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Let L be a Jordan curve on the Riemann sphere, and denote its completmen- 

ta ry  components by ~ ,  ~*. Suppose tha t  there exists a sense-reversing quasiconformal 

mapping 2 of the sphere onto itselfs which" maps ~ on gs and keeps every point on 

L fixed. Such mappings are called quasiconformal reflections. Our purpose is to s tudy 

curves L which permit  quasiconformal reflections. 

Let  U denote the upper and U* the lower halfplane. Consider a conformal 

mapping / of U on ~ and a conformal mapping /* of U* on ~*. Evidently,  /*-I~/ 

defines a quasiconformal mapping of U on U* which induces a monotone mapping 

h= /* -1 /  of the real axis on itself. I t  is not quite unique, for we may  replace / by  

/S and /* by  /*S* where S and S* are linear transformations with real coefficients and 

possitive determinant. This replaces h by S*-lhS which we shall say is equivalent to 

h. Observe tha t  h, or rather  its equivalence class, does not depend on 2. I t  is also 

unchanged if we replace the triple (~, L, ~*) by a conformally equivalent triple 

(T~, TL, T~*) where T is a linear transformation. 

The mapping / of U has a quasiconformal extension to the whole plane, namely 

by  the mapping with values ~/(5) for z E U*. I t  is known that  quasiconformal map- 

pings carry nullsets into nullsets. Therefore L has necessarily zero area. 

From this we may  deduce that  h determines ~ uniquely up to conformal equi- 

valence. In  fact, let /1,/~" be another pair of conformal mappings on complementary 

regions, and suppose that  /*-1/1=]* 1/ on the real axis. For a moment,  let us write 

F for the mapping given by  /(z) in U and by  2/(5) in U*, and let F 1 have the cor- 

responding meaning. The mapping -1 �9 .-1 H=F1 /1/ F~ is defined in U* and reduces to 

the identi ty on the real axis. We extend it to the whole plane by s~tting H(z)=z 
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in U. Then F1HF-1 is a quasieonformal mapping. I t  reduces to ]1]-: in ~ and to 

].],-1 in ~*. I t  is thus conformal, except perhaps on L. But  a quasiconformal mapping 

which is conformal almost everywhere is conformal. Hence [, = T /  where T is a linear 

transformation. 

Wha t  are the properties of h? A necessary condition is tha t  h can be extended 

to a quasiconformal mapping of U on U*, namely to f.-12]. This condition is also 

sufficient. To prove it, let g be a quasiconformal mapping of U on U* with bound- 

ary values h. The function g*(z)=g(5), defined in U*, has weak derivatives which 

satisfy an equation 

g~ = ;ugz 

with I#1~< k <  1 (It constant). Set /~=0  in U. Consider the equation 

F~ = ~Fz 

for the extended ~. An important  theorem (see [1]), sometimes referred to as the 

generalized Riemann mapping theorem, asserts the existence of a solution F which 

is a homeomorphic mapping of the sphere. Because z is a solution in U and g* a 

solution in U* it is possible to write F = ]~ in U, F = ]*g* in U*, where ]' a n d / *  are 

eonformal mappings. Clearly, ~ = ](U) and ~* = ]*(U* ) are quasiconformal reflections 

of each other. 

To sum up, we have established a correspondence between equivalence classes of 

boundary correspondences h, conformal mappings ], and curves L which permit a qua- 

siconformal reflection. I t  is a natural  program to t ry  to characterize the possible h, 

] and L in a more direct way. For boundary correspondences h this problem has 

been solved; we shall have occasion to recall the solution. 

In  Par t  I we solve the corresponding problem for L. I t  turns out tha t  the curves 

which permit  a quasiconformal reflection can be characterized by a surprisingly simple 

geometric property. (Partial results in this direction have been obtained by M. Tie- 

nari whose paper [7] came to my  attention only when this article was already written.) 

We have been less successful with the mappings ], but  in Par t  I I  we show, at  

any rate, tha t  the mappings ] form an open set. To understand the meaning of this, we 

observe that  the mappings equivalent to ] are of the form T]S. To account for T 

we replace ] by  its Schwarzian derivative ~ = (], z}. The Schwarzian of fS is ~(S)S '~, 

and to eliminate S it is indicated to consider cpdz ~ in its role of quadratic differential. 

I f  ] is sehlieht in U, Nehari [6] has shown tha t  I ~ l y ~  < ~. We take the least upper 

bound o f  I ~ l y  ~ to be a norm of ~. In  the linear space of quadratic differentials 

with finite norm, let A be the set of all ~ whose corresponding ] is schlieht and has 
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a quasiconformal extension. We are going to show that  A is an open set. For the 

significance of this result in the theory of Teichmiiller spaces we refer to the com- 

panion article of L. Bers [4] in the next issue of this journal. 

Part I 

1. In  1956 A. Beurling and the author derived a neccessary and sufficient con- 

dition for a boundary h to be the restriction of a quasiconformal mapping of U on 

itself (or on its reflection U*). This work is an essential preliminary for what follows. 

We recall the main result. Without loss of generality it may be assumed that  

h ( ~ )  = ~ .  Then  h admits a quasiconformal extension if and only if it satisfies a 

~-condition, namely an inequality 

Q-l _< h (x + t) - h (x) ~ ~, 
h (x) - h (x - t) 

(1) 

which is to be fulfilled for all real x, t and with a constant ~ 4 0 , ~ .  More precisely, 

if h has a K-quasiconformal extension, then (1) holds with a Q(K) that depends only 

on K, and if (1) holds, then h has a K(9)-quasiconformal extension. 

The necessity follows from the simple observation that  the quadruple ( x -  t, x, 

x + t, ~ )  with cross-ratio 1 must be mapped on a quadruple with bounded cross-ratio. 

The sufficiency requires an explicit construction. We set w (z )=  u +  iv with 

1 
[h (x + ty) + h (x - ty) ] dt,  [ 

J [h (x + ty)  - h (x - ty)] dr. 

(2) 

I t  is proved in [2] that  w(z )  is K(9)-quasiconformal. 

I am indebted to Beurling for the very important observation that  the mapping 

(2) is also quasi-isometric, in the sense that  corresponding noneuclidean elements of 

length have a bounded ratio. This condition can be expressed by 

V 

l w~l >I c(~)-~ ~, 
(3) 
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where C(~) depends only on 5- The proof is an immediate verification based on the 

estimate given in Lemma 6.5 of the cited paper. 

2. Let L be a Jordan curve through ~ which admits a quasiconformal reflection. 

The complementary regions determined by L are denoted by ~,  ~*, and the reflec- 

tion is written as z->z*. We assume that  the reflection is K-quasiconformal. 

Constants which depend only on K will be denoted by C (K), with or without 

subscripts. In different connections C(K) may have different values. We emphasize 

that  C(K) is not allowed to depend on L. 

The shortest distance from a point z to L will be denoted by ~ (z). 

L E M M A 1. The/ollowing estimates hold/or all z in the plane and all z o on L: 

Z *  - -  Z 0 (a) C(K) -1~< ~ < C ( K )  

(b) [z - z* l<C(K)  
(z) 

(z*) 
(c) C(K)  -1 < < C(K) .  

(z) 

Proo/. If the cross-r~tio of a quadruple has absolute value < 1, then the cross- 

ratio of the image points under a K-quasiconformal mapping has an absolute value 

<C(K). This assertion is contained in [1], Lemma 16. I t  is a rather elementary 

result. 

If [z* - z 01 ~< I z - z01 we can apply the above remark to (z*, z, %, ~ ) and conclude that  

IZ-Zol< C(K)lz* -zol. Symmetrically, IZ-Zol <~ [z* -zol implies [z*-ZoI < C(K)lz-zol .  
In  all circumstances (a) follows. 

From (a) we obtain 

[z-z*[< (C(K)+ 1 ) [ z - z o l =  C,(K)[z-Zo[ 

and (b) follows whe .  I ~ -  ~ol = ~ (~)- Since ~ (~*) < I ~ -  ~* I the s.eond inequality (c) 

follows from (b), and the first is true by symmetry. 

2. We introduce now the noneuclidean metrics ds=Q(z) l dzl in ~ and ~*. Ex- 

plicitly, if z=z(~)  is a conformal map of I~1 < 1 on ~ we set 

The classical estimates 

(z) < ~ (z)-' < 4~ (z) (4) 

follow by use of Schwarz' lemma and Koebe's one-quarter theorem. 
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LEMMA 2. I /  L passes through oo and permits a K-quasicon/ormal reflection, then it 

also permits a C (K)-quasicon/ormal reflection with the additional property that corresponding 

euclidean line elements satis/y 

C1 (g)  -1 I dz I <~ I dz* I <~ C1 (g)  ldz I. (5) 

Proo/. As shown in the introduction, the given K-quasiconformal reflection in- 

duces a K-quasiconformal mapping of U on U* with a boundary correspondence h. 

This h must  satisfy a Q(K)-condition of type (1). The Beurling-Ahlfors construction 

permits us to replace the mapping of U on U* with a C(K)-quasiconformal mapping 

with the same boundary values, in such a way tha t  it satisfies condition (3). I t  

follows tha t  the corresponding reflection about L is C(K)-quasiconformal and satisfies 

C 1 (K) -1 ~ (z)]dz I<~ ~ (z*)ldz*]<~ C z (K) Q (z) Idz I. 

Use of (4) and (c) leads to the desired inequality (5). 

3. We are now ready to characterize the curves L in purely geometric form: 

THEOREM 1. A Jordan curve L through ~ permits a quasicon/ormal reflection i/ and 

only i/there exists a constant C such that 

P1P2 <~ C. P1P3 (6) 

/or any three points PI, P2, Pa on L which/ollow each other in this order. 

Again, there is a more precise s tatement  to the effect tha t  C depends only on 

the K of the reflection, and vice versa. I f  L does not pass through ~ condition (6) 

must  be replaced by 

PIP~ : P~Pa <~ C (P4P~ : P4Pa), 

where (P1, Pa) separates (P2, P4). 

4. Proo/ o/ the necessity. We follow the segment P1Pa from P1 to its last inter- 

section with the subarc P~PI~  of L, and from there to the first intersection P~ with 

the arc P2Pa~.  I f  P1P~>P1Pa it is geometrically evident tha t  

P1P2 : P1Pa ~ P'IP~, : P1P~. 

Therefore we may  assume from the beginning tha t  P1Pa has only its endpoints on 

L. For definiteness, we suppose tha t  the inner points lie in ~ .  

By  Lemma 2 there exists a quasiconformal reflection which multiplies lengths a t  

most by  a factor C(K).  Hence P1 and Pa can be joined in ~* by an arc y* of 
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length < C(K) .  PIP3. The J o r d a n  curve formed by PiPs and y* separates Pz from 

~ .  Hence 7" intersects the extension of P1P2 over P2 and we conclude tha t  P1P~ <~ 

length of 7" < C (K).PIP3. 

5. Proo/o/the su//iciency. We shall use the notat ions 

= arc P~Pa, a '  = arc P1P2, 

f l = a r c  P l ~ .  f l ' = a r c  P a ~ .  

Denote by  d (~, fl) and d* (~, fl) the extremal  distances of a and fl with respect to 

and ~* respectively. Wi th  similar notat ions for a ' ,  fl' one has the relations 

d (~, fl) d (o~', fl')=d* (o~, fl) d* (s fl')= l. 

In  a conformal mapping of ~ on the halfplane U with ~ corresponding to ~ ,  

let Pl, P2, P3 be mapped  on xi, x2, x 3. I t  is evident tha t  d (:r fl) = 1 if and only if 

x a - x 2 = x 2 - x 1. Fur thermore,  the ratio I x a -  x 2 [: [x~ - x 11 is bounded away from 0 and 

if and only if this is true of d (~, fl). Consequently, in order to prove tha t  the 

boundary  correspondence induced by  L satisfies (1) it is sufficient to show tha t  

d (~, fl) = 1 implies K (C) -1 ~< d* (a, fl) ~< K (C). 

Two elementary estimates are needed. We show first tha t  d(~, f l )=  1 implies 

P1P2 : P2P3 <~ C2e 2:~. (7) 

Indeed,  it follows from (6) tha t  the points  of fl are at  distance ~> C -1 .P1P~ from Pz 

while the points of ~ have distance ~< C.P2P a from P2- If  (7) were not  true, :r and 

fl would be separated by a circular annulus whose radii have the ratio e ~ .  I n  such 

an  annulus the extremal  distance between the circles is l,  and the comparison prin- 

ciple for extremal  lengths would yield d(x,  f l )>  1, con t ra ry  to hypothesis.  Hence (7) 

mus t  hold. If  P1 and Pa are interchanged we have in the same way  

P2Pa : PIPs <~ C2e ~'. (8) 

Consider points Q1 Ea, Q2 Eft. By  repeated application of (6) 

Q1Q2 >~ C-1 Q1P1 ~ C-2 P1P2 

and with the help of (8) we conclude tha t  the shortest  distance between a and fl is 

>~ C -4 e- ~ P2Pa. To simplify notations,  write d = P2Pa, M 1 = C d ,  M e = C -4 e- 2~ d. Because 

of (6), all points on c~ are within distance M 1 from P~. 

We recall tha t  the definition of extremal length implies 
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(inf ]r~ldz I) ~ 
d* (~, fl) ~ ]]~,Q2dxdy , 

where the infimum is with respect to all arcs 7 tha t  join ~ and fl within ~*, and 

is any positive function for which the right-hand side has a meaning. We choose 

Q = I  in a circular disk with center /)2 and radius MI+M2,  Q=O outside of tha t  

disk. Then ~ l d z l  >~M 2 for all curves y. Indeed, this is so whether y stays within 

the disk or contains a point on its circumference. We conclude tha t  

d * ( ~ , f l ) > ~ M ~ - M j  = g - l ( 1  + . 

The same inequality, applied to a' ,  fl', yields an upper bound for d* (~, fl), and our 

proof of Theorem 1 is complete. 

P a r t  I I  

1. In  the introduction we saw tha t  the boundary correspondences h give rise to 

conformal mappings /, and with these we associated their Schwarzian derivatives 

~ = { / ,  z}. The set of all such ~ was denoted by A. We formulate a precise definition: 

The set A consists of all functions ~, holomorphic in U, such that  the equation 

{/, z} = ~ has a solution / which can be extended to a schlicht quasiconformal mapping 

of the whole plane. 

Our purpose is to prove: 

THEOREM 2. A is an open subset o/ the Banach space o/ holomorphic /unctions 

with norm [I V II = sup IV (z)l y2. 

We know already tha t  all ~ E A have norm ~< ~. I t  will follow tha t  the norms 

are in fact strictly less than 3. 

2. I t  is a known result that  A contains a neighborhood of the origin ([3], [5]). As an 

illustration of the method we shall follow it is nevertheless useful to include a proof. 

LEMMA 3. A contains all /unctions q~ with IIq~ll<�89 

Proo/. Let  71 and 72 be linearly independent solutions of the differential equation 

~ , ,=  _ 1 ~ .  (9) 

normalized by 7;~]2-7~1 = 1. I t  is well known tha t  / - 7 1 / 7 2  satisfies {/, z} = ~0. Ob- 

serve tha t  / may  be meromorphic with simple poles, and tha t  / '  4=0 at  all other 

points! 
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I t  is to be shown that  / is schlicht and has a quasiconformal extension. To 

construct the extension we form 

F (z) = ~1 (2:) + (5 - 2:) ~1 (2:) 
~ ( z )  § (5 -2 : )~  (2:) (2:e U). (lO) 

Because ~1~2-~2~1 = 1 the numerator  and denominator cannot vanish simultaneously. 

If  the denominator vanishes we set F =  ~ ,  and local assertions about  F will apply 

to 1IF.  

A simple computation which makes use of (9) gives 

Fz /F~  = �89 (2: - 5) 2 ~ (2:). 

Under the assumption I1 1[< 1 we conclude tha t  F is quasiconformal and sense-re- 

versing. The mapping 2:--->F(5) is quasiconformal and sense-preserving in U*. 

Our intention is to show tha t  

[ / (z) in U 
f (2:) [F(~)  in U* (11) 

gives the desired extension. To see this it is sufficient to know tha t  [ can be ex- 

tended to the real axis by  continuity, tha t  the extended function is locally schlicht 

a t  points of the real axis, and tha t  it tends to a limit for 2:-->oo. Indeed, ] will then 

be locally schlicht everywhere, and by a familiar reasoning is must  be globally schlicht. 

The missing information is easy to supply under strong additional conditions. 

We suppose that  r is analytic on the real axis, including oo, where ~ shall have a zero of 

order /> 4 (this means tha t  the quadratic differential ~dz 2 is regular at  oo). I t  is 

immediate tha t  / and F agree on the real axis, and tha t  they are real-analytic in 

the closed half-planes. I t  follows easily tha t  ] is locally schlicht. At oo the assumption 

implies that  equation (9) has solutions whose power series expansions begin with 1 

and z respectively. Hence 

71 =a12: + 51 + O ([ 2: [--1) ' 

~2=a~z + b~ + O([z[ -1) 

with a l b 2 - a 2 b l = l .  Substitution in (10) shows tha t  

F(z)  = a lS+ bl + 0([ z [-1) 

and therefore / and F have the same limit al ia  ~ as z-->~.  
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To prove the lemma without additional assumptions we use an approximation 

method. We can find a sequence of linear transformations Sn such tha t  the closure 

of Sn U is contained in U and S,~z--->z for n-->oo. Take q~(z)=cp(Snz) Sn (z) ~. I t  

follows by Schwarz' lemma tha t  II~0~ll< IITII. Moreover, ~ is analytic on the real 

axis and has at least a fourth order zero at  oo. Consequently, there exist quasi- 

eonformal mappings fn, holomorphic with (fn, z} = ~ in U, with uniformly bounded 

dilatation. A subsequence of the f~ converges to a limit function ~ which is itself 

schlicht and quasiconformal, and which satisfies {f, z ) = ~  in U. This completes the 

proof. 

With suitable normalizations it is possible to arrange tha t  ]~-->], the mapping 

defined by (11). 

3. The method of the preceding proof can be carried over to the general case, 

although with some significant modifications. 

Suppose tha t  ~0 0 E A and {/0, z} = ~o 0. We may  assume tha t  /0 maps U on a region 

whose boundary L passes through co, and we know tha t  L admits a quasicon- 

formal reflection w-->w*=)~(w). We choose ~t in accordance with Lemma 2. 

I f  11V - ~o I1 < s and {/, z} = ~ the identi ty 

{f, ~} = {L to} t7 + {to, ~} 

yields I{1,1o}11 f,  I ~ y~ < ~. 

The non-euclidean metric in ~ is given by 

Q (w) l dw l = [ ~  j, 

and if we write T=]/o 1 we obtain 

]{L w}] < 4 ~ ~ (w) 2. (1~) 

I f  s is sufficiently small it is to be proved tha t  T is schlicht and has a quasicon- 

formal extension. 

We set ~ =  {/, w} and [ =  ~1/~2 where ~h, Us are normalized solutions of 

v "  = - i ~ v .  

In  close analogy with (10) we form 

F (w) - ~1 (w) + (w* - w) ~; (w) 
W (w) + (w* - w) ~ (w)' 

where w E ~ and w* = ~t (w). Computation gives 
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F~ _ ~ + ~ (w - w*) 2. 
(13) 

F~ ~ 2),w 

Here I~Lw/~t~ I ~</c < 1 because ;t is quasiconformal. To estimate the second term we 

have first, by (12), Lemma l(b) and (4), 

I~liw--w*12<4w~. 

On the other hand, I~w I stays away from O, for Lemma 2 gives 

C-'ldwI<<.]dw*]<<.2I~wIIdw]. 

We conclude that  I Fw/F~I ~ ]c'< 1 provided that  e is sufficiently small. 

4. We wish to show tha t  

]: I  [(w~ in~ l  

[F(w )inti* 

is schlicht and quasiconformal. Again, the proof is easy under strong assumptions. 

This t ime we assume tha t  L is an analytic curve, tha t  ~ is analytic on L and tha t  

it has a fourth order zero at  oo. I t  is clear that  we can prove f to be a quasicon- 

formal homeomorphism exactly as in the proof of Lemma 3. 

To complete the proof, let $=eo(w) be a conformal mapping of ~1 on I~1< 1. 

Let  t l  n be the par t  of ~1 tha t  corresponds to IF[< rn, L~ its boundary. Here {r~} is 

a sequence which converges to 1. 

A quasiconformal reflection ;t~ across L~ can be constructed as follows: I f  r2n < 

I eo (w)l < r~ we define ~, (w) so tha t  eo (w) and co ()Ix (w)) are mirror images with respect 

to I~[=r~.  I f  Ito(w)l ~<r~ we find wn so tha t  to(w~)=r~ 2co(w) and choose ;tn(w)= 

,t(Wn). The definitions agree when leo (w)l =r~,  and L~ is kept  fixed. The dilatation 

of ~tn is no greater than the maximum dilatation of ~t. 

After a harmless linear transformation which throws a point on Ln to c~ the 

par t  of the theorem that  has already been proved can be applied to tin. I t  is to 

be observed tha t  ~ >~r where pnldw[ is the noneuclidean metric in ti~. Therefore 

satisfies 

[~l<4~Q.(w)2 

with the same e as before. Hence there exists a quasiconformal mapping ]4 of the 

whole plane which agrees with / on fin and whose dilatation lies under a fixed bound. 

A subsequence of the ]~ tends to a limit mapping ] which is schlicht, quasiconformal, 

and equal to / in ti. The theorem is proved. 
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