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9. Deformation Theory; Part 1
(i) The Infinitesimal Theory

Let Y be a compact complex manifold and suppose that on the differentiable
manifold Y, we are given a l-parameter family of complex structures Y, (¥,=Y).
If U={U;} is a covering of ¥ by complex coordinate neighborhoods, with coordinates

(21, ...,20") in U;, the structure on Y, is given by transition functions

7 (2, ) = fiy (2, ..o 2l 0);

, df;
lett; T=
etting ; [ it ]t:o

and eii: (01'1}" [RES) 017;)’

the deformation Y, of Y is represented infinitesimally (or linearly) by the 1l-cocycle
6,;€ HY(N(U),®) (N(U)=nerve of U). Further details concerning the relation between
the variation of structure of Y and its parametrization by H'(Y,©®) are given in
[19] and [20]; we shall be concerned with the special cases when Y =non-Kéhler
C-space or ¥ =XxT? where X is a Kihler C-space. We remark that by corollary 1
to Theorem 2, the structure of X is infinitesimally rigid. By way of notation, we let
X=G/U be a non-Kihler C-space with fundamental fibering ™ XX, X=6/0
a Kihler C-space, and we set X°=XxT%; the manifolds X° are the most general
compact homogeneous Kihler manifolds. If ¥ =X or X® (where b may be zero), the

group H'(Y,®y) is a representation space and for us this interpretation will be
crucial.
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DeriniTioN 9.1. Let Y=X° or X and let Y; be a l-parameter deformation of
Y(Y,=Y). We say that Y, is a homogeneous deformation if all the ¥, are homo-

geneous complex manifolds.

ProPosiTION 9.1. Let Y=X or X° and let 0€H (Y, ®) be the infinitesimal
element representing a I-parameter deformation Y,. Then Y, is a homogeneous deforma-

tion < 0 1s invariant under the compact automorphism group of Y.
The proof will be given later.
TaeoreEM 9. Let Y=X or X° Then
HY(Y,Q)=A%® B* 9.1)
(as M-modules) where 47={pe )} 9.2)
with induced representation (1®1), and
Bi={g&¢(d} (9.3)
with induced representation (Ad®1).

The following are corollaries of Theorem 9 and its proof.

CorROLLARY 1. X is a homogeneous principal bundle T**— X ™ X (Proposition 5.2)
and the connected automorphism group A°(X) is isomorphic to GXT** where G acts by
lifting the action of @ on X to X and T®* acts as structure group in the principal

fibering.

CorROLLARY 2. Let Y=X, ge H*(X,0), and &; be a component of the conjugated
connexion form of the canonical complex connexion in T**—X=X. In (9.2), the ele-
ments pEP may be interpreted as wvertical holomorphic vector fields in the fibering
X2 X; a generic (=indecomposable) element in A is of the form p® &; and a generic
element in B' is of the form n*(g) ® @;. '

Proof of Theorem 9. The proof is done in three steps:

(i) In the notations of §1, we may write L(X)=n%, and L(X)=1%; we know
that H(X,7%)=0 (¢>0) and H°(X,7%)=g. It is almost obvious that the induced
representation of g on H°(X, ;I}d) is “Ad”; for us, the geometric construction given

now will be useful. The space H°(X, ﬁ;d) is given by the analytic functions f: G—n*
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such that f(gu)=Adu'f(g) (w€U); for such an f and g, g €g, (gof) (¢')=fg '¢’). In
the fibration U—G% G/U, we may identify T,(G/U) with fi* under 7,. Letting
X,,....,X; be a basis for g, we define analytic functions X;:G—1* by X,(g)=
7, (Adg ' X,) (the geometric motivation being clear). Since, for w€U, X;(gu)=
7 (Adu ' Adg' X,)=u""om,(Adg ' X,), we have a linear mapping j:g—H°(X, Izlzd)
and it will suffice to show that ker j=0. If Xeg and 7’()2)=0, then ft*(Ang)=0
for all g€@ and thus exp X acts trivially on X. However, this is impossible unless
X =0, for then we would have a representation of G into A°(X) with a non-discrete
kernel which contradicts the semi-simplicity of G. Thus we may in this way identify
g with H°(X, ﬁ}d); the action of g on g is given by
goX(g)=X(g7'g) =7, (Adg' ™ AdgX) = (AdgX) (s'); ie.,
goX =(AdgX). (9.4)

(ii) f Y=2X? formula (9.1) is just the Kiinneth relation. Indeed, with obvious
notation,
H (X% 0)=H°(X,0%)® H** (7%, C) ® H' (T?%, ©y2)
and the induced representation is (Ad®1)e® 1.

(iii) To derive (9.1) for X, we use Proposition 5.3. The exact sequence of vector
spaces
0—i/u—g/u—>g/it—~0 or 0—>p—>n*—n*—0

is an exact sequence of U-modules (since [1i, u]Su) giving rise to the exact sequence
of vector bundles over X 0—p—>n¥ —>fij, 0 where  is the trivial bundle X xp.
From Theorem 3 and the exact cohomology sequence, H(X,it%)=0 (¢>0) and
H°(X,1i%s)~p @ g with induced representation 1 @ Ad. Now apply Proposition 5.3. Q.E.D.

For later use, we record here the calculations of some more groups. Let X =G/U

be non-Kihler and consider the Atiyah sequence
0—->L—=-Q—-7(X)—0; (9.5)
this sequence is constructed from the principal fibering U—G—G/U.
ProrosiTIiOoN 9.2
(i) H(X,£)=0 and HY(X,L)=pocle1) (g>0).

(i) HO(X, Q)=g@c@) (g>0).
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Proof. Letting T**—>X-—>X (X=G/U, X=G/U) be the fundamental fibering,

U is normal in U and the exact sequence of vector spaces
0—u—u-—>it/u—0

is an exact sequence of either U- or U-modules. Letting p=1ii/u, we may apply

Theorem 3 and have that H?(X, (lixa)) =0 for all ¢ which gives
Hqul(X, (ﬁKd))qu(X, (ﬁA‘d))gHG(XA> Q) ® ‘p

Thus H*Y(X, (i) =0 (¢=0) and H (X, (li5)) =D, the induced M-action being trivial.

Since L =1,4, an application of Proposition 5.3 completes the proof.

Remark. The exact cohomology sequence of (9.5) is
rpe i) g9 0@ s g @ e (pe €@} 2 pe ... (9.6)

to find the maps 4, we simply observe that the j, are all zero.

(ii) Obstructions to Deformation

The second aspect of our general theory of deformations of C-spaces is con-
cerned with the notion of ‘“obstructions” to deformations as discussed in [19], § 6.
Letting U={U,;} be a covering of Y as above, if 6, A€H'(Y, ®) are represented by
cocycles {0}, {A;} € H(N(U), ®), we may define a new element {0, 1} € H*(Y,®) by

{0, Aine = 3[04, Au] + [Aegs Oac))- (9.7)

It is known (and easily checked) that if 0 is an infinitesimal deformation element,
{6,0}=0 in H*(Y,@); if 6,1 are deformation elements, then 6+ 1 may not be and
the obstruction here is just 2{0, 1} (since {0,1}=1{4,6}). We shall now calculate this
bracket { , } in case Y =X or X; a maximal Abelian subspace DS HY(Y,Q) will
be a “maximal” possibility for a deformation space, and in §10 we shall explicitly
construct a local family which is infinitesimally represented by D.

Letting ¥ be arbitrary for a moment and E< H°(Y,©) a sub-algebra, there is
a natural mapping j:EQHY(Y,Q)—>H'(Y,0). If 8%, 0'0& €E® H'(Y,Q) then
we shall prove in §10 below (see also [19], §4) that

{003,030 }=000'ALed+0 @D Ly’ +[0,010 DN &; (9.8)

here Ly(@’') = Lie derivative of @' along the vector field 6.
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TrEOREM 10. In the notation of Theorem 9, the { , } on H'(Y,0) is given as
follows:

(i) A' is always Abelian and {4, B'}=0,

(i) #f a=1, B is Abelian,

(iii) if a>1, there exist mazximal Abelian subspaces of B' of the form (9.9)
Dy=4®C* where ) <g is a Cartan sub-algebra, and of the form
D;=g®Cd where @€ H"(Y,C).

Proof. If ¥ = X°=XxT?", then A'~H" (7%, @;) and B'>~H*(X, @) ® H(T*%, Qy).
Since, for §€H*(X,Q%), @€H (T, Qy), Ly@=0, the statement (i) follows easily
from (9.8).

In case ¥Y=2X (where T°*—>X—>X), A'~p®C* and an indecomposable element
p®®€EA" has the following interpretation (see §5): p is a vector field along the
fibres on the fundamental fibering and & is a component of the canonical complex
connexion in the fibering 7% X — X. Since the connexion is right-invariant, L,® =0
and because [p,p]=0, it follows that 4" is Abelian. Now B'~g® (* and an inde-
composable element g® @ €B' has the following interpretation: g is induced by the
action of exp (tg)€G on X=G/U and again @ is a connexion form. We recall that
ga*H°(X,®) transforms under M by Ad and that the forms @& are M-invariant.

Leuma 9.1. The (0,1) form L, on X is &-closed and transforms under M by Ad.
Proof. We recall that L,®=i(g)dw +di(g) ®=1i(g)d (since @ is of type (0,1).

Thus Lgd):i(g)é where E is a component of the curvature form of the canonical
complex connexion; & is thus M-invariant. The proof follows from this and the
following fact: if ¥ is a manifold, 7 an automorphism of Y, ¢, v respectively a form
and a vector field on Y, then T™(i(v) p)=i(T5'v) T* .

LEmMa 92. Ly 4s @ cohomologous to zero.
Proof.(1) Ly € H'(X, Q) (a priori); however, H'(X, Q) transforms invariantly by

M whereas L, transforms strictly non-invariantly. Now equation (1.8) in § 1 coupled

with the non-invariance of L,® tells us that L,&~0.

CoroLLARY. If ¢,g'€g; @, & €HY(X,Q) then g® @ A Ly ~0.

The proof of (9.9) now follows immediately from (9.8).

() This proof may be done alternatively as follows. Since 8& =X is the conjugated curvature
tensor of the canonical complex connexion on X in the homogeneous bundle 7™ X >X,Eis a
(1, 1) form on X. Thus L,&=i(g)E is a d-closed (0, 1) form on X, and, since H'(X, Q) =0, L,& ~ 5f
for some function f on X. We may now lift everything back up to X.



162 PH. A. GRIFFITHS

10. Deformation Theory; Part II

In §9, we obtained an infinitesimal deformation space Dy where Y =X or X;
we shall now construct explicitly a local family which is infinitesimally parametrized

by Dy. In the Kahler case, the family will even be global.

(i) The Kihler Case

The most general homogeneous compact Kihler manifold is of the form X°=
XxT** where X is a Kihler (-space. We shall see that the question of deforming
these manifolds falls in the general pattern described by the relationship between
the automorphisms of a compact Kihler manifold Y and the deformations of a com-
plex fibre bundle over Y. We begin therefore with a discussion of this latter topic.

We first recall some results from [19]. Let ¥ be a compact Kéhler manifold,
A a connected complex Lie group, and 4 —P—>X a holomorphic principal bundle.
Then one may vary the bundle structure of P while holding the complex structure
on Y “fixed”, and, in the same manner as H(Y,®) parametrizes the variation of
structure on Y, H'(Y,L(P)) parametrizes the bundle deformations of 4—-P—7Y.
(Here L=Px  a where 4 acts on a by Ad.) To see this, we let {U;} be a suitable
covering of Y such that P has transition functions f;,;: U;N U;— 4. If we have a
1-parameter variation P(t), P(0)=P, of P, then P(t) is described by transition func-
tions f;(t): U; N U;—~ A4, f;(0)=/f;. The infinitesimal cocycle tangent to this family is
given by &={&,} € H' (Y, L(P)) where

&y=Adfy (fii(t)gl [Q%(t)]ho) . (10.1)
There is a bracket (without differentiation) { , }: H'(Y,L(P)® HY(Y, L(P)), and in
order that £€H'(Y, L(P)) be tangent to a deformation, it is necessary that {£, &} ~0.

DEeriNiTION. We say that Y satisfies condition N if the following holds: There
exists a basis @, ..., o, of HY(Y,Q) (2H"'(Y,C)) such that, if @ and & in H'(Y,Q)
are written in terms of this basis and @A &®~0, then ® A &' =0.

Let [=H°(Y,L(P)) and assume henceforth that Y satisfies condition N. Then
the mapping [® H' (Y, Q)— H'(Y, L(P)) is an injection, and, letting ¥<[ be a maximal

abelian sub-algebra, we may state

TaroREM 11. The subspace ¥Q H*(Y,Q) globally parametrizes a family of defor-
mations of A—>P—>Y. Furthermore, it is maximal in [® H*(Y,Q) ¢f dim H* (Y, Q)>1.
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Proof. Let HY be the torsion-free part of H'(Y,Z), construct the covering fibra-
tion Hf —-Y*—Y, and lift P to a bundle A—P*—Y* If 1€l, s €HY(Y,Q), we
shall construct geometric transformations ou 3,(t) (¥) = e(t) (y) (y € HT) on P* such that
0(0) (y) is the canonical action of Hf on P* and such that the bundles P(f)=P*/
o(t) HY give a deformation of P= P(0) with infinitesimal tangent A® @.

(a) Construction of the bundles P(t). Connecting the fiberings 4 —P*-—>Y* and

HYf—Y->Y, we have a diagram
Hf - P*—~P
I ld e

Hf >Y*>Y  which we now make more explicit.

By definition, P*< Y*x P={(y*, p) € Y*x P|1(y*)=o(p)}, and then o*(y*,p)=y". For
y€HY, y*€Y*, the action p-y* is just the covering-transformation by 7, and if
p*=(y*, p) EP*, then y-p* = (yy*, p).

The Lie algebra [= H®(Y,L(P)) is just the algebra of infinitesimal bundle auto-
morphisms of P which project to the trivial action on Y; for A€[, the l-parameter
group exp (fA) of bundle automorphisms of P is defined. We define the transforma-
tion g(f) (y) (y€HY) on P* by the equation:

o) (y) p* = (yy*, exp ((tffb) l) (p)) (=" p). (10.2)

Furthermore, we define the complex manifold P(f) by
P(t)=P"/o(t) (HY). (10.3)

It is clear that P(t) is an analytic principal bundle with group 4 over Y and P(0)=P.
In fact, the family P(f) obviously gives a deformation of P.

(b) The Transition Functions of P(t). If {U;} is a suitable covering of Y, the
vector field 4 is given in U,; by a holomorphic function A;: U;—a such that 2=
Adf,(4) in U,n U;. For fixed ¢, we define mappings a;(t) : U;— A4 by a; () =exp (td;);
then a;(t) fi;=fya;(¢) in U,U,;, and the action of a(t)=exp (tA) on P is given locally
in U; by a(t) (z, ) = (2, a;(f) (2) ) (x €A).

Now, since Y is Kihler, we may assume that we have chosen the covering {U,}
and, for each i, a point Z(1) € U;, such that; U,;n U, N U, %o implies

Z() Zk) Z(ky
f mf a,=f &, (104)
Zd) Z) F40]
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With this in mind, we assert that the transition functions {f;;(¢)} of P(t) are given by

zZm
fu(t)= (exp (tfza) tI)) l,-) “fis- (10.5)

For example, we check that f;(f) fx (1) = fu(t);
Z() Z(ky
(@) - fuc ()= (exp (tj ; 5)) }*i) “tye (exp (tf " C7’) l,-) “f

Zgd Z(j
2z Zk)

=exp (t (f d')) 1,-) : (exp (tf CT)) }u) “fis fe
Z(i) Z(7)
Z¢k)

=exp (t(J CT)) '}»i) “fie
Zd)

Using this, the rest of the calculation may be modeled after the discussion given
in [17], § 2.

(¢) The Infinitesimal Deformation. If f;(t) is given by (10.5), then
80 frol[02.)
fii(t) [ el fi'lexp| —¢ zu)w A 5 6P (£) Z(i)w A . fis

20 o)
() s ()
Z() Z@d)

Thus, by (10.1), the infinitesimal tangent &={£,} to the deformation P(¢) is given by
E;= (58 ®) 4. To complete the proof of the first part of the theorem, it will suffice to
show that, under the Dolbeault isomorphism, & corresponds to A® & € H'(Y, L(P)).
To do this, it will suffice to show that @& corresponds to the l-cocycle 7,=[Z%@d
in HY(Y,Q). Since Y is Kihler, &@=df;=3f, in U, and the sheaf cocycle representing
@ may be taken to be f,—f, in U,N U,. But we may take f;(Z)= (%4 &. (Z€ U,).

(d) Completion of the Proof. The general element of ¥® H'(Y,Q) is of the form
E=23.12,©®;. The condition [4;,4,]=0 clearly allows us to make the same con-
struction for & as we did above for A® @. Finally, the fact that Y satisfies condi-
tion N will assure that I® H'(Y,Q) is maximal if dim H*(Y,Q>1. Q.E.D.

Remarks. (i) If P is the trivial bundle ¥ x 4, then HYY,L(P))=q; if £= 27,49
®,€t®@ H'(Y,Q), then the above construction amounts to defining a representation
0e(t): Hf —A by :(t) (y)=ITi-1exp (¢) (f, @) 4;), and then setting P(t) = Y* x34. (The
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fact that gg(f) is a representation is guaranteed by the assumption £€f® H'(Y,Q).)
If £=1® @, then the transition functions of P(f) are given by fy(t) =exp (t (5% @) A),
and, since the f;;(t) are constant, the bundles P(f) all have holomorphic connexions.

(i) If dimA=1, A=C* then the above construction reduces to the construc-
tion of the Picard Variety P of the compact Kihler manifold Y.

(iii) Suppose now that ¥ =X%=G/UxT?® is a Kihler homogeneous space where
X=G/U is a C-space. Then: H* (X% O%)~{g® H (T**,Q)}  {C*® H'(T**,Q)} =A@ B.
The elements in B correspond simply to the variations of the complex structure on
T*®% the resulting manifolds are all homogeneous. The manifold X° satisfies condi-
tion N, and, if a>1, a maximal abelian subspace of A is of the form §® H'(T%%, Q)

where | is a Cartan sub-algebra of g.

TuEOREM. The subspace {§® H'(T**,Q)} ® B gives a global deformation space of
X°® which is locally universal. If k€Y, &€ H* (T?%, Q), the manifold X*(h, &) corresponding
to h®® 1is mon-homogeneous and is constructed as follows: From the trivial bundle
G—T**xXG—T*, one constructs by Theorem 11 a family of bundles Py 5 (t)=P(t) de-
forming the trivial bundle, and then X°(h, ®)=P(1)/U.

Proof. All statements in the theorem are immediate except perhaps the non-

homogeneity of X¢ This is implied by

ProrosIiTION 10.1. The connected automorphism group of X° is G, ® T?® where
Grn=19 €G|Adg(h)=h}. By considering X°(h,®) as a bundle over T** with fibre G/U,
the automorphisms of T** lift to X* and this is how T?® acts. The group G, is the
identity component of the complex Lie group of bundle automorphisms of G/U — X —T*

which induce the identity automorphism on the base space.

Proof. We have a fibering Hf->G/UxC*— X% and the automorphisms of X°
consist of those automorphisms which are invariant under Hf. From this, it follows
easily that A°(X*)=G'xT?* where G' is a complex subgroup of (. Then we have
that ' ={g€G|g-exph=exph-g} and thus G*=@,.

Remarks. (i) The deformations of X* may be thought of as parametrized by a
family of “cones” over B(=~C") where this “sides” of the cones correspond to the
Cartan sub-algebras of g. It follows from Proposition 10.1 that, if % is a semi-simple
element in g (so that @, is abelian), then the manifold X%(k, @) is unobstructed.
Thus the obstructions occur on a lower dimensional sub-variety of the deformation

space constructed above,.
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(ii) If geg, @€ H(T?% Q), then we may always construct a family of manifolds
X%(g, &;¢t) with infinitesimal tangent g® & € H (X° ©%a). If y €@, then y will in gen-
eral be only a real-analytic automorphism of X“(h, @), but we have

ProrositioN 10.2. Consider the wvariations of X° described above as all having
the same underlying C™ structure. Then the C* automorphism determined by the action
of y€G on X°=,0X%(g, @) establishes a complex analytic equivalence between the families
X%g, @;t) and X°(Ady(g), @,t). Briefly: The infinitesimal action of y on H'(X" ©O%s)

can be covered by a mapping between the deformation families.

Proof. The proof will follow from the proof of Theorem 13 below.

(ii) The non-Kihler Case

Quite clearly the same construction as above will not yield the variations of a
non-Kéhler C-space X(=M/V=G/U), this is due primarily to the fact that if
®€H (X, Q), then 8d=+0 in general. Before beginning the construction of the de-
formations of X, we record a few preliminary remarks. The space "X, 0)=
I'o(X,T(X)') of C*(0,1) forms on X is on M-representation space, and from §1
we have

C*(X, C)~ ) g( Vie('® VA (10.6)
eD(g

The forms in each component V*® ((n)' ® V"l)‘-"’ are real-analytic on X, and M acts
on this subspace by A®1. Letting n=fi®@p (i=cle_,:«€2"—¥")), the element
®€HY(X,Q) is represented in V°® (1)’ ® V)*2((n)’)" by the dual p’ of some p€p.
Furthermore, in the notation of §9, L, (g€gq) transforms by Ad. Thus L,o€g®
((n)'®g’)5° (' = contragredient representation). On the other hand (see §1),

do=od=dp'= 3 {ot,p)>w A"
a ¥+

ex” —

= 2 em a8l (10.7)

€Dt~

(since p < centralizer of ©° in g).

ProrosiTion 10.3.
L,o€g®((n) ®g)”

s real-analytic and is equal to

_"g@ Z <‘x7 P> (‘Da@ (ez)l)'
et -+
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Furthermore, the element —gQ@p' €gQ ((g)')* represents a real-analytic function f=f(g, ®)
an X and 3f = L.

Remark. The Frobenius reciprocity law reads:

O=(M/V)~ 3 Ve (VP
AeD(g)
and the statement g ® (p) € C*(X) is to be interpreted in this sence.

We shall explicitly construct a l-parameter family X(g, @;¢)= X(t) of non-homo-
geneous manifolds (except for t=0) and show that g® @ € H (X, ®) infinitesimally
represents the deformation X(t) of X = X(0).

It is convenient to take a slightly broader point of view of deformations than
that adopted at the beginning of §9. A family of complex structures Y, (Y,=7Y)
defined on a single C* manifold Y, is given as follows:

Let {U;} be a suitable covering of ¥, by coordinate neighborhoods. The family
Y, is given by

(i) n O% complex-valued functions j (y,¢), ..., & (y, 1)} = {{7 (y, t)} defined on
U; such that the (f(y,t,) define holomorphic coordinates in U;,= Y, . (10.8)

(ii) transition functions h%(Z;(y,t),t) which are holomorphic in the &£ (y, t)
and the complex variable ¢ and which define the coordinate changes

in Y;. (See [20], §1.) (10.9)
We denote by the symbol “-” the derivative of anything with respect to #; the
symbol -7, means “-”’ taken at t=0. Asin §9, the l-cocycle 6 ={6,;} € H'(N(U), ©)

representing the family Y, is given by
6i7= (0111'9 reey 617,‘7) ={023 >
where 6% = (h%),. We wish to find a Dolbeault representative for 6.

ProrosiTion 104. A Dolbeault representative for 0 s given by the vectorial-
(0,1)-form ® € H** (Y, ®) where ®|U,=(®}, ..., D) and

OF (y) = (y, 1))y (Here & is taken on Yo=7Y.) (10.10)

Proof. Since
ohi; 3y, 1), 1)

aCjﬂ (y’ t) @73 (y> t) + hl@i (Ci (?/, t)’ t);

Gwhn=2
B
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oRG; (8i(y, 1), 1)
olf(y. )

By definition of the Dolbeault isomorphism, 8({(y,t)), = ®F(y) represents 6.
Let HY(Y,Q), H%(Y,0), H(Y,Q) have the usual meaning and suppose that
A< H*(Y,O) is a subalgebra.

we have (. 0o~ % l=0(5f (% )0 = (o (C5(y, 1), O)o-

Prorosition 10.5. Let 6,6'€¥U; &, €HY(Y,Q). Then, under the Dolbeault
isomorphism, {0 ® ®, 6'® &'} is represented by

090" ALyd+60' ®DA Lyd"+[0,0' 100 A &', (10.11)
Remark. This proposition was promised in the proof of Theorem 10.

Proof. If {U;} is a suitable covering of Y, then there exist C* functions f; de-
fined on U; such that &|U,=@&,=af;; f.-f;€ Z*(N(U),Q) is the Cech representative
of @, In the same way, we find f; for @'. Denote f,—f, by @y and f,—f, by &y-.
Then, if 6|U,=6;, by definition

{0 &® CT), 6, ® C(_),}i;k= % ([a—)ijeiy a_)llketl] + [(‘-)1’161/5 (D]kal])
= 3 (@i @1 — Dij D) [0:, 071+ 045 (0; - ©7) 0:
— %0 (01 - @) 6;.
Because of the alternating principle (i.e., we may always skew-symmetrize cochains),
and the (easily verified) fact that (@A @)y = 3 (@yDj% — @y @z), we find that
{0 ® d-), 0’ ® d-)’}ijk = ((Z) A a_)'),-,-k[ei, 01/]
+ 30y (0; - Bjz) — @ (0 - @is)) O
+ 3 (@i (0 - ) — Djr (0 - D)) B (10.12)
From (10.12) it will suffice to show that, under the Dolbeault isomorphism, (Ly');; =

(0; @;). But in U, & =3fi and

* @i — @ “3f — 3,
Le(b§=i ((exp 10)* @: w,)} _d (@ﬂ@) afi sz)]
dat t=0 =0

£ T dt t
_=d ((expth)*fi~fi e
)

Thus (Ly’); is represented by
Oifi =6 f;=0i-(fi ~ ;) =0:-&y. QED.
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DerviniTioN. The compact complex manifold Y is said to satisfy Condition D
with respect to A< H(Y,®) if the following hold:

() j; AR HY(Y,Q)—H' (Y, 0) is injective

(i) if 6€U, @€ HY(X,Q), then there exists a C* function f=f(f, ®) such that
Ly =3f.

We now see what Condition (ii) in the above definition means geometrically.
Let Y be a compact complex manifold, and let 0 —~Z— Q% Q* -0 be the canonical
exact sheaf sequence (here Q¥ =sheaf of non-zero holomorphic functions). There is
the cohomology mapping 7: H(Y,Q)—H*(Y,Q"), and each & € H'(Y, Q) determines
a line bundle n(®)€ H'(Y,Q"). The Atiyah sequence for the principal bundle P(&)

of n(®) is 0 >1—->Q(®)—T(Y)—0, and we have the connecting homomorphism
H(Y,0)3 (Y, Q). (10.13)
Prorosition 10.6. For 0 € H'(Y,®),
Ly = —8°(0) in (10.13).

Proof. The following was proven in [17] (and may be easily checked directly):
Let Y be any complex manifold, and 4 —P—Y an analytic principal bundle with
Atiyah sequence 0-—L(P)—Q(P)—T(Y)—0. Then, if E is the (1,1) curvature form
arising from a connexion of type (1,0) in P (i.e. a connexion respecting the complex
structure), and if 0€ H°(Y,©®), then 8°(8)=i(0)E where §°: H*(Y,©®)— H'(Y,L(P))
is the connecting map. Recall that a (1,0) connexion w in P is given by a certain
collection of (1,0) forms {w;} (w; in U,) with values in L|U,, and then E={dw;}
is the (global) curvature form. For a line bundle with transition functions {f,}, we
may find in each U; a C* (1,0) form w; such that ©logf;=w;—w;, and then
{6w;}=E is a suitable curvature form.

Returning to the proposition, if {U,} is a suitable covering of ¥, we let @ € H(Y,Q)
be given by the Cech cocycle {wy}; we may find C* functions & in U, such that
wy;=§&—& in U;nU;, and then {3&} is a Dolbeault representative for &. The line
bundle 7(®) transition functions f,;=exp w;, and 8 log f;=0w,;=20& —0&;. Hence a
curvature form for P(®) is given by 80, = — 00&;= — 0@. On the other hand, Ly =
i(0)dow =1(0) 8, and the Proposition follows from this.

CoroLLARY. Lyn~0 tf and only if the action of exp (t8) on Y lifts to bundle
action in P(®).
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TurEorREM 12. Let Y satisfy Condition D with respect to a subalgebra A < H°(Y, B),
and assume that the forms & €H (Y -Q) and the functions f=f(0, ) are chosen to be
real analytic.(1)

(i) Every indecomposable element 0 ® @ € H'(Y, Q) is tangent to a I1-parameter
amily of deformations Y,= Y (0, &; t).

(i) If H<A is marimal abelian, then §)® H* (Y, Q) parametrizes a local deforma-
tion space, which is mazimal in A® H'(Y,Q) if dim HY(Y,Q)>1.

Proof. Let {U;} be a covering of Y with coordinates Z;,=(Z}, —, Z7") in U;. We
shall construct real-analytic functions (¥(Z,t) in U; (with {f(Z,0)=Zf) and transi-
tion functions Af({;(Z,t),t) satisfying (10.8)-(10.9) with the further condition that

6®¢5|U,.=§5(§:‘(Z,t))052—?.

In view of Proposition 10.4, this will prove (i) in Theorem 12. In order to con-
struct the [(Z,t)=(}(Z,¢,...,L1(Z, 1)), we shall use the Frobenius Theorem in the
real analytic case, which we now state in a convenient form. (Of course, the New-
lander-Nirenberg Theorem ([23]) would do in the C*” case, but the full strength of
this is not necessary here.)

Suppose that we have given a global section ®(¢) of T'( Y)®m (i.e., a vector-
valued (0,1) form) with ®(0)=0 which is real-analytic in Y and in the variable t.
We consider the system of partial differential equations

Bp— S 02, 1,) =0,
p 9z (10.14)
op _

=
and we seek n functionally independent real-analytic solutions ¢ =(f(Z,t). The Fro-
benius Theorem states that the integrability condition for (10.14) is

ad(t) — {D(t), ()} =0 (in 1), (10.15)

and when (10.15) is satisfied, a solution exists. Furthermore, we see from (10.14)
that, for a solution (#(Z,t), (58 (Z, t))o—((i)?‘(Z, £)),=0; i.e., the global vector-valued
(10.1) from (I.)(t)]0 gives the infinitesimal deformation to the family of manifolds
Youy=7Y, defined by (10.14). Thus, to prove (i), we must produce a real-analytic

() By using a real-analytic metrie, this is always possible. Also, the forms with which we are
working on non-Kéhler C.spaces satisfy this condition by Proposition 10.3.
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0, @; t) = D(t) with ®(0)=0 and [Edi(b(t)] =0®d
t=0
which satisfies (10.15). Clearly we must write ®(f) as a series in ¢ with leading term
(0® o)t and determine the higher coefficients to be real-analytic and such that ®{f)
satisfies (10.15).

Suppose we write formally

M8

()=

) GO @)t (Lyd=35f)

0

I

and try to determine the coefficients ¢; to meet our requirements. Setting o, (t)=
Siog;(0® @), then (10.15) is equivalent to

80, (t) — {0, (t), 0, (£)} =0 mod t**2. (10.16)
The following formulae may be checked inductively:

2
jrk+1

{0e7a) ¢, (00 fa)t* ' = 20 FTF ) tER (10.17)

= < 29,9 5 J+k+1 =y i+ k+2
{oa(1), n ()} j,£0j+k+1a(6®f @) E*2, (10.18)

Setting ¢,=1, we may thus determine the ¢; (j>1) inductively from (10.17) and
(10.18). Indeed, we have

29,4
- 174k 10.19
P | (10-19)
From this it follows that g,=2". This is true for n=0, and, if true for n—1, then

2¢gc_2(n) 2" _
itk=n-1 N n

9= A

Thus, if we set ||f||=Supyer|f(y)|, then the series ®(t)=>:202'(0®@f &)t con-
verges to a vector-valued form ®(t) satisfying all our requirements for |¢| < (2||f||)".
This completes the proof of (i).

Now if we have a general element £=2%;®®,;€§® H' (Y, Q), then the proof is,
in principal, the very same as above for 2® @. The conditions [;, k;]=0 will guar-
antee that we may recursively determine the coefficients ¢; as above (ie., all the
obstructions vanish). The rest of the theorem follows in the same way as Theo-

rem 11. Q.E.D.
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Remarks. (i) The above Theorem clearly yields the local variations of structure
of a non-Kahler C-space (by Proposition 10.4). This construction has a slightly dif-
ferent flavor from the examples of deformations known to the author. There are two
differences which we mention:

(a) These non-Kihler C-spaces are the only examples known to the author where
an infinite series is definitely needed to define a deformation through an element
E€H'(Y,0). Indeed, for algebraic curves, complex tori, hypersurfaces in Py, Hopf
surfaces, etc., the vector forms ®(f) defining the deformations are polynomials in ¢.
(That the series in our case is infinite follows from f(0, ®)=%0, which has the geo-
metric interpretation that, on a Kihler C-space, there is no linear connexion in-
variant under the automorphism group.)

(b) To the author’s knowledge, the known examples in deformation have been
constructed in what might be called an extrinsic fashion; i.e., the construction has
used on auxiliary space such as a projective space in which the variety is embedded
(hypersurfaces in Py) or the universal covering space (complex tori and Hopf mani-
folds) or, for algebraic curves, the Siegel space. These auxiliary spaces help one get
information about the deformed manifolds (e.g. the jumps of structure on the Hirze-
bruch examples), whereas we do not know much to say about the manifolds X (%, ®,?).
We do know that these manifolds are non-homogeneous, and what we shall do is to
determine, to some extent, their automorphism groups.

If X is a non-Kihler C-space, then there is a fibering 7% X->X and the
complex Lie group 7% of automorphisms of X will clearly “live on” to the mani-
folds X(h,®,t) (essentially because these automorphisms leave A ® @ fixed); what we
shall see now is that the subgroup G,={g€G|Adg(h)="7} is the maximal subgroup
of @ which still acts on X(h, ®,t), and this shows that the manifolds X (4, @,t) are

no longer homogeneous.

(iii) The Question of Equivalences

Let X=G/U=M/V be a non-Kihler C-space. From § 10, (ii) we have associated
to each geégc HY(X,0), @€ H'(X,Q), and #(|¢| small) a non-homogeneous complex
manifold X(g, ®;t). Letting “«»” denote biregular equivalence, it may well happen
that X(g, @;t)«<>X(g, &;t) for distinet triples (g, ®;¢) and (¢’, @'; ¢'). We shall now show
that this equivalence occurs whenever t=t', ®=@&’, and ¢' = Adm(g) for any m € M;

it is our feeling that these are essentially the only equivalences.

TrEOREM 13. X(9, @;t)— X (Ad m(g), @; t).
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Proof. The proof will be done in three steps.

(i) Let D, D' be two domains in €*, f: D— D’ a bi-holomorphic mapping. Suppose
given in 1) a vector field 6, a function %, and a 1-form ¢; also assume that we have
similarly €', %', and ¢’ in D’ and that f_(0)=0', f*(A")=h, {*(¢')=¢.

LeMma 101. If w' is a function in D' such that B'0' @ ¢ (w')=h'(0"(w")) ¢’ =
dw', then
@ pw of)=hb(w of)) p=0(w oh).

Proof. Let p€D, p'=f(p)€D’. Then, by assumption, h'(p")0 (w')(p')¢ (p')=
ow' (p). We then have:

h(p) 6w’ o f) (p) @(p) = (f*I') (P} [.B(w") (") ¢(p)
=h'(p") 0" (') () @(p)-
If ¢ is any tangent to D at p,
h(p) 0w’ o f) (p) {g; £, = B (§") 0" (w') (P} <f* 9", )
=W (p") 0" () (0") ¢, futDrr
=W, fu o = {fM @ W), O,
=W of), t)p,

the last step being because f is holomorphic. However, the equation

h(p) B’ o f) (p) @, = @' f), £,
it what was to be proven.
(i) Let gegc H*(X,0), ® € HY(X,Q). In §10, (ii) we associated to ¢ and & a
C* function f, on X defined (up to a constant) by 7f,= L,(@)=1(g) 6.

LemMma 10.2. If g'=Adm(g) for some m€M, then m*f,=f, where m aclts as an
automorphism on X.

Proof. Tt will suffice to show that m*3f, =2f,. If t is any tangent to X, then
(m*8fg, t) = Bfyr, Moty = ilg') 0, m, L)
= (0@, m, (m g’ A t)>=<(m" 3w, Adm™ (g') A t)
={0®, g Nty = {i(g) 0®d, t>
={&f,t>. QE.D.
(iii) We consider the complex manifolds ¥ = X(g, @;¢) and Y’ = X(¢', ;) where

g’ =Adm(g). Both manifolds have the same underlying differentiable structure and
13—-632933 Acta mathematica 110. Tmprimé le 5 décembre 1963.
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we may define a C” mapping m:Y—>Y’ to be simply the action of m€M on M/V;
it will suffice to show that m is complex analytic.

In §10, (ii) we constructed global vector-valued forms @ = ®(g, @;¢} and @' =
®(g', ; t) such that the local differential equations

- e ow
— 877 —
ow— > ® P 0,

8=1
(10.20)
= i ow’
L ‘8 —
ow ﬂgl (D 32"5 0

defined local complex analytic coordinates w and w’ on Y and Y’ respectively. From
(10.11) 1t follows that ® and @' are of the form f.9®® and f,9'® & where m, g=g’
and, by Lemma 10.3, m*f, =f,.

Let DcY be a coordinate neighborhood, D’'=m(D) and we may assume that
D’ is a coordinate neighborhood on Y’. Since the equations (10.18) define the re-
spective complex structures in D and D', to prove Theorem 13 we may show: if
w' on D' is a solution of

n ’
Fw— 3 O w

=0,
B=1 oz b

then the function w=w'om on D is a solution of

However, this follows from Lemma 10.2 and the above remarks concerning ® and @’.
Q.E.D.

11. Some General Results on Homogeneous Vector Bundles

(i) On the Equivalence Question for Homogeneous Vector Bundles

X is taken to be a C-space G/U and all bundles are analytic bundles over X.
Up to now, we have defined homogeneous bundles extrinsically as being associated to

the fibering U — G — X by a holomorphic representation g:U — U’; we now give an

intrinsic definition. If 4A—P2 X is any principal bundle, we have defined the com-
plex Lie group F(P) of bundle automorphisms of P:

F(P)={biregular mappings f: P— P|f(pa)=f(p)a, pEP, a€A4}.
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There is a natural homomorphism :F(P)— A(X) and P may be said to be homo-
geneous if w(F(P)) is transitive on X; clearly extrinsic homogeneity = intrinsic ho-
mogeneity. If conversely, o(F(P)) is transitive on X, we pick a fixed point p,€P
and let A’c F(P) be the stability group of the fibre @ '(w(p,)). There is then a
homomorphism ¢:A4'— A defined by o(a’)=a if a'p,=pya; the bundle 4 - P — X
is then associated to A4’ —F(P)— F(P)JA =~ X. We have

ProrosiTioNn (Matsushima). The two definitions of homogeneity are equivalent.
DeriniTion 11.1. If E, F are vector bundles of the same fibre dimension

then E is equivalent to F, written E~F, if there is a ¢ €[' (Hom (E, F)) which is an
isomorphism on fibres.

DeriniTion 11.2. If E? E° are homogeneous vector bundles, then they are

homogeneously equivalent, written E°~EF, if B°~E* and ¢ may be chosen to be M-
invariant.

Levma 111, E*~E=E° is equivalent to E* as a U-module.

Proof. (1.9)

The converse is not true, for if p is any non-trivial representation of @, then
o|U=¢" gives rise to EY and E? ~1"(m=dim E¥) but E®a1™. In view of this, we

should only speak of E? as being a homogeneous representation of the class of bundles

E such that E~E® This representation is unique in the following case.
ProrosiTion 11.1. If Ee, E° are line bundles, then E°~E* = B¢~ F",
Proof. Lemma 11.1 and § 6.

We discuss briefly the two following questions:

(i) Does an exact sequence of homogeneous vector bundles necessarily arise from
an exact sequence of U-modules?

(ii) If j:E—TF is an injection of homogeneous bundles, does it arise from an
injection E®— F* of U-modules?

Clearly (ii)=(i); we shall, however, give a counter-example to (ii) and two ex-
amples to support (i) although we do not know if it is true in general.

Let X =P,(C)=G|U where U= unimodular matrices of the form

Qy Gy Q3
u=0 @y ay]r;
0

age Qgy
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then the line bundle H=H%f a hyperplane is given by p(u)=a,. By §15, (i) and
(ii) we have H°(X, H®)+0 if s>0. Choose integers «, 7,,7,, 7, such that —a+r>0
(¢=1,2, 3); we then get non-zero mappings y;: H*—H"(j=1, 2,3). Since the divisors
of y; are curves in general position, we may assume that the y; are never simul-
taneously zero; this defines an injection j:H*—>H"o H”® H". Because of Lemma
11.3 and the Krull-Schmidt theorem, j does not arise from an injection of U-mo-
dules.

We now give an example of an exact sequence of homogeneous vector bundles
which, under one representation, does not arise from an exact sequence of U-modules,
but which, under another representation, does. Let X be Kahler and let E°— X be
a homogeneous vector bundle with sufficiently many sections (§ 8). In the notation
of that §, we have:

0—>F—>H*X, &) x X - E¢—0.

The middle bundle may be obtained either by the trivial action of U, or by re-
stricting the action of G on H®(X, €% to U. In the first case, we do not get an
exact sequence of U-modules, whereas in the second case we do.

Finally, we have the following proposition which will be proven in § 11 (iii).

ProposirioN. If we have 0 >E*—>E—>E —0, dim E?=dim E*=1, then E is
homogeneous < E~E° for some E° such that 0 — E°—E° — E*—0 1s U-exact.

We formalize (i) by the following definition:

DerinitioN 11.3. Let (S):0—E?—E—>E —0 be an exact sequence of ho-

mogeneous vector bundles. We say that (S) is strongly homogeneous if E~ E° for some
o such that 0— E°— E° - E™—0 is U-exact.

(ii) Extension Theory of Homogeneous Vector Bundles
Let Y be an arbitrary complex manifold; suppose that E~E— Y, H—-H—>Y

are analytic vector bundles over Y.

DerinitioN 114, Ext (H, E), the classes of extensions of H by E, consist of

those analytic vector bundles F —F—Y such that we have the exact sequence
(§):0>E—~F—-H-—0. (11.3)

If we consider the vector space Hom (H, E), then GL(E)xGL(H) is represented
on this vector space as follows: for £€Hom (H, E) e€GL(E), h€ GL(H),
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(exh) (&) =eEh™". (11.4)

It is known that Ext (H, E) may be given a vector space such that
Ext (H, E)~H'(Y, Hom (H, E)). (11.5)

This isomorphism may be made explicit as follows. Let U={U,;} be a suitable cov-
ering of Y, set N=N(U)=nerve of U, and suppose that E, H have transition func-
tions e;:U; N U;—~GL(E), hy:U;nU;— GL(H) respectively. If Fe€Ext (H, E) has

transition functions f;;: U; N U;— GL(F), then we may write

_ ey Gu
Fi (0 h,.j)‘

¢ :Ext (H, B) >H(N(U), Hom (H, E))

Define a mapping

as follows: {(F)=cocycle {y,} given by
yijzgij h;;l : Ui N U,»—->H0m (H, E) l Ui n U]-.

It is not hard to check that [ sets up the isomorphism (11.5).
Suppose now that X=G|U is a C-space and let ¢:U — GL(E®), ¢:U — GL(E°)
give homogeneous vector bundles £®—E¢— X, E°—E°— X, respectively. Then we have

H'(X, Hom (E°, B))= S V*® H'(n, Hom (E°, B ® V-H¥ (11.6)
ieD(g)

(see § 1) where g acts on V*® H'(n, Hom (E°, E%)® y-hye by Ai®1.

THEOREM 14. Let X be a C-space and let B2, E° be homogeneous vector bundles.
Then E € Ext (E°, B%) is strongly homogeneous <((E)€ H*(n, Hom (E°, E"))—""; i.e. C(E)

18 M-invariant.

Proof. 1f E€Ext (E°, E% is homogeneous, then by definition, there exists a
holomorphic representation 7:U — GL(E®) such that E°~E and 0 - E° - E° — E°—0

is an exact sequence of U-modules.

Conversely, such an exact sequence of U-modules gives a homogeneous element
E€Ext (E°, E®). The proof is completed by the following two lemmas together with

the above discussion of the extension cocycle.
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Lemma 11.2. Let f be a Lie algebra and let o, b be Y-modules. Then the classes
of exact sequences of ¥-modules 0 —»a—>c—>b->0 are in a one-to-one correspondence with
H'(t, Hom (0, a))

LemmA 11.3. Given the u-modules E° E° and f€ H'(n, Hom (E°, E%), we form
by Lemma 11.2 the exact sequence of n-modules 0 — E® — B — E° — 0. Considering this

as the irivial ezact sequence of v-modules, then E° is a u=1no’-module <f€
Hi(n, Hom (E°, E®))* in which case 0 — E°— E*— E° — 0 is U-exact.

Remark. Lemma 11.2 follows the usual pattern of extension theorems; we shall
use the constructions in the proof several times in the sequel.

Proof of Lemma 11.2 (Outline). Let o:¥—gl(a), o:f— gi(b) be the representations
defining the ¥-modules a, b respectively, if f € H'(f, Hom (b, a)), then { € C*(f, Hom (b, a))
and df=0. If kef, «€ Hom (b, a)

koo=p(k)oa —ao(k), (11.7)
and for k, k' €¥, k of(k)—kof(k'y= ~ f[k, k'] (11.8)
Define c=a®b and let y,:f—>gl(c) be defined by

o(k) f(k))_ (11.9)

vrlk) = ( 0 ok

The fact that y,[k, &K'=y, (k) y,(k') — ys(k) ys(k) follows by a simple computation from
(11.8).

To complete the lemma, we must show: f=dg for some g € C°(f{, Hom (b, a))=
Hom (b, a) < ¢ is equivalent to a®b as a fmodule. If f=dy, it follows from (11.7)

that

(1 g) (e(k) f(k)):(e(k) 0 ) (I g)

(O 0 olk) 0 ok)) \0 I
for all kef. On the other hand, if there exist x € Hom (a, a), ¥ € Hom (b, b), 2 € Hom
(b, a) such that for all k€f,

G )= ) G 0)

then if follows easily that f=d(z 'z). Q.E.D.
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Proof of Lemma 11.3. We know that N=101p° and, in the above notation, we
define y; on u by

Pr(n)= (Qg@) ;E:;) nemn,
o 0 (11.10)

= Q v ~0

r(v) ( 0 o‘(v)) vEY".

Since [50, n]<Sn, it will suffice to show:

y7[v, 1= [ys(v), y7(n)] = f € C'(n, Hom (E°, E%)).

This is done by a straightforward computation which we omit.
This concludes the proof of Theorem 14.

Example. We give an example of the construction made in the proof of Theorem 14,
Let X=@G)U be a non-Kahler C-space with fundamental fibering T%* — /U = G/U = X.

Writing p=ﬁ/u, fl*=g/£l, f1=g/u, we have an exact sequence of U.modules
0—p—>1*—>f*—0. (11.11)
Following the notations of § 9, (11.11) gives the exact sequence of vector bundles
0~ p— (1a) = (tha) >0 (11.12)

where p is now the trivial bundle px X. Note that (fiky)=a"1(fik)==n"2(T(X)) and
p is the bundle along the fibres of the fundamental fibering.

Now {((n*)s0) € H'(X, Hom ((i%0), p) = H'(X, Hom ((@1):0)) ® p; furthermore
£((n*)aq) 0 since (11.12) doesn’t split analytically. Let ('= sheaf of germs of holo-
morphic (1,0) forms on X, we have from Proposition 5.3

HY(X, Hom ((fiaa), 0)) = HY(X, n~1(QY) = H'(X, QY.

The structure of H'(X, Q) was given in § 4 and may be described as follows: let
[0°]=[0° 5°) and let A €Y)’ be orthogonal to [§°] N B setting f1= Swex+-ypr <A, had 0* A &%,
the f; generate H'(X, QY =~ H*(X, ). Written in C'(n, Hom (f1*, p))™, the general ele-
ment of H'(X, Hom ((fiXa), p)) is of the form

2 1®p. (11.13)

A;pep
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Let p,,....,p, be a basis of p, 4,...,4, a dual basis; then the A, are orthogonal
to [0°]n Y.

ProPosiTioN 11.2. Writing T(X)= (n},), the element [((fixq)) € HY(X Hom ((fiXq), b))
is gwen by the M-invariant form

a

== 35 3 b oA ®p; (11.14)
j=1 aeX*t —p*

Proof. The proof consists of applying the proof of Lemma 11.2 and tracing
through a few isomorphisms—we only give the outline. Notation: if V is a vector
space, V#c ¥ a subspace with a splitting ¥ = V#® V® the projection of v €V on V#
along V® is denoted by v]y,*. What we must show is the following: for p €p, n* €1t",
n €n, then

no(p+n*)=ad n(p)lp+ f (n) (n*) +ad n(n*)]ae. (11.15)

The notation (¥(n) (n*) needs a little explanation: (% € Hom (n®mn*, p) and by defini-

tion, (#(n) (n*) =¢F(me@n*). If nep*, &(p)=0 and (11.15) is trivial; we may assume
n=e_, for some « € >* —p*. Then

no(p+n*)=[n,n "y =[n, 2"+ [n, n*lie

and we are done unless n*=e,. Then non=¢e_,0(¢,)=h,]p: in the right side of
(11.15) only the middle term is =0 and

e () =Ch @)= + 3 iy hed By~ (ks @B,

(iii) On the Deformation Theory of Homogeneous Vector Bundles

Let Y be an arbitrary complex manifold, £ —~E — Y a vector bundle associated
to the principal bundle 4 —P—->Y where 4 is a complex Lie group. In § 10, (i)
we briefly discussed the deformation theory of the bundle P. There we were varying
the bundle structure of P keeping 4 as the group; if 4 is a subgroup of 4’, from
A—>P-—>Y we get A'—>P' —Y and the deformation theory for P’ is in general quite
different from that of P. For example, if 4 =GL(r, €)xGL(s, C) and 4" =GL(r+s, C),
then deforming E in 4 maintains a direct sum decomposition E=E © E” while such
is not in general the case for 4’. Thus as a preliminary to studying the full varia-
tion of P, we shall restrict the size of the group within which the deformation is
taking place.
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(x) The Kihler Case
Let X=@G/U be a Kihler C-space; for simplicity, U-modules will in general be

rational U-modules (considering U as an algebraic group). We shall now give a
cohomological description of homogeneous vector bundles over X. Let £—~E—X be
a vector bundle with principal bundle 4 — P —X; as usual, we have in this situa-
tion the Atiyah sequence 0— L(P)— Q(P)— T(X)—0.

THEOREM 15. A necessary and sufficient condition that P be homogeneous is that

the structure group of P be reducible to a subgroup A'< A such that L(P’') constructed
from A’ — P'—X should satisfy

o~

HYX,L(P))=0 (g>0). (11.16)

Thus the homogeneous bundles are those bundles which, with a suitable structure group,

are locally rigid.

Proof. If (11.16) is satisfied, then we have H°(X, Q/(\I;’))—>H°(X, ®)—>0 and
since HYX, QTﬁ')) is the Lie algebra of infinitesimal bundle automorphisms, P’ is
homogeneous (§11 (i)).

We prove that homogeneous bundles satisfy (11.16). Let o:U — GL(E®°) be de-

fined so that E°~E and set U’ =p(U)<GL(E?). Then we have exact sequences of

U-modules
0>i>usuw—0, } (11.17)

0 =1 —> gI(E®) > gU B’ >0,

where 1t=ker g,:1u—>gl(B°. Since, for w€U, u*€u, Ad o(u)p, (u*)=p, Ad u(u*),
we have from (11.17) the exact bundle sequences

0->L—>L—>L —0, } (11.18)

0—>L' —-L— 1L -0,

where L=G'x o, L=Gxyu, L' = Gxyt', L&=Gxygl(E? and all actions are adjoint
action or its composition with g¢. From Theorem 2 we have that H? (X, I:’) >

ox, i) (¢>0) and H°(X, ~i;)=0. Theorem 15 will be proven if we prove

LeEmma 114. HY(X,L)=0(¢>1) and dim H* (X, L) =n(s, d) where n(s, d) = {num-
ber of megative simple roots in it} —{dim 1 N §}.
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Proof. We refer to the proof of Theorem 2, § 4; as was done there, we assume
that u is solvable (see the remark below). The weights of U acting on 1 are the
0-weight with multiplicity = {dim @t N §} and some of the negative roots. We assert
that if A€ N Y, then all root vectors e_,(x€>*) with (&, k> =+0 also lie in it. Indeed,

u* €u lies in i < g, (u*)=0; since

1 1
O (e—a) = - <_a’q’;§ O« ([e—au h]) = - m [Q* (e~a)’ O« (h)] = 0:

our assertion is proven. Thus, dim (§N1)< {number of simple roots o« such that
@+(e-«) =0} and consequently n(s,d)>0. Now by using Proposition 4.2, we conclude

again as in the proof of Theorem 2 that dim H(X, i;)=n(s, d).
CoroLLARY. HY(X,L%)~H!(X, L),

Remark. The proof of the lemma when X=M /f/' and ¥ is not abelian is done
in the same manner as when ¥ =T using the following observation: if ?’=3 @1} ® ... ® {
where 3 is abelian and the b are simple, then either g, (5)) =0 or g, is injective on ;.

As an application, we prove

PrOPOSITION 11.3. Let X be Kihler and let (S):0 >E2—-E—>E =0 be an
exact sequence of line bundles. Then E is homogeneous < ((E)€HY (X, E-:;/EQ) is M-
tnvariant.

Proof. We consider first the following general situation:

Let Y be a complex manifold, U'< QL(r, 0), U’ < GL(s, C) complex linear groups,
and E'-—>Y, E’ —Y analytic vector bundles with groups U’, U" respectively. Then
if we have (S):0>E —E—E"'—0. E has group Q(U’, U")< GL(r +s, C) where

w &
U, U")={96Gﬁ(r+s, €)|g= (0 u)}

where w' €U’, w” €U"”, and &€ Hom (€, C*). Thus, as a vector space, gu',u”’)=
Hom (€', )91’ @ u” and for

u’ 5 t44 ’ 7f 7 t?
g:( u")EG(U" U”), y=mey ey’ )egu,u”),

Adgon=u nw’) - (Adw oy') ("))

(11.19)
+&u)y ' Adu oy @ Ad w0y ® Adu' 0y,
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From this we have 0— Hom (E”, E)—>L—L &L"’"—0 where L, L', L refer to
E, E' E” respectively.
If X is Kéhler, E’, E” are homogeneous and U’, U’ are chosen to satisfy (11.16),

then we have
H(X, L)@ HY(X, £") % H' (X, Hom (B, B')) - H (X, £) - 0. (11.20)

In particular, in the situation where E’, E are line bundles, H°(X, L'y = C=~ H*(X, L");
by the result in [12] coupled with (11.19), 3,(0® 1)=C(E), 8,(1® 0)= — &(E). If Z(E)
is M-invariant, then dim H(X, EQ/EQ) =1 and H*(X, £)=0 for the group & U’, U"') and
E is homogeneous.

If {(E) is not M-invariant, then dim H'(X,E*E?>1 and dim H*(X, £)>0. In
order to prove the proposition, we need only observe that, since dim E*=1=dim E°,
there exists no group A to which the group of E can be reduced and such that
wen'cacgu’,u”’) (proper inclusions). Q.E..

(8) The non-Kihler Case

The analogue of Theorem 15 is not true in the non-Kihler case (e.g. line bund-
les) and there are in general obstructions (§9); we shall give only a brief outline of
the picture. Let X =G/U be non-Kéhler with fundamental fibering 7%* — X — X = G/U.
Let 0:0 U’ < GL(E®) be a rational representation and set ¢ | U=p:U — U’ = GL(E®).
If W*=ker g,, we set n(s, d)={number of simple roots in 11*}— {dim u* nh}. Writing
i=uep, we let p*=pnu*, p'=p, (M) S, tw*=uni*, and ¢*=dim p* so that

a—a*=a' =dim p’.
ProrosiTion 11.4.
1y HYX,L') is a trivial M-module.
(ii) If p'=0, then dim H* (X, L)=a(n(s, d)). (Such is the case if o is the complexifica-

tion of a representation of V.)
(iii) I/ n(s, dy=0, then dim HY (X, L')=a’. (Such is the case if p is the identity
and then a' =a.)

Postponing the proof a moment, we describe a corollary. Because of (i),
HYX,L'Y=Hu, u')5°; there is thus a natural pairing (,>:
H (X, LY HY(X,L')—~>H" (X, L)

obtained from that in H*(1,1)* by bracketing elements in u'.
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CoroLrary. If {,}:HY(X,L)Y® HY(X,L')—~H?X,L') is the obstruction bracket
(§9), then {,}=<,>. (This shows that there are, in general, obstructions.)

Proof of Proposition 11.4. The following is easily checked to be an exact diagram

of U modules, the actions in the last column being trivial:

- o

’

0—>u —

0—-u —

v

N

J:
[l

<

(11.21)

\L*
<

0O—>u*—u*—

—

= L e = S e =
QT > H>T > O

<

Letting u be any of the symbols in (11.21) involving a u, we let L# be the corre-
sponding homogeneous vector bundle on X; the trivial bundles arising from the last
column of (11.21) are denoted by the same symbols as the modules. Writing HYX, )=
HY-), we have from Theorem 2, Proposition 9.2, Theorem 3, and Lemma 11.4 the

following : HY(C) =0 for all ¢, H*(C)=0 (g+1) and H*(C)~p, H* (%)= p# and H*(j¥) =0
for ¢>0 where p#=p, p*, or b, HY(L*)=0 for ¢g+1 and dim H'(L*)=dim HY(C)=
n(s,d), and finally HY(L)=0 for ¢>0. Using these, we get from (11.21):

0 0
0 0
0—>p —H(L')=>0
0 0
0—p — p —0
0 * P (11.22)
0->p* > H'(C*) — HY(L*) >0
r 4 )
0 —>H(L)—> B (L) >y —>H(L)>0
0 0
0 0

From §5, there exists a spectral sequence {¥,} such that E,, belongs to H*(X, £') and
E3Y=H*(p)® HY(L'); in any event, H*(X,L’) is a trivial M-module. In general both
H°(L') and HYL') are =+0 so that their spectral sequence is non-trivial. If (i) is
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satisfied, then H'(£')=0 and H' (X, L')>~H"(p)® H*(L'), which proves (ii). If (iii) is
satisfied, then H°(L')=0 and dim H(L')=a’ from (11.22); this proves (iii).

Remark. The corollary follows from the fact that, contrary to the case for H'(X, @),

the obstruction bracket in H'(X, £') is over the sheaf of holomorphic functions Q and

involves no differentiation.

12. Some applications of § 11
We give some general geometric applications of Theorem 14. Let X =G/U=M /I}
be a Kéhler C-space; suppose that (ay,...,a,) is a system of simple roots of (f,q)

such that (e, ..., o) (s <r) are the simple roots of (f, 60).

THEOREM 16.

(i) Let E—~E->X be an indecomposable vector bundle with complex nilpotent group

N as structure group. Then E is a homogeneous line bundle.

(ii) If dimg E=2, there exists an indecomposable vector bundle E—E— X with

solvable structure group <> there exists an oy (j >s) such that («;, ;) =0 for 1<i<s.

CoROLLARY 1. ([16]). Any wector bundle over X with nilpotent structure group

18 homogeneous.

CorOLLARY 2. If b,(X)=1, then every bundle E —E— X with solvable structure

group is decomposable into a sum of line bundles.

COROLLARY 3. There evists a Kihler C-space X (any flag with dim > 1) and a

non-homogeneous plane bundle over X with solvable structure group.

Proofs. (i) Let {U;} be a suitable covering of X so that E, assumed indecompo-
sable, has transition functions

0...0 a;j
Suppose for a moment that dim¢ £ =2; then n;= (‘gi i ) where the a;; are the tran-
ij
sition functions of a (homogeneous) line bundle A and we have 0+~ A —E—+ A —0.
But then ((E)eH (X,A*A)=H"(X,()=0 and E~A®A. An obvious induction
completes the proof.
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(ii) Let dim¢ E=2 and E—>E—> X be indecomposable. Then E has transition

functions
e ()
Y 0 by

we have line bundles A, B with transition functions (ay), (b;) and from the exact

sequence 0 >A —>E—>B—0 and {(E)€ H*(X,B *A). The proof is completed by the

following lemma:

LemMMA 12.1. There exists a line bundle E° —E°— X such that H*(X, %)+ 0+

there exists an o;{j >s) such that (oy,0;)=0 for 1<i<s.

Proof. Any line bundle E* on X is given by a weight ¢ on fj such that (o, ;) =0
for 1<i<s. There exists a ¢ with H'(X, £°)+0 < there exists an «,(s<j<r) such
that rai(a+g)—g€D(g). (See § 1 and Theorem B.) Let &,,... &, be the fundamental

weights of (§), g); they are characterized by ¢(;, o) =2 (;, o))/ (ot &) = 6; (for all &, ).
If a ¢ exists with H (X, £)+0, then ta,(a+g)—g=nla")1+...+n,d), where all the

n; are non-negative integers. But then
0+g—g+0;="14(74(0+9)—9)
= ‘razi(nlc'()1 + .+ nd,)
=Ny Byt ... + N O — Ny
ie. C=n@ ...+ nd— (n;+1)a.
But for €yt (1<i<s),
0= (0, ;) = 2my/(0ts, i) — (n;+ 1) (o;, )
and since n;+1>0, (o, &) <0, we conclude that (a;, o) =0. The argument is reversible
and we are done.

Now let X be a non-Kihler C-space and E->E — X an indecomposable analytic

vector bundle.

THEOREM 16’. If E has a complex nilpotent group N as structure group, then E

ts homogeneous but is not in general a sum of line bundles.

CoOROLLARY. Any analytic vector bundle E — E— X with nilpotent structure group

ts homogeneous.

Proof. Let {U;} be a suitable covering of X such that E has transition functions
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n

—t———
Qij
0
ni; = . n.
0...0a;

By § 6, the theorem is true if n=1; we assume the result for n—1. Then we have
the exact sequence 0 - A —>E-—->E —0 where A is a line bundle with transition func-

tions ay; and E’ is an (n—1)-dimensional bundle with transition functions

0...0ay

By the induction assumption, E’ is homogeneous and ((E)€ H'(X, I-i:)/m (E’, A)). The

bundle Hom (E’, A) is an (»— 1)-dimensional vector bundle with transition functions

the results of §3 tell us that H(X, Hom (', A)) is a trivial M-module and Theorem
14 gives the result.

Remarks. The proof of Theorem 16 yields Corollary 2 to Theorem 16 only if dim
X >1; the result for dim X=1 (i.e., X =P,(C)) is due to Grothendieck. Corollary 3

to Theorem 16 also holds in the non-Kihler case.

The above results were general geometric statements; we now give some specific
examples; the general purpose is to construct ‘“‘parameter varieties” for classes of

bundles over C-spaces.

Let X be a non-Kihler C-space with fundamental fibering 7% —> X — X.

ProrosiTioN 12.1. The class of indecomposable bundles over X with structure

1 .
group N = {( 0 1)} consists entirely of homogeneous entries and is parameltrized by P,_4 (C).
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Proof. Letting 1= trivial line bundle and Q=1=sheaf of germs of holomorphic
functions on X, we have Ext (1,1)~ H'(X,Q)=C* The rest is easy. Q.E.D.
Let E°—E’— X be a homogeneous plane bundle over X with structure N where

N is the same as in proposition 12.1. Then we have exact sequences

{ 0—>1->E°—>1—-0 (of U-modules)

0—+1—-E"—1—->0 (of vector bundles).

From the exact cohomology sequence of the exact sheaf sequence 0 - Q— £°— Q — 0,

it follows that H*(X, &%) is a trivial M-module and H*(X, £%) >~ H*(n, E°)". As an

illustration of § 3, we give

Prorositiox 12.2. H*(X, &°) is a trivial M-module and

. q Gy a
dim H(X, £°) (q) (g<a), (12.1)

dim HY(X, £°)=0 (g>a).

Proof. We follow previous notations. Then {(E°) € H(X, Q) = H*(X, C) and thus
C(E°) is represented by a global (0,1) form &, (see § 5). Let &,,...,®, be a basis of
H'(X, Q) which at the origin gives a basis of (p*) (p=1iju, n=1®p*). From the
proof of Lemma 11.2, we may choose an isomorphism between E° and C® such that

o:u—>gl(E°) is of the following form:

_(0 0 =0
a(v) = 0 O) (vev?),
0 0 -
= 12.2
o(n) (O O) (n €n), (12.2)
0 &
% i
a(p; (0 O).
where pf,...,ps are a basis of p* dual to @,,...,d,. It will suffice to compute

He(n, B°)® from the exact cohomology sequence of t-modules 0—1->E°—>1->0.

This cohomology sequence is
e HO ) 5 He () — HO(n, B — HOm)F 2 B ()P - .. (12.3)
Lemma 12.2. Let v be a (0,7) form in H'(0)” = A"(p*). Then

8 (1) =@, A T€H™ ()P = AT (p*).
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Proof.

(i) r=0. In this case 7 is a complex number. In the exact sequence
0 —> C'm)® —C° (1, B°)* — C° (n)*" — 0,

we lift 7 back to 7= (2) € C°(n, E°)”. Then, for nemn,

. . 0\ [0 nen
d = = = 12.2).
T(rn)=not no(r) {t(éﬁ-) n=p? by ( )

(ii) r arbitrary. It suffices to take v=é;,.., =@, A ... A @;; In

1

0 — C" ()" — C" (n, E°)"" — 0" (n)" — 0,

we lift back to  =a, .. ((1)) € (A" (n) ® B) = C" (n, E°)P".
Then, AT(PRA o Aph) =2 (=)ol pio ((1)) )

i.e., d%=a') A @ dre Q.E.D.
1 1

Completion of the proof of (12.1). From (12.3) we see that

dim H%(n, EG)I)D: (Z) —dim (67" +dim (ker §9)

= (Z) — ((qf 1) —dim (ker 5a+1)) +dim (ker 89

LR R MR AR

Remark. dim H'(X, E°)=a and a basis for this vector space is given (in the

above notation) by
1
@ ((l)) and @; (O) G>0. (12.4)

We use Proposition 12.2 together with Theorem 14 to construct one more para-

meter variety. Let H be the complex unipotent group of complex matrices of the form

1 a b
(0 1 c) s
0 01

and denote by G(2,a) the Grassmann variety of 2-planes in C*
14— 632933 Acta mathematica 110. Imprimé le 5 décembre 1963.
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TrEOREM 17. The space of indecomposable (homogeneous) vector bundles over X
with structure group H is parametrized by the disjoint union of the following three

varieties:

(i) B,
(i) G(2, ),
(ili) G(2, a)

where B is a vector bundle over P,_, (C) with fibre C* ',
Proof. Let a:u~>f] where
0 a(u) bu)
o(u)= (0 0 c(u))
0 0 0

give rise to E°— E°— X. If H* is the unipotent group of complex matrices of the form

o

then, from ¢, we construct 7:u—§* by setting

We have £ E — X and 0 —+E° - E°—1-—0 and thus
C(E°) € HY(X, €)= H'(n, E*).
We must compute this group and pick out those bundles which are indecomposable
when we allow 7 to vary over representations of U in H*. We treat cases:
(i) E* indecomposable; then 70 (v is not trivial) and

0 alu)
0

0 )(ueu).

7(u)= (
Writing u=1® p* © §°, then

a(w)=0 (ve€B?
a(n)=0 (n€N)
alpf)=y; (9%, ...,pa= basis of p*).

Thus ¢ is in (p*) and we may write a=2 y,®;. Since (by assumption) a+0, we may
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’

pick a new basis &,...,& of (p*) such that a=§&,; by the remark following Proposi-

tion 12.2, a basis for H'(n, B)" is & ((1)), & ((1)) (j>1). Using this basis for H! (1, E)*"
and letting ¢f,..., %5 be a dual basis of p*, if (o, ..., 0, € H' (1, E’);"' =~ Ext (E7, 1), it
follows that the bundle £ '(g,, ..., 0,) With structure group H is given by ¢:1 —>6 where

o(v)=0 (v €DY),
a(n)=0 (n €M),

0k 2 4 o (12.5)
cQheN)=|00 i o
00 0

If p,+0, we have the following:
The bundles E°— E°— X which have no decomposable sub- or quotient-bundle

are parametrized by a space B which is a vector bundle with fibre C*~ (parameters

03> -+ 0a) OVer P,_1(C) = H'(11, E*)— 0/C* (corresponding to indecomposable EY).

1 0 @
(0 1 O)
001

is decomposable, the only possibilities not covered in (i) are bundles with group

1 0 e 1 f e
H = (o 1 f) (f=0) or H*= (0 1 0) (f=0).
001 001

(ii) Since a bundle with group

The two situations are dual and it suffices to treat H*. Letting 7:u—§* be given by

T(u) = (g f((:‘)) , we have as usual 0 —E"—E°—>1->0 and ¢(E°) € H'(n, E")"". Taking
0,=0 in (12.5), to have indecomposability we must have (g,,...,0,)F(0,...,0) and
thus the indecomposable bundles with group H* are parametrized by G(2, a) (vectors
(1,0,...,0) and (0, 9,,...,0,)). We omit further details and conclude the proof of
Theorem 17.

We close this section with a statement about flags and a discussion relating
homogeneous extensions to the outer automorphisms of certain complex unipotent Lie
algebras.

Let X=0G/U=M|T be a flag manifold.
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Prorosition 12.3. If E°, E* are homogeneous line bundles over X, there are
three mutually distinct possibilities for Ext (E°, E°):
(1) Ext (E°, E°)=0 (i.e., only trivial extension).

(ii) Ext (E%, E°) is composed entirely o non-homogeneous extensions
P Y

o~

< dim H* (X, B E%) > 1.
(iii) Ext (E*, E°) is composed entirely of homogeneous extensions
- dim H'(X,E "E%)=1.

If t is any Lie algebra, then it is known and easily checked that H*(f, f) = space
of outer automorphisms of { (modulo inner automorphisms). Consider now the class

of all unipotent complex Lie algebras n which have the property that there exists a
Kihler C-space X=@/0=M/V such that ii=n®?°. Then H'(n,n) is a P-module

(since [§°, n]<m) and thus
o= S m B, (12.6)

y€eD (1Y

where m, = multiplicity of the irreducible ¥ -representation space E” with highest weight
y in H'(n,n). Thus

dim H*(n, Hom (n*, E”'))g" =dim (H*(n, 1) ® E")§° =m_, (Schur’s lemma).

On the other hand, dim H'(1, Hom (n*, E7))* = multiplicity of the trivial representation
of M on HYX, I-,I?)/m (T (X), E?))=(Theorem 14) the dimension of the space of ho-

mogeneous extensions of the form
0—FE —E —T(X)—0. (12.7)

ProrosirioN 124. Let 1 be a unipotent complex Lie algebra as described above.
Then the outer isomorphisms of 1 are in a one-to-one correspondence with the exact se-

quences (12.7) of homogeneous vector bundles as E” varies over the irreducible V-modules.

CoROLLARY. The outer isomorphisms of 1 which commute with the action of V on

1 are paired to the exact sequences
0—>1->E—-T(X)—>0 (12.8)

(1 =trivial bundle) and these form a vector space equal in dimension to the second Betti
number b, (X).
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Remark. From Proposition 12.4, it is easily checked that if n=c(e_,:x € > —p"),
then the automorphisms corresponding to (12.8) are of the form f;(e-,)= — (7, ) e_,
where 7 runs through the weights on ) which are orthogonal to y*. A full deserip-
tion of H'(u,11) is to appear in a paper by B. Kostant.

13. Bundles over Arbitrary Homogeneouns Kihler Manifolds

Let X be a compact but not necessarily simply-connected homogeneous Kihler
manifold; then X =X%=X x 7% where X is a Kihler C-space and 7%= (%[ where
I'c C* is a suitable lattice. We shall examine the geometry of homogeneous bundles

over such an X. A few preparatory remarks which will be used later are helpful here.

LeEmwma 13.1. Let A, B, C be complex connected Lie groups with A a closed complex
normal subgroup of B, C=A|B. Then the fibering A— B—C has a holomorphic

CONNEXION.

Proof. ([22]) Let a=complex Lie algebra of A; the vertical space V, at b€ B is
given by L,(a)= R, Ry'L,(a) R,(a) since a is invariant in b. In the exact sequence

0>a>b5c—>0. (13.1)

choose a linear splitting map y:c—b(u o y=identity). Then b=j(a)®y(c) and we
may take the horizontal space H, at b€ B to be R,{(y(c)). QE.D.
We denote this holomorphic connexion by p and observe that the curvature E,

is a (2,0) form given at the identity by
Ey (e ¢) =" ([y (¢) p ()] (13.2)
(¢, ¢’ €c). 1t follows that
P&y () =(y(e), y()]—ple,c']) (13.3)

henceforth we shall omit reference to j.

If now a is abelian, the exact sequences (13.1) are in a one-to-one correspond-
ence with H2(c, a) (see the exercises in [6]) where ¢ acts on a by “ad” (a is an ideal
in b and ad aoa=0). To get the obstruction to splitting (13.1), one chooses y:¢—b
as above and then the obstruction cocycle f, € C?(c, ) is given by

fy(e, )=y (o), y(¢)] —y [e,¢']) = Eale, ¢). (13.4)

Thus
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LeMMmA 13.2. The sequence (13.1) can be split <> the connexion given in Lemma
(13.1) may be chosen to be integrable; and, in this case, the fibering A— B—>C is as-
sociated to a representation of 7, (C) in A.

We shall actually be interested in the case when C is abelian (and is in fact a
torus); as will be seen below, it will be sufficient for our purposes to assume that 4 is
also abelian. The following example shows that, even when dim 4 =1, the above connexion
may not be integrable.

Example. Let B=group of matrices of the form

1 2, 2,
(0 1 23) ;
0 01
A =subgroup of matrices of the form
1 0 =z
(O 1 0) .
0 01

Then A is normal in B and it is easily seen that 4/B=C® parameters z,,2,). The
group B is abelian and
1 0 2z,
(0 1 0)—>z2
0 0 1

given an isomorphism of B with C; thus the fibering 0 -4 — B— C —0 is a principal

C-bundle over €. It is easily checked that, in our framework, ¢ = algebra of matrices

of the form
0 ¢ O
(0 0 cz)
0O 0 0

¢, ¢, €C), and, by choosing the obvious splitting y,

0 ¢ 0 0 0 0 0 0 ¢c
=, (o 0 0), (0 0 c2) =(000 ) (13.5)
0 0 0 0 0 0 00 0

Thus (Lemma 13.2), the connexion is not integrable.

To put this example “over a torus”, we let G< B be the subgroup of matrices
of the form
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1 g9, 9,
01 g,
0 0 1

where the g¢; are Gaussian integers. Since

1 2z, =z (L g9, 95 1 2,+¢9, 93t2 9512
0 1 =z 01 g¢,]=1{0 1 23+, >
0O 0 1 0 0 1 0 0 1

it follows that (Iwasawa) G//B=X is a bundle of complex 1l-tori (parameter z;) over
a complex 2-torus (parameters z,,%,). The above remarks on curvature still hold for X.
However, these remarks are better phrased as follows: the holomorphic 1-forms
o, =dz,, wy,=dz;, wy=dz,—2,dz, form a basis for H**(X,C). The forms w,, w, are
simply the inverse images on X of the forms on the base space; the form ewj; is seen
to be the connexion form of the holomorphic connexion described above. The cur-

vature of this connexion is given by
By =d(wy) =dz, A dzg (13.6)

which exactly corresponds to (13.5). We remark that to turn X into a C-bundle over

the base space, we simply replace @ by G’ =set of matrices of the form

(9, 9, Gaussian integers).

Remark. This example is in some sense the worst that can happen. TFor, if
0—+a—>b—>c—0 is exact and if a, ¢ are abelian, then [b, b] < a (by (13.4)) and thus
[[b, b], [6, b]]=0 which puts an “upper bound” on b which is actually realized by

the above example. The following lemma seems to be about the best we can hope for:

LeMmA 13.3. Let A, B, C be as above and let A, C be abelian. Assume that b is
given a linear Lie algebra (<gl(V) for some V) and that, in this representation, ¢ is

semi-simple.  Then the sequence (13.1) splits.
Remark. The above conditions are met, for example, if 4 =C*.

Proof. We may first assume that b is solvable; then the following is well- known:
if n1Sb is any ideal and if p €n’ then the subspace V,={v€V:nov=g(n)v for all

n€n} reduces b. Since a is semi-simple, we may use this fact to put b in triangular
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form with a on the diagonal. The obstruction to splitting is given by a commutor
[¥(c), ¢(¢')] € a and because a N [b, 6]=0, we are done.

Returning to the sequence (13.1) where a is abelian but ¢ is arbitrary, we may
write b=1 - 8 where r=radical of b and 8 is semi-simple. Then u(8)=0 and we have
the following lemma, due to Matsushima:

Levmma 13.4. The homogeneous bundles over a complex torus are of the form
A—>B—>T* where B is a complex solvable Lie group; all such fiberings have holo-
morphic connexions.

Returning again to our original problem, we let X =X°=XxT%=@/U xB|4; if
e: UXA—>GL(E9) defines a homogeneous vector bundle E°—E?—> X% we wish to
determine the G'xB-module H*(X*E&?). Since o(4)<o(UxA)S GL(E® is normal in
o(UxA4), the subspaces of E° reducing o(4) reduce o(UxA). As in § 5, we assume
here that, if £Sa is maximal abelian, o|f is semi-simple. Under this assumption, we

may, as in §3, get a series of exact sequences

0—>E*—>E—E"—0
0—>E*—>E" —-E"—~0
0 - Eg"—% Egn’l — EQ"+1 -0
where g,|a is irreducible (j=1,...,n+1). Then, theoretically at least, using Proposi-
tion 2 in [12], we may calculate H*(X? &°) knowing the H* (X% £%) (j=1,...,n+1).
If o|a is irreducible, it is clear that E~E*@ E*® where E¢—E¢— X is a homoge-
neous vector bundle and E™@ — E*® — T is a homogeneous bundle. Since
B (X0, €)= 3 H'(X,E) @ H'(T™, E), (13.7)
r+s=p
it will suffice to determine the 4-modules H* (T, £7) when E* — E* — T runs through
the homogeneous line bundles on 7.
The structure of the bundles E* is well known and was given in § 10. Writing
' *—1T%, the bundles are (uneffectively) parametrized by H®'(7T%, C) and are
given by wunitary representations p&:I'— C* (@ € H*!(T™, C)) where, in fact, pi(y)=
exp (fy,o+®) (y€T). A global section of E=E© is given by an entire function f
on C* such that f(z49)=0d(y)f(z). Thus f is bounded, hence constant, and the
constants are inadmissible unless -+ @ € HY(T®, Z); i.e. B ~1. (This is due again
to Matsushima in [22].)
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Remark. The above statement is more general. Namely, let D be any Stein
variety and let I' be any group acting discontinuously and without fixed points on
D, such that D/T" is compact. Then if ¢:I' = GL(n,C) is any unitary representation
giving a vector bundle ¢ — E?— D/T', H*(D/T", £2) =0 unless g is trivial. For example,
if D is the upper half plane and D/T" is an algebraic curve (Riemann surface), then,
for any line bundle E°—E¢—D/I" with deg E¢=c, (E?)=0, H*(D/T', £9)=0 unless
E¢~1. In this case, if g=genus of D/T,

g ifEe~1

. 1 0y o
dim H'(D/T, &9 {g—lifE"dvl

(by the Riemann-Roch; the elements in H*(D/T, £ =~ H*(D/T, Q' ® £°) are just the
Prym differentials.)

TueoreM 18. If B®—>E2— T% is any line bundle with c,(E%) =0 over T where
we write A — B~>T?, then H*(T%, £% is a trivial B-module. Furthermore,

a o
dim HY(T%, £%)= (q) if &1 (13.8)

0  otherwise.

Proof. We need the following simple lemma in potential theory:

Lemma 135. Let X be any compact manifold and V—V>X a vector bundle

over X with a metric structure (,). Suppose that we have a fixed covering
{U} of X, 2" (U) = U,;x7V,

and suppose that we have an elliptic operator A on the V-valued forms on X such that
A in U; is equal to the Euclidean laplacian for all i. Then if S:X —V is any section
such that AS=0, then 8 is locally constant.

Proof. Let S be any non-constant section with AS=0 and let #,€ X be a maxi-
mum point for |S|*=(8,S). Let H(S)=Hessian matrix of S (i.e., H(S);;=8*8/ox' ox’).
Then tr H(S)=AS8=0 on X; but at z,, tr H(S),, <0 if § is non-constant. Q.E.D.

We apply this lemma to E°® A?7T" (where 7" bundle of (0, 1) forms on 7%%) and
to the elliptic operator [] constructed from an invariant Kihler metric on 7% and
the metric given by the Hermitian structure in E°. On the one hand, we know a
priori that

HO(T™, £2) = H*°(T*, E?)~ H(E?),
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where H(E®)=kernel of [] on E®°® A°T". On the other hand, since the transition
functions of E? are constant and since 7% is a torus, Lemma 13.5 applies and ker
[1=0. Q.E.D.

We give an application of Theorem 18.

Prorostrion 13.1. (Matsushima). Let E-—>E-—>T% be an indecomposable ho-
mogeneous vector bundle. Then E~L®N where L is a homogeneous line bundle and N

18 a homogeneous bundle with siructure group

0...1
Proof. It will suffice to assume dimg E = 2; induction will give the general result.

Then, relative to a suitable convering {U,}, E has transition functions

= (au bii)
1=
0 ¢y
where a;;, c; are the transition functions of homogeneous line bundles A, C, respecti-

vely, and we have 0 >A —E —C—0. In the notation of § 11, Z(E) € H*(T%, ¢ A);
but H*(T%,C"'A)=0 unless A=C. Q.E.D.

CoroLLARY. (i) (Matsushima). The space of indecomposable homogeneous bundles
E —E—T* with dim¢ B =2 is parametrized by D(T*)x P, _1(C), where D(T?*) = Picard
variety of T™.

(i) (Morimoto). Thke space of indecomposable homogeneous bundles E—E—T®

with dime £ =3 is parametrized in the same manner as was giwen in Theorem 17.

Let X=@G/U be a non-Kihler C-space with fibering 7% —G/U > G/U and let
7: U~ GL(E") give a homogeneous line bundle E*—E*— G/U. If we restrict E° to
a fibre in the above fibering, then E° is a homogeneous line bundle over 7%; in the
terminology of § 5, E*—E*—G/U is a rational homogeneous line bundle < E* re-
stricted to a fibre is analytically trivial <« E’ restricted to a fibre corresponds to the
zero point in the Picard variety of the fibre. Thus Theorem 4 is a Kiinneth relation
between Theorems B and 18 ((13.8)). This “explains” Theorem 4 but, of course, does
not prove it.
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14. Examples and Counterexamples

We shall now give some examples illustrating the general theory and further
examples showing why certain theorems given above are not true under more general

circumstances.

(i) An Hlustration of the General Theory

We shall describe how the theorems given above apply to a simple example;
since the easiest representations to describe explicitly are those of the full linear
groups, we shall choose our example from those of type 1 in Wang’s list ([24]). We
now recall the Lie algebra structure of g=sl(n,C)={g€gl(n,C):trg=0}. Letting e;
be the matrix with 1 in the 7—4 position, zeroes elsewhere, a Cartan sub-algebra
hcg is given by §={1€g:A=>714,e5, >;4=0}. The roots of (f),g) are the linear
forms g@;; (i=7) defined by {g;;, A> =A;— A;; a rational basis for ) consists of g, ..., n 1
where u;=e;—e;,;. ;41 Relative to this rational basis, the positive roots >* = {@; 7 < j}

and — (i) =g@;. If A=2 A6y, u=2 uxew, one easily checks that
Tr (ad A ad p) =2n Tr (Au) — (Tr A) (Tr x)

and it follows that if 1, u€} and (,) is the Killing form

For ¢, €27, we define h,,,ﬁef) (h,pi]_,l)=<<p,-j,l> for all A€}); from (14.1) we have that
h%,-:(l/z”) (e; —ejy). Since the Weyl normalization requires that [e%_, e_q,ii]=h¢,ﬂ, we
find that e,,,i’,=(1 /2n) ey; the condition (e%_, e,p”)=6§6§c is then satisfied.

Let Z"=Zx...xZ; we define a homomorphism y:Z"—Z(g) as follows: for
n

r=(ry, ..., 1) EZ", A€Y, {u(r),A>=27-11;4. Then keru=g((1,...,1)) and we must
work modulo this subspace. The Weyl group W(g) is isomorphic to S, = permutations
on n-symbols and for ¢€8,, A€D, o(d)=0(3 Le;) =2, Apey;; from this it follows

that o(r) =01y, .o, ) = (Tomr (1) s «--» Tomy). 1 We set DP={(r), ..., 1) i1, =1y > ... > 1.},
i i

then u(D" = D(g); furthermore, u *(¢;)=0,...,1,..., —1,...,0) and since 29=2,; @y,

w g =(mn—1,...,1) and g '(g) is “minimal” in (D™°. It is easily checked (from
i

(14.1)) that the fundamental weights @,, ..., @»_1 are given by ™' (®;) = (1,...,1,0,...,0)

and then g=>77'®,. The involution §€ W(g) is given by &(ry, ..., 7)) = (n, o1, -5 79)-
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Finally we recall briefly the elements of Young theory ([26]). Let g(n)=gl(n, C)
and, for r=(r,...,r,) €D", we let o :g(n)—>gl(V*") be the unique irreducible re-
presentation of g(rn) on V¥ (u(r) € D(g)) such that o"|g=u(r) and p"(1") =n(r) where
n{r)=>r;. The vector space V" is constructed as follows: to (rys .o, 1) ED™ we

associate the Young diagram

1,1 (1,2 ... L
2,1 (22 ... e 12,1,
n, 1 ee My Ty,

We let V'=V®...®V (V=C") and consider V™. Letting o(r,,...,7,) be the sym-
i
metry operator corresponding to the above diagram, V" =g(r, ..., r,) V.

Let M =S8U(n) and let V# = compact group of matrices of the form

oit 0
(.) K @ik ;
0 U(n—k)

if V=7#n M, then M/V= X is a Kahler C-space; if we choose r such that r=0 mod 2,
then, if V# = matrices of the form

10 ... 0
0 -
1
ei6r+1
e 0
L 0 Un—k)

and V#nM, X=M/V is a non-Kihler C-space and we have 72— X —>X. We shall
discuss these manifolds.
In the notations of §1,
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and 0

g(n—~k)

Those A€ Z(go) = center of »° may be written as A= {(4,, ..., A, i, o j) where
Skyd=—(n—k)A The representations @, of Z(f)o) defined by 6;(A)=24; (j=1,...,k)
generate (over Z) with respect to® the group of line bundles L(X); we write E% for
the line bundle with character 6, given above. The general line bundle on X is of
the form E™% .. E™% and L(X)~ZF~H*(X,Z). The general line bundle on X is
of the form E®% . E*0Ew+1%+1  Emo% gnd L(X)~C"7eZ'"=A4 B.(!) The line
bundles in A4 are precisely those with Chern class = 0 (although with Atiyah Chern
class = 0). The vector bundles over X defined by an irreducible representation of V
are of the form L®E? where LEB and g is an irreducible representation of [0°, v°];
a similar statement holds for X. These bundles are all indecomposable (§8).

For 1<j<r, H*(X, £9%)=0 if ¢; is not an integral vector,

HY X, E"f"f)%pg qH"(X, EMiy @ HS (X, Qy)

(for all §), and H*(X,Qy)-is a trivial M-module of dimension (:) We now determine
I(n;0;) (n,€Z). In

i i
7, n,0,=(0,...,m;...,0) and n0;+g=(n,n—1,...,n—j+1+a,...,1);

thus n;6;+g is regular = (i) n;>j—1 or (ii) n;<j—=». In case (i), |n,0;,+g|=j—1
]

and I(n0)=(n; +1—4,1,...1,0,...,0). Thus HYX,E%%)=0 unless ¢g=7j—1 and

H'~Y(X, £"%) is the irreducible g-module given by the Young diagram

L1| .. |[Lny+1—j

2,1

j»1

For example, if j=1 and #;=1, the induced representation is just the ordinary re-

(*) There are }r relations among the c;.
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presentation of SU(n) on C". In case (ii), |n;0;+g|=n—7 and I(n;6;)=(n,n—1,...,
n—j+L,n—j—1,...,1,n;—j+1). A similar statement to the above concerning coho-
mology groups may be made.

Now if k=1 (thus X=P,_,(C)), the line bundle E* gives a projective imbedding
(§8); we wish to generalize this. To do so, notice that <c?),-,[§)°, 6°]>=0 for 1<j<k
and that >y <k @; gives a character ¥=0,+ ...+ 0, and a line bundle E*=E*% E%
Since g=g,+g, and ¢, = @x+1+ ... + @, it follows that ¥ =g,; the imbedding mapping
(X)* discussed in §8 is biregular on X and maps X into the projective space asso-

ciated to the vector space corresponding to the Young diagram

1,1} ... 1,k

2,1 | ... [2,k-1

k1

We may also speak of the imbedding mapping (X)* on X; this mapping does not
separate fibre points in the fibering X — X, which is just as it should be.

The question of finding the sheaf cohomology of E? where g is an irreducible
representation of [;30, 50] is the question of transferring a Young diagram into a Young
diagram. For example, if we let n=6, k=4, then [0°, ?"]= sl (2,C) and D(5°)=
{r=(0,...,0, r5,75) :rs=7r,}. If we assume that r,>r,>0, then g+r is regular < (i)

r¢>5 or (ii) r4=0, r;>4. We may describe the induced action as follows:

(i) |r+g|=8 and

I:/1,1 et Lrgl—> L, L l,7,—6
2,1 eee | 2,7 2,1 ... |2,r3—5
3,113,2
4,1 (4,2
5,1]5,2
6,162
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(ii) |r+g|=4 and

1,1 ... .. |l,r—5

I:{1,1] ... [Lrs|{—| 2,1
3,1
4,1
5,1
6,1

We may ask about extensions of bundles. For example, (§ 11), the space of
vector bundles E such that we have 0 —-E%—>E —E% 0 (over X) consists entirely
of homogeneous entries and is in fact a vector space of dimension 1- This is because
6,—6,=(—1,1,0,...,0) and g+0,—0,=(n—1,n,n—2,...,1); |g+6,—0,|=1 and

1(62_01)27%2(9‘}"02"01)“‘9=(7L, ’l’l/_l, n_2: (AR 1)——g=0

The space of bundles E such that we have 0-—>E"% —E— E"% >0 is non-void <

n, —ny>1 in which case, all the bundles E are non-homogeneous and form a vector

(n+n1~n2)
ny—ny—1 )

This is because (n,—n,)0,=(0,n,—n,,0,...,0) and (», —n,)0,+g¢ is non-singular <

space of dimension

(i) ny—ny>1 or (i) n, —ny<n—1; furthermore, |(n, —n,)0,+g|=1 < n,—n,>1 and
in this case I((n;—n,)0,)=1,1...1,0,—n,—1.

Over X, the second situation just described is a bit different. The space of
extensions 0 - E*% - E->E*% 0 is non-void < ¢, —¢, is integral and (i) ¢, —¢,>1

or (ii) ¢;—c,=0. In case (i) the extensions are non-homogeneous and form a vector

(n-l—cl—cz)_
¢,—c—1 ’

in the second case ((ii)), the extensions are all homogeneous and form a vector space

space of dimension

of dimension }r.
The complex dimension of X is nk— k% that of X is nk—k*+4r. If we assume,

e.g., that n—k is odd, then H*(X, Z) has no torsion and is in fact given by

K[X,, ..., X]08(Xss1, ... Xi)
S(X, ..., Xp)

] A (X27L—1’ cevy X2n~(nfk))
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(in the usual notation of topology). Letting m=nk—k? F[X]=F[X]=P(z, ..., 2,) =
rational homogeneous functions in m-variables. There are }r® parameters varying the
homogeneous structure on X. If r=2, there are (n—1)® parameters of non-homoge-
neous deformation; if r>2, there are still (n —1)? such parameters, there being (1 r—1)

(n—1)? obstructed parameters in this case.

(ii) An Example Concerning the Semi-Simplicity of Certain Representations

Let X=G/U be a non-Kahler C-space; X =G/U the associated Kahler C-space
with fundamental fibering 7% — X —~X. Theorem 4 in §5 stated the following:
Let o: U— GL(E® be an abelian representation of U which does not extend to U ;
then if p|unp is semi-simple, H*(X, £2)=0. We now show by an example why the
restriction of semi-simplicity was in fact necessary; in fact, this example is in some
sense indicative of the only alternative to semi-simplicity. For simplicity we assume
that U (and hence U) is solvable. We write u=no® ) ®p;ii=nefhepepasin§]l,
and we choose any A€)p’ such that <A, 0> =0. Then, for £€unh, we define a re-
presentation

0 <,
o:unh—gl(2,C) by 01(§)=(0 < 0£>)'

Clearly g, extends to all of u and we assume that g1 is covered by a representation

. 1 <4,
01:U—GL(2,C) (g1 (exp &) = (0 < 15>).

Then g; does not in general extend to U. To compute H*(X, £%), we let @; be the
(0,1) form in H*'(X, €) corresponding to A and observe that we have the exact se-

quence of homogeneous vector bundles:

0—-1—-E%—1-0. (14.2)
In the exact cohomology sequence

q+1

5 8
e HYX, Q) S HYX,Q)— HY(X, £4) — HY(X, Q) S H* (X, Q) — ...
the coboundary maps §, are given as follows: for

7-] qu—l(X’ Q): 6(1(77):(1_)1/\ ﬁ EHQ(X’ Q)
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(see Lemma 12.2 or also [12]). By the same calculation as in Proposition 12.2, it

follows that HY(X, £%) is a trivial M-module of dimension (Z)

(iii) Line Bundles over P, (C)

Let V be a vector space and W<V a subspace of codimension 1. Letting
@=GL(V), U= subgroup of G preserving W, and writing E=W/V, we have the

exact sequence of U-modules

0O—>W—>V—>E—0. (14.3)

The C-space G/U is a projective space P, (r+1=dim¢ V) and E — E — P, is the line
bundle of a hyperplane section. If (¢, ...,t ;) are homogeneous coordinates in P;, the
sets U,={(t,, ..., ,+1) :; %0} give the usual affine covering of P, with non-homogeneous
coordinates w{=1t,/t; (x+1) in U, The bundle E has transition functions s;;= (f;/t;) in

U;nU, If U is written as a set of matrices

0 Upire Uritria

then E is given by the representation A(u)=w,,. More generally, the bundle E, with
transition functions (¢/f)" is given by A"(u)=wuj. From theorem B and the above

discussion on Young symmetrizers, it follows that

HY(P,, E)=0 ¢>0 (n>0), dim H°(P,, g").:(”:i"l)
and in fact H°(P,, E") is the irreducible G-module of symmetric tensors of rank =.
One may easily compute all the G-modules H?P,, £") using these results and the
duality theorem; observe that for the canonical bundle

K=—-(¢+1)E.

(iv) A New Type of Obstruction

If L is a locally free coherent sheaf of Lie algebras over a compact complex
manifold Y, then H*(Y, L) has the structure of a graded Lie algebra. For certain L,
the non-triviality of the mapping {,}:H (Y, L)® H(Y,L)—> H*(Y, L) gives rise to
obstructions to varying the structure of something analytic on Y (see §§ 9, 10, 14 (v)).
15— 632933 Acta mathematica 110. Imprimé le 5 décembre 1963.
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In all cases which we have encountered, and indeed in all examples known to the
author, the obstructed elements which have arisen lie in the image of H* (Y, L)® H'(Y, Q)
in H'(Y,L) (under the pairing L®Q->L. A general reason for such obstructions
was discussed in § 9; roughly speaking, they were of an “ad-hoc” nature. We now
give an example of an obstruction which arises in an entirely different manner—this
obstruction might be termed ‘“‘a priori”.

We consider a complex l-torus 7'=7?% and bundles over T with group N-matri-
ces of the form {(((l) Ic))}, if E—~E—T is a vector bundle with group N, then we
have an exact sequence

(8) 0->A—-E—~C~—0, (14.6)

" where A, C are line bundles. The bundle E is homogeneous < A, C are also (§ 13).
Furthermore, if E is homogeneous, then in order that (14.6) not be splittable, it is
necessary that A=C (§ 13). The obstruction we seek will arise when we try to deform
1®1 into a bundle E of the above form which is not decomposable and is such
that A=C.

To be more precise, we consider V=1 @ 1 as having structure group N and construct
its principal bundle N— P—>T. As usual, we have associated to P the Atiyah
sequence

0>L~>Q—>T(T)—>0 (L=L(P), Q=Q(P));

we must examine H(T, L).

LEMMa 143. L=191¢(Hom(1,1))x101s1.
Proof. The proof is easy; see § 11 (iv).

An element in HY(T, L) is of the form (g ;,) where 7,%’, 7 € HY(T, Q).
ProrosiTioN 14.2.
G2 GG oJeran
0o 7)) \0 7% 00 ’
where o=(n—n)At€H T, Q).

Proof. The proposition is quickly proven by a straightforward calculation in local
coordinates using the definition of {} given in §9 (ii) ((9.7)).
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CoroLLARY. If 70, (77 ;,) € HY(T, L) is unobstructed < n=mn'.

0

Y

T,) means the
0 7

following: each of 5 and %’ gives rise to a line bundle E, or E, on the Picard variety
D(T); to have p+%' implies that E,+E,. To say that 7==0 means that we are to
have a non-split extension of E, by E, which is possible < =17, whence the ob-

struction to deformation.
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