
SOLUTION IN BANACH ALGEBRAS OF DIFFERENTIAL 

EQUATIONS WITH IRREGULAR SINGULAR POINT 

BY 

J. B. MILLER 

Australian National University, Canberra, Australia 

1. Introduction 

We have to do with linear first-order differential equations W ' ( z ) = F ( z ) W ( z ) ,  

where z is a complex variable, and F and W are functions taking values in an ar- 

b i t rary  non-commutat ive Banach algebra 91 with identi ty E. In  [4], E. Hille has dis- 

cussed the existence and nature of analytic solutions when F is holomorphic, near a 

regular point of F, and near a regular singular point, and has indicated how the 

theory will go when the equation has an irregular singular point at  infinity of rank 1. 

The methods are adapted from the classical theory in which 91 is the complex field ~. 

The present paper  adds to the discussion with an investigation, for the cases 

p~> 1, of the equation 

d 
z dz W(z) = (zPPo + z p-1 P1 + . . .  + z Pv-1 + Pv) W(z), (1.1) 

a general form of first-order differential equation having an irregular singular point 

of rank p a t  infinity. Here P0, P1 . . . . .  Pv are given elements of 91, and an analytic 

and algebraically regular solution W is sought which takes its values W(z) in 91. 

The analogous equation in which W(z) is a column matr ix  and the P ' s  are square 

matrices, over ~, was discussed in detail by  G. D. Birkhoff in [1]. He assumed P0 

to be a matr ix  with distinct characteristic roots, and found solutions by  writing W(z) 

as a sum of Laplace integrals in the manner of Poineard, using these to obtain 

asymptotic  expansions for the solutions, valid for z tending to infinity in appropriate 

sectors of the plane, determined by  the characteristic roots of P0. The same proce- 

dure is adopted here, under an analogous though lighter restriction on P0: we find 

a solution W(z) valid when z lies in appropriate sectors, corresponding to a pole 

of R(X, P0), the resolvent of P0, whose residue idempotent  has the proper ty  of being 
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minimal. No assumptions  are made upon  the nature  of the spectral set of P0 com- 

p lementary  to u, except  t h a t  it shall no t  intervene too awkwardly  between u and  c~. 

We also find an  asympto t i c  expansion for the solution. The discussion leans heavi ly 

on the papers of Birkhoff  and  Hille. (For completeness, however,  sufficient of this 

background material  is included here for this paper  to be read wi thout  prior acquaint-  

ance with these two.) A crucial pa r t  of the a rgument  concerns the resolvent of a 

p • p mat r ix  C whose elements are in 9/: by  a detailed analysis we are able to  specify 

the spectrum and  the resolvent of C precisely, and thereby clarify some points  which 

are obscure or incompletely covered in Birkhoff 's  paper. On the  other  hand,  we do 

no t  examine here the quest ion of the algebraic regular i ty of the solution W(z), or the 

number  of solutions. 

The paper describes work done at Yale University and at the Mathematical Institute, 
Oxford. I am greatly indebted to Professor Hille, who suggested this investigation, and 
who in lectures and conversations introduced me to this subject and its literature. I t  
is a great pleasure to thank him for his help. I must also thank Professor G. Temple 

for his interest and encouragement. The work was supported in part  by the United States 

Army Research Office (Durham) under grant number DA ARO (D) 31-124-G 179, and by 
the United States Educational Foundation in Australia, under the Fulbright Act. 

2. Reduction of the differential equation 

We use capital  R o m a n  letters for  the elements of 9~. The norm is wri t ten I1" II. 

Terms such as 'der ivat ive '  and 'holomorphie '  for functions on ~ to  9~ have the 

meanings given in [5], Chapter  I I I ,  w 2; contour  integrals are defined as Riemann-  

Stieltjes limits (see [5], Sections 3.3, 3.11). A prime usually denotes differentiation. 

As a superfix, T denotes matr ix  transposition. 

We observe first t h a t  the subst i tut ion in (1.1) of 

W(z)= r(z) exp(~ z~+ p--lgl ZP-1 _~ .., _~ ~p_l Z) Z~p (2.1) 

(g0, :r . . . . .  ~ being cons tant  scalars) leads to the equivalent  equat ion 

z Y' (z) = {z p (P0 - ~0 E) + z~ I(p1 - ~1 E) + ' "  + (Pv - o~E)} Y(z).  (2.2) 

The verification is immediate.  The observat ion is in general false if the ~'s are non- 

scalars in ~,  because the algebra is non-commutat ive .  The t ransformat ion  was used 

by  Birkhoff. 
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Given (1.1), we shall assume t h a t  a pre l iminary  t r ans fo rmat ion  (2.1) has been  

made,  wi th  scalars which will be de te rmined  present ly,  and  we write 

/sj = P s -  ~jE (?" = 0, 1 . . . . .  p).  (2.3) 

We a t t e m p t  to solve (2.2) b y  Poincar4 's  me thod  as extended b y  Birkhoff;  t h a t  is, 

we suppose t h a t  there  exists a solution 

Y(Z) = fc •szp (Zy-1 V1 (8) + ~ -2 V2 (8) -]- . . .  -~- z Vp -1 (8) + Vp (8)) ds (2.4) 

in the  fo rm of a sum of Laplace  integrals,  for  an appropr ia te  choice of the  contour  

c in the  s-plane and  funct ions V1, V 2 . . . . .  Vp tak ing  values in 9/. I n  this and  the  

following three  sections we consider the  de te rmina t ion  of the  V's, and  we re tu rn  to  

the  choice of the  contour  c in w 6. 

Fo rma l  subst i tu t ion of (2.4) in (2.2) followed b y  a r ea r rangement  of t e rms  gives 

k-1  
( p s E - P o ) V k ( 8 ) -  ~ PjVk_j(8) (1-<<k~<p), 

P where Uk (8) = l (2p  _ k) Vk-v (8) 1=1 (2.6) 
PjVk_j(8) (p+  l <~k<.2p). 

]=k-p 

Write  the  sum in (2.5) in the  fo rm 

2p 2P p 
2 z~'-~v~ = 2 ~2"-~u~ +~" 5 z'-~v~=sl +~'s2, (2v) 
k=l k=p+l k=l 

and in tegra te  b y  pa r t s  in (2.5), using 

d 
d-s (esz~) = z" e~z~. 

We get  es~VSld8 + [S~e~V]r es~p -~s $2 d8 = O. (2.8) 

I n  order  t h a t  (2.4) sat isfy (2.2), i t  suffices then  to choose the  V% so as to  sat isfy 

8=! t d8 $2 

identical ly in z, i.e. to  sat isfy 
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d U~ 
Vk+r = ~ - s  (k = l, 2 . . . . .  p), (2.9) 

and to choose the contour so tha t  the sum of the integrated terms in (2.8)vanishes 

and the integrals converge. Thus we are led, by  the substitution of (2.6) in (2.9), 

to the system of equations 
(A - p s E )  v' (s) = B v  (s), (2.10) 

where v(s) is the column matrix (Vl(S), V2(s ) . . . . .  Vp(s)) T, A and B are the triangular 

matrices 

�9 2 E + P p  Pv-1 �9 

A =  , B =  P~-2 , 

P p + l  

Pv 1 -P~ -Po p E  + P~ 

(2.11) 

and E is the identi ty matrix.  Write R(),, A ) =  ( X E - , 4 )  -1, the resolvent matr ix  of A; 

(2.10) is 
v' (s) = - R(ps ,  A)  By ( s ) .  (2.12) 

Let  !~ ,  =-~v(9/), denote the Banach space of vectors composed of p components 

belonging to ~, with ~ for scalar field, and norm 

Iv l=  II viii + II v ll + ... + 11 (2.13) 

I f  ~ has finite dimension n, the dimension of ~v  is np; if ~ is infinite-dimensional, 

so is ~p. To find a solution v of (2.12), we consider the analogous equation 

V'(s) = -- R(ps ,  A)  BV(s )  (2.14) 

in ~J~v, _=~(9~),  the algebra of p • p matrices with elements in ~. As norm for ~ p  

we may  take the maximum of row sums: if X E ~ p  and the (i, ? ')element of X is X~j, 

]9 
IXl=m x Y IIx.ll. (2.15) 

1=1 

~ v  is then a Banach algebra over ~, with ~/ as a left and right operator domain. 

I f  V is a solution of (2.14), each of its columns is separately a solution of (2.12); 

conversely, any  p solutions v I . . . . .  vp of (2.12) can be put  together to form a solu- 

tion V of (2.14). I f  the v 's  are linearly independent over ~, it is not necessarily true 

tha t  V is regular in ~ v :  for example, the idempotent matrix J ((3.8), below) satisfies 
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J ( E - J )  = O and is therefore singular, bu t  it is a t r iangular  matrix,  and its columns 

are therefore linearly independent.  However,  it is t rue t h a t  if F is regular, its columns 

are l inearly independent.  For  suppose t h a t  21 v 1 + ... + 2v v p =  a is a non-trivial  linear 

relation a m o n g  its columns. Then  if A is the matr ix  each of whose columns is 

(21E . . . . .  2pE)r,  ' we have VA = O, and  V is singular. 

A regular solution of (2.14) therefore provides p linearly independent  solutions 

of (2.12), while any  non-zero solution of (2.14) provides a t  least one non-zero solu- 

t ion of (2.12). We therefore consider equat ion (2.14). I t s  solutions depend upon the 

singularities of R(ps, A) B. 

I n  the following discussion we assume p > 1. The case p = 1 is tr ivially excep- 

tional, and  m a y  be dealt  with similarly. 

3. The resolvent of A 

To find R(2, A) explicitly, assume it to  be a lower tr iangular  matr ix  X, and  

equate corresponding elements in the ident i ty  X ( 2 E - A ) = E .  The elements of X are 

easily determined rccursivcly, and the mat r ix  is found to be a two-sided inverse. I n  

this wa y  we obtain 

S 1 R 

R(2, A ) =  S 2 S 1 R , (3.1) 

sl R/ 
where R=R(2 ,  Po)=(XE-Po)  -1, the resolvent of Po in 9/, 

S 1 = RP1R , 

S 2 = RF~R + RPxRPxR, 

and generally Sr = ~ RF~, RF~, R . . .  RP~ h R, (3.2) 
(r) 

where '(r) '  beneath  the summat ion  sign m e a n s  tha t  the sum is taken  over all ordered 

part i t ions (il, i2 . . . . .  ih) of r:  

i l+ i~+ . . .+ i h= r ,  i l > ~ l , i ~ > l , . . . , i a > ~ l .  

These formulae show tha t  the singularities of R(ps, A) occur precisely at  the sin- 

gularities of R(ps, P0). I n  general, a simple pole of the lat ter  will produce a pole of 

the p t h  order in the former. 
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Let ~ be an isolated point of Sp (Po), the spectrum of P0, and a the comple- 

ment of ~ in Sp (Po), assumed non-empty. Now Sp (Po)= Sp (P0) -  ~0. Choose 

% = u; (3 .3)  

then (1) if F is an oriented envelope of 0, e.g. a sufficiently small circle about 0 

containing no other points of the spectrum, the integral 

J = J~ -- ~ R(2, Po) d2 (3.4) 

defines a proper idempotent J in 9~ : J~ = J ,  J 4 E, O; J commutes with P0- The func- 

tions J.R(]t, Po) and (E-J )R(] t ,  Po) have holomorphie extensions in the complements 

of {0} and a - n  respectively; and for I)11>0, 

Assume tha t  J P o = x J .  

JR(~t, P o ) = ~ +  ~ (JPo)n 
n ~ l  ~ n + l  " 

Then 

(3.5) 

J 
R(]t, Po) = J R  (]t, Po) + ( E -  J) R (It, Po) = ~ + H (~), (3.6) 

where H( )  0 is holomorphic away from a - z :  that  is, R(]t, P0) has a simple pole at  

the origin with residue J ,  and the spectrum of A consists of a pole at the origin 

of order ~ p ,  together with a - x .  

In the rest of the paper the discussion refers to a fixed simple pole ~, and the 

suffix in J~ and other dependent expressions will be omitted. The only assumption 

made upon a is that  implied in the existence of the sector ~, in w 6 below. If  there 

are several such poles, each gives rise to solutions of (I.1) valid for z in appropriate 

sectors. We do not a t tempt  to discuss solutions which may be determined by more 

complicated singularities. 

The same spectral resolution can be applied to A in the algebra ~p .  Thus the 

integral 

J =  J,,= x ~-1-. I -R(] t ,A)d ,~= residue of R (,~, A) at O, (3.7) zyg~ J r  

defines a lower triangular idempotent matrix 

(1) [5], Section 5.6. 
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J 

$ =  K 2 . K1 J 

Kp_, K2 K~" J / 

and clearly, for r = 1, 2 . . . . .  p - 1, 

215 

(3.8) 

K r = ~ i  Srd~=residue of S~ at 0. (3.9) 

I t  will be convenient on occasions to write So= R, K0= J .  

LEMMA 1. Let the residue idempotent J at the simple pole 0 o/ R(2, P0) be mini- 

mal, that is, let Jg~J be a division algebra isomorphic with the complex /ield.(1) Then 

by successive choice o/ ~1, ~2 . . . . .  ~p-1 we can ensure that R(~, A) has a simple pole at 

the origin. 

The proof is by induction on the diagonals of R. The leading-diagonal elements 

R have simple poles already. Again, 

�9 - ~2 ~ -  + . . . .  

Since, by assumption, to every A E 9~ there corresponds a scalar a such that  J A J  = a J,  

we can define numbers z0, gl, . . . , ~  by 

J P j J = g j J  (? '=0,1 . . . . .  p). (3.10) 

Choose ~1 = z~l. (3.11 ) 

Then J F 1 J = ( z q - ~ l ) J = O  , and S 1 has at  most a simple pole at  ~ = 0 .  

Assume that  for some r less than p -  1, the poles at  0 of R, S 1, ..., Sr have, by 

choice of ~1 , . . : ,~ ,  been reduced to orders ~<1; we show that  we can do the same 

for S~+1 by choosing ~+1 appropriately. Now 

2~+1 = ~ RP~,R. . .  RP~hR 
( r+  1) 

= RPlS~ + RP2S~-I +. . .  + RF~S 1 + RPr+IR 

) 

[i [i '~ Gr+l § Kr+l .... 

(~) [7], p. 45. 
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I t  will be sufficient therefore if ~t+l  is chosen so tha t  the expression 

Gr+l = J P I K r  + Ji~2Kr-1 + ... + JP~K1 + JP~+IJ (3.12) 

is zero. To show tha t  this choice is possible, we use the set of identities 

K t J + K t _ I K I + . . . + K 1 K t _ I + J K t = K  t ( t = 0 , 1 , 2  . . . . .  p - l )  (3.13) 

(obtained by  comparing corresponding elements in the ident i ty  j 2 =  jr). We have 

Gr+l = JR1+1 5 Kr_j , K , =  J K~. (3.14) 
i=0 |=0 i •0 

Let  the numbers  0j+l (?'= 1, 2 . . . . .  p -  1) be those defined under  the basic assumption by  

J (PIKj + P2Kj_~ + . . .  + Pj_~K 2 + PjK~)J  = Oj+lJ. (3.15) 

Then (3.14) becomes 

Gr+l  = 0 r + l J  § G r K  1 § G r - I K  2 § . . .  § G2Kr-1 § G I K r  § J ( P r + l  - ~r+l E) J .  

The inductive hypothesis  implies t ha t  G 1 = G 2 = ... = G~ = 0,  so Gr+l = (0~+1 + ~r~+l - ~ + l ) J ,  

and choice of ~+1 so tha t  Gr+l = 0 is therefore possible. Then  S~+1 has at  most  a 

simple pole at  2 =  0; the result follows by  induction. The a ' s  are determined by  

~ j=z r j+  0j ( j =  1, 2 . . . . .  p - l ) .  (3.16) 

More specifically, we define 01=0 ,  and  then determine ~1, 02, ~2, 03 . . . . .  :r succes- 

sively by  using (3.16) and (3.15) alternately,  so tha t  G I = . . .  = Gp-l= O. 

I t  is clear t h a t  the minimal i ty  of J is crucial to  the proof of the lemma. Nex t  

we show that ,  with this restriction, the simple pole is the only case to  be considered. 

LEM~A 2. I /  the residue idempotent J o/ Po is minimal, R(~, Po) has at most a 

simple pole at the origin. 

Proo/. By the properties of J ,  

J (Po - ~E) = J 2 ( P  0 - ~E) = J (Po - ~E)J  = (zr o - ~)J. (3.17) 

I f  ~r0= u, then we have (3.6), and 0 is a simple pole. Suppose ~r0=#x. F rom (3.5) 

we get  
1 

JR(~,  Po) ]~_~o + ~J ,  

and  (3.6) shows tha t  the singulari ty of R(~,_Po) at  0 is in fact  removable.  
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Henceforth we assume tha t  R(2, P0) has a simple pole at  2 = 0  with minimal 

residue idempotent  there, and tha t  the :o's have been chosen so tha t  R(2, A) has a 

simple pole at  2 = 0 .  We remark tha t  in general another simple pole 2 = #  of R(2, P0) 

would determine a different choice of the a's. 

Equation (2.14) now has a regular singularity at  s = 0 ,  and can be written 

sV' (s) = - sR(ps, A)BV(s)  = V (s), (3.18) 

with C= C o= - p  I jB .  (3.19) 

We can suppose tha t  the series converges in norm for I sl ~<Q, for some ~ >0.  

4. Solution of (3.18) 

Define(1) the commutator ~A of an element A of ~)~ to be the bounded linear 

transformation of ~(~)~p) given by  

~ a [ X ] = A X -  XA (X e~i~). (4.1) 

The solving of (3.18) proceeds as follows. I f  we a t tempt  to make a trial solution by  

expressing V(s) as a power series in s, three distinct cases present themselves. 

Case A. No positive integer belongs to Sp(~c).  In  this case the formal substitu- 

tion of 

V(s) = ~ Arts c+nE, A o = E (4.2) 
n = 0  

in (3.18) leads to a set of equations 

(n ~ - -  ~c)  [An] -  CkAn_k (n=  1, 2 . . . .  ), (4.3) 
k-1  

from which the coefficients An can be determined successively, and with these values, 

the series in (4.2) converges absolutely for 0 <  I s l < ~  and is an actual solution of 

(3.18), [undamental in the sense tha t  V(s) has an inverse in ~ p  when s is in the 

punctured disc. 

Case B. Some positive integers belong to Sp (~r but they are all poles o/ the re- 

solvent operator ~(2, ~c). In  this case we make a formal substitution of the form 

(1) F o r  expl ica t ion  of t he  following r emarks ,  see t he  d i scuss ion  in Hil le [4], of wh ich  t h e y  are  

a n  a b r i d g e m e n t .  W e  deno te  e l emen t s  of ~(~rJ~p), t h e  a lgebra  of b o u n d e d  l inear  t r a n s f o r m a t i o n s  on  

~ ,  b y  F r a k t u r  capi ta l  le t ters ,  wr i t i ng  ~ for t he  iden t i ty  opera tor .  
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IV(s, 7) = ~ An (~7) s c+<n+n)E, A 0 (z/) = r/NE (4.4) 
n = 0  

for V(s), where ~ is a small scalar parameter,  and h r is the sum of the orders of the 

poles of ~(2,  ~c)  which occur a t  the positive integers. This leads to equations like 

(4.3), from which the coefficients can be determined successively, and limn..,oIV(s,~) 

is then a solution of (3.18) for 0 <  Is ]<~,  which may,  however, be identically zero. 

To obtain a fundamental  non-zero solution it may  be necessary to form 

~ v  
lim ~ IV(s, ~); 
n-~o ~r/ 

this fundamental  solution in general contains logarithmic terms, up to (log s) N. 

Case C. Sp (~c) contains positive integers which are not poles of ~(2,  ~c).  This 

ease appears to be somewhat intractible. 

I t  is clear from these results tha t  the nature of Sp (~c) must  be clarified before 

we a t tempt  to solve (3.18). Here we are helped by  the following result. 

LEMMA 3. (1) 

(ii) Suppose that 9', belonging to Sp (~c), can be written as the di][erence o] poles 

~,  fl~ o] R(2, C) (say o] orders i~t, v~ respectively) in only a [inite number o[ ways. Then 

is a pole of ~ ( 2 , ~ c ) ,  of order < m a x t ( / x ~ + v ~ - l ) .  

We show in the next  section tha t  the only singularities of R(2, C) are simple 

poles at  0, _ p - l ,  _ 2 p - 1  . . . . .  - 1 .  I t  then follows from Lemma 3 tha t  1 is the only 

positive integer which could be in Sp (~c) and tha t  it would then occur as a simple 

pole. This confines the discussion to Cases A and B, with the necessity of a t  most 

one differentiation in the lat ter  case, and thus represents a considerable simplification. 

5. Spectmlm and resolvent of  C 

Write H = J B J  = - pCJ .  

Then, since J is idempotent,  we have 

-pC2= HC, H 2= - p C H .  

(5.1) 

(5.2) 

(I) Foguel [3]; quoted in [4]. 
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LEMBIA 4. Sp (C)=  - p - ~  Sp (H). 

Proo/. By using (5.1) we can easily verify the identities 

p22 (hE-  C) = (p2E-  H - p C )  (p]tE + H), 
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(5.3) 

(5.4) 

matr ix  got by enlarging A, using the new P 's :  

A*= Pl P0 

This has a resolvent R*(~, A*) of the same form as (3.1), with elements ST defined 

by (3.2) for r = l , 2  . . . . .  2 p - l ,  those for r = l , 2  . . . . .  p - 1  being the same as before. 

The residue idempotent  $* has the same form as (3.8), K~ . . . . .  K2p-1 being the re- 

sidues of Sv, . . . ,S2v-~,  sn that  (3.9) holds for r = 0 , 1  . . . . .  2 p - 1 ,  and (3.13) for 

t =  0, 1 . . . . .  2 p -  1. But  S; . . . . .  S ~ - 1  do not necessarily have simple poles at  the origin, 

so we use the process in the proof of Lemma 1 to reduce their poles to orders ~ 1 

by choosing zcp . . . . .  :r appropriately. That  is, we define GT+I for r = 0 ,  1, 2 . . . .  , 2 p - - 2  

by (3.12), and 0j+l for 1"= 1,2 . . . .  , 2 p - 1  by (3.15), and define the a ' s  by 

(p]~E + H + pC) (hE - C) = ~.(p~E + H), 

p]tg + H + pC_  [p]~E- H - p C ~  1 
(5.5) p~ ~ p~ / �9 

Suppose ~ 4 0 .  I f  - I ~ r  (H), the right-hand side of (5.3)is a regular element 

of ~ and so ~ r Sp (C). Conversely if ~ ~ Sp (C), (5.4) and (5.5) show tha t  - p~ r Sp (H). 

Thus the lemma is established, except for the role of the point 2 = 0 .  

Again, (5.2) can be written 

(H+pC) C=O, (H + pC )H = O .  (5.6) 

I f  H + p C =  O, then (p)~E + H) -1 = p - 1  ()~E- C) -I, and the lemma foltows immediately. 

I f  H + p C 4  O, then C and H are singular elements, so tha t  0 belongs to the spectrum 

of both. The lemma now follows in this case also. 

We get at  the spectrum of C through H, which is a more amenable matrix. To 

do this, it is convenient for the purposes of exposition to introduce new elements 

ep+l,  Pp+2 . . . . .  e2p-1 in ~ which we take to be of the form 

- P P + I  = - -  :r J ,  P,+2 = - ap+sJ  . . . . .  P2p-1 = - -  6 s  J ;  

the scalars av+l, av+2,.-.,~2v-1 are to be fixed presently. Let  A* be the 2p  • 2p  
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a p = ~ p + 0 p ,  a j = 0 j  ( j = p + l  . . . . .  2 p - l ) .  (5.7) 

That  is, having previously found ~ ,  02, ~ ,  0 a . . . . .  ~p-1 in succession, we continue in 

the same way to find 0v, av, 0p+l, ~p+l . . . . .  :<2v-1, using (5.7) in place of (3.16), so tha t  

Gs=O ( j=  1, 2, .. . ,  2 p -  1). (5.8) 

R* (4, A*) now has a simple pole a t  ~ =  0. 

We shall need 

LEMMA 5. For r, t = 0 ,  1, . . . , 2 p - 2 ,  

Kt+l (Pi  Kr +P2 Kr- i  -4-... +.Pr KI  § 

= (KtP1 + Kt-lP2 +... + KlPt + JPt+l) Kr+l. (5.9) 

Proo/. From the definition (3.2) of the S's we have, for j =  1, 2 . . . . .  2 p - 2 ,  

Ss+I=SjP1R + Sj_lP~R + ... + SI_Pj R + RPj+I R 

= R.Pl  Si + RP~ Sj_I +... + RPs S 1 + R_Pr R. 

Therefore 

St+l (P1 Sr+P~ S~-1+ ... +-Pr SI +P,+IJ) 

=(S tPIR+St_ lP~R+. . .+S ,  PtR+RPt+IR)(PlSr+. . .+Pr+IJ)  

= (St P l  + St-1P2 + - - .  + S1Pt + RPt+I)  Sr+l. (5.10) 

In  the first and last expressions in these equations write each Sj as its power series 

K j 4 - 1 + . . .  in 4, and equate coefficients of 4-2: (5.9) follows. 

We are now in a position to evaluate the matr ix  product H =  JBJ. Write 

B=P+F~E, P =  PP "Pp-1  ' ~'-~= 2 . (5.11) 

P, 

The product  J ~ J  is a lower triangular matrix; we show tha t  JPJ is also, with zeros 

in the leading diagonal, and hence tha t  H is lower triangular. The (i,)') element of 

JPJ is 
(JPJ)~.s = (ith row of J)  P (?'th column of J)  

p / (min ) 
= K~_~Pp_j_r+/3 K r. (5.12) 

F=0 \ /3=1 
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Consider the i th row. Suppose j>~i: the inside sum runs from 1 to i, and the 

double sum 
t /~ - j+ /~ - I  p-J+/~-I \ 

:fl~--1K'-[~i ~--o PP-J+fl-~KF- F-p ~:-j+l Pp-J+[~-F K 

The second inside sum is void when fl = 1. Thus 

~-1 p - j + ~ - i  p - / + ~ - i  t p - j + f l - 1  

(JPJ)~.~=~K~_~ Y. P~_~+~_yKr+J ~ P~,_~+~_yKv-~g,_ ~ ~ P~,_~+~_vKv. 
fl=l 7=0 ?=0 ~=S F=p-./+I 

The second term on the right is G~_~+~, by  (3.12), while to the first we can apply 

Lemma 5. Thus the (i, j) element of JPJ equals 

fl=l 8 ~=2 y = p - j + l  

The two double sums cancel each other, and Gr_j+~ = O. Thus (JPJ)~.j= 0 for j~>i. 

Suppose j <  i. Then we write 

~-]--1 J+~ p - j  i 

(JP$).,= 2 2 +  2 Z=5~+Z~, 
v=o fl=l y=i-i fl=i 

say. 

Now ~ ' = ~  ~ - ' [  ~=~o - v:o - P,_j+,_~Kv=T1-T~-Ta,  say. 

Here we deal with the first  double sum by  using Lemma 5 and (3.12) as before: T 1 

equals G~_j+, plus a double sum which cancels with T 3. Thus T 1 -  T a =  O, and 

(3P3)~.j= Y l -  T~ 
i-i-1 [j+~, i \ 

F=0 ~ ~ 1 - - ~ 1 )  Ki-flpp-j+fl-~K" 

i -1-1 i - j -~,  

= -  Z Z K,-J-v-~P,+~K~, ( f l = j + ~ + ~ )  

= 2 ~,+e 2 K,K*-J-~-,r 
~=1 ~=0 

From (5.7) and (3.13) we deduce: 

t - ]  
(JPJ)~.j = 0 (j >>- i), ~10~+~ Ki_j_~ 

1 6 -  632933 Ac~a mathemat~ca. 110. Imprim6 le 6 ddeembre 1963. 

( i< i). (5.13) 
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0 ( Write  0 = 0p+2 . 0~+1 0 , (I) = 0 + g2. (5.14) 

0 2 p - 1 0 p + 2  Op+l 0 ! 

I t  can be verified by  direct  evaluat ion t h a t  

JPJ= JOJ, (5.15) 
so that ,  by  (5.11), 

H =  J B J =  J(O + ~ ) J  = J~PJ. (5.16) 
The (i, j) element of H is 

~-t f-j 
H~.j= ~lO~+~Kt_i_~=}Kt_j+ ~ f lKi_j_,K,  (i>~j; e m p t y  sums are zero). (5.17) 

LEMMA 6. { 1 2 } 
Sp (c)__ 0, p p 

The singularities at _p-1 . . . . .  - 1  are simple poles at nwst, and 0 is a pole o/ order 

exactly 1. (1) 

Proo/. H is now known to  be a lower t r iangular  matrix,  and its leading diago- 

nal  is (J, 2 J ,  3 J  . . . . .  p J). The resolvant  R (2, H)  can be formulated  by  the  method  

used to derive (3.1), a l though in this case the formula  is more complicated since ele- 

ments  of a given diagonal are no t  necessarily equal. Let  Lm=R(2, mJ); we find 

while for r > s, 
[R (2, H)]r.r - Lr, 

[R (2, H)]r.s = ~. Lr Hr, ,, L ,  H~,.,, L~, H,,. ~.... H~_I. s L,, 
(r, s) 

(5.18) 

where '(r, s)' beneath  the  summat ion  sign means tha t  the sum is taken  over all ordered 

sets (il, i 2 . . . . .  / l-i) of integers for which 

r >i~ >i2 > . . .  >iz-1 >s .  

Since J is a proper  idempotent ,  

E - J  J 
Lm=R(2, m g ) = - - ~ - + ~  m (m~:0),  (5.19) 

(1) The lemma can be strengthened: see the last paragraph of this section. 
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and the spectrum of mJ  consists of simple poles at 0 and m. I t  follows from (5.18) 

tha t  Sp(H) consists of simple poles (at most) at 2 = 1 , 2  . . . . .  p, together with a pole 

of order ~ p  at 2 = 0 .  

Now by (5.4) and (5.5), 

(~, C )  = - -  ~ - 1  ~ ( _ p ~ ,  H ) ( p ~  E § H §  pC). (5.20) 

From this the lemma follows, except for the order of the pole at 0. I t  remains to 

show that  this is exactly 1. We do this by first obtaining the Laurent  series for 

R(+~, H) about the origin. We state and prove two lemmas on the way. 

Lv.MMA 7. Let A be a lower triangular scalar matrix, o~ order p. Then there exists 

a unique matrix Z, o/the same kind, such that 

J A J Z J =  J-~ JZJAJ,  (5.21) 

i/, and only i/, none o/ the elements in the leading diagonal o] A vanishes. 

Proo/. Write M =  J A ] Z J ,  N =  AJZJ,  and let 5~.j ~.j, M~.j and /Vi. j denote the 

(i, j) elements of A, Z, M and N respectively. We assume $i.j = 0 for i <  j, and de- 

termine the diagonals of Z inductively, starting with the leading one. For the k th 

subdiagonal, 0 ~< ]c ~<p - s, s = 1, 2; .... p, 

s+k 
M~+~,~ = ~ Ks+~_~N . . . .  (5.22) 

I t  can be verified that  Ms+~.s contains only those elements of Z which are in the 

leading diagonal and k subsequent diagonals. For  M =  J it is necessary that  r ~j.j = 1 

( j=  1, 2 . . . . .  p). Suppose, for j=O, 1 . . . . .  k -  1, tha t  Cs+j.s (s= 1, 2 . . . . .  p - j )  have been 

chosen so that  
s+] 

Ms+j.s = ~. K~+j_:N:.:=Kj ( j = 0 , 1  . . . . .  k - l ) .  (5.23) 
~ - - 8  

Then, for s = l , 2  . . . . .  p - k ,  

s+k s+k-~  
M:+k.:= ~ ~ K~K:+k_:_gN:.: (by (3.13)) 

k s+k-fl  k 
= ~ K ~  ~ Ks+~ ~_~N~.s=JM~+k.~+ ~.K~Kk_~, 

fl~O ~=s fl=l 

i.e. Ms+k. s = JMs+k. ~ § K~ - JKk .  (5.24} 
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Similarly, by using instead the factorization M =  J A J Z .  J, we find 

M~+k. ~ = M~+~. ~ J + Kk -- Kk J .  (5.25) 

Premultiply (5.25) by J and add to (5.24); we get 

M:+k.: = K~ + JM:+k.: J - J K k J .  (5.26) 

The only element from the kth subdiagonal of Z which occurs in JM~+k.sJ is $~+~.~, 

and its coefficient there is ~s+~,~+kJ. Thus (5.26) shows that,  by the minimal pro- 

perty of J and under the proviso in the statement of the lemma, we can choose 

$~+~.~ so tha t  M~4k.~=Kk. I t  is easily seen that  M~.~=J, M~+I.s=K1; the first equa- 

tion of (5.21) follows by induction. I t  is clear the Z is determined uniquely. 

Similarly, there is a unique matrix Z' for which J Z ' J A J = J .  I t  follows that  

J Z ' J =  JZJ ,  and so Z '=  Z. The lemma is proved. 

The lemma is clearly a statement about a subset of regular elements in the alge- 

bra J~)~J.  We shall write Z = A  ~ and call this matrix thereciprocal of A. With 

this notation, we now establish the Laurent  series for R(4, H) about the origin. 

LEMMA 8. R(4, H) has a simple pole at ~=0,  and/or  0 <  N<,=nmn  lFl-1% 

E -  J F -  2 F  z -  42F 3 - . . . ,  (5.27) R (2, H) 

where F = J O ~  ~o being the reciprocal o/ ~ = 0 + ~.  

Proo/. We may assume from what is known so far that  R (4, H) has a repre- 

sentation 
Q~-I Q~-~ 

R(4'  H) = - ~ -  + ~ : i -+  "'" + ~ + U -  F -  4 F 2 -  4 2 F a - 2  2 . . . .  (5.28) 

where U is idempotent, and the series converges for 0 < [41 < v, say. Now 

R (~t, H ) ( 4 E - H ) = E =  (irE-H)R(4, H), (5.29) 

and since JH  = H = HJ, 

R (4, H) ( 4 J -  H) = J = ( 4 J -  H) R (4, H); 

therefore 4R(4, H) ( E -  J)  = E -  J =  ~ ( E -  J)  R(4, H). (5.30) 

Substitute from (5.28) in (5.29), and compare coefficients of powers of 4: we find 

Q = UH, (5.31) 
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- F H  = U -  E = - HF, 

F2 H = F = H F  2. 

Again, substitute from (5.28) in (5.30): we find 

U ( E - J )  = E - J  = ( E - J )  U, 

F ( E -  J )  = 0 = ( E  - J )  F .  

225 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

We first use (5.34) to show that  U = E - J .  Let  U~.~ denote the (i, ~) element 

of U, so that  U~,~=O for i < / ,  and U j . j = E - J ,  by (5.19). Let  l<k ~<p ,  and assume 

that  for ~ = 1 , 2  . . . . .  k - 1  

Vr.r_j-=-Ks ( r = j +  1, ? '+2 . . . . .  p); (5.36) 

we shall deduce the same identities for ~= k. Comparing the (r, r - k )  elements in 

the first equation of (5.34) we get 

U~.r-k ( E -  J)  - Ur.r-k+l K 1 - . . .  - Ur.r-1Kk-1 -- ( E -  J)  Kk = -- Kk. 

which, with (5.36) and (3.13), gives 

Ur.r-k = U r . r - ~ J - K k + K k J .  (5.37) 

Similarly, the second equation of (5.34) gives 

U~.~_k = JU~.,-k - Kk + JKk.  (5.38) 

In  a similar fashion, by comparing the (r, r - k )  elements in U 2= U and using (5.36) 

and (3.13), we find 

Ur.r-k = Ur.r-k J + JUr.r-~ + JK~: + K~ J -  Kk. (5.39) 

Add (5.37) to (5.38) and subtract (5.39), to find Ur.r-~ = - K k ,  which was to be proved. 

I t  can be verified that  (5.36) holds for ] = 1 ;  it  therefore holds for ] = 1 , 2  . . . . .  p - l ;  

i.e. U = E - J .  

From (5.31) it follows that  0 .=0 ,  and so 2 = 0  is a simple pole of R(2, H). 
Again, (5.32) gives 

F H  = j =  HF; (5.40) 

and (5.35) gives F= JF= FJ= JFJ. (5.41) 

I t  remains to verify tha t  F = J r 1 7 6  Since H = J r  this value for F satisfies 

(5.40) and so (5.32), and by (5.41), also (5.33). Thus the representation (5.27) with 
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this F satisfies (5.29) for 0<12[<v ;  the uniqueness of the representation implies the 

result. 

The Laurent  series for the resolvent of C can now be written down. Using (5.20), 

we get 

E + pFC ( p F )  2 C + 2 ( p F )  3 C -  2 s (pF) 4 C + .... (5.42) R(~, C) 

Since C is singular (cf. (5.6)), the residue is non-zero and R(2, C) has a simple pole 

at  2 = 0. Lemma 6 is now fully established. 

The conclusions in the last paragraph of w 4 follow. We can write 

~( l+~] ,~ :c )  = - ~ - ~ - ~ 2  ~ 2 ~ 3 _ . . .  (0<l~l  <8)  (5.43) 

for some 8 > 0, ~ being an idempotent operator. If ~ = 9 ,  we have Case A. Suppose 

~ # ~ .  We substitute (4.4) with N =  1 into (3.18) and equate coefficients of all powers 

of s except the first, obtaining 

A o (~) = ~E, 

A 1 (~]) : ~}~ (1 + 7, ~C) [C 1AO] = %~ [ e l ]  - ~ ~ [ e l ]  ~- . . . .  (5.44) 

An(~)=~(n+~,~c)[r:~CrAn_r] ( n = 2 , 3  . . . .  ). 

Thus a solution of (3.18) is 

V(0)(s)=lim FV(8,~)=(8~[C1]-4-82~}~(2,(~c)[C1~[C1]]+...} 8 c, (5.45) 
~7--~0 

and this is not identically zero if ~[C~]#O, and is fundamental if ~[C~] is regular. 

The solution 

V(1) (s) = lim ~W(s,~)_ {E-s~[C~]+ . . .}sC+s log s {~ [CI] + . . .}s c. (5.46) 
~-~0 ~ 

is fundamental. 

I t  is possible to compute ~. Let  the residue idempotent of R(2, H ) a t  2 = k  

(k= 1, 2 . . . . .  p) be Uk. I t  is not  difficult to show that  the leading diagonal of Uk has 

J in the kth position and zeros elsewhere, so that  Uz#  O (thus all poles of R(2, H) 

in fact have order exactly one). Then the elements of U~ can be found by methods 

akin to those of Lemma 8. The formulae are complicated. The residue idempotent 

of R(2, C) at  4 = - k p  -1 is found to be - p k - l U k C .  A formula due to Daletsky(1) 

can be used to show that  

[x]  = - (E + pFC)  X V~ C (X e ~ ) .  

{1) [2]; quoted in [4]. 
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6. Solution of (1.1) 

I t  remains to obtain a solution of (1.1) from a solution of (3.18). 

There exist a priori estimates for solutions of (3.18). Suppose tha t  a (of w 3) i s  

such that ,  in some open sector ~ with vertex 0, R(ps, A) is holomorphic. Write ~o 

for any closed ' interior '  sector. Then 

M = sup IsR(ps, A) B I (6.1) seZo 

exists and is finite. Let  s, s o lie on the same ray T from 0, in ~0- Then(1) for any 

solution V of (3.18) we have 

Ir(+)l <kllr(+o)l.l+l for I+1>1+ol, (6.2) 

-++' for l+l<l+ol, (6.3) 

where the constants kl, k s depend upon ~0. 

We take the contour c in (2.4) to be a loop coming from infinity along T, en- 

circling the origin once in a counterclockwise sense, and returning to infinity along T. 

I f  z is such tha t  
re (sz  v)<O for s on T, (6.4) 

the estimate (6.2) can be used to show tha t  this choice of c fulfils the requirements 

of w 2. Then any non-zero solution V(s) of (3.18) determines by  (2.4)a solution Y(z) 

of (2.2), and in turn a solution W(z) of (1.1); W(z) is valid for z lying in some sector 

determined by  the requirement tha t  a ray T exists in ~ for which (6.4) holds. I t  

is sufficient for our purposes if the solution V is not identically zero: i t  need not be 

fundamental .  Let  V be such a solution, with non-zero ]th column 

vj = Vej (e~ = j th column of E), 

and write ~T= (ZV-1 zV-~,-.., Z, 1). The corresponding solution of (1.1) is 

W(j)(z)=znp+~ (~ z t p _ ~  v-Tq+Olzv-l+...q-(~v_l-4-Op_l)z) Y(i)(z), (6.5) 

with Yr (z) = $r f r eS2 V(s) ds ej. 

(1) cf. i4], w 4. 
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7. Asymptotic expansion for the solution 

We obtain an asymptotic formula for Y(z) when [z I is large, for the case where 

the solution V(s) contains no logarithmic terms. The method comes from Horn [6]. 

Take Y(s)= ~. AnsC+~E=S(s)s c, S(s)= ~ Ans ~, (7.1) 
n~O n •O 

the A's being supposed determined, and the series converging absolutely for 0 <  Isl ~< ~, 

and write 

fceSZ~V(s)ds= fceSZ~ {V(s)- ~oAnSC+'E} dS+ ~oAn fceSZPsC+nE ds 

= T~ + T~, say. (7.2) 

To simphfy the discussion, we suppose T chosen so that  sz ~ is real and negative for 

s on T. Thus if ~0 is the sector ~ ~< 0 ~< 8, the discussion applies to points z in the 

sector 

also 

-< n - -  ~ (7.3) ~F: ~ - /~ < arg z -~ 
P P 

fc eszp 8C+nEd8 = Z-P(C+(n+I)E) fc" ew wC+nEdw' 

where c' is a loop contour from infinity along the negative real axis. 

We are thus led to consider gamma functions of elements of ~J~. Definitions for 

these are o b t a i n a b l e a s  follows from the operational calculus for a general Banach 

algebra with identity, described in [5], Chapter V. Let  X E ~ ,  and suppose that  

none of 0, - 1 ,  - 2 ,  ... belong to Sp (X); then 

F (X) = ~ /  F(~) R (~, X) d~, 

7 being an oriented envelope of Sp (X), defines F(X) as a locally analytic function, 

and I ' (~E)= F(~)E for scalar ~. If  1 ~Sp (X), then also F(X)=  (X - E) F (X - E). Again, 

~(x) = ~ [r(~)] - ln(~,  x)  d~ (7.4) 

defines a locally analytic function for all X e ~ ;  and 0, - 1, - 2 . . . .  ~ Sp (X), we have 

~(X) = [F(X)] -1. The integral 

o~(x) = ~ . e w w x d w  (7.5) 
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is also defined for all X E ~v;  it  can be verified (by expressing w x as a series and 

using the properties of the operational calculus) tha t  t o ( X ) = ~ ( -  X). 

Since Sp ( -  C - n E ) = { - n ,  - ( n - p - l ) ,  . . . , -  ( n -  1)}, none of F ( -  C - n E )  (n=  

0, 1, 2 . . . .  ) is defined. However, we do have, for all X E ~ ,  

to(X) = -- X to(X  - E) = - t o ( X -  E) X ,  (7.6) 

and t o ( C - E ) =  I F ( E - C ) ]  -1. Then (7.4) gives 

~ ( C - E ) =  [r(1-~)] -~R(~,  c)g,7= - E +  I -  ~ P k-r 1 +~ 

Uk is the residue idcmpotent of R(X, H ) a t  X= k; and using (7.6) we obtain, where 

after some calculation, 

_ ~ u k c  ,-1 v k c  

The asymptotic expansion to be derived is: For fixed N ( > [ C [ - 2 ) ,  

N 
Izff(N-,c,)+xllY~)(z)-C~ Y A~z-~(c+(n+l)E'to(C+nE)r (7.8) 

n~O 

as z tends to in[inity along a ray in the sector ~F. 

Let  the contour c constitute the union of the several portions 

ct: those parts of the two arms along T for which I sl > �89 Q, 

c~: the parts of the arms along T for which 6 <  I sI < �89 ~, 

ca: a counterclockwise circuit of the origin along Is[ = 6. 

We may assume without loss of generality that  �89 ~ ~< 1. On c 2 and c a we can write 

--8 N+I ( S(~)d~ 

]S(s)]~< M~< co, for some constant M 1, and deduce that  

..-. (~ ~).+1 j~.uc I 181"+ ' l~q las l  . (7.9) 

Write I s [ = a .  Then on c~Uc a 
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I s c l  ~ el cl( l log ~'1 +2,,) = e2,,I Cl o--I  el .  

On e 2, e ~ ' =  e -~1~1", while on c 3, I J I< e 0'~'". Thus  the  contr ibut ions  of the  integral  

on the  r igh t -hand  side of (7.9) are 

c < ~ 2 e 2 " l C l  Izl-'(N+~-IC~ r(~v+ 2 -  Icl), 
(7.10) 

f c, <~ 2 ne ~lzl%2~'lcl 6 N+2-1cl. 

The first  bound is independent  of 6, so we m a y  let 6--> 0 in the  second when ZT is 

large. 

The  contr ibut ion of c 1 to  TN is domina ted  b y  

N j'c IJlIv( )lld l+ olA lfo, le, 'll  ll l ld l=Ol+O,, say. 

Le t  s o be the  intersect ion of Y with I s ] =  �89 ~. B y  (6.2), 

Q1 < 2kll r(so)l f ,: e-'Iz''o~ d̀ ~, 

Q2<<-2e 2"1cl ~ IA.I e - ~ l ~ l ' m a x  ((rn-lCl, r  
n = 0  d �89 

Now for  posit ive ~ and  ~, and  real :r 

f ~e-~"a~da<21r~'~-le -~r if ~>2a~  m a x  (1, T-l). 

Therefore  Q1 ~< 4 k~ I V(s0) I (1 Q)M i z I-v e- �89 Ix I p (7.11) 

N 

and Q~ <...4e~.lCllzl-~._olA~l{(�89189 ~I~Ip +e-lZl~}, (7.12) 

if [z] is sufficiently large. 

F r o m  (7.10), (7.11) and  (7.12) it  follows tha t ,  g iven a n y  e > 0  and a n y  f ixed 

N ( > ] C ] - 2 ) ,  we can find a KN such t h a t  

I~l,(~+~-I~Vlr~l<~ for  I~I>K~. (7.18) 

Now when the  norms  are defined by  (2.13) and  (2.15), we have  
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I l f x g  I] ~< p i l l"  I x ] .  ]g] 

for any f,  g E ~ ,  X E ~)~v. Therefore finally 

N 

II r(s)(~) - ~T ~ A= ~ p(C+(n+l)E) (D (C -~ nE) ej II ~< II ~T TN eJll ~< p I z I" 11  TNI. 
n - - 0  

The formula (7.8) follows from this and (7.13). 

Added in proo/. It  should be remarked that Birkhoff was in error in believing (1.1) 

to be a canonical form: see Gantmacher, F. R., Theory o/ Matrices, Vol. II, p. 147. I am 

grateful to Mr W. A. Coppel for drawing this to my  attention. 

Results related to the reduction in w 2 and to Lemma 1 are announced in Turrittin, 

H. L., Reducing the rank of ordinary differential equations, Duke Math. J., 30 (1963), 

271-274. 
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