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On a Euclidean space of even dimension we can introduce, by a choice of complex- 

valued coordinate functions, zl, ..., zn, the structure of complex n-space, CL We can then 

associate with each compact subset, X, of our space, its polynomial convex hull in C n, 

denoted hull(X). By definition, hull(X) is the set o/ all p in C n which satis/y the relation 

I/(p) I < max I I(x) I, 
x E X  

/or every polynomial, /(zl ..... zn). When X = h u l l ( X ) ,  we say that  X is polynomially convex 

in CL 

Our primary object of study here is the polynomial convex hull of X. However, we 

have found it very helpful to consider also, as an intermediary set, R-hull(X), the rational 

convex hull o/ X in C n. By definition, R-hull(X) consists o/ all p in C ~ such that 

I g(p) I max Ig(x) l, 
X E X  

/or every rational/unction,  g, which is analytic about X .  For our purposes, we often prefer 

the alternate description of R-hull(X), (1.1), as the set o /a l l  p in C n /or  wh ich / (p )  E/(X), 

]or every polynomial , / .  If X = R-hull(X), we say that  X is rationally convex in C n. Notice 

that  
X c R-hull(X) c hull(X). 

These hulls are compact, and both inclusions can be proper. 

Our aim is to understand what these hulls look like. In  what sense does X "surround" 

them in Cn? Consider first C 1, where the complete picture is well known. There, every 

compact X is rationally convex (obvious), and hull(X) is formed by adjoining to X all the 

bounded components of its complement (classical, see (1.3)). Thus, in C 1, rational convexity 

(1) Announced in [30]. This work was supported in part by the U.S. Army Research Office. 
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is no restriction at all and polynomial convexity is purely a topological matter. But, as we 

shall see, both these facts are very much "one-dimensional accidents". The general situa- 

tion is extremely complicated and our knowledge of it is only fragmentary. The purpose 

of this paper is to contribute some new fragments and to replace in its proper setting a 

beautiful but neglected piece by K. Oka (1.4). 

In Chapter 1 we present local descriptions of hull(X) and R-hull(X). These may be 

regarded as generalizations of the setup in C 1 in the following way. 

I n  C 1, i/  p Ehull(X) then every curve joining p to the 'point at in/inity'  crosses X .  There 

is a natural generalization to C n, (see (1.2)). Namely, in C ~, i / p  Ehull(X) then every curve o/ 

algebraic hypersur/aces, going through p to the "hyperplane at in/ inity",  crosses X .  The iocal 

version, (1.4), reads: I n  C ~, i/  a curve o/analyt ic  hypersur/aces, de/ined locally on some neig- 

borhood o~ hull(X), crosses hull(X) and leaves it, then it must also cross X .  

This local characterization of hull(X) was demonstrated by K. Oka in 1937 in [21]. 

Its proof, which we present in Chapter 1, draws on certain fundamental facts in the theory 

of several complex variables (see (A.3) and (A.8)). As a simple corollary of Oka's theorem 

we deduce H. Rossi's Local Maximum Modulus Principle, [23], (1.7), which asserts tha t  

i] Schu l l (X)  then Schul l (~S  tJ (S N X)), (where ~S denotes the topological boundary of 

S in hull(X)). Using the proof of Oka's theorem we also obtain, (1.8), a version of Rossi's 

Local Peak Point Theorem, [23, p. 6]. 

We then study in a similar way the local structure of R-hull(X). We first observe, 

(1.1'), that  in C ~, i/ p E R - h u l l ( X )  then every algebraic hypersur/ace through p meets X .  

The expected local version would say that  i/ an analytic hypersur/ace, which is de/ined 

locally on some neighborhood o/ R-hull(X), meets R-hull(X), then it meets X .  However, as 

example (1.11) shows, this is not always true. What  is needed is a topological restriction 

on R-huIl(X):namely, that  [I2(R-hull(X);Z)=O (~ech cohomology with integer coef- 

ficients.) In that  case, the above local description of R-hull(X) does obtain (see (1.9)) and, 

as a corollary (corresponding to the Local Maximum Modulus Principle), we find that  

i/  H2(R[hull(X);Z) =0 and S c  R-hull(X) then S c  R-hull(~S U (S n X)), (here ~S denotes 

the topological boundary of S in R-hull(X)). 

In Chapter 2 we turn to the problem of showing that,  under certain circumstances 

(closely related to rational convexity), there are topological conditions which insure 

polynomial convexity. Let us first point out that, for n > 1, polynomial convexity is de- 

finitely no longer a strictly topological property. In fact, the question of whether a given 

compact set X is polynomially convex may well depend on the choice of complex co- 

ordinate functions used to introduce the structure of C ~ on our space. For example, if 

C 2 is given by coordinates zl, z 2 then the circle (e t~ e-i~ 0 ~<0 ~<2:~, is polynomially convex 
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in C~; whereas, if we use instead zl, ~ as coordinates, then the polynomial convex hull of 

tha t  circle is the disk, Izll ~<1, zl=52. (Similarly, a set can be rationally convex in terms 

of one choice of coordinates, but  not another, (2.10).) 

Furthermore, there are compact cells, even arcs, which are not polynomially convex. 

(Examples were first given by J.  Wermer in [33] and [35].) Hence, a purely topological 

sufficient condition for a set to be polynomially convex in C ~ appears unattainable. How- 

ever, in our work we have found tha t  all the known non-polynomially convex cells are not 

even rationally convex (see, for example, [31]). Therefore, it is conceivable tha t  for ration- 

ally convex subsets of C ~ there are topological conditions which imply polynomial con- 

vexity. Let us say tha t  X is simply-coconnected if every non-vanishing continuous complex- 

valued function on X has a log. (Note tha t  any  contractible X is simply-coconnected.) 

Then the most general problem we pose is this. 

(*) Is  every rationally convex, simply-coconnected subset o/ C ~ necessarily poly- 

nomially convex? 

This is apparently a difficult question. An affirmative answer would include the 

special result that  every compact differentiable arc in C n is polynomially convex. (Wermer 

[34] has proved this for real analytic arcs and, recently, E. Bishop, on the basis of [9], 

has extended the proof to all continuously differentiable arcs.) Nevertheless, we have 

made some headway by  introducing a certain "generalized argument principle". And, in 

doing so, we have been able to settle a number of questions which had previously seemed 

unrelated. As one application of our argument principle we show tha t  i/ X is rationally 

convex and simply-coconnected then there is no one-dimensional analytic variety whose boundary 

lies entirely in X (see (2.7')). This suggests the difficulty involved in seeking a counter- 

example to (*). 

What  is our argument  principle? We say tha t  X enjoys the generalized argument prin- 

ciple (g.a.p.) provided that  every polynomial which has a log on X does not vanish at 

any point of hull(X). I t  is very easily seen, (2.2), tha t  whenever X c  Y, with X having the 

g.a.p, and Y simply-coconnected, then hull(X) ~ R-hull(Y). We use this to show 

(i) There are disjoint, contractible, polynomially convex sets, X and Y, in C a, such that 

/(X) intersects/(Y), ]or every polynomial,/. (2.8) 

(ii) There exist polynomially convex sets which cannot be approximated by analytic polyhedra 

in such a way that the corresponding ~ilov boundaries converge to the Silov boundary. (2.16) 

(iii) There is a rational polyhedron whose polynomial convex hull is not even an analytic 

polyhedron. (2.17) 

For (ii) and (iii) we use an example, (2.15), due to Bishop and Hoffman, of a compact 

set in C 2 which does not enjoy the g.a.p. Despite this example, there is a weak form of the 
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generalized a rgument  principle, (2.19), which holds for all compact  X in CL I t  states t h a t  

i / a  polynomial, ], has a log on X and X is open i n / - I ( / ( X ) )  N hull(X) then / does not vanish 

at any point o /hu l l (X) .  Our proof of this weak g.a.p, uses in an essential way  Oka's  local 

characterizat ion of huH(X), (1.4). 

The weak g.a.p, has several interesting applications. 

(iv) I / X  is simply-coconnected and i / there is a polynomial , / ,  such tha t / (X)  does not intersect 

/ ( h u l l ( X ) - X )  then X is polynomially convex. (2.20) 

(v) Let S 1 ..... S~_ 1 be compact subsets o] C 1, each the boundary o / the  unbounded component 

o / i t s  complement. Let /1  ..... /~-1 be n - 1 polynomials ( o / n  variables) in general position. 

I / X  is any rationally convex, simply-coconneeted subset o/ C n such that / t ( X ) c  S~ /or 

each i = 1 ..... n - 1, then X is polynomiaUy convex. (2.22) 

I n  particular,  (v) implies 

(vi) I /  X is contained in a simply-coconnected subset o / t he  n-torus, ]z~] =1, i = l  ..... n in  

C ~, then X ks polynomiaUy convex. (2.25) 

De/initions and background theory from several complex variables and Banach algebras 

m a y  be found in the appendix which follows Chapter  2. (References to the appendix are 

denoted,  (A, .).) 

A C K N O W L E D G M E N T S  

We were introduced to the concepts of polynomial and rational convexity while studying 
at M.I.T. with Professors K. Hoffman and I. M. Singer. We thank them for all their encourage- 
ment and advice during the preparation of our doctoral thesis [32], which contains much of 
Chapter 1. The idea of considering a generalized argument principle was motivated by an 
examination of the results of J. Wermer [33], [34], [35], and we benefited from conversations 
with him about our ideas. Communications from E. Bishop were also very helpful. Example 
(2.15) and the proof of the lemma in (2.22) are due to him. Finally, we wish to express our debt 
to the fundamental work of K. Oka, especially [20] and [21]. 

1. Local descriptions of the hulls  

We open this chapter  with some elementary global descriptions of R-hull(X) and  

huH(X) which establish our point  of view. 

(1.1) R-hull(X) = {pECn:/ (p)  E l ( X ) , / o r  all polynomials , /} .  

Proo/. I f / ( p )  ~/(X),  then r = ( / - / ( p ) ) - I  is a rat ional  function, analytic about  X,  and  

= r(p) > max  I r(x) ]. 
X E X  

Thus, p q R-hull(X). 
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Conversely, if p ~ R-hull(X), there is a rational function, r, analytic about  X, such tha t  

1 = r ( p )  > m a x  L r (x )  I . 
xeX 

Express r a s / / g  where / and g are relatively prime polynomials. Let  h = / - g .  Then h(p)= 

O~h(X).  Q . E . D .  

In  terms of algebraic hypcrsurfaees, (1.1) says 

(1.1') A point p in C n belongs to R-hull(X) i / and  only i] every algebraic hypersur/ace 

through p meets X.  

The corresponding description of hull(X) involves curves of algebraic hypersurfaces. 

DEFINITION. Let F be a continuous function on [s ,~) •  n which defines, for 

each t E [s, ~) ,  a non-constant polynomial, Ft. Let  Ht  be the zero-set of Ft  in C a. Then, 

the correspondence, t-->Ht, which we denote simply by (Ht), is called a curve o/algebraic 

hypersur[aces in CL If  the distance from H t to the origin tends to infinity as t--> co, we 

say tha t  (Ht) joins the initial hypersur/aee to the hyperplane at infinity. We say tha t  (Ht) 

passes through the set, X ,  if some H t intersects X. 

(1.2) hul l (X)= {pECk: every curve o/ algebraic hypersur/aces, which passes through p 

and joins the initial hypersur/aee to the hyperplane at infinity, passes through X}.  

Proo]. One direction is immediate. If  p ~ hull(X), there is a polynomial, ], with/(p)  = 1 

and I]1 <1 on X. Define F~(u)=](u)-t  on [1,c~) • a and let H t be the zero-set of F t 

in CL Then (H~) will be the required curve of algebraic hypersuffaces. 

On the other hand, suppose p Ehull(X) and (Ht) is a curve of algebraic hypersurfaces 

passing through p, missing X, and joining the initial hypersurface to the hyperplane a t  

infinity. By compactness of hull(X), there is a last point, r, in [s, ~ )  such tha t  H r intersects 

hull(X). Let  T be the open interval, (r, ~) ,  and set 

To=(tET:  1/F t is a uniform limit of polynomials on hull(X)}. We shall show tha t  

To= T. 

Firstly, T o is not empty.  For, if t is large enough, H t lies beyond a polycylinder which 

contains hull(X). Then, 1/Ft is analytic on the polycylinder, so it has a power series ex- 

pansion which converges uniformly on hull(X). 

Next,  T o is closed in T. For, just observe tha t  as t~--->t o in To, 1/F~ converges uni- 

formly to 1~Ft, on hull(X). 

Finally, T o is open in T. For, choose t o in T o . If  t is close enough to t o , then 

I 1 - Ft/Ft~ I < 1 on hull(X). In  tha t  case, 
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with the series converging uniformly on hull(X). Since 1~Ft, is a uniform limit of poly- 

nomials on hull(X), so is l /Ft .  

Since T is connected, it mus t  be tha t  T O = T. 

I f  q EH r N hull(X), then [ 1/.Ft(q) [ --> ~ as t-->r. Since no Ht  intersects X,  1IF is bounded 

on, say, Jr, r + 1] • X. Hence, there is a t in T for which 

But  T=To ,  so there is also a polynomial  with this property,  contradict ing qEhull(X). 

Q.E.D. 

As a corollary of (1.2) we obtain the usual description of hull(X) in C 1. 

(1.3) I n  C 1, hull(X) = {p E Cl: every curve joining p to the "point at infinity" crosses X}.  

Consequently, the set X is polynomially convex in C 1 i /and  only i / C  1 - X  is connected. 

For, in C 1, an algebraic hypersurface is a finite set of points. (We remark tha t  our 

proof of (1.2) is merely an appropriate  translat ion in C ~ of the s tandard  proof of (1.3) 

(which is essentially the proof of Runge ' s  Theorem [26]).) 

We are now ready to present Oka's  local version of (1.2). This requires both  a solution 

of a Cousin I problem, (A.8), and the Approximat ion  Theorem, (A.4), as a way  of passing, 

in two stages, f rom local to global information. 

DEFI:NITIO:N. Let  U~O,  be open subsets of C ~, and let [r, s] be a closed interval  

on the real line (considered as a subset of C1). Let  F be a continuous function on [r, s] • U 

which defines, for each t in [r, s], a non-constant  analytic function, Ft, on U. Set H t = 

{uE U: Ft(u)=O }. I f  each Ht is closed in O, we say tha t  the correspondence, t-->Ht, is a 

curve o/analytic hypersur/aces in O. We denote it, simply, by  (Ht). 

(1.4) 0KA'S CHARAKTERIZATIO:N T~wOREM. Let 0 be a neighborhood o/ hull(X) 

in CL I /  (Ht) is a curve o/ analytic hypersur/aces in 0 such that Hr intersects hull(X), but Hs 

does not, then some H~ must intersect X .  

Proo/. Let  (H~) be defined by  the function, F ,  on [r, s] • U. We shall first establish 

the theorem in the case when F extends to be analytic on T • U, where T is some neigh- 

borhood of Jr, s] in C 1. This was the case considered by  0 k a  in [21] and it suffices for all 

our applications. 

B y  shrinking, we can arrange tha t  0 and T are both open polynomial  polyhedra and 

tha t  V~ = {(t, u) E T • U : F(u, t) = 0} is closed in T • O. Cover T • 0 by  the open sets T • U 

and (T • O) - VF, and assign the meromorphic  functions, 1 /F  on T • U and 0 on (T • O) - VF. 
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Since T x 0 is again an open polynomial polyhedron, we can apply (A.8)to obtain a 

meromorphic function, G, on all of T • O, such that  G is analytic off Vp and, on T • U, 

G = 1IF + E, where E is analytic on T • U. 

If no Ht intersects X, then G is continuous, hence, bounded, on the compact set 

[r, s] • X. Let c be the last point in [r, s] such that  Hc N hull(X) 4 = 0, and choose a point, 

p, in this intersection. From the representation of G on T • U, we see that  

Hence, for some t 1 >c, 

[ G(tl, P) l > max I G(tl, x) l- 
x ~ X  

Since t 1 >c, G(t~, z) is analytic about bull(X); so, by (A.4), there must also be a polynomial, 

g, sucb that  
[g(P) I > max Ig(x) l. 

x ~ X  

But this is absurd, because pEhull(X). Therefore, some Ht must intersect X, and we are 

done. 

A word about the general case. One can apply the Weierstrass Approximation Theorem 

[17] on [r, s] to obtain a sequence of analytic functions, F~, on C 1 • U, which converges 

uniformly to F on compact subsets of [r, s] • U, and then deduce the general result from 

the case already proved. Or, one may appeal to [19, Theorem 1] for a solution of a Cousin I 

problem on O with data (and solution) depending continuously on the parameter t E [r, s], 

and then repeat the above argument. 

The following corollary is conceptually clear, but  the details are a bit annoying. 

(1.5) COROLLARY. I /  S is a compact subset o/ hull(X), and i/  / is analytic on a 

neighborhood o / S ,  then 

]/(s) [ ~< max { ]/(Y) I : Y e 8S U (S N X)}, 

/or all s eS ,  (where ~ = ~hun(x)). (See (A.5).) 

Proo/. Suppose, on the contrary, that  / is analytic about S and there is an s* in 

(~S U (S N X)), for which 

l =  /(s*)= max  l/l  > max I / I .  (**) 
S 0S u (S n X) 

Choose a compact subset, S, of C n, with interior, S0, such that  S f) hun(X)=Z,  s0 n 

hull(X) = S - ~ S ,  and / is analytic on a neighborhood of S. Then / is analytic and non- 

constant on the component of S0 containing s*; so/(S0) contains a neighborhood of 1 =/(s*) 

in CL Hence, for a sufficiently small A>0,  /(S0) contains the interval [1, l + A ] .  On 

[1, 1 +A] x S0, define 

18 - 632918  Ac ta  mathemat ica .  109.  I m p r i m 6  le 18 j u i n  1963.  
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F(t, u)=flu)--t ,  

and set H~t = {u eSo: F{t, u) =0). 

Express hull(X) as the intersection of a descending chain of relatively compact open 

sets, 0~, such that  O~ ~ ()~+1. 

We claim that,  if i is large enough, then every Ht ~ N O~ is closed in 0~. Suppose not. 

Then, for each i, there exists t iE[l,  1 +A] and a point, p~, which belongs to the closure of 

H~ N O~ in 0~, but  not to H~'~. Then p~ belongs to the compact set, S, but not to its interior, 

S0, because Ht ~ is closed in S0. Also, by continuity,/(p~) =t~. By passing to subsequences, 

we can arrange that  ti-->t*E[1, 1 +A] and pi-->p*ES-So. Then 

/(p *) = t* >~ 1. 

Also, p* E f'l 0~ = hull(X). 
i 

Therefore, p* ehull(X) n ( S -  S0) = aS and/(p*) >~ 1, 

contradicting (**). Hence, for i large enough, every H~t N Oi is closed in 0~. Choose i = i  0 

that  large, and set 0 = 0~,. Let  U be the connected component of S0 N 0 which contains 

s* and set Ht=H~t N U for each rE[l,  1 +A]. Then (Ht) is a curve of analytic hypersurfaces 

in 0 such that  
s* EH1 0 hull(X) ~=~. 

Since [/[ ~<1 on S, and every H t N hul l (X)cS,  it follows that  

Ht N hull(X)=~ for t>  1. 

Therefore, by (1.4), Hx N X # ~ ,  so there exists xES N X such that  / ( x )= l .  But  this con- 

tradicts (**). Q.E.D. 

I t  will be useful to improve (1.5) to 

(1.6) COROLLARY. With S and / as in (1.5), 

~ , / ( 8 ) ~ / ( ~ s  u (s n x)). 

The proof is the same as the first two sentences of the proof of (A.6) if we replace " X "  

by "aS U (S N X)",  "hull(X)" by "S",  and then appeal to (1.5). 

Corollary {1.5) also yields, for the special case when / is a polynomial, the following 

theorem of H. Rossi [23]. 

(1.7) LOCAL MAXIMU~ MODULUS PRINCIPLE. I/ S~hul l (X) ,  then S ~  

hull (aS U (S N X)), {where ~ = ~hun(x))- 
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Next, we shall show how a version of Rossi's Local Peak Point Theorem [23, Theorem 

4.1], can easily be obtained using the methods of proof of (1.4} and (1.5) and Bishop's 

.description of peak points, (A.25). 

DEFINITION. A point p6hull(X) is a local peak point/or P(X), (the set o/all uni/orm 

limits o/polynomials on X) if there is a neighborhood, U, of p in hull(X) and a function 

] eP(X)  such that  ]/(p)[ > I/(u) l for all u e U -  {p). 

(1.8) LOCAL PEAK POINT THEOREM. Every local peak point /or  P(X)  is actually 

a peak point/or P(X).  

Proo/. Let p be a local peak point for P(X).  Then there is a neighborhood, U, of p 

:in hull(X) and a n / E P ( X )  such that  1 =/(p) > I/(u)], for all uE U -  {p}. Let  F map hull(X) 

into C n+l by 
F (yl . . . . .  Y~) = (Yl ..... Y~, /(Yl ..... Y,) )" 

From the fact that  hull(X) is the maximal ideal space of P(X),  (A.30), it follows easily that  

F(hull(X)) =hull(F(X)). 

Therefore, it is no loss of generality to assume that  hul l (X)c  C ~+~ and t h a t / = z ~ +  1, the 

(n + 1 ) - s t  coordinate function. By (A.25), it suffices to show that  for each neighborhood, 

N,  of p in hull(X), there is a geP(X)  such that  Igl ~<1 on hull(X), ]g] <�88 on h u l l ( X ) - N ,  

and Ig(P) l > ~" By (A.4), it suffices to find such a g which is analytic about hull(X). 
Proceeding as in the proof of (1.5) we can obtain the following setup. There is an 

open polynomial polyhedron, O, containing hull{X), an open subset, U0, such that  p E UQ N 

hul l (X)c  U, a number A>0,  and a polynomial polyhedral neighborhood, T, of [1, 1 +A] 

in C ~ such that,  for each t E T, 
Ht= {ue U0:  zn+ 1-t=O} 

:is closed in O. 

Following the proof of (1.4)i we solve a Cousin I problem on T • 0 and obtain G, 

meromorphic on T • 0, analytic off T • U0, with a representation, 

G(t, z) = (Zn+l - t) -1 + E(t, z) on T • U0, 

where E is analytic on T • U 0. 

Choose a neighborhood, N, of p in hull(X) such that  N c  U 0 N hull(X). Since the pole- 

:set of G intersects [1, 1 +A] )<hull(X) only in {(1, p)}, ]G] is bounded on [1, 1 +A] • 

(hu l l (X)-N) ,  and G(t, z) is analytic about hull(X) for each t > l .  Also, maxlG(t, z)l on 

ihull(X) tends to infinity as t ~ 1. Hence, there is a (~, 0<(~<A, such that,  for each tE 

(1, 1 +~], IG(t, z)] attains its maximum over hull(X) only on N. Also, there is a K > 0  such 

that  I E i < K on [1, ~] • 
18"  -- 632918 
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Consider the ratio, Rt = [ G(t, p) I /max I a(t, z) I, 
hull(X) 

for each rE(l,  1 +~]. Then Rt~<l and 

I ( 1 - t ) - * + E ( t , P ) [  >~ ( t - l )  - * - g  
R t -  max ] - r  ~E(t ,  z)] ~ max ] (zn+, - t) -1 ] + K" 

However, on N, ]zn+i]~<l and Z,+l=l  precisely at p. Therefore, for re ( l ,  1+~],  

max ]z~+ 1 - t [  -1 = ( t - l )  -l. (Also, for t > l  close enough to 1, we have ( t - 1 ) - l > K . )  So, 

l >~ Rt> (t- l) -I-K 
(t __ 1)_1 _~_ ~ . - -~  1 a s  t +  1. 

Hence, for a t E (1, 1 + ~] sufficiently close to 1, if we define 

g(z) = G(t, z) /max ]G(t, z)] on O, 
hull(X) 

then g will be analytic on 0 and we will have [g[ ~<1 on hull(X), Ig[ <~* on h u l l ( X ) - N ,  

and Ig(P)] >~" Therefore, (by (A.25) and (A.4)), p is a peak point for P(X).  q.E.D. 

Comment. Rossi's original proofs of (1.4) and (1.8) involve the solution of a Cousin II  

problem rather than a Cousin I problem. This is a somewhat more difficult approach, bu t  

he obtains a stronger result than (1.8) (see [23, Theorem 4.1]). 

For our local description of R-hull(X), (1.9), the solution of a Cousin I I  problem seems 

essential. 

(1.9) T~EOREM. Let 0 be a neighborhood o/ R-hull(X)in C ~. If/t2(R-hull(X); Z ) = 0  

and H is an analytic subvariety o / 0  which is a hypersur/ace and which intersects R-hull(X), 

then H also intersects X. 

Proo/. By (A.3), we can express R-hull(X) as the intersection of a descending chain 

of rational polyhedra, 0~, with O~ ~ (~+1. By (A.22), for i sufficiently large, there is an h 

analytic on O~ such that  
H f] O, = {ueO~:h(u)=0). 

If H f ) X = o ,  then minx~x]h(x)[ >0, although h (p )=0  for any p E H n R - h n l l ( X ) .  By 

(A.4), there is also a rational function r, analytic about R-hull(X) such that  0 ~< I r(p) I < 

minx~x]r(x)l. But then 1/r is a rational function analytic about X such that  tl/r(p)[ > 

max,~ x I1/r(x)[, contradicting p E R-hull(X). Q.E.D. 

Corresponding to the Local Maximum Modulus Principle, (1.7), we have 

(1.10) COaOLLAlCY. _// H2(R-hull(X); Z ) = 0  and S~R-hull(X),  then S ~  

R-hull (OS U (S N X)) (where ~ = 0n-hull(X)). 
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Proo/. If p E S - R - h u l l ( a S U ( S N X ) ) ,  there is a polynomial /, such that  0= / (p )~  

/(~S U (S N X)), (by (1.1)). Let H r =  {uEC~:/(u)=0}. Express R-hull(X) as the intersection 

of a descending chain of relatively compact open sets, Ok, such that  Oi ~ ()i+l, and let H i 

be the connected component of H r N O~ through p. Then H~ is an analytic hypersurface 

which is a subvariety of O k. The H~ form a descending chain of analytic varieties whose 

intersection, H~,  is the connected component of H s N hull(X) through p. Since p E S and 

Hfn ~S=O, HoecS .  Since HsN (S N X )=o ,  we actually have H ~ = S - ( S N X ) .  By com- 

pactness of X, there must then be an i = i  o for which H~~ N X = o .  If we now set 0=0~~ 

and H=H~~ and apply (1.9), we arrive at a contradiction. Q.E.D. 

Let  us now demonstrate, by an example, that  the conclusions of (1.9) and (1.10) do 

not necessarily hold without the restriction, H2(R-hull(X); Z)=O. We shall use one of 

Wermer's non-polynomially convex cells and an elementary result from Chapter 2. 

(1.11) EXAmPLe. There exists a compact set, X ,  in C a and a compact subset, S, o/ 

R-hu ll(X) such that R-hull(~S U (S N X)) ~b S (where ~ = ~R-hul1(X)). 

Demonstration. Let B be the bicylinder [z [<  1, ]w[<  1 in C ~. Map C ~ into C a by 

O(z, w)=(z, zw, w(zw-1)) ,  

and set X =~P(B). Let V be the variety in C a defined by z 2 = 1, za =0  and let D be the disk, 

[z~]~<l, on V. Then X N V is the circle, ]z 1]=1  on V, so hull(Z N V)=D.  Since (I) is a 

one-one mapping, X is certainly simply-coconnected. Therefore, by (2.6), R-hull(X) 

X U D. But Wermer shows in [35] that  hull(X) = X  U D. Hence, R-hull(X) = X  U D. Let  

S = {u E D: I z~(u) I ~< �89 

Then S N X = o ,  OS is the circle, IZll =�89 on D, and R-hull(OS)=oS~oS. 

We conclude this chapter by mentioning so'me simple applications of our local de- 

scriptions, (1.4), 1.9), to hulls which lie on one-dimensional analytic varieties. 

(1.12) Let V be a purely one-dimensional analytic variety in C ~ and suppose hull(X)= V. 

Then 

(i) X is rationally convex. 

(ii) Ovhull(X)= X. 

(iii) h u l l ( X ) - X  is the union o/al l  components o/ V - X  whose closures (in V) are compact. 

These facts are generally known. They can be derived, for example, from Behnke's 

generalization of Runge's Theorem to an open Riemann surface (see [3], [4]). However, 

they also follow readily from our local descriptions of the hulls. Part  (ii) of (1.12) will be 
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used in Chapter 2, so we present a short proof of it. (Note, by the way, that  (iii) follows 

directly from (ii) and the maximum modulus principle on an analytic variety.) 

Proo/o] (iii). The singular points of V are isolated andl by (A.7), every isolated point 

of hull(X) must belong to X. Therefore, we need only show that  every regular point, p, 

in ~vhull(X) is in X. For a sufficiently small neighborhood, U, of p in V there is a co- 

ordinate function,/ ,  analytic on a neighborhood of [7, and mapping U homeomorphieally 

onto an open set in C 1. Since pfavhul l (X) ,  ](p)f~c~/(gTNhull(X)). Therefore, by (1.5), 

tip) f/(3(7) or/(p) ,:/(X). That means, p f 3 0 or p f X. Hence, p fiX. Q.E.D. 

2. The role of the arg~lment principle 

Let X be a compact set in C". 

DEFISITION. If r  X--->C 1 -- {0} is of the form C =exp(q;) for some map ~F: X--->C 1 

we say that  log(C) ks defined and that q; ks a branch o/log(C). 

One basic property of "log" is the following. 

(2.1) Let X be a compact subset o] an analytic variety and let / be analytic on a neigh. 

borhood o /X .  I/log(/[ x) is defined, then there exists a neighborhood, U, o / X  such that log(/I v) 

is de/ined and analytic. 

The proof is elementary, using the fact that  if/(x) �9 0 then, for some neighborhood 

U~ of x, log(/I v~ ) is defined. 

DEFINITION. X ks simply.coconnected if, for every map (P: X--->C 1 - {0} ,  log(C) is 

defined. 

Remark. X is simply-coconnected if and only if /~I(X;Z)=0.  Note that  X can be 

simply-connected (~h(X)=0) without being simply-coconnected (and conversely). How- 

ever, if X is contractible, it is certainly simply-coconnected. 

�9 DEFINITION. X enjoys the generalized argument principle (g.a.p.) provided that, if 

/ is any polynomial such that  log(/] x) is defined, then 0 $/(hull(X)). 

The relevance of the generalized argument principle lies in the following elementary 

fact. 

(2.2) I /  X c  Y with X enjoying the g.a.p, and Y simply-coconnected, then hull(X)c 

R-hull(Y). 

Proo/. If p ~ R-hull(Y), then by (1.1) there is a polynomial / such that  0 =](p)q/(Y).  

Since Y is simply-coconnected, log(/Ir ) is defined. Since X c  Y, log{/]x) is also defined. 

But X enjoys the g.a.p., so 0$/(hull(X)). Hence, p Chull(X). Q.E.D. 
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(2.3) COROLLARY. I] X i8 simply-coconnected and enjoys the g.a.p, then R-hull(X)= 

hull(X). 

Now we bring in the classical argument principle. 

(2.4) Let X be a compact subset o / a  purely one-dimensional analytic variety V in C a. 

I1 h is analytic on a neighborhood o / X  and log(hi ox) is delined (~ = ~v), then 0 ~h(X). 

Proo/. Consider first the case where V=G,  a Riemann surface. By (2.1) there is a 

neighborhood of ~X on which log(h) is defined. Therefore, for any p S X - a X ,  we can 

find a compact set Y such that  p E Y -  ~ Y, log(hl0r) is defined, and ~ Y is a finite system 

of piecewise smooth Jordan curves. Then (if we suitably orient the components of ~ Y), 

the classical argument principle [29, p. 176], implies for the number of zeros of h in Y: 

1 fo  h , / h = 2 ~ i f o  # (zeros of h in Y) = ~ r rd(log (h)) = 0. 

Therefore, h(p) # 0 for all p e X  - ~X. And since log(hiox) is defined, also 0 $h(X). 

Now, if V is any purely one-dimensional analytic variety there is a Riemann surface 

G and a proper analytic map a from G onto V. (For example, let G be the normalization 

of V. See [24, p. 443].) Then a-l(X) is compact and 

If log(hlox) is defined then 

~aG-l(X) c a-~(aX). 

log (hoa J,-,(ox)) = log(h l ox)oa 

is also defined. Therefore, log (hotrJoa~-,(x)) 

is defined, so by the first part  of our proof, 0 r  Q.E.D. 

DEFINITIOn.  An analytic variety V in C a is a Runge variety if hul l (X)c  V whenever 

X c V .  

(2.5) T~EOREM. I /  V is a purely one-dimensional Runge variety in C a then every 

compact X c  V satisfies the g.a.p. 

Proo/. Since V is Runge, hul l (X)c  V. Since V is one-dimensional, (1.12) (ii) applies, 

so ~vhull(X)c X. The theorem now follows immediately from (2.4). 

Comment. By using a theorem of Wermer [34, Theorem 1.3], (generalized by Bishop 

in [9]) one can show, actually, 

I /  X is a compact subset o/ any one-dimensional analytic variety in C a then X 

satisfies the g.a.p. ('~ ) 
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However, the proof is quite difficult, involving the construction of a one-dimensional 

analytic variety containing hull(X). We shall not use (~) in this paper. 

A direct consequence of (2.2) and (2.5) is 

{2.6) THEORW~. 1/ X is simply.coconnected in Cn and V is a one-dimensional Runge 

variety with X N V compact then hull(X N V)c  R-hull(X). 

There are a number of interesting elementary applications of (2.6). 

DEFINITION. X is polynomially convex in dimension one if, for every one-dimensional 

(Runge) variety V such that  X N V is compact, X (/V is polynomially convex. 

(2.7) COROLLARY. Every simply-coconnected rationally convex set is polynvmiaUy 

convex in dimension one. 

Actually, by combining (2.2) and (2.4) directly, we can make a stronger assertion. Namely, 

(2.7') I / X  is rationally convex and simply-coconnected then there is no one-dimensional 

analytic variety V whose "boundary", V - V, lies entirely in X.  

From this it follows directly that  Wermer's non-polynomially convex cells [33], [35], are 

not even rationally convex. 

We next  apply (2.6) to answer a question of E. Bishop. Can two disjoint polynomially 

convex sets always be separated by the modulus of a polynomial? The answer is "no". 

In fact 

(2.8) There exist S and T, disjoint polynomially convex subsets o/ C 3 such that /(S) 

intersects ]( T) /or every polynomial, ]. 

Remark. To demonstrate (2.8) it suffices to verify 

(2.9) There exist S and T disjoint connected polynomially convex subsets o/ C a, such 

that S i T is not rationally convex. 

For, if S IJ T is not rationally convex, then, by (A.7) (iv), R-hull(S 0 T) is connected. 

Therefore, for any polynomial, ] , /(R-hull(S t9 T)) is connected. But, by (1.1), 

](R-hull(S U T)) =/(S U T) =/(S) U/(T). 

Hence, [(S) N/(T) :~ o. 

We shall now settle (2.9). (Note, however, that  in the example we use, it is apparent, 

without appeal to (A.7) (iv), that  some component of R-hull(S tJ T) intersects both S and 

T; so that  S and T cannot be separated by any polynomial,/ .)  
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Proo/ o/ (2.9). With  coordinates z, w, t on C 3, set 

S ={(z, w, t): [z] ~<1, ]w[ ~<1, t=0}  and 

T={(x, w, t): (xw-1)(t-l)=O, Ixl <2, Iwl <~, it] < l } .  

Then SN T = o ;  for t = 0  and ]z] ~<1 on S, while on TN {t=0}, Iz] =2. Also S and T are 

certainly polynomially convex. In fact, each is a polynomial polyhedron. Furthermore, S 

and T are simply-coconnected (in fact, contractible). For S is just a bicylinder (product of 

disks); and T = T 1 U T2, where 

Tl={(z ,w, t ) :  xw=l ,  Izl =2, I t141} 

={(2e '~ �89 -'~ t): 0<0  <2~, Itl < l } ,  

and T2= {(z, w, t): [z I <2, ]w I ~<�89 t = l } .  

Then we can contract T 1 onto 

T 1 N T2={(2e ~~ �89 -~~ 1): 0 <0 ~<2z}c T2, 

and then contract the bicylinder, T~, to a point. 

Since S and T are disjoint, compact, simply-coconnected sets, S U T is also simply- 

coconnected. Let  
v =  {(x, w, t): xw=l ,  t=0}.  

(SU T)N V={vEV: Ix(v)] =1 or Ix(v)] =2}. 

hull((S LJ T) N V) = {v E V: 1 ~< Ix(v)] <~ 2}. 

R-hull(StJ T ) ~ S U  T U hulll(S U T)N V)_~SU T. q.E.D. 

In the same line, we have 

(2.10) There is a compact set, X ,  in C 2 which is polynomially convex with respect to the 

coordinate system z D 53; but which is not even ,rationally convex with respect to zl, z~. 

Namely, set X = X  1 U X2, 

where X 1 = {(z 1, z2): IzlI <2, z~-4~2 =0  } 

and X 2 =  {(Zl, z2): [zl[ <1, ZI--Z2=0}.  

We leave it to the reader to apply (2.6) to verify our assertion. 

Now we are going to use (2.5) to show that  certain nice X do satisfy the generalized 

argument principle. Firstly, we have 
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(2.11) T ~ O R E M .  I /  hull(X) is an analytic polyhedron in C n, then X satisfies the 

generalized argument principle. 

Proo/. Express the analytic polyhedron, hull(X), as 

{ueV:  I/,(u)l <k~, i= l , . . . , t } ,  

where U is an open polynomial polyhedron,/1 ..... /t are analytic on U, and the k~ are non- 

negative constants. Let h be a polynomial and let 

H = {ue  U: h(u) =0}. 

LEMMA. I /  H N X =o, but H N hull(X) =~a, there exists VI, a purely one.dimensional 

analytic subvariety o/ U, such that H fl hun(X N V1) =b o. 

Proof. For each yEHNhul l (X) ,  define #(y)=the number  of iE{1 .... ,t} for which 

I/~(y) I = ks. Choose p e H  n hull(X) such that  #(p) is maximal. By renumbering, we can 

arrange that  I/i(p) I =k ,  if and only if i<#(p).  If  #(p)>0,  define 

v =  {ue u:/,(u~-/,(p)=O, i = l  ..... #(p)}. 

I f  #(p)=0,  define V = U. 

Then, by (A.27) and (A.4), V N hull(X) is a maximum set for (P(X). Therefore, by  (A.31), 

V N hull(X) =hul l(X N V). 

Let  V 1 be the union of all irreducible branches of V which contain p. We shah show 

tha t  dim(Vi) = 1. 

Firstly, if d im(Vi )=0  then p is isolated in V and, therefore, in hun(X fi V). By  

(A.7), p must  be in X N V. But  p E H  and H n x = a .  Contradiction. 

Next,  suppose some irreducible branch, V~I, of V 1, has dimension ~> 2. Then, by  (A.17), 

every irreducible branch of V ~ N H has dimension /> 1. Let W be the union of all irreducible 

branches of V ~ N H which contain p. Then W is closed in V, it is connected, and, by  (A.18), 

it is not compact. Therefore, W must  intersect Ovhull(X N V) at  some point q (which is 

not isolated in V). Since 

h u l l ( i  N V) = V N hull(X) = (vE V: I/,(v) I <~]c,, i =#(p) + 1 ..... t), 

there must  be some i 0 E (#(p) + 1 ..... t} for which I/t,(q)[ = k~~ In  tha t  case, #(q) >~#(p) + 1, 

contradicting our choice of p. 

Hence, V 1 is purely one-dimensional. To complete the proof of the lemma we shall 

show tha t  p E H  N hun(X n V1). If  V =  111 we are done (because p E H  N hull(X N V)). I f  

V 4 V 1 let V~ be the union of all irreducible branches of V which are not contained in V 1. 
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Then V =  V 1 U V 2 and pE V1-V2. Hence, by  (A.19), there exists / analytic on U such 

tha t / (p )  = 1 and / I v~ = 0. 

If  p ~ hull(X N V1), there is a polynomial, g, such tha t  g(p) = 1 and I 9 ] < 1 on X N V1. 

Since 

X n V = (X N V1) U (X n V~), 

if we choose a large enough positive integer, r, we will have (grl)(p) = 1 while ]g~/] < 1 on 

X N V. But  this contradicts the fact tha t  p E hull(X N V), (because grlEP(X N V), by 

(A.4)). Therefore, p E hull(X N V1). Since p E H, the lemma is established. 

To prove the theorem, (2.11), observe tha t  if log(h i x) is defined, then H N X =o. We 

have to show that,  also, H N hul l (X)=s .  (That is, 0~h(hull(X)).) But  if H N hull(X) #o ,  

then there is a V1 as in the lemma. However, log(hlx,v, ) is also defined; so, by (2.5) 

and (A.21), 0r N V1)). That  is, H N hull(X fi V1) =o; contradicting the lemma. 

Therefore, H N hull(X) =o, and we are done. q.E.D. 

We want to show that  (2.11) persists in the limit. This is made precise in (2.13) below. 

The compact subsets of C" form a metric space, X, by  defining, for X and Y, compact 

subsets of C ~, 

distance (X, Y) = max min Ix - Y l + max rain l Y - x ]. 
x E X  Y E Y  y E Y  x E X  

Moreover, for any Z E~,  {X E~: X c Z} is compact in the metric topology (see [15]). I f  a 

sequence, X~, of compact subsets of C n converges to a compact set, X, in this topology, we 

write X~-->X. 

The following result is elementary. 

(2.12) Let Xi  be a sequence o/ compact subsets o/ C n, each o/which satisfies the g.a.p. 

I /  X~--~X and hull(Xi)-->Y then, /or every polynomial, h, such that log(hl~ ) is defined, 

0 (~h(Y). In  particular, i/hull(X~)-->hull(X), then X satisfies the g.a.p. 

Proo/. Choose y E Y and a sequence of points yt Ehull(Xt), such tha t  yc-+y. For each 

i, let T~ be the motion of C n defined by  T~(p) =p + y - y ~  (coordinatewise addition). Observe 

that ,  for each i, yE T~(hull(Xl)) and tha t  

T~(hull(X~)) = hull(T~(X~)). 

Moreover, we still have T~(Xi)-->X and each Ti(X~) satisfies the g.a.p. (This is very easy 

to see.) By (2.1), if h is a polynomial such tha t  log(h i x) is defined, then, for i large enough, 

log(h I T~(X~)) is defined. But  we have seen tha t  y Ehull(Tt(Xi) ) and each T~(X~) satisfies 

the g.a.p. Therefore, h(y) # 0; for all y E Y. Q.E.D. 
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(2.13) COROLLARY. Let X~-->X and hull(X~)-->hull(X), with each hull(X~) an analytic 

polyhedron. Then X satisfies the 9.a.p. Consequently, i/ X is also simply.coconnected, then 

hull(X) = R-hull(X). 

Proo/. The first assertion follows directly from (2.11) and (2.12); the second, from 

these and (2.3). Q.E.D. 

Of course, by (A.2), for any compact, X, there are sequences hull(Xi)-->hull(X), 

where each hull(Xi) is an analytic (in fact, polynomial) polyhedron. Also, it is easily seen 

that, under these circumstances, the limit set of the X~ must contain X. The problem is 

then the following. 

(2.14) QUESTION. I] X is a compact subset o/ C ~ must there exist a sequence o/analytic 

polyhedra o / the /orm hull(X~) with hull(X~)-->hull(X) and X~--> X ? 

If the answer were "yes" then every X would satisfy the g.a.p. (by (2.13)). However, 

(2.15) (Bishop-Ho//man). There exists a compact set, E, in C 2 which does not satis/y 

the g.a.p. In /act ,  log(z 11E) is defined, although z 1 vanishes at a point o/hull(E).  

Demonstration. (Such an example, in some C ~, was first constructed by K. Hoffman 

using [27]. Later, E. Bishop found the following very simple example in C2.) 

Let E = E 1 U E2, 

where E1 = ((e '0, z2): 0~0  <:~, ]z21 =1} 

and E2 = {(e i~ 0): ~ ~< 0 ~< 2zt}. 

Notice that  log(zll~) is defined for i=1 ,  2 (because zl(E~) is an arc in C 1 -  {0}). Since E1 

and E 2 are compact and disjoint, also log(z I I~) is defined. However, 

hull(E) =hull(E 1 t) E2) =hull({(e ~~ z~): 0 ~<0 ~<z~, ]z 2 ] ~< 1} U {(e '~ 0): ~ ~<0 ~<2z)}) 

Dhull({(e i~ 0): 0~<0~<2z}) = {(Z1, 0): [2:1[ <1). 

Therefore, (0, 0) E hull(E), at  which point z 1 certainly vanishes. Q.E.D. 

(2.16) COROLLARY. The answer to Question (2.14) is "no". 

Proo/. By (2.13) and (2.15). 

Bishop's example, together with (2.11), also yields 

(2.17) EXAMPLE. There exists a rational polyhedron, R, in C 2 such that hull(R) is 

not an analytic polyhedron. 
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Demonstration. Consider E = E  1 U E 2 as in (2.15). Evidently E 1 and E~ are both con- 

nected and rationally convex. However, 

z2(R-hull(E 1 U E2) ) =z2(E i )  U z2(E2) 

is not connected, because Iz2] =1 on E 1 while z2is.~=0. Hence, R-hul l (E iUE~) i s  not 

connected; so, by (A.7) (iv), E = E 1 O E 2 is rationally convex. By (A.2), for any neighbor- 

hood, U, of E in C 2 there is a rational polyhedron, R~, with E c  RuC U. Hence, by (2.1), 

there is a rational polyhedron, R, such that  E c  R and log(z 1 ]R) is defined. Then, 

(0, 0) Ehull(E) ~ hull(R). 

Therefore, also R does not satisfy the g.a.p.; so, by (2.11), hull(R) is not an analytic poly- 

hedron. Q.E.D. 

Comments. 1. The example of (2.15) should be compared with the assertion of (2.23). 

2. A trivial modification of Bishop's example shows also 

(2.18) There is a simply-coconnected (in /act, contractible) compact set, F, in C 2 such 

that R-hull(F) ~ hull(F). 

Namely, let E = E 1 U E 2 

be as in (2.15) and let D={(1 ,  z~): Iz~] ~<l}. 

If we set F = E U D, 

then F is easily seen to be contractible. But  

(0, 0) e hull(F) - R-hull(F). 

Note, however, that  F is not rationally convex. (Theorem (2.6) shows that  R-hull(F) 

{(e ~~ z~): 0 < 0 < ~ ,  Iz~[ <1}.) 

Although (2.13) does imply that  certain simply-coconnected rationally convex sets are 

necessarily polynomially convex, the condition given therein seems difficult to verify in 

any particular case. However, there is a weak version of the generalized argument prin- 

ciple, (2.19) below, valid for all X, which can be applied effectively in some interesting 

situations to show that  various simply-coconnected sets must be polynomially convex. 

To establish (2.19) we shall use the local descriptions of hull(X). 

(2.19) THEOREM. Let X be a compact subset o / C  n and let / be analytic on a neighbor- 

hood o/hull(X).  I / log( / /x )  is defined and X is open in / - I ( / (X))  A hull(X), then 

0 r 
In  particular, 

i/ / (X) N/ (hu l l (X) -  X ) = ~  and log(//x ) is defined, then 0 (~/(hull(X)). 
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Proof. There is a neighborhood, U, of X in C n such that  log(/I v) is defined and analytic, 

(2.1), and 
0 n/-l(/(x)) n hull(X) = X .  

L e t / u = / I  v. Since ]v is analytic, /v(U) contains a neighborhood o f / (X)  in C 1. We assert 

that  there is a neighborhood, N, of / (X) in C 1, with _~c/u(U) and/vl (N)  N hull(X) compact. 

For, if not, there is a sequence, Ni, of neighborhoods of /(X), with /v(U)DN, DNi+I, 
A i 2~, =/(X),  and with points, p~, in / - l (Ni)  N huU(X) B ~c,U. Passing to a subsequence, the 

p, converge to some pE n i / - l ( N , )  N hull(X) N ~c,U. But 

n / - 1  ( -N i )= / - l (n  - ~ ) = / - l ( / ( x ) ) ,  
i t 

so p e/-1 (/(X)) N hull(X) N [7 = X. 

:But also, p E ~c, U, and X N ac, U = o. Contradiction. Thus the assertion is true. 

Set S =/~1 (N) N hull(X). 

Then /v(S) = -N N/(hull(X)). 

Furthermore, S is a compact subset of the open set, U, so ~S (with ~ = Ohun(x)) is con- 

tained in ~v/bl(/~). :But 
0u/v I (N) c /~1 (~cl N), 

so 88 c l~ ~ (ac, N). 

Also, S N X = X  because Xc/~I(N).  :By (1.6), 

ac, log (/v) (S) c log (/v) (aS U (S N X)). 

Therefore, 8c, log ( /v ) (S )c  log (/u)(/u ~ (at, N)) U log (/u)(X). 

Let  Log be the (one-many) correspondence from C 1 - {O} to C 1 which associates with 

each z 0 E C 1 - (O} all the values of log(z0). Thus, 

Log(z0) = {w E C1: e ~ =z0}. 

Evidently, log(/u)(/~l(~c, N)) ~ Log(~c, N) and log(/u)(X) c Log(/~(X)). Therefore, combining 

the above remarks, 

(i) ~c, log (Iv) (S) c Log (~c,N U/~(X)). 

To complete the proof of the theorem we suppose, on the contrary, that  0 6/(hull(X)). 

Let  N o be another neighborhood of fiX) in C l with N0c  N. By (A.6), 

~c,/(hull(X)) c / (X) .  
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Therefore, G =/(hull(X)) - ( N  o N/(hull(X))) 

is an open subset of C 1, with 

~c, G c  (~c,270) N/(hull(X)). 

Hence, ~c,G does not intersect ~c~N U/v(X). Also, _~oc/v(U), and log(/v) is defined, so 

0 {~/V0. Therefore, 0 6 G. 

We now appeal to the classical argument principle [1, p. 123], to conclude that,  for 

some component, A, of ~c, G, log(z I a) is not defined. By the nature of the correspondence, 

Log, this implies that  Log(A) is a commcted unbounded subset of C 1. Also, 

(ii) Log(A) N Log(~c,~ U/v(X)) =o, 

because A N (~c~/? U/u(X)) =o). 

However, A c / ~  N/(hull(X)) =/v(S), 

so Log(A) does intersect log(/e)(S). But Log(A) is connected and unbounded, while log(/v)(S) 

is compact. Hence, Log(A) intersects Oc, log(/v)(S ). Therefore, by (i), Log(A) also intersects 

Log(~cL N U/v(X)). But this contradicts (ii). Thus, 0 ~/(hull(X)). Q.E.D. 

(2.20) COROLLARY. Let X be a compact subset o /C  ~. 

1/" there is a simply-coconnected set, Y, containing X and a/unction, g, continuous on 

Y U hull(X) and analytic about hull(X), /or which X is open in g-l(g(y))N hull(X), 

then X is polynomiaUy convex. 

In  particular, i / X  is simply-coconnected and there is a/unction, g, analytic about hull(X) 

(/or instance, a polynomial) such that g(X) N g(hull(X)- X)=o,  then X is polynomiaUy 

convex. 

Proo/. (The argument is similar to that  of (2.2).) First we prove that  g(hull(X))c 

g(Y). If not, there is p 6hull(X) with g(p) ~g(Y). Setting / =g -g(p),  we have 0 =/(p) ~/(Y).  

Then log(/[x) is defined (because X c  Y and Y is simply-coconnected.) Since 0=/ (p)6  

/(hull(X)), (2.19) implies that  X cannot be open in/-I(/(X)) N hull(X). Therefore, X cannot 

be open in g-l(g(X)) N hull(X) (because / and g differ by a constant). Hence, since X c  Y, 

X cannot be open in g-l(g(y)) N hull(X), contradicting our hypothesis. 

Therefore, g(hull(X)) c g( y); 

so g-l(g(Y)) N hull(X) =hull(X). 

Thus X is open in hull(X), which implies, by (A.7) that  X =hull(X). Q.E.D. 

Now we are going to apply (2.20). 
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D E F I N I T I O N .  Let  0 be an open subset  of C ~ and  le t /1  ..... /k be analyt ic  functions on 

O. For  each p E O  we define the level set o/ {/1 ..... /k} through p to be {uEO: /~(u)=/~(p), 

i = l  ..... /c}. I f  each level set o f /1  ..... /k has dimension, a t  most ,  max(0 ,  n - k } ,  we say  t h a t  

{/1 ..... /k} is in general position. I f / c  ~<n, and  {/1 ..... /k} is in general position then, b y  (A.17), 

every  subset  of {/1 ..... /k} is also in general position. Evident ly ,  for one analyt ic  function,  

/, on O, {/} is in general posit ion if and  only if it is not  cons tant  on any  componen t  of O. 

(2.21) THEOREM. Let X be a compact subset o / C ~ and let 0 be a neighborhood o / hull ( X ). 

Suppose there are n -  1 analyt ic /unct ions, /1  ..... /~-1 on O, such that 

(i) {/1 ..... /n-l} is in general position, and 

(ii) /or each ~ = 1 ..... n - 1 ,  / j ( X ) c  M1j(hun(X)), (the minimal  boundary/or  the uni/orm limits 

o / /unct ions  analytic about / j (hul l (X)) ,  see (A.25)). 

Under these circumstances, i/ X is simply-coconnected and is polynomially convex in dimen- 

sion one, then X is polynomially convex. 

Proo/. B y  (A.2), we can take  0 to be an open polynomial  polyhedron,  so tha t ,  b y  

(A.21), every  analyt ic  subvar ie ty  of 0 is a Runge  var ie ty .  

For  each j = 0 ..... n - 1, define Lj to be the set of all level sets, V, of all subsets,  (/1 ..... /~J} 

(with j dist inct  elements) such t h a t  V N hu l l (X)=hu l l (X  N V). Note  t h a t  Lo= (O), and  

tha t ,  b y  (i), /1 ..... /n-1 mus t  be distinct.  E v e r y  V E L , _  1 is a level set of (/1 ..... /n-l} and, 

therefore,  is pure ly  one-dimensional.  Since X is polynomial ly  convex in dimension one we 

have,  for VELn_I, hull(X N V ) : X  • W. 

Suppose now t h a t  for all VELj  we have  hull(X N V ) = X  N V, for some ?'E (1, . . . , n - 1 } .  

We shall show tha t  this implies t h a t  hull(X N V ) = X  N V for all VELj_ 1. 

Therefore, we choose VELj_ 1. Say V is a level set of (/i ...... /ij_,}. Choose some other 

/=]ti  E (/1 .... ,/~-1}. B y  (2.20), to prove  hul l (X N V) = X  N V, it suffices to  show t h a t / ( X )  N 

/(hull(X n v ) - ( x  n v))=o. 

I f  this is not  so, there  is a p Ehull(X N V) - (X N V) w i th / (p )  E/(X). B y  assumpt ion  (ii), 

/(p) E Ms(hu~l(x)). 

Hence,  by  (A.25), there is an hEA(/ (hul l (X)) )  such t h a t  l = h ( / ( p ) ) >  [h(~t)[ for all ~tE 

/(hull(X)) - (/(p)}. Then  
g = h o / E A ( h u l l ( X ) )  = P ( X )  

and  (u E hull(X): g(u) = maxx Ex I g(x) I } = (u Ehull(X): flu) =t ip ) ) .  

Thus,  if we set H = (u E 0 : / ( u )  =/(p)} ,  
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then H N hull(X) is a maximum set for P(X).  In particular, H N hull(X N V) is a maximum 

set for P ( X  N V). Thus, by (A.31), 

H N hull(X N V) =hull(X N V N H). 

But VELj_ 1, so hull(X N V) = V N hull(X). 

Therefore, if we let V 1 = V N H, then we have 

V1 N hull(X) =hull(X N V1). 

Also, V 1 is a level set of {/i ..... ,/,j}. Therefore, V1E Lj. Thus, by our assumption on Lj, we 

h a v e  

X n V 1 =hull(X N V1) = V 1 n hull(X). 

However, p E V 1 N hull(X) - ( V 1 N X), 

so we have arrived at a contradiction. Hence, 

/(X) N/(hull(X N V) - (X N V)) =o 

and, by (2.20), hull(X N V) = X  N V, for all VELj_~. 

By induction, since we have already remarked that hull(X N V) = X  N V for all V ELf_l, 

we obtain, for L 0 = {0}, hull(X) =X.  Q.E.D. 

One considerable defect in the hypothesis of (2.21) is that, for (ii), we are required to 

know something about hull(X) to begin with. However, there are interesting situations 

where this information is built-in. Namely, we have 

(2.22) TItEOtCEM. Let S 1 ..... S~_ 1 be compact subsets o / C  1, each with connected comple- 

ment. Let /1 ..... /n-1 be n - 1  polynomials on C ~ such that {/1 ..... /~-1} is in general position 

(on C~). Let X be any compact subset o/ 

/;~(~S~) N ... N/~1_~(~S~_~) (where ~=~c,). 

Under these conditions, i / X  is simply-coconnected and is polynomially convex in dimension 

one, then X is polynomially convex. In  particular, i / X  is simply.coconnected and rationally 

convex (or, i / X  is an arc), then X is polynomially convex. 

Proo/. The last statement follows from the preceding one by (2.7) and (1.12). The 

proof of the main part is based on the following lemma. This proof of the lemma is due to 

E. Bishop. 

LEMMA. I /  S is a compact subset o/ C ~ such that C ~ -  S is connected, then Ms = ~S. 
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Proo/. (Following Bishop.) Since aS is a bounda ry  for A(S) (see (A.29)) and  Ms is the  

min imal  bounda ry  for A(S) we have  M s c  aS. 

On the other  hand,  suppose p E aS - Ms. B y  (A.25), there  is a posit ive Borel measure,  

~t~, vanishing off Ms, with h(p)=~hd~tp, for all hEA(S). Let  m~ be the  uni t  point  mass  a t  

p and  set  
/~p = mp - ~tp. 

Then /~ ,  is a finite Borel measure  on aS and, since p ~ Ms, we have  

~ , ({p})  = m,({p})  - 2A {P}) = 1 - 0  = 1. 

Also, ~hd/~, = h ( p ) - h ( p ) = 0  for all hEA(S). Therefore,  b y  L e m m a s  9 and 10 of [5] we can 

decompose/~p into Z~fl~ where each/~, vanishes on points; so/zp({p}) = 0  ~= 1. Contradiction.  

Hence,  pEMs for all pEaS. Q.E.D. Lemma.  

To complete  the proof of (2.22) we first  observe t h a t  

/ j(hull(X)) = hull(/s(X)) c hull(aSs) = Sj, j = 1 . . . . .  n -  1. 

Therefore,  Mss N/s(hull(X)) c Mrs(hun(x)). 

B y  the l emma  Ms~ = aS s, 

and, b y  assumpt ion,  Is(X) c ass. 

Hence,  [t(X) c Mss fi/j(hull(X)) c M1s(hun(x)), j = 1 . . . . .  n - 1. 

The theorem now follows direct ly  f rom (2.21). Q.e.D. 

We shall conclude by  s ta t ing explici t ly some special cases of (2.22). 

(2.23) COROLLARY. Let X be a compact subset o/ C 2. I / X  is simply-coconnected and 

rationally convex (or, if X is an arc) and i/there is a non-constant polynomial, /, such that 

I[] = 1 on X, then X is polynomialty convex. 

D E F I N I T I O N .  T(n)={pEC~: Iz~(p)l =1,  i =  1,...,n}. 

(2.24) COROLLARr.  Let X be a compact subset o/ T ( n - 1 ) •  1. I] X is simply- 

coconnected and rationally convex, (or, i / X  is an arc), then X is polynomiaUy convex. 

(2.25) Let X be a compact subset o/ a simply.coconnected subset o/ T(n). Then (i) X is 

polynomial convex and (ii) every complex-valued continuous/unction on X is a uni/orm limit 

o~ polynomials in zD..., z~. 

Proo[. Clearly, every  compac t  subset,  X,  of T(n) is ra t ional ly  convex, and hull(X) - X  

does not  intersect  T(n). B y  apply ing  (2.24) we find that ,  for X ~  y c  T(n) with Y simply- 

coconnected, we have  X =hul l (X) .  This proves  (i). 
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To obtain (ii) from (i) first observe that,  on T(n), ~i=l/z~, i = 1  ..... n. Thus, for X, a 

polynomially convex subset of T(n), 54 = 1/z~ EP(X) (by (A.4)). Therefore, z 1 ..... z~, 51 ..... 2~ E 

P(X).  Hence, by the Stone-Weierstrass Theorem [17], P(X)  contains every complex- 

valued continuous function on X. Q.E.D.. 

Appendix. Definitions and background theory 

Many important properties of hulls are derived by approximating the hulls by analytic 

polyhedra. 

(A.1) DEFINITION. A n  analytic polyhedron in C n is a compact set, K,  o/the ]orm 

K = { u E U :  [/~(u)l ~<kj, j = l ,  ..., r}, 

where U is an open subset o /C  n, the ]j are analytic on U, and the kj are non-negative constants. 

If t he / j  are polynomials [rational functions] we say that  K is a polynomial [rational] 

polyhedron. 

By an open analytic polyhedron in C ~ we mean the interior (in C n) of an analytic 

polyhedron. (Note that  the U in the definition of an analytic polyhedron can be taken to 

be an open analytic polyhedron.) 

(A.2) Let X be a compact subset o] C ~. Then hull(X) ]R-hull(X)[ can be represented as 

the intersection o/ a descending chain o] open polynomial [rational] polyhedra, Ok, with 

O~ ~ 0~+ 1. 

This follows directly from the definitions of hull(X) and R-hull(X). 

We must draw upon the theory of analytic functions of several variables for certain 

deep theorems concerning analytic polyhedra. Firstly, there is the Oka-Weil Approximation 

Theorem [20]. 

(A.3) I /  0 is an open polynomial [rational] polyhedron, then each ]unction which is 

analytic on 0 is a unilorm limit o/polynomials [rational ]unctions] on every compact subset 

o10. 

By (A.2) this implies 

(A.4) I /  X is polynomiaUy [rationally] convex in C n, then every ]unction analytic 

about X is a uni/orm limit, on X ,  o/polynomials [rational ]unctions which are analytic 

about X]. 

(A.5) NOTATION. I / A  is a topological space and B c A,  then a A B denotes the topological 

boundary o[ B in A.  When there is only one A under consideration we write simply 9B 

/or ~AB. 
18"~--632918 
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One corollary of (A.4) is 

(A.6) 1I / is analytic about hull(X), then/(X)  ~ ~/(hull(X)), (where a = ~c,). 

Proo/. If pE~/ (hu l l (X) ) - / (X) ,  there is a point, q, in the complement of/(hull(X)) so 

close to p that  
] (p-q) - ' ]  >max{](z-q)-~l :  ze/(X)}. 

Then ( t - q ) - '  is analytic about hull(X), but ] ( / -q)-I  I does not attain its maximum over 

hull(X) on X. By (A.4), there must also be a polynomial, g, such that  I g I does not attain 

its maximum over hull(X) on X; which is absurd. Therefore, ~t(hull(X)~/(X). Q.E.D. 

Some other useful consequences of (A.4) are collected in 

(A.7) (i) A polynomial [rational] polyhedron is polynomially [rationally] convex. 

(ii) An  open and closed subset o/ a polynomially [rationally] convex set is polynomiaUy 

[rationally] convex. 

(iii) 1 / X  is connected, then R-hull(X) and hurl{X) are also connected. 

(iv) Let X and Y be disjoint, connected, polynomially [rationally] convex subsets o/ C n. I I 

X U Y is not polynomially [rationally] convex, then hull(X U Y) [R-hull(X U Y)] is 

connected. 

These results are well-known. They all follow very easily from the fact that  if S is 

an open and closed subset of hull(X) [R-hull(X)], then by (A.4), the function which is 1 

on S and 0 on h u l l ( X ) - S  [R-hul l (X) -S]  is a uniform limit on hull(X) [R-hull(X)] of 

polynomials [rational functions analytic about R-hull(X)]. 

:Next, there is the solution of the Cousin I problem [11], [20]. 

(A.8) Let 0 be an open analytic polyhedron. Then every Cousin I problem on 0 admits 

a solution. That is, i / 0  i is an open cover o / 0  and we assign meromorphic/unctions, G~, on 

04, such that G~- Gj is analytic on 04 n O~ ([or all i, ~), then there exists G, meromorphic on O, 

such that,/or each i, G - G  i is analytic on 0~. 

Theorems (A.3) and (A.8) are the two tools used by Oka in [21] to obtain his local 

description of hull(X), (1.4). 

We also need the concept of an analytic variety in C ~. 

D:EHNITIONS. (A.9) A subset, V, o] C" is an analytic variety i], ]or each ve  V, there 

is a neighborhood, U v, o /v  in C ~ and a collection o] analytic ]unctions on Uv whose set o/com- 

mon zeros is V N U~. (In particular, an open subset of C ~ is an analytic variety.) 
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(A.10) An analytic variety, V, in C n is an analytic hypersur/ace i[, /or each vE V, there 

is a neighborhood, Uv, o/ v in C n and one/unction,/~, analytic on U, such that 

Vn u~={ueVv: L(u)=0}. 

(A.11) I /  V1 and V2 are analytic varieties and V 2 is a closed subset o/ V1, then we say 

that V2 is an analytic subvariety o/ V1. 

(A.12) An  analytic variety is irreducible i/ it is not the union o/any two proper analytic 

subvarieties. 

Here are some facts from the local theory of analytic varieties which we need. (They 

can be extracted from [2] or [25].) 

(A.13) An  irreducible analytic variety, V, contains an open dense connected subset which 

is a complex mani/old. 

(A.14) DEFINITION. dim(V)=the (complex) dimension o/this mani/old. 

(A.15) An  analytic variety, V,  can be expressed, in a unique way, as a denumerable 

union o/ irreducible analytic subvarieties, Vt, such that Vi dg [Jj.~ Vj. 

(A.16) DEFINITIOn. We call each Vt an irreducible branch o/ V, and set 

dim(V) = max~ dim(Vi). 

I[ every irreducible branch o/ V has dimension, d, we say that V is purely d-dimensional. 

(A.17) I] an irreducible analytic variety, V, intersects an analytic hypersur/ace, H, 

then every irreducible branch o/ V N H has dimension, at least, dim(V) - 1. 

(A.18) Every compact analytic variety in C ~ consists o /a / i n i t e  set o/points. 

In Chapter 2, we use the following "global" result. 

(A.19) Let 0 be an open analytic polyhedron in C ~ and let V be an analytic subvariety 

o/O. I / p  E 0 - V, there exists a /unct ion, / ,  analytic on O, such that [I v =0 but [(p) =# O. 

This is proved in [11] and [18]. 

(A.20) DEFINITION. Let V be an analytic variety in C n. We say that V is a Runge 

variety in C ~ provided that hull(X)c V/or  every X c V. 

(A.21) I /  V is an analytic subvariety o / a n  open polynomial polyhedron in C n, then V 

is a Runge variety. 

Proo/. This follows easily from (A.7) (i) and (A.19). 

For our local description of R-hull(X), (1.9), we require, in place of (A.8), a solution of 

a Cousin I I  problem [11, Chapter XX], but only in the following weak form. 
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(A.22) Let Y be a compact subset o /C  n which is the intersection o /a  descending chain of 

open analytic polyhedra, 04, with 0 t ~ (~ ~+1. Let H be an analytic hypersur/ace which is a sub- 

variety o[ some neighborhood o/ Y. I[ ~/2(y; Z ) = 0 ,  then, /or i large enough, there exists an 

analytic [unction, h, on 0~, such that 

H n 04 = {ueO,: h(u) =0}. 

See [22] and [28] for a general discussion of the Cousin I I  problem. 

Comment. An open analytic polyhedron is certainly a Stein manifold (defined in [12], 

[8]). The theorems concerning analytic polyhedra mentioned above can be formulated and 

are valid on any Stein manifold (as is shown in [11] and [8]). Moreover, if X is a compact  

subset of a Stein manifold, M, we can form its associated holomorphic convex hull, 

hullM(X) = {m e M :  [h(m)[~< max [h(x)[, for all h analytic on M}, 
x E X  

and study hulls in this more general setting. However, by  Remmert ' s  Imbedding Theorem 

(proved in [7] and [18]) every Stein manifold, M, can be realized as a (closed) analytic 

submanifold of some C =. Then, (see [11] or [8]), the analytic functions on M will just be 

the restrictions to M of the analytic functions on C n and, for any compact X c  M, we will 

have hullM(X ) =hull(X). For this reason, we have restricted our at tention to polynomial 

convexity. 

Finally, from the theory of Banach algebras, (see [36] and [17]), we have the following 

setup. 

Let A be an algebra of continuous complex-valued functions on a compact Hausdorff  

space, X. We assume tha t  A contains the constants, separates the points of X, and is 

complete in the norm, maxx[ ... [. The maximal ideal space of A, denoted ~ ( A ) ,  can be 

described as the largest space containing X to which A extends as a Banach algebra of 

functions with the norm, maxx[. . .  [ . (See [36] or [17] for a precise definition.) E v e r y  

algebra homomorphism of A into C 1 is of norm one and corresponds to evaluation at  a 

point of ~ ( A ) .  

(A.23) DEFINITION. A point pETtl(A) is a peak point/or A provided there exists an 

/ E A  such that [tip)[ > [ / (m)] , /or  all m E ~ ( A ) -  {p}. 

(A.24) DEFINITION. A boundary/or A is a subset, b, o/7t1(A) such that 

l/(m)l  maxol/I, 
/or all m E ~ ( A ) ,  all lEA.  

Clearly, X is a boundary for A. ~ilov showed tha t  there exists a unique smallest 

closed boundary for A, [17]. We denote it by SA and refer to it as the Silov boundary/or A.  
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The following remarkable theorem concerning minimal boundaries is due to Bishop 

[6] and Bishop-de Leeuw [10]. 

(A.25) Let X be metrizable. Then 

(i) The set o/peak points/or A is a boundary/or A. Evidently, this is the unique minimal 

(not necessarily closed) boundary/or A.  We denote it by M A. 

(ii) For each m E ~ ( A ) ,  there is a positive Borel measure, 2, ,  o/mass 1, on X,  which vanishes 

on X- -MA,  such that 

= jx/dXm for all / fi A. /(m) 

(iii) Let m E ~ ( A ) .  /~, /or each neighborhood, Urn, O/ m, there is an / E A  such that ]/I ~<1 

on ~ ( A ) ,  ]/I <~ on ~ ( A ) -  Urn, and ]/(m)] >~, then meMA.  

Note that  SA is obviously the closure of M~. 

(A.26) DEFINITION. A subset, T, o/ ~ ( A )  is a maximum set /or A i/ there is an 

/ E A such that 
T = {m E 7~t(A): l (m)=maxxl /]  }. 

Obviously, 

(A.27) I /  / E A  and we choose a p /or which ]/(p)[ =maxx[ / [ ,  then T = { m E ~ ( A ) :  

/(m) =/(p)} is a maximum set/or A.  

The following useful fact is well known (and easy). (See [16, p. 227].) 

(A.28) I / T  is a maximum set/or A,  then T is the maximal ideal space o /A~  (the com- 

pletion o / A  IT in the norm maxT ]... ]) and T N X is a boundary/or AT. 

Proo/. T = { m E ~ ( A ) : / ( m ) = m a x x ] / ] } ,  for some /EA .  We can assume / # 0  and 

maxx]/]  =1. Let  g=�89 +/). Then 

T =  {m E~(A) :  g(m)=1 =maxx[g  [ } = {mE~(A):  ]g(m) [ =1}. 

The first part of (A.28) follows readily from the fact that  g - 1  vanishes precisely on T. 

To see that  T N X is a boundary for At, assume the contrary. Then there must be an 

h E A and a p E T - (T N X) such that  h(p) = 1 and [ h ] < 1 on T N X. Let 

H = {x E X: [h(x) [ ~> 1 }. 

Then H is a compact set disjoint from T. Thus, [g [ < 1 on H, so for a large enough positive 

integer, N, we will have [ h. gN] < 1 on H. But also [ h. gN[ < 1 on X - H. Hence, h. gN E A 

and we have 
(h.gN)(p) = 1 > max xl h-gN I 

which contradicts p E ~ ( A ) .  Therefore, T N X is a boundary for AT. Q.E.D. 

1 9 -  632918  Acta mathematica 109. I m p r i m 6  le 18 j u in  1963.  
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We apply these results in the special case when X is a compact subset of C n and A 

is one of the following: 

(A.29) P(X) =the uni/orm limits on X o/the polynomials in zi . . . . .  zn. 

R(X) =the uni/orm limits on X o/ the rational /unctions which are analytic about X. 

A(X) =the uni/orm limits on X o/ all /unctions which are analytic about X. 

NOTATION. We shall write Mx for MA(x). 

By (A.4), if X is rationally convex, then A(X) = R(X); and if X is polynomially convex, 

then A(X) =P(X) .  In  general, P(X) c R(X) c A(X). 

From the definitions of the hulls it is easy to see that  we can identify P(X) with 

P(hull(X)) and R(X) with R(R-hull(X)). Moreover, it is also easy to verify 

(A.30) (i) h u l l ( ( X ) = ~ ( P ( X ) )  and 

(ii) R-hull(X) = 7~I(R(X)), 

(via the correspondence, m-+"evaluation at m"). 

Proo/. (i) is proved in [36]. To deduce (ii) from (i), choose mET~I(R(X)). By (i), there 

is a/9 Ehull(X) such t ha t / (m )  = t ip)  for all / EP(X) c R(X). I f  0 $/(X), then 1//E R(X) and 

l=(/.1//)(m)=/(p).l//(m). This shows, firstly, tha t  if Or then 0#/(1o). Hence, by  

(1.1), p E R-hull(X). Secondly, it shows that  1//(m) = 1/tip), for all /EP(X) such that  0 $/(X) 

But every rational function which is analytic on a neighborhood of X can be expressed in 

the form g// where g and / are polynomials and Or Then (g/[)(m)=g(p).l//(p)= 

(9//)(P). I t  follows tha t  m corresponds to evaluation at  p for R(X). Therefore, ~II(R(X))c 

R-hull(X) and, hence, 7II(R(X))=R-huH(X). Q.E.D. 

Notice tha t  by (A.28) and (A.30) (i) we have 

(A.31) I / T c h u l l ( X )  is a maximum set/or P(X), then 

T = hull(T N X). 
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