
ON THE BOUNDARY THEORY FOR MARKOV CHAINS 

BY 

KAI LAI CHUNG 

Stanford University, U. S. A. (1) 

w 1. Introduction and Sllmmary 

The boundary theory of Markov chains, as viewed here, is the s tudy of essential 

discontinuities (viz., those which are n o t  jumps) of the sample functions. The under- 

lying assumptions are such tha t  these discontinuities form a set of measure zero on 

the time axis and tha t  for any given time t, the sample function will almost certainly 

have only jumps within an open interval containing t, reaching the boundary a t  both 

ends if at  all. Thus it is a question of "how the sample curves manage to go to 

infinity and to come back from there"  (see the preface to [1]). In  Paul L~vy's ter- 

minology [9], it is a s tudy of "fictitious states".  Depending on whether the transition 

is to or from such a state, it is called a point on the "exi t"  or "entrance" boundary 

by Feller ([6], [7]). These ideal boundaries can be formally defined in terms of the 

R. S. Martin boundary theory (see [4], [5], and [8]), and the question becomes tha t  

of a suitable compactification of a discrete set, the denumerable state space of the 

Markov chain. 

In  this paper we are mainly concerned with the probabflistico-analytical aspect 

of the theory rather than the algebraico-topological one, if such a rough distinction 

may  be made. Although the boundary can be defined in the general case and in 

more than one way, so far only the atomic par t  consisting of a denumerable number  

of boundary points has been penetrated in any sense, and substantially so only if 

their number  is finite. I t  is this par t  which engages our at tention here. 

The content of this paper is most directly related to Feller's pioneering work [7]. 

Indeed, par t  of the present work arose from an effort to clarify and consolidate his 

results in probabilistic terms. While Feller regards his problem as one of constructing 

(1) This research is supported in part  by the Office of Scientific Research of the United States 
Air Force. 
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Markovian transition matrices out of simpler elements, here the viewpoint is tha t  of 

analyzing such given matrices and their associated processes. I t  is perhaps a logical 

truism to say tha t  a complete construction is t an tamount  to a complete analysis, but  

there is a difference in emphasis. We take the liberty to include, particularly in w 6, 

a number of results whose Laplace transformed versions are already in Feller's paper. 

Though Feller used the language of operator theory, he has in essence created 

his own methods based on the resolvent equation. Reuter, in a series of papers ([12], 

[13] and [14]), presented the semi-group t rea tment  of the subject and contributed to 

it in several respects. Neveu [11] gave a synthesis in a more general context com- 

prising the theory of taboo states as well as boundaries. The present work has pro- 

fited from the works of both authors as well as some private discussions with them 

and with R. S. Phillips and David Williams. 

We have found it possible to derive the basic results from the first principles 

of probability theory together with the kind of direct methods used in [1] and [3]. 

Laplace transforms are employed only at  a later stage. I t  should be mentioned tha t  

while certain analytical formulas have their "obvious" interpretations, their actual 

identification with probabilistic statements are not always a simple mat ter  (see e.g. 

Reuter  [14]}. In  our approach the basic quantities and their relations are obtained 

from considerations of the stochastic processes involved. A brief summary of the 

various sections will now be given. 

In  w 2 we give as much background material as seems feasible, though some 

further knowledge of the subject such as contained in w167 19-20 of [1] would be 

necessary for a thorough understanding of the paper. 

In  w 3 the Martin boundary theory is reviewed. Since we can use only its atomic 

par t  its role is a rather formal one. 

In  w 4 the basic theorems are derived from considerations of certain martingales, 

and Blackwell!s theorem is invoked rather  than the earlier and equivalent lattice 

approach of Feller [6]. The crucial link is the simple but  new Theorem 4.3, which 

as it were connects the two sides of the boundary. The rest is an application of the 

strong Markov property in the form given in w167 II .  8-9 of [1]. Theorem 4.6 and the 

open questions mentioned in its connection should serve as a test  stone for any 

general theory of eompactification of the state space of a Markov chain. 

In  w 5, uncomplicated probabili ty arguments are in evidence and the fairly general 

Theorem 5.5 is arrived at  speedily. I t  gives a complete description of the sample 

functions when there is no accumulation of boundary points in finite t ime and the 

situation may  be described as being of the renewal type. Analytically, this result 
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already contains the first and easier case of Feller's construction. The idea of this 

approach was explained in [3] in the one-exit case and it  is also one of the tools in 

Neveu [11] who found it independently. 

In  w 6 we use the counterpart  of Feller's idea of "canonical mapping" which 

amounts to an integration over t ime in order to convert probabilities into potentials 

(for nonrecurrent states). Interesting, even fruitful interpretations of the results may  

be obtained in this light but will not be dwelt upon here. The main result is Theo- 

rem 6.3 which yields the basic relation between the transition mechanism of a given 

Markov chain and its " jumping" components. This must  correspond to what Feller 

calls a lateral condition. Theorem 6.8 gives criteria for the validity of the second 

(forward) system of Kolmogorov differential equations which, in contrast to the first 

(backward) system, is not assumed throughout. 

In  w 7 we t reat  the dual chain to obtain the representation given in Theorem 7.4. 

This result, t reated as a major  consequence of our development here, is the point of 

departure in Feller's more algebraic theory. I t  must  be pointed out tha t  the dual 

chain is not the reversed chain (as studied in [2] in another connection) and whatever  

symmetry  it yields is more analytic than probabilistic. However, this symmet ry  can 

be further exploited as in Neveu [11], and our lack of insistence on it  may  have 

caused some losses. 

In  w 8 we employ the full force of Laplace transforms as completely monotonic 

functions. The results may  be considered as furnishing some analytical insight or 

hindsight on the situation. In  particular, Theorem 8.3 gives a criterion for complete 

construction under the same conditions as in Feller [7]. From this the more explicit 

formulas of Feller are derived with some amendment,  but  a full analysis of the second 

case (Theorem 8.5) remains to be done. 

In  w 9 the one-exit case is treated in full and the results agree with those pre- 

viously obtained by  Reuter  [13]. The connection with certain processes with independent 

s tat ionary increments, discovered by  L6vy [9] and analyzed by  Neveu [10], is briefly 

mentioned. 

In  w 10 we give an extension of the theorem of Austin-Ornstein on the positivity 

of t h e  elements of a transition matrix. While the result has only peripheral contact 

with the present work, it is included here for its own interest. 

w 2. Terminology and Notation 

We begin with a list of symbols and conventions frequently used in this paper  

without further explanation. They are appreciably the same as in [1] or [3], two 

3- -  632932 Acta mathematica. 110. Impr im6 le 14 octobre 1963. 
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major  exceptions being the omission of w wherever possible, and the use of / (1)  for ~. 

Any contrary usage will be explicitly mentioned or clearly indicated by the context. 

N is the set of nonnegative integers. The latters m, n and r denote elements of N. 

T = [ 0 ,  c~); T~ c~). The letters s, t, u and v denote elements of T ~ 

R is the set of rational numbers in T. 

I is a denumerable set of indices. The letters i, ~ and k denote elements of I. 

The letters 0, 0', 0" and 0 denote distinct objects not in I. 

In  this section a s ta tement  or formula involving an unspecified element of T o or I 

is meant  to hold for every such element. A sequence like {/t} is indexed by I; a 

matr ix  like (Pi~) is indexed by  I •  a sum like ~ j  is extended over I. After this sec- 

tion, I is to be replaced by I s (see below) in these conventions until further notice 

in w 6. Actually only on rare occasions does the inclusion or exclusion of 0 require a 

careful check. 

A function is real and finite valued. A function defined on T O and having a 

right-hand limit a t  zero is thereby extended, together with its continuity if there 

is, to T. 

eq if) = { 

if i~=], e ( t ) = J 0  if t < 0 ,  

if i=~ .  [ 1  if t~>0. 

0 if t <  0 (0<q< ~).  
1 - - e  -at if t~>0 

A (standard) substochastic transit ion matr ix  is a matr ix  (Pv), (i, ~)6 I •  of func- 

tions on T satisfying the following conditions: 

p,j(t) > 0, (2.1) 

PtJ (s) pj~ (t) = Pik (s + t), (2.2) 
i 

lim pij(t)  = 6ij, (2.3) 
tJ, o 

Z p,J(t) < 1. (2.4) 
t 

I t  is called stochastic iff equality holds in (2.4) for every i and t, and strictly sub- 

stochastic otherwise. In  the latter case we define 

p ~ o ( t ) - - l - -  ~.p~j(t), po~(t)=--O, poo( t ) -~l  (2.5) 
i e I  

(1) In honor of Feller. 
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and  call the new matr ix  enlarged by  the index 0 the stochastic complet ion of (Pij)- 

The stochastic completion of a stochastic t ransi t ion matr ix  is defined to be itself. 

Given the substochastic I - [=  (P~j), we define I0 to be I t3 {0} or I according as 1-[ is 

s tr ict ly substochastic or stochastic, and  define ri0 to be its stochastic completion. 

I t  is known tha t  each p~j has a r ight -hand derivative at  zero, to  be denoted as 

follows: 
p;j (0) = q~j, - q ,  = q,. (2.6) 

These numbers  satisfy the following relations: 

- o~ ~ < q ~ < 0 ,  0 < q ~ j <  c~,  (2 .7)  

~ q,j ~< o. (2.8) 
2 

The state i is called stable or ins tantaneous according as q~ < c~ or qt = cr and it is 

absorbing iff q~ = 0. The matr ix  (q~) will be called the ini t ial  derivative ma t r i x  of 1-I 

and it is said to be conservative iff equali ty holds in (2.8) for every i. 

Associated with a ny  matr ix  Q =  (q~) subject to the conditions (2.7) and (2 .8)are  

two systems of Kolmogorov  differential equations: 

z'ij (t) = Y. q~kzaj(t), (Iij) 
k 

z;j (t) = ~ z,~ (t) q,j. (II,~) 
k 

The m i n i m a l  solution to  both  systems, first constructed by Feller, will be denoted b y  

(I) = (/~j). I t  is a substochastic t ransi t ion matr ix  whose initial derivative matr ix  is the  

given Q. I t  is minimal in this sense: if any  substochastic t ransi t ion matr ix  (p,j) has  

the initial derivative matr ix  Q, then 

/~j (t) ~< p,j (t) (2.9) 

for every  i, j and t. 

A (temporally) homogeneous M a r k o v  chain,  or M a r k o v  chain wi th  s tat ionary transi-  

t ion probabilit ies,  associated with I and I-L is a stochastic process (xt}, t E T or t E T ~ 

on the probabil i ty triple (~, ~,  P), having the following properties: 

(i) For  each t in T or T O respectively, xt = x(t) is a discrete r andom variable, 

and the set of all possible values of all xt is I a. 

(ii) I f  t1< ... <tn,  and i 1 . . . . .  in are elements of I0, then 

e{x( tn§  = in§ I x(t~) = i .  1 ~< ~ ~< n}  

= P(x(tn +1) = in+l I X(tn) = in} =P~.t.+ 1 (tn+l -- tn). 
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A version of the process will b e  chosen to have the further properties: 

(iii) For every ~o in C2, 

x(t, ~o) = lira x(r, ~o) 
r~t, r e R  

for every t; in particular, the process is right separable with R. 

(iv) As a function of (t, co), x ( . , - )  is measurable with respect to ~ •  where 

is the usual Borel field on T; namely, the process is Borel measurable. 

From now on the process {xt) specified as in the above will be referred to as 

the given Markov chain and abbreviated as x. I t  is called open fff the parameter  set 

is T ~ The set I0 is called its (minimal) state space, each element of it being a state, 

and the matr ix  1-I0 is called its transition ~natrix. The distribution of x 0, to be always 

concentrated on I rather  than I0, is called its initial distribution and denoted by  

~' = {~'t), where 

= r { x ( o )  = i ) .  

When 7~ = 1, the resulting P will be written as P~. Mathematical expectation with 

respect to P is denoted by  E, and conditional probabilities and expectations are de- 

noted by  P ( . [ . )  and E ( . I . )  in the usual way. 

A set like (~o: x(t, co)=j} is also written more briefly as {x(t)= j}. The indicator 

[unction for the set A is defined as follows: 

0 if eoCA, 
I ( A ) = I A ( ~ ~  1 if ~oEA. 

A property involving co which is true for almost every ~o is sometimes stated 

without the qualification "almost  every".  This can be achieved by  suitably restricting 

the space ~ a t  the outset. The Borel field ~ is assumed to be complete with respect 

to P and any of its subfields is supposed to be augmented, namely it contains all 

null sets. The smallest augmented Borel field with respect to which every xs, 0 ~< s ~< t, 

is measurable is denoted by  ~t.  

A number o/ basic assumptions regarding 1-I or x will be gradually imposed as we 

proceed in the paper. They are not repeated in every theorem but any theorem given alter 

certain assumptions have been announced is asserted to be valid under these assumptions 

(though they may be valid without some o/ them), unless exceptions are speci]ied. 

We now make the following assumption which is to hold throughout this paper. 
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ASSUMPTIOlq A. For every iEI, 

(A) - ~ < q~ < O, ~ qis = 0. 
i 

The first par t  of (A) says tha t  every state (except 0 if present) is stable and  not  

absorbing. The second pa r t  of (A) is analyt ical ly equivalent  to  the  val idi ty of the  

first system of equations (f~j) for every i and j. Together  they  imply the following 

properties of the process ([1; w II.19]). 

(Almost) every sample funct ion executes an infinite sequence of jumps at  the 

times 0 < T~ < T 2 < . . . .  Let  T o = 0, and  

Z~ = x(v~) (neN) ;  (2.10) 

then x(t)=X~ for tE[Tn,'~n+l), 

and  P{v=+l - z~ ~< t[ x@0 ) . . . . .  x(z=)} = eq~(~) (t). 

(1 - ~r q~j 
L e t  r~r - -  , 

qi  

(2.11) 

(2.12) 

and I 0 = {j : ~ ?dr~j > 0}. I t  is clear t ha t  under  (A) the mat r ix  P = (r~j) is stochastic. 

The stochastic process Z = {Z=, n fiN) is a discrete parameter  Markov chain with ? as 

its initial distribution, I 0 as its state space, and P restr icted to I 0 •  0 as  its one-step 

transi t ion matrix.  I t  is called the jump chain associated with x. Let  

T =  lim $~; ( 2 . . 1 3 )  
n - - ~  o o  

then ~ is a r andom variable which m a y  be infinite with positive probabili ty.  I t  is 

called the first infinity of x. 

Define fur ther  ~(t,r for tE[0,~(oJ)), (2.14) 
to"  for t e [r(to),oo). 

Then the  stochastic process ~ = {~(t), t E T} is a homogeneous Markov chain with ? as 

its initial distribution, I 0 as its state space, and the stochastic completion of (/~j) b y  

0' as its t ransi t ion matrix.  I t  is called the minimal chain associated with x. Finally,  let 

L~(t) - l ie  (0 - 1 - Z l,;(t),  (2.15) 
t 

then we have L~(t) = P,{T~< t}. (2.16) 
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Let  us remark  tha t  if Qa and (I)0 are the initial derivative mat r ix  and  minimal  

solution associated with 1-I0, t hey  are defined on the index set Io bu t  not  necessarily 

the  stochastic completion of Q and (I). Under  Assumption A, it is easy to see tha t  

we have 

q~o=O, qo~=O, qoo= l; 
(2.17) 

/io=-O, /o i -O,  / oo -1 ,  Lo=-O. 

I t  will be noticed tha t  most  formulas involving 0 are either trivial or  easily derived 

f rom those involving only indices in I. The extra index 0 is introduced in order to 

employ the established formal language of probabil i ty theory  which requires a tota l  

probabi l i ty  of one, even when we begin with a substochastic matrix.  

w 3. The Boundary 

Given the matr ix P =  (rtj) defined in (2.12), we now choose the initial distribu- 

t ion ~ such tha t  ~,(i)> 0 for every i E I, so tha t  the jump  chain X has I as its state 

space. Unti l  Theorem 3.2 such terminology as "a lmost  closed", " invar ian t"  and "re- 

cur ren t"  refers to i~. According to a theorem by  Blackwell (see [1; w the set 

I can be decomposed as follows: 

I = O A a, (3.1) 

where the index a ranges over a nonvoid,  finite or denumerable set and where each 

A a is an  almost  closed set, a t  most  one of which is completely nonatomic  while every 

o ther  one (if any) is atomic. Fur thermore  if we write 

L ( A  ~ ) - l i m s u p  {Zn E A ~} - l iminf  {gn E A~}, (3.2) 

where "-~ " denotes equali ty modulo a null set, then we have 

P{L(A~)} = 1. (3.3) 
a 

Without  loss of generali ty we m a y  suppose tha t  the sets L ( A  a) are disjoint. The 

mapping  A--> L(A)  is a lattice isomorphism between the Borel field of equivalence classes 

of almost  closed sets and tha t  of equivalence classes of nonnull  invariant  sets. We 

recall t ha t  two almost  closed sets are equivalent  iff they  differ by  a t ransient  set, 

and  two invariant  sets are equivalent  iff t hey  differ by  a null set. 

We define for each a: 

v on L(A"),  
v ~ = (3.4) 

on ~ \ L ( A  ~) ; 
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and A = { v <  ~ } ,  Aa= {va< o o}. (3.5) 

I t  follows tha t  ~ (co)<  c~ for at  most one value of a on ~,  and for exactly one value 

of a on A. Note tha t  

i a =  i N L(Aa), (3.6) 

and tha t  A a may  be a null set; in such a case certain definitions and propositions 

below are vacuously true. 

We now introduce the boundary for g. In  the state space I let the set of non- 

recurrent states be J '  and let the distinct classes of recurrent states be I~' where j 

ranges over a possibly void, finite or denumerable set of indices J" .  Let  J =  J ' 0  J " ;  

thus J is obtained from I by leaving the nonrecurrent states alone and identifying 

the states in each recurrent class as a new state. The theory of Martin boundary 

([5], [8]; see also [4]) as applied to Z has the following consequences. 

There exists a compact metric space J* in which J is dense and each element 

of J is an isolated point. In  other words, J* is a compact metrization of J, in which 

the relative topology of J is its natural  discrete topology. The set 

B = (J* \J )  U J" (3.7) 

is called the exit boundary, J* \ J  the nonrecurrent part and J "  the recurrent part. For 

almost every m, the sequence of random variables {Zn, n EN} behaves in one of the 

following two alternative ways: 

(i) either Zn(~o) converges in the metric of J* to a point in J" ;  this happens if 

and only if for some ] in J "  and some m in N, we have Z~(o))Eli '  for all 

n>~m; 

(it) or Z~(co) converges in the metric of J* to a point in J* \ J ;  this happens if 

and only if Z~(eo)EJ' for all n in N. 

In  both cases the limit, which is a random variable taking values in the boundary 

set B, will be denoted by Z~ (~). Let  ~ be the topological Borel field of the metric 

space J*; the boundary measure /~ is defined as follows: 

~(C) = P{Z~ e ~} (C e ~). (3.8) 

Clearly we have ~u(J')= 0. For a singleton {b}c  B we write /~(b) for /~({b}). A point 

b in B such that  # ( b ) > 0  is called an atomic boundary point. Every  existing recurrent 

class forms such a point. The set of atomic boundary points is called the (completely) 

atomic Tart of the boundary, the remaining par t  the (completely) nonatomic part. Either 

par t  may  be void. 
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THEOREM 3.1. There is a one-to-one-to-one correspondence between, an atomic in- 

variant set A,  an atomic almost closed set A,  and an atomic boundary point b such that 

h - L(A) -" {)C~ = b}. (3.9) 

This being so, the respective nonatomic parts are in similar correspondence. 

Proo/. The first correspondence in (3.9) is Blaekwell's theorem cited above, and 

the second one is a simple consequence of a result due to Hunt  [8], according to 

which the Borel field of all invariant  sets coincides with the smallest Borel field with 

respect to which go~ is measurable. The proof is terminated. 

To proceed to the corresponding boundary for x, the t ime e lementwi l l  now be 

introduced. We know [1; Theorem II.19.1] tha t  

1 

making it manifest tha t  the set {v<  oo} is invariant and so by  Hunt ' s  result just  

quoted, there exists a subset B 0 of B, belonging to ~, such tha t  

(3.10) 

Clearly B o is a subset of the nonrecurrent par t  of the boundary; B o is called the 

passable part, and B \ B  0 the impassable part of the boundary. I t  is important  to re- 

mark  tha t  while B depends only on (r~j), Bo depends on {q~) as well, namely it depends 

on (qtt). 

For each s in T, let Vs.o(eO)=s and g,.o(eO)=xs(o)). Let  the successive times of 

jump of x ( . ,  ~o) after s be {v,.~(eo), hEN} and let 

g,.n(eo)=x(v,.n(o~), o~) (hEN). (3.11) 

The process {gs.n, hEN} is called the jump chain starting at  t ime s; it has properties 

similar to g which is just the special case where s =0 .  Let  

v8.~0 = l i m  vs.n, g s . ~  = l ira Zs.n, (3 .12)  
n--~oo n- .~oo  

the lat ter  limit being again in the topology of J*. We shall say tha t  after the given 

t ime s, the boundary is first reached a t  t ime ~8. ~o and a t  the point g,..r Given a 

subinterval S of T, the boundary is reached in S a t  b iff there is an s in S such 

tha t  v8 .~6S  and Xs.~o=b. Note tha t  the state space of {Zs.n}, as well as the.corre-  
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sponding boundary measure #8(C)=P{Zs.~ E C}, may  vary  with s. Since for each 

given s, almost every sample function is constant in an open interval containing s, 

it is sufficient to consider all jump chains starting at  rational times. More precisely, 

for almost all co, all ~r.~r (co) and Zr. r are well defined simultaneously for all r 

in It; and for each fixed s, we have for almost every co (the exceptional null set 

depending on s): 
vs. ~ (co) = lira yr. ~ (o)), Z~. ~ (co) = lim Zr. ~ (co). (3.13) 

However, it is false tha t  for almost every r there is a first t ime tha t  the boundary 

is reached after every (generic, not fixed) t. Indeed this may  be false for t equal to 

the first infinity ~(r and here lies much of the difficulty of the theory. 

The boundary concepts given in this section are maximal ones relative to a given 

matr ix  P or Q. A smaller boundary can be defined relative, in addition, to a given 

initial distribution 7. By choosing an everywhere positive 7 to begin with we have 

in effect covered all possible choices of 7, and so in particular included the boundary 

of {gs.n} for every s. 

We conclude this section by a description of the set of states from which the 

nonrecurrent and passable  par t  of boundary can not be reached. A sample pa th  be- 

ginning at  such a state will either reach the recurrent par t  of the boundary in finite 

t ime or remain indefinitely in some almost closed set, approaching the impassable 

par t  of the boundary as times goes to infinity. Let  

Z = { i E I  :L,=O}.  (3.14) 

In  the following, the notions "stochastically closed" and "recurrence" will be pre- 

fixed by  l-~ or (I) according to the transition matr ix  t h e y  refer to. 

THEOREM 3.2. The set Z is the set o/ i such that 

= = 1 .  

I t  is 1-I-stochastically closed and contains all r states. 

(3.15) 

Proo/. The first assertion follows at  once from (2.16). Next,  if i E Z ,  then by  (2.9), 

1 = ~/~j(t) < ~p , j ( t )  <~ 1; (3.16) 
t 1 

hence ]~j-p~j. I t  follows from the definition (2.15) tha t  

L~ (s + t) - Li (s) = ~ ]~j(s) Lj(t) ; (3.17) 
J 
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hence if i EZ, and / ,s(8)=p,j(s)>0 for some s, then Ls--O, proving tha t  Z is i-I- 

stochastically closed. Furthermore we deduce from (3.17) tha t  for every m and s: 

1 t> ~ [L, ((n + 1) s) - L, (ns)] >~ ~ / ,  (ns) L, (s). (3.18) 
n = 0  n =O 

I f  i is (I)-recurrent, then ~ / , ( n s ) =  ~ .  (3.19) 
n = 0  

I t  follows from (3.18) and (3.19) tha t  L~(s)=0. This being true for any s, we con- 

clude tha t  i E Z. 

An alternative proof of the last par t  of the theorem is as follows. By a funda- 

mental  result on stable states ([1; Theorem 5.7]), the number  of disjoint /-intervals 

for x(t, ~o) is finite in any  finite subinterval of T for almost every w. Consequently, 

the total  number  of disjoint /-intervals for the minimal chain is finite whenever 

T(co) < ~ .  On the other hand, if i is (I)-recurrent (and not absorbing), this number  

must  be infinite and so (3.15) must  hold, hence iEZ .  

Remark. I t  is possible tha t  i is [I-recurrent  and yet  i IS Z. We need only take 

an infinite number  of independent copies of an ascending escalator, hitched onto one 

another (see [1; w Every  state is O-nonrecurrent and [I-recurrent  in the re- 

sulting chain, and Z is void. 

COROLLARY TO THEOREM 3.2. Z = I  i/ and only i/ the passable part o/ the 

boundary is void, or 1-I = ~.  

w 4. Fundamental Theorems 

Recalling (3.4) we put  L?(t)=P,{va<~t}; (4.1) 

then L~(t) is the probability, starting from i, tha t  the first infinity is reached no 

later than at  t ime t, and tha t  the jump chain finishes by  remaining in the almost 

closed set A a. We have clearly 

L, = ~ L~; (4.2) 
a 

and the analogue of (3.17) holds: 

L~ (s + t) - L~ (s) = ~ [ij (s) L~ (t), (1) (4.3) 
t 

(z) By  our  convent ion i * O  and  j * 0 ,  bu t  we can in vir tue of (2.17) extend this  and similar 
formulas  to cover the  index 0. 
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this t ime from its probabil ist ic  meaning.  B y  a general  analyt ical  l emma  ([3; L e m m a  2]), 

the equa t ion  (4.3) implies t h a t  each L~ has  a cont inuous der ivat ive  l~ in T satisfying 

l a (s + t) = ~/~j (s) 17 (t). (4.4) 
1 

Fur thermore ,  the Ko lmogorov  equat ion (Ii0,) for /go" (see (2.15)) reduces to 

t~ (t) = Y~ q,j L? (t). (4.5) 
1 

Since L a ( 0 ) =  0 it follows t h a t  
17 (0) = 0. (4.6) 

THEOREM 4.1. We have /or every t: 0< t~<  co, with  probabi l i ty  one: 

lim Lx , ( t  ) = l(Aa). (4.7) 
n--~oo 

Proo/ .  We have  ([1; w 

' (4 . s )  
m = n q x,~ , 

where the  series converges on A and diverges on ~ \ A .  B y  L6vy ' s  zero-or-one law, 

we have  on AS: 

l im P{v = ~ I Z . }  = 1, 
n . - ~  

and consequently lim E (v ~ - vn I Zn} = 0. 
n-.-~oo 

Since 1 - L~,(t)  = P{v a - rn > t l Zn} ~< t - i  E{ va - ~'n I Zn}, (4.9) 

it  follows tha t  the first  m e m b e r  in (4.9) converges to zero as n-->co.  On the o ther  

hand,  by  the  same law we have  on A]\ A~: 

lira p ( ~ a  = ~ l Z . }  = 1. 

Hence it  follows f rom the first  relat ion in (4.9) t h a t  its f irst  m e m b e r  converges to 

one as n-->co.  Thus  (4.7) is p roved  for  0 < t <  co. This t r ivial ly implies ( 4 . 7 ) f o r  

t =  co on A ~, which in tu rn  implies the same on ~ \ A  ~ by  (4.2). Theorem 4.1 is 

proved.  

COROLLARY. F o r  each a such that P{A~}>O,  there exists  a sequence o / s t a t e s  {in} 

such that /or every b: 

l im L~ ( . )  = (~ab e(- ). 
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In particular if ~ (2) = f ; e  -at dL~ (t), 

. b (~ab.  then hm Zs. (2) = 

Let  CE~,  then {Z~ EC} is an invariant set for Z, hence if we set Us=P,{Z~eC}, 
we have 

Ut= ~ rssUj or ~. qsjUj=O. (4.10) 
i t 

Define the function Us( ' )  on T as follows: 

Us (t) = U, - ~ f,j(t) Uj, (4.11) 
i 

then we have Us(t) = Ps{X~ E C; v~< t}. (4.12) 

I t  follows from (4.11) or (4.12) tha t  

Ut (s + t) - Us (s) = ~/sj  (s) Uj (t) ; (4.13) 
J 

hence by  the lemma cited after (4.3), each Us(" ) has a continuous derivative us(" ) 

satisfying 
us(s+t)=~/tj(s)uj(t) ( s>0,  t>0) .  (4.14) 

t 

If C is a subset of B\B0, then U s ( ' ) - 0  for every i by (4.12), and conversely. Other- 

wise, us(t)> 0 for some i and t >0  (see the Appendix for a stronger result). If  C is 

a passable atomic boundary point corresponding to A ~, then Us(" ) reduces to L~(.  ). 

A set of nonnegative functions {us( ")} with us(0)=0 for every i and satisfying 

(4.14) will be called an exit solution for O. If the us's are nonnegative and satisfy 

(4.14), and we set 
a,( t )  = us(t) - Y ~st(t) us(0), 

t 

then {us(" )} is an exit solution for O. 

We now make our second basic assumption: 

AssvMPTIO~ B. The passable part o~ the boundary is nonvoid and completely 
atomic. 

We shall denote these atomic boundary points by {~a ,  aEA}, where A is a non- 

void, finite or denumerable index set. We have thus 

oo}= u {e< oo}: u oo; oo% 
a E A  a ~ A  

THEOREM 4.2. Under Assumption B, every exit solution satis/ying 

l~~ dt<~l (4.15) 
j o  
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is given by u~(t)= ~ Cala(t), (4.16) 
a e A  

where 0 <~ c a <~ 1 /or every a in A. Furthermore the representation (4.16) is unique. 

Proo[. Let  {u~(.)} satisfy (4.14) and (4.15). Since the Kolmogorov equation (I~j) 

for (I) is equivalent to 

/ , ~ ( s )  = 5,,f:e-q'<'-')q,~l~,(v)dv+~,,, (4.17) 

we have, upon substitution into (4.14): 

u,(s + t)-u~(t)= ~ ~:e-"(8-')q,~uk(v + t)dv. 

I t  is easy to see that  we can let t ~ 0 termwise under the integral; and integrating 

the resulting equation over (0, c~), we obtain 

f o r  u~(s)ds= ~ qVlqik , uk(v)dv. 
k ~  J O  

Hence if we set U~=S~u~(s)ds,{U~} is a solution of (4.10) with 0 ~ < U ~ I .  By a 

theorem due to BlackweU ([1; w 1.17]), to such a solution there corresponds an in- 

variant function ~ with 0 ~< ~ < 1 such that  U~ = E~(~0). Now decompose ~ as follows: 

~ = 5 c ~ 1 ( A ~ ) + ~  0 (O <. Ca <. l ), 

where A a = L ( A  ~) in (3.2), and the sum is over the disjoint atomic invariant sets, 

~0 being the remainder which vanishes on the atomic invariant sets. We have, cor- 

respondingly, 

U~ = Z c~e~ (A ~) + E, (~0), 

and using (4.11), the discussion after (4.14), and Assumption B: 

f' 
U,(t)= ~ c~L~(t) = ~. c~la(s)ds. 

a e A  J 0  a e A  

Upon differentiation we obtain (4.16) a.e.  Since ~al~(t)=l~(t), the series converges uni- 

formly in every compact interval of T by Dini's Theorem. I t  follows that  both mem- 

bers of (4.16) are continuous and so the equation holds for every t. 

Suppose u~(" ) has another representation of the form (4.16) with c ~ replaced by 

d~; it follows that  
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c~L~(t)  = ~. d~L~(t ) .  
a E A  a e A  

Applying the Corollary to  Theorem 4.1, we have c a= d ~. Thus the representat ion is 

unique and Theorem 4.2 is proved. 

B y  the same argument ,  we see t h a t  the set of exit solutions (l~(.)},  a E A, is a 

linearly independent  set. The conclusion of Theorem 4.2 m a y  be expressed by  saying 

tha t  this set is the extreme base of the space of exit solutions. 

F rom now on an unspecified super-index a or b denotes an  element of A and 

an unspecified sum over it extends over A. 

For  terminology relevant to  opt ional i ty  see [1; w I I .  8-9]. I n  particular,  if ~ is 

optional.  ~ and ~ denote  respectively the pre-~ and post-v fields. 

L E M M A .  E a c h  ~ is an  optional random variable. 

Proo[. For  each hEN,  v~ is optional, as can be seen by  induct ion on n. Next,  

let rn.m = [mvn + 1 ] / m  for every  positive integer m. Then ~ .m is rat ionally valued and 

optional, and vn. ~ < t for all sufficiently large m on the set {v < t}. These facts imply 

t h a t  x(V~.m) is measurable with respect to the pre-v field ~ for large m. Since al- 

most  every sample function is constant  in a r ight-hand neighborhood of every  v~, by  

the basic proper ty  of a stable state, we have 

l im  x(v , .  m) = x(vn) 
m - - > o r  

with probabil i ty one by  the specification (iii) in w 2 of x. Hence every x(Tn) is mea- 

surable with respect to  ~ .  Now 

?rlffil n ~ m  

The lemma is proved. 

Under  Assumption B, if ~ is positive everywhere as in w 3, then P(A ~) > 0  for 

every a in A. For  an arb i t rary  y, some P(A a) m a y  be zero. I n  wha t  follows, we shall 

taci t ly  suppose tha t  P(A a) > 0  in a discussion involving A ~. 

The post -v  ~ process x a= {x~, t E T ~ on A a is defined as follows: 

x'~ = x a (t) = x(~ a + t). (4.18) 

B y  the strong M a r k o v  property  as discussed in [1; w I I .  9], x a is an open, homogeneous 

Markov chain on the probabi l i ty  triple (A a, ~ ,  I~), where ~ = ~ ~ A ~, pa( .  ) = p ( .  IAa), 

with a certain subset I ~ of I e as its state space and with the restriction of l-J0 to  I a • I ~ 

as its t ransit ion matrix.  Properties corresponding to (iii) and (iv) in w 2 also hold. 
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The process x a can be extended to the parameter set T on A ~ if and only if xa(O)= 

x(~ a) E Ia almost everywhere on A a. 

The next few theorems and their corollaries form the probabilistic basis of the 

present investigation. 

THEOREM 4.3. For each a in A, each ~ in Io and each t > 0 ,  there exists a number 

~? (t) such that 

lim P(A~; x ~ (t) = ] I :~n} = 1 (h~)~? (t). (4.19) 
n---~oo 

Proof. For each n and t, we have 

I [ m ( ~ + t - v - ) §  
T a -~- t = lim vn + 

m-~r m 

I t  follows from an argument similar to that  in the lemma above that  x(~a+ t) is 

measurable with respect to the post-vn field ~ ,  and hence with respect to N n ~ .  

This fact and the fact that  g is Markovian imply that  the limit in (4.19) exists by 

the martingale convergence theorem, and being the limit it is ipso facto an invariant 

function for Z. On ~\A a it is zero by Ldvy's zero-or-one law. In general it is constant 

on each atomic invariant set Aa=L(Aa).  This constant is the ~ ( t ) i n  (4.19). Theorem 

4.3 is proved. 

COROLLARY. We have p(xa(t) =~[ Aa} =~a(t), 

SO that (~( t ) }  is the absolute distribution o/ the post-~ process at time t. 

I t  follows that  ~ ~ (t) = 1, (4.20) 
i e I  a 

Z ~? (s)p,j (t) = ~? (s + t). (4.21) 
i d  a 

In particular by a general analytical lemma ([3; Lemma 1]), each ~a is continuous in T. 

Define ~ - =  V n ~ .  Note that  in general ~ -  is a proper subfield of ~ ,  but v is 

measurable with respect to ~- .  

THEOREM 4.4. For each a in A, i f  M E ~  and M' E~'~, then 

P(MM' [ i a}  = P(M] Aa}p(M']Aa}. (4.22) 

Proof. Let hEN and M E ~ .  If n < m ,  then ~ c ~ m  trivially and ~ ; c ~ ; m  by 
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the argument at the beginning of the preceding proof. Hence M e ~ and {x o(0 = J} e ~. 
Applying the strong Markov p roper ty  to  ~m, we have [1; Theorem II .  9.3]: 

P(M; &~; x ~ (0 = J [ Zm} = P{M ] Zm) P( A~; x ~ (t) = j I Zm}. 

Integrat ing over ~ and lett ing m-> ~ ,  we have 

P{M; ~; ~~ = i} = ~ ~ P{M I Zm} e{A~ x ~ = j[zm} alP. (4.23) 

Now if ~ denotes the invariant  field for Z, then  AaE ~ and by  the Markovian pro- 

per ry  of Z and a simple mart ingale convergenqe theorem: 

lim P{M [ Zm} = P{M] Zm, Zm+l . . . .  } = P(M I,~}; 

consequently f a -  l im  P(M] X~} dP = P(M; A~}. (4.24) 

Using (4.19) and (4.24) in (4.23), we obta in  

P{M; x ~ (t) = j ] A ~} = P{M ] A ~} ~? (t). 

Applying the strong Markov proper ty  to C + t, we obtain fur thermore  tha t  if 0 < t = 

t x < ... < t~, then  

P(M; x ~ (t~) = j~, 1 ~< v < 11 Aa} 

l-1 
= P(M[ A ~) ~j~, (tl)l"IPyv,v+l (tv+l - tv) 

v=l 

= P{M] A ~} P{x ~ (t~) = h, 1 < v < l I A~). 

This being t rue  for a rb i t ra ry  t~'s and ?','s we conclude t ha t  (4.22) holds for every  

M e ~ ,  and M ' e ~ ;  since n is a rb i t ra ry  it holds also for every  M e V n ~  = ~ - .  

Theorem 4.4 is proved. 

THEOREM 4.5. For almost every eo in A ~, t~(m)-->t implies 

~i~p~.. .~) .j(t ,  (~)) = ~ (t) (4.25) 

/or every r in R and j in Io. 

Proo/. We first prove (4.25) with r = O  and all tn(W) equal to a fixed t, and with 

the exceptional null set possibly varying with t. Given e > 0, there  exist  F and m such 
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tha t  I ~ A  a and p ( A a \ p ) < ~ ,  and such tha t  if o�EI ~ and n > m ,  we have 

~(o9)  - ~n (o9) < ~. 

37 

(4.26) 

The basic proper ty  of the stable state ~" for the post-vn process implies t ha t  on F:  

p{Aa; xa(t) = i lZn} >~ e(x(~n + t) = j [ Zn}e -~" =px, . , ( t )e  -q ' .  

Lett ing n-->c~, then  e-->O, we obtain from Theorem 4.3: 

~? (0/> l im p~,.,  (t) 

almost  everywhere on A a. Similarly we have if 8 < t, 

e{ •  x ~ ( t -  e) = i I z~}e- ' ,  ~ < e{x(~,  + t) = i lzn} =p~.., (0. 

Passing to  limits as before, we obtain  

~? (t) -<< n__m p~..j(t) 
n - ~ o o  

almost  everywhere on A a. Thus (4.25) is t rue in this case. Applying this a doubly  

denumerable number  of times, we infer t ha t  for almost  every  o9 in A a, and for a 

fixed sequence {rm} converging to zero, 

l i m  Pxr,~ (~,).J (rm) = ~ (rm) (4.27) 

for every  r, ~" and m. For  a ny  o9 for which (4.27) holds, and for which fur thermore 

Zr, n (o9)EI0 for every r and n, we now show tha t  the stronger (4.25) also holds, as 

follows. Le t  Zr, n (o9) = in, t~ (o9) = tn. For  any  t > 0, there exists m such tha t  t > rm; hence 

tn>rm for all sufficiently large n. We have by  Fa tou ' s  lemma and  (4.21): 

lim p~.j (tn) ~> ~. lim p~,,~ (rm)p~j (t~ - rm) 

= ~ ~ (rrn)p,i (t -- rm) = ~a (t). ( 4 . 2 8 )  
t 

Consequently by  (4.20) 

If> ~ limp%j(tn)~> ~ ( t ) = l .  
JeI O ~ JeI 0 

Hence equali ty holds in (4.28), and this remains true if {in} is replaced by  a sub- 

sequence. Therefore the lim in (4.28) m a y  be replaced by  lim and Theorem 4.5 is 

proved. 

4--  632932 Acta mathematica. 110. Impr im6 le 14 oetobre 1963. 
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As a consequence of Theorem 4.5, we shall prove  a p rope r ty  of sample  funct ions 

regarding the  t ime  set  on which the  bounda ry  is reached. The  corresponding p rope r ty  

[1; Theorem I I .  6.1], first  p roved  b y  Doob for an ord inary  (vs. a fictitious) state,  is 

a ma jo r  result  in the  theory  of Markov  chains. Two passable a tomic  bounda ry  points  

oo~ and oo b, a # b ,  are said to be indistinguishable iff the  corresponding p o s t - ~  and  

post-~ b processes have  the  same finite-dimensional distr ibutions;  otherwise t hey  are 

distinguishable. I f  oo ~ and  oo~ are indist inguishable,  t hey  can be "merged"  as follows. 

Define 

= u A O U O =  A ~  u 

vaub { ~  on A ~, xaub(t ) ~x~(t) on 
= "t "b, on A b, =[xb(t),  on 

(t)--= (t) + L,  (t),  oob (t) = (t) (t); 

~ a 

Ab; 

and  t r ea t  the  union of the  two a tomic  bounda ry  points  as if t hey  were one. 

For  each to, let  the  set  of t for which there  is an s < t  such t h a t  v~ .~( to )= t  and  

Z~.~ ( to)= o~ be denoted b y  S ~(to). This  is the  t ime  set  on which the  sample  func- 

t ion x ( . ,  to) reaches the  boundary  a t  the  point  oo% The union of Sock(to) over  a in 

A m a y  be denoted b y  S~ (to) and  is the  t ime  set  on which x ( . ,  to) reaches the  bound-  

a ry  (under Assumpt ions  A and B). Note  t h a t  t E S :  (to) does no t  imply  x(t, to)= oo, 

according to  the  specification (iii) in w 2. 

Tt tEOREM 4.6. I /  o ~  and o~ b are distinguishable, then /or almost every to, no t 

is a felt.hand [or r/ght-hand](I) limit l~oint o/ both Sea(to) and S~b(to). 

Proof. Let  ~o with P ( ~ o ) =  1 be so chosen t h a t  (i) every  stable s ta te  is t a k e n  

in an  open set; (ii) for every  ~, s and  t where s <  t the  mar t ingale  

p~,~.j(t - r) 

as r ~ s or r ~' s, r E R, has a unique limit;  (iii) Theorem 4.5 holds for every  a. The  

second st ipulat ion is possible b y  the  regular i ty  propert ies  of the  sample  funct ions of 

a mar t ingale  (see [1; p. 153]). We now show t h a t  if for some to o in ~o, and  an  s in 

T ~ bo th  S~a(too) and  S~b(too) intersect  (s, s + ~ )  for a rb i t rar i ly  small  ~, then  ~ ( .  ) ~  

~b(. ). A similar proof  holds for ( s - ~ ,  s). 

B y  hypothesis ,  for every  ~ there  exists an  r in R such t h a t  

(I) t is a left-hand or right-hand limit point of S according as (t, t+8) N S=vO or ( t-a,  t) N 
S * 0 for every 8 > 0. 
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z r .~E( s , s+~)  and gr.~r = ~ a. 

Hence by (i) and (iii) above, there exists a sequence s~ E R, sn ~ zr. ~ such that  if t > 8 + ~, 

lira p~r j (t - s~) = ~ ( - yr. ~). 

Since ~ is arbitrary and ~ is continuous, this implies tha t  there exists a sequence 

r~ER, rn~ ssuch that  ff t > s ,  

A similar relation holds for another sequence rn e R, r~ ~ s, and ~ instead of ~ .  There- 

fore by (ii) above, 
~? (t  - 8)  = ~ (t  - s ) .  

This being true for every t > s ,  we have ~ ( . ) ~ ] ( . ) ,  proving the theorem. 

Remark. A point of jump t is a right-hand limit point of some S~(~o) and a 

left-hand limit point of a distinct Sj(w). Without assuming that  the states are stable, 

i and ] may  be instantaneous if the unilateral limits are replaced by  lower limits. 

From this we surmise that  the unilaterality stipulation in the theorem is necessary, 

though we are not giving a specific counterexample, nor one to show that  the dis- 

tinguishability is also necessary. 

w 5. The First Approach 

The starting point of the analysis of probabilities of transition to and from the 

boundary is the following result. 

THEOREM 5.1. Under Assumptions A and B,  we have 

p~s(t) = ,~j(t) + ~ ftolr Cs) r (t- s)ds. (5.1) 

Proo[. We have 

P, {xt = ]} = P~ {~ > t; xt = }} + ~ P, {~  < t; xt = j}. (5.2) 

The first term on the right side is, according to (2.14), P~{s Next, the 

conditional independence asserted in Theorem 4.4 implies, by [1; Theorem II. 9.4], tha t  

Substituting into (5.2) we obtain (5.1). Theorem 5.1 is proved. 

For any subintervM (s, t) of T ~ we define 
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oa(s, t )={W: X~( " , W) does not  reach the  bounda ry  in (s, t)} 

= {~o: x~( ., w) has only jumps  in (8, t)}. (5.3) 

I t  is immater ia l  whether  the  interval  (s, t) is open or closed, provided t h a t  a null 

se t  can be ignored. Now we define for each t: 

O~(to) = O~(t, o~)=inf  {s: O<~s<~t; eo fiOa(s, t)}. (5.4) 

I t  is easy to  see t h a t  0~ is a r andom variable with a cont inuous distr ibution,  which 

will be given shortly.  We call 0~(t, o~) the last exit /rom the boundary be/ore time t /or  

the sample /unction xa( �9 , ~). B y  definit ion 0~(t, co) e i ther  belongs to  or is a r igh t -hand  

l imit  point  of the  set  

ae/k 

b u t  it  m a y  be the  lef t -hand endpoint  of a s table interval .  E v e n  if A is finite, 0a(t, o~) 

m a y  be a r igh t -hand  l imit  point  of a certain S ~(co) (see Theorem 4.5), and  not  

belong to  S~r 

I t  follows f rom the Corollary to  Theorem 4.3 t h a t  if 0 <  s <  t, then  

Paf'~a~8;(vt "~ X ~ = j }  : ~ ~ ( 8 ) / t j ( t - 8 )  ( ~ E I a ) ;  ( 5 , 5 )  
iEI a 

pa (Of ~< s} = 2 ~? (s) [1 - L, (t - s)] = 1 - 2 ~? (8) L, (t - 8). (5.6) 
t~I  ~ i e I  a 

I n  dealing with x ~, the  appropr ia te  s ta te  space is I a (which m a y  or m a y  not  include 

0) as no ted  above,  bu t  we shall f requent ly  omi t  it when no confusion can arise. We 

now define 

~ (t) = P~ {0~ = O; x~ = j }  (5 .7)  

r (t) = ea {o? > 0}. (5.8) 

T a E O R g M  5.2. We have 

~? (t) = l i m  ~ ~ (s)/,s (t - s)  = l i m  ~ ~ (s)/~j (t); 
s ;O i s~O f 

Qa (t) = lim ~ ~ (s)L, (t - s) = lira ~ ~ (s)L, (t); 
s~O i s~O 

o~ + ~: ;~(t) = 1; 
] 

Y~ r (s) l,s (t) = r (s + t). 
t 

(5.9) 

(5.10} 

(5.11) 

(5.12) 
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Proo/. The first equations in (5.9) and (5.10) follow upon letting s ~ 0 in (5.5) 

and (5.6); indeed in either case there is monotone convergence. The second equations 

follow from the stochastic continuity of ~ and x at. Analytically, the second equation 

in (5.9), e.g., can be proved by the inequalities, valid for 0 <  s<  t, 0 <  s <  ~: 

l ,j(t  - s) l , ( s )  < l,j (t) < t , j ( t  + ,~ - s )  [ lz  (,~ - s)]  -~, 

and the eontinuity of ~ to be noted below. Summing (5.7) over j and adding (5.8) 

we obtain (5.11). Finally, (5.12) is obvious from the meaning of ~ ( t )  as the proba- 

bility that  xa(t, co)=/  and eoEoa(o,t). An analytic proof using (5.9)is also immediate 

if we observe that  

~. ~ (s) / , j ( t -  s) < ~ ~ (s)p, j( t -  s) = ~? (t), 
i $ 

so that  the series ~ (~  ~ (s)/~j ( t -  s)} (5.13) 
t i 

in j is uniformly convergent in s E (0, t). 

THEOREM 5.3. For every a and b in A, there exists a nonnegative nondecreasing 

/unction Lab <~ 1 and a sequence s~ ~ 0 such that 

L ab(t)= l i m ~  a b ~ea , s  ~L b ~ (s~)Lt ( t - s ~ ) =  lira/_ ~ ~ .j  i (t) 
n--~oo t n--}oo i 

(5.14) 

/or every t > O. The/unction L ab is absolutely continuous in T O but may have a ~ump at zero; 

its almost everywhere derivative 1 ab satisfies,/or almost every t, the equation 

l a~ (t) = 5 r (s) l~ ( t -  s) (0 < s < t). (5 .15)  
i 

G Proo/. The set of functions ~ ~ (s) L~ (t - s) of t in (m -1, ~ ) indexed by s E (0, m -1) 

consists of bounded, nondecreasing functions. Hence by Helly's theorem a sequence 

{s~} exists for which the first relation in (5.14) holds for t E (m -i, ~ ) .  Letting m-->~ 

and using the diagonal argument we obtain the first relation in (5.14) as asserted. 

Now we have by (4.3), if s<  t l<  t2; 

~ ( s ) { L ~ ( t 2 - s ) - L ~ ( t l - s ) = } ~ .  { Z ~ ( s ) / , j ( t l - s ) } L ~ ( t 2 - t  O. (5.16) 

Letting s ~ 0 along the sequence (Sn} and using (5.9), (5.14) and the remark involv- 

ing (5.13), we obtain 

�9 a i b t L ~  (t2) - Lab (tl) = ~ tJ (tl) J ( 2 - t1)- 
1 
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Consequently L ab is continuous in T O and the second relation in (5.14) follows from 

the first as in Theorem 5.2. Furthermore i t  follows tha t  

f l  -ta 
Lab(t2)-Lab( t~)= ~r  (5.17) 

t 

I f  O < r < 8 ,  we have by  (5.12) and (4.4): 

~? (8) t~ (u) = Y {Z r ( r ) / . ( 8 -  r)} l~ (~) (5.1s) 
1 t t 

t 1 

- / . ~  j ~ ( u + s - r ) .  
t 

Hence we can define a function 1 ab by (5.15) and substituting into (5.17) we obtain 

f t  s Laa(t2)-Lab(tl) = lab(s)d8 ( 0 < / x < t 2 <  ~ ) .  (5.19) 
1 

COROLLARY, The le/t member o/ (5.16) converges as s ~ 0 to the le/t member o/(5.17) .  

Proo]. This follows since each sequence {8n} converging to zero contains a sub- 

sequence along which the left member  of (5 .16)converges  to the unique limit 

given in (5.19). 

Remark. The corollary says tha t  the measures in t corresponding to ~ ~ (8)L~ ( t -  8) 

converge on T o as s ~ 0. We do not know if they converge on T. More precisely, de- 

fine Lab(0)=0 and let the jump of L ab at  zero be denoted by  Lab(0+);  does 

lim lim ~ ~ (8) Lib (t - 8) 
t~O s;O t 

exist and equal to L ~ ( 0 + ) ?  

THWORWM 5.4. Under Assumption8 A and B,  we have 

i / a n d  only i/  

(')= (')+ oo fl ( ' -  .)dL~176 (.) 

r 
b 

(5.20) 

(5.21) 

Proo]. Substituting (5.1) into (4.21), we have 

~? (8 + t) = ~ #~ (s) l,j (t) + #~ (t - u )  d,  [Y ~,~ ( e ) L ~, (u)]. 
beA t 

(5 .22)  
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Since A is denumerable,  there exists by  the diagonal a rgument  a sequence {s,} { 0 

such t h a t  (5.14) holds for every  a and  b. Since each ~ is continuous, this implies the 

convergence of each integral  in (5.22) to its corresponding limit. Hence b y  (5.9) and 

Fa tou ' s  lemma, (5.20) holds with " = "  replaced by  " / > " .  Summing over ~ in I a, 

we have 

1 >/~ ~? (t) + E L ab (t). 
1 bcA 

Comparing this with (5.11) we see tha t  (5.21) is a necessary and sufficient condit ion 

for the equal i ty  to  hold in (5.20). 

COROLLAI~Y. A su//icient condition /or the validity o/(5.20) is that/or each a, there 

is only a finite number o/b  such that Lab(co)>0; this is the case i/ A is a finite set. 

Let  the Laplace t ransforms be defined as follows, 0 < )t< oo : 

$?(a) = f :  e-~'~?(t)dt, $?(~)=ffe-~?(t)dt,] 
Lab(2)= ff e-~tdLab(t)=Lab(O+ )+ f:e-~tlab(t)dt. 

(5.23) 

The equat ion (5.20) becomes, omit t ing the index ]: 

~~ (z) = ~ (z) + E L ~ (~) ~ (z); (5.24) 
b 

or in matr ix  form on the super-index: 

[I - A (2)] ~ (Z) = ~ (2), (5.25) 

where I is the ident i ty  matrix,  

A($) = (L ab (2)), (a, b) e A • A, 

and ~(~) and  ~(~) are regarded as column vectors with the components  indexed b y  A. 

Following an established terminology [1; w I.  3], we write a,...,b iff Lab(oo)>0 ,  

otherwise a ~ b; and we write a ~ ,  b iff a , . ~  b and b ~-~ a. Note  t h a t  an  equivalent  

definition is obtained if we use Lab(a) for any  ~t< oo instead of Lab ( co ) = Lab (0). The 

index a is essential iff there exists b such t h a t  a ,-~ b and for each such b we have 

also b--~ a; otherwise it is inessential. The relation --~ among  essential indices is an  

equivalence relation b y  means of which they  are part i t ioned into essential classes 

C I, C 2 . . . . .  The set of inessential indices will be denoted by  C 0. 
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THEOREM 5.5 Suppose that A is a /inite set. One o/the/ollowing alternatives must  

Occur:  

(i) There exists an essential class C o /  indices such that 

L ~ b ( 0 + )  = 1 (aEC). (5.26) 
b~C 

I n  this case i/  a E C  and bf iC,  then oo ~ and oo b are indistinguishable. C may be a 

singleton. 

(ii) The matrix I - A ( 2 )  is invertible and 

~(X) = [ I -  A(X)] -~ ~(2) = ~ A = (X)~(~). 
n=0 

(5.27) 

Proo/. Suppose there exists an essential class C such that  the restriction of A(X) 

to it is stochastic, namely, we have 

b~cL~(2) = 1 (aEC).  (5.28) 

This can happen only if Lab(X)=L=b(O+) and (5.26) holds. I t  follows from this, (5.10) 

and (5.14) that  

~a(t)= hm ~ ( s n )  ~. L~(t)= ~. L a b ( 0 + ) = 1 ;  

consequently ~ a ( o + ) = l i m t , o ~ a ( t ) = l  and so ~ ( t ) = 0  for every ~ and t by (5.11). 

Thus (5.24) reduces to 

~(~)  = ~ L ab (0 + ) ~b (~) (a E C). (5.29) 
b~C 

Since C is a finite set, being a subset of A, a well-known result in discrete para- 

meter Markov chains asserts that  the only solution ~()t) of such a system of equa- 

tions is a constant. A simple algebraic 

~b(2) for every a and b in C and we 

t for a and b in C, by the uniqueness 

On the other hand, if there does 

perry (5.28), then it is a consequence 

meter Markov chains tha t  the series 

the inverse of I -A(~t) .  Applying it to 

of Theorem 5.5. 

proof is also available. Thus for each ~t, ~a(2) = 

conclude that  ~( t ) - - - -~( t )  identically in i and 

of Laplace transforms.(1) 

not exist any essential class C with the pro- 

of the recurrence properties of discrete para- 

n=0A (2) converges for 0 < 2 <  oo and yields 

(5.25) we obtain (5.27), completing the proof 

Q) This  resu l t  s h o u l d  be  c o m p a r e d  w i th  T h e o r e m  4.6. 
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If  indistinguishable boundary  points have been merged, then the al ternative (i) 

reduces to 

L ~ ( 0 + ) = I  

for a certain merged boundary  point. This means ~ is a lef t .hand limit point  of 

S~,(~o) almost  everywhere on A a, and the fictitious state c~ a behaves as an instan- 

taneous state. Analytically,  the equat ion (5.24) reduces to the trivial ident i ty  ~ ( 2 ) =  

Under  the al ternative (ii), the sample functions can be described as follows. For  

almost  every w, x( - ,  co) reaches the passable par t  of the boundary  in a sequence 

of t imes 

3(0) < 3(1) < 3(2) < . . -  (1), 

where v(0)=  v is the first infinity in our  previous nota t ion  and  if v (n)=  ~ then  

T(n + 1) = T(n + 2) . . . . .  ~ .  We define 

y(n)= lim x(t) if ~(n)< ~ ,  
t cv(n) 

y(n) = 0" if v(n) = co ; 

where the limit is taken in the metric topology of J* so tha t  y(n)E B 0. I f  we write 

simply " a "  for "c~ a' ' , the process {y(n), n E N }  is a discrete parameter  homogeneous 

Markov chain with A0., as its state space, and the stochastic completion (by 0") of 

(Lab(~)),  (a, b )EA • as its one-step transit ion matrix.  Fur thermore  we have 

P{v(n + l) - v(n) ~< t; y(n + 1) = b I y(n) = a} = L ab (t). 

I f  we define z ( t -~ (O) )=y(n )  for "r(n)<~t<~(n+l) ,  

the process (z(t), t E T} is a so-called semi-Markovian process. Final ly if we set 

v ( t ) = n  for v (n )<~t<T(n+l ) ,  

then for a ny  t and A E~(~(t)), 

P(x(t) = j IA; y(v(t)) = a} = ~. (t - ~(v(t)). 

Perhaps it is bet ter  to describe the above si tuat ion in somewhat  less precise bu t  

more intelligible terms as follows. The sample function of the Markov chain x is 

(1) v(n) is not the previous Vn. 
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composed of a sequence of "waves"  going from a passable atomic boundary point to 

another (not necessarily distinct one). The transition of these boundary points follows 

tha t  of an imbedded Markov chain with (Lab(oo)) as one-step transition matrix. The 

length of each wave joining r to oo b has the distribution Lab(.),  independently of 

any  occurrence outside this wave. Within each wave the sample function has only 

jumps, and consequently the transition of x there is by  means of (I)= (/~j). I f  a wave 

begins at  c~ a, then at  t units of t ime later x is in the state ~ with probabili ty ~( t ) .  

A sample function may  have a finite number  of waves before reaching a point on 

the recurrent part  of the boundary and remaining there ever after; or it may  have 

a final wave extending to infinity while approaching the impassable par t  of the bound- 

ary; or it may  have an infinite sequence of waves going to infinity. Under the hy- 

pothesis of Theorem 5.5, in the case (ii), these waves cannot accumulate in the finite. 

w 6. The Second Approach 

Let  I '  be the set of [I-nonrecurrent  states in I0; note tha t  0, if present, is 

recurrent. 

For each a in A and ~ in I0, we set 

g~ = f :  ~ (t) dr. (6.1) 

THEOREM 6.1. The set o/ j for which g ~ > 0  is the state space I ~ o/ the post-~ a 

process. I / ]  E I a, then g~ < co or g~ = oo according as ~ E I' or ~ ~ I'. 

Proof. The first assertion follows from the fact tha t  I ~ is the set of j for which 

~ (t) > 0 for some ~ and t, and the continuity of ~ .  To prove the second assertion, we 

observe tha t  if ~EI ' ,  then S~pi j ( t )d t< c~. We have by  (5.1) 

p,j (t) >1 f :  ~ (t - s) dL~ (s); 

consequently p,j (t) dt >/L~ (oo) gj. J0 

There exists an i in I such tha t  L ~ ( ~ ) > 0 ;  hence g~< co. An alternative proof of 

this is as follows. I f  Sj=Sj (o~)={t :  x(t, eo)=j}  and ~u is the Lebesgue measure on T, 

then we have 
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g? = r,{~[sj n ( e ,  co)]} < v,{~[sj]} < oo 

by  [1; Theorem I I .  10.4]. 

On the  other  hand,  if j ~ I '  t hen  S~pz ( t )d t=  ~ .  We have  b y  (4.21), for  a n y  s 

and  t: 
~? (s + t)/> ~? (s)pjj(t). 

I t  follows t h a t  for  any  u: 

gJ ~ ~7 (s + t) dt >1 ~? (8) pjj(t) dr. 

There exists s such t h a t  ~ ( s ) > 0 ;  hence we ob ta in  g~ = ~ b y  let t ing u-->oo. 

ASSUMPTION C. I =  I ' ;  namely there is no I-I-recurrent state except 0 i/present. 

I t  is not  t rue  t h a t  Assumpt ion  C can be made  wi thou t  loss of general i ty,  even  

if we are only  in teres ted  in the  nonrecurrent  p a r t  of the  boundary .  This is because a 

1-I-recurrent s ta te  need not  be O-recurrent ;  see Theorem 3.2 and  the  R e m a r k  af ter  it. 

I n  par t icular  the Doob  type  of construct ion (see [1; Theorem I I .  19.4]) leads to H-  

recurrent  s ta tes  if L~ ( c ~ ) =  1 for every  i. 

F r o m  now on in this section an  unspecified index i, j or k is an  e lement  of I ' ,  

and  an unspecified sum over  it  is ex tended  to r .  

:For j E I ' ,  we set  

This is the  "dua l "  of (4.11). 

H?(t) = g~ - ~ g?/,j(t). (6.2) 
t 

THEOREM 6.2. We have i/ jEP:  

H ? > 0 ,  H ? t ' ,  H~(O)=0;  (6.3) 

H?(s + t) - H?(t)  = Z H?(s)/ , j ( t) .  
t 

H~. has a continuous positive derivative ~ in T satis/ying 

77 (s + t) = ~ ~? (s) l~/t). 

Proo/. We have  

Z g~/,, (t) = ~ ~ (s) 1,, (t) ds < ~ (s) p,, (t) ds 

fo o fo = ~?(s+t) ds=g?- ~?(s)ds<g?. 

(6.4) 

(6.5) 
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B y  the Appendix the second inequali ty above is strict, hence H~ >0 .  Nex t  we have 

H? (s)/,~ (t) = ~, {g~ - ~k g~/~' (s)}/,j (t) = ~. ga l,j (t) -- ~ g?,/~j (S + t) = H? (s + t) - H? (t); 

hence H~ ~'. The continuous differentiabil i ty of H7 together  with (6.5) follows from 

the equation (6.4) by  a general lemma already cited under  (4.3) in its dual form. 

Finally, ~ > 0 by  the Appendix.  

For  every  a and b in A, we set 

a~b (t) = ~ g~ l~ (t). (6.6) 
t 

I t  will follow from the proof below tha t  the series in (6.6) converges for every  t > 0, 

and is a noninereasing funct ion of t. 

The nex t  theorem is fundamental ;  it takes the place of Theorem 5.4 in the new 

approach.  

T ~ E O R E ~  6.3. Under Assumptions A, B, and C, we have 

f. f: ~?(s) ds= ~?(s) ds+ ~ o~b(s)~(t-s) ds. (6.7) 
b e A  

Proo/. Let  us rewrite (5.22) as 

~? (s + t) = ~ ~ (s)/,j (t) + b [~ ~a (s) l~ (u)] ~ (t - u) du. (6.8) 

For  each b, there  exist j and t o such t ha t  ~b(t0)>0, and this implies ~ ( t ) > 0  for all 

t > t  o by (4.21) (for a s tronger result see the Appendix).  I t  follows from this t ha t  the 

series in square brackets  in (6.8) converges for each fixed s and almost  every  u. 

Fur thermore  we can integrate to obtain 

> ~(8+t)ds  =~g~/,j(t)+~, aab(u)~(t-u)du,  (6.9) 

where o ~b is defined by  (6.6) and the series there  converges for almost  every  t. If  

it converges for t and t <  u, then  by  (4.4), 

a i b a u V. g, , (u) = ~ [ ~  g , / , , (  - t)] 17 (t) < ~ g? l~ (t). 

Hence the series in (6.6) converges for every  t >0 .  Finally, since 
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f: a a 
~ a ( s + t ) d s - Z g ,  ]~j(t)=gj - ~?(s) d s - Z g ~ f , ] ( t )  

fo = H? (t) - ~?(s) ~ 

fo = 7?(s) d s -  ~f(s) ds 

by Theorem 6.2, (6.9) is equivalent  to (6.7). 

COROLLARY 1. t t~(o~)=g],  ViZ. 

 (s)ds= 

Proof. We have by  (6.7) and (6.2) 

H? ( ~ )  >~ f o  ~? (s) ds = g? >~ H? (t); 

Corollary 1 follows upon lett ing t---~ ~ .  

COROLLARY 2. a ~b is summable over every finite interval. 

Proof. This follows from (6.7) and the fact, a l ready used in the proof of the 

theorem, tha t  for each b there  exist ~ and t o such tha t  ~ ( t ) > 0  for t >to, and conse- 

quent ly  ~ is bounded away from zero in (to, tl) for every  t 1 > to, since it is continuous. 

THEOREM 6.4. For almost every t, the series 

a (s) l~ (t - s) (6.10) 

converges for 0 < s < t and defines a function 0 ~~ (t) which does not depend on s. We have 

f? a~b(t) = O ~ b ( s ) d s = ~ ? ( t ) L ~ ( ~ ) ;  (6.11) 

in particular, o ~b is continuous in T ~ 

Proof. If  the series in (6.10) converges, then  the sum does not  depend on s for s 

in (0, t) by  exact ly  the same calculation as given in (5.18). Now by (6.6) and Corollary 1 

to Theorem 6.3, we have 

Z f (~ab 
(t) = , Jo ~a (s)l~ (t)ds = Jo O~b (s + t) ds (6.12) 
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for almost every t, using Fubini 's theorem on product measures; similarly 

o~(t)= 7?(t)Z~ (s)ds= Y T~(t)L~ (oo). 
�9 t 

(6.13) 

ASSUMPTION B'. A is a /inite set. 

Let us put  o~'(t)-= ~ o~b(t); (6.14) 
be/k 

7~ ( t ) -  ~ 7~ (t). (6.15) 

~]nder Assumption B' the /unction 7 .  is /inite, nonincreasing and 

We have 

a ~ O 0  7 , ( 0 - 7 , ( )  = ~ (6.16) 

(6.17) 

THEOEEI~ 6.5. 

Continuous in T ~ and summable in every /inite interval. 

7 ,  (~176 = ~ 77 (t) [1 - L, (co)]. 
t 

Proo/. Summing (6.7) over j and using Corollary 2 to Theorem 6.3, we have 

~. H?(t)<.t+ o~b(s) ds<  ~ ,  (6.18) 
i 

since b ranges over a finite set. I t  follows tha t  the series in (6.15) converges for 

almost every t. I f  7 , ( 0 <  co then we have by  (6.5), for every t'>~0: 

L t 7,(t)  = ~7~(t)  {~./,j(t ')+ L , ( t ' ) }=7 , ( t  + t ' )+  ~7~( t  ) ,(t ). 
t i 

(6.19) 

Hence 7 , ( t +  t ' )<  co and we conclude tha t  7 .  is finite and nonincreasing in T ~ I ts  

continuity there also follows from (6.19), since each L~ is continuous in T. The summa- 

bility of 7 a follows from (6.18). Finally, rewriting (4.3) as 

1 - L~(s + t) = ~/~j(s) [1 - Lj(t)] 
J 

and letting t ->co we see tha t  

Since both the extreme members of (6.12) are nonincreasing and the one on the right 

is continuous, (6.12) must  hold for every t > 0 .  Now the first member  of (6.13) is 

noninereasing and continuous, while the last one is easily seen to be nonincreasing, 

hence (6.13) must  hold for every t. Theorem 6.4 is proved. 

To proceed further we need an essential strengthening of Assumption ]3, already 

imposed in Theorem 5.5. 
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1 - L~ ( ~ )  = ~ / ~ j  (s) [1 - / ~ s  (cr  

On the o ther  hand,  summing  (6.13) over  b we have  

(6.20) 

o ~ (t) = ~ ,~? (t) L, (~o) .  
t 

I t  follows f rom (6.20) and (6.21) t h a t  

(6.21) 

~ . ( t )  - o ~ (t) = ~ 77 (t) [1 - Lj ( ~ ) ]  
1 

= E E 77 (s) [,, (t - s) [1 - L , (oo ) ]  

= ~ 7~(s )  [1 - Z,  ( ~ ) ]  = ~1, (s) - o ~ (s). (6.22) 
i 

Thus 7 ,  (t) - a ~ (t) is a constant  which mus t  be 7,~ ( ~ )  since o ~ ( ~ )  = 0. 

C O R O L L A R Y .  ~ , ( ~ ) ~ <  1. 

Proo[. Divide (6.18) b y  t and  let t - + c ~ .  

The  nex t  two theorems are valid under  Assumpt ions  A, ]3 and  C (without B') .  

R e m e m b e r  t h a t  7"4 0 below. 

THEOR]~M 6.7. ~/~ is absolutely continuous and 

~? (t) = - ~ g~ [~i (t), (6.23) 

where the series converges absolutely /or t~>0; in particular 

We have /or almost every t: 

Proo[. We have  

77 (0) -- - ~ g~ q,s. (6.24) 
t 

d 
d--t 77 (t) = ~ ~? (t) q,j. (0.25) 

0 -<< H?  (t) = ~g~  [~,j - /~ j  (t)] 
t ~ t 

o r  
E g?/ ' j ( t )  .< . 1 - ljj (t) 

Let t ing  t ~ 0 we have  b y  F a t o u ' s  l emma  

a ~<: a g, q~j -~ gj qj. (6.26) 
t . j  
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Next, we have, using the second system of equations (II) in w 2 for (I): 

a ~ a 7~ g, l/;j(t) l ~ ~ g, {/,,(t) q, + ,,~,/,~(t) q,,;} 

~< (v., g~ t,, (t)} ~,, + ,,~j (~  g~ li,, (t)} q,,, 

-< ~ ~ j  gk qkj ~< 2 "~.  gJ qJ + a g~ qj 
by (6.26). I t  follows that 

H~ (t)= :, 9~ [(~,j- /,j(t)] = - ~ g~ f l  ,;,(s)ds= - f l  :, g~ /;i(s)ds 

(6.27) 

(6.28) 

by (6.27) and bounded convergence. Upon differentiation we obtain (6.23). Starting 

with (6.23), substituting from (II) again,, and relying on (6.27) for the interchange of 

summations, we obtain 

a t : - -  (~ ~?(t)= - S g ,  {5/ ,k(  )q~i}= -5{597 / , k ( t ) }q~s  • { g k -  H~(t)} qkj 
l k k i k 

Letting t ~ 0 we obtain (6.24) by Corollary 1 to Theorem 6.3. Furthermore, the series 

in (6.25) converges absolutely, having only one negative term, for almost every t and 

the summation and integration in the last member of (6 .29)can be interchanged, 

proving the absolute continuity of ~ together with (6.25). 

THEOREM 6.8. ~ is absolutely continuous in T; we have 

d 
dt ~a (t) + ~ (t) qj = ~ ~ (s) v~j (t - s) (6.30) 

i 

/or almost every t and every s in (0, t), where 

vii (t) = p;j (t) + pij  (t) qj; (1) 

d 
i 

(6 .31)  

(6 .32)  

/or almost every t. For each a in A and j in I a, the /ollowing three propositions are 

equivalent: 

(i) (llij) holds /or every i in P; 

(ii) Equality holds in (6.32) /or almost every t; 

(iii) ~ (0) = r/~ (0) = O. 

(1) See [1; w I I .  16] for a discussion of vit. 
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Proo/. Using [1; (II.16.2)] we write for each t > 0  and  0 < s < t ,  

�9 [~ f l  vtj(u)e qt(t )du]. (6.33) . . . .  

Since ~ ~ (s )=  1 b y  (4.20), this shows t h a t  ~ is absolutely  continuous in T ~ hence 
i 

in T b y  its cont inui ty  a t  zero. Mult iplying (6.33) through b y  e qj~ and  using Fubin i ' s  

theorem on differentiation,  we obta in  (6.30) for a lmost  every  t. Subs t i tu t ing  the  in- 

equal i ty  
v~j(t - s) >1 ~ p~k(t - s) qks (6.34) 

k4-] 

into (6.30) and  using (4.21) we obta in  (6.32). 

I f  (i) is true, then  equal i ty  holds in (6.3~) b y  the  definit ion of v u and  the  preceding 

subst i tut ion leads to equal i ty  in (6.32). Thus  (i) implies (ii). Conversely if ( i i) is  t rue,  

then  for a lmost  every  t and  0 < s <  t, 

d -d-t~(t)+~(t)qi= ~ ( t ) q k j =  ~[~(S)p~k(t--s)]qkj=~(S)k~.jp,k(t--s)qkj.  (6.35) 

Comparing (6.30) with (6.35), we see t h a t  equal i ty  mus t  hold in (6.34) whenever  

~a(s) > 0 .  For  each i in I a this is the  case for every  sufficiently large s. I t  follows 

t h a t  equal i ty  holds for every  i in I a and  every  t - s ,  t h a t  is, (II~j) holds for every  i 

in I a. Thus  (ii) implies (i) and  we have  proved  the equivalence of (i) and  (ii). 

I t  follows f rom (6.32) t ha t  for each u > 0 :  

Since limu_~r ~(u)=O as a consequence of Theorem 6.1, we have  upon  lett ing u--->c~ 

and using (6.24): 
- ~ (0) + ~?? (0) = - ~ (0) - ~ g~ q~j >~ 0. (6.37) 

I f  (iii) is true, then  there is equal i ty  in (6.36) and  hence also in (6.32): Thus  (iii) 

implies (ii). Conversely if (ii) is true,  the same a rgumen t  shows t h a t  there  is equal i ty  

in (6.37). To prove  t h a t  ~ ( 0 ) = 0 ,  let us suppose the contrary .  There  exist i and t 

such t h a t  L~(t)>0, hence we have,  as a consequence of the  Corollary to Theorem 4.3 

and Theorem 4.4: 

p~ {~a ~< t; x~ = ~" for all s in ('~a, t)}/> ~f (0) e qJ(~- ~) dL? (s) > O. 

This means  t h a t  there is positive probabi l i ty  t h a t  :% = i, xt = ] and t ha t  the last  dis- 

5- -  632932 Acta mathematica. 110. I m p r i m 6  le 15 oetobre 1963. 
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cont inui ty  of the  sample funct ion before t ime  t is a " p s e u d o - j u m p "  f rom co ~ and  not  

a jump.  B y  [1; Theorem II.14.4](1) this cannot  happen  under  (i). Since (i) and  (ii) 

have  been shown to be equivalent ,  we conclude t h a t  ( i i ) implies  ( i i i )and  Theorem 6.8 

is comple te ly  proved.  

Remark. I f  (6.7) holds, then  dividing th rough  b y  t and  let t ing t ~ 0 we obta in  

~ j a ( 0 ) > ~ ( 0 )  in general, and  ~ ( 0 ) = ~ ( 0 )  if o~b(0)< oo for every  a and  b. 

w 7. The Dual Chain  

I n  this section we s tudy  the  not ion of a dual  chain. Combining it  and  the  re- 

sults of w 6 we shall derive a representa t ion  of {~j} when the  me thod  of w 5 falls, 

and  discuss the case left  open there,  name ly  the  a l ternat ive  (i) in Theorem 5.5. This 

is the  case where the  bounda ry  behavior ,  even under  the  mos t  s t r ingent  set  of as- 

sumpt ions  made  here, is still no t  fully understood.  I t  should be stressed t h a t  the  dual  

chain studied here is more  an  analyt ical  device t han  a genuinely probabil is t ic  one. 

The  la t ter  would be t h a t  of a reversed chain as has been int roduced in simpler cases 

(see [2]) and  would involve an  invest igat ion of the  sample funct ion as the  direction 

of t ime  is reversed. This has not  ye t  been done in a sa t is factory manner  and  the 

results below serve only as a sort  of vague  reflection of the  t rue  s ta te  of mat ters .  

For  a few momen t s  Assumpt ions  A, B, and  C (without B ' ) w i l l  suffice. For  each 

a in A we set  
~a g? p~j (t) 
yj~ (t) g? (7.1) 

The mat r ix  ( ~ ) ,  (j, i) 6 I a • I ~, will be called the a-dual to (p~j). Where  this dual  ma t r ix  

is concerned the  index set  will be I ~ wi thout  specific mention.  

T ~ . O R E M  7.1. For each a in A, ( ~ )  isa strictly 8ubstochastic transition matrix. Its 

initial derivative matrix (~)  and the corresponding minimal solution (~) are given as [ollows: 

~ = g? q'J (7.2) g?'  

~- (t) g~/ ' j  (t) (7.3) 
g? 

(1) I t a k e  th i s  o p p o r t u n i t y  to acknowledge  t h a t  t he  a r g u m e n t  in t h e  f i rs t  few lines of  p. 223 
in [1] is i n a d e q u a t e  for an  i n s t a n t a n e o u s  s t a t e  k, as  po in ted  ou t  to me  b y  S. Orey.  T h i s  h a s  been  

cor rec ted  b o t h  b y  h i m  a n d  b y  myse l f  b u t  t h e  revis ion is too long to be  inc luded  here.  Fo r  t h e  pur -  

pose here,  where  all  s t a t e s  a re  s table ,  t he  proof  g iven  in [1] is correct .  
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The matrix (~)  is stochastic i/ and only il ~]~(0)=0 /or every ~ in I a. We have 

(t) = 1 - ~ ~-~ (t) = H ~  (t) .  (7 .4)  
�9 g~ ' 

the /unction L~ has a continuous derivative l~ satis/ying 

[g~ ~a (t)]/,j (s) = g7 ~ (t + s). (7.5) 
t 

Proo/. I t  is easy to see tha t  ( ~ )  satisfies the semi-group property corresponding 

to (2.2). Next  we have by definition 

: ;  ,,, I z .2- ~ (0 = g~ ~ ~ (~ ) ( t )  ~ - ~ -  gJ ~? (~) d~ < 1. (7.6) 

In  fact if ~'EI ~, then Ca( �9 ) > 0 by  the Appendix, so tha t  there is strict inequality in 

(7.6) for every t > 0 .  This and trivial inspection show tha t  (73~) is a strictly sub- 

stochastic standard transition matrix and (7.2) follows at  once from (7.1). I t  is easy 

to verify tha t  (]~) as defined by (7.3) is the minimal solution to the two systems of 

Kolmogorov differential equations (I) and (II) in w 2 when (q~r there is replaced by 

(~) .  Moreover we have 

1 ~7 (0) ~ a  g~ q~j = ~< 0 (7.7) 

by (6.24). The equation (7.4) follows at  once from (7.3) and (6.2). 

rein 6.2, we have 

i? (t) - ~? (t) 
g? 

Hence by Theo- 

(7.8) 

and (7.5) follows from (6.5). Theorem 7.1 is proved. 

A homogeneous Markow chain ~a= (~a(t), t E T) having I a as its state space and 

the stochastic completion of ( ~ )  as its transition matrix is called an a-dual to x. I f  

~ ( 0 )  = 0  for every ?" in I a, then it satisfies an assumption corresponding to Assump- 

tion A for x and so we may  proceed to apply the preceding theory to it. However, 

to encompass as large a state space as possible we must  take at suitable mixture of 

the indices a as follows. 

Let  • = U I ~. 
a e A  

Y is the state space of the post-v process under Assumptions A and B; it is clear 

tha t  it is a 1-I-stochastically closed subset of I. Let 
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L ~ = ~ 7t L~, 

where 7 is the initial distribution of x, and set 

hi= ~ L~ o~ ) g?. 
a e A  

(7.9) 

We now set ~j~(t)= h~pis(t- ) (7.12) 
ht ' 

= h~q~j, - ~jj = ~ = qj, (7.13) 
a j  

We now introduce the following assumption which is essentially the dual of As- 

sumption A. 

ASSUMPTION ~. The second system o/ Kolmogorov di//erential equations holds. 

THEOREM 7.2. (Under Assumptions A, B, C and A.) We have hi< oo /or every 

in I, and hj > 0 i/ and only i/ ~ E I. Furthermore, 

~. h~p~l(t) 4 hi, (7.10) 
t 

h~ q~j = 0. (7.11) 
t 

Proo/. The first assertion follows from (5.1) upon integration over T: 

hi = f ~  ~ r' [P'J (t) - /~j (t)] dt < oc) 

JO 

since S~ ~ p ~ s ( t ) d t <  ~ for a nonrecurrent state ~. By the definition of A, for each 

a in A there exists an i such that  ~ >0  and L~(oo)>0 ,  hence L=(oo)>0.  By Theo- 

rem 6.1, g~>0  if and only if ]E I  s. These remarks prove that  h i > 0  if and only if 

E I. Next, we have 

h~ P~s (t) = ~ L ~ ( ~ )  ~ g~ p~j (t) ~< ~ L ~ (~)gja = hi. 
t a i a 

Finally, we have by (6.24) and Theorem 6.8, under Assumption _~: 

h~ ass = ~ L ~ ( ~ ) ~ g~ q,J = O, 

the interchange of the repeated summation being justified since ~ ]h~ q~sl ~< 2 hjqj< oo 

by (6.26). Theorem' 7.2 is proved. 
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, ( 1 -  0j,)~z (1 - 8,j)h~q,j (7.14) 
r j i - -  _ _  

~s hs qs 

is, (t) - h, ],j (t) (7.15) 
hj 

The matrix l=I=@ji), ( j , i ) E I •  will be called the dual transition matrix to (Pij); 

similarly for Q, 15 and (P. A homogeneous Markov chain e = {~(t), t E T} having I as 

its state space and ~5I~ as its transition matrix will be called the dual chain to x. 

By virtue of (7.11), the matrices Q and P are stochastic and so the dual chain satisfies 

the assumption corresponding to Assumption A and we can define its jump chain 

= {Zn}, its Martin boundary B and the passable part ]~. The assumption corresponding 

to Assumption B, which we now make, is as follows. 

ASSUMPTIO~rS ]3, 13'. The passable part o/ the dual boundary is completely atomic. 

These atoms will be denoted by { ~ ~, 5 fi A}. Assumption ]3 becomes Assumption ]3' 

iff A is a finite set. Under Assumption ]3' we may and shall replace the definition 

(7.9) by the simpler one: 
h ~ = Y g ? .  

a 

I t  is clear that  Theorem 7.2 remains valid after this replacement. 

THEOREM 7.3. Under Assumptions A and ]3: 

k~ (s)~o~(t - s)ds, (7.16) p,j (t) = l,j (t) +a 

where ~ p~j (s) kT (t) = k~ (s + t), (7.17) 
i 

5 t - Vt (s) /,j( ) = ~p? (s + t). (7.18) 
l 

where 

Pro@ Theorem 5.1 applied to the dual transition matrix yields: 

~j, (t) = [~, (t) + Y l~/(s) ~ (t - s) as, 

t ~ 2 ~ ; (  )l~ (s) = O ( t + s ) ,  
J 

(7.19) 

(7.20) 

(7.21) 
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these formulas being the duals of (4.4) and (4.21) respectively. Putt ing 

hj ~ ( - ) = y ~ ]  ( . ) ,  (7.22) 

h~ -1 ~ ( .  ) =  ]c~(-), (7.23) 

and substituting from (7.12) and (7.15) we obtain (7.17) and (7.18). Theorem 7.3 is 

proved. 

Clearly the coexistence of the two formulas (5.1) and (7.16) has interesting implica- 

tions. However, due to evident technical difficulties more stringent assumptions than 

those needed for both formulas will be invoked in the next theorem. We must  also 

introduce a new definition. 

A passable atomic boundary point oo a is called nonrepeatable iff for every i EI  

we have L a (oo) = 0; otherwise it is called repeatable. Let the subset of A corresponding 

to nonrepeatable boundary points be A 0. Such a boundary point ~ a  is reached exactly 

once on A a, and is never reached again after the first infinity. I t  is inessential ac- 

cording to the definition in w 5, indeed L ha= - 0 for every b in A. I t  is trivial to con- 

struct a nonrepeatable boundary point: we need only s tar t  the Markov chain with an 

ascending escalator and hitch on an open Markov chain, say a descending escalator, 

with a disjoint state space. 

THEOREM 7.4. Under Assumptions A, B', A, B' and C, there exist nondecreasing, 

bounded /unctions M ~, (a, 5) EA • A, such that /or every a in A, j in I and t in T 

we have 

( t - s )  dM"Z(s). (7.24) 
Jo 

Proo/. Comparing (5.1) and (7.16) we have 

k~ (s)~pj (t - s) ds, (7.25) 
0 E A  ~ 

where both A and A are finite sets. According to the Corollary to Theorem 4.1, for 

each a there exists a sequence ~i,~ such tha t  for every b in A, 

lim f t  l~( s ) ~  ( t - s ) d s = S b ~ ( t ) "  (7.26) 
J0 

I f  a~A0, namely if ~ is repeatable, then we may  choose {i~} so tha t  i~ei for every 

n and (7.25) holds with i = i~. Now if we integrate this equation over T and take only 

the term corresponding to the index ~ on the right side, we have by  (7.22)and (7.23): 
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f; fo ~ fo - -  

]c~(s)ds y~.(s)ds k"{(s)dshjL~.(~) <~ ~. L b = , (oo)g~ < hi. (7.27) 
t e A  

Choosing i such that  f~  (oo) > 0, and putting K~ (t) = ]~ k~ (s) ds, we see that  

K ~ ( ~ )  ~< 1 < c~. (7.28) 
L~( ) 

Thus the family of nondecreasing functions (K~, i E I} has a uniformly bounded total 

variation and so is weakly compact. I t  follows that  there is a subsequence (i~} 

(depending on a) of (in) (depending on a) for which K~h,, ( . )  converges weakly to a 

limit M~(  �9 ) which is nondeereasing and bounded with M ~ (0)= 0. Applying this result 

to (7.25), noting the continuity of ~0~ and using (7.26), we obtain (7.24) for every 

a ~ A  o. 
I t  remains to prove (7.24) for a E A o. Since Lab(~)= 0 for a E A and b E A o, we 

may rewrite (5.20) as follows, omitting the index 7": 

-t- ~ ~b ( t -  s) dL "b (s). (7.29) 
~'a (t) = ~a( t )  bGA\A. 

Substituting from the proved part of (7.24), we have 

~a(t) = ~a(t) +~ ~ f l  Y~(t-s)dN~(s) (7.30) 

where N ~ =  ~ (Lab-)eM~), (7.31) 
b e A\Ao 

and -)(- denotes a convolution. Next, the equation (5.12) becomes, after substituting 

from (7.15) and noting that  ~ ( . ) - - 0  if i ~ I ,  

tEi  

Using the definition given in w 4, the set {h~-l~a( " )} is an exit solution for (P for 

each a, since ~ ( 0 ) = 0  by (7.29) and Theorem 6.8; moreover by (5.20), 

;o f/ 
Hence according to Theorem 4.2 applied to the dual chain, and using (7.22): 

r (0 = ~ c  ~ ( 0  
a e A  

(7.32) 



60 ~:~  LAX Cliuz~'O 

where 0 < c ~ < l .  Subst i tu t ing into (7.30), we see t h a t  (7.24) holds with 

M ~ = -N a~ + c ~ e. 
Theorem 7.4 is proved.  

A set  of nonnegat ive  functions {u~ ( ' ) }  wi th  u~(0) = 0 for every  i and  sat isfying the 

sys tem of funct ional  equat ions 

u, (s) [,j (t) = uj (s + t) (7.33) 
i 

will be called an entrance solution for  (I). Under  Assumpt ion  J~, the  sets { ~ ( .  )} and  

{ ~  ( . )}  defined in Theorems 5.2 and 6.2 are entrance solutions for (I). We have  seen in 

the  above  how an entrance solution for (I) corresponds to an exit  solution for ~). The 

set  { ~ ,  a E-~} forms an ex t reme base for the space of entrance solutions res t r ic ted 

to I.  I n  part icular ,  we can express ~ and  ~ in t e rms  of y~. 

COROLLARY TO THEOREM 7.4. We have /or every a and j E I ;  

$~ (t) = ~ M  ~ (0 + ) ~p, (t), (7.34) 

~/? (t) = ~ M ~ ( ~  ) ~p~ (t). (7:35) 
a 

Proo[. (7.34) follows f rom the following calculation: 

~ ( t )  = l i r a  ~ ~ f[~p~(s-u)/,,(t-s)dM~(u) 
s~o 

= ~ l im f [  y~f(t-u)dM~(u)= ~ M~(O+ )v2~(t). 
- s ~ o  a 

To prove  (7.35), we first  in tegrate  (7.24) to obta in  

foo 
Consequently ~ g~ [,j(t) = ~ Ma~ ( oo ) | ~o~ (s + t) ds, 

t ?t Jo  

and  H~(t) = ~ M~(oo ) f l  yJ;] (s)ds, 

f rom which (7.35) follows upon  differentiation.  
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On the basis of Theorem 7.4, we can express the probabilities in (5 .5 )and  (5.6) 

in a suggestive way  as follows: 

p~atm <~ s} = ~ f~  ~ , ( t - u ) d M ~ ( u ) ,  

a.~ X a ~ f ~  ~ Pa {(~t --~ s; t = i} = yJ~ (t - u) dM '5 (u) 

- w , ( t - u )  

Thus the last non- jump discontinuity before t ime t in the post-~ ~ process enjoys pro- 

perties similar to t ha t  of the last exit t ime from an ordinary state before t ime t, 

discussed in [2]. Star t ing f rom this it is possible to  discuss the reversed chain ri- 

gorously as a probabilistie object, bu t  we shall not  pursue the mat te r  fur ther  here. 

We can also use Theorem 7.4 to obtain  criteria for either al ternative in Theorem 

5.5. Write  y J , ( . ) = ~ y j ] ( . )  as in (6.15). 
i 

THEOREM 7.5. Under Assumptions A and B',  i/~1, (0) < ~ (or equivalently o~(0) < ~ ) 

then Qa (0)= O. Case (ii) o/ Theorem 5.5 obtains i/  in each essential class o/indices, there 

exists at least one index a /or  which ~ ,  (0) < c~. Under the additional Assumptions A and 

this is the case i/ y~, (0)< c~ /or every ~t. On the other hand, i/~p, (0)= c~ /or every it, then 

case (i) o/Theorem 5.5 obtains. 

Proo/. I t  follows from (5.10) t ha t  

fo ~a(t) = lim u -~ . . ~ o ~ ~p (s) L~ (t - s) ds. 

By (6.7), we have Sge (s)ds<$ V?(s)ds, hence by  (6.19): 

f: o~(t) ~< lim u -~ [r l , ( s ) -~( t ) ]ds=r l~(O)-rT~( t )  
ul, o 

since ~,(s)  is nondeereasing as s ~, O. Hence if r7,(0 ) < c~, then 

0 ~ (0) = lim 0 a (t) ~< lira [~, (0) - ~ ,  (t)] = O. 
t~o  t~o  

Since A is finite, (5.21) holds and 

Y L~ 
b 

(7.36) 
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If  a is essential this excludes the possibility of (5.26) for the essential class to which 

a belongs. If  this is so for each such class, Theorem 5.5 asserts tha t  case (if) there 

occurs. Finally, if v/ ,(0)< ~ for every ~, then ~/,(0)< ~ by  (7 .35)and  we have 

case (if) by the above. 

Now suppose the other extreme: ~ ( 0 ) =  o~ for every 5. As before we have 

y ~ (~) L, ( t -  ~) = ~.(~) - ~ .  (t), 
i 

and consequently by (7.24): 

I t  follows tha t  V M ~ (0 + ) [ ~  (s) - ~ .  (t)] ~< 1. 

As s ~ 0  this implies M ~  for every h and so by (7.34), _~( t )=0 for every 

j and t. Hence by  (5.11), ~( t )  = 1 for every t and so ~"(0) = 1. This means ~ L " b ( 0  + ) = 1 

by  (5.21) and we have case (i) of Theorem 5.3. 

w 8. The Construction Theorem 

There is a basic connection between Theorems 6.3 and 7.4 which leads to a solu- 

tion of the construction problem. In  this section we make full use of the method of 

Laplace transforms. 

Taking Laplace transforms in (6.7) and using matr ix  notation, we have 

~(~) = [I  + ~ s ~(~), (8.U 

where E(~t) is the matr ix  (5~b(~t)), (a, b )EA•  We are under Assumptions B'  and ]~' 

so tha t  both A and .~ are finite sets. We have by (7.35), 

~(~) = ~ ( ~ ) ,  (S.2) 

where M = ( M ~ ( o o ) ) ,  ( a , d ) E A •  is a constant matrix.  For a few moments  let 

0~ b and a~ b denote the quantities 0 ab and o ~b in (6.10) and (6.11)when ~/a is replaced 

by  ~v ~. Since both ( ~ ( . ) }  and { ~ ( .  )} are entrance solutions, the properties of 0 "b 

and o ~b deriving from the fact  tha t  ~a is an  entrance solution hold also for 0~ b and a~ b. 

Finally, let 
uZa(; 0 = ~ ~  (~) (s .a) 

and U().) be the matrix (u~(2)), (d ,a)f i .~•  
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d 
LEMMA. For each d and a, ~ u;a(4) is a completely monotonic /unction o/ 4. 

a2. 

Proo/. We have by (6.12) and a simple calculation: 

d f :  aa (t) dt ~ u ~ ( 4 )  = e-At(1-dt) ao 

= f o e - ~  ( 1 -  dt) dt f~oao~(s) ds= f :  e-%O~o~ ds. (8.4) 

Since we have o~a(8) = -  f ~" ~ ,U , I  a Z~i  ( ) ~ ( s - u )  du 
8 J o ~  

by Theorem 6.4 applied to y~, the ]ast member of (8.4) is equal to Y.~ ~;](;t) ~a(4). Since 

Z~(;t) ~< 1, and ~ y;~(4)< co by Theorem 6.5 applied to ~, ~ ~ ( 4 ) ~ ( 4 )  converges and 

is completely monotonic in 4 since each t e rm is. The lemma is proved. 

In terms of yJ, the equation (8.1) can be written as 

M~(4) = [I + MU(4)] $(4). (8.5) 

I t  is our object to study the solvability of (8.5) for $(4). The folloving theorem is a 

general result about completely monotonic functions. Let  us call a matrix of func- 

tions completely monotonic iff each element of the matrix is so. 

THEOREM 8.1. Let M be an Ax]~ matrix with elements which are nonnegative 

constants, M(4) likewise with elements which are nonnegative /unctions o/ 4; U(4) an 

A x A  matrix with elements whose derivatives are completely monotonic /unctions o/ 4. 

Suppose that /or each 4 we have 
M = [I +'MU(4)] M(4), (8.6) 

where I is the A• identity matrix. Then both I § MU(4) and I +  U(4) M are invertible; 

we have 

M = M(4) [I + U(4) M]; (8.7) 

and the matrix M(2) is completely monotonic. 

Proo/. To show that  I + M U ( 2 )  is invertible, suppose there exists a vector v 

such that  
v[I + MU(4)] = 0. (8.8) 



64 K A I  L A I  CHUNG 

Then  b y  (8.6), vM=O and consequent ly  b y  (8.8), v = 0 .  To show t h a t  I +  U(2)M is 

invert ible,  suppose there  exists a vector  w such t h a t  

[ I  + U(2) M] w = 0. (8.9) 

Then  [ I  + MU(2)]  Mw = M[I  + U(2) M] w = O. 

Since I + M U ( 2 )  is invert ible as jus t  shown, we have  M w = O  and consequent ly  w=O 

by  (8.9).( 1 ) 

Since [I  + MU(2)]  M = M[I + U(2) M], 

it follows t h a t  M[I  + U(2) M] -1 = [ I  + MU(~)] -1 M = M(2) 

by  (8.6), and  so (8.7) is true. Final ly ,  for (~ > 0  consider 

[I + MU(2 + 6)] {M(2 + 6) - M(2)} [ I  + V(2) M]  

= [I + MU(A + ~)] {[I  + MU(2 + ~) ] -1M - M[I  + U(2) M] -1} [ I  + V(2) M] 

= M[1 + U(2) M] - [I + MU(2 + ~)] M = M[U(2) - U(2 + (~)] M.  

Dividing th rough  by  ~ and  let t ing ~ ~ 0, w e  obta in  

[I+MU(2)]  M'(2) [ I +  U(2) M] = - M U ' ( 2 )  M.  

Equivalent ly ,  by  (8.6) and  (8.7), we have  

- M' (2) = M(2) V' (2) M(2). (8.10) 

For  the  sake of induct ion let us now suppose t h a t  

( -  1)raM(m)(2) ~> 0 (O<~m<~n). (8.11) 

This is t rue  for m = 0  by  hypothesis .  Different ia t ing (8.10) n t imes by  Leibniz ' s  rule, 

we have  

n!  
( --  1 ) n + l M ( n + l ) ( 2 )  = 0<i+k<n~ j! k[ (n - j - k)). M(J)(2) U(n+l-t-  k)(2) M(~)(2) 

n!  
= ~ ~! k! ( - 1)JMr ( -  1)~-i-k 

0<j+k<n ( n -  i -  k)! 

• U(,~l-J-k) ( _ 1)k Mk(2) ~> 0, 

(1) I am indebted to N. G. de Bruijn for the preceding proof. 
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by the induction hypothesis and the hypothesis about U(2). Therefore (8.11) is true 

also for m = n +  1 and the induction is complete, proving that  M ( 2 ) i s  completely 

monotonic. 

THEOREM 8.2. There exists an A x A  matrix M(2) such that 

~ ( 2 )  = M ( 2 )  + ( 2 )  (1) ( 0  < 2 < c<)), ( 8 . 1 2 )  

i/ and only i] there exists a constant matrix M such that 

~(2)=M~(2)  (0< 2 <  c~), (8.13) 

and such that I + MU(2) is invertible. In  this case M(2) is completely monotonic and 

/ = M ( 0 ) .  

Proo/. Suppose (8.12) holds, namely 

Sa (2) = ~ m ~a (2) v~((2). (8,14) 
a 

By (7.22) and the Corollary to Theorem 4.1, for each SEA there exists a sequence 

{in} in I such tha t  

lim -1 ^~ = 5 7 ~  h~, ~fl~, (2) (b EA). (8.15) 
n-->r 

I t  follows from this and (8.14) tha t  

maa(2) = lira h~1~:~,(2) ~> 0, 
n---> ~ 

so tha t  the matrix M(2) is automatically nonnegative for every 2. Next,  there exists 

a constant matrix M and a sequence {2n} converging to zero such that  lim M(2n)= M; 

each element m a~ of M is finite since by  (8.14): 

~,~(0) h,L?(~o) 

;o 
I t  follows tha t  ~ ~ ~o , g~ = m a~ ~ ( s ) d s "  

and consequently as in the proof of (7.35) that  
~ ~ 

~? (t) = ~ m ~176 ~o~ (t). (8 .16)  
a 

(1) The M(.) here is the Laplace transform of the M(-) in Theorem 7.4. We have omitted the 
cumbersome ^ where confusion is unlikely. 
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Taking Laplace transforms we obtain (8.13). Furthermore, substituting from (8.12) 

into (8.5), we have 

M~(4) = [I + / U ( 4 ) ]  M(A) ~(4). 

Since the set {~p~(~t), a e A }  is linearly independent for each 4, a fact which is ob- 

vious from (8.15), it follows that  

M = [ I  + MU(2)] M(A). 

Theorem 8.1 is therefore applicable to yield the conclusions that  I + M U ( 4 ) i s  in- 

vertible and that  M(2) is completely monotonic. 

Conversely, suppose that  (8.13) holds; then M~>0 by (8.15). If I + M U ( ~ ) i s  

invertible, then 

$(2) = [I + MU(2)] -1M~o(4), 

and so if we set M(4) = [ I+MU(4) ] - IM,  (8.17) 

we obtain (8.12) and M(2) is completely monotonic as before. Theorem 8.2 is proved. 

COROLLARY 1. lim~_~0 M(4) exists. 

Proo/. This follows from the uniqueness of the representation in (8.16). 

We have formulated Theorem 8.2 in such a way as to stress the logical equiva- 

lence of two analytical propositions. Actually we know (8.12) is true under our assump- 

tions by Theorem 7.4, hence the new fact that  emerges is as follows. 

COROLLARY 2. The matrix I + ~ ~ (4) in (8.1), or equivalently the matrix I + MU(4) 

in (8.5), is invertible. 

Let us recount the main steps of analysis up to this point. We are given a sub- 

stochastic transition matrix YI on the index set I •  to begin with. The initial de- 

rivative matrix Q and the minimal solution (I) are then defined. Assumptions A, /~, 

B' and C are made. We then define l, ~ and Q. Now Assumption ]~' is made, and 

yJ is defined. The following decomposition (or representation)formula ensues by virtue 

of Theorems 5.1 and 7.4: 

l~I (~) = r + h4) M(4) ~(~), (8.18) 

where ~I(4)= (p,j(4)), ~ (4 )=  (•j().)), (i, i ) E I •  and where ~/(2) is written for the M(4) 

in (8.12) in conformity with the rest of our notation. U(~t)is defined through 1 and y~; 

finally let us write <u, v> = ~.~uiv~ if u =  {u~} and v= {v,}; 1={1}; and set 
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M=~(O) (= M(oo)), 

f l=  lira <2~(~), 1> (=~ . (oo) ) ,  
~-~0 

then we have: 

I + M U ( 2 )  and 1 +  U(2)M are both inve~ible for every 2; (8.19) 

<M E, 1> ~< 1. (8.20) 

The last inequality is equivalent to the Corollary to Theorem 6.6. 

The full converse of the above will now be proved. We are given Q on Ix  I to 

begin with satisfying Assumption A, from which r is defined. Let (l a, a E A) be a finite 
~ 

set of exit solutions and {y~, ~EA)  a finite set of entrance solution for r and define 

U(2) as in (8.3). Let M be an A•  matrix with nonnegative constant elements 

satisfying (8.19) and (8.20). Now define 1"~(2) by (8.18). 

THEOREM 8.3. 1~I(2) is the Laplace trans/orm o/ a substochastic transition matrix 

with Q as its initial derivative matrix; and every such ~I(2) can be constructed in this 

way under Assumptions A, B', A, B' and C. 

Proo/. We have already proved the second part of the theorem. 

The calculations for the first part will be briefly indicated, omitting the ^ on 

the Laplace transforms. We shall first verify the resolvent equation for l-I: 

1-I (At)- 1-[ (2)= ( 2 -  #)1-[ (2)1-I ( A t ) ( 0 <  2At < ~ ) .  (8.21) 

We being by writing down similar equations for (I), l and v2: 

O(At) - (I)(2) = (2 -At) 0(2) O(At), (8.22) 

l(At) - l (2 )  = (2 - At) O ( 2 )  l(At), ( 8 . 2 3 )  

~o(#) - ~v(~) : (2  - # )  ~v(2) O ( / t ) ,  ( 8 . 2 4 )  

the last two being the double Laplace transforms of (4.4) and (7.18). Next, we define 

Og:(t)(1) as in (6.10) to be ~t~v~(s)l-~(t-s),O7~(2) to be its Laplace transform and 

0(2) = (0~(2)), (a,a) EAxA.  Set also 

1 a 0~(2, At) = ~ ~ (2) ~ (At) = <~pff(2), la(At)>, 

0(2, At) = (Oaa(~.,/z)) ((a, a) e~k x A). 

(1) This is the O~a(t) used momentarily in the second paragraph of the section. 
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I t  follows from a computat ion based on Theorem 6.4 with ~ replaced by  ~p t ha t  

O ( # )  - O ( 2 )  = (2 - y )  0 ( 2 ,  y). 

Finally, by  the relation corresponding to the first equat ion in (6.11), we have 

U(y) - U(2) = 0(2) - O(y). (8.25) 

Hence it follows from (8.17) tha t  

[I  + MU(2)] [M(2) - M(/~)] [I  + U(#) M] 

= M [ I  + U(t~) M] - [I + MU(2)] M = M[U(/~) - U(2)] M 

= M[| - | M = (# - 4) M| M 

or equivalent ly (4 - /~ )  M(2) 0(4,  #) M(/~) = M(/z) - M(2). (8.26) 

Now we have, upon subst i tut ion from (8.18): 

H(~)  I-I(#) = 0(2)  O(p) + 1(2) M(~) v;(2) 0 (# )  + (I)(2) l(fz) M(#)  ~p(/z) 

+/(2)  M(2) | M(/~) ~v(/~). 

Hence using (8.22), (8.23), (8.24), and (8.26), we have 

(2 - y) I-[(4) l-[(y) 

= 0(2)  - O(/~) +/(2)  M(2) [~v(/~) - y)(2)] + [/(/~) - / (2 ) ]  M(/~) ~o(/z) 

+/(2)  [M(,u) - / ( 2 ) ]  ~p(,u) 

= O(#) + l(/~) M(/z) W(#) - 0(2)  - I(2) M(2) ~0(2) 

= F i ( ~ ) -  1-I(2). 

Thus (8.21) is true.  Next ,  we have by  the relations corresponding to (6.16) with rj 

replaced by  ~p: 
(2~(2), 1~ = U(2) 1 + ft. 

Hence it follows from (8.12), (8.17) and (8.20) tha t  

(2~(2), 1) = M(2) [U(2) 1 + fl] 

= [1 + MU(2) ] - '  [MU(2) + Mfl] 

~< [1 + MU(2)] -1 [MU(2) + 1] 1 = 1, (8.27) 

and consequently for each i E I ,  if I~[i and Oi denote  the  i th  rows of II and O: 

(21-L (2), 1> = (2':I),(2), 1> + Z l~ (2) (2~(2 ) ,  1) 
a 

~< 1 - t, (2)  + Y~ l? (4)  = 1. 
a 
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Thus 1-~(2) is substochastic, and is stochastic if, and only if, Mfl= 1. Theorem 8.3 

is proved. 

The condition (8.19) can be made more explicit in particular cases. The following 

theorem is due to Feller [7; Theorem 14.1]. 

THEOREM 8.4. Suppose U(oo)< oo; then every rI(2) can be constructed in the 

/ollowing way. Choose an A • A matrix N with nonnegative constant elements satis/ying 

the condition 
N[V(oo) 1 +/~] < 1; (8.28) 

set M ( 2 )  = { I  - N [  U ( c o )  - V(2) ]}  -1 ~T, (8 .29)  

and de/ine [I(2) by (8.18). 

Proo/. We prove only the necessity of (8.28) and (8.29); their sufficiency can be 

verified as in the preceding proof. Let  us rewrite (8.7) as 

M(2) = [ I -  M(2) V(2)] M. (8.30) 

Letting 2-->0o and writing N for M(0o), we have 

N = [ I -  NU(0o)] M. (8.31) 

I t  follows from the condition (8.28) tha t  NU(0o) is substochastic, and consequently 

each row of N [ U ( 0 o ) - U ( 2 ) ]  has a sum which is strictly less than  one since the 

vanishing of a row sum in NU(2) implies tha t  of the corresponding row sum in 

/~U(oo). Hence the matrix 
I - lV[U(0o ) - V(2)] (8.32) 

is invertible. The preceding argument is taken from Feller [7]. Now we have by (8.31), 

I - N[U(oo ) - U(2)] = [I  - NU( 0o)] [I  + MU(2)]. (8.33) 

By Corollary 2 to Theorem 8.2, the second factor on the right side of (8.33), as well 

as the product, is invertible. Hence the first factor is also invertible by elementary 

matrix theory. We conclude by  (8.17), (8.31) and (8.33) tha t  

M(2) = [I  + MU(2)]-I  M = [I  -F MU(2)]-I [I  - N U(co) ] - lN  

: { I  - -  ~ [  U(  0o ) - -  U ( 2 ) ] } - 1  ~ .  (8.34) 

Next,  we have from (8.31), M=[I- !VU(0O)] - IN  
6--  632932 Acta mathematica. 110. Imprim6 le 16 octobre 1963. 
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and  consequent ly  (8.20) becomes 

iVfl< [ I -  i v v ( ~ ) ]  1 
which is (8.28). 

Note  t h a t  if we write proper ly  M(2) for the  M(2) above  and  use M(t) as in 

Theorem 7.4, we have  M = M(0) = M(r162 and iV = l ] l ( ~ )  = M(0 + ), and we infer t h a t  

the  two sets {r and  {~a}, a eA, in (7.34) and  (7.35) are l inear combinat ions  of 

each other.  Apar t  f rom this addi t ional  informat ion,  the  proof  of Theorem 8.4 is un- 

necessarily complicated.  Indeed  (8.29) is a special case of our earlier Theorem 5.5, 

as to be shown now. B y  Theorem 7.5, the  hypothesis  t h a t  U ( ~ ) <  ~ implies t h a t  

case (ii) in Theorem 5.5 occurs. B y  (7.34), we have  ~ (2 )= iVy(2 )whe re  h r is as before. 

Using the  no ta t ion  in (5.27) and  in the  proof  of Theorem 8.3, we have  

A(~) = iVO(~) = i V [ U ( ~ )  - U(~)], 

the  last  equat ion being a consequence of (8.25). Subst i tu t ing into (5.27), we obta in  

(8.29) b y  compar ison with  (8.12). Theorem 8.4 is proved.  

The  case where the ma t r ix  U ( ~ )  contains infinite elements  will now be sketched 

following Feller. A diagonal  e lement  of the  ma t r ix  I - M ( ; t ) U ( ~ t )  is of the  form 

1 -]~$~(2)L~(~)=2 e=~t [1 -~.~(t)L.~(~)]dt, 

hence posit ive unless L~ ( c r  1 for each i E I a. I t  is easy  to see t h a t  this is impos- 

sible under  Assumpt ion  C. Hence  we can write 

I - M(2) U(X) = D(~) [ I  - ~q(2)], (8.35) 

where D(~t) is the  diagonal  p a r t  of the  ma t r ix  on the  left  side of (8.35) and  ~q(~t) 

has zero elements  on the  diagonal.  Now define M(;t) b y  

_M(~t) = [D(X)] -1 M(2) = [ I  - ~q(2)] M,  (8.36) 

where the second equat ion follows f rom (8.30). Le t t ing  2n-->cr so t h a t  

limM(~tn) =/1I ,  l im ~q(~n)=~q, (8.37) 
/ t - - > ~  n - - > ~  

we obta in  3 I  = [ I  - ~q] M.  (8.38) 

Thus  M and ~q t ake  the place of iV and  iVU(oo) respect ively in (8.31). Subst i tu t ing 

(8.6) into (8.38), we obta in  

_)~ = [ I  - ~q] [ I  + MU(2)]  M(X) = [ I  - S + MU(2)]  M(X). (8.39) 
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Let us classify the indices in A according to the substochastic matrix ~, in a 

similar way as in w 5. Just  as there, the matrix I - ~  is invertible unless there exists 

an essential class C such that  for every a in C, the ath row in ~ has sum equal to 

one. Since S is zero on the diagonal, such a class G must contain more than one 

index. I t  follows from (8.38) that  if Mc, Me denote the restrictions of M, M to C• 

but Sc, ( I - S ) c  those of S, I - S  to C• we have 

Mc = Me + ~cMc ~> ~gcMe. (8.40) 

Now a general theorem about discrete paramater Markov chains states that  an ex- 

cessive (superregular) function bounded below on a recurrent class is a constant. (In 

the case of a finite class as here, a simple algebraic proof is obtained by considering 

the minimum value of the function.) Applying this to (8.40) we infer that  equality 

holds in (8.40) so that  2~e= 0, and consequently we have by (8.39): 

[I  - ~q]c M e ( l )  = 0. 

I t  follows from (8.12) that, if $c(1) denotes the restriction of ${2) to C: 

[I  - S]c  $c (2) = [I  - ~q]c M c  (2) ~ (2) = 0, 

and so $c(,~) = ~qc$c(,~). 

Applying again the theorem just cited, we see that  ~(t) is constant on C. This being 

true for every ;t, we conclude that  ~( t ) - -~ ( t )  for every a and b in C. Thus the 

boundary points oo a for a in C are all indistinguishable from each other. If  this 

eventuality is excluded, then I - ~ q  is invertible, and so is I - ~ + J ~ U ( ; O .  We have 

therefore proved the following result. 

THEOREM 8.5. I /  all boundary points are distinguishable /tom each other, then 

we have 
M ( t )  = [ I  - ~ - ] 4 / ~ V ( t ) ] -  1 / ~ .  (8.41) 

This was proved by Feller under the superfluous assumption that  every element 

of U(;t) be positive. (1) For the consequent construction theorem similar to Theorem 

8.4 above, we refer to Feller [7]. 

(1) I am indebt.ed to David Williams for a verification of Feller's theorem by a purely algebraic 
method, which leads to the disposition above. 
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w 9. The One Exi t  Case 

We make  Assumpt ions  A, B and C and the fur ther  assumpt ion  t h a t  the  set A 

in Assumpt ion  B consists of one e lement  only. The index a corresponding to this 

e lement  will be omi t ted ,  thus  e.g., l~(t)=/~(t) .  

~n this case we have  

~(t) = Z g,~, (t) = ~ 7, (t) L, ( ~ ) ,  

= 2~(2) = 2 f / e - a t a ( t )  dr; u(2)  

and (8.1) reduces to ~(2) = [1 § u(2)] ~(2), 

or $(2) = m(2) ~(2), (9.1) 

1 
where m(2) - 1 + u(2)" 

I t  follows f rom Theorem 8.1 with M =  1 t h a t  (1 +u(2))-1 is a comple te ly  monotonic  

funct ion of 2. We have  b y  (6.16), 

1+u(2)  = 1 - n , ( ~ ) + 2 ~ , ( 2 )  

and 2 ~ Sj (2) 2~, (2) 2~,  (2) 
)'eI 1 +  U(2) 2#,(2)  + 1 - r / , ( ~ ) "  

I t  follows t h a t  ~ j e i ~ j ( t ) = l  or t h a t  (p~j), ( i , j ) e I •  is s tochast ic  if and  only if 

r ) , ( ~ )  = 1. I n  general  
1 - ~], (c~) 

2~0(2) = 1 §  " 

1 - ~ , ( c r  
Hence  we have  ~0(0) 1 - r / . ( o , ~ ) + ~ / . ( O ) '  

~ 0 ( ~ ) =  1 - , ~ , ( ~ ) .  

I t  is possible to  ex tend  the  equat ion  (6.7) to ~0 as follows. Since 

~o (s + t) - ~o (s) = ~. ~ (s) pio (t) = ~ ~t (s) l~ (u) ~o (t - u) du, 
i~I iEI 

we have  [~o (s + t) - ~o (s)] de = ~(u) ~o (t - u) du. 
0 
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Since ~0 is absolutely continuous, the left member  above is equal to 

for?' 
I t  follows that  ; f o t~o( ~ ) = ~o(s) ds + a(s) ~ o ( t -  s) ds. 

Thus to extend (6.7.) to ~0 we should set ~o(t)~--~o(oo). 
The functions ~]j(-) in Theorem 6.2 can be decomposed into two parts. Letting 

s ~ 0 in (6.5) we have 

7, (0)/,j(t) <,~j(t). 
i 

If  we set ~j(t) = Vj(t) - ~ ~, (o) l~j(t), 

then ( ~ (  .)} is an entrance solution for (I) satisfying ~ ( 0 ) = 0 .  Consequently, we have 

by Theorem 6.7, 

E 4, (t) q,, = 0. 
i 

These results check with Reuter  [13]. I t  is to be noted tha t  Reuter 's  analytical as- 

sumption implies our Assumption C, unless I consists of one 1-I-recurrent class. 

The function m(2) in (9.1) is of interest. Note tha t  

u(2)= f?  2e-~t dt ft~~ fo(1-e as)O(s)ds, (9.2) 

and by (6.7) and Corollary 2 to Theorem 6.3: 

sO(s)ds= ds ~l~(u) li(s-u)du = ~ ~ ( u ) L ~ ( 1 - u ) d u  
�9 i 

<~ f2~7,(u)du<~t+ f~a(s)ds < oo. 

Hence the last member  of (9.2) is the negative Laplace transform of an infinitely 

divisible distribution on T. Precisely, there is a process {Y(v), v E T} with stat ionary 

independent positive increments such tha t  

 le Y v',=exp[vfile  l,018,  ] 193, 
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I t  follows tha t  m(2) = f f  e -€ dv = E(e-ar(~)), (9.4) 

where /~ is a random variable with the distribution function e, and independent of 

the process {Y(v)}.  

In  the particular ease where S~ r O(s)ds = a(0)< oo, we set 

F(O = g(-d-I o ( s ) ~ .  (9.5/ 

The following theorem is easily proved. 

THEOREM 9.1. Let the random variable # be as described above and let the random 

variable ~ have the geometric distribution given as ]ollows: 

\ l  § (~(0)1 1 + a(O)' 
nEN.  

Let {Yn, n E N} be a sequence o/ independent random variables having the common distri- 

bution /unction F in (9.5) and independent o/ ~. Then Y(/~) and ~ - x y n  have the 

same distribution. 

The matr ix  generalization of this theorem is implicit in Theorem 8.4; see also 

the discussion a t  the end of w 5. For the case where the matr ix  (o~(0)) is infinite 

on the diagonal and finite elsewhere see Neveu [10], [11]. The extent  to which his 

results generalize Theorem 9.1 is not clear. The representation (9.4) must be intimately 

related to Paul I ~ v y ' s  "local t ime" (see [9]), but again the exact connection is not 

clear. 

10.  A p p e n d i x  

The following theorem, under the additional assumption of (2.4) with equality, 

was first proved with probabilistic methods by D. G. Austin; a simplified version by 

the present author  is given as Theorem II.5.2 in [1]. A simpler analytic proof was 

later obtained by  D. Ornstein; it is given as Theorem II.1.5 in [1]. The present proof, 

without the assumption (2.4), is a modification of the latter. 

THEOREM 10.1. Let (p~j), (i, ~ )EI •  be a matrix o/ /unctions on T satis/ying (2.1), 

(2.2) and (2.3). Then each p~(.  ) is either identically zero or never zero. 

Proo]. Suppose t o > 0  and p,j( to)=0. Let  N be a positive integer and to=2Ns.  

Define 
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Cm = {k : p,k(ms) = 0}, 

Cm-Cm+l=Dm+l  (m~O).  

Then Co = I - ( i ) ,  Cm"~, and ] e C2N. Let  us pu t  

u(m, n) = ~ pik(ns) pk,(4~Vs -- ns), 
keCm 

v(m, n) = ~ pik(ns)pkj(4Ns--ns) .  
keDm 

We have u(m,O)=O (0~<m); u(m, 4N)=p~j(4Ns)  (0~<m~<2N). 

By  [3; Theorem 1], each p~j is continuous in T;  hence by  Dini 's  theorem, the series 

p,k(t) pkj(2t0 - t) = p,s(2t0) (10.1) 
k e I  

converges uniformly in t E [0, 2t0]. Since the Dm's are disjoint (possibly void) and 

v(m, ~) < ~ p,~(~) p~j(4Ns- n~), 
m = 0  k e I  

it follows from the uniform convergence of the series in (10.1), t ha t  

~ v ( m ,  n) converges uniformly in n, 0 ~< n < 4N. (10.2) 
mffi0 

We have by  the definitions: 

u ( m , n §  l ) - v ( m §  l , n §  l ) =  ~ ( ~  p~z(ns)pzk(s))pks(4Ns--ns--s).  (10.3) 
keCm-bl le I  

~f ]~ ~ Cm +1 and Plk(8) > 0, then l E C~; for otherwise Ptk(m8 + 8) ~> P~l(ms) Pl~(s) > 0 and 

k would not  belong to C~+1. Hence in the double sum in (10.3) we need only sum 

I over Cm, and consequently 

u(m, n § 1) - v(m § 1, n § 1) <~ ~ P~z (n8) ~ Plk (S) Pkj (4NS -- n8 -- s) 
leCm k ~ I  

= ~ P~z (ns) PlJ (4N8 - n8) = u(m, n). 
IECm 

Summing over n we obtain  

4 N - 1  

p~j(4Ns) = u(m, 4N) ~< ~ v(m § 1, n § 1). 
n--O 

This being true for 0~< m ~  2N, we infer t ha t  
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1 4 N - 1  2 N - 1  2N 

pis(2t0)~<N ~ ~ v ( m + l , n §  max  ~ v(m,n) .  
0 m = N  l~n<<.4N mffiN+l 

As N - > ~ ,  the last member  above converges to zero by  (10.2), and so p~j(2to)=O. 

Repeat ing this argument ,  we see tha t  p~s(2nto)=O for every positive integer n and 

consequently pij(t) - O, since p~j(t) > 0 implies ptj(t') > 0 for t' > t trivially. The theorem 

is proved. 

COI~OLLAI~Y. Let (~ j ( . ) ,  ] e I )  be nonnegalive /unctions on T O satis/ying either 

~ j ( t ) = ~ ( s ) p ~ j ( t - s )  ( 0 < s < t ) ,  
i e I  

or ~ ( t ) =  ~ p , j ( t - s ) 5 ( s  ) ( 0 < s < t ) ,  

/or every t E T ~ Then each ~j(. ) is either identically zero or never zero in T ~ 

Proo/. Theorem 10.1 being symmetr ic  in the pair  of indices (i, ]), we need only 

prove the first form" of the Corollary. If  for some t > 0  we have ~j ( t )>0,  then  for 

any  ~: 0 < ~ < t ,  there exist s: 0 < s < ~ ,  and i e I  such tha t  ~ ( s ) > 0  and p i j ( t - s ) > O .  

Hence by  the theorem, p~j(O-s)  > 0  and so ~j(~) > ~ ( s ) p ~ j ( ~ - s )  >0 .  Since (~ is a rb i t rary  

~ j ( ' ) > 0  in T ~ proving the corollary. 

I t  follows from the Corollary tha t  each function such as k, l, ~, ~7, ~, Y) in the 

text ,  which is a member  of an exit or entrance solution for a s tandard  transit ion 

matr ix  ( I ]  or (I)), has the always-or-never-zero property.  The result can be generalized 

at  once to a measurable transit ion matr ix  (see the last paragraph of p. 122 in [1]). 
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