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Introduction 

With the advent of the generalization of the Weierstrass (product) theorem and  the 

Mittag-Leffler theorem to arbitrary open Riemann surfaces X (due to Florack [6]), the 

analysis, made by Henriksen [10J for the plane and Kakutani [13] for schlicht domains of 

the plane, of the maximal ideals in the algebra A of all analytic functions on X can be 

carried out in general; this will be done in w 1. The residue class field K, associated with 

free maximal ideals M in A, has been considered by Henriksen [10]. That K has a natural 

valuation whose residue class field is the complex field C does not seem to have been 

noticed before. I t  will be shown in w 1 that the value group of K is a divisible ~]l-group and 

that every countable pseudo-convergent sequence in K has a pseudo-limit in K: i.e., K 

is I-maximal. 

Let AM be the quotient ring of A with respect to M in F, the field of meromorphic 

functions on X. I t  will be shown in w 2 that  AM is a valuation ring of F. The value group 

of A M will be shown to be a non-divisible near ~l-group with a smallest non-zero convex 

subgroup, which is discrete; thus the structure of the prime ideals in A that  contain M 

can be analyzed. I t  is also shown in w 2 that  this valuation on F is 1-maximal. 

In w 3 the composite of the place of F, whose valuation ring is A M and of the place 

of K, will be shown to be a place of F over C onto C whose valuation is 1-maximal, and 

whose value group is a non-divisible ~l-group. 

In  w 4 the space S of all places of F over C onto C will be considered. Under the weak 

topology S is compact. Let T be the closure of X in S and let SA be the places that arise 

(1) These researches were done, in part, while the author was a N.S.F. post-doctoral fellow at 
Harvard University. 
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from maximal ideals in A. I t  will be shown that  X < S A c  T < S .  There is a continuous 

mapping of fiX, the Stone-(~ech compactification of X, onto T which maps ~X = {p E~X, 

p an adherence point of a discrete subset of X} one-to-one onto SA. 

In w 5 a few open questions raised by these researches will be stated. 

Acknowledgements. Thanks are due to Professor Tate for observing that  the total order 

in the prime ideals contained in a free maximal ideal suggested the presence of a valua- 

tion o n  A M . This is indeed so, and was of great importance in the researches leading up 

to this paper. I am indebted to Professor Zariski, who suggested Lemma 4.5 in a con- 

versation. Thanks are also due to Professor RShrl for suggesting that Narasimhan's 

imbedding theorem [17] might aid in providing the function produced in Lemma 4.7, and 

for allowing me to discuss these researches with him at considerable length. 

1. Ideal theory 

Let X be an open (connected) Riemarm surface and let A be the set of an analytic 

functions on X. A is, of course, an algebra over the field C of complex numbers under 

pointwise operations. Let / E A and let Z(/) = {x E X : / ( x )  = 0}. Clearly Z(/) = o if, and only if, 

f is a unit in A and Z(/g) =Z(/) U Z(g), for al l / ,  gEA.  Helmer [9] has proved the following 

lemma in case X is the plane. 

LEMMA 1.1. (Helmer.) Let /, g E A  such that Z(/) n z(g)=~;  then there exists a, bEA  

such that a /+  bg = 1. 

Helmer used the classical Mittag-Leffler theorem in his proof. We will use Florack's 

[6] generahzation of the Mittag-Leffler theorem to prove Lemma 1.1 much as Helmer 

does. Thus it seems desirable to state the Weierstrass (product) theorem and the Mittag- 

Leffler theorem in this setting; it will frequently be resorted to. 

Background. Let F be the field of meromorphic functions on X. For x E X let Ox be the 

set of a l l / E F  such tha t / (x )EC and let Px be the set of a l l / E F  such that / (x)  =0. Then Ox 

is a valuation ring of F and P~ is its maximal ideal. Let the valuation associated with Ox 

be denoted by Vz. The value group of V~ is, of course, the integers. For each x E X choose 

t~ E F such that  V~(t~)= 1. t~ is called a local uni/ormizer at x. Let m = V~(/) for a non- 

zero /eF. Thus V~(/t~ m) =0, and there exists a unique non-zero complex number a m such 

--Yn~m ant~)>k. that  Vx(/t; m -am) >0. Thus given k>~m, there exists anEC such that  Vx(/ k 
k n ~.~=~ant~ will be called the k-th partial sum o / ]  at x. L e t / E F .  Clear ly /EA if and only 

if V~(/) >~ 0 for all x E X. Further ] is a unit in A if and only if V~(]) = 0 for all x E X. Finally, 

given a non-zero element / of F, the zeros and poles of / are disjoint, discrete subsets 

of X. 
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PROPOSITION 1.2. Let b= ~ = o b , ~ t  m and a=~rk=oa~t k EC[t], b0#0. There exists 

c=~n=o cntnE C[t] such that c b - a  is either zero or is divisible by t T+I. 

Proo]. We must solve the following system of linear equations for c o ..... Cr: 

cob o = a o, 

cob  I +clbo = a  1, 

cob  r + . . .  + c r b  0 = a  r. 

Since the determinate of the system of equations, b~ +1, is not zero, such numbers c o ..... cr 

exist in C, proving the proposition. 

Employing first Florack's generahzation of the Weierstrass theorem [6], Proposition 

1.2, and then Florack's generalization of the Mittag-Leffler theorem [6], we get the fol- 

lowing. 

T H E o R E M 1.3. Let D be a discrete subset o / X .  For each x E D choose integers m(x) <~ k(x) 

and complex numbers a~. x, re(x) <~ n <<. k(x). There exists u E F such that Vx(u - ~ ) ~ ( x )  a~.~ t~) 

>k(x) /or  all x E D ,  and Vz(u)>~O /or all x E X - D .  

Further, we can get the following. 

COROLLARY 1.4. Let D be a discrete subset o / X .  For each x E D  choose ]~EF and an 

integer k(x) such that V~(/~) <~ k(x). There exists u E F such that V~(u - I x )  > k(x) /or all x E D 

and Vx(u) >~ 0 / o r  all x E X - D. 

We now return to the proof of Helmer's lemma. 

Proo/. If g is a unit let a = 0  and b = l / g .  Assume now that g is not a unit in A; then 

D =Z(g )#  o. For x E D let re(x)= Vx(g/). Since Z(/) N Z (g )=o ,  m ( x ) =  V~(g). Let Bx be the 

(2m(x)- 1)-th partial sum of g / a t  x. By Proposition 1.2 there exists C, = ~.;l_m(,)Cn,x t~ 

such that  Vx(C, B, - 1) ~> m(x). By Theorem 1.3 there exists u E F such that V,(u - C,) > - 1 

for all x E D  and Vx(u)>~O for all x E X - D .  Note: Vx(ug)~>0 for all x E X ;  thus u g = a E A .  

a / -  1 = C, B z - 1 + C , ( g / -  Bz) § (u - C~) B~ + (u - C , ) ( g / -  B,) .  By construction, the value at 

x of each term in this summation is not less than re(x), for x E D ;  thus ( a / - 1 ) / g  = - b E A ,  

proving the lemma. 

The following is an immediate consequence of Helmer's lemma. (See Henriksen [10] 

for details.) 

C o R o L L A R Y 1.5. AU finitely generated ideals in A are principal.  

In  these considerations the following corollary is of great importance. (In this paper 

all ideals are assumed to be proper.) 
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COROLLARY 1.6. Let I be an ideal in A and le tZ( I )= (Z(a): aEI} .  (Z(I) has the finite 

intersection property: i.e., the intersection o /a  finite number o/elements o /Z ( I )  is non-empty. 

Let A be the set of all discrete subsets of X together with X itself. By the generalized 

Weierstrass theorem, A =Z(A). A subset 8 of A will be called a A-filter if 

(a) 0r 
(b) if D E 8 and D' E A such that  D c D'  implies D' E 8, and 

(c) 8 is closed under finite intersection. 

Let the A-filters be ordered by inclusion and let maximal A-filters be called A-ultrafilters. 

Let 8 be a A-ultrafilter and let D o E A. D o E 8 if and only if D N D o 4= ~ for all D E 8. A 

A-filter 8 will be called fixed or [ree according as rl D~ D is non-empty or is empty. We 

then have the following. 

THEOREM 1.7. I /  I is an ideal in A then Z(I)  is a A-filter. I / 8  is a A-filter then Z-1(8) 

is an ideal in A;/urther I c Z-1Z( I). Thus Z is a one-to-one correspondence between the maximal 

ideals o / A  and the A-ultrafilters. I / 8  is a fixed A.ultrafilter then N D~ D consists o] a single 

point x, 8 = {DEA:  xED},  and Z-l(8)= {lEA: fix) =0}. 

A-filters are very closely related to z-filters. The proofs given by Gillman and Jerison 

[7] for the corresponding results for z-filters can be easily modified to prove these results. 

We will call an ideal I of A fixed or/ree according as Z(I)  is fixed or free. I t  is clear 

that  all fixed prime ideals of A are maximal. An ideal I of A will be called a A-ideal if 

I =Z-1Z(I).  Let P be a prime A-ideal. If P is fixed then it is maximal. Assume that  P is 

free; then 8 =Z(P) enjoys the following property: given D~ E A such that  D o U D 1E 8, then 

D o or D 1E 8 (i.e., 8 is a prime A-filter). Let  D o be a discrete subset of 8 and let 8 0 = (D N Do: 

D E 8}. Then 8 o is an ultrafilter on D o. Conversely, given an ultrafilter 8 o on a non-empty 

discrete subset D o of X, then 8 = (DEA: D N DOES0} is a A-ultrafilter. Thus P is a maximal 

ideal. We see therefore that  the only prime A-ideals of A are the maximal ideals and that  

the study of prime A-filters is not going to help in the study of non-maximal prime ideals 

in A. Let us, however, record the following useful fact discussed above. 

PROPOSITION 1.8. I /  8 is a A-ultrafilter and D o is a discrete subset o/ 8 then 8o= 

8 N Do~--(D N Do: DES} is an ultrafilter on D o, fixed or/ree according as 8 is fixed or/ree. 

Conversely, given a non-empty discrete subset D o o / X  and an ultrafilter 8 o on it, let 8 = ext 

8 o = (D E A: D N D o E 8o}. 8 is a A-ultrafilter, fixed or /tee according as 8 o is fixed or /ree. 

Finally, 8 = e x t  (8 N Do) and 8o=(ext 8o) N D o. 

We now will investigate the quotient fields of A. Let M be a maximal ideal of A. 

Assume, first, that  M is fixed and let NDGZ(M)D:x. In  this case let M = M x .  Then it is 

clear that  two elements /, g EA are congruent modulo M if and only if/(x) =g(x). Thus, 



V A L U A T I O N  T H E O R Y  O F  M E R O M O R P H I C  F U N C T I O N  F I E L D S  83 

the subfield C of constant functions maps onto A/M. Assume now tha t  M is free, let 

=Z(M),  let K =A/M and let 2 be the canonical homomorphism of A onto K. Let C be 

identified with 2(C). Clearly 2(/) = 0  if and only i f / I  D =0  for some DE~; thus we have the 

following proposition. 

PROPOSITION 1.9. K is canonically isomorphic to inj limDc~A]D, where AID 

={lID: leA}. 

Proo/. The kernel of the canonical homomorphism of A onto this injective limit is 

exactly {/eA: Z(/) e a}: i.e., M, proving the proposition. 

By Theorem 1.3, if D o is a discrete subset of X, AID o is merely C D~ the set of all 

mappings of D o into C. Thus we have the following corollary. 

COROLLARY 1.10. K is isomorphic to inj limper CNID, where N is the set o/natural 

numbers and ~ is a/tee ultra/liter on N; thus K is an algebraically closed proper extension o/ 

C, the image o/the constant ]unctions. 

Proo/. The algebraic closure of K can be shown by choosing a monic polynomial with 

coefficients in K choosing a monic polynomial with coefficients in C N whose coefficients 

map to the corresponding coefficients of the original polynomial, and for each n E N choose 

a root of the corresponding polynomial with coefficients in C. Then the element in C N having 

this value at  n goes to a root of the original polynomial. That  K is a proper extension of 

C follows from the existence of unbounded elements in C N. 

Remark. A more elegant proof can be given by  observing tha t  K is an ultrapower of 

an algebraically closed field, and thus is algebraically closed. See Koehen [15] for details. 

Of greater importance to us, in this paper, is the fact tha t  K has a natural  valuation 

whose residue class field is the complexes. Since (~ is a A-ultrafilter, g iven /EA,  limD~/(D) 

always exists in the Riemann sphere Z; l e t / (M)  be this limit. I t  can easily be shown tha t  

has a unique limit p in fiX, the Stone-~ech compactification of X. Every  leA admits a 

continuous extension/* from f ix  into Z . / ( M )  is mere ly /*(p) .  Given/ ,  geA tha t  are con- 

gruent modulo M, t h e n / = g  +m,  m eM. Let D o =Z(m); t h e n / I  Do =g] Do" H e n c e / ( M )  = 

g(M), and we see tha t  the mapping/--->](M) induces a corresponding mapping p of K onto 

Z. Using results proved in [3] we have the following. 

THEOREM 1.11. Let M be a maximal/ree ideal o /A,  ~ =Z(M), and let 2 be the canonical 

homomorphism o / A  onto A / M ~ K .  Given aEK, choose/eA such that 2(/)=a. Define p(a) 

to be limDe~/(D), p, independent o/the choice o//,  is a place o / K  over C onto C whose value 

group is a divisible group that is an ~l-set o/power 2~., and whose valuation is 1.maximal. 

In  proving the theorem, first observe that,  according to Proposition 1.9, K is cane- 
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nically isomorphic to inj hmD~60 AID, where g0 = 5 N D o and D o is a discrete subset of 3; 

thus K is canonically isomorphic to a residue class field modulo a maximal  free ideal of 

the ring of complex-valued continuous functions on D 0. Applying [3], the theorem follows. 

Background. Before going on to w 2, let us recall some of the definitions tha t  occur in 

this theorem. In  saying tha t  p is a place of K over C onto C we mean (see, e.g., Zariski 

and Samuel [22]) it is a place whose valuation ring contains C such tha t  C maps onto its 

residue class field. Since K is algebraically closed, a value group G associated with p (see, 

e.g., [22]) must  be divisible. That  G is an ~71-set, an idea due to Hausdorff [8], means tha t  

given any two countable subsets G i of G, that  may be empty,  such tha t  G o < G1, then there 

exists g fi G such tha t  G o <g  < G1. Let V be the valuation of K associated with p whose 

range is G U {oo} (see, e.g., [22]). A sequence (an)n~N in K is called pseudo-convergent, if 

given n<m<k then V(am-an)< V(ak-am) (see, e.g., Schilling [19, pp. 39-43]). To show 

tha t  (an)n~N is pseudo-convergent it is necessary and sufficient to show tha t  V(an+1 -an) = gn 

is a strictly increasing sequence in G. Assume tha t  (an)n,n is pseudo-convergent. An element 

a in K is called a pseudo-limit of (an)n~N if V(a-an) =gn for all n. V is called 1-maximal if 

every countable pseudo-convergent sequence (an)n,~ in K has a pseudo-limit in K. 

Historical note. Helmer 's  s tudy [9] of the ideal structure of A, in case X = C, seems to 

have been the first strictly algebraic s tudy of this ring; Helmer 's  lemma (Lemma 1.1) and 

its ideal theoretic consequences occur in that  paper. In  [10] Henriksen adapts many  of 

the ideas of Hewit t  [12] to the study of A, in case X=C; in particular the correspon- 

dence between maximal ideals and A-ultrafilters is there in essence. Henriksen introduces 

algebraic zero sets, in which the multiplicity of the zero is noted, rather  than zero sets; 

these he later used to great effect to s tudy prime ideals [11]. Kakutani  [13] is respons- 

ible for the correspondece between maximal ideals in A and A-ultrafilters, as it appears 

here (Theorem 1.7). Henriksen [10] also showed that  A/M is algebraically closed. In  [18] 

Royden suggests the generalization of Henriksen's results using F10rack's generalization [6] 

of the Weierstrass and Mittag-Leffler theorems (Theorem 1.3). The ideas of A-ideal and 

Prime A-filter appear, in modified form, in Gillman and Jerison [7]. The valuation theory 

of these residue class fields is due to the author [3]. Schilling has, in an unpublished ma- 

nuscript, obtained Helmer 's  lemma, in this setting, in his s tudy of the closed fractionary 

ideals of A, extending his results on the subject [20] to the general case. I am indebted to 

Professor Schilling for making these unpublished results available to me. 

2. Quotient rings and valuations 

Let M be a maximal ideal of A and let A~t={a/b: aEA and bEA-M};  then A M 

is a local ring whose maximal ideal M'  is {a/b: aEM and b e A - M } .  In  case M=Mx, for 
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some x E X,  then A M is clearly Oz, a valuation ring of F. With the aid of the following 

lemma, A M will be seen to be a valuation ring of F in case M is free. 

PROPOSITION 2.1. Let M be a maximal ideal in A and let (~ =Z(M).  Then AM= {/EF: 

there exists DE5 such that / has no poles on D} and M ' =  {/EF: there exists DE5 such that 

/(D) =0) .  

Proo/. Let ]EAM; then there exist aEA and b E A - M  such t h a t / = a / b .  Since b(~M, 

Z(b)r thus there exists DE5 such that  Z(b) N D=o. Hence / has no poles on D. Let 

/EM' ;  then we may  require tha t  aEM. Thus Z(a) and Z(a) N D=D'Eh.  On D',  / is zero. 

Let  /EF .  By Theorem 1.3, there exist a, bEA such tha t  ]=a/b and Z(a)NZ(b)=o. 

Assume there exists DE5 such tha t  / has no poles on D. Then Z(b) N D = o  and Z(b)~5: 

i.e., b C M, showing tha t  /EAM. Assume now tha t  /(D)=0; then D N Z(a), hence Z(a)E 5 

and a E M, showing tha t  /E M',  proving the proposition. 

THEOREM 2,2. A M is a valuation ring o /F .  

Proo/. Let / E 2 ' -  A M and let P be the set of poles o f / .  By Proposition 2.1, P N D ~ 

for all DES; thus PEh.  Since Z(1//) =P, we may  apply Proposition 2.1, and conclude tha t  

1//EM', proving the theorem. 

The rest of this section will be devoted to considering the value group and valuation 

associated with A M in case M is free. 

F o r / E F *  let d(/)(x) = Vx(/) for all xEX; thus d( / )EJ  x, J denoting the ring of integers. 

d(/) is called the divisor o/ / .  Let d(0) = ~ and let ~ > u  for all u E J  X. Clearly j x  is a lat- 

tice-ordered group. For u E J  x, the support o /u  is (xEX: u(x)~0}.  

PRO]:OSITION 2.3. d is a homomorphism o/ F* into j x  whose range is (uEJX: the 

support o /u  is a discrete subset o /X} .  Given/, ge F then d(/ +_g) >~d(/) A d(g). 

Clearly 5 is a directed set; thus using the restriction mappings of jx]  D( = (u] D: 

u E jx})  onto JX] D'  if D' c D we can consider the following injective limit, inj limD~o j x ]  D = 

H. Let T be the canonical homomorphism of j x  onto H. Let  H inherit the order of jx :  

i.e., let u, vEJ  x and let T(u) ~<T(v) (~(u)<v(v)) if there exists D e 5  such tha t  u I D<~vlD 

(u ] D < v I D). Clearly v is order-preserving. 

PROPOSITION 2.4. T maps d(F*) onto H, and H is a totally ordered group. 

Proo/. By Proposition 2.3, and Theorem 1.3, if D0eh-X then d(F*)ID o =jD.; thus 

v maps d(F*) onto H. Clearly H is a partially ordered group. Let  u E J  D~ let D 1 = (xEDo: 

a(x) >~0}, and let D~= (xED0: u(x)<0}. Clearly Do=D 1 U D~ and D 1 N D2=o. Since 5 is 

a A-ultrafilter, 50=5 N D o is an ultrafilter on D o (Proposition 1.8). Thus either D~ or 

D e E 50; accordingly either ~(u) ~> 0 or v(u) < 0, proving the proposition. 

7 -  632932 Acta mathematica. 110. I m p r l m 6  le 16 o c t o b r e  1963. 
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Let 3( ~ ) = ~ ,  ~o being greater than all h E H. Let W = vd. Thus W maps F onto H U (oo }. 

THEOREM 2.5. W is a valuation o / F  associated with A M. 

Proo/. By Propositions 2.3, and 2.4, W is a valuation of F over C; thus it suffices to 

show that W(/)>~ 0 if and only i f / E A  M. By definition the following statements are equi- 

valent: W(/)>~O, ~(d(/))~>O, there exists DE5 such that  d(/)lD>~O. By Proposition 2.1, 

the last statement is equivalent to the statement that /EAM, proving the theorem. 

We will now investigate the group H. Clearly H may be regarded as inj limDe~ JN I D, 

where ~ is a free ultrafilter on N, the set of positive integers. Let a be the canonical homO- 

morphism of jN onto H. That the divisibility of elements in H by positive integers is 

rather complex can be seen from the following examples: let a(m)=m!, b(m)=2 m, and let 

c(m) be the mth prime number. Then a(a) is divisible in H by all nEN,  (~(b) is divisible by 

all powers of two and no other integers, and a(c) has no divisors other than 1. 

Background. By a near ~h-set is meant a non-empty totally ordered set T such that  

given any two non-empty countable subsets T~ of T such that  T o < T1, then there exists 

t E T such that  T o ~<t ~< T 1. Clearly an ~l-set is a n e a r  ~]l-set.  The converse is not true, since 

the set of real numbers is a near ~l-set but is not an ~h-set. Let G be a totally ordered 

Abelian group. A subgroup G' of G is called convex if given g'E G' and g E G such that  

Igl <~ Ig'l (where Igl =max  g, -g) ,  then gEG'. The convex subgroups of G form a com- 

plete totally ordered set under inclusion. For g E G let v(g) be the smallest convex subgroup 

of G that contains g. Note: 0 < g ~< h implies v(g) <~ v(h), v(g) = (0~ if and only if g = 0, v(g ++_ h) 

~<maxv(g), v(h), and if v(g)=~v(h), v(g+h)=maxv(g), v(h); thus v has many of the pro- 

perties of a valuation, v is called the natural valuation on G and S=v(G*) is called the 

value set o/ G. Let s E S and let 

~(s) = {g e G: v(g) < s}/{g e ~: v(g) < s}. 

G(s) is an Archimedean totally ordered group under the order induced on it by G; thus 

G(s) is isomorphic to a subgroup of the reals. G(s) is referred to as a/actor  of G. (See [2] 

for references.) 

THEORE~ 2.6. H is a near ~h-set whose value set S has no countable cofinal subset and 

has a least element s o. 

Proo/. Let a(m)=l  for all mEN, and let v be the natural valuation on H. Then so= 

v((l(a)) is the least element of S. Clearly H( =inj limD~JNID) is a cofinal subgroup of 

G =inj limDGr RNI D, R denoting the reals. Hewitt [12] has shown that  G, a totally ordered 

group, has no countable cofinal subsets, proving that  H, and thus S, have no countable 



V A L U A T I O N  T H E O R Y  OF M E R O M O R P H I C  F U N C T I O N  :FIELDS 87 

cofinal subsets. I t  remains to show that  H is a near ~l-set. Let (hn) and (kn) be countable 

subsets of H such that  hn<~n+l<]cn+l<~]~ n. By Lemma 13.5 [7], there exist pre-images 

h~ and k~ in J~ of h~ and kn respectively such that  h~ ~<h~+l <kn+l ~<k'~ for all hEN.  Let 

b(m) = h;,(m) for all m E N. Then b E J N. Let D~ = {m E N: m ~> n}. Since 7 is a free ultrafilter 

on/V, D~E~,. Let mED~: i.e., let m ~ n .  Then h'n(m)<~hm(m)=b(m)<k~(m)~<k~(m); hence 

h'~ ] Dn <~ b /nn  <~ k'~ ] n n. Thus h~ ~< a(b) ~< k~ for all n E N, proving the theorem. 

Let us now apply the results obtained in [3] on near ~l-sets. 

COROLLARY 2.7. S -  {s0} is an ~l-set and the natural valuation on H is 1-maximal. 

Applying classical valuation theory we get the following. 

COROLLARY 2.8. The set o/ all prime ideals el A that are contained in M is in one- 

to-one order reversing correspondence with the lower sets o /S .  Further M'  is a principal ideal 

in A M . 

Proo/. I t  is well known (see, e.g., [21, p. 228]) that  the mapping P--->PAM is a one-to- 

one order preserving mapping between the prime ideals of A contained in M and the prime 

ideals of A M. Since A M is a valuation ring, its prime ideals are totally ordered under inclu- 

sion. Let P '  be a prime ideal in A M and let He, = {hEH:/hi  < V(y) for all yEP'}. The map- 

ping P'-->Hp, is well known [22] to be a one-to-one order reversing mapping of the prime 

ideals of A M onto the convex subgroups of H. Finally, it is well known that the natural 

valuation v of H induces a one-to-one order preserving mapping of the convex subgroups 

of H onto the lower sets of S. Since H has a least positive element, M'  is a principal ideal 

of AM; proving the corollary. 

Since H is a n e a r  ~]l-set we may apply results obtained in [3] and conclude the following: 

the factors of H are either discrete or real. In  the the following, more will be proved. 

THEOREM 2.9. All /actors o/ H are real except the /actor associated with so, the least 

element o /S ,  which is discrete. 

Proo/. Let a(m)= 1 for all mEN.  Then, since (~(a), the smallest positive element of 

H, generates H(so) , this group is discrete. Let sES, s>s  o. A non-zero element in H(s) is 

the image of an element bEJ  N such that v(a(b))=s. Let D j =  {mEN: b(m)=j  (mod 2)}, 

]=0 ,  1. Clearly D o U D I = N  and D o fl D1=r  thus either D o or D1E y. If  DoE y then a(b) 

is divisible by 2 in H and thus its image will be divisible by 2 in H(s). If  D 1E 7 then 0 ( 5 - a )  

is divisible b y 2  in H. Since v(rl(b))=s >so=v(r~(a)) , a (b -a )  and a(b) have the same image 

in H(s), showing that every element in H(s) is divisible by 2 in H(s). Since H is a near ~l-set , 

its factors are either real or discrete [3]; thus H(s) is real, Proving the theorem. 
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COROLLARY 2.10. Let P' be a non-zero, ~ -max imal  prime ideal in AM. P' is not a 

larincipal ideal; thus P' is not /initely generated. There exist such P' that are countably 

generated and such P' that admit only an uncountable set o/generators; in particular, this is 

so i / P '  is the largest non.maximal prime ideal in A M. 

Proo/. Since P '  is a non-zero, non-maximal prime ideal in AM, Hi,, (see the proof of 

Corollary 2.8 for the definition) is a proper, non-zero convex subgroup H. S-v(H~,) may 

have a least element s r Since He, is non-zero, s 1 >so; thus, by Theorem 2.9, H(Sl) is iso- 

morphic to the reals. Hence W(P') has no least element but  does have a countable coinitial 

subset, showing that  P' is not principal but  is countably generated (see, e.g., Schilling 

[19, p. 10]). P' will also be countably generated if S-v(He,)  has a countable coinitial 

subset. I t  can also occur that  S-v(He,)  has no countable coinitial subset, since S - ( s 0 }  

is an ~l-set. In  this case P '  is only uncountably generated, proving the corollary. 

Using this corollary we can get lower bounds for the number of generators needed for 

the corresponding prime ideals in A, observing that  W(A*)=H(>~0). However, from Hel- 

mer's Lemma we know that  no free ideal in A is finitely generated. 

We conclude this section by proving a result that  indicates the amount of interplay 

existing between F and H, namely the following. 

T ~ E O l ~ M  2.11. W is 1.maximal. 

Proo/. Let  (/n)nE~" be a countable pseudo-convergent sequence in F. Let D I E ~ - { X }  

and let x be a one-to-one mapping of N onto D1; thus D 1 = (X(j))JEN. Since (~ N D 1 is a free 

ultrafilter on D1, {x(j): i E N  and ?'~>n+l}ES. Assume that  D~ has been chosen in (~ such 

that  

(1) d(]~+ 1 -]~) I Dn > . . .  >d(/2-/~)lD,~ and 

(2) 1 ~<i<n implies xsCD n. 

Since (/,) is pseudo-convergent, W(/n+l-/n)=ha is strictly increasing; thus, there exists 

DEO such that  d(/n+~-/~+I)ID>d(/~+I-/~)I D. Let Dn+I=D N D~lq {x(i): i E N  and 

>/n + 1 }. Clearly D,+ 1 E (~, and D~+ 1 satisfies conditions (1) and (2). Thus, (D~) is defined, 

each element having properties (1) and (2). 

Let  ~EN. By (2), x(~)ED~ implies )'>~n. Let p(j) be the largest integer such that  

x0") E Dp(j). Clearly i ~>P(?') ~> u. Let k(~) = d(/p(j)+l -/~(j)) x(i). Note: k(i ) ~> V~(;)(/p(j)). By 

Corollary 1.4, there exists [EF such that  V~(j)(/-/p(j))~k(]) for all ]EN. 

Let nEN and let xED~. Since Dn~ D~, there exists a unique ]EN such that  x(j) =x.  

By (2) j>~n. Let  P=P(i); then xEDp and p~n .  Then V~(/-/p)>~k(i)=V~(/p+l-/p ). If 

/9 =n,  then Vx([-[~ ) >1 V~(]~+I-/~). Assume p >n.  Then 
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V=(] - l.) = V.(] - ]v  + ]p - l.) >~min V=(] -Iv), V=(]p -1 . ) .  
Since x E D v we can apply (1) and conclude that  

v=(/~+l - I T ) >  V = ( / ~ - 1 . _ 1 )  > . . . > V x ( l . + l  - / . ) .  

Let n<j<~p. We wish to show that  Vx( l j - [ . )=  V~(].+I-]. ). Clearly it is true if j = n + l .  

Assume it is true for n < j < p .  

v ~ ( / j + ~ - / . )  = v=(/j+~-/~ + / J - l . )  = v ~ ( / . + l  - / . ) ,  

showing tha t  V~(fv-].) = V~(].+I - ] . )  and hence tha t  

V~(]- ].) = minVx(]v+l-fv), V~([=+I- ].) = V~([.+I- ].). 

Hence d(/-l.)]D.=d(/.+~-/.)]D.. Thus W(l-/.)=W(l.+l-/.), showing tha t  ] is a 

pseudo-limit of (]=).~N, proving the theorem. 

Historical note. Henriksen [11] analyzed the prime ideals of A, in ease X = C ,  and 

found that  the prime ideals of A contained in M are totally ordered under inclusion; 

his results on the order type of this set have been sharpened slightly in Corollary 2.7 and 

2.8. Banasehcwski [4] employed the divisor mapping d on A, in case X = C, to take ideals 

in A to "ideals" in d(A). He also employed injective limits along 6 to analyze the "ide- 

als" in d(A) that  come from ideals in A tha t  contain M. Kochen [15] has analyzed the 

order type of H, using the continuum hypothesis, finding it to be (to* +co)~/1, when ~h is 

the order type of an ~/1-set of power ~ .  Without  the continuum hypothesis, an analog- 

ous result holds, letting ~h be merely the order type of an ~h-set. Theorem 2.11 and its 

proof are closely related to Lemma 6 [11], in which it is shown tha t  if P is the largest 

non-maximal prime ideal of A contained in M, then AlP, a valuation ring, is complete. 

Henriksen [11] also shows tha t  if P is a non-maximal prime ideal of A, then AlP is a 

valuation ring, These results hold in the general case. Let Fp be the quotient field of AlP; 

then the value group of Fp, under the valuation Wp associated with AlP, is H p =  {hfiH: 

]hi < W(p) for all p EP}. Further W v is I-maximal,  giving alternate proofs to a number  

of Henriksen's results [11, w 4]. 

3. Composite places 

Let M be a maximal free ideal of A. Let  ~t' be the unique extension to A M of ~t, 

the canonical homomorphism of A onto A / M  =K.  Let r extend 2' taking ]E F--AM to ~ ; 

thus r is a place of F over C onto K associated with AM. Let  p be the place of K over C 

onto C defined in Theorem 1.11. Extend p to K U {oo} by  letting p ( ~ )  = o~ and let pr=  

s( = SM). Then s is a place of F over C onto C determined by M. Let  0 be its valuation ring 

and P its maximal ideal. 
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PROt'OSITION 3.1. Given/EF, s( f)=limD~/(D).  

Proof. Let rEAM. There exists gEA such that  ~t'(/) = 2(g). Clearly s(f) = s:g), which by 

Theorem 1.11, is limDr g(D). Since )~ ' ( / )=~t(g) , / -gEM' .  By Proposition 2.1, there exists 

DoE(~ such tha t  ( / -g)(Do)  =0,  and hence limD~ g(D) =limD~/(D).  Let  / E F - A M .  By 

Proposition 2.1, ] has poles on D for all DEO, showing tha t  l imDr  ~ ,  proving the 

proposition. 

Since s is a composite place, we have the following. 

COROLLARY 3.2. M ' c P c O c A M .  

(This may  also be seen from Proposition 3.1, and Proposition 2.1.) 

Applying the classical theory of composite places and valuations (see, e.g., [22]) we 

have the following. Let Y be a valuation of F associated with O, and let ~ be its value 

group. 

THEOREM 3.3. Let G= Y ( A M - M ' ) .  Then Y and 2' induce a valuation V of K as- 

sociated with p which has G as its value group~ Let �9 be the canonical homomorphism o/ 

onto ~ / G = H  and let W=LFY.  Then W is a valuation o / F  associated with r. 

In  w 1 and w 2 the structure of G and of H was described. Combining these results we 

have the following. 

THEOREM 3.4. ~ is an ~l-set whose factors are real, save one, which is discrete. 

Proof. By Theorem 1.11 and [1], all of the factors of G are real. By Theorem 2.9, all 

but  one of the factors of H are real, that  one being discrete; thus the s tatement  concerning 

the factors of ~ follows. By Theorem 1.11, and [1], G is 1-maximal. By Theorem 2.6, 

and [3], H is 1-maximal; thus s is 1-maximal. By Theorem 1.11, the value set P of G is an 

~l-set. By Corollary 2.7, the value set S of H has a least element s o and S -  {so} is an ~l- 

set; thus the value set of ~ ,  which is similar to P + S  is an ~l-set. Applying [1], we see 

tha t  f2 is an ~h-set, proving the theorem. 

Using the classical analysis of ideals in a valuation ring [22], as was done in the proof 

of Corollary 2.8, we get the following. 

COROLLARY 3.5. The prime ideals in 0 are in onc-to-onc order reversing correspondence 

with the lower sets of an ~l-set. Further, 0 is not countably generated. 

We are able to conclude the following. 

COROLLARY 3.6. The transcendence degree of F over C is 2a 

Proof. Since the cardinal number of F is 2u, its transcendence degree over C cannot 

exceed 2~. ~ can be imbedded, in an essentially unique way, in a divisible totally ordered 

group ~ '  such that  ~ '  is the divisible subgroup of ~ generated by  ~;  further, the value 
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set of ~ is mapped onto the valued set of ~ '  by  a one-to-one mapping. By the rational rank 

of ~ is meant  the dimension of ~ '  over the rationals. I t  is well known (see, e.g., [22]) tha t  

the transcendence degree of F over C is at  least the rational rank of ~ .  Clearly the dimen- 

sion of ~ '  over the rationals is at  least the cardinality of ~ ' ,  which is the cardinality of ~ ,  

which by Theorem 3.4 is an ~h-set. Hausdorff [8] showed tha t  the cardinality of such sets 

is at  least 2~, proving the corollary. 

We can apply the same argument  to show tha t  the trascendence degree of K ( = A / M )  

over C is 2R in case M is a maximal free ideal. 

We have seen in w 1 and w 2 tha t  V and W are 1-maximal. These results will now be 

combined to form the following. 

THEOREM 3.7. Y is 1-maximal. 

Proo]. Let (/n)neN be a countable pseudo-convergent sequence, under Y, in F and let 

o)~ = Y(/~+I -]~); then by  the definition of pseudo-convergence, (w~) is a strictly increasing 

sequence in ~.  Let  h n =~F(eo~), LF being the canonical homomorphism of ~ onto H =~/G.  

Since ~Iz is order-preserving, (hn) is an increasing sequence in H. Either, 

(1) (h~)~N has a greatest element h, or 

(2) no such element exists. 

Assume tha t  (2) holds. Let ?" be a strictly increasing function of/V into N such tha t  

(hj(~)) is a strictly increasing sequence in H; then, by  definition, (/j(~)) is pseudo-convergent 

under W. By Theorem 2.11, W is 1-maximal. Thus there exists /E F such tha t  W(/ - / j (n ) )  = 

hj(~, for all h E N .  Clearly Y(/--/j(n))=O~j(n~+~j(,~ I, where ~j(~EG. Since hj(n)<hj(n+l) 

and yj(n)EG, oj(,)  <O)j(n+l) -~-~j(n+l)" Y ( / - - / n )  = Y ( / - / j ( n + l )  -{-/j(n+l) - - /n)  =min  (~Oj(n+i) -~ 

Yj(=+l), o~n =COn, proving tha t  / is a pseudolimit of (]n) under Y. 

Assume now tha t  (1) holds. :By dropping a finite number  of terms from (]~) and re- 

indexing, we may  assume that  hn = h  for all n. Clearly (/~) is still pseudo-convergent under 

Y. Let bn=/n+l- /1  for all nEN.  Note: (b~) is pseudo-convergent under Y and W(b,,)= 

h =  W(b~+ 1 -bn)  for all n. Let d,~=b~b~ 1 for all n. Then (dn) is pseudo-convergent under Y. 

To show tha t  (/n) has a pseudo-limit under Y in F, it suffices to show that  (d~) has a pseudo- 

limit under Y in F. Since W(dn)=0, d ,~EAM-M' .  Let en=]t'(d,) for all n. Since W(dn+l-  

dn) = O, Y(d,,+~ - d,~) = gn E G. By the definition of V, V(e,~+~ - en) = g~; thus (en) is a pseudo- 

convergent sequence in K under V. By Theorem 1.11, V is 1-maximal. Thus there exists 

e E K  such tha t  V(e-en)=g,~ for all n. Let  dEAM such tha t  2 ' (d)=e.  Then Y(d-dn)=g,~  

for all n; hence d is a pseudo-limit of (dn) under Y, proving the theorem. 
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4. Place spaces 

Let S be the set of all places of F over C onto C: i.e., all places of F tha t  contain 

C in their valuation rings and map C onto their residue class fields. For s E S and / E F let 

/(s) =s(/) and we thus regard / as a mapping of S into the Riemann sphere Z. Let  S be 

given the weakest topology making the mapping s-->/(s) continuous, for all /E F. Using 

an argument  given by Chevelley [5, Chapt. VII ,  w 1] we obtain the following. 

T H E 0 R E M 4.1. S is a compact Hausdor//space. 

Let x E X and let s~ be the place of F over C onto C obtained by  "evaluating / at  x". 

Let  j(x) =sx; then j is a homeomorphism of X into S. I t  will frequently be convenient to 

identify X and j(X). Let T, the closure of ?'(X) in S, be called the set o/topological places 

of F. Clearly we have the following. 

COROLLARY 4.2. T is a compact Hausdor H space in which X is everywhere dense. 

Every /E F extends to a continuous mapping o/ T into ~. These extended mappings separate 

points o/ T;/urther, T has the weakest topology making all these/unctions continuous. 

Let fiX denote the Stone-~ech compactification of X, (see [7] for details), f ix  has 

the following characteristic properties: 

(a) f ix  is a compact Hausdorff space tha t  contains X as an everywhere dense subset, 
and 

(b) every continuous mapping from X into a compact set Y has a continuous exten- 

sion to f ix  into Y. 

Let  A be the set of all closed subsets of X. Since X is a metrizable space, A is also the 

set of zero sets of continuous real-valued functions on X. Following Gillman and Jerison 

[7], a filter in A will be called a z-filter on X. I t  has been shown [7] tha t  the points of 

fiX are in one-to-one correspondence with the z-ultrafilters on X. The correspondence is 

the following: every z-ultrafilter on X has a unique limit p EflX. Conversely, given p EflX, 

let $ = (UEA: pEcl~x U}. 

THEOREM 4.3. ~ has a unique continuous extension k that maps fiX onto T. E a c h / E F  

has a unique continuous extension/* that maps fiX into ~,. 1/given pEflX, let s =k(p), then 

/*(p) =](s). Finally/*(p) =limw~/(U).  

This follows from the characteristic properties of fiX. (See [7] for details.) 

As remarked above, each point in f i x  is the limit of a unique z-ultrafilter on X. A 

z-ultrafilter on X will be called discrete if it contains a discrete subset of X; let ~X be the 

set of all points in f i x  tha t  are the limits of discrete z-ultrafilters on X, or equivalently, 

let ~X be the set of all points in f ix  tha t  are adherence points of discrete subsets of X. 

Clearly X c ~X, and by [7], the cardinal number of 5X and f ix  is 2 ~~ Clearly the restrie- 
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tion of a discrete z-ultrafilter on X to A gives rise to a A-ultrafilter; conversely a A-ultra 

filter engenders a discrete z-ultrafllter on X. We have seen in Theorem 1.7 that there is a 

one-to-one correspondence between the A-ultrafilters and the maximal ideals of A. Let 

Sa = {SM: M is a maximal ideal in A}; thus there is a natural one-to-one correspondence 

between 6X and SA, an observation made by Kakutani [13] for sehlicht plane domains 

X. In  the next theorem we will see that this correspondence is/r ~X. 

THWOREM 4.4. k is a one-to-one mapping o[ ~X onto S A. 

Proo[. Let p E ~X and let ~ be the z-ultrafilter on X that  converges to p. By definition, 

is a discrete z-ultrafilter. Let c$ =$ n A and let M=Z-I(~) ;  then M is the maximal ideal 

of A associated with p by the correspondence discussed above. By Theorem 4.3, 0~(~ = 

{[eF: limuE~ [(V) eC} which is also {[~F: limD~ [(D)~C}. But by Theorem 3.1, this is 

exactly the valuation ring of SM, proving that  k(p)=SM. As this correspondence is one-to- 

one, the theorem is proved. 

I t  is easily seen (el. [7, 4F]) that  fiX -~ cSX, showing that  6X is not compact. 

Using the next result, together with Corollary 3.6, we can see how very arbitrary places 

of F over C onto C can be. 

LEMMA 4.5. Let (xi)~E~ be a transcendence base o] F over C, let G be a divisible totally 

ordered (Abelian) group and let (g~)~r be a set o] positive elements o] G. There exists a 

place so] F over C onto C whose valuation V takes x~ to g~ and whose value group is contained 

in the smallest divisible subgroup o] G containing (gi)iEi. 

Proo]. Let Vo(c ) =0 for all cEC* and let Vo(x~)=gi, for all iEI .  Then V 0 extends, by 

linearity over the integers, to the monomials of C[x~]~i. ]EC[x~]i~1 can be uniquely ex- 

pressed as a sum ~ 1  c~m~, c~EC* the m/s  distinct monomials in C[x~]~r Let Vo(])= 

min (V0(m~))~=l ..... m. For/ ,  g E C[x~]~r g 4: 0, let Vo(]/g ) = Vo(]) - Vo(g); thus V 0 is a valuation 

of C(x~)~x over C. Since g~>0 for all i, the place so, of C(xi)i~ associated with V0, maps 

x~ to zero, showing that  it maps an element in C[xi]~ to its constant term: i.e., V 0 has C 

as its residue class field. By the place extension theorem (see, e.g., [16, p. 8]), s o extends to 

a place s of F over C onto C. Since F is an algebraic extension of C(xt)~1, the value group 

of s o is contained in the smallest divisible subgroup of G containing (gi)~r (see [22, w 11] 

for details), proving the lemma. 

COROLLARY 4.6. There exists a place s E S - X  with an Archimedean value group. 

Proo/. Let (g~)i~i be a set of positive real numbers that  does not generate a discrete 

subgroup and let I be of power 2~0. By Lemma 4.5, there exists s ES such that  s(x~)=g~. 
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Since the group generated by  (gi)i~ is non-discrete, the value group of s is not  the integers, 

thus s ~X, proving the corollary. 

As a result of the following lemmas we will show tha t  T 4= S. 

LEMMA 4.7. Given sE T - X  there exis ts /EA such that/(s) = ~ .  

Proo/. Naras imhan [17] has shown tha t  X has a closed, nonsingular imbedding into 

Ca; let X be so imbedded. Let  p Ek-l(s) and let $ be the z-ultrafilter on X tha t  converges 

to p.  Clearly there exists UoE ~ such tha t  (0,0,0)~Uo; thus on, U o r(zl, z2,z3)=(zl,z2,za) / 

] (Zl, z2, z3) I, the modulus denoting the distance to the origin, is a continuous mapping  into 

S 5 = {(z~,z2,za): I(Zl,Z2,Z3)] = 1}. Let  ~o =~  N U o and let Po be the limit of ~o in flU o. Clearly 

r extends to r*, a mapping  of flU o into S 5. Let  :r Clearly a is independent  of the 

choice of U o. Let  ~ be the or thogonal  projection of C a onto the plane Ca, and let / =g~ ] X. 

C l e a r l y / E A.  B y  the choice of cr = ~ ,  proving the lemma. 

L:EMMA 4.8. Given s E T - X  a n d / E A  such that V(/)<0,  where V is a valuation o/ F 

associated with s, then there exists h E A such that V(h) < m V(/) /or all m E N. 

Proo/. Since V(/)<0, /(s)= ~ .  B y  Theorem 4.3, /*(p)=/(s), and there exists UoE~, 

the z-ultrafilter on X tha t  converges to p, such tha t  0 ~/(Uo). H e n c e / / I / I  is a continuous 

mapping  of U o into S 1 = {~ E C: I a ] = 1 }. Since S 1 is compact,//[/L extends to a continuous 

mapping (//I/I  )* of fi G o into S 1. Let  ~o = ~ N U 0 and let P0 be the limit of ~0 in fl U 0. Clearly 

:r = (]/I/I)*(po) is independent  of the choice of U o. Let  a be denoted by  (//]/I )*(P), let 

be the conjugate of ~ in C, and let g = ~/. Then (g/Igi)*(P)= 1, showing tha t  there exists 

U1E~o such tha t  for xEU1, the angle between the vectors g(x) and 1 is between - ~ / 4  

and ~/4. Let  m be a positive integer and let e > 0. There exists n > 0 such tha t  t > n implies 

(2t)m/et<~. Since g * ( p ) = ~ ,  there exists U~E~ such tha t  Ig(U2)I >nl/2. Let  U=UoN 

U 1 N Us. Clearly U E ~. Let  x E U. Then the real part ,  a(x), of g(x) is greater t han  n. Let  

h =e  g. Since g CA, h CA. Fur ther  [(g(x))m/h(x)l <~ (2(a(x)))"/e ~(x) <e;  thus l imv~ (g'~/h) (V) =0 

and  g~/hEP~, the valuat ion ideal of s. Then O<V(gm/h)=mV(g)-V(h)  for all m E N ,  

showing tha t  V(h)< m V(g) for all m E N. Clearly V(/)= V(g), proving the theorem. 

As a consequence of Lemmas  4.10 and 4.11 we have the following. 

COROLLARY 4.9. Let s E T - X  and let G be a value group o/s .  The value set o /G  has 

an in/inite ascending sequence in it. 

Combining this result with Corollary 4.6 gives us the following. 

THEOREM 4.10. S~= T. 

Thus we have shown tha t  X < S A c  T < S. 



VALUATION THEORY OF MEROMORPHIC FUNCTION FIELDS 95 

Open questions 

The following questions raised by  these researches seem, a t  this writing, to be open. 

1. Are (~X and  SA homeomorphic? 

2. Is SA + T? 

3. Are T and  f iX  homeomorphie? To show they  are, i t  suffices to show tha t  the ele- 

ments  of A or of F,  all of which extend to f iX,  separate the points  of f iX.  

4. Given s E T - SA, if such elements exist, what  is the value group of s like ? We know 

only t ha t  its value set has in it  an  infinite ascending sequence. 

5. Given s6 T - S A ,  is the va lua t ion  associated with s 1-maximal? 

6. Is there s ~ S - T  whose value group is the integers? If not,  t hen  X can be extracted 

from S, and  thus  can be reconstructed from F .  
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