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Introduction 

Let E be a finite-dimensional vector space over R and G a group of linear trans- 

formations of E leaving invariant a nondegenerate quadratic form B. The action of 

G on E extends to an action of G on the ring of polynomials on E. The fixed points, 

the G-invariants, form a subring. The G-harmonic polynomials are the common solu- 

tions of the differential equations formed by the G-invariants. Under some general 

assumptions on G it is shown in w 1 that  the ring of all polynomials on E is spanned 

by products ih where i is a G-invariant and h is G-harmonic, and that  the G-har- 

monic polynomials are of two types: 

1. Those which vanish identically on the algebraic variety Na determined by the 

G-invariants; 

2. The powers of the linear forms given by points in /Vc. 

The analogous situation for the exterior algebra is examined in w 2. 

Section 3 is devoted to a study of the functions on the real quadric B = I  

whose translates under the orthogonal group 0(B) span a finite-dimensional space. 

The main result of the paper (Theorem 3.2) states that  (if dim E > 2)these functions 

can always be extended to polynomials on E and in fact to 0(B)-harmonic polynomials 

on E due to the results of w 1. 

The results of this paper along with some others have been announced in a short 

note [9]. 

w 1. Decomposition of the symmetric algebra 

Let E be a finite-dimensional vector space over a field K, let E* denote the 

dual of E and S(E*) the algebra of K-valued polynomial functions on E. The sym- 

(1) This work was partially supported by the National Science Foundation, NSF GP-149. 
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metric algebra S(E) will be identified with S((E*)*) by means of the extension of the 

canonical isomorphism of E onto (E*)*. 
Now suppose K is the field of real numbers R, and let C~r be the set of 

differentiable functions on E. Each X E E gives rise (by parallel translation) to a 

vector field on E which we consider as a differential operator ~(X) on E. Thus, if 

/ E C ~ (E), ~(X) / is the function Y--> {(d/dt) (]( Y § tX))~t =o on E. The mapping X--> ~(X) 

extends to an isomorphism of the symmetric algebra S(E) (respectively, the complex 

symmetric algebra SC(E)=C(~)S(E)) onto the algebra of all differential operators on 

E with constant real (resp. complex) coefficients. 

Let H be a subgroup of the general linear group GL(E). Let I(E) denote the 

set of H-invariants in S(E) and let I+ (E) denote the set of H-invariants without 

constant term. The group H acts on E* by 

(h.e*)(e)=e*(h-i.e), hEH, eEE, e*EE*, 

and we have I+(E*)~I(E*)cS(E*). An element pESC(E *) is called H-harmonic if 

~ ( J ) p = 0  for all J EI+(E). Let H+(E *) denote the set of H-harmonic polynomial func- 

tions and put H(E*)=S(E*)N H~(E*). Let It(E) and F(E*),  respectively, denote the 

subspaces of SO(E) and Sr *) generated by I(E) and I(E*). Each polynomial func- 

tion p ES~(E *) extends uniquely to a polynomial function on the complexification E ~, 
also denoted by p. Let -NH denote the variety in E ~ defined by 

N,=(XeE~[i(X)=O for all iEI+(E*)}. 

:Now suppose B 0 is a nondegenerate symmetric bilinear form on E• let B 

denote the unique extension of B 0 to a bilinear form on EC• ~. If  X E E  e, let X* 
denote the linear form Y-->B(X, Y) on E. The mapping X--~X* (X E E) extends uniquely 

to an isomorphism /z of SO(E) onto S~(E*). Under this isomorphism B 0 gives rise to 

a bilinear form on E*• which in a well-known fashion ([5]) extends to a bilinear 

form (,)  on SC(E*)• The formula for (,)  is 

(p,q)=[~(#-lp)q](O), p, qES~ 

where for any operator A : C ~ (E)--> C ~r (E), and any function / E C :~ (E), [All (X) de- 

notes the value of the function A/ at X. The bilinear form (,)  is still symmetric 

and nondegenerate. Moreover, if p,q, rESC(E *) and Q=#-l(q), R=/z - l ( r ) ,  then 

(p, qr) = [~(QR)p] (0) = [~(q)O(R)p] (0) = [O(R)O(Q)p] (0) = (O(Q)p, r), 

which shows that multiplication by /~(Q) is the adjoint operator to the operator ~(Q). 
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Now suppose H leaves B 0 invariant; then (,} is also left invariant by  H and 

~(F(E))  = I~(E*). (1) 

Let  P be a homogeneous element in SO(E) of degree /c. If  n is an integer ~> k then 

the relation 
~ ( P ) ( ( x * ) n ) = n ( n - 1 )  ... ( n - l c +  I ) # ( P ) ( X ) ( X * )  ~-k, X EE c, (2) 

can be verified by  a simple computation. In  particular if X ENH then (X*) ~ is a 

harmonic polynomial function. Let  Hi(E* ) denote the vector space over C spanned 

by the functions (X*) ~, ( n = 0 , 1 , 2  . . . . .  X E N n )  and let H~(E*) denote the set of 

harmonic polynomial functions which vanish identically on Nn. 

I f  A is a subspace of SC(E *) and k an integer >~0, Ak shall denote the set of 

elements in A of degree k; A is called homogeneous if A=~e>~oAk. The spaces I(E*), 

H(E*), Hi(E* ) and the ideal I+ (E*) S(E*) are clearly homogeneous. 

L ~ M ~ A  1.1. H2(E* ) is homogeneous. 

Proo/. Let A =  F+ (E*) Sc(E*). Then NH is the variety of common zeros of ele- 

ments of the ideal A. By Hilbert 's  Nullstellensatz (see e.g. [18], p. 164), the poly- 

nomials in S~(E *) which vanish identically on NH constitute the radical VA of A, 

tha t  is the set of elements in S~(E *) of which some power lies in A. Since A is 

homogeneous, ~/A is easily seen to be homogeneous so the lemma follows from 

H2(E*)= HC(E *) N ~A. 

I f  C and D are subspaces of an associative algebra then CD shall denote the 

set of all finite sums ~ c~ d~ (ci E C, d~ E D). 

T]~]~o~E~I 1.2. Let 

space W o over R. Then 

U be a compact group o] linear trans]ormations o/ a vector 

S(W~) = I(W~) H(W~). (3) 

Let B o be any strictly positive de/inite symmetric bilinear /orm on Wo• W o invariant 

under U (such a B o exists). Then Hc(w~) is the orthogonal direct sum, 

Hc(w~) = H 1 (WS) + H2(W~ ). (4) 

Proo/. Using an orthonormal basis of W o it is not hard to verify tha t  the bili- 

near form <,} is now strictly positive definite on S(W~)• On combining this 

fact with the remark above about  the adjoint of a(Q) the orthogonal decomposition 

S( W~)~ = (X + (W~) S(W~))~ + H( W~)~ (5) 
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is quickly established for each integer k>~ 0. Now (3) follows by iteration of (5). In  

order to prove (4) consider the orthogonal complement M of (HI(W~))k in (Hc(W~))k. 

Let  q e (Hc(W~))k, Q = lt~ - l ( q ) .  Then q e M ~ [ 0 ( Q )  h] (0) = 0 for all h e (H 1 (W~))k 

~(Q)((X*)k)=0 for all X E N v .  In  view of (2) this last condition amounts to q van- 

ishing identically on Nv; consequently M=(H2(W~))~.  This proves the formula (4) 

since all terms in it are homogeneous. 

Remark 1. Theorem 1.2 was proved independently by B. Kostant  who has also 

sharpened it  substantially in the case when W o is a compact Lie algebra and U is 

its adjoint group (see [11 a]). 

Remark 2. In  the case when U is the orthogonal group O(n) acting on W 0 = R n then 

I(W~) consists of all polynomials in x~+ ... +x~ and H(W~) consists of all polynomials 

p(x 1 . . . .  xn) which satisfy Laplace's equation. In  view of (5) a harmonic polynomial ~ 0 

is not divisible by x2x+... +x~. Since the ideal (x~+. . .  +x~)Sc(W~)) equals its own 

radical, H2(W~)=0  in this case. Theorem 1.2 therefore states tha t  each polynomial 

p = p ( x  1 . . . .  x~) can be decomposed p = y , k ( x ~ + . . . + x ~ ) * h k  where hk is harmonic and 

tha t  the complex polynomials (a lx l+. . .+a=x~)  ~ where a l ~ + . . . + a ~ = 0 ,  k = 0 , 1  ... 

span the space of all harmonic pol)-nomials. These facts are well known (see e.g. [2], 

p. 285 and [13]). 

THEOREM 1.3. Let V o be a /inite-dimensional vector space over R and let G o be 

a connected semisimple Lie subgroup o/ GL(V0) leaving invariant a nondegenerate sym- 

metric bilinear /orm B o on V o • V o. Then 

s(v~) = i(v~) H(V~), 

H~ = H 1 (V~) + H 2 (V~), (direct sum). 

We shall reduce this theorem to Theorem 1.2 by use of an arbi t rary compact  

real form it of the complexification g of the Lie algebra go of G 0. Let  V denote the 

complexification of V 0 and let B denote the unique extension of B o to a bilinear 

form on V• V. The Lie algebra gI(V0) of GL(V0) consists of all endomorphisms of 

V 0 and g0 is a subalgebra of gl(Vo). Consequently the complexification ~ is a sub- 

algebra of the Lie algebra g[(V) of all endomorphisms of V. Let  U and G denote 

the connected Lie subgroups of GL(V) (considered as a real Lie group) which cor- 

respond to It and ~ respectively. The elements of G o extend uniquely to endomor- 

phisms of V whereby G o becomes a Lie subgroup of G leaving B invariant. This 

implies tha t  

B ( T . Z I ,  Z2)+B(ZI ,  T. .Z2)=O, Z~,Z2EV,  T E g  o. (6) 



I)IVARIANTS AND FUNDAMENTAL FUNCTIONS 245 

However, since (T 1 + i t s )  �9 Z = T 1 �9 Z + iT 2 �9 Z for Tt, T~ E go, Z E V it  is clear tha t  (6) 

holds for all T E g so, by  the connectedness of G, B is left invariant  by G. 

L EMMA 1.4. There exists a real [orm W o o/ V on which B is strictly positive 

definite and which is le]t invariant by U. 

Proo/. By the usual reduction of quadratic forms the space V 0 is an orthogonal 

direct sum V 0 = Vo + V~ where Vo and V~ are vector subspaces on which - B  0 and 

B 0, respectively, are strictly positive definite. Let  J denote the linear transformation 

of V determined by 

J Z = i Z  for Z E V o ,  J Z = Z  for ZEV~.  

Then the bilinear form 

B' (Z 1, Z2) = B ( J Z  1, JZ~) (Z 1, Z~ E V), 

is strictly positive definite on V 0. Let  0(B), 0 ( B ' ) c G L ( V )  denote the orthogonal 

groups of B and B'  respectively and let 0(B0) denote the subgroup of 0(B') which 

leaves V o invariant, i.e. O(Bo) = O(B') n GL(Vo). Now 

U c  G c  O(B) = JO(B') j -1 .  

On the other hand, the identi ty component of the group JO(B'o)j-1 is a maximal  

compact subgroup of the identi ty component of J O ( B ' ) J  -I. By an elementary special 

case of Cartan's conjugacy theorem, (see e.g. [10] p. 218), this last group contains 

an element g such tha t  g - l U g c J O ( B o ) J  -1. Then the real form W o = g J V o  of V has 

the properties stated in the lemma. In  fact, U . W o c  Wo is obvious and if X EW o 

then since j - l g  1 jEO(B, ) ,  we have 

B(X,  X)  = B' ( j -1 X ,  j - 1  X )  = B' ( j - l g -1  X, j - l g - 1  X) ~ 0. 

NOW the bilinear form B is nondegenerate on V0• V0, W 0• W o and V• V. As 

remarked before this induces the isomorphisms 

#~: SC(Vo)-~Sc(vff), #~: SC(Wo)-+S~ #: S(V)-~S(V*),  

all of which are onto. By  restriction of a complex-valued function on V to V0 and 

to W o respectively we get the isomorphisms 

~t: s(v*)-+~c(vff), ~: ~(v*)--->s~(w~), 

both of which are onto. Since S(V)=S((V*)*)  we get by  restricting complex-valued 

functions on V* to V~ and to W~ respectively, the isomorphisms 

AI: S(V)-+SC(Vo), A2: S(V)-+SC(Wo). 
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Then we have the commutative diagram 

S~(Vo) . A, # ( v )  A, . s~ (wo)  

Corresponding to the actions of G o on Vo, of U on Wo and of G on V we consider 

the spaces of invariants I~ Ic(Vo), lr F(W~) and I(V), I(V*). 

L E ~ M A  1.5. Let /~ :~2211 ,  A = A 2 A [  1. Then 

~(zo(v~))=I*(Wg), A(Z~ = ]~(W0). 

Proo/. Since GonG it is clear that  ]tl(I(V*))~F(V~). On the other hand, let 

pEI~(V~). If  ZEg  0 let dz denote the unique derivation of Sc(V~)which satisfies 

(dz" v*) (X) = v* (Z. X) for v* E V~, X E V 0. Then 

dz.p=O. (7) 

Let (X 1 . . . . .  X,) be a basis of V0, (x 1 . . . . .  x,) the dual basis of V~, (z x . . . . .  z~) the 

basis of V* dual to (X a . . . . .  Xn) considered as a basis of V. Then (7) is an identity in 

(x a ..... xn) which remains valid after the substitution xl-->z 1 ..... xn-->zn. This means that  

Oz. (,~;lp) = 0, (s)  

where (~z is the derivation of S(V*) which satisfies (0z " v*) (X) = v* (Z " X) for v*E V*, 

X E V. However 0z can be defined for all Z E ~ by this last condition and (8) remains 

valid for all Z~g.  Since G is connected, this implies 2~XpEI(V*). Thus 21(I(V*))= 

I~ similarly 22(I(V*))=F(W~) and the first statement of the lemma follows. 

The second statement follows from the first, taking into account (1) and the diagram 

above. 

LgMMA 1.6. Let Pr q6Sc(VT)). Then 

e(AP) (2q) = 2(e(P) q). (9) 

Proo/. First suppose P =  X E V 0, q=/~l (Y)(YE V0). In this ease one verifies easily 

that  both sides of (9) reduce to B(X, Y). Next observe that  the mappings q-+O(AX)2q 
and q--~R(O(X)q) are derivations of Sc(V~) which coincide on Vff, hence on all of 

Sc(V~). Since the mappings P-+O(AP) and P--~O(P) are isomorphisms, (9) follows in 

general. 
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Combining the two last lemmas we get 

LEMMA 1.7. ~(Hc(V~))=Hc(W~). 

Now we apply the isomorphism )1-1 to the relation (3) in Theorem 1.2. Using 

Lemmas 1.5 and 1.7 we get the first formula in Theorem 1.3. Next  we note that  due 

to Lemma 1.5 the varieties Nu and-Nz,  coincide. Consequently ~(H~(V~))=H~(W~) 

(i = 1, 2) so Theorem 1.3 follows. 

Remark. In  the case when the ideals IC+(W~)Sc(W~) and I~+(V~)S~(V~) are prime 

ideals they are equal to their own radicals. Hence it follows from (5) (and the ana- 

logous relation for V~) tha t  H2(W~)=H2(V~)= {0}. In  this case Theorems 1.2 and 1.3 

are contained in the results of Maass [13], proved quite differently. 

w 2. Decomposition of the exterior algebra 

Let E be a finite-dimensional vector space over R as in w 1 and let A(E) and 

A(E*), respectively, denote the Grassmann algebras over E and its dual. Each X E E 

induces an anti-derivation 5(X) of A(E*) given by 

5(X) (xlA ... A x~)= ~ (  -- 1)k-lxk(X) (xlA ... A &kA ... A x~), 

where xk indicates omission of xk. The mapping X---->~(X) extends uniquely to a homo- 

morphism of the tensor algebra T(E) over E into the algebra of all endomorphisms 

of A(E*). Since b(XQX)=(~(X)2=O there is induced a homomorphism P--->6(P) of 

A(E) into the algebra of endomorphisms of A(E*). As will be noted below, this 

homomorphism is actually an isomorphism. 

Now suppose B is any nondegenerate symmetric bilinear form on E• The 

mapping X-->X* (X*(Y)=B(X,  Y)) extends to an isomorphism # of A(E) onto A(E*). 

We obtain a bilinear form (,> on A(E*)• by the formula 

<p, q> = [5(~-1 (p)) q] (0). (1) 

If  x 1 . . . .  , xk, Yl, .:., Yz EE* then 

<x 1A ... Axe, Yl A ... A y~> = 0 or ( -- 1) �89 det (B(#-lx~, #-lyj)), (2) 

depending on whether k ~ l  or k=l.  I t  follows tha t  <,> is a symmetric nondegenerate 

bilinear form: Also if QEA(E),  q=#(Q)  then the operator p-+pA q on A(E*) is the 

adjoint of the operator 8(Q). I t  is also e a s y  to see from (1) and (2) tha t  the mapping 
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P--> 8(P) (P E A(E)) above is an isomorphism. Finally, if B is str ict ly positive definite 

the same holds for (,}. 

Now let G be a group of linear t ransformations of E. Then G acts  on E* as 

before and acts as a group of automorphisms of A(E) and A(E*). Let  J(E) and  J(E*) 

denote the set of G-invariants in A(E) and  A(E*) respectively; let J+(E)and J+(E*) 

denote the subspaces consisting of all invariants  wi thout  constant  term. An element 

pEA(E*) is called G-primitive if ~(Q)p=O for all QEJ+(E). Let  P(E*) denote the 

set of all G-primitive elements. 

T H E O R E M  2.1. Let B be a non'degenerate, symmetric bilinear /orm on E•  a ~  

let G be a Lie subgroup o/ GL(E) leaving B invariant. Suppose that either ( i )G is com- 

pact and B positive de/inite or (ii) G is connected and semisimple. Then 

A(E*) = J(E*) P(E*). (3) 

The proof is quite analogous to  t h a t  of Theorems 1.2 and  1.3. For  the case (i) 

one first establishes the orthogonal  decomposit ion 

A(E*) = A(E*) J+ (E*) + P(E*) (4) 

in the same manner  as (5) in w 1. Then (3)fol lows by  i teration of (4). The non- 

compact  case (ii) can be reduced to the case (i) by  using Lemma 1.4. We omit  the 

details since they  are essentially a duplication of the proof of Theorem 1.3. 

Example. Let V be an n-dimensional Hilbert  space over C. Considering the set V 

as a 2n-dimensional  vector space E over It  the uni ta ry  group U(n) becomes a sub- 

group G of the orthogonal  group 0(2n).  Let  Zk=Xk+iY~ ( l ~ < k ~ n )  be an ortho- 

normal  basis of V, % ..., z~ the dual  basis of V*, and pu t  x~=�89 ), yk = 

--�89 (1 ~</C~< n). 

Let  F denote the vector  space over C consisting of all It-linear mappings of V 

into C. The exterior algebra A(F)  is the direct sum 

A(F)  =0~<~, b Fa, b, 

where Fa, b is the subspace of A(F)  spanned by  all multil inear forms of the type  

(z~, A .. .  A z~.) A (z.8, A ... A 5~,), 

where 1 ~< a 1 < ~ < ... < ga ~< n, 1 ~< fll < f12 < -." < fib ~< n. The G-invariants J(E*) are given 

by  the space J of invariants  of U(n) act ing on F.  I t  is clear t ha t  J = ~a,~ Ja.b where 

Ja.b=J(1F~,b. Now if p~Eit (l~<i~<n) the mapping 
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(Z 1 . . . . .  Zn)-->(e~r . . . . .  e ~~ Z,~) 

is uni tary.  As a consequence one finds tha t  J a ,  b ~ 0 if a~b  and tha t  if /EJ~ .a  then 

/ = ~ , A  ....... (z~,A ... A z~,)A (5~,A ... A 5~,). 

:Now, there always exists a un i ta ry  t ransformat ion of V mapping  Z~-->Z~ (1 ~<i ~<a). 

A I t  follows tha t  A1 .... = A  ....... so / is a constant  multiple of ( ~ = l z ~  ~)a. Since 

z~ A 5~ = - 2 i (x~ A y~) it is clear t ha t  J(E*) is the algebra generated by  u = ~ = 1  x~ A y~. 

I n  view of Theorem 2.1 each q e A ( E * )  can be wri t ten 

q = Y. u k A ~o~, (5) 
k 

where each Pk satisfies a (u )p~=0 .  This result  is of course well known (Hodge), even 

for all K~hler manifolds (compare [17], Th@orbme 3, p. 26). 

w 3. Fundamental functions on quadrics 

Let  G be a topological group, H a closed subgroup, and G/H the set of left 

.cosets gH with the usual topology. If  / is a funct ion on G/H and x E G then  /x de- 

notes the function on G/H given by  /X(gH ) =/(xgH). 

Definition. A complex-valued continuous funct ion / on G/H is cal led/undamental  

if the vector  space Vf over i3 spanned by  the funct ions /x  (x E G) is finite-dimensional. 

Fundamenta l  functions arise of course in a natura l  fashion in the theory  of 

finite-dimensional representations of topological groups. First  we remark tha t  if 

denotes the natura l  mapping  of G onto G/H then / is fundamenta l  on G/H if and 

only  if / o ~  is fundamenta l  on ~ (viewed as G/{e}). But  the fundamenta l  functions 

on  G are just  the linear combinat ions of matr ix  coefficients of finite-dimensional 

representations of G (see e.g. [11], Prop. 2.1, p. 497). Considering Kronecker  products  

of representations, the fundamenta l  functions on G (and also those on G/H~ by  the 

remark  above) are seen to form an algebra. 

Let  G be a topological t ransformat ion group of a topological space E. A G-equi- 

va r ian t  imbedding of E into a finite-dimensional vector  space V is a one-to-one con- 

t inuous mapping i of E into V and a representat ion a of G on V such tha t  a(g)i(e)= 

i(g. e) for all e E E, g E G. If  V is provided with a str ict ly positive definite quadrat ic  

form which is left invar iant  by  all ~(g)(g E G) then i is called an orthogonal  G-equi- 

var ian t  imbedding. 

I t  is known ([14], [16]) t ha t  if U is a compact  Lie group and K a closed sub- 

group then U/K has an orthogonal  U-equivariant  imbedding. 

1 7 - .  632918 A c t a  m a t h e m a t i c a  109. I m p r i m 6  le 17 juin 1963. 
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L~MMA 3.1. Let U be a compact Lie group and K a closed subgroup, l e t  i be 

any orthogonal U-equivariant imbedding o/ U / K  into a vector space V over It. Then 

the /undamental /unctions on U / K  are precisely the/unctions p o i where p is a complex- 

valued polynomial /unction on V. 

Proo[. Put t ing  v0= i(K) we have 

i(uK) = ~(u) v o (uEK).  

Let  F(U) denote the algebra of all fundamenta l  functions on U and let S denote the  

subalgebra of F(U) generated by  the constants  and all functions on U of the form 

u--->(~(u) vo, v) where v E V and ( , )  denotes the inner product  on V. I f  ~ is a con- 

t inuous function on U and x E U  we define the left and r ight  translate of ~ by  

qDL(~)(y)=qJ(x-ly), q~n(~)(y)=cf(yx-S), yEU .  Let  us verify tha t  

for all  eS}. 

I t  is clear t ha t  K is contained in the r ight  hand  side of (1). On the other  hand,  if 

Cn(,) = T for all T E S we find in part icular  tha t  (a(x) v 0 - v0, v) = 0 for all v E V. Hence 

~(X)Vo=V o and, since i is one-to-one, x E K .  Now S is a subalgebra of F(U) which 

contains the constants  and is invariant  under  all left translations and the complex 

conjugation. F rom (1) and Lemma 5.3 in [11] p. 515 it follows tha t  

S={q~EF(U) I~R(~)=q~ for all kEK~. (2) 

Now let / be a fundamenta l  function on U/K.  Then q ~ = / o g E F ( U )  and by  (2), T E S .  

B y  the definition of S there exist finitely m a n y  vectors v 1 . . . .  , VTE V such tha t  if 

we pu t  

s~ (u) = (~(u) v0, v~  (u e U), 

then ~0= ~An, . . .n ,s~ ' . . .  s r " ,  A ..... ~EC.  (3) 

Let  l, denote the linear function v-->(v, v~) on V. Then (3) implies t ha t  

proving the lemma. 
/ = ~ A ....... l~' . . . l~" o i, 

Remark. Lemma 3.1 is closely related to Theorem 3 in [15], s ta ted wi thout  proof. 

Consider now the quadrie C p . q c R  "+q+l given by  the equat ion 

Q(X)~x~-~ . . .  +X2p--~'2~+ 1 - - . . . -  X2p§ = --  1 ( p ~ 0 ,  q ~ 0 ) .  (4)  
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The orthogonal group 0(Q) = 0(p, q + 1) acts transitively on Cp.q ; the subgroup leaving 

the point (0 . . . . .  0, 1) on Cpjq fixed is isomorphic to O(p,q) so we make the identi- 

fication 

C~.q = 0(p, q+  1)/O(p, q). (5) 

I t  is clear that  the restriction of a polynomial on R v+q+l to Cv.q is a fundamental 

function. 

THEOREM 3.2. Let [ be a /undamental function on Cp.q. Assume (p,q)~(1,0). 
Then there exists a polynomial P = P ( x  1 . . . . .  xp+q+l) on R "+q+l such that 

/=  P on Cp.q. 

If  p = 0  then this theorem is an immediate consequence of Lemma 3.1. The 

general case requires some preparation. 

L e t  U be a topological group and K a closed subgroup. A representation ~ of 

U on a Hilbert space ~ is said to be of class 1 (with respect to K) if it is irre- 

ducible and unitary and if there exists a vector e:V 0 in ~ which is left fixed by 

each ~(k), kE K. 

L EMMA 3.3. The representations o/ the group S0(n) o/ class 1 (with respect to 

S 0 ( n - 1 ) )  are (up to equivalence) precisely the natural representations o/ S0(n) on the 

eigenspaces o/ the Laplacian A on the unit sphere S n-1. 

This lemma is essentially known ([1]), but we shall indicate a proof. Let a be 

a representation of S0(n) of class 1. If  ~ is the spherical function on S n - l =  

SO(n)/SO(n - 1) corresponding to a, i.e., cf(uSO(n - 1)) = (e, ~(u) e}, then ~ is equivalent 

to the natural representation of S0(n) on the space V v spanned by the translates 

~x, (xES0(n)). (See, for example, Theorem 4.8, Ch. X, in [10]). The elements of V v are 

all eigenfunctions of A for the same eigenvalue. The space Vr must exhaust the eigen- 

space of A for this eigenvalue because otherwise there would exist two linearly inde- 

pendent eigenfunctions of A invariant under S 0 ( n - 1 )  corresponding to the same 

eigenvalue. This is impossible as one sees by expressing A in geodesic polar coordi- 

nates. All eigenspaces of A are obtained in this way. 

Each eigenfunction of A on S n-1 is a fundamental function on 0 ( n ) / 0 ( n - 1 ) ,  

hence the restriction of a polynomial which by Theorem 1.2 can be assumed harmonic. 

On the other hand, let P-V 0 be a homogeneous harmonic polynomial on R n of degree m. 

(By Remark 2 following Theorem 1.2 these exist for each integer m>~0.) Using the 

expression of the Laplacian /~ on R '~ in polar coordinates, 
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~2 n - 1  ~ 1 
s  r or§ • 

o n e  finds tha t  the restriction P of P to S n-1 satisfies 

A P  = - m(m + n - 2) P .  

This shows, as is well known, tha t  the eigenvalues of A are - m ( m  + n -  2), where m 

is a non-negative integer. 

LEMMA 3.4. Let (U,~)  denote the universal covering group o/ S0(n) (n~>3) and 

let K denote the identity component o] ~-1 (S0 (n -1 ) ) .  Let ~ be a representation o] U 

o/ class 1 (with respect to K). Then there exists a representation ~o o/ S0(n) such that 

Proo/. The mapping y~:uK-->~(u)S0(n-1)  is a covering map of U / K  onto 

SO(n ) /SO(n -1 )=  S ~-1 which is already simply connected. Hence yJ is one-to-one so 

K = ~ - I ( S O ( n - 1 ) ) .  Let e 4 0  be a common fixed vector for all ~(]c), k E K .  Then in 

particular a(z) e = e  for all z in the kernel of ~. By Schur's lemma ~(z) is a scalar 

multiple of the identi ty I ;  hence ~(z)= I for all z in the kernel of ~ and the lemma 

follows. 

Now we need more notation. Let ~(r, s) denote the Lie algebra of the orthogonal 

group 0(r, s), put  0(r)= ~(r, 0 ) =  0(0, r) and let o(n, C) denote the Lie algebra of the 

complex orthogonal group 0(n, C). Consider now the following diagram of Lie groups 

and their Lie algebras: 

G g = 0 ( p + q +  1,C) 
S \  S \  

G o ~ U o = S O ( p + q + l  ) g o = o ( p , q + l )  ~ a = o ( p + q + l )  
H \  t ~ 5 = ~ + q' \ ~ 

H o K o = SO(p + q) 5o = ~(P, q) ~ = o(p + q) 

In  the diagram on the right the arrows denote imbeddings. The imbedding of o(p, q) 

into ~(p, q +  1) is the one which corresponds to the inclusion (5) and the imbeddings 

of ~(p+q) in o ( p + q + l )  and of ~(p+q,C)  in ~ ( p + q + l , C ) a r e  to be understood 

similarly. In  the diagram on the left are Lie groups corresponding to the Lie algebras 

on the right; here the arrows mean inclusions among the identi ty components. G O and 

H 0 respectively stand for the groups O(p,q+ 1) and O(p,q) in (5). Let  G, U 0, H, K o 

denote the analytic subgroups of G L ( p t q +  1, C) corresponding to the subalgebras 

fi, u, 5, ~ in the right hand diagram. 
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For the proof of Theorem 3.2 we have to consider four cases: 

I p = 0 ;  I I  q = 0 ;  I I I  p = l , q = l ;  IV p,q  arbitrary.  

Case I is contained in Lemma 3.1, G o being compact. The proof in Case I I  will be 

based on the compactness of H o. In  Case I I I  we shall use the fact tha t  the identity 

component of 0(1, 2) is a well-imbedded linear Lie group in the sense of [4], p. 327. 

Finally, Case IV is reduced to the three previous cases by a suitable method of 

descent. 

The case p = 0 being settled, suppose q = 0. Consider the representation ~ of 54o 

on Vf given by  ~(x --1) F = _F x (F E Vr). This representation is completely reducible be- 

cause G o is semisimple (since q = 0 ,  p is > 1) and has finitely many  components ([3], 

Thdor~me 3b, p. 85). We may  therefore assume Q irreducible. Since G o is transitive 

on Cp.o we can suppose /(0 . . . . .  0,1)4=0. Moreover, since the subgroup H o is now 

compact we may, by  replacing / with the average .~H,/hdh assume t h a t / h = / f o r  each 

h E H 0. Now there is induced a representation d~ of 6o onto V r by 

[d~(X)F](m)=[J-t(F(exp(-tX).m))}~=o (6) 

for F E V/, X E go, m E Cp, o. Next  dQ extends to a representation d~ c of the complex 

Lie algebra 6 on Vr and finally d~ c extends to a representation (also denoted d~ ~) 

on V r of the universal enveloping algebra U(g) of 6- 

Let  F denote the Casimir element in U(~). Since F lies in the center of U(fl) 

and since ~ is irreducible it follows by  Schur's lemma tha t  d ~ ( F ) =  ~,I where ~, E C. 

Consider now the representation ~ of G o on the space of C%functions on Go/H o given 

by  ~(x -1) F = F  x. Although infinite-dimensional this representation extends (as by  (6)) 

to a representation d~ ~ of U(g) and thereby d~C(F) is a second order differential 

operator on Go/H o, annihilating the constants and invariant under the action of G 0. 

I t  follows without difficulty tha t  d~C(F) is the Laplace-Beltrami operator corresponding 

to the invariant Riemannian structure on Go/H o which is induced by  the Killing 

form of 90. According to [8] this Riemannian structure is 2 ( p - l ) t i m e s  the Rie- 

mannian structure of C,,0 induced by the quadratic form x~+ ... + x ~ - x ~ + l  on R p+I. 

The corresponding Laplace-Beltrami operators are proportianal by the reciprocal pro- 

portionality factor. Now, since / is necessarily differentiable, ~ is the restriction of 

to Vf. Putt ing together these facts we conclude tha t  each function in Vr is an 

eigenfunction of the Laplacian A' on Cp.0 with eigenvalue 2 ( p - 1 ) ~ .  

On the other hand, the Lie algebra 1~ of S0 (p+  1) is a compact real form of ~. 
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By restriction ~ induces a representation of this Lie algebra on Vr. This representa- 

tion extends to a representation (also denoted Q) on V r of the universal covering group 

U of S 0 ( p + l ) .  This representation is of class 1 with respect to the connected Lie 

subgroup of U with Lie algebra it t3 go, the function / being the fixed vector. :By 

Lemma 3.4 ~ induces a representation of S 0 ( p + l )  of class 1 (with respect to SO(p)), 

which then can be described by  Lemma 3.3. Consider now the representation ~* of 

S 0 ( p + l )  on C~(S  p) given by  Q * ( x - 1 ) F = F L  Under this representation (d~*)c(F) = 

- ( 2 ( p - 1 ) )  1A; the minus sign is due to the fact tha t  the negative Killing form of 

it induces a positive definite Riemannian structure on S0(p + 1)/S0(p). Now it  follows 

tha t  - 2 ( p - 1 ) ~  is an eigenvalue of the Laplacian A on S p, s o - 2 ( p - 1 ) ~ =  

- m ( m + p - 1 ) ,  where m is a non-negative integer. 

Now let P be a homogeneous polynomial of degree m on R p+I satisfying 

~2p ~2p 
~x-~- -4- ... + ~ = O. 

~Xp+l 

We can select P such tha t  P(O . . . . .  O, 1 ) # 0  and by integrating over the isotropy 

group of (0 . . . . .  O, 1), such tha t  

P ( z  1 . . . . .  xp+l) = P((x21 + . . .  + x~) �89 0 . . . . .  O, xp+l). 

I f  we substitute xp+l--->ixv+l in P(x  1 . . . . .  xv+l) we obtain a homogeneous polynomial 

Q(x 1, . . . ,  xv+i) of degree m satisfying 

A . _ _  ~2Q ~2Q ~2Q a~Q o, 

Q(Xl, . . . ,  xv+1)~Q((x21+ ... A-x2v) �89 o, . . . ,  o, Xp+l) , Q(0 . . . . .  0, 1) :#0. 

Now the operator A* can be expressed in terms of the coordinates on Cp,0 and the 

"dis tance" r =  ( - X l  2 -  . . . -x2v +x~v+i) �89 One finds (compare Lemma 21, p. 278, in [7]) 

tha t  in these coordinates 
8 3 p ~ 

A * -  ~r ~ r ~r + A', 

where A' is the Laplacian on Cr,0. Now Q = r m Q  where ~) is the restriction of Q to 

Cv,0 so we obtain for r =  1 
A ' Q = m ( m + p - 1 ) Q .  

Thus the functions [ and ~) have the same eigenvalue. Both are invariant  under the 

isotropy group of (0 . . . . .  0, 1) and neither vanishes a t  tha t  point. According to Cor. 3.3, 

Ch. X i [10], [ and ~) are proportional so the proof is finished in the case q=O.  
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Now we come to Case I I I :  p = q =  1, We shall use the diagram following the 

proof of Lemma 3.4. Again let / be a fundamental  function on C1,1 and let V r denote 

the vector space over C spanned by  all translates /x, x E G o. Consider the representa- 

tion ~ of G o on Vf defined by r -1) F - F  x. For the same reason as in Case I I  we 

may  assume Q irreducible and /(0,0, 1 )#0 .  As before consider the representations 

dQ, dr c, Since the identi ty component of G o is a well-imbedded linear Lie group there 

exists a representation Qc of G on Vr whose differential is the previous dQ c ([4], p. 329). 

Let  ~ denote the restriction of r to U o. 

L E M ~ A  3.5. ~ is O~ class 1 (with respect to Ko). 

Proo/. Let XE~0 and put  po=(0 ,0 ,  1). Then for each F E V  r 

[d~(X)F] (po)={ d (F(exp(-tX).po))}tffio=O, 

and by  induction [(d~(X))mF] (po)=O (m>~l). (7) 

Since d~c(iX)=idQ~(X), (7) implies 

[(da(Z)) mF] (Po) = 0 (X e ~, F e V~). (8) 

Now, since K o =  S0(2) is abelian, Vf is a direct sum of one-dimensional subspaces, 

V r = ~ I V , ,  each of which is invariant under a(Ko). Let  da(X)l denote the restric- 

t ion of da(X) to Vi, and let Z, denote the homomorphism of K 0 into C determined 

b y  Z, (exp X) = exp (da(Xh). Then by  (8) Z, (exp X) F, (Po) = F, (Po), Ft E Vi, so if k ~ K o, 

1=~.~',, 
r 

[~(k) 1] (po) =,_51z~_ (k) F~ (P0) =,_,~ F, (po) = I(Po). 

Thus the vector /* = f (a(k)/) dk 
J K  o 

in Vf is =~ 0 and invariant under K o. This proves the lemma. 

L EM~A 3.6. The vector /*6 Vf is invariant under ~(h) /or each h in the identity 

component o/ H o. 

In  fact, ~(k)/*=/* (k6Ko) so d a ( X ) / * = 0  (X6~);  hence doc(X)/*=O for all X 

in the complexification ~ of ~. The lemma now follows. 

Since ~ is irreducible we have Vf = Vr*. Thus it suffices to prove Theorem 3.2 

for the function /*. By a procedure similar to tha t  in Case I I  it is found tha t  

A'/* = m(m + 1)/*, (9) 
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where A' is the Laplace-Beltrami operator on C1.1 corresponding to the pseudo-Ric- 

mannian structure on CLa induced by x ~ -  x 22- x 2 a, and m is a non-negative integer. 

On the other hand, let P be a homogeneous polynomial of degree m on R a 

satisfying 

~2 p O2 p O2 p 
8x~ + O a ~ + ~ x ~  = 0  (P(0, 0,1) # 0); 

P(x~, x~, x .)  = ~ A~ (x~ + x~)~ x 7  - ~ ( A~ ~ C). 
k 

I f  we substitute x2--~ix2, xa-+ix a in h(x x, x2, xa) we obtain a homogeneous polynomial 

Q(xl, x2, xa) of degree m satisfying 

a2Q 02Q O2Q 
- 0  (Q(O,O, 1) #0) ;  

x 2~x m-2k (B~EC). Q(xa, x2, xa)= ~ Bk(x~- 2, 
k 

As in Case I I  it follows tha t  the restriction Q of Q to CL1 satisfies the equation (9). 

Also Q h = Q  for each h E H  0. 

LEMMA 3.7. The functions /* and Q are proportional. 

Proo/. In  the Lorentzian manifold C1.1 we consider the retrograde cone 2) with 

vertex (0, 0, 1) ([7], p. 287). In  geodesic polarcoordinates on D let (A')r denote the 

restriction of A' to functions depending on the radiusvector r alone. Then by Lemma 25 

in [7] 
d 2 d 

(A')r =~/r2 + 2 coth r~r  r (r >0). 

Since 
d2g . . . .  dg l [ d 2 ]  
~ r  ~ -= z co~n r dr = sinh r ~ ~ & -  1 (g(r) sinh r), 

it follows tha t  the solutions of (9) in D which depend on r alone are given by 

g(r)sinhr=Asinh(~r)+Bcosh(~r),  ~ 2 = m ( m +  1)+ 1, ~ > 0  

where A, BE C. :Now both functions /* and Q satisfy this equation in D but since 

they are bounded in a neighborhood of (0,0, 1) it is clear tha t  B = 0  so /* and ~) 

are proportional on D. But  these functions are analytic on the connected manifold 

C1,I, so, being proportional on the open subset D, are proportional everywhere. This 

proves Theorem 3.2 in Case I I I .  
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Finally,  we consider Case IV and assume p/> 1, q >~ 1. Let  [ be a fundamenta l  

funct ion on Cp.q. Again we consider the representat ion ~ of G o on V r given by  

~ ( x - 1 ) F = F  ~, and assume as we m a y  tha t  ~ is irreducible and tha t  /(0 . . . . .  0,1):4:0. 

Since the subgroup H* = 0(p) • 0(q) of H 0 is compact  we can also assume tha t  ~(h) / = / 

for all h E H*. I t  follows tha t  on Cp.q 

/(xl . . . . .  x~+q+l) =/((x~ + . . .  + x~)~ ,  0 . . . . .  0 ,  2 . . .  (x~+l + § z~+q)~, x,,+q+l). ( 1 0 )  

On the quadric 2 2 Y l -  Y2-  Y3 = - 1  we consider now the function 

1" (Yl, Y~, Ya) =/(Yl, 0 . . . . .  O, y~, Y3). 

This funct ion [* is well defined since (Yl, 0 . . . .  , O, Y2, Ya) E Cp.q and is a fundamenta l  

funct ion on the quadric C1,~. As shown above there exists a polynomial  P*(Yl, Y2, Ya) 

such tha t  

/* (Y~, Y2, Y3) = P* (Yl, Y2, Y3) for 2 2 2 yl - y2 - Y3 = - 1. 

By  (10) /* is even in the first two variables so P* can be assumed to contain Yl 

and  Y2 in even powers alone. Combining the equations above we find tha t  

/(X 1 . . . . .  X~+q+l) = p *  ((x 2 ~ - . . .  -~- X2p)�89 (x2+1 ~ - . . .  ~- X2p+q) �89 Xp+q+l) 

on Cv.q. Due to the assumptions made on P* the r ight-hand side of this equat ion 

is a polynomial  on R ~+q+l. This disposes of Case IV so Theorem 3.2 is now completely 

proved. 

Remarks. Some special cases of Theorem 3.2 have been proved before. The case 

p = 0  (for which 0 ( p , q +  1) is compact)  was already proved by  Hccke [6] (for q = 2 )  

and Cartan [1]. I f  p = 2 ,  q = 0  then Cp.q is the 2-dimensional Loba tchefsky  space of 

constant  negative curvature.  I n  this case Theorem 3.2 was proved by Loewner [12] 

using special features of the Poincar~ upper  half plane. 

The assumption tha t  (p, q ) #  (1, 0) is essential for the val idi ty of Theorem 3.2. 

I n  fact, consider the function / on the quadric x ~ -  x~ = -  1 defined by  

/(x 1, x~) = sinh 1 ( X l )  ' 

The group 0(1, 1) is generated by  the t ransformations 

{ x ~ l _ > I c ~  
x2J [sinh t cosh tJ (x2/ 

I t  is easy prove t h a t  d ime(V  f ) =  2. Thus  / is fundamenta l  but  is certainly no t  the  

restriction of a polynomial  on R e. 
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