set con- 

taining just  this one funct ion is a r ight  basis for s. Further ,  if a countable set, say  

ll, 12 . . . .  , of functions of E forms a r ight  basis for a section s with no finite r ight  

basis, the sequence Ul, u 2 . . . .  , given by  

u ~ = m i n ( l l ,  l~ . . . . .  l~} ( i =  l, 2 . . . .  ), 
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has  no min imal  element ,  and  has  a subsequence,  vl, v~, . . .  say,  wi th  

forming 

(F) 
(E) 

(N) 

W e  

f icat ion,  

W e  

Vl ~-V2>- . . . .  

a r igh t  basis  for s. Thus  there  are  th ree  m u t u a l l y  exclusive possibil i t ies:  

the  sect ion s has  a r igh t  basis  consist ing of a single funct ion;  

the  sect ion s does no t  have  a f ini te  r ight  basis,  b u t  does have  an  enumerab le  

r ight  basis  whose e lements  form a s t r ic t ly  monotonic  sequence; 

the  sect ion s has  no enumerab le  r igh t  basis,  b u t  does have  a non-denumerab le  

r ight  basis.  

can in t roduce  a s imilar  def in i t ion  for a left  basis,  and  make  a s imilar  classi- 

but ,  as L~ has  no m a x i m a l  element,  on ly  the  two cases (E) and  ~(N) occur. 

say  t h a t  a sect ion s is of t y p e  (AB), if i t s  lef t  h a n d  bases  fall  under  t y p e  

(A) wi th  A = E or  N,  and  i ts  r igh t  h a n d  bases  fall  under  t y p e  (B) wi th  B = F ,  E or N.  

So a p r i o r i  a sect ion s belongs to  one of six types .  Bu t  we shall  soon e l iminate  two 

of these types .  

F i r s t  suppose t h a t  s were a sect ion of t ype  (EF).  Le t  h be the  min ima l  e lement  

of Rs and  let  v 1, v~ . . . .  be  a left  basis  for s wi th  

vl"< v~'< . . .  ~ h. 

By the  r emark  af te r  Theorem A, there  is an  e lement  k of • w i th  

Vl -< V ~ (  . . .  ~ k~(  h. 

But  now k can belong ne i ther  to  L~ nor  to Rs. This  con t rad ic t ion  proves  t h a t  there  

is no sect ion of t y p e  (EF).  

A precisely s imilar  a rgumen t  shows t h a t  there  is no sect ion of t y p e  (EE).  

W e  are left  wi th  the  sect ions of t y p e s  (NF),  (EN), (NE) and  (NN); i t  is easy  

to  cons t ruc t  examples  of sections of each of these  types .  W e  now go on to  discuss 

each of these  t ypes  separa te ly .  However  the  t ypes  (NF) a n d  (NN) have  a p r o p e r t y  

in common which has  i m p o r t a n t  consequences,  and  we consider  th is  first.  I n  bo th  

cases the  sect ion has  no enumerab le  lef t  basis  and  fur ther  R~ has  no countab le  co- 

f ina l  sequence in  l~, i.e. the re  is no countable  sequence rl ,  r 2 . . . .  in  l~ wi th  

. . .  ~( rm'~ . . . ~ r2 ~ rl ,  

such t h a t  the  members  of R~ are those  r in IZ such t h a t  r m ' ~ r  for some in teger  m. 

This  las t  p r o p e r t y  follows, in the  case of a sect ion of t y p e  (NF),  b y  the  a r g u m e n t  

used above  to  exclude sections of t y p e  (EF) .  



226 C.  A .  R O G E R S  A N D  S.  J .  T A Y L O R  

We formulate  the results for sections of these two types  in terms of ' isolated 

components ' .  

~'(~) + F ~) is said to be isolated, when DEFINITION.  For any s e r f ,  the component ~.~ 8 

there are sections u, t o/ f f  with u < s < t such that, i /  G is any set /unct ion o / ~ ,  which 

is u-continuous and t-singular and satis/ies IGI~<JF[, then G is o/ exact E-dimension s 

and satis/ies I GI < [Fh ~) + F(~)I. 

L E ~ M A  1. Suppose s is a section o/ F~ o/ type (NF) or (N-N). Then the component 

F~ ~) + F~ ~) is isolated. 

Proo/. I f  s is such a section, then we know there is no sequence rl, r~, ..., in 

R~, such tha t  a ny  h in l: satisfying h<r~, i =  l,  2, ... cannot  be in R~; and there is 

no countable sequence lx, l~ . . . .  in Ls, such tha t  any  h in ~: satisfying l~<h, i =  1,2, ... 

cannot  be in L~. Under  these circumstances, the remarks  made in the proof of Theo- 

rem 2 apply,  and there will be sections l, r in ff with 

l - ~ s ~ r  

such tha t  F~ t) = F(1 s) + ~'(s) + F (~) •  3 ~  

F(} ) = 0, F(~ t) = 0, p(,t) = F(p for l ~< t < s, 

and F i  t) = F 7  ), F(2 t, = 0, F(8 t) = 0, 

F(4t) = F(~) + F~s) + F(4 ~) for s < t <~ r. 

Consider a ny  G in :~, which is /-continuous and r-singular, and which satisfies 

I G I < I F I .  Since la l  is /-continuous, and 

Iol  < IFI = IFi" + Fh" + F~"I + IF(4"/, 

where IF(4 t)j is /-singular, it follows t h a t  

Iol  < IF, (`' + ~(') + F (',~ - ~ , ~  3 j - I F T ) I + I F ( @ + F T I  �9 is) 

Further ,  since IGI is r-singular, and 

- -  ..x.. 1 7- . [ '  2 .F~'I+IF(, '[,  

where I F(~ ') +F(2')+ F~)[ is r-continuous, it follows tha t  

Io1~< IF(PI = IF~S' + F(~8'I + IF(P[ �9 <9) 
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Since IFis) I and [F(4s) I are complementary it follows from (8) and (9) tha t  

~t' 2 T ~ , 3  . 

This implies tha t  G is of exact E-dimension s. Consequently the component F~)+  F~ ~) is 

isolated. 

6. Sections of type (NF) 

Let I~ be an irreducible maximal  scale of functions of :H and let s be a section 

of ~ of type (NF). Let  h be the minimal element of Rs. Then s is uniquely deter- 

mined by  h, and we write s = s(h). We recall the definitions of the sets C(h), C* (h), 

S(h) and S*(h) given in [1]. 

1. C(h) is the class of set functions F of :~, which are h-continuous; tha t  is, 

those set functions such tha t  F(E)=0, for any E in B of zero h-measure. 

2. $(h) is the class of set functions F of :~, which are h-singular; tha t  is, those 

set functions, for which there is some E 0 in B with zero h-measure, such tha t  

F(E)=F(E f3 E0) for all E in B. (10) 

3. C*(h) is the class of set functions F of :~, which are strongly h-continuous; 

tha t  is, those set functions such tha t  F(E)= 0, for any E in B of a-finite h-measure. 

4. S*(h) is the class of set functions F of 5, which are almost h-singular; tha t  

is, those set functions, for which there is some E 0 in B with a-finite h-measure, such 

tha t  (10) holds for all E in B. 

In  [11] we proved tha t  C(h) and S(h) and C*(h) and $*(h) are pairs of com- 

plementary bands in :~. We remark here tha t  the results could have been obtained 

a bit  more directly, by  use of results of Hahn  and Rosenthal [6], rather  than  by  use 

of the theory of bands. 

In  the special case, when ~ is dense, we can establish connections between the 

four bands associated with h and the six bands associated with s(h), by  using the 

results of [13]. 

LEMMA 2. 1[ ~ is dense, h EF~ and s(h) is the section o / s  of type (NF)associated 

with h, we have 

C(h) = C~h), $(h) = $~h), 

C * ( h )  = * * *  Cs(h) = Cs(h), 

$ * ( h ) =  * * *  
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Proo/. Comparing the definitions of C~(h) and C(h), we see immediately tha t  

Cs(h) ~ C(h) .  

So consider any F in Cs(h). Let  E be any set of ]g with zero h-measure. Then, by 

a result of Besicovitch {see Lemma 6 of [13]}, there is a function i of ~ with j ~ h  

and j -  re(E) = O. 

Since iZ is dense, it follows from (Pc) that  there is a g in l~ with g'<h] -1. Then, 

by (Pa), the function l = ~ J  -1 is in s and satisfies 

Thus we must  have 1 in L~(h), and 

j < l < h .  

l - m(E) = O. 

As F is in Cs(h), this implies tha t  F(E)= 0. Hence F is in C(h). Consequently 

Cs(h) = C(h).  

I t  follows tha t  the complementary bands Ss(h) and S(h) must  coincide. 

Cs(h), C,(h) and C*(h), we see immediately tha t  Comparing the definitions of * ** 

�9 f ' * *  C / " *  

Now consider any F of C*(h). By Theorem 5 of [13], there is a function g of 

with h-<g and FEC*(g) .  Since 1~ is dense, it follows tha t  there is an l in 1~ with 

h<l.<g. 

Then 16 R~(h), and F 6 C* (1) c ~s(h) ~s(~). 

~ * *  c 1"*  c C * ( h ) .  Thus C*(h) c~s(h) ~s(h) 

Hence C* (h) = Cs(h)* = Cs(h)** �9 

Consequently S* (h) = Ss(h)* = Ss(h)**, 

as well. This completes the proof. 

The following theorem provides considerable information about  the components 

in Theorem 4 corresponding to sections of type (NF) in a dense scale. 

T H E O R E M  5. Let s be a section o/ type (NF) in a dense irreducible maximal 

scale s and let h be the minimal element in Rs. Then, in the decomposition o/ a /unc- 

tion F o/ ~, provided by Theorem 4, 

F(: ) = O, 
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E(~) is h-continuous and almost h-singular, and has a representation 3 
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[ "  
F(3 s) (E) = J En S /(x) d h -  re(x), 

where /(x) is a Borel-measurable point /unction which does not vanish on S, and S is 

a Borel set o/ a-/inite h-measure. Further the component F(3 ~) is isolated. 

Proo/. Using Lemma 2, we have 

F(~ ~) e * ** Cs = Cs and F(2 ~) E Ss**. 

Hence F(~ s) = O. 

Using Lemma 2 repeatedly, we have 

F i  ~) + F~ ~) e r  = C* (h), 

~(~) e C~ n S* = C(h) n S* (h), 3 

F(~ ~) ~ S~ = S(h) .  

So ~'3~(s) is h-continuous and almost h-singular. Further,  comparing the decomposition 

F = F i  ~) + F~ ~) + F(3 ~) + F(~ ~) 

with tha t  of Theorem 7 of [13], we identify F(~ ) with the second component of tha t  

theorem, so tha t  it has a representation of the required form. Alternatively the 

representation may  be obtained (as in Theorem 7 of [13]) by  a direct application of 

the Radon-:Nikodym theorem. 

The fact tha t  F(~ ) is isolated follows from Lemma 1. 

7. Section of type (NE) 

Let s be an irreducible maximal scale of functions and let s be a section of C 

of type (NE). In  order to obtain significant results for sections of this type we shall 

have to assume tha t  l: is strongly dense. But  first we prove a lemma. 

LEMMA 3. Let hi, h 2 . . . .  be a sequence o/ /unctions o/ ~ with 

hl >-h~ >- .... 

and let E be a F,.set  with h~-  m ( E ) =  O, i = l, 2 . . . . .  Then there is a /unction g o/ 

with g-<h~, i = 1 , 2  . . . .  , and g - m ( E ) = O .  
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Pro@ We first consider the case of a bounded  closed set E.  Since E is compact ,  

each covering of E b y  open sets contains a finite covering of E.  Since h i -  m(E)= O, 
for  i = 1, 2 . . . . .  i t  follows t h a t  for each pair  of posi t ive integers i, ?" we can choose 

finite sys tem of open convex sets 

C~t.j), fv(i.j) /~( i . / )  
' J 2  ~ . . . ~  v / j  , 

where # = # ( i ,  j), covering E,  and  such t h a t  

ht (d( C<ri'J)) ) < 1/], 
r = l  

and m a x  d(C~ ira) < 1/i. 
l~<r~<~ 

Write  d <~'j)= rain d(C~id)). 
l~r~<# 

We now choose induct ively  a sequence of funct ions k 1, k 2 . . . . .  a sequence of in- 

tegers Jl, ]a . . . . .  and two sequences of real numbers  ~1, ~ . . . . .  and  */1, */3 . . . . .  so that :  

(1) kl(x)=hl(X ) for all x>~O, and  A = j ( 1 ) = I ;  

(2) when r/> 1 and k,(x) and j~=j ( r )  have  been chosen, ~r is chosen so that. 

h,+x(x)>h,(x) for all x wi th  O < x < ~ , ,  and  also ~T<dr 

(3) when r~> 1 and k,(x), jr and ~, have  been chosen, ~/, is chosen, with 0 < ~ , < ~ , ,  

so t h a t  h ,+ l (~ )=h r (~ , ) ;  

(4) when r~>l  and  k,(x), iT, ~, and */~ have  been chosen, k,+l(X) is defined b y  

kr+l(x)=kT(x) for ~T<x,  

k~+l(x)=kr(~,)=hr+l(~r) for ~ < x < ~ , ,  

kr+l(x)=h~+l(x) for 0 < x ~ < ~ ;  

(5) when r>~ 1 and  kr(x), ? ' ,=j(r) ,  ~ ,  ~, and k~+l(x) have been chosen, j~+l =~ ' ( r+  1) 

is chosen to be an integer so large t ha t  

, ( 1 )  
- -  < min  ~/r, 
?'r+l r - - ~  

Consider the  measure  funct ion g(x) defined b y  

g ( x )  = lim kr ( x ) .  

I t  is clear t h a t  g(x)>~hr+l(x) for 0 < x < ~ T + l .  
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As hr+l~hT,  i t  follows t h a t  g~hr  for r = l ,  2, . . . .  Fu r the r ,  for each in teger  r>~2, the  

set  of open convex sets 

C~ r'j<~>>, C <~'j(T'2 , . . . ,  C~r'J~>>," 

with  /x =Ix(r, j(r)), forms a covering of E wi th  

1 
d/~(r'j(r))~ ~* ~ < ?J r - l )  m a x  ~xvn I 

l~<n~</x 

min d(C~ "j<~))) = d r > ~ .  
l~<n~# 

Thus  ~. g(d(C(~.J(r))))= ~ k,.(d(C~,~(r))))= ~ <,.,i(,.)) hr (d(Cn )) < l / j (r)  < l / r .  
n = l  n =1 n =1 

Hence  E is o f  zero g-measure.  

Now suppose t h a t  E is a F , - s e t .  Then we have 

E= ~. UE, 
J=l 

for some sequence Et ,  E 2 . . . .  of bounde d  closed sets. 

As h~ - m(E~) < h~ , m(E) = O, 

we can, for each j,  choose a funct ion  gj of ~H wi th  

gj'<h~ for i , j = l , 2  . . . .  

and  g j - m ( E j ) = O  for j = 1 , 2  . . . . .  

Then,  because ~ is s t rongly  dense, we can choose a funct ion  g of :H wi th  

gj'<g'<hi for  i, j =  1, 2, . . . .  

Then  g - m(E) <~ ~= g - m(E~) <~ ~= g j -  m(Es) = O. 
j = l  j = l  

This comple tes  the  proof.  

Remark. The prob lem of ex tend ing  this  l emma  to cover a n y  Borel  set  E seems 

to us to  be open and  interes t ing.  

W e  can now eas i ly  prove  

L~.MMA 4. I1 s is strongly dense, and s is a section o/ s o/ type (NE), then 

C~ = C* ** S~ = C ~ ,  L =  *=S**. 
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P r o o / .  I t  suffices to  p rove  t h a t  

S, S*= ** = $ ~  , 

indeed,  since S s =  S* ~, , 

i t  suffices to  p rove  t h a t  $ * * c $ s .  

Ss �9 L e t  v v be a r igh t  basis  for s wi th  Consider  then  a n y  funct ion  F of :~ in ** v 1 . . . .  

v l>-v~>-  . . . .  

As F E$**, we can choose sets  E l ,  E 2 . . . .  o f  B, such t h a t  

F ( E ) = F ( E N E i )  for all  E of B, 

v~ - m ( E i )  = O, 

for i = l ,  2 . . . . .  Then  E o =  A~=IEi  is a set  of B wi th  

F ( E ) = F ( E N E o )  for al l  E of B, 

and  vt - m ( E  o) = 0 (i = 1, 2 . . . .  ). 

Since F is an  add i t ive  set  funct ion  of 5 ,  there  is an  Fa-se t  G, con ta ined  in 

E o, wi th  
IFI(O)=IFI(Eo). 

Since vi - m ( G )  = 0 (i = 1, 2,  . . . ) ,  

i t  follows f rom L e m m a  3, t h a t  there  is a funct ion g of :H, wi th  

g - < v i  ( i =  1, 2 . . . .  ), 

a n d  9 - m ( G )  = O. 

Since i~ is s t rong ly  dense,  there  is an  1 of E wi th  

g-<l-<v~ ( i =  1, 2 . . . .  ). 

Since v 1, v~ . . . .  is a r ight  basis  for s, i t  follows t h a t  1EL~. Now, we have  1EL~, 

l - m ( G )  < g - m ( G )  = 0, 

and ,  for each E of B, 

I F ( E  N G) - F ( E )  I ~< ] F ( E  N Eo) - F (E) ]  + I F ( E  N Eo) - F ( E  N G) I 

< [F(E n Eo) - F ( E )  I + [I F I (E0) - I FI  (o) l = 0. 
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Thus F is concentrated on the set G of B, with zero /-measure, with l in JLs, and 

so F E $s. Consequently 
S** c S .  

and the required result follows. 

As an immediate corollary of this l emma, we have 

THEOREM 6. Let s be a section o/ type (NE) in a strongly dense irreducible maximal 

~cale F~. Then, in the decomposition o/ a /unction F o/ ~, provided by Theorem 4, 

F(2 ~) = F(~ s) = O. 

8. Sections of type (EN) 

Let I: be an irreducible maximal scale of functions and let s be a section of s 

,of type (EN). In  order to obtain significant results for sections of this type, as for 

~ections of type (NE) we shall have to assume that  the scale I~ is strongly dense. 

But  first we need two lemmas. 

Our first lemma is a result which was proved, but not explicitly stated in [13] 

i t  introduces the concept of a set function G, which is uniformly Lip h(t), i.e. a set 

function G ot :~, such that, for some constants K and (~ >0,  we have 

]GI (I) <~ gh(d(I)),  

for all sub-intervals I of I 0 with d(I)< (~. 

LEHMA 5. I /  h E ~  and F in :~ is h-continuous, then there is a sequence E~,i= 1,2 . . . . .  

v/ disjoint sets o/ B, such that the set /unctions 

G~(E)=F(ENE~) ( i=1 ,2  . . . .  ), 

are each uni/ormly Lip h(t), and 

t = l  

oo 

lIFIl= 5111G II. 

Proo/. The result follow immediately, from part (d) of the proof of Theorem 1 

of [13], on taking 

E i = K ~ - K ~ - I  ( i=1,2 . . . .  ). 

LEHMA 6. Let hi, h~, ... be a sequence o/ /unctions o/ "~ with 

high2-< ..... 
16 - 632918 Acta mathematica. 109. I m p r i r a ~  17 ju in  1963. 
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and let F be a set /unction o/ 7 ,  which is h~.continuous /or i = 1, 2 . . . . .  Then there i~ 

a /unction g o/ ~ ,  with h~-<g /or i =  1, 2 . . . . .  such that F is still g.continuous. 

Proo/. Let  e be given with 0 <  e <  1. B y  L e m m a  5, for each ], we can choose 

sequence E} j), i =  1, 2, .. .  of disjoint  sets of B, such t h a t  the set funct ions 

G~ j) (E )=  F ( E  N E} j)) (i = 1, 2, . . .),  

are each uni formly  Lip  hs(t), and  

Ila ')ll' F =  ~. G~ j), I I F I I - - =  

for j =  1, 2 . . . . .  For  each ], we choose an integer k(]), such t h a t  

i ~ k U ) + t  

k(]) k(]) 

and then  write Qj = I.J E} j), Hj  = ~ G~ j). 
i ~1 i=1 

Then Hj  belongs to 7,  and  is un i formly  Lip  hi(t). Fur the r  

and  

for ] = 1, 2 . . . . .  

Wri te  K = [~ Qj, 
j = l  

Then  H belongs to 7 ,  and  satisfies 

oo 

H(E)  = F ( E  ~ K), 

for all E in B. As K c  Qj, it follows tha t  H is uni formly  Lip  hi(t), for ~'= 1, 2, . . . .  Also  

2~ 
I I F - H I I < I ] F - H I I I +  ~ IIH,+I - H ,  II< l ~ e  �9 

J = l  

Since H is uni formly  Lip hi(t), for j =  1, 2 . . . . .  and 

h~"< h~'< . . . .  

we can use the  usual technique to form a funct ion g of ~ ,  with 

h~ < h~-< . . . < g, 

such t h a t  H is still uni formly Lip g(t). 
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Repeat ing this construction, for different values of s, we can choose a sequence 

H 1, H 2 . . . .  of functions of :~, with 

IIF-HjlI<2-1 (i=1, 2, ...), 

and a sequence of functions gl, g2 . . . .  of ~/, with 

h i ' g 1  for i , ] = 1 , 2  . . . . .  

such t h a t  H i is uniformly Lip gt(t), for ~= 1, 2 . . . . .  Now choose g in ~/, with 

h~-<g'<gj for i, j =  1, 2 . . . . .  

Each  function H i is uniformly Lip g(t). Fur ther  

F -I+ 
i=1 

with ~ IIHj+I- Hjl I 
i=1 

convergent.  Hence, by  Theorem 1 of [13], /~ is g-continuous, as required. 

LEMMA 7. 1/ s is strongly dense, and s is a section o/ s o/ type (EN), then 

=C~= S ~ = S ~  = S s  �9 CS , 

Proo/. As Cs ~ Cs* ~Cs**, 

it suffices ~o prove tha t  C** ~C~.  Suppose then t h a t  F is any  set funct ion of C~. 

Let  v I, v 2 . . . .  be a left basis for s with 

vl ~ v~-< . . . .  

Then F is v~-continuous, for i = 1, 2 . . . . .  So, by  Lemma 6, there is a funct ion g of 

~/, with 

v~<g ( i = 1 , 2  . . . .  ), 

such tha t  F is g-continuous. Since s is s t rongly dense, there is a funct ion l of s with 

v~<l<g ( i = 1 , 2  . . . .  ). 

As s is of type  (EN), the function 1 belongs to R~. Fur ther  /r is /-continuous. Thus 

F is hyper  s-continuous. This shows tha t  C ~ C * * ,  and the proof is complete. 
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Lemma 7 immediately  gives 

THEOREM 7. Let s be a section o/ type (EN) in a strongly dense irreducible maxi- 

mal scale F~. Then, in the decomposition o/ a /unction F o/ :~, provided by Theorem 4, 

F~ ~ = ~ V  = O. 

This seems the most  appropriate  place to add a remark concerning the decom- 

position of Theorem 1, when the section s corresponds to a small generalized dimen- 

sion. Since we have restricted our  considerations to completely addit ive set functions 

on I0, which are continuous, each F of :~ is uniformly continuous in the sense tha t  

IFI(I)-->O as d(I)--->O, 

where I runs over all sub-intervals of I 0. Hence there is some function h of ~ ,  

depending of F ,  such tha t  F is uniformly lip h(t). Hence F is h-continuous. So, if I:  

is dense, there is a section 1 of i :  such tha t  F is /-continuous. Now we have 

F i  t) = F ,  F (t)2 -- F Ct)3 -- F(4 t) = 0, 

for all sections t of i :  with t < l . "  

9. Sections of type (NN) 

The components  which Theorem 4 associates with a section of type  (NN) are 

not  accessible for s tudy,  and we know little about  them. We shall give an example 

to show tha t  these components  can be non-zero; bu t  first let us notice tha t  L e m m a  1 

shows tha t  such components  are always isolated. 

A particular example. I n  [9] Rogers gave an explicit  construct ion for a set func- 

t ion P in the system 9:, obtained by  taking k = 1 and I 0 to be the uni t  interval,  

and showed tha t  it had certain properties which are relevant to the present work. 

To state the results we need to introduce the upper  and lower classes associated 

with the law of the i terated logarithm. 

For  each z with 0~<z< 1, let 

0 " ClC2C 3 . . .  

be the binary decimal expansion of z, which does no t  terminate  with 1 recurring, 

and let S~(z) denote the number  of digits 1 among cl, c 2 . . . .  c~. A real-valued con- 

t inuous function r is called a funct ion of the lower class, if, for almost  all z, 

we have 
Sn (z) < �89 n - r 
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for infinitely many  values of n. Such a function r is said to belong to the upper 

class, if, for almost all z, we have 

Sn(z) < � 8 9  r 

for at  most a finite number of values of n. Each real-valued continuous function ~b(2) 

belongs to one or other of these classes. Using results of [12], Rogers proved tha t  

his function P satisfies 

THEOREM H. Let hE~ ,  and write 

r = log 2 23~/2 h(2-a~). (11) 

I /  r belongs to the upper class, then P is strongly h.continuous; i/ r belongs to 

the lower class, then P is h-singular. 

We now show that  this implies 

T~EOREM 8. Let ~ be any irreducible maximal scale o/ /unctions o/ ~ .  Then the 

set L o/ /unctions h o/ E such that r given by (11), belongs to the upper class, and 

the set R o/ /unctions h o/ I: such that r belongs to the lower class/orm the le/t and 

right classes o/ a section s o/ ~, or this is the case alter the maximal element o / L  has 

been trans/erred to R, and in the decomposition o/ F = P, provided by Theorem 4, 

p = F(2 ~) + F(~ ) . 

I /  I: is strongly dense, then s is o/ type (NN). 

Proo/. Since the question of whether ~(2) belongs to the upper or the lower 

class depends only on the behaviour of h(t) for small positive values of t, it is easy 

to verify tha t  L and R form the left and right classes of a section of s or tha t  

this is the case after the maximal element of L has been transferred to R. Now 

Theorem H asserts tha t  P is s-continuous and hypo s-singular. Hence, in Theorem 4, 

p = F~ ~) + F(~ ). 

Now suppose tha t  s is strongly dense. If  s were of type (NF) corresponding to 

a function h of s  then h would belong to L or R and we would have a contradic- 

tion. Since P is non-zero, it follows from Theorem 9 tha t  s cannot be of type (EN) 

or (NE). Hence s is of type (NN). This can also be proved directly, by  using the 

results of [12]. 
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10. The final decomposition theorem 

Combining the results of the previous sections we obtain the following decompo- 

sition theorem. 

THEOREM 9. Given any strongly dense irreducible maximal scale F~ o/ /unctions 

o/ 7t and any set /unction F in 9:, there are /inite or enumerable sequences hl, h2,...  

o/ /unctions o/ s and sl, s 2 . . . .  o/ sections o/ type ()~q,) o/ E, and a decomposition 

F = F (d) + F~ h') + F(o h') + . . .  + F~ s') + F~ ~') + F~ ~) + F~ ~) + . . . .  

where F (d) has a di//use s spectrum, F~ ~) is hi-continuous and almost hi-sin- 

gular, and has a representation 

F(o~')(E) = ( /~ (z) dh~ - m(x), (12) 
d E  St 

where /~ (x) is a Borel-measurable point /unction which does not vanish on Si, and S~ is 

a Borel set o/ a-/inite h~-measure,/or i = l, 2 . . . . .  and F~ j) is strongly s]-continuons and 

hypo srsingular, and F~ s) is sj-continuous and almost sfsingular, /or ]= 1, 2 . . . . .  The 

set o/ /unctions h~, the set o/ sections sj, an t  the decomposition (apart /rom the order 

o/ its terms) are uniquely determined by F. Further, each o/ the components 

F~ ~, ( i=1 ,2  . . . .  ) ,  

F~)+F~J ) ( ] = 1 , 2  . . . .  ), 
is isolated. 

We should perhaps remark at this stage that, although this theorem does not 

depend on the assumption of the Continuum Hypothesis, we have only been able to 

prove the existence of a strongly dense irreducible scale s of functions of ~4, by 

assuming the truth of that  hypothesis. Some further remarks concerning this theorem 

will be found in section l l. 

We were at one stage worried because the cardinality of the set ~r of sections 

of s must be 2 c, and yet in a certain sense it was clear that not all of ~ could be 

relevant to the analysis of a single function F in 9:. Theorem 9 goes some way 

towards making this phenomenon explicit. For each F in 9: there are "open inter- 

vals" in ff in which F has no contribution; these arise from each section s(h) cor- 

responding to an element h in s and also from each section of type (NN), since 

even the null components F(~)+F(a ~) are isolated. Thus for any particular F in 9:, 

not all of ff is required for its complete analysis in the sense of Theorem 9. 
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11. Epilogue 

This investigation has suggested a number of problems to us. We have already 

mentioned the problem of extending Lemma 3 to cover the case of a Borel set E. 

In  our study of sections of type (EN) we were for a long time held up by our lack 

of a proof of a certain conjecture; eventually we found a way round the difficulty, 

using the results of [13]. One of us [10] subsequently proved the conjecture in the 

following form, which could be used in place of the results of [13] to prove Theorem 7. 

T~EO~EM. Let E be a compact set in  a separable metric space ~ .  Let hi, h 2 . . . .  

be functions o/ ~ with 

hl-< h~-( . . . ~ hr-< . . . .  

Then,  either (i) it is possible to express E as (J~-i  Er with 

h r - m ( E r ) = O  ( r = l , 2  . . . .  ), 

or (ii) there is an h in  ~ with 

hr'<h (r= l ,  2 . . . .  ), 

and E is o/ non-a-/inite h-measure. 

This result has been extended to analytic sets E by M. Sion and D. Sjerve 

in [14]. 

Theorems 8 and 9 leave open the problem: is it possible for each of the com- 

ponents ~'2,~(~) F(~ ~) associated with a section of type (NN) to be non-zero? Theorem 8 

merely tells us that  in the case of the set function P, one or other or both of these 

components is non-zero. We are tempted to believe that, even in the case of P, the 

component which is non-zero may depend on the choice of the strongly dense scale 1~. 

When we started this investigation, we hoped that  it might lead to a decomposi- 

tion of the type, provided by Theorem 9, but where each component, other than that  

with a diffuse dimension spectrum, would have an integral representation of the 

form (12). Now Theorem 8 shows that this is not possible, at any rate so long as 

our analysis is with respect to a scale of Hausdorff measures. I t  seems possible that  

this objective might still be reached, using an ordered system of uniform regular 

metric Carathdodory outer measures. But it begins to look as if it might be necessary 

to make the choice of the scale of measures dependent in some way on the func- 

tion to be analysed. 
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While it would be interesting to have theoretical methods of obtaining even more 

refined analyses of an additive set function, the present analysis is probably more 

than sufficiently refined for most  particular set functions. I t  would be of interest to 

analyse some of the singular functions arising in number theory, and in the theory 

of probability, by the methods of this paper. I t  seems likely tha t  in many  cases i t  

would be possible to choose a quite simple explicit scale I:, which would be suffi- 

cient to give a complete resolution into discrete components and a residuum with a 

diffuse dimension spectrum. 
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