# QUASICONFORMAL REFLECTIONS 

## BY

LARS V. AHLFORS

Harvard University, Cambridge, Mass., U.S.A. ${ }^{1}$ )

Let $L$ be a Jordan curve on the Riemann sphere, and denote its completmentary components by $\Omega, \Omega^{*}$. Suppose that there exists a sense-reversing quasiconformal mapping $\lambda$ of the sphere onto itselfs which maps $\Omega$ on $\Omega^{*}$ and keeps every point on $L$ fixed. Such mappings are called quasiconformal reflections. Our purpose is to study curves $L$ which permit quasiconformal reflections.

Let $U$ denote the upper and $U^{*}$ the lower halfplane. Consider a conformal mapping $f$ of $U$ on $\Omega$ and a conformal mapping $f^{*}$ of $U^{*}$ on $\Omega^{*}$. Evidently, $f^{*-1} \lambda f$ defines a quasiconformal mapping of $U$ on $U^{*}$ which induces a monotone mapping $h=f^{*}-1 f$ of the real axis on itself. It is not quite unique, for we may replace $f$ by $f S$ and $f^{*}$ by $f^{*} S^{*}$ where $S$ and $S^{*}$ are linear transformations with real coefficients and possitive determinant. This replaces $h$ by $S^{*-1} h S$ which we shall say is equivalent to $h$. Observe that $h$, or rather its equivalence class, does not depend on $\lambda$. It is also unchanged if we replace the triple ( $\Omega, L, \Omega^{*}$ ) by a conformally equivalent triple ( $T \Omega, T L, T \Omega^{*}$ ) where $T$ is a linear transformation.

The mapping $f$ of $U$ has a quasiconformal extension to the whole plane, namely by the mapping with values $\lambda f(\bar{z})$ for $z \in U^{*}$. It is known that quasiconformal mappings carry nullsets into nullsets. Therefore $L$ has necessarily zero area.

From this we may deduce that $h$ determines $\Omega$ uniquely up to conformal equivalence. In fact, let $f_{1}, f_{1}^{*}$ be another pair of conformal mappings on complementary regions, and suppose that $f_{1}^{*-1} f_{1}=f^{*-1} f$ on the real axis. For a moment, let us write $\boldsymbol{F}$ for the mapping given by $f(z)$ in $U$ and by $\lambda f(\bar{z})$ in $U^{*}$, and let $F_{1}$ have the corresponding meaning. The mapping $H=F_{1}^{-1} f_{1}^{*} f^{*-1} F_{\text {; }}$ is defined in $U^{*}$ and reduces to the identity on the real axis. We extend it to the whole plane by setting $H(z)=z$
${ }^{(1)}$ This work was supported by the Air Force Office of Scientific Research.
in $U$. Then $F_{1} H F^{-1}$ is a quasiconformal mapping. It reduces to $f_{1} f^{-1}$ in $\Omega$ and to $f_{1}^{*} f^{*-1}$ in $\Omega^{*}$. It is thus conformal, except perhaps on $L$. But a quasiconformal mapping which is conformal almost everywhere is conformal. Hence $f_{1}=T f$ where $T$ is a linear transformation.

What are the properties of $h$ ? A necessary condition is that $h$ can be extended to a quasiconformal mapping of $U$ on $U^{*}$, namely to $f^{*-1} \lambda f$. This condition is also sufficient. To prove it, let $g$ be a quasiconformal mapping of $U$ on $U^{*}$ with boundary values $h$. The function $g^{*}(z)=g(\bar{z})$, defined in $U^{*}$, has weak derivatives which satisfy an equation

$$
g_{\bar{z}}^{*}=\mu g_{z}^{*}
$$

with $|\mu| \leqslant k<1$ ( $k$ constant). Set $\mu=0$ in $U$. Consider the equation

$$
F_{\bar{z}}=\mu F_{z}
$$

for the extended $\mu$. An important theorem (see [1]), sometimes referred to as the generalized Riemann mapping theorem, asserts the existence of a solution $F$ which is a homeomorphic mapping of the sphere. Because $z$ is a solution in $U$ and $g^{*}$ a solution in $U^{*}$ it is possible to write $F=f$ in $U, F=f^{*} g^{*}$ in $U^{*}$, where $f$ and $f^{*}$ are conformal mappings. Clearly, $\Omega=f(U)$ and $\Omega^{*}=f^{*}\left(U^{*}\right)$ are quasiconformal reflections of each other.

To sum up, we have established a correspondence between equivalence classes of boundary correspondences $h$, conformal mappings $f$, and curves $L$ which permit a quasiconformal reflection. It is a natural program to try to characterize the possible $h$, $f$ and $L$ in a more direct way. For boundary correspondences $h$ this problem has been solved; we shall have occasion to recall the solution.

In Part I we solve the corresponding problem for $L$. It turns out that the curves which permit a quasiconformal reflection can be characterized by a surprisingly simple geometric property. (Partial results in this direction have been obtained by M. Tienari whose paper [7] came to my attention only when this article was already written.)

We have been less successful with the mappings $f$, but in Part II we show, at any rate, that the mappings $f$ form an open set. To understand the meaning of this, we observe that the mappings equivalent to $f$ are of the form $T f S$. To account for $T$ we replace $f$ by its Schwarzian derivative $\varphi=\{f, z\}$. The Schwarzian of $f S$ is $\varphi(S) S^{\prime 2}$, and to eliminate $S$ it is indicated to consider $\varphi d z^{2}$ in its role of quadratic differential.

If $f$ is schlicht in $U$, Nehari $[6]$ has shown that $|\varphi| y^{2} \leqslant \frac{3}{2}$. We take the least upper bound of $|\varphi| y^{2}$ to be a norm of $\varphi$. In the linear space of quadratic differentials with finite norm, let $\Delta$ be the set of all $\varphi$ whose corresponding $f$ is schlicht and has
a quasiconformal extension. We are going to show that $\Delta$ is an open set. For the significance of this result in the theory of Teichmüller spaces we refer to the companion article of L. Bers [4] in the next issue of this journal.

## Part I

1. In 1956 A . Beurling and the author derived a neccessary and sufficient condition for a boundary $h$ to be the restriction of a quasiconformal mapping of $U$ on itself (or on its reflection $U^{*}$ ). This work is an essential preliminary for what follows.

We recall the main result. Without loss of generality it may be assumed that $h(\infty)=\infty$. Then $h$ admits a quasiconformal extension if and only if it satisfies a $\varrho$-condition, namely an inequality

$$
\begin{equation*}
\varrho^{-1} \leqslant \frac{h(x+t)-h(x)}{h(x)-h(x-t)} \leqslant \varrho, \tag{1}
\end{equation*}
$$

which is to be fulfilled for all real $x, t$ and with a constant $\varrho \neq 0, \infty$. More precisely, if $h$ has a $K$-quasiconformal extension, then (1) holds with a $\varrho(K)$ that depends only on $K$, and if (1) holds, then $h$ has a $K(\varrho)$-quasiconformal extension.

The necessity follows from the simple observation that the quadruple $(x-t, x$, $x+t, \infty$ ) with cross-ratio 1 must be mapped on a quadruple with bounded cross-ratio. The sufficiency requires an explicit construction. We set $w(z)=u+i v$ with

$$
\left.\begin{array}{l}
u(z)=\int_{0}^{1}[h(x+t y)+h(x-t y)] d t, \\
v(z)=\int_{0}^{1}[h(x+t y)-h(x-t y)] d t \tag{2}
\end{array}\right\}
$$

It is proved in [2] that $w(z)$ is $K(\varrho)$-quasiconformal.
I am indebted to Beurling for the very important observation that the mapping (2) is also quasi-isometric, in the sense that corresponding noneuclidean elements of length have a bounded ratio. This condition can be expressed by

$$
\left.\begin{array}{l}
\left|w_{z}\right| \leqslant C(\varrho) \frac{v}{y}  \tag{3}\\
\left|w_{z}\right| \geqslant C(\varrho)^{-1} \frac{v}{y}
\end{array}\right\}
$$

where $C$ ( $\varrho$ ) depends only on $\varrho$. The proof is an immediate verification based on the estimate given in Lemma 6.5 of the cited paper.
2. Let $L$ be a Jordan curve through $\infty$ which admits a quasiconformal reflection. The complementary regions determined by $L$ are denoted by $\Omega, \Omega^{*}$, and the reflection is written as $z \rightarrow z^{*}$. We assume that the reflection is $K$-quasiconformal.

Constants which depend only on $K$ will be denoted by $C(K)$, with or without subscripts. In different connections $C(K)$ may have different values. We emphasize that $C(K)$ is not allowed to depend on $L$.

The shortest distance from a point $z$ to $L$ will be denoted by $\delta(z)$.
Lemma 1. The following estimates hold for all $z$ in the plane and all $z_{0}$ on $L$ :
(a)

$$
\begin{aligned}
C(K)^{-1} & \leqslant\left|\frac{z^{*}-z_{0}}{z-z_{0}}\right|
\end{aligned} \leqslant C(K), ~ \frac{\left|z-z^{*}\right|}{\delta(z)} \leqslant C(K), ~(K)^{-1} \leqslant \frac{\delta\left(z^{*}\right)}{\delta(z)} \leqslant C(K) .
$$

(c)

Proof. If the cross-ratio of a quadruple has absolute value $\leqslant 1$, then the crossratio of the image points under a $K$-quasiconformal mapping has an absolute value $\leqslant C(K)$. This assertion is contained in [1], Lemma 16. It is a rather elementary result.

If $\left|z^{*}-z_{0}\right| \leqslant\left|z-z_{0}\right|$ we can apply the above remark to $\left(z^{*}, z, z_{0}, \infty\right)$ and conclude that $\left|z-z_{0}\right| \leqslant C(K)\left|z^{*}-z_{0}\right|$. Symmetrically, $\left|z-z_{0}\right| \leqslant\left|z^{*}-z_{0}\right|$ implies $\left|z^{*}-z_{0}\right| \leqslant C(K)\left|z-z_{0}\right|$. In all circumstances (a) follows.

From (a) we obtain

$$
\left|z-z^{*}\right| \leqslant(C(K)+1)\left|z-z_{0}\right|=C_{1}(K)\left|z-z_{0}\right|
$$

and (b) follows when $\left|z-z_{0}\right|=\delta(z)$. Since $\delta\left(z^{*}\right) \leqslant\left|z-z^{*}\right|$ the second inequality (c) follows from (b), and the first is true by symmetry.
2. We introduce now the noneuclidean metrics $d s=\varrho(z)|d z|$ in $\Omega$ and $\Omega^{*}$. Explicitly, if $z=z(\zeta)$ is a conformal map of $|\zeta|<1$ on $\Omega$ we set

$$
\varrho(z)|d z|=\left(1-|\zeta|^{2}\right)^{-1}|d \zeta| .
$$

The classical estimates

$$
\begin{equation*}
\delta(z) \leqslant \varrho(z)^{-1} \leqslant 4 \delta(z) \tag{4}
\end{equation*}
$$

follow by use of Schwarz' lemma and Koebe's one-quarter theorem.

Lemma 2. If $L$ passes through $\infty$ and permits a $K$-quasiconformal reflection, then it also permits a $C(K)$-quasiconformal reflection with the additional property that corresponding euclidean line elements satisfy

$$
\begin{equation*}
C_{1}(K)^{-1}|d z| \leqslant\left|d z^{*}\right| \leqslant C_{1}(K)|d z| \tag{5}
\end{equation*}
$$

Proof. As shown in the introduction, the given $K$-quasiconformal reflection induces a $K$-quasiconformal mapping of $U$ on $U^{*}$ with a boundary correspondence $h$. This $h$ must satisfy a $\varrho(K)$-condition of type (1). The Beurling-Ahlfors construction permits us to replace the mapping of $U$ on $U^{*}$ with a $C(K)$-quasiconformal mapping with the same boundary values, in such a way that it satisfies condition (3). It follows that the corresponding reflection about $L$ is $C(K)$-quasiconformal and satisfies

$$
C_{1}(K)^{-1} \varrho(z)|d z| \leqslant \varrho\left(z^{*}\right)\left|d z^{*}\right| \leqslant C_{1}(K) \varrho(z)|d z|
$$

Use of (4) and (c) leads to the desired inequality (5).
3. We are now ready to characterize the curves $L$ in purely geometric form:

Theorem 1. A Jordan curve $L$ through $\infty$ permits a quasiconformal reflection if and only if there exists a constant $C$ such that

$$
\begin{equation*}
\overline{P_{1} P_{2}} \leqslant C \cdot \overline{P_{1} P_{3}} \tag{6}
\end{equation*}
$$

for any three points $P_{1}, P_{2}, P_{3}$ on $L$ which follow each other in this order.
Again, there is a more precise statement to the effect that $C$ depends only on the $K$ of the reflection, and vice versa. If $L$ does not pass through $\infty$ condition (6) must be replaced by

$$
\overline{P_{1} P_{2}}: \overline{P_{1} P_{3}} \leqslant C\left(\overline{P_{4} P_{2}}: \overline{P_{4} P_{3}}\right)
$$

where ( $P_{1}, P_{3}$ ) separates $\left(P_{2}, P_{4}\right)$.
4. Proof of the necessity. We follow the segment $P_{1} P_{3}$ from $P_{1}$ to its last intersection with the subare $P_{2} P_{1} \infty$ of $L$, and from there to the first intersection $P_{3}^{\prime}$ with the are $P_{2} P_{3} \infty$. If $P_{1} P_{2}>P_{1} P_{3}$ it is geometrically evident that

$$
\overline{P_{1} P_{2}}: \overline{P_{1} P_{3}} \leqslant \overline{P_{1}^{\prime} P_{2}}: \overline{P_{1}^{\prime} P_{3}^{\prime}}
$$

Therefore we may assume from the beginning that $\overline{P_{1} P_{3}}$ has only its endpoints on $L$. For definiteness, we suppose that the inner points lie in $\Omega$.

By Lemma 2 there exists a quasiconformal reflection which multiplies lengths at most by a factor $C(K)$. Hence $P_{1}$ and $P_{3}$ can be joined in $\Omega^{*}$ by an arc $\gamma^{*}$ of
length $\leqslant C(K) \cdot \overline{P_{1} P_{3}}$. The Jordan curve formed by $\overline{P_{1} P_{3}}$ and $\gamma^{*}$ separates $P_{2}$ from $\infty$. Hence $\gamma^{*}$ intersects the extension of $\overline{P_{1} P_{2}}$ over $P_{2}$ and we conclude that $\overline{P_{1} P_{2}} \leqslant$ length of $\gamma^{*} \leqslant C(K) \cdot \overline{P_{1} P_{3}}$.
5. Proof of the sufficiency. We shall use the notations

$$
\begin{array}{ll}
\alpha=\operatorname{arc} P_{2} P_{3}, & \alpha^{\prime}=\operatorname{arc} P_{1} P_{2} \\
\beta=\operatorname{arc} P_{1} \infty & \beta^{\prime}=\operatorname{arc} P_{3} \infty
\end{array}
$$

Denote by $d(\alpha, \beta)$ and $d^{*}(\alpha, \beta)$ the extremal distances of $\alpha$ and $\beta$ with respect to $\Omega$ and $\Omega^{*}$ respectively. With similar notations for $\alpha^{\prime}, \beta^{\prime}$ one has the relations

$$
d(\alpha, \beta) d\left(\alpha^{\prime}, \beta^{\prime}\right)=d^{*}(\alpha, \beta) d^{*}\left(\alpha^{\prime}, \beta^{\prime}\right)=1
$$

In a conformal mapping of $\Omega$ on the halfplane $U$ with $\infty$ corresponding to $\infty$, let $P_{1}, P_{2}, P_{3}$ be mapped on $x_{1}, x_{2}, x_{3}$. It is evident that $d(\alpha, \beta)=1$ if and only if $x_{3}-x_{2}=x_{2}-x_{1}$. Furthermore, the ratio $\left|x_{3}-x_{2}\right|:\left|x_{2}-x_{1}\right|$ is bounded away from 0 and $\infty$ if and only if this is true of $d(\alpha, \beta)$. Consequently, in order to prove that the boundary correspondence induced by $L$ satisfies (1) it is sufficient to show that $d(\alpha, \beta)=1$ implies $K(C)^{-1} \leqslant d^{*}(\alpha, \beta) \leqslant K(C)$.

Two elementary estimates are needed. We show first that $d(\alpha, \beta)=1$ implies

$$
\begin{equation*}
\overline{P_{1} P_{2}}: \overline{P_{2} P_{3}} \leqslant C^{2} e^{2 \pi} \tag{7}
\end{equation*}
$$

Indeed, it follows from (6) that the points of $\beta$ are at distance $\geqslant C^{-1} \cdot \overline{P_{1} P_{2}}$ from $P_{2}$ while the points of $\alpha$ have distance $\leqslant C \cdot \overline{P_{2} P_{3}}$ from $P_{2}$. If (7) were not true, $\alpha$ and $\beta$ would be separated by a circular annulus whose radii have the ratio $e^{2 \pi}$. In such an annulus the extremal distance between the circles is 1 , and the comparison principle for extremal lengths would yield $d(\alpha, \beta)>1$, contrary to hypothesis. Hence (7) must hold. If $P_{1}$ and $P_{3}$ are interchanged we have in the same way

$$
\begin{equation*}
\overline{P_{2} P_{3}}: \overline{P_{1} P_{2}} \leqslant C^{2} e^{2 \pi} . \tag{8}
\end{equation*}
$$

Consider points $Q_{1} \in \alpha, Q_{2} \in \beta$. By repeated application of (6)

$$
\overline{Q_{1} Q_{2}} \geqslant C^{-1} \overline{Q_{1} P_{1}}>C^{-2} \overline{P_{1} P_{2}}
$$

and with the help of (8) we conclude that the shortest distance between $\alpha$ and $\beta$ is $\geqslant C^{-4} e^{-2 \pi} \overline{P_{2} P_{3}}$. To simplify notations, write $d=\bar{P}_{2} P_{3}, M_{1}=C d, M_{2}=C^{-4} e^{-2 \pi} d$. Because of (6), all points on $\alpha$ are within distance $M_{1}$ from $P_{2}$.

We recall that the definition of extremal length implies

$$
d^{*}(\alpha, \beta) \geqslant \frac{\left(\inf \int_{\gamma \varrho}|d z|\right)^{2}}{\iint_{\Omega^{\star}} \varrho^{2} d x d y}
$$

where the infimum is with respect to all arcs $\gamma$ that join $\alpha$ and $\beta$ within $\Omega^{*}$, and $\varrho$ is any positive function for which the right-hand side has a meaning. We choose $\varrho=1$ in a circular disk with center $P_{2}$ and radius $M_{1}+M_{2}, \varrho=0$ outside of that disk. Then $\int_{\gamma \varrho}|d z| \geqslant M_{2}$ for all curves $\gamma$. Indeed, this is so whether $\gamma$ stays within the disk or contains a point on its circumference. We conclude that

$$
d^{*}(\alpha, \beta) \geqslant \frac{1}{\pi}\left(\frac{M_{2}}{M_{1}+M_{2}}\right)^{2}=\pi^{-1}\left(1+C^{5} e^{2 \pi}\right)^{-2} .
$$

The same inequality, applied to $\alpha^{\prime}, \beta^{\prime}$, yields an upper bound for $d^{*}(\alpha, \beta)$, and our proof of Theorem 1 is complete.

## Part II

1. In the introduction we saw that the boundary correspondences $h$ give rise to conformal mappings $f$, and with these we associated their Schwarzian derivatives $\varphi=\{f, z\}$. The set of all such $\varphi$ was denoted by $\Delta$. We formulate a precise definition:

The set $\Delta$ consists of all functions $\varphi$, holomorphic in $U$, such that the equation $\{f, z\}=\varphi$ has a solution $f$ which can be extended to a schlicht quasiconformal mapping of the whole plane.

Our purpose is to prove:
Theorem 2. $\Delta$ is an open subset of the Banach space of holomorphic functions with norm $\|\varphi\|=\sup |\varphi(z)| y^{2}$.

We know already that all $\varphi \in \Delta$ have norm $\leqslant \frac{3}{2}$. It will follow that the norms are in fact strictly less than $\frac{3}{2}$.
2. It is a known result that $\Delta$ contains a neighborhood of the origin ([3], [5]). As an illustration of the method we shall follow it is nevertheless useful to include a proof.

Lemma 3. $\Delta$ contains all functions $\varphi$ with $\|\varphi\|<\frac{1}{2}$.
Proof. Let $\eta_{1}$ and $\eta_{2}$ be linearly independent solutions of the differential equation

$$
\begin{equation*}
\eta^{\prime \prime}=-\frac{1}{2} \varphi \eta \tag{9}
\end{equation*}
$$

normalized by $\eta_{1}^{\prime} \eta_{2}-\eta_{2}^{\prime} \eta_{1}=1$. It is well known that $f=\eta_{1} / \eta_{2}$ satisfies $\{f, z\}=\varphi$. Observe that $f$ may be meromorphic with simple poles, and that $f^{\prime} \neq 0$ at all other points!

It is to be shown that $f$ is schlicht and has a quasiconformal extension. To construct the extension we form

$$
\begin{equation*}
F(z)=\frac{\eta_{1}(z)+(\bar{z}-z) \eta_{1}^{\prime}(z)}{\eta_{2}(z)+(\bar{z}-z) \eta_{2}^{\prime}(z)} \quad(z \in U) . \tag{10}
\end{equation*}
$$

Because $\eta_{1}^{\prime} \eta_{2}-\eta_{2}^{\prime} \eta_{1}=1$ the numerator and denominator cannot vanish simultaneously. If the denominator vanishes we set $F=\infty$, and local assertions about $F$ will apply to $1 / F$.

A simple computation which makes use of (9) gives

$$
F_{z} / F_{\bar{z}}=\frac{1}{2}(z-\bar{z})^{2} \varphi(z)
$$

Under the assumption $\|\varphi\|<\frac{1}{2}$ we conclude that $F$ is quasiconformal and sense-reversing. The mapping $z \rightarrow F(\bar{z})$ is quasiconformal and sense-preserving in $U^{*}$.

Our intention is to show that

$$
\hat{f}(z)=\left\{\begin{array}{c}
f(z) \text { in } U  \tag{11}\\
F(\bar{z}) \text { in } U^{*}
\end{array}\right.
$$

gives the desired extension. To see this it is sufficient to know that $\hat{f}$ can be extended to the real axis by continuity, that the extended function is locally schlicht at points of the real axis, and that it tends to a limit for $z \rightarrow \infty$. Indeed, $\hat{f}$ will then be locally schlicht everywhere, and by a familiar reasoning is must be globally schlicht.

The missing information is easy to supply under strong additional conditions. We suppose that $\varphi$ is analytic on the real axis, including $\infty$, where $\varphi$ shall have a zero of order $\geqslant 4$ (this means that the quadratic differential $\varphi d z^{2}$ is regular at $\infty$ ). It is immediate that $f$ and $F$ agree on the real axis, and that they are real-analytic in the closed half-planes. It follows easily that $f$ is locally schlicht. At $\infty$ the assumption implies that equation (9) has solutions whose power series expansions begin with 1 and $z$ respectively. Hence

$$
\begin{aligned}
& \eta_{1}=a_{1} z+b_{1}+O\left(|z|^{-1}\right) \\
& \eta_{2}=a_{2} z+b_{2}+O\left(|z|^{-1}\right)
\end{aligned}
$$

with $a_{1} b_{2}-a_{2} b_{1}=1$. Substitution in (10) shows that

$$
F(z)=\frac{a_{1} \bar{z}+b_{1}+O\left(|z|^{-1}\right)}{a_{2} \bar{z}+b_{2}+O\left(|z|^{-1}\right)}
$$

and therefore $f$ and $F$ have the same limit $a_{1} / a_{2}$ as $z \rightarrow \infty$.

To prove the lemma without additional assumptions we use an approximation method. We can find a sequence of linear transformations $S_{n}$ such that the closure of $S_{n} U$ is contained in $U$ and $S_{n} z \rightarrow z$ for $n \rightarrow \infty$. Take $\varphi_{n}(z)=\varphi\left(S_{n} z\right) S_{n}^{\prime}(z)^{2}$. It follows by Schwarz' lemma that $\left\|\varphi_{n}\right\|<\|\varphi\|$. Moreover, $\varphi_{n}$ is analytic on the real axis and has at least a fourth order zero at $\infty$. Consequently, there exist quasiconformal mappings $f_{n}$, holomorphic with $\left\{\hat{f}_{n}, z\right\}=\varphi_{n}$ in $U$, with uniformly bounded dilatation. A subsequence of the $\hat{f}_{n}$ converges to a limit function $\hat{f}$ which is itself schlicht and quasiconformal, and which satisfies $\{\hat{f}, z\}=\varphi$ in $U$. This completes the proof.

With suitable normalizations it is possible to arrange that $\hat{f}_{n} \rightarrow \hat{f}$, the mapping defined by (11).
3. The method of the preceding proof can be carried over to the general case, although with some significant modifications.

Suppose that $\varphi_{0} \in \Delta$ and $\left\{f_{0}, z\right\}=\varphi_{0}$. We may assume that $f_{0}$ maps $U$ on a region $\Omega$ whose boundary $L$ passes through $\infty$, and we know that $L$ admits a quasiconformal reflection $w \rightarrow w^{*}=\lambda(w)$. We choose $\lambda$ in accordance with Lemma 2.

If $\left\|\varphi-\varphi_{0}\right\|<\varepsilon$ and $\{f, z\}=\varphi$ the identity
yields

$$
\begin{gathered}
\{f, z\}=\left\{f, f_{0}\right\} f_{0}^{\prime 2}+\left\{f_{0}, z\right\} \\
\left|\left\{f, f_{0}\right\}\right|\left|f_{0}^{\prime}\right|^{2} y^{2}<\varepsilon .
\end{gathered}
$$

The non-euclidean metric in $\Omega$ is given by

$$
\varrho(w)|d w|=\frac{|d z|}{2 y}
$$

and if we write $\tilde{f}=f f_{0}^{-1}$ we obtain

$$
\begin{equation*}
|\{\tilde{f}, w\}|<4 \varepsilon \varrho(w)^{2} . \tag{12}
\end{equation*}
$$

If $\varepsilon$ is sufficiently small it is to be proved that $\tilde{f}$ is schlicht and has a quasiconformal extension.

We set $\tilde{\varphi}=\{\tilde{f}, w\}$ and $\tilde{f}=\eta_{1} / \eta_{2}$ where $\eta_{1}, \eta_{2}$ are normalized solutions of

$$
\eta^{\prime \prime}=-\frac{1}{2} \tilde{\varphi} \eta
$$

In close analogy with (10) we form

$$
F(w)=\frac{\eta_{1}(w)+\left(w^{*}-w\right) \eta_{1}^{\prime}(w)}{\eta_{2}(w)+\left(w^{*}-w\right) \eta_{2}^{\prime}(w)},
$$

where $w \in \Omega$ and $w^{*}=\lambda(w)$. Computation gives

$$
\begin{equation*}
\frac{F_{w}}{F_{\bar{w}}}=\frac{\lambda_{w}}{\lambda_{\bar{w}}}+\frac{\tilde{\varphi}\left(w-w^{*}\right)^{2}}{2 \lambda_{\bar{w}}} . \tag{13}
\end{equation*}
$$

Here $\left|\lambda_{w} / \lambda_{\bar{w}}\right| \leqslant k<1$ because $\lambda$ is quasiconformal. To estimate the second term we have first, by (12), Lemma 1 (b) and (4),

$$
|\tilde{\varphi}|\left|w-w^{*}\right|^{2}<4 \varepsilon C^{2}
$$

On the other hand, $\left|\lambda_{\bar{w}}\right|$ stays away from 0 , for Lemma 2 gives

$$
C^{-1}|d w| \leqslant\left|d w^{*}\right| \leqslant 2\left|\lambda_{\bar{w}}\right||d w|
$$

We conclude that $\left|F_{w} / F_{\bar{w}}\right|<k^{\prime}<1$ provided that $\varepsilon$ is sufficiently small.
4. We wish to show that

$$
\hat{f}=\left\{\begin{array}{cl}
f(w) & \text { in } \Omega \\
F\left(w^{*}\right) & \text { in } \Omega^{*}
\end{array}\right.
$$

is schlicht and quasiconformal. Again, the proof is easy under strong assumptions. This time we assume that $L$ is an analytic curve, that $\tilde{\varphi}$ is analytic on $L$ and that it has a fourth order zero at $\infty$. It is clear that we can prove $f$ to be a quasiconformal homeomorphism exactly as in the proof of Lemma 3.

To complete the proof, let $\zeta=\omega(w)$ be a conformal mapping of $\Omega$ on $|\zeta|<1$. Let $\Omega_{n}$ be the part of $\Omega$ that corresponds to $|\zeta|<r_{n}, L_{n}$ its boundary. Here $\left\{r_{n}\right\}$ is a sequence which converges to 1 .

A quasiconformal reflection $\lambda_{n}$ across $L_{n}$ can be constructed as follows: If $r_{n}^{2}<$ $|\omega(w)|<r_{n}$ we define $\lambda_{n}(w)$ so that $\omega(w)$ and $\omega\left(\lambda_{n}(w)\right)$ are mirror images with respect to $|\zeta|=r_{n}$. If $|\omega(w)| \leqslant r_{n}^{2}$ we find $w_{n}$ so that $\omega\left(w_{n}\right)=r_{n}^{-2} \omega(w)$ and choose $\lambda_{n}(w)=$ $\lambda\left(w_{n}\right)$. The definitions agree when $|\omega(w)|=r_{n}^{2}$, and $L_{n}^{*}$ is kept fixed. The dilatation of $\lambda_{n}$ is no greater than the maximum dilatation of $\lambda$.

After a harmless linear transformation which throws a point on $L_{n}$ to $\infty$ the part of the theorem that has already been proved can be applied to $\Omega_{n}$. It is to be observed that $\varrho_{n} \geqslant \varrho$ where $\varrho_{n}|d w|$ is the noneuclidean metric in $\Omega_{n}$. Therefore $\tilde{\varphi}$ satisfies

$$
|\tilde{\varphi}|<4 \varepsilon \varrho_{n}(w)^{2}
$$

with the same $\varepsilon$ as before. Hence there exists a quasiconformal mapping $\hat{f}_{n}$ of the whole plane which agrees with $f$ on $\Omega_{n}$ and whose dilatation lies under a fixed bound. A subsequence of the $\hat{f}_{n}$ tends to a limit mapping $\hat{f}$ which is schlicht, quasiconformal, and equal to $f$ in $\Omega$. The theorem is proved.

## References

[1]. L. Ahlfors \& L. Bers, Riemann's mapping theorem for variable metrics. Ann. of Math. 72 (1960), 385-404.
[2]. L. Ahlfors \& A. Beurling, The boundary correspondence under quasiconformal mappings. Acta Math., 56 (1956), 125-142.
[3]. L. Ahlfors \& G. Weill, A uniqueness theorem for Beltrami equations. Proc. Amer. Math. Soc., 13 (1962), 975-978.
[4]. L. Bers (to appear).
[5]. --, Correction to "Spaces of Riemann surfaces as bounded domains". Bull. Amer. Math. Soc., 67 (1961), 465-466.
[6]. Z. Nehari, The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 66 (1949), 545-551.
[7]. M. Tienari, Fortsetzung einer quasikonformen Abbildung über einen Jordanbogen. Ann. Acad. Sci. Fenn., Ser. A, I, 321 (1962).

Received February 18, 1963

