INVARIANTS AND FUNDAMENTAL FUNCTIONS

BY
SIGURĐUR HELGASON (${ }^{1}$)
Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

Introduction

Let E be a finite-dimensional vector space over \mathbf{R} and G a group of linear transformations of E leaving invariant a nondegenerate quadratic form B. The action of G on E extends to an action of G on the ring of polynomials on E. The fixed points, the G-invariants, form a subring. The G-harmonic polynomials are the common solutions of the differential equations formed by the G-invariants. Under some general assumptions on G it is shown in $\S 1$ that the ring of all polynomials on E is spanned by products in where i is a G-invariant and h is G-harmonic, and that the G-harmonic polynomials are of two types:

1. Those which vanish identically on the algebraic variety N_{G} determined by the G-invariants;
2. The powers of the linear forms given by points in N_{G}.

The analogous situation for the exterior algebra is examined in §2.
Section 3 is devoted to a study of the functions on the real quadric $B=1$ whose translates under the orthogonal group $\mathbf{O}(B)$ span a finite-dimensional space. The main result of the paper (Theorem 3.2) states that (if $\operatorname{dim} E>2$) these functions can always be extended to polynomials on E and in fact to $\mathbf{O}(B)$-harmonic polynomials on E due to the results of $\S l$.

The results of this paper along with some others have been announced in a short note [9].

§ 1. Decomposition of the symmetric algebra

Let E be a finite-dimensional vector space over a field K, let E^{*} denote the dual of E and $S\left(E^{*}\right)$ the algebra of K-valued polynomial functions on E. The sym-
${ }^{(1)}$ This work was partially supported by the National Science Foundation, NSF GP-149.
metric algebra $S(E)$ will be identified with $S\left(\left(E^{*}\right)^{*}\right)$ by means of the extension of the canonical isomorphism of E onto $\left(E^{*}\right)^{*}$.

Now suppose K is the field of real numbers \mathbf{R}, and let $C^{\infty}(E)$ be the set of differentiable functions on E. Each $X \in E$ gives rise (by parallel translation) to a vector field on E which we consider as a differential operator $\partial(X)$ on E. Thus, if $f \in C^{\infty}(E), \partial(X) f$ is the function $Y \rightarrow\{(d / d t)(f(Y+t X))\}_{t=0}$ on E. The mapping $X \rightarrow \partial(X)$ extends to an isomorphism of the symmetric algebra $S(E)$ (respectively, the complex symmetric algebra $S^{c}(E)=\mathbf{C} \otimes S(E)$) onto the algebra of all differential operators on E with constant real (resp. complex) coefficients.

Let H be a subgroup of the general linear group $\mathbf{G L}(E)$. Let $I(E)$ denote the set of H-invariants in $S(E)$ and let $I_{+}(E)$ denote the set of H-invariants without constant term. The group H acts on E^{*} by

$$
\left(h \cdot e^{*}\right)(e)=e^{*}\left(h^{-1} \cdot e\right), \quad h \in H, e \in E, e^{*} \in E^{*}
$$

and we have $I_{+}\left(E^{*}\right) \subset I\left(E^{*}\right) \subset S\left(E^{*}\right)$. An element $p \in S^{c}\left(E^{*}\right)$ is called H-harmonic if $\partial(J) p=0$ for all $J \in I_{+}(E)$. Let $H^{c}\left(E^{*}\right)$ denote the set of H-harmonic polynomial functions and put $H\left(E^{*}\right)=S\left(E^{*}\right) \cap H^{c}\left(E^{*}\right)$. Let $I^{c}(E)$ and $I^{c}\left(E^{*}\right)$, respectively, denote the subspaces of $S^{c}(E)$ and $S^{c}\left(E^{*}\right)$ generated by $I(E)$ and $I\left(E^{*}\right)$. Each polynomial function $p \in S^{c}\left(E^{*}\right)$ extends uniquely to a polynomial function on the complexification E^{c}, also denoted by p. Let N_{H} denote the variety in E^{c} defined by

$$
N_{H}=\left\{X \in E^{c} \mid j(X)=0 \text { for all } j \in I_{+}\left(E^{*}\right)\right\}
$$

Now suppose B_{0} is a nondegenerate symmetric bilinear form on $E \times E$; let B denote the unique extension of B_{0} to a bilinear form on $E^{c} \times E^{c}$. If $X \in E^{c}$, let X^{*} denote the linear form $Y \rightarrow B(X, Y)$ on E. The mapping $X \rightarrow X^{*}(X \in E)$ extends uniquely to an isomorphism μ of $S^{c}(E)$ onto $S^{c}\left(E^{*}\right)$. Under this isomorphism B_{0} gives rise to a bilinear form on $E^{*} \times E^{*}$ which in a well-known fashion ([5]) extends to a bilinear form 〈,〉on $S^{c}\left(E^{*}\right) \times S^{c}\left(E^{*}\right)$. The formula for \langle,$\rangle is$

$$
\langle p, q\rangle=\left[\partial\left(\mu^{-1} p\right) q\right](0), \quad p, q \in S^{c}\left(E^{*}\right)
$$

where for any operator $A: C^{\infty}(E) \rightarrow C^{\infty}(E)$, and any function $f \in C^{\infty}(E),[A f](X)$ denotes the value of the function $A f$ at X. The bilinear form \langle,$\rangle is still symmetric$ and nondegenerate. Moreover, if $p, q, r \in S^{c}\left(E^{*}\right)$ and $Q=\mu^{-1}(q), R=\mu^{-1}(r)$, then

$$
\langle p, q r\rangle=[\partial(Q R) p](0)=[\partial(Q) \partial(R) p](0)=[\partial(R) \partial(Q) p](0)=\langle\partial(Q) p, r\rangle
$$

which shows that multiplication by $\mu(Q)$ is the adjoint operator to the operator $\partial(Q)$.

Now suppose H leaves B_{0} invariant; then \langle,$\rangle is also left invariant by H$ and

$$
\begin{equation*}
\mu\left(I^{c}(E)\right)=I^{c}\left(E^{*}\right) \tag{1}
\end{equation*}
$$

Let P be a homogeneous element in $S^{c}(E)$ of degree k. If n is an integer $\geqslant k$ then the relation

$$
\begin{equation*}
\partial(P)\left(\left(X^{*}\right)^{n}\right)=n(n-1) \ldots(n-k+1) \mu(P)(X)\left(X^{*}\right)^{n-k}, \quad X \in E^{c} \tag{2}
\end{equation*}
$$

can be verified by a simple computation. In particular if $X \in N_{H}$ then $\left(X^{*}\right)^{n}$ is a harmonic polynomial function. Let $H_{1}\left(E^{*}\right)$ denote the vector space over \mathbf{C} spanned by the functions $\left(X^{*}\right)^{n},\left(n=0,1,2, \ldots, X \in N_{H}\right)$ and let $H_{2}\left(E^{*}\right)$ denote the set of harmonic polynomial functions which vanish identically on N_{H}.

If A is a subspace of $S^{c}\left(E^{*}\right)$ and k an integer $\geqslant 0, A_{k}$ shall denote the set of elements in A of degree $k ; A$ is called homogeneous if $A=\sum_{k \geqslant 0} A_{k}$. The spaces $I\left(E^{*}\right)$, $H\left(E^{*}\right), H_{1}\left(E^{*}\right)$ and the ideal $I_{+}\left(E^{*}\right) S\left(E^{*}\right)$ are clearly homogeneous.

Lemma 1.1. $H_{2}\left(E^{*}\right)$ is homogeneous.
Proof. Let $A=I_{+}^{c}\left(E^{*}\right) S^{c}\left(E^{*}\right)$. Then N_{H} is the variety of common zeros of elements of the ideal A. By Hilbert's Nullstellensatz (see e.g. [18], p. 164), the polynomials in $S^{c}\left(E^{*}\right)$ which vanish identically on N_{H} constitute the radical \sqrt{A} of A, that is the set of elements in $S^{c}\left(E^{*}\right)$ of which some power lies in A. Since A is homogeneous, \sqrt{A} is easily seen to be homogeneous so the lemma follows from $H_{2}\left(E^{*}\right)=H^{c}\left(E^{*}\right) \cap \sqrt{A}$.

If C and D are subspaces of an associative algebra then $C D$ shall denote the set of all finite sums $\sum_{i} c_{i} d_{i}\left(c_{i} \in C, d_{i} \in D\right)$.

Theorem 1.2. Let U be a compact group of linear transformations of a vector space W_{0} over \mathbf{R}. Then

$$
\begin{equation*}
S\left(W_{0}^{*}\right)=I\left(W_{0}^{*}\right) H\left(W_{0}^{*}\right) \tag{3}
\end{equation*}
$$

Let B_{0} be any strictly positive definite symmetric bilinear form on $W_{0} \times W_{0}$ invariant under U (such a B_{0} exists). Then $H^{c}\left(W_{0}^{*}\right)$ is the orthogonal direct sum,

$$
\begin{equation*}
H^{c}\left(W_{0}^{*}\right)=H_{1}\left(W_{0}^{*}\right)+H_{2}\left(W_{0}^{*}\right) \tag{4}
\end{equation*}
$$

Proof. Using an orthonormal basis of W_{0} it is not hard to verify that the bilinear form 〈,〉 is now strictly positive definite on $S\left(W_{0}^{*}\right) \times S\left(W_{0}^{*}\right)$. On combining this fact with the remark above about the adjoint of $\partial(Q)$ the orthogonal decomposition

$$
\begin{equation*}
S\left(W_{0}^{*}\right)_{k}=\left(I_{+}\left(W_{0}^{*}\right) S\left(W_{0}^{*}\right)\right)_{k}+H\left(W_{0}^{*}\right)_{k} \tag{5}
\end{equation*}
$$

is quickly established for each integer $k \geqslant 0$. Now (3) follows by iteration of (5). In order to prove (4) consider the orthogonal complement M of $\left(H_{1}\left(W_{0}^{*}\right)\right)_{k}$ in $\left(H^{c}\left(W_{0}^{*}\right)\right)_{k}$. Let $q \in\left(H^{c}\left(W_{0}^{*}\right)\right)_{k}, \quad Q=\mu^{-1}(q)$. Then $q \in M \Leftrightarrow[\partial(Q) h](0)=0$ for all $h \in\left(H_{1}\left(W_{0}^{*}\right)\right)_{k} \Leftrightarrow$ $\partial(Q)\left(\left(X^{*}\right)^{k}\right)=0$ for all $X \in N_{U}$. In view of (2) this last condition amounts to q vanishing identically on N_{U}; consequently $M=\left(H_{2}\left(W_{0}^{*}\right)\right)_{k}$. This proves the formula (4) since all terms in it are homogeneous.

Remark 1. Theorem 1.2 was proved independently by B. Kostant who has also sharpened it substantially in the case when W_{0} is a compact Lie algebra and U is its adjoint group (see [lla]).

Remark 2. In the case when U is the orthogonal group $\mathbf{O}(n)$ acting on $W_{0}=\mathbf{R}^{n}$ then $I\left(W_{0}^{*}\right)$ consists of all polynomials in $x_{1}^{2}+\ldots+x_{n}^{2}$ and $H\left(W_{0}^{*}\right)$ consists of all polynomials $p\left(x_{1}, \ldots x_{n}\right)$ which satisfy Laplace's equation. In view of (5) a harmonic polynomial $\equiv 0$ is not divisible by $x_{1}^{2}+\ldots+x_{n}^{2}$. Since the ideal $\left(x_{1}^{2}+\ldots+x_{n}^{2}\right) S^{c}\left(W_{0}^{*}\right)$ equals its own radical, $H_{2}\left(W_{0}^{*}\right)=0$ in this case. Theorem 1.2 therefore states that each polynomial $p=p\left(x_{1}, \ldots x_{n}\right)$ can be decomposed $p=\sum_{k}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{k} h_{k}$ where h_{k} is harmonic and that the complex polynomials $\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)^{k}$ where $a_{1}^{2}+\ldots+a_{n}^{2}=0, k=0,1 \ldots$ span the space of all harmonic polynomials. These facts are well known (see e.g. [2], p. 285 and [13]).

Theorem 1.3. Let V_{0} be a finite-dimensional vector space over \mathbf{R} and let G_{0} be a connected semisimple Lie subgroup of $\mathbf{G L}\left(V_{0}\right)$ leaving invariant a nondegenerate symmetric bilinear form B_{0} on $V_{0} \times V_{0}$. Then

$$
\begin{aligned}
S\left(V_{0}^{*}\right) & =I\left(V_{0}^{*}\right) H\left(V_{0}^{*}\right) \\
H^{c}\left(V_{0}^{*}\right) & =H_{1}\left(V_{0}^{*}\right)+H_{2}\left(V_{0}^{*}\right), \quad(\text { direct sum })
\end{aligned}
$$

We shall reduce this theorem to Theorem 1.2 by use of an arbitrary compact real form \mathfrak{u} of the complexification g of the Lie algebra g_{0} of G_{0}. Let V denote the complexification of V_{0} and let B denote the unique extension of B_{0} to a bilinear form on $V \times V$. The Lie algebra $\mathfrak{g l}\left(V_{0}\right)$ of $\mathbf{G L}\left(V_{0}\right)$ consists of all endomorphisms of V_{0} and \mathfrak{g}_{0} is a subalgebra of $\mathfrak{g l}\left(V_{0}\right)$. Consequently the complexification \mathfrak{g} is a subalgebra of the Lie algebra $\mathfrak{g l}(V)$ of all endomorphisms of V. Let U and G denote the connected Lie subgroups of $\mathbf{G L}(V)$ (considered as a real Lie group) which correspond to \mathfrak{l} and g respectively. The elements of G_{0} extend uniquely to endomorphisms of V whereby G_{0} becomes a Lie subgroup of G leaving B invariant. This implies that

$$
\begin{equation*}
B\left(T \cdot Z_{1}, Z_{2}\right)+B\left(Z_{1}, T \cdot Z_{2}\right)=0, \quad Z_{1}, Z_{2} \in V, T \in \mathfrak{g}_{0} \tag{6}
\end{equation*}
$$

However, since $\left(T_{1}+i T_{2}\right) \cdot Z=T_{1} \cdot Z+i T_{2} \cdot Z$ for $T_{1}, T_{2} \in g_{0}, Z \in V$ it is clear that (6) holds for all $T \in \mathfrak{g}$ so, by the connectedness of G, B is left invariant by G.

Lemma 1.4. There exists a real form W_{0} of V on which B is strictly positive definite and which is left invariant by U.

Proof. By the usual reduction of quadratic forms the space V_{0} is an orthogonal direct sum $V_{0}=V_{0}^{-}+V_{0}^{+}$where V_{0}^{-}and V_{0}^{+}are vector subspaces on which $-B_{0}$ and B_{0}, respectively, are strictly positive definite. Let J denote the linear transformation of V determined by

$$
J Z=i Z \text { for } Z \in V_{0}^{-}, \quad J Z=Z \text { for } Z \in V_{0}^{+} .
$$

Then the bilinear form

$$
B^{\prime}\left(Z_{1}, Z_{2}\right)=B\left(J Z_{1}, J Z_{2}\right) \quad\left(Z_{1}, Z_{2} \in V\right)
$$

is strictly positive definite on V_{0}. Let $\mathbf{0}(B), \mathbf{0}\left(B^{\prime}\right) \subset \mathbf{G L}(V)$ denote the orthogonal groups of B and B^{\prime} respectively and let $\mathbf{0}\left(B_{0}^{\prime}\right)$ denote the subgroup of $\mathbf{0}\left(B^{\prime}\right)$ which leaves V_{0} invariant, i.e. $\mathbf{O}\left(B_{0}^{\prime}\right)=\mathbf{0}\left(B^{\prime}\right) \cap \mathbf{G L}\left(V_{0}\right)$. Now

$$
U \subset G \subset \mathbf{0}(B)=J \mathbf{0}\left(B^{\prime}\right) J^{-1}
$$

On the other hand, the identity component of the group $J 0\left(B_{0}^{\prime}\right) J^{-1}$ is a maximal compact subgroup of the identity component of $J \mathbf{0}\left(B^{\prime}\right) J^{-1}$. By an elementary special case of Cartan's conjugacy theorem, (see e.g. [10] p. 218), this last group contains an element g such that $g^{-1} U g \subset J 0\left(B_{0}^{\prime}\right) J^{-1}$. Then the real form $W_{0}=g J V_{0}$ of V has the properties stated in the lemma. In fact, $U \cdot W_{0} \subset W_{0}$ is obvious and if $X \in W_{0}$ then since $J^{-1} g^{-1} J \in \mathbf{O}\left(B^{\prime}\right)$, we have

$$
B(X, X)=B^{\prime}\left(J^{-1} X, J^{-1} X\right)=B^{\prime}\left(J^{-1} g^{-1} X, J^{-1} g^{-1} X\right) \geqslant 0
$$

Now the bilinear form B is nondegenerate on $V_{0} \times V_{0}, W_{0} \times W_{0}$ and $V \times V$. As remarked before this induces the isomorphisms

$$
\mu_{1}: S^{c}\left(V_{0}\right) \rightarrow S^{c}\left(V_{0}^{*}\right), \quad \mu_{2}: S^{c}\left(W_{0}\right) \rightarrow S^{c}\left(W_{0}^{*}\right), \quad \mu: S(V) \rightarrow S\left(V^{*}\right)
$$

all of which are onto. By restriction of a complex-valued function on V to V_{0} and to W_{0} respectively we get the isomorphisms

$$
\lambda_{1}: S\left(V^{*}\right) \rightarrow S^{c}\left(V_{0}^{*}\right), \quad \lambda_{2}: S\left(V^{*}\right) \rightarrow S^{c}\left(W_{0}^{*}\right),
$$

both of which are onto. Since $S(V)=S\left(\left(V^{*}\right)^{*}\right)$ we get by restricting complex-valued functions on V^{*} to V_{0}^{*} and to W_{0}^{*} respectively, the isomorphisms

$$
\Lambda_{1}: S(V) \rightarrow S^{c}\left(V_{0}\right), \quad \Lambda_{2}: S(V) \rightarrow S^{c}\left(W_{0}\right)
$$

Then we have the commutative diagram

Corresponding to the actions of G_{0} on V_{0}, of U on W_{0} and of G on V we consider the spaces of invariants $I^{c}\left(V_{0}^{*}\right), I^{c}\left(V_{0}\right), I^{c}\left(W_{0}\right), I^{c}\left(W_{0}^{*}\right)$ and $I(V), I\left(V^{*}\right)$.

Lemma 1.5. Let $\lambda=\lambda_{2} \lambda_{1}^{-1}, \Lambda=\Lambda_{2} \Lambda_{1}^{-1}$. Then

$$
\lambda\left(I^{c}\left(V_{0}^{*}\right)\right)=I^{c}\left(W_{0}^{*}\right), \quad \Lambda\left(I^{c}\left(V_{0}\right)\right)=I^{c}\left(W_{0}\right) .
$$

Proof. Since $G_{0} \subset G$ it is clear that $\lambda_{1}\left(I\left(V^{*}\right)\right) \subset I^{c}\left(V_{0}^{*}\right)$. On the other hand, let $p \in I^{c}\left(V_{0}^{*}\right)$. If $Z \in g_{0}$ let d_{Z} denote the unique derivation of $S^{c}\left(V_{0}^{*}\right)$ which satisfies $\left(d_{Z} \cdot v^{*}\right)(X)=v^{*}(Z \cdot X)$ for $v^{*} \in V_{0}^{*}, X \in V_{0}$. Then

$$
\begin{equation*}
d_{z} \cdot p=0 \tag{7}
\end{equation*}
$$

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a basis of $V_{0},\left(x_{1}, \ldots, x_{n}\right)$ the dual basis of $V_{0}^{*},\left(z_{1}, \ldots, z_{n}\right)$ the basis of V^{*} dual to (X_{1}, \ldots, X_{n}) considered as a basis of V. Then (7) is an identity in $\left(x_{1}, \ldots, x_{n}\right)$ which remains valid after the substitution $x_{1} \rightarrow z_{1}, \ldots, x_{n} \rightarrow z_{n}$. This means that

$$
\begin{equation*}
\delta_{Z} \cdot\left(\lambda_{1}^{-1} p\right)=0 \tag{8}
\end{equation*}
$$

where δ_{Z} is the derivation of $S\left(V^{*}\right)$ which satisfies $\left(\delta_{Z} \cdot v^{*}\right)(X)=v^{*}(Z \cdot X)$ for $v^{*} \in V^{*}$, $X \in V$. However δ_{Z} can be defined for all $Z \in \mathfrak{g}$ by this last condition and (8) remains valid for all $Z \in \mathfrak{g}$. Since G is connected, this implies $\lambda_{1}^{-1} p \in I\left(V^{*}\right)$. Thus $\lambda_{1}\left(I\left(V^{*}\right)\right)=$ $I^{c}\left(V_{0}^{*}\right)$; similarly $\lambda_{2}\left(I\left(V^{*}\right)\right)=I^{c}\left(W_{0}^{*}\right)$ and the first statement of the lemma follows. The second statement follows from the first, taking into account (1) and the diagram. above.

Lemma 1.6. Let $P \in S^{c}\left(V_{0}\right), q \in S^{c}\left(V_{0}^{*}\right)$. Then

$$
\begin{equation*}
\partial(\Lambda P)(\lambda q)=\lambda(\partial(P) q) \tag{9}
\end{equation*}
$$

Proof. First suppose $P=X \in V_{0}, q=\mu_{1}(Y)\left(Y \in V_{0}\right)$. In this case one verifies easily that both sides of (9) reduce to $B(X, Y)$. Next observe that the mappings $q \rightarrow \partial(\Lambda X) \lambda q$ and $q \rightarrow \lambda\left(\partial(X) q\right.$) are derivations of $S^{c}\left(V_{0}^{*}\right)$ which coincide on V_{0}^{*}, hence on all of $S^{c}\left(V_{0}^{*}\right)$. Since the mappings $P \rightarrow \partial(\Lambda P)$ and $P \rightarrow \partial(P)$ are isomorphisms, (9) follows in general.

Combining the two last lemmas we get
Lemma 1.7. $\lambda\left(H^{c}\left(V_{0}^{*}\right)\right)=H^{c}\left(W_{0}^{*}\right)$.
Now we apply the isomorphism λ^{-1} to the relation (3) in Theorem 1.2. Using Lemmas 1.5 and 1.7 we get the first formula in Theorem 1.3. Next we note that due to Lemma 1.5 the varieties N_{U} and $N_{G_{0}}$ coincide. Consequently $\lambda\left(H_{i}\left(V_{0}^{*}\right)\right)=H_{i}\left(W_{0}^{*}\right)$ ($i=1,2$) so Theorem 1.3 follows.

Remark. In the case when the ideals $I_{+}^{c}\left(W_{0}^{*}\right) S^{c}\left(W_{0}^{*}\right)$ and $I_{+}^{c}\left(V_{0}^{*}\right) S^{c}\left(V_{0}^{*}\right)$ are prime ideals they are equal to their own radicals. Hence it follows from (5) (and the analogous relation for V_{0}^{*}) that $H_{2}\left(W_{0}^{*}\right)=H_{2}\left(V_{0}^{*}\right)=\{0\}$. In this case Theorems 1.2 and 1.3 are contained in the results of Maass [13], proved quite differently.

§ 2. Decomposition of the exterior algebra

Let E be a finite-dimensional vector space over \mathbf{R} as in $\S 1$ and let $\Lambda(E)$ and $\Lambda\left(E^{*}\right)$, respectively, denote the Grassmann algebras over E and its dual. Each $X \in E$ induces an anti-derivation $\delta(X)$ of $\Lambda\left(E^{*}\right)$ given by

$$
\delta(X)\left(x_{1} \wedge \ldots \wedge x_{m}\right)=\sum_{k=1}^{m}(-1)^{k-1} x_{k}(X)\left(x_{1} \wedge \ldots \wedge \hat{x}_{k} \wedge \ldots \wedge x_{m}\right)
$$

where \hat{x}_{k} indicates omission of x_{k}. The mapping $X \rightarrow \delta(X)$ extends uniquely to a homomorphism of the tensor algebra $T(E)$ over E into the algebra of all endomorphisms of $\Lambda\left(E^{*}\right)$. Since $\delta(X \otimes X)=\delta(X)^{2}=0$ there is induced a homomorphism $P \rightarrow \delta(P)$ of $\Lambda(E)$ into the algebra of endomorphisms of $\Lambda\left(E^{*}\right)$. As will be noted below, this homomorphism is actually an isomorphism.

Now suppose B is any nondegenerate symmetric bilinear form on $E \times E$. The mapping $X \rightarrow X^{*}\left(X^{*}(Y)=B(X, Y)\right)$ extends to an isomorphism μ of $\Lambda(E)$ onto $\Lambda\left(E^{*}\right)$. We obtain a bilinear form $\left\rangle\right.$ on $\Lambda\left(E^{*}\right) \times \Lambda\left(E^{*}\right)$ by the formula

$$
\begin{equation*}
\langle p, q\rangle=\left[\delta\left(\mu^{-1}(p)\right) q\right](0) \tag{1}
\end{equation*}
$$

If $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l} \in E^{*}$ then

$$
\begin{equation*}
\left\langle x_{1} \wedge \ldots \wedge x_{k}, y_{1} \wedge \ldots \wedge y_{l}\right\rangle=0 \quad \text { or }(-1)^{\frac{1}{2} k(k-1)} \operatorname{det}\left(B\left(\mu^{-1} x_{i}, \mu^{-1} y_{j}\right)\right) \tag{2}
\end{equation*}
$$

depending on whether $k \neq l$ or $k=l$. It follows that \langle,$\rangle is a symmetric nondegenerate$ bilinear form. Also if $Q \in \Lambda(E), q=\mu(Q)$ then the operator $p \rightarrow p \wedge q$ on $\Lambda\left(E^{*}\right)$ is the adjoint of the operator $\partial(Q)$. It is also easy to see from (1) and (2) that the mapping
$P \rightarrow \delta(P)(P \in \Lambda(E))$ above is an isomorphism. Finally, if B is strictly positive definite the same holds for \langle,$\rangle .$

Now let G be a group of linear transformations of E. Then G acts on E^{*} as before and acts as a group of automorphisms of $\Lambda(E)$ and $\Lambda\left(E^{*}\right)$. Let $J(E)$ and $J\left(E^{*}\right)$ denote the set of G-invariants in $\Lambda(E)$ and $\Lambda\left(E^{*}\right)$ respectively; let $J_{+}(E)$ and $J_{+}\left(E^{*}\right)$ denote the subspaces consisting of all invariants without constant term. An element $p \in \Lambda\left(E^{*}\right)$ is called G-primitive if $\delta(Q) p=0$ for all $Q \in J_{+}(E)$. Let $P\left(E^{*}\right)$ denote the set of all G-primitive elements.

Theorem 2.1. Let B be a nondegenerate, symmetric bilinear form on $E \times E$ and let G be a Lie subgroup of $\mathbf{G L}(E)$ leaving B invariant. Suppose that either (i) G is compact and B positive definite or (ii) G is connected and semisimple. Then

$$
\begin{equation*}
\Lambda\left(E^{*}\right)=J\left(E^{*}\right) P\left(E^{*}\right) \tag{3}
\end{equation*}
$$

The proof is quite analogous to that of Theorems 1.2 and 1.3. For the case (i) one first establishes the orthogonal decomposition

$$
\begin{equation*}
\Lambda\left(E^{*}\right)=\Lambda\left(E^{*}\right) J_{+}\left(E^{*}\right)+P\left(E^{*}\right) \tag{4}
\end{equation*}
$$

in the same manner as (5) in §l. Then (3) follows by iteration of (4). The noncompact case (ii) can be reduced to the case (i) by using Lemma 1.4. We omit the details since they are essentially a duplication of the proof of Theorem 1.3.

Example. Let V be an n-dimensional Hilbert space over C. Considering the set V as a $2 n$-dimensional vector space E over \mathbf{R} the unitary group $\mathbf{U}(n)$ becomes a subgroup G of the orthogonal group $0(2 n)$. Let $Z_{k}=X_{k}+i Y_{k}(1 \leqslant k \leqslant n)$ be an orthonormal basis of V, z_{1}, \ldots, z_{n} the dual basis of V^{*}, and put $x_{k}=\frac{1}{2}\left(z_{k}+\bar{z}_{k}\right), y_{k}=$ $-\frac{1}{2} i\left(z_{k}-\bar{z}_{k}\right), \quad(1 \leqslant k \leqslant n)$.

Let F denote the vector space over \mathbf{C} consisting of all \mathbf{R}-linear mappings of V into \mathbf{C}. The exterior algebra $\Lambda(F)$ is the direct sum

$$
\Lambda(F)=\sum_{0 \leqslant a, b} F_{a, b}
$$

where $F_{a, b}$ is the subspace of $\Lambda(F)$ spanned by all multilinear forms of the type

$$
\left(z_{\alpha_{1}} \wedge \ldots \wedge z_{\alpha_{a}}\right) \wedge\left(\bar{z}_{\beta_{1}} \wedge \ldots \wedge \bar{z}_{\beta_{b}}\right)
$$

where $1 \leqslant \alpha_{1}<\alpha_{2}<\ldots<\alpha_{a} \leqslant n, 1 \leqslant \beta_{1}<\beta_{2}<\ldots<\beta_{b} \leqslant n$. The G-invariants $J\left(E^{*}\right)$ are given by the space J of invariants of $\mathbf{U}(n)$ acting on F. It is clear that $J=\sum_{a, b} J_{a, b}$ where $J_{a, b}=J \cap F_{a, b}$. Now if $\varrho_{i} \in \mathbf{R}(\mathrm{l} \leqslant i \leqslant n)$ the mapping

$$
\left(Z_{1}, \ldots, Z_{n}\right) \rightarrow\left(e^{i e_{1}} Z_{1}, \ldots, e^{i Q_{n}} Z_{n}\right)
$$

is unitary. As a consequence one finds that $J_{a, b}=0$ if $a \neq b$ and that if $f \in J_{a, a}$ then

$$
f=\sum A_{\alpha_{1} \ldots \alpha_{a}}\left(z_{\alpha_{1}} \wedge \ldots \wedge z_{\alpha_{a}}\right) \wedge\left(\bar{z}_{\alpha_{1}} \wedge \ldots \wedge \bar{z}_{\alpha_{a}}\right) .
$$

Now, there always exists a unitary transformation of V mapping $Z_{\alpha_{i}} \rightarrow Z_{i}(1 \leqslant i \leqslant a)$. It follows that $A_{1 \ldots a}=A_{\alpha_{1} \ldots \alpha_{a}}$ so f is a constant multiple of $\left(\sum_{\alpha=1}^{n} z_{\alpha} \wedge \bar{z}_{\alpha}\right)^{a}$. Since $z_{\alpha} \wedge \bar{z}_{\alpha}=-2 i\left(x_{\alpha} \wedge y_{\alpha}\right)$ it is clear that $J\left(E^{*}\right)$ is the algebra generated by $u=\sum_{\alpha=1}^{n} x_{\alpha} \wedge y_{\alpha}$. In view of Theorem 2.1 each $q \in \Lambda\left(E^{*}\right)$ can be written

$$
\begin{equation*}
q=\sum_{k} u^{k} \wedge p_{k} \tag{5}
\end{equation*}
$$

where each p_{k} satisfies $\delta(u) p_{k}=0$. This result is of course well known (Hodge), even for all Kähler manifolds (compare [17], Théorème 3, p. 26).

§ 3. Fundamental functions on quadrics

Let G be a topological group, H a closed subgroup, and G / H the set of left cosets $g H$ with the usual topology. If f is a function on G / H and $x \in G$ then f^{x} denotes the function on G / H given by $f^{x}(g H)=f(x g H)$.

Definition. A complex-valued continuous function f on G / H is called fundamental if the vector space V_{f} over \mathbf{C} spanned by the functions $f^{x}(x \in G)$ is finite-dimensional.

Fundamental functions arise of course in a natural fashion in the theory of finite-dimensional representations of topological groups. First we remark that if π denotes the natural mapping of G onto G / H then f is fundamental on G / H if and only if $f \circ \pi$ is fundamental on \dot{G} (viewed as $G /\{e\}$). But the fundamental functions on G are just the linear combinations of matrix coefficients of finite-dimensional representations of G (see e.g. [11], Prop. 2.1, p. 497). Considering Kronecker products of representations, the fundamental functions on G (and also those on G / H; by the remark above) are seen to form an algebra.

Let G be a topological transformation group of a topological space E. A G-equivariant imbedding of E into a finite-dimensional vector space V is a one-to-one continuous mapping i of E into V and a representation α of G on V such that $\alpha(g) i(e)=$ $i(g \cdot e)$ for all $e \in E, g \in G$. If V is provided with a strictly positive definite quadratic form which is left invariant by all $\alpha(g)(g \in G)$ then i is called an orthogonal G-equivariant imbedding.

It is known ([14], [16]) that if U is a compact Lie group and K a closed subgroup then U / K has an orthogonal U-equivariant imbedding.
17-632918 Acta mathematica 109. Imprimé le 17 juin 1963.

Lemma 3.1. Let U be a compact Lie group and K a closed subgroup. Let i be any orthogonal U-equivariant imbedding of U / K into a vector space V over \mathbf{R}. Then the fundamental functions on U / K are precisely the functions p oi where p is a complexvalued polynomial function on V.

Proof. Putting $v_{0}=i(K)$ we have

$$
i(u K)=\alpha(u) v_{0} \quad(u \in K)
$$

Let $F(U)$ denote the algebra of all fundamental functions on U and let S denote the subalgebra of $F(U)$ generated by the constants and all functions on U of the form $u \rightarrow\left\langle\alpha(u) v_{0}, v\right\rangle$ where $v \in V$ and \langle,$\rangle denotes the inner product on V$. If φ is a continuous function on U and $x \in U$ we define the left and right translate of φ by $\varphi^{L(x)}(y)=\varphi\left(x^{-1} y\right), \varphi^{R(x)}(y)=\varphi\left(y x^{-1}\right), y \in U$. Let us verify that

$$
\begin{equation*}
K=\left\{x \in U \mid \varphi^{R(x)}=\varphi \quad \text { for all } \varphi \in S\right\} . \tag{1}
\end{equation*}
$$

It is clear that K is contained in the right hand side of (1). On the other hand, if $\varphi^{R(x)}=\varphi$ for all $\varphi \in S$ we find in particular that $\left\langle\alpha(x) v_{0}-v_{0}, v\right\rangle=0$ for all $v \in V$. Hence $\alpha(x) v_{0}=v_{0}$ and, since i is one-to-one, $x \in K$. Now S is a subalgebra of $F(U)$ which contains the constants and is invariant under all left translations and the complex conjugation. From (1) and Lemma 5.3 in [11] p. 515 it follows that

$$
\begin{equation*}
S=\left\{\varphi \in F(U) \mid \varphi^{R(k)}=\varphi \quad \text { for all } k \in K\right\} \tag{2}
\end{equation*}
$$

Now let f be a fundamental function on U / K. Then $\varphi=f \circ \pi \in F(U)$ and by (2), $\varphi \in S$. By the definition of S there exist finitely many vectors $v_{1}, \ldots, v_{r} \in V$ such that if we put
then

$$
s_{i}(u)=\left\langle\alpha(u) v_{0}, v_{i}\right\rangle \quad(u \in U),
$$

$$
\begin{equation*}
\varphi=\sum A_{n_{1} \ldots n_{r}} s_{1}^{n_{1}} \ldots s_{r}^{n_{r}}, \quad A_{n_{1} \ldots n_{r}} \in \mathbf{C} \tag{3}
\end{equation*}
$$

Let l_{i} denote the linear function $v \rightarrow\left\langle v, v_{i}\right\rangle$ on V. Then (3) implies that

$$
f=\sum A_{n_{1} \ldots n_{r}} l_{1}^{n_{1}} \ldots l_{r}^{n_{r}} \circ i,
$$

proving the lemma.
Remark. Lemma 3.1 is closely related to Theorem 3 in [15], stated without proof. Consider now the quadric $C_{p, q} \subset \mathbf{R}^{p+q+1}$ given by the equation

$$
\begin{equation*}
Q(X) \equiv x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q+1}^{2}=-1 \quad(p \geqslant 0, q \geqslant 0) . \tag{4}
\end{equation*}
$$

The orthogonal group $\mathbf{0}(Q)=\mathbf{O}(p, q+1)$ acts transitively on $C_{p, q}$; the subgroup leaving the point $(0, \ldots, 0,1)$ on $C_{p, q}$ fixed is isomorphic to $0(p, q)$ so we make the identification

$$
\begin{equation*}
C_{p . q}=\mathbf{0}(p, q+1) / \mathbf{0}(p, q) . \tag{5}
\end{equation*}
$$

It is clear that the restriction of a polynomial on \mathbf{R}^{p+q+1} to $C_{p, q}$ is a fundamental function.

Theorem 3.2. Let f be a fundamenial function on $\mathbf{C}_{p, q}$. Assume $(p, q) \neq(1,0)$. Then there exists a polynomial $P=P\left(x_{1}, \ldots, x_{p+q+1}\right)$ on \mathbf{R}^{p+q+1} such that

$$
f=P \quad \text { on } \quad C_{p, q} .
$$

If $p=0$ then this theorem is an immediate consequence of Lemma 3.1. The general case requires some preparation.

Let U be a topological group and K a closed subgroup. A representation α of U on a Hilbert space \mathfrak{F} is said to be of class 1 (with respect to K) if it is irreducible and unitary and if there exists a vector $\mathbf{e} \neq 0$ in \mathfrak{S} which is left fixed by each $\alpha(k), k \in K$.

Lemma 3.3. The representations of the group $\mathbf{S O}(n)$ of class 1 (with respect to $\mathbf{S O}(n-1)$) are (up to equivalence) precisely the natural representations of $\mathbf{S O}(n)$ on the eigenspaces of the Laplacian Δ on the unit sphere \mathbf{S}^{n-1}.

This lemma is essentially known ([1]), but we shall indicate a proof. Let α be a representation of $\mathbf{S O}(n)$ of class 1. If φ is the spherical function on $\mathbb{S}^{n-1}=$ $\mathbf{S O}(n) / \mathbf{S O}(n-1)$ corresponding to α, i.e., $\varphi(u \mathbf{S O}(n-1))=\langle\mathbf{e}, \alpha(u) \mathbf{e}\rangle$, then α is equivalent to the natural representation of $\mathbf{S O}(n)$ on the space V_{Φ} spanned by the translates $\varphi^{x},(x \in \operatorname{SO}(n))$. (See, for example, Theorem 4.8, Ch. X, in [10]). The elements of V_{φ} are all eigenfunctions of Δ for the same eigenvalue. The space V_{φ} must exhaust the eigenspace of Δ for this eigenvalue because otherwise there would exist two linearly independent eigenfunctions of Δ invariant under $\mathbf{S O}(n-1)$ corresponding to the same eigenvalue. This is impossible as one sees by expressing Δ in geodesic polar coordinates. All eigenspaces of Δ are obtained in this way.

Each eigenfunction of Δ on \mathbf{S}^{n-1} is a fundamental function on $\mathbf{O}(n) / \mathbf{0}(n-1)$, hence the restriction of a polynomial which by Theorem 1.2 can be assumed harmonic. On the other hand, let $P \neq 0$ be a homogeneous harmonic polynomial on \mathbf{R}^{n} of degree m. (By Remark 2 following Theorem 1.2 these exist for each integer $m \geqslant 0$.) Using the expression of the Laplacian $\tilde{\Delta}$ on \mathbf{R}^{n} in polar coordinates,

$$
\bar{\Delta}=\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta,
$$

one finds that the restriction \bar{P} of P to S^{n-1} satisfies

$$
\Delta \bar{P}=-m(m+n-2) \bar{P}
$$

This shows, as is well known, that the eigenvalues of Δ are $-m(m+n-2)$, where m is a non-negative integer.

Lemma 3.4. Let (U, π) denote the universal covering group of $\mathbf{S O}(n)(n \geqslant 3)$ and let K denote the identity component of $\pi^{-1}(\mathbf{S O}(n-1))$. Let a be a representation of U of class 1 (with respect to K). Then there exists a representation α_{0} of $\mathbf{S O}(n)$ such that $\alpha_{0}=\alpha \circ \pi$.

Proof. The mapping $\psi: u K \rightarrow \pi(u) \mathbf{S O}(n-1)$ is a covering map of U / K onto $\mathbf{S O}(n) / \mathbf{S O}(n-1)=\mathbf{S}^{n-1}$ which is already simply connected. Hence ψ is one-to-one so $K=\pi^{-1}(\mathbf{S O}(n-1))$. Let $\mathbf{e} \neq 0$ be a common fixed vector for all $\alpha(k), k \in K$. Then in particular $\alpha(z) \mathbf{e}=\mathbf{e}$ for all z in the kernel of π. By Schur's lemma $\alpha(z)$ is a scalar multiple of the identity I; hence $\alpha(z)=I$ for all z in the kernel of π and the lemma follows.

Now we need more notation. Let $\mathfrak{o}(r, s)$ denote the Lie algebra of the orthogonal group $\mathbf{O}(r, s)$, put $\mathfrak{o}(r)=\mathfrak{p}(r, 0)=\mathfrak{p}(0, r)$ and let $\mathfrak{p}(n, C)$ denote the Lie algebra of the complex orthogonal group $\mathbf{O}(n, \mathbf{C})$. Consider now the following diagram of Lie groups and their Lie algebras:

In the diagram on the right the arrows denote imbeddings. The imbedding of $\mathfrak{p}(p, q)$ into $\mathrm{D}(p, q+1)$ is the one which corresponds to the inclusion (5) and the imbeddings of $\mathfrak{o}(p+q)$ in $\mathfrak{o}(p+q+1)$ and of $\mathfrak{o}(p+q, \mathbf{C})$ in $\mathfrak{o}(p+q+\mathbf{1}, \mathbf{C})$ are to be understood similarly. In the diagram on the left are Lie groups corresponding to the Lie algebras on the right; here the arrows mean inclusions among the identity components. G_{0} and H_{0} respectively stand for the groups $\mathbf{0}(p, q+1)$ and $\mathbf{O}(p, q)$ in (5). Let G, U_{0}, H, K_{0} denote the analytic subgroups of $\mathbf{G L}(p+q+1, \mathbf{C})$ corresponding to the subalgebras $\mathfrak{g}, \mathfrak{u}, \mathfrak{h}, \mathfrak{l}$ in the right hand diagram.

For the proof of Theorem 3.2 we have to consider four cases:

$$
\text { I } p=0 ; \quad \text { II } q=0 ; \quad \text { III } p=1, q=1 ; \quad \text { IV } p, q \text { arbitrary. }
$$

Case I is contained in Lemma 3.1, G_{0} being compact. The proof in Case II will be based on the compactness of H_{0}. In Case III we shall use the fact that the identity component of $\mathbf{O}(1,2)$ is a well-imbedded linear Lie group in the sense of [4], p. 327. Finally, Case IV is reduced to the three previous cases by a suitable method of descent.

The case $p=0$ being settled, suppose $q=0$. Consider the representation ϱ of G_{0} on V_{f} given by $\varrho\left(x^{-1}\right) F=F^{x}\left(F \in V_{f}\right)$. This representation is completely reducible because G_{0} is semisimple (since $q=0, p$ is >1) and has finitely many components ([3], Théorème $3 \mathrm{~b}, \mathrm{p} .85$). We may therefore assume ϱ irreducible. Since G_{0} is transitive on $C_{p, 0}$ we can suppose $f(0, \ldots, 0,1) \neq 0$. Moreover, since the subgroup H_{0} is now compact we may, by replacing f with the average $\int_{H_{0}} f^{h} d h$ assume that $f^{h}=f$ for each $h \in H_{0}$. Now there is induced a representation d ϱ of g_{0} onto V_{f} by

$$
\begin{equation*}
[d \varrho(X) F](m)=\left\{\frac{d}{d t}(F(\exp (-t X) \cdot m))\right\}_{t=0} \tag{6}
\end{equation*}
$$

for $F \in V_{f}, X \in g_{0}, m \in C_{p, 0}$. Next $d \varrho$ extends to a representation $d \varrho^{c}$ of the complex Lie algebra \mathfrak{g} on V_{f} and finally $d \varrho^{c}$ extends to a representation (also denoted $d \varrho^{c}$) on V_{f} of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}.

Let Γ denote the Casimir element in $U(\mathfrak{g})$. Since Γ lies in the center of $U(\mathfrak{g})$ and since ϱ is irreducible it follows by Schur's lemma that $d \varrho^{c}(\Gamma)=\gamma I$ where $\gamma \in \mathbf{C}$. Consider now the representation $\tilde{\varrho}$ of G_{0} on the space of C^{∞}-functions on G_{0} / H_{0} given by $\tilde{\varrho}\left(x^{-1}\right) F=F^{x}$. Although infinite-dimensional this representation extends (as by (6)) to a representation $d \tilde{\varrho}^{c}$ of $U(g)$ and thereby $d \varrho^{c}(\Gamma)$ is a second order differential operator on G_{0} / H_{0}, annihilating the constants and invariant under the action of G_{0}. It follows without difficulty that $d \tilde{\varrho}^{c}(\Gamma)$ is the Laplace-Beltrami operator corresponding to the invariant Riemannian structure on G_{0} / H_{0} which is induced by the Killing form of g_{0}. According to [8] this Riemannian structure is $2(p-1)$ times the Riemannian structure of $C_{p, 0}$ induced by the quadratic form $x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}$ on \mathbf{R}^{p+1}. The corresponding Laplace-Beltrami operators are proportianal by the reciprocal proportionality factor. Now, since f is necessarily differentiable, ϱ is the restriction of $\tilde{\varrho}$ to V_{f}. Putting together these facts we conclude that each function in V_{f} is an eigenfunction of the Laplacian Δ^{\prime} on $C_{p, 0}$ with eigenvalue $2(p-1) \gamma$.

On the other hand, the Lie algebra \mathfrak{u} of $\mathbf{S O}(p+1)$ is a compact real form of \mathfrak{g}.

By restriction ϱ induces a representation of this Lie algebra on V_{f}. This representation extends to a representation (also denoted ϱ) on V_{f} of the universal covering group U of $\mathbf{S O}(p+1)$. This representation is of class 1 with respect to the connected Lie subgroup of U with Lie algebra $\mathfrak{u} \cap \mathfrak{g}_{0}$, the function f being the fixed vector. By Lemma 3.4ϱ induces a representation of $\mathbf{S O}(p+1)$ of class 1 (with respect to $\mathbf{S O}(p)$), which then can be described by Lemma 3.3. Consider now the representation ϱ^{*} of $\mathbf{S O}(p+1)$ on $C^{\infty}\left(S^{p}\right)$ given by $\varrho^{*}\left(x^{-1}\right) F=F^{x}$. Under this representation $\left(d \varrho^{*}\right)^{c}(\Gamma)=$ $-(2(p-1))^{-1} \Delta$; the minus sign is due to the fact that the negative Killing form of $\mathfrak{u t}$ induces a positive definite Riemannian structure on $\mathbf{S 0}(p+1) / \mathbf{S O}(p)$. Now it follows that $-2(p-1) \gamma$ is an eigenvalue of the Laplacian Δ on S^{p}, so $-2(p-1) \gamma=$ $-m(m+p-1)$, where m is a non-negative integer.

Now let P be a homogeneous polynomial of degree m on \mathbf{R}^{p+1} satisfying

$$
\frac{\partial^{2} P}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2} P}{\partial x_{p+1}^{2}}=0
$$

We can select P such that $P(0, \ldots, 0,1) \neq 0$ and by integrating over the isotropy group of $(0, \ldots, 0,1)$, such that

$$
P\left(x_{1}, \ldots, x_{p+1}\right) \equiv P\left(\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)^{\frac{1}{2}}, 0, \ldots, 0, x_{p+1}\right)
$$

If we substitute $x_{p+1} \rightarrow i x_{p+1}$ in $P\left(x_{1}, \ldots, x_{p+1}\right)$ we obtain a homogeneous polynomial $Q\left(x_{1}, \ldots, x_{p+1}\right)$ of degree m satisfying

$$
\begin{gathered}
\Delta^{*} Q \equiv \frac{\partial^{2} Q}{\partial x_{1}^{2}}+\frac{\partial^{2} Q}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2} Q}{\partial x_{p}^{2}}-\frac{\partial^{2} Q}{\partial x_{p+1}^{2}}=0 \\
Q\left(x_{1}, \ldots, x_{p+1}\right) \equiv Q\left(\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)^{\frac{1}{2}}, 0, \ldots, 0, x_{p+1}\right), \quad Q(0, \ldots, 0,1) \neq 0
\end{gathered}
$$

Now the operator Δ^{*} can be expressed in terms of the coordinates on $C_{p, 0}$ and the "distance" $r=\left(-x_{1}^{2}-\ldots-x_{p}^{2}+x_{p+1}^{2}\right)^{\frac{1}{2}}$. One finds (compare Lemma 21, p. 278, in [7]) that in these coordinates

$$
\Delta^{*}=-\frac{\partial^{2}}{\partial r^{2}}-\frac{p}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Delta^{\prime}
$$

where Δ^{\prime} is the Laplacian on $C_{p, 0}$. Now $Q=r^{m} \bar{Q}$ where \bar{Q} is the restriction of Q to $C_{p, 0}$ so we obtain for $r=1$

$$
\Delta^{\prime} \bar{Q}=m(m+p-1) \bar{Q}
$$

Thus the functions f and \bar{Q} have the same eigenvalue. Both are invariant under the isotropy group of $(0, \ldots, 0,1)$ and neither vanishes at that point. According to Cor. 3.3, Ch. \mathbf{X} i $[10], f$ and \bar{Q} are proportional so the proof is finished in the case $q=0$.

Now we come to Case III: $p=q=1$. We shall use the diagram following the proof of Lemma 3.4. Again let f be a fundamental function on $C_{1,1}$ and let V_{f} denote the vector space over \mathbf{C} spanned by all translates $f^{x}, x \in G_{0}$. Consider the representation ϱ of G_{0} on V_{f} defined by $\varrho\left(x^{-1}\right) F=F^{x}$. For the same reason as in Case II we may assume ϱ irreducible and $f(0,0,1) \neq 0$. As before consider the representations $d \varrho, d \varrho^{c}$. Since the identity component of G_{0} is a well-imbedded linear Lie group there exists a representation ϱ^{c} of G on V_{f} whose differential is the previous $d \varrho^{c}$ ([4], p.329). Let α denote the restriction of ϱ^{c} to U_{0}.

Lemma 3.5. α is of class 1 (with respect to K_{0}).
Proof. Let $X \in \mathfrak{h}_{0}$ and put $p_{0}=(0,0,1)$. Then for each $F \in V_{f}$
and by induction

$$
[d \varrho(X) F]\left(p_{0}\right)=\left\{\frac{d}{d t}\left(F\left(\exp (-t X) \cdot p_{0}\right)\right)\right\}_{t=0}=0
$$

Since $d \varrho^{c}(i X)=i d \varrho^{c}(X),(7)$ implies

$$
\begin{equation*}
\left[(d \alpha(X))^{m} F\right]\left(p_{0}\right)=0 \quad\left(X \in \mathfrak{f}, F \in V_{f}\right) \tag{8}
\end{equation*}
$$

Now, since $K_{0}=\mathbf{S O}(2)$ is abelian, V_{f} is a direct sum of one-dimensional subspaces, $V_{f}=\sum_{i-1}^{r} V_{i}$, each of which is invariant under $\alpha\left(K_{0}\right)$. Let $d \alpha(X)_{i}$ denote the restriction of $d \alpha(X)$ to V_{i}, and let χ_{i} denote the homomorphism of K_{0} into \mathbf{C} determined by $\chi_{i}(\exp X)=\exp \left(d \alpha(X)_{i}\right)$. Then by (8) $\chi_{i}(\exp X) F_{i}\left(p_{0}\right)=F_{i}\left(p_{0}\right), F_{i} \in V_{i}$, so if $k \in K_{0}$, $f=\sum \boldsymbol{F}_{i}$,

Thus the vector

$$
[\alpha(k) f]\left(p_{0}\right)=\sum_{i=1}^{r} \chi_{i}(k) F_{i}\left(p_{0}\right)=\sum_{i=1}^{r} F_{i}\left(p_{0}\right)=f\left(p_{0}\right) .
$$

in V_{f} is $\neq 0$ and invariant under K_{0}. This proves the lemma.
Lemma 3.6. The vector $f^{*} \in V_{f}$ is invariant under $\varrho(h)$ for each h in the identity component of H_{0}.

In fact, $\alpha(k) f^{*}=f^{*}\left(k \in K_{0}\right)$ so $d \alpha(X) f^{*}=0(X \in \mathfrak{f})$; hence $d \varrho^{c}(X) f^{*}=0$ for all X in the complexification \mathfrak{h} of \mathfrak{l}. The lemma now follows.

Since ϱ is irreducible we have $V_{f}=V_{f^{*}}$. Thus it suffices to prove Theorem 3.2 for the function f^{*}. By a procedure similar to that in Case II it is found that

$$
\begin{equation*}
\Delta^{\prime} f^{*}=m(m+1) f^{*} \tag{9}
\end{equation*}
$$

where Δ^{\prime} is the Laplace-Beltrami operator on $C_{1,1}$ corresponding to the pseudo-Riemannian structure on $C_{1,1}$ induced by $x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$, and m is a non-negative integer.

On the other hand, let P be a homogeneous polynomial of degree m on $\mathbf{R}^{\mathbf{3}}$ satisfying

$$
\begin{gathered}
\frac{\partial^{2} P}{\partial x_{1}^{2}}+\frac{\partial^{2} P}{\partial x_{2}^{2}}+\frac{\partial^{2} P}{\partial x_{3}^{2}}=0 \quad(P(0,0,1) \neq 0) \\
P\left(x_{1}, x_{2}, x_{3}\right)=\sum_{k} A_{k}\left(x_{1}^{2}+x_{2}^{2}\right)^{k} x_{3}^{m-2 k} \quad\left(A_{k} \in \mathbf{C}\right)
\end{gathered}
$$

If we substitute $x_{2} \rightarrow i x_{2}, x_{3} \rightarrow i x_{3}$ in $h\left(x_{1}, x_{2}, x_{3}\right)$ we obtain a homogeneous polynomial $Q\left(x_{1}, x_{2}, x_{3}\right)$ of degree m satisfying

$$
\begin{gathered}
\frac{\partial^{2} Q}{\partial x_{1}^{2}}-\frac{\partial^{2} Q}{\partial x_{2}^{2}}-\frac{\partial^{2} Q}{\partial x_{3}^{2}}=0 \quad(Q(0,0,1) \neq 0) \\
Q\left(x_{1}, x_{2}, x_{3}\right)=\sum_{k} B_{k}\left(x_{1}^{2}-x_{2}^{2}\right)^{k} x_{3}^{m-2 k} \quad\left(B_{k} \in \mathbf{C}\right) .
\end{gathered}
$$

As in Case II it follows that the restriction \bar{Q} of Q to $C_{1,1}$ satisfies the equation (9). Also $\bar{Q}^{h}=\bar{Q}$ for each $h \in H_{0}$.

Lemma 3.7. The functions f^{*} and \bar{Q} are proportional.
Proof. In the Lorentzian manifold $C_{1,1}$ we consider the retrograde cone D with vertex $(0,0,1)\left([7]\right.$, p. 287). In geodesic polarcoordinates on D let $\left(\Delta^{\prime}\right)_{r}$ denote the restriction of Δ^{\prime} to functions depending on the radiusvector r alone. Then by Lemma 25 in [7]

Since

$$
\left(\Delta^{\prime}\right)_{r}=\frac{d^{2}}{d r^{2}}+2 \operatorname{coth} r \frac{d}{d r} \quad(r>0)
$$

$$
\frac{d^{2} g}{d r^{2}}+2 \operatorname{coth} r \frac{d g}{d r}=\frac{1}{\sinh r}\left(\frac{d^{2}}{d r^{2}}-1\right)(g(r) \sinh r)
$$

it follows that the solutions of (9) in D which depend on r alone are given by

$$
g(r) \sinh r=A \sinh (\lambda r)+B \cosh (\lambda r), \quad \lambda^{2}=m(m+1)+1, \lambda>0
$$

where $A, B \in \mathbf{C}$. Now both functions f^{*} and \bar{Q} satisfy this equation in D but since they are bounded in a neighborhood of $(0,0,1)$ it is clear that $B=0$ so f^{*} and \bar{Q} are proportional on D. But these functions are analytic on the connected manifold $C_{1,1}$, so, being proportional on the open subset D, are proportional everywhere. This proves Theorem 3.2 in Case III.

Finally, we consider Case IV and assume $p \geqslant 1, q \geqslant 1$. Let f be a fundamental function on $C_{p, q}$. Again we consider the representation ϱ of G_{0} on V_{f} given by $\varrho\left(x^{-1}\right) F=F^{x}$, and assume as we may that ϱ is irreducible and that $f(0, \ldots, 0,1) \neq 0$. Since the subgroup $H^{*}=\mathbf{0}(p) \times \mathbf{0}(q)$ of H_{0} is compact we can also assume that $\varrho(h) f=f$ for all $h \in H^{*}$. It follows that on $C_{p, q}$

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{p+q+1}\right)=f\left(\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)^{\frac{1}{2}}, 0, \ldots, 0,\left(x_{p+1}^{2}+\ldots+x_{p+q}^{2}\right)^{\frac{1}{2}}, x_{p+q+1}\right) \tag{10}
\end{equation*}
$$

On the quadric $y_{1}^{2}-y_{2}^{2}-y_{3}^{2}=-1$ we consider now the function

$$
f^{*}\left(y_{1}, y_{2}, y_{3}\right)=f\left(y_{1}, 0, \ldots, 0, y_{2}, y_{3}\right)
$$

This function f^{*} is well defined since $\left(y_{1}, 0, \ldots, 0, y_{2}, y_{3}\right) \in C_{p, q}$ and is a fundamental function on the quadric $C_{1,1}$. As shown above there exists a polynomial $P^{*}\left(y_{1}, y_{2}, y_{3}\right)$ such that

$$
f^{*}\left(y_{1}, y_{2}, y_{3}\right)=P^{*}\left(y_{1}, y_{2}, y_{3}\right) \quad \text { for } y_{1}^{2}-y_{2}^{2}-y_{3}^{2}=-1
$$

By (10) f^{*} is even in the first two variables so P^{*} can be assumed to contain y_{1} and y_{2} in even powers alone. Combining the equations above we find that

$$
f\left(x_{1}, \ldots, x_{p+q+1}\right)=P^{*}\left(\left(x_{1}^{2}+\ldots+x_{p}^{2}\right)^{\frac{1}{2}},\left(x_{p+1}^{2}+\ldots+x_{p+q}^{2}\right)^{\frac{1}{2}}, x_{p+q+1}\right)
$$

on $C_{p, q}$. Due to the assumptions made on P^{*} the right-hand side of this equation is a polynomial on \mathbf{R}^{p+q+1}. This disposes of Case IV so Theorem 3.2 is now completely proved.

Remarks. Some special cases of Theorem 3.2 have been proved before. The case $p=0$ (for which $0(p, q+1)$ is compact) was already proved by Hecke [6] (for $q=2$) and Cartan [1]. If $p=2, q=0$ then $C_{p, q}$ is the 2 -dimensional Lobatchefsky space of constant negative curvature. In this case Theorem 3.2 was proved by Loewner [12] using special features of the Poincaré upper half plane.

The assumption that $(p, q) \neq(1,0)$ is essential for the validity of Theorem 3.2. In fact, consider the function f on the quadric $x_{1}^{2}-x_{2}^{2}=-1$ defined by

$$
f\left(x_{1}, x_{2}\right)=\sinh ^{-1}\left(x_{1}\right) .
$$

The group $\mathbf{0}(1,1)$ is generated by the transformations

$$
\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\cosh t \sinh t \\
\sinh t \cosh t
\end{array}\right\}\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\},\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\pm x_{1} \\
-x_{2}
\end{array}\right\}
$$

It is easy prove that $\operatorname{dim}_{C}\left(V_{f}\right)=2$. Thus f is fundamental but is certainly not the restriction of a polynomial on \mathbf{R}^{2}.

References

[1]. Cartan, É., Sur la détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos. Rend. Circ. Mat. Palermo, 53 (1929), 217-252.
[2]. ——, Leçons sur la géométrie projective complexe. Gauthier-Villars, Paris, 1931.
[3]. Chevalley, C., Théorie des groupes de Lie, Vol. III. Hermann, Paris, 1955.
[4]. Harish-Chandra, Lie algebras and the Tannaka duality theorem. Ann. of Math., 51 (1950), 299-330.
[5]. ——, Differential operators on a semi-simple Lie algebra. Amer. J. Math., 79 (1957), 87-120.
[6]. Hecke, E., Über orthogonal invariante Integralgleichungen. Math. Ann., 78 (1918), 398-404.
[7]. Helgason, S., Differential operators on homogeneous spaces. Acta Math., 102 (1959), 239-299.
[8]. -_, Some remarks on the exponential mapping for an affine connection. Math. Scand., 9 (1961), 129-146.
[9]. -_, Some results on invariant theory. Bull. Amer. Math. Soc.. 68 (1962), 367-371.
[10]. ——, Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962.
[11]. Hochschild, G. \& Mostow, G. D., Representations and representative functions of Lie groups. Ann. of Math., 66 (1957), 495-542.
[11 a]. Kostant, B. Lie group representations on polynomial rings. Amer. J. Math. (to appear).
[12]. Loewner, C., On some transformation semigroups invariant under Euclidean and nonEuclidean isometries. J. Math. Mech., 8 (1959), 393-409.
[13]. Maass, H., Zur Theorie der harmonischen Formen. Math. Ann., 137 (1959), 142-149.
[14]. Mostow, G. W., Equivariant embeddings in Euclidean space. Ann. of Math., 65 (1957), 432-446.
[15]. Oniščrik, A. L., Complex hulls of homogeneous spaces. Soviet Mathematics, 1 (1960), 88-90.
[16]. Palais, R. S., Imbeddings of compact differentiable transformation groups in orthogonal representations. J. Math. Mech., 6 (1957), 673-678.
[17]. Weil, A., Variétés Kähleriennes. Hermann, Paris, 1958.
[18]. Zariski, O. \& Samuel, P., Commutative Algebra, Vol. II. Van Nostrand, Princeton, New Jersey, 1960.

[^0]
[^0]: Received Jan. 29, 1963

