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1. Ixltroduetion 

If  / is a distribution in /t  ~ we write supp / (resp. sing supp j) for the smallest 

closed set outside which / = 0  (resp. /E  C~). Then the convolution theorem of Titch- 

march [13], extended from one to n dimensions by Lions [10], states tha t  

ch supp (h~e/3) = eh supp /1+ ch supp /2; /1'[3 er (1.1) 

Here we have used the notation ch A for the convex hull of a set A in R = and 

written 
A+B={x+y;  xeA,  y6B} 

if A and B are subsets of Rn; below A -  B will be defined similarly. 

The aim of this paper is to prove results similar to (1.1) where supports are 

replaced by  singular supports. In  HSrmander [5] it was proved in perfect analogy 

with (1.1) tha t  
eh sing supp (/1%/2) = ch sing supp/1 + ch sing supp/3 (1.2) 

provided that  /1,/3 E ~' and either supp /1 or supp /3 consists of a finite number of 

points, a result due to F. John and B. Malgrange when the number of points is one. 

When /2 is hypoelliptie in the sense of Ehrenpreis [4] it  was also proved in HSr- 

mander [6] that  

ch sing supp/1 c ch sing supp (/1 -)e/3) - ch sing supp/3, (1.3) 

which is a weakened form of the non-trivial part  of (1.2) that  the left-hand side of 

(1.2) contains the right-hand side. However, not even this weaker result can be valid 

for arbi trary /3, for it  may happen that  fl~fZ E C~ although neither /1 n o r  f3 is 

in C~ 0. In fact, Ehrenpreis [4] has proved that  every/1 E E' with/1 * /2  E C~ belongs 

to C~ ~ if and only if the Fourier transform f3 of the distribution /3 E E' is slowly 

decreasing in the sense that  for some constant A 



280 L. H6RMANDER 

sup{Ifu(~)l;  ~ 6 R " ,  ] ~ - ~ l < A l o g ( 2 + l ~ l ) } ~ ( A + l ~ ] )  -a (~6R").  (1.4) 

(A proof of this result is also given in H5rmander  [5].) 

We shall prove here tha t  (1.3) is valid for arbi t rary  [1, [2 E E' such tha t  f~ satisfies 

(1.4). This result contains those of [6]. Moreover, we give necessary and sufficient 

conditions on the convex compact sets K 1 and K a in order tha t  

sing supp (/1 x /2)  c K a ~ sing supp /1 C K1. 

For the s ta tement  of these results see section 5. 

The proof of (1.3) is based on a s tudy of the Laplace transforms of /1 and /~, 

combined with an analogue of the Paley-Wiener  theorem for the singular supports 

given in H5rmander  [6], which goes back to an idea of Ehrenpreis [3J. The estimates 

of analytic functions which we need are very closely related to those required to prove 

(1.1). However, we need an extension of these estimates to plurisubharmonic func- 

tions so we shall give complete proofs for them. The proof of (1.1) thus given is 

closely related to tha t  of Koosis [8], the crucial point being an application of Har-  

nack's  inequality for positive harmonic functions. However, the formal presentation 

differs rather  much. A similar use of Harnack 's  inequality was also made in H5r- 

mander  [6], following a suggestion by  Malgrange, but  the estimates given here are 

much more precise. 

In  section 2 we state the Paley-Wiener  theorem and its analogue for singular 

supports. The facts concerning (pluri-)subharmonic functions which we shall use are 

given in section 3. There is no new result but  we have found it difficult to find 

convenient references for all the facts we need. We then prove a slight extension of 

(1.1) in section 4, and using the estimates obtained there we prove results containing 

(1.3) in section 5. The consequences concerning convolution equations are discussed 

in section 6. 

2. The Paley-Wiener theorem for supports and singular supports 

I f  K is a convex compact subset of R n, the supporting function H of K is 

defined by 
H(~) = sup <x, ~> (~ e Rn). (2.1) 

Z~K 

I t  is obvious tha t  H is convex and positively homogeneous, 

H(~+~)<H(~)+H(~) (~ ,~eRn) ;  H(t~)=tH(~) (~eR ~, t>~O). (2.2) 
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I f  K is empty  we set H = -  co; the last par t  of (2.2) then assumes tha t  we define 

0.  ( -  c~)=  - c~. Conversely, every function H with values in [ -  cr c~) satisfying 

(2.2) is the supporting function of one and only one convex compact  set K, and K 

is defined by  
K = {x; (x, ~ <~ H(~) for all ~ E Rn}. (2.3) 

Therefore (2.1) and (2.3) give a one-to-one correspondence between the set ~ of convex 

compact subsets of R n and the set ~ of functions satisfying (2.2). (Such functions 

- ~  are automatical ly continuous.) I f  K1, K 2 are convex compact  sets with sup- 

porting functions H~, H2, then the supporting function of the convex compact set 

K 1 __+ K~ is //1 (~)+//2(_+ ~). I f  H~ is the supporting function of K~ and H =  sup~ H~ 

is finite everywhere then H is the supporting function of the closed convex hull of 

U ~ K~. For  a proof of these elementary and classical facts we refer to Bonnesen and 

Fenchel [1]. 

The Paley-Wiener  theorem can now be stated as follows: 

T ~ E O R ] ~  2.1. Let K be a convex compact subset o / R  n with supporting/unction H. 

I /  / is a distribution with support contained in K, then the Fourier-Laplace trans/orm 

] o / /  satis/ies the estimate 

I/(c) l < c ( 1 +  l c I) Ne (c e (2.4) 

where N is the order o/ /. Conversely, every entire analytic /unction in C n satis/ying 

an estimate o/ the /orm (2.4) is the Fourier-Zaplace trans/orm o/ a distribution with 

support contained in K. 

Proo/. The theorem is proved in Schwartz [12] when K is a cube and in HSr- 

mander  [7] when K is a sphere. The modifications required in either of these proofs 

in the case of a general K are quite obvious and are left to the reader. Let  us only 

note tha t  (2.4) is trivial if / is a measure dft, for by  definition we have 

dg(x), 
J 

which implies tha t  $](;)1 < e"~m:)fldg(z) I. 

This is the only case in which we use the necessity of (2.4). On the other hand, 

the quoted results imply tha t  every entire function satisfying an estimate of the form 

(2.4) is the Fourier-Laplace transform of a distribution with support  contained in an 
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arbi t rary sphere (parallelepiped) containing K. Since the intersection of all such spheres 

(parallelepipeds) is equal to K, the theorem follows. 

THEOREM 2.2. Let ] E ~ ' ( R  n) and let K be a convex non-empty compact subset 

o/ R n. In  order that sing supp / ~ K it is necessary and su]/icient that there be a cou- 

stant N and a sequence o/ constants Cm, m =  1, 2 . . . . .  such that 

If(r162 "(~,, if IXm r log (1r ( r e = l , 2  . . . .  ). (2.5) 

I n  order that sing supp ] = 0 it  is necessary and su[/icient that to any positive integers 

N and m one can [ind CN, m so that 

[/(~)[~<C~.m(l+[~[) -N, if [Im~[~<m log (15[+1). (2.5)' 

Proo[. The last s tatement  fonows at  once from the form of the Paley-Wiener  

theorem which states tha t  ] E C~ r if and only if one can find constants A and CN, 

N = 1, 2 . . . .  such tha t  

I](~)l<e~(l+l~l)-~e ~ (N= 1,2, ...). 

Apart  from a translation of the coordinate system the first par t  of the theorem is 

identical with Theorem 1.7.8 in H6rmander  [7] when K is a sphere. The necessity 

of (2.5) follows from Theorem 2.1 by  following the proof of Theorem 1.7.8 in [7]. 

On the other hand, if ] satisfies (2.5) we know from tha t  result tha t  sing supp ] is 

contained in every sphere containing K, and the intersection of all such spheres is 

equal to K. 

3. Preliminaries concerning subharmonic and plurisubharmonic functions 

Let ~ be an open connected set in R p, and set for r > 0  

ar={x; I~-ul<r  ~ yea}, 

where the norm denotes the Euclidian norm. I f  v is a measurable function in a which 

is bounded from above on compact subsets of ~ we set 

vr(x)= lyl<l ~ v(x+ry)dY/l~!<ldY (Xear) .  

A function v defined in a with values in [ -  ~ ,  + ~ )  is called subharmonic if 
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(a) v is semi-continuous f rom above, 

(b) v(x)<.v~(x) if x E ~ , .  

( I t  is convenient  here no t  to require as usual t h a t  v ~ - oo. Except  when v--  - c~, 

however,  v is finite almost  everywhere and  is in fact  in L~ ~ (~).) 

LEMMA 3.1. Let vk be a sequence o/ subharmonic /unctions in ~ which are uni- 

/ormly bounded /rom above on every compact subset o/ ~.  Then the smaUest upper semi- 

continuous majorant V o /v  = lim vk is subharmonic, and we have V = v almost everywhere. 

I /  K is a compact subset o/ ~ and / is a continuous /unction on K, then 

lim sup (vk-/)<-.. sup ( V - l ) .  (3.1) 
k - ~  K K 

Proo/. Since we m a y  replace ~ by  a rb i t ra ry  relat ively compact  subdomains con- 

taining K it is no restriction to assume t h a t  the sequence is uniformly bounded in 

or even tha t  vk~<0 in g2 for every k. B y  Fa tou ' s  lemma we have 

v(x) < lim v~ (x) <. vr(x) (x E ~r). (3.2) 

Nex t  note  t ha t  if x E ~ r  and 0 < e <  1 we can find (~ so small t h a t  for every k 

vk(~)<~(1-e)v~(x) if [ ~ - x l < 5 .  

I n  fact, since vk~<0 we have if I ~ - x l  < ~ and  xE~r+2~ 

(r + ~)" v~ (~) < (r + ~)~ v~ § (~) < r'v~ (x), 

(3.3) 

and  if rP/(r+(~)'> 1 - e  we obta in  (3.3). Combinat ion of (3.2) and  (3.3) now gives 

t h a t  if a>vr(x) and 0 < e < l  then v~(~)<a(1-e)  if I ~ - x l < ( ~  and k > k  0. Hence 

V(x) <~ a(1 - e) which proves t h a t  

V(x) <~ vr(x) <~ V~(x) (3.4) 

so t h a t  V is subharmonic.  I f  V - - ~  then v - : - ~  bu t  otherwise V is finite i n a  

dense set and (3.4) shows tha t  v is locally integrable. At  every Lebesgue point  for 

v we have 
v(x) ~ V(x) <~ lim v~(x) = v(x) 

r-.r 

which proves t h a t  v = V almost  everywhere.  

To prove (3.1) finally, we take  a and b so t h a t  s u p K ( V - / ) < b < a .  I f  x E K  we 

have V(x) </(x) § b so t h a t  v(~) < / (x )  § b in a neighborhood of x, and so v~(x) </(x) § b 
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if r is sufficiently small. Hence we can by  (3.2), (3.3) find k 0 and  (~<0 so t h a t  

vk(~)</(x)+b if I x - - ~ l < ~  and  k > k  o. Since / is cont inuous this implies t h a t  for 

some other  (~ > 0 we have 

v k ( ~ ) < / ( ~ ) + a  if ] ~ - x l < ( ~ ,  ~ e K  and  k > k  o. 

B y  the  Borel-Lebesgue lemma this shows t h a t  vk(~)- / (~)  < a in K for large k, which 

proves the  lemma. 

DEFINITION 3.1. 

we say that vk--> v if 

Let v and vk (k= 1, 2 . . . .  ) be subharmonic /unctions in ~ .  Then 

f v ~ d x - ~  f v~dx (k ~ o o  ), (3.5) 

/or every q~EC~ (~), the I space o/ continuous non-negative /unctions with compact sup. 

port in ~ .  

Note  tha t  bo th  sides of (3.5) are defined when ~ E C~ (~) even if vk or  v should 

be - - - o o .  

L E M ~ A  3.2. Let v~ be a sequence o/ subharmonic /unctions in ~ which are uni. 

/ormly bounded /rom above on every compact subset o/ ~ .  Then there exists a subse- 

quence v~j such that vkj--> V where V is the smallest upper semi-continuous majorant o/ 

liml-~r vki. 

Proo/. I t  follows from Lemma 3.1 or Fa tou ' s  lemma tha t  if va(x) converges to 

- o o  for every x E ~  then  v k - + - o o  in the sense of Definition 3.1. Passing if ne- 

cessary to a subsequence we m a y  therefore assume t h a t  vk(x) is bounded  f rom below 

for some value of x. For  a rb i t ra ry  fixed r > 0 and x E~r  it t hen  follows t h a t  v~(x) 

is bounded from below. I n  fact, we could otherwise apply  (3.3) to the functions vk 

minus a common upper  bound  when I ~ - x l < r + e  and  conclude t h a t  there is a 

subsequence vk. such tha t  vk,(~)-->-oo in a neighborhood of x. But  then  Lemma 3.1 

shows t h a t  vk, ( x ) - -> -  oo for every x, which is a contradiction.  The sequence vk is 

therefore bounded  in L~ ~ so a subsequence can be found which converges weakly  to 

a measure d/x. To simplify nota t ions  we m a y  assume t h a t  the sequence va itself con- 

verges to d/x, t h a t  is, 

f /vkdx--> td#  (/eC0(g2)). 

By  Lemma 3.1 the smallest upper  semi-continuous ma jo ran t  V of v = l i m  va is 

subharmonic,  and if /EC~  we have by  Fa tou ' s  lemma 
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Now let ~(x) be a cont inuous decreasing funct ion of Ix[ which is equal  to 0 when 

Ix ] > 1, assume t h a t  j" ~(x) dx = 1 a n d  set  q~(x) = ~-~ q)(x/e). Then  we have  w ~< w * ~ in 

~ for every  subharmonic  funct ion w in ~ ,  which gives 

v(x) = l im v~ (x) ~< lim (vk * ~,) (x) = (d/~ * ~ )  (x) (x E ~8). 

Since ~ * d #  is cont inuous in s this proves  t h a t  

v(x) < ( d ~ .  ~8) (x) < ( V .  ~,) (x) (x e s 

where the  last  inequal i ty  follows f rom (3.6). Now V *  ~--> V in/51 on every  compac t  

subset  of s when e - >  0, which proves  t h a t  d~u * ~8 ->V in L 1 on compac t  subsets  

of ~ ,  hence t h a t  V is the  dens i ty  of the  measure  d/~. The proof  is complete.  

Now let s be a connected open set  in C n. I f  S EC ~ we write D r  

Iwl ~< 1), and  if v is a Borel  measurab le  funct ion in ~ which is bounded  f rom above  

on compac t  subsets  of s we define v(z,~) when ( z ) + D r  as the  average  of v over  

(z) § De, t h a t  is, 

r  fol - v(z + re i~ ~) r dr d O. v ( z ,  r  = :~.j . 

A funct ion v defined in s wi th  values in [ -  oo, + co) is called plurisubharmonic if 

(a) v is semi-continuous f rom above,  

(b) v(z)<v(z ,  ~) if ( Z ) + D r 1 6 3  

This class of functions is invar ian t  for analyt ic  coordinate  t rans format ions  of the  

var iables  z~ (see Lelong [9]). I t  follows easily t h a t  a p lur isubharmonic  funct ion is 

subharmonic  if C n is identified wi th  R 2n, and  when n =  1 the  not ions of subharmonic  

and  p lur i subharmonic  funct ions coincide. W h e n  v is p lur isubharmonic  the  funct ion 

v(z § w~) of one complex  var iable  w is of course subharmonic  for  a rb i t r a ry  z, ~ e C ~ 

in the open set where  i t  is defined. 

LEMMA 3.3. Let vk be a sequence o/ plurisubharmonic /unctions in ~ which are 

uni/ormly bounded /rom above on every compact subset o/ ~ .  Then the smallest upper 

semi-continuous ma]orant V o/ v = lim vk is plurisubharmonic and we have V = v almost 

everywhere. 
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Proo/. By Fa tou ' s  lemma we have 

l im vk (z, $) < v(z, ~) if (z} + D: ~ ~ .  

Hence v(z) < V(z, ~) if (z} + D ~ c  ~ .  

Now Fa tou ' s  lemma also shows tha t  V(z, ~) is an  upper  semi-continuous funct ion of 

z in the open set of all z such t h a t  (z} + D c c  ~ .  Hence V(z) <. V(z, ~), which proves tha t  

V is plurisubharmonic.  The remaining pa r t  of the lemma follows from Lemma 3.1 since 

plurisubharmonic functions are also subharmonic.  

Remark. Much more precise results than  the previous lemmas are known; see 

Cartan [2]. 

I f  v is subharmonic  in ~2 c R p, if K is a compact  subset of ~ and  h a continuous 

funct ion on K which is harmonic  in the interior of K, then the  m a x i m u m  of v -  h 

in K is a t ta ined on the boundary  of K.  For  a proof we refer to Rad6  [11], section 

2.3, bu t  we prove here the " three  line theorem".  

LEMMA 3.4. Let v be subharmonic and bounded /tom above in a neighborhood o/ 

the strip 0 <~ I m  z ~  1 in C 1 and assume that /or some constants C and A we have 

v(z) <~ C + A I m  z on the boundary o/ the strip. Then this inequality holds also in the 

interior o~ the strip. 

Proo/. The function v ( z ) - C - A I m z - e R e ( l + z 2 ) ,  where e > 0 ,  is ~<0 on the 

bounda ry  of the strip and  tends to - ~  a t  infinity. Hence it is ~< 0 in the whole 

strip, and when e--> 0 this proves the assertion. 

Before extending Lemma 3.4 to plurisubharmonic functions we note t h a t  Lemma 

3.4 implies Liouville 's theorem for plurisubharmonic functions. 

LEMmA 3.5. Let v be plurisubharmonic and bounded /rom above in C n. Then v 

is a constant. 

Proo/. First  let n = l .  Take a fixed ~ and set 

M(y) = sup v(~ + e-i~). 
I m z = y  

Then Lemma 3.4 and  the max imum principle show t h a t  M(y) is a convex increasing 

funct ion of y, and  since v(~)<~M(y) and  v is semi-continuous from above we have 

M(y)-->v(~) when y - - > -  ~ .  Bu t  an  increasing bounded  convex function mus t  be a 

constant ,  so tha t  M(y)= v(~-) for every y, t ha t  is, v(z)<~ v(~) for every z. Since the  
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roles of z and ~ may  be interchanged, this proves tha t  v(z)=v(~) .  I f  n >  1 we can 

for arbi t rary ~, z EC ~ apply the result just proved to the subharmonie function 

v ( ~ + w ( z - ~ ) )  of w e C  1. Since this function must  be constant we have v(~)=v(z) ,  

which proves the lemma. 

Combination of Lemma 3.3 and Lemma 3.5 gives 

LEMMA 3.6. Let vk be a sequence o/ plurisubharmonic /unctions in C n which are 

uni /ormly bounded /rom above on every compact set. I /  v = lira vk is bounded/ tom above 

in the whole o/ C n, then v(~)= sup v almost everywhere. 

An extension of Lemma 3.4 to plurisubharmonic functions is given in the following 

theorem. 

THEOREM 3.1. Let co be an open convex subset o/ R" and let ~ be the tube de. 

lined by ~ = ( z ;  z EC ~, I m  zea l } .  Let v be plurisubharmonic in ~ and assume that 

/or every compact subset K o/ o~ there is an upper bound /or v(z) when I m  z e K .  Then 

the /unction 
M(y)  = sup v(x + i y )  (y e w), 

X 

where x varies in R",  is a convex /unction o/ y. 

Proo/. Let Yl, Y2 E e o, and let x E R ~. Then the function of w 

V(w) = v(x + iy 1 § w(y  2 - Yl)) 

is subharmonic and bounded from above in a neighborhood of the strip 0 ~< I m  w ~< 1. 

When I m  w = 0  it is bounded by  M(yl) and when I m  w =  1 by  M(y~). Hence Lemma 

3.4 gives tha t  

V (w) = v(x § iy  I § w(y  2 - Yl) ) <~ (1 ~ I m  w) M (Yl) § I m  w M (y2). 

I f  0 ~<2j (1"= 1, 2), and ~1 +22 = 1, we obtain by setting w = i 2 ~  tha t  

v(x + i(21 Yl + it2 Y2)) <~ ~1 M(Yl)  + ~2 M(y~), 

which proves tha t  M(21 Yl + 2~ Y2) ~< hi M(Yl)  ~ ~2 M(y~). 

Now let v be plurisubharmonie in the whole of C" and assume tha t  

v(z) < C § A lira z I (3.7) 

for some constants C and A. Then Theorem 3.1 shows tha t  

M(y) (3.8) 
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is a convex function in R n. Hence the limit 

H(y)= lim M(ty)_ lim M(ty)-M(O) (3.9) 

exists for every y and H(y)<~A lY[. Tha t  the difference quotient (M(ty) -M(O)) / t  is 

increasing also shows tha t  

M(y) <~ M(O) + H(y) (y E Rn). (3.10) 

Since H is the limit of convex functions it is clear tha t  H is convex, and a substi- 

tut ion gives tha t  H(ay)= all(y) if a >~ 0. Hence H belongs to the class ~ /o f  supporting 

functions introduced in section 2, and we shall call H the supporting /unction o/ v. 

I t  is obvious from (3.10) tha t  H = ~ -  ~ unless v = - ~ o .  

TH~.O~Er~ 3.2. Let / be a measure with compact support in 1~ n and let H be the 

supporting /unction o/ ch supp /. Then the sut~aorting /unction o/the plurisubharmonic 

/unction log Ill is also equal to H. 

Proo/. By Theorem 2.1 we have for some constant C 

log If(r < C + H(Im 

Hence the supporting function H '  of log Ill is defined and H '  < H  since log I1( )1 < 

C+tH(~) if I m  ~=tr].  On the other hand, we have by  (3.10) tha t  

log ]f(~)] < C+H'  (Im ~) 

so it follows from Theorem 2.1 tha t  ch supp ] is contained in the set whose supporting 

function is H', tha t  is, H <  H'. 

When n > 1 the following theorem gives an important  alternative characterization 

of H(y) (compare Lions [10]). 

THWOR~M 3.3. Let v be a plurisubharmonic /unction satis/ying (3.7) and let M, 

H be defined by (3.8) and (3.9). Then we have /or y E R  n and ~EC n 

lira v(~+wY)<~H(y), (3.11) 
Imw-++r162 1133 W 

with equality /or almost every ~ when y is kept fixed. 

Proo/. By (3.10) we have when I m  w > 0  
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v(~ + wy) <. M ( I m  $ + I m  wy) <. M ( I m  ~) 

I m  w I m  w I m  w 
- -  + H ( y ) ,  (3.12) 

which implies the inequali ty (3.11). Let  

A = s ~ p  lim v(~+wy) 

Then the three line theorem applied to  the  analyt ic  funct ion v(~ § wy) of w which is 

~< M ( I m  ~) for real w gives 

v(~ + wy) <. M ( I m  ~) + A I m  w (Ira w > 0). 

I f  we choose ~ real and take  w = it with t > 0, this gives 

M(ty) <~ M(O) + At, 

hence H(y) < A. Since we have a l ready seen t h a t  A ~< H(y), this proves t h a t  A = H(y). 

For  an arb i t rary  e > 0  we can therefore find some ~0 and  a sequence wk with 

I m  wk -> + c~ such t h a t  

lim v($~ > H ( y ) - e .  
k - ,~  I m  wk 

But  in view of (3.12) we can apply  Lemma 3.6 to  the sequence of plur isubharmonic 

functions v (~+wky) / Im  wk of $, which gives tha t  

lira v ( ~ + w k y ) > H ( y ) - e  for almost  every ~. 
k-,:r i m  wk 

I f  we use this result for a sequence of positive numbers  e converging to  0, the theo- 

rem follows. 

4. The theorem on supports 

I f  /~ (~ = 1, 2, 3) are distributions with compact  suppor t  such t h a t / 3  = 11 ~/2,  then 

f3 = fl f,. F rom Theorem 2.1 it follows therefore t h a t  to  prove the theorem on supports  we 

have to  examine how to est imate two analyt ic  functions when an est imate for their 

p roduc t  is known. We shall generalize this question slightly by  s tudying estimates 

for two plurisubharmonic functions v I and  v 2 when an est imate for v 1 + v 2 = v 3 is known.  

This extension of the results will be impor tan t  in section 5. 

Let  ~ be a connected and simply connected open set in the  complex plane, 

different f rom the whole plane. I f  ~ E ~  we let z--> w(z, ~) be a conformal mapping  

2 0 - -  6 3 2 9 3 3  Acta mathematica. 110. I m p r i m ~  le 11 d~cembre  1963. 
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of ~ onto the  uni t  circle which m a p s  ~ onto the  origin. I f  u is a non-negat ive  

harmonic  funct ion in ~ ,  we then  have  

U(Z)<U(~) (1 ~-IW(Z, ~)1 ) ( I-- lW(Z,~)])  -1 if Z, ~e~'~. (4.1) 

I n  fact ,  if z(w) is the  inverse of w(z, ~) for  a f ixed ~, then  (4.1) is jus t  H a r n a c k ' s  

inequal i ty  appl ied to u(z (w)) which is harmonic  in the  uni t  circle. 

L E M ~ A  4.1. Let v~ be subharmonic /unctions and hj be harmonic /unctions in 

~ ( / =  1, 2, 3). I!  
va=vz +v~; v~<<.hj ( ] = 1 , 2 , 3 ) ,  (4.2) 

we have /or arbitrary zj E ~ (] = 1, 2, 3), 

2 2 

(4.3) 
1 1 

Proof. We m a y  assume t h a t  ~ is a circle and  a t  first  we also assume t h a t  the  

funct ions v s and  hj are cont inuous in ~ .  Le t  uj ( ]=  1, 2) be the  harmonic  funct ion 

in ~ for  which u 3 = h j - v  j on the  bounda ry  of ~ .  Then (4 .2 )and  the  m a x i m u m  prin- 

ciple give t h a t  the  inequalit ies 

u t >~ 0 (] = 1,  2 ) ;  h I - u 1 A- h 2 -  u s ~< h 3 ( 4 . 4 )  

are val id in ~ .  For  ] = 1 , 2  we now app ly  (4.1) to  u s wi th  z = z  a and  $ = z  s. Adding 

the  inequalit ies obta ined  and  not ing t h a t  u I + u 2 >~ h~ + h 2 -  h3, we obta in  (4.3) since 

vj-hj< -~j. 

I n  the  general  case where  vj and  hj are not  cont inuous in ~ we int roduce the  

averages  v~(z) and  h~(z) (e > 0) which are defined for every  z wi th  dis tance > e  f rom 

C ~ .  I f  E22~ is the  circle consisting of points  a t  dis tance > 2 ~  f rom C ~ ,  then  v~(z) 

and  h~ (z) are cont inuous in the  closure of ~2, unless vj = - ~  and  then  the  l e m m a  

is tr ivial .  Since (4.2) implies t h a t  vl (z) = vl (z) + vl (z) and  t h a t  v~ (z) ~< h~ (z) = hj (z), we 

can app ly  (4.3) with vj, hj and  ~ replaced b y  v~, hj and  ~2~. Since vj(z)<<.v~(z) we 

obta in  (4.3) when  s--> 0. 

LEMMA 4.2. Let vj ( ] = 1 , 2 , 3 )  be subharmonic when I m  z > 0 ,  let Va=V1+V 2 and 

assume that 
v j ( z ) ~ C j + A j I m z ,  I m z > 0  ( ] = 1 , 2 , 3 ) ,  (4.5) 

where Cj and Aj are constants. Then we have i/ I m  zj > 0  ( ]=  1, 2) 

~ vj (zj) ~ i ~ z j +  A3" 
1 I m  zj ~< 1 

(4.6) 
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Proo[. W e  shall  a p p l y  L e m m a  4.1 wi th  ~ equal  to  the  half  p lane  I m z > 0 .  

Then  we have  
2 i I m  zj w(z a, zj) - za - zj _ 1 

z3  - 5J z 8  - 5s 

I f  we le t  I m  za--> + c~ while Re  z a remains  cons tant ,  we ob t a in  

I m  z 3 (1 - Iw(z3, zs) l) --> 2 I m  zj. (4.7) 

App ly ing  (4.3) wi th  hj (z) = Cj + Aj  l m  z and  le t t ing  I m  z a--> + oo a f t e r  d iv is ion b y  

I m  z a therefore  gives 

2 

Y. (vj (zj) - Cj - Aj  I m  zs ) / Im zj ~< A a - A 1 - A s . 
1 

This  proves  (4.6). 

No te  t h a t  (4.6) implies  in pa r t i c u l a r  t h a t  

2 vj(z) < 
l im A a . (4.8) 

n=z~+oo I m z  

T H E O R E M  4 . 1 .  

v a = v 1 + v~ and 

Let vj (?'= 1, 2, 3) be plurisubharmonic /unctions in C" such that 

vj (z) ~< Cj + A s I I m  z I (z E C n) (4.9) 

/or some constants Cj and Aj. I /  H, is the supporting /unction o/ vj we then have 

H 3 = H 1 + H 2 . (4.10) 

Proo/. Le t  Mj  (y) be the  sup remum of vj (z) when I m  z = y. B y  def in i t ion  we have  

Hj  (y) = l im Mj (ty) 
t ~ + ~  t ' 

a n d  since M a < M  I + M  2 i t  is clear  t h a t  H a~<H I + H  2. Now let  t E C  n a n d  y E R  n be 

f ixed  and  consider  the  subharmonic  funct ions  vj (~ + wy) of w E C a. W e  choose ~ so t h a t  

l im vj($ +wy) 
~mw~+oo I m w  - H i ( y ) ( ? ' = 1 , 2 , 3 )  (4.11) 

which is possible b y  Theorem 3.3. Now we have  if I m  w > 0 ,  

vj (~ + wy) <~ Mj ( Im $ + I m  wy) < Mj (0) + Hj ( Im $) + I m  wHj(y) 

so we can a p p l y  L e m m a  4.2. F r o m  (4.8) and  (4.11) i t  t hen  follows t h a t  
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H 1 (y) + H~ (y) < H s (y), 
which completes the proof. 

We can now prove the convolution theorem of Titchmarsh and Lions. 

THEOREM 4.2. Let /1,/2 be distributions with compact support. Then 

ch supp (/1 ~-/~) = ch supp/1 + ch supp/~. (4.12) 

Proof. I f  /1 and /~ are measures, we obtain (4.12) by  combining Theorem 4.1 

and Theorem 3.2. To s tudy the general case we note tha t  it is trivial tha t  the set 

on the left-hand side of (4.12) is contained in tha t  on the right-hand side. Let  K 

be a convex compact  neighborhood of 0 and choose ~ E C~ with support  in K. Then 

(h ~ ~ ) ~  (/~ ~ ~)= (h ~/~) ~ ~ 

and the support  of the right-hand side is contained in ch supp ( / 1 ~ / 2 ) + 2 K .  Hence 

ch supp (/1 * ~) + ch supp (/2 -~ ~0) c ch supp (/1 ~ f2) + 2 K. 

Now choose a sequence of sets K s converging to {0} and corresponding functions ~0 

converging to the Dirac measure a t  the origin. When ~ - §  we then obtain 

ch s u p p / 1 +  ch s u p p / ~ c h  supp (/1-x-/2), 

which completes the proof. 

5. The singular support of a convolution 

Let  /fi ~ '  and consider for real ~ the plurisubharmonic function of z defined by 

log I/(~+z log I~1)1 
v~(z; ~) log I~1 (5.1) 

I f  N is the order of / we have for some constants C and N (see Theorem 2.1) 

This gives the estimate 

11(~)1 < c(1 + I~I ) ~  '~ ' .  

log C + N  log (1 + I ~ + z  log I~1 I) 
log l$1 ~ A I Im zl. 

Hence vr(z; ~) is bounded from above for z in any  compact set when ~-+  oo, and 

we have 
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lim~_~r v~ (z; ~) < ~ N + A  IIm z I. (5.2) 

In virtue of Lemmas 3.2 and 3.3 we can therefore from every sequence ~j--> co in 

R n extract  a subsequence ~j~ such that  vi(z;~j~ ) when k--> cr converges to a plurisub- 

harmonic function bounded by N +  A I Ira z I. With the limit there is associated (see 

section 3) a supporting function E ~/, which may be - c ~ .  

DEFINITION 5.I. I/ /1 . . . . .  /~E~'  we denote by ~( /1  . . . . .  /~) the set o/ k.tuples 

(h 1 . . . . .  hk) o/elements in ~ such that there is a sequence ~v -'-> cr in R n /or  which vrj (z; ~,) 

/or every ~ converges to a plurisubharmonic /unction with supporting /unction hi. The 

set o~ corresponding k-tuples o/ convex compact sets is denoted by ~(/1,  ...,/k). 

Let  us first note a few obvious facts concerning ~t/(/1 . . . . .  /k). 

L ~ ) - 5 . 1 .  Let / 1 , . . . , / ~E8 ' .  I /  (h 1 . . . . .  hj) e ~ ( / 1  . . . . .  / i ) ,  where ~<k ,  one can 

choose hi+l . . . . .  h k 8o that (h I . . . . .  h~)e~(t l ,  . . . , /k).  

Proo/. Let ~ be a sequence -->cr such that  vf~(z;~) converges when v--> cr to 

a pturisubharmonic function with supporting function h~ for every i ~<~. Passing if 

necessary to a subsequence we may assume that  the sequences vr~ (z; ~,) also converge 

when i = j + l  . . . . .  b. If  we define h~ for these indices as the supporting functions of 

the corresponding limits, the lemma follows. 

The lemma just proved means that  knowing ~ ( / l  . . . . .  /k) we obtain :H(/1, . . . , / j)  

when ? '<k by just eliminating the last k-?" components. We next  prove that  the 

singular support of /E  E' is determined by ~/([). 

LwMMA 5.2. Let l E E '  and let H be the supporting /unction o/ ch sing supp /. 

Then we have /or every ~ E R n 

H(~) = sup {h (~), h e ~/(/)}. 

Proo/. If ch sing supp / is empty, that  is, if /E C~ we can for every integer 

k find a constant Ck so that  

If(~)[ ~ < Ck (1 + I~[ )-k e,4 [Im~] 

where A is independent of k .  Hence vr ( z ,~ ) - ->-oo  uniformly on every compact 

subset of C ~ when ~-->~ (compare {5.2)) so that  ~/(]) only consists of the function 

- ~ .  The lemma is therefore true in this case. Now assume that  eh sing supp ] 

is not empty. By using (2.5) we immediately obtain as in the proof o f  (5.2) tha t  
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l i m r  ). Hence h < . H  for every  hEM(l). On the other  hand, let 

- o o . H ' > ~ h ,  h E ~ ( / ) .  I f  H ' E ~  we then  claim tha t  (2.5) is valid with H replaced 

by  H ' ,  N replaced by  N +  1 and a suitable constant  Cm. I n  fact,  otherwise we can 

for some f i ~ d  ~ find a sequenee 5 - ~  ~ sueh that I I m r  log (151+1)  and 

1t(5)1 > (1 +151 ) " '  e'!: ('~ ~')- (5.3) 

By passing to  a subsequence we m a y  assume tha t  v I (z; Re $,) converges to a plurisub- 

harmonic  limit V. Sinee V < N in R n and  the support ing funct ion of V is ~< H'  we 

obta in  (see (3.10)) t ha t  V ( z ) < ~ N + H ' ( I m  z) for all z. For  large values of v we have 

IIm 5 ] ~ < ( m + l ) l o g  IRe 51 and  it follows from Lemma 3.1 t h a t  

v i ( z ; R e 5 ) < N + l + H ' ( I m z  ) when Izl<m+l 

if ~ is large enough. Bu t  this implies if we take z = i I m  5 / l o g  IRe 51 t h a t  

11(5)l < 151N+I eH'(Im~u), 

which contradicts  (5.3). Hence (2.5) mus t  in fact  be valid with H replaced by  H '  

which proves t h a t  H <, H' .  The proof is complete. 

W h e n  s tudying  the conditions in order tha t  - c ~ E 7 4 ( / )  we need the following 

simple lemma. 

L~.MMA 5.3 Let / E ~ '  and let ~, be a sequence ---> ~ in  R n such that v r (z; ~,) --~ - 

on an open subset o / R  ~. Then vI(z; ~,)--->- oo uni /ormly  on every compact subset o/ C ~. 

Proo I. L e t  x o E R  n and  r > 0  be such tha t  v 1 ( z ; ~ , ) - > - ~  in the sphere with 

radius r and  center at  x 0 in R ' .  I f  y E R  n and l Yl < r  the subharmonie functions 

vf (xo+ wy; ~,) of w in the half circle I wl < 1, I m  w > 0 ,  are uniformly bounded from 

above for such w and  - > -  ~ on a piece of the boundary.  Hence the harmonic func- 

t ion in the half circle which has the same boundary  values --> - oo when v--> c~ which 

proves t h a t  vi(x o + wy; ~ ) - - > -  ~ if w is inside the half circle. Varying y we find tha t  

v I ( z ; ~ , ) - ~ - o o  for  every z in an  open set in C n, so Lemma 3.1 shows t h a t  v1(z; ~,) 
- - > -  oo uniformly on every  compact  subset of C' .  

LEMMA 5.4. Let  lEE. I /  f is slowly decreasing in  the sense that (1.4) is valid 

/or some A ,  then - ~ ~f ~ (/). Conversely, i~ - ~ ~ 74 (/) one can /or every a > 0 l ind 

A so that 

~up{If(~+,~)l; I~ l<alog(2+l~l ) ,  ,TeR~}>(A+I~I)  -~ (~eRn). (5.4) 
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This follows immedia te ly  f rom L e m m a  5.3. 

The sets of suppor t ing funct ions in t roduced in Definit ion 5.1 give a m u c h  more  

precise descript ion t h a n  the  singular  suppor t  alone of the  na ture  of the singularities 

of the  dis tr ibut ions involved.  This makes  it  easy to  p rove  the  following analogue of 

Theorem 4.2. 

THEOREM 5.1. Let /1,/'1", . . . .  /'k, /'k" EE'. Then 

~/(/~ ~+/i', . . . .  /~ ~ /~ ' )  = { (hi + hi ' ,  . . . .  h~ + h~'); (h~, hi ' ,  . . . .  h~, h~') e ~/(f~,/ i ' ,  . . . .  /~,/~')}- 

Proo/. Let  ~ be a sequence --> c~ in R n such t h a t  vfj (z; ~,) converges for ] = 1 . . . . .  k. 

Here  we have  wr i t ten  /s=/~-x-/~'. Denote  t h e  limits b y  Vj. B y  passing to a subse- 

quence we m a y  assume t h a t  vfj:(z; ~ )  and  vf~'(z; ~ )  also converge, and  the  limits are 

denoted b y  V~ and V~'. Then  we have  

= + v ; . '  

so t h a t  Theorem 4.2 shows t h a t  the  suppor t ing  funct ion of Vj is for  every  ] the sum 

of t h a t  of V~ and t h a t  of V'/ .  This proves  t h a t  the left  set  in the  theorem is in- 

cluded in t h e  set  to  the  r ight,  and  the  opposi te  inclusion is equal ly  trivial.  

COROLLARY 5.1. Let /1, . . . , / k E G '  and let K 1 . . . . .  Kk  be convex compact sets with 

supporting /unctions H i . . . . .  Hk, such that 

he~t, (hl . . . . .  h~)e~(ll . . . . .  s h+hs<<-Hs ( i = 2  . . . . .  k ) ~ h + h l < H .  (5.5) 

Then we have 

/ E ~ ' ,  sing supp / ~ e / j c K j  ( ] = 2  . . . . .  k) ~ sing supp / ~ / 1 ~ K 1  . (5.6) 

Proo/. This is a combinat ion  of Theorem 5.1 wi th  L e m m a s  5.1 and  5.2. 

Example.  W h e n  /1 = (~ only the  funct ion 0 belongs to ~/(/1) and  (5.5) means  s imply  

t h a t  if h e ~/ and  (h~ . . . . .  hk) e ~/(/3 . . . . .  ]~), h + hj ~< Hj (] = 2 . . . . .  k), then  h ~< H x. I n  the  

conclusion we have  sing supp / = K  1. 

B y  fur ther  specialization of Corollary 5.1 we obta in  wi th  the  same nota t ions  

COROLLARY 5.2. 1/ there is no (h x . . . . .  hk)Erlt(/x . . . . .  /k) such that h x = ~ - ~  but 

hz = . . .  = hk = - co, then 

l E E ' ,  sing supp /-~b=Kj ( j = 2  . . . . .  k) ~ sing supp [ - ~ / 1 c K 1  (5.7) 
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i[ the sets K s are convex, compact and K z con~ins the sets 

eh sing supp [1 + Ks - ch sing supp [s (J = 2 . . . . .  k). 

Proo[. I f  H s denotes  the  suppor t ing  funct ion of K s a n d  hiES(Is) ( ] =  1 . . . . .  k), 

then  b y  L e m m a  5.2 

H 1 (~) ~> h I (~) + Hj(~) + hj ( - ~) (j = 2 . . . . .  k). 

I f  h + hj ~< H s (~ = 2 . . . . .  k) we obta in  

H I ( t )  >1 hi (~) + h($) + hi ( t )  + h,( - $) (j = 2 . . . . .  k). 

Now if h i # - o o  for some i we have  hj(~)+hs(-~)>lhs(O)=O, hence Hi>~h+h 1. On 

the o ther  hand,  if h i = - o o  for j = 2  . . . . .  k ,  t hen  hi=-r if ( h i , . . . , h k ) E ~ - ~ ( [  1 . . . .  [k) 

so t h a t  H I >1 h + h 1 also in t h a t  case. The  corollary now follows f rom Corollary 5.1. 

Example. Take  Ix = ~  and k =  2. Then  the  hypothes is  in the  l emma  means  pre- 

cisely t h a t  /2 is slowly decreasing in the  sense of Ehrenpre is  (see L e m m a  5.4), so we 

have  proved  (1.3) in t h a t  case. This extends  the  resul ts  of [6]. 

Our nex t  purpose is to  cons t ruc t  examples  which show t h a t  the  results ob ta ined  

are the  best  possible. I n  the  construct ions we first  consider dis t r ibut ions [ wi th  sing 

s u p p / = { 0 } ,  This has the  advan tage  tha t ,  as shown b y  L e m m a  5.2, ~/([) can only 

contain the two elements  0 and  - o o .  I n  the  nex t  theorem we const ruct  / so t h a t  

vi(z; ~) converges to - o o  when $ - + o o  avoiding a ve ry  th in  set. The  construct ion 

depends  on an idea of Ehrenpre is  [4]. 

THEOREM 5.2. .Let ~s be a sequence --->oo in R" and let E be a subset o / R "  such 

that d(~j ,E) / log ]~jl-+oo when ~--->oo. Here d(~ ,E)  denotes the distance /rein ~ to E. 

Then one can [ i n d /  E E' with sing supp [ = {0} so that 

vi(z; ~)-->- oo when E3~-->oo,  

the convergence being uni/orm on compact subsets o/ C", whereas vi(z; ~j) does not con- 

verge to - oo. 

Proo/. 
t ha t  sing supp [= {0} and 

1~,1[(~,) does not  converge to 0 when j - - > ~ ,  

for  all posi t ive integers N and m. 

We shall const ruct  a cont inuous funct ion ] wi th  compac t  suppor t  such 

(5.8) 

(5.9) 

F r o m  (5.8) it  follows t h a t  vf(0;~j) does not  con- 
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verge to - o o  when i -+oo ,  and from (5.9) it follows tha t  vr(z;~)+N=O(1/log I~1) 
when I z[ ~< m and ~-~cr  in E. This will prove the theorem. 

Suppose now tha t  there is no continuous function / with sing supp / =  {0} and 

compact support such tha t  (5.8) and (5.9) are valid. Pu t  ~q = {x; [x I < Q}, where ~ > O, 

and consider the space ~ of all continuous functions / with support  contained in ~1 

such tha t  / E C  ~ (C{0}) and the semi-norms PN.,,(/) defined by  (5.9) are finite. In  

we introduce the topology defined by the semi-norms pN.m(/) together with sup [/I 

and supK ID~/I where K varies over all compact sets not containing 0 and ~ varies 

over all multi-indices. Then it is clear tha t  ~ is a Frdchet space. I f  (5.8)and (5.9) 

cannot be fulfilled, then the sequence (l~xl](~),  ]~1](~2) . . . .  ) belongs to l ~ for every 

/ E ~ .  We thus have a closed everywhere defined mapping of ~ into 1 ~, and the 

closed graph theorem shows tha t  it must  be continuous. For a suitable constant C, 

integers N ' ,  N and m and a compact set K not  containing 0 we therefore have 

sup I~[Ih~,)l<C{sup Ill+ Y sup ID~/l+p~.m(/)} (le:~). (5.10) 
I ~ 1 ~ '  

In  particular, this estimate holds when /fiC~ (too), 0 <  5 <  1, and we can choose ~ so 

tha t  ~o0 N K = O. Then we obtain 

sup I~,11h~,)l -< c {sup I/I +p~.~ (/)} (/E c r  (~oo)). (5.1o)' 

Now choose ~pfiC~ (coo) such tha t  ~o>~0 and j" ~pdx = 1, and set 

where k s is the largest integer < log I~J], which is positive for large ~. Then [j E Cg' (o)0) 

for it is the convolution of k s functions with support  in o)0/~, and we have Ib(~,ll = 1 

so tha t  the left hand side of (5.10)' with /=[J tends to infinity as fast as [~J[ when 

~ --~ c~. We have 

v, t W}lee=ck'/=o(ler ( j ~ ) .  

I f  we can prove tha t  PN.m (/j) is bounded when ~-~cr  we will have a contradiction 

with (5.10)' and the theorem will be proved. 

Let  ~ E E  and ~EC" satisfy the condition I ~ - ~ l ~ m  log ]el as in the definition 

of PN.m, and put  z = (~-~j ) /k j .  Then we have 

1~1<1~-51+1~-~1+1~1<~r I~1+~ ~'+~. 
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For  a sufficiently large constant  O we have m log I~] < �89 + C, so we obtain  with 

another  constant  C > 1 

I~1 < r e~' (1 + ~, I~]) < C(e (1 + I~l))~'. (5.11) 

Since I I m  z[ = I I m  ~l/ks < m (log ]~])/lc~, we conclude tha t  

e ' ~ '  < o ~ (e (I + ]zl)F. (532) 

Next  we~ claim t h a t  ]z[ has a lower bound  which --> c~ with J- To prove this we 

consider two different cases: 

d(~j ,E) -mlog  (3]~,]). Since d(~,,E)/]r when j - > ~ ,  we find t h a t  ]z] 

has a lower bound  which ->oo with j. 

~. H I~-~,1>~1~,1 we have I ~ l < ~ l ~ - ~ , l + l ~ , l < i l ~ - ~ , l ,  so w e  obtain  

k,l~l > ~ I ~ 1 - ~  log ]~l > �89 i~1 > �89 I~,1 

if i is sufficiently large. Hence ]z] again has a lower bound  which -> oo with j. 

Wi th  the same assumptions on ~j, $, ~, and z as above we have by  (5.11), 

IL (~)1 ]~IN< cNI ~(z) eN(1 + IzlVI ~. (5.13) 

Since z satisfies (5.12) we have ]~(z)eN(l+]z])~r 1 if lz] is sufficiently large, which 

proves tha t  P~.m (Is)->0 when j--> ~ .  The proof is complete.  

To use this theorem we need a lemma. 

LEMMA 5.5. Let /E • ' ,  let ~j-->o~ in R" and assume that vr(z;~j ) converges to a 

plurisubharmonic /unction V with supporting /unction h. Then there exists a set E such 

that d(~j,E)/log I~j]->c~ and the supporting /unction of limcE3,~ vr(z,~) is equal to h. 

Proof. We assume in the proof t h a t  h 4 = -  oo; the case h = -  c~ is handled in 

the same way.  Let  N be the  order of /. Since g ( z ) ~ N + h ( I m  z) we can for every  

integer k find ]k so tha t  

v I ( z ;~ j )<N+l+h( Imz  ) if [z [<2]r  and 1~>s 

I f  we introduce the inverse of the funct ion k --> ik this means tha t  we can find R j - >  c~ 

when i - >  ~ so tha t  
v i ( z ;~ j )<N+l+h( Imz  ) if N < 2 R j .  

We m a y  of course choose R, so tha t  Rj log I~J] = o (]~sl) when j--> oo. 
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Now let E be the set of all ~ such that  

1 ~ -  ~l 1> R~ log l ~,1 for every j. (5.]~) 

Then d($~,E)/log I~r162 when ?'-->~. If I~-~,I<R,  log I~1 we note that since 

it follows that  

if [r It, i, 

if I r  logl ,l. 

Since I~-~jl<Rjlog I~1~o(1~1), the quotient I~1/1~1 approaches 1 if i tends to in- 

finity. Hence 
lim v1(z; ~) <<.N + l + h ( I m  z), 

C E ~ - - >  ~ 

which proves the lemma. 

THEOREM 5.3. Let /1 . . . . .  /~e~ '  and let (h 1 . . . . .  h k ) e ~ ( / 1  . . . . .  /j,), Then one can 

/ ind / e  E" with sing supp ] =  {0} so that the supporting /unction o/ ch sing supp/~+/j  

is equal to hj /or ~ = 1 , . . . ,  k, and moreover (0, h I . . . . .  hk) e ~ ( / , / 1  . . . . .  /k). 

Proo/. Let ~--> ~ be such that  vii(z; ~ )  for j =  1 . . . . .  k converges to a plurisub- 

harmonic function with supporting function hi. For every ~ we choose a set E~ ac- 

cording to Lemma 5.5 and set E =  (J~Ej. Then we choose / according to Theorem 

5.2. For a suitable subsequence of the sequence ~ we then have that  v1(z; ~ )  con- 

verges to a plurisubharmonie function with the supporting function 0, which proves 

that  (0, h 1 . . . . .  hk) E~(/ , /1  . . . . .  ]k). On the other hand, let ~, be an arbitrary sequence 

-->c~ in RL Passing if necessary to a subsequence we may assume either that  ~, E E 

for every v or that  ~], E C E for every v. In  the former case we have vI(z; ~,) --> - cr 

in the latter case the supporting function of lim vri (z; y,) if the limit exists is ~< hi. 

Hence it follows from Theorem 5.1 that  (H 1 . . . . .  Hk) E~(/-)e /x  . . . . .  [~[~)  implies that  

Hs~< h~ for every ~. Since we have just seen that  equality takes place when the se- 

quence ~, is a suitable subsequence of the sequence ~,  the theorem follows from 

Lemma 5.2 and Lemma 5.3. 

COROLLARY 5.3. Suppose K j  are convex compact sets such that (5.6)holds. Then 

(5.5) must  be /ul[iUed. 

Proo/. From Theorem 5.3 we know that  for every x and (h 1 . . . . .  hk) ~ ( / 1  . . . . .  /k) 

one can choose / with sing supp / =  {x} so that  ch sing supp /~e ]j has the supporting 

function <x, ~>+hj(~) for j = l  . . . . .  k. If  (5.6) holds it follows that  
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<x,~>+hj (~)<Hj(~)  ( j = 2  . . . . .  k) ~ <x,~>+hl(~)-<<H,(~). 

I f  h fi :H and h + hj <~ Hj (j = 2 . . . . .  k) we therefore obtain <x, ~> + h I (~) < H 1 (~) if <x, ~> ~< 

h(~), and since h(~) is the least upper  bound of smaller linear functions we obtain 

finally tha t  h + h 1 ~< H I, which proves (5.5). 

T H ~ O R E ~  5.4. Let /1 . . . . .  /~ be elements in E' with disjoint singular supports and 

let / = / 1 + . . . + ~ .  For every h e ~ ( / )  one can choose (h~ . . . . .  hk)e~/(/1 . . . . .  s  such that 

sup hj ~< h (5.15) 
i 

and /or arbitrary (h i . . . . .  h~) e~( /1  . . . . .  /k) one can choose h e a t ( l )  so that 

h ~< sup hi. (5.16) 
t 

Proo/. Let  h E~t(/) and choose /o t iS '  with sing supp /o={0}  so tha t  eh sing 

supp /o-~e/ has the support ing funct ion h (Theorem 5.3). We have 

k 

/ o ~ / = ~ / o ~  (5.17) 
1 

and since /o~/.., have disjoint singular supports  we obtain 

k 

ch sing supp (/o ~ / )  = eh U sing supp ( /o*]j) .  
1 

(5.18) 

Choose hj so tha t  (0, h I . . . . .  hk) E ~H (/o,/1 . . . . .  /~), which implies t ha t  (0, hs) E ~/(/o,/J) for 

j = 1 . . . . .  k. Then  Theorem 5.1 shows t h a t  the  support ing funct ion of ch sing supp 

/0-x-/s is larger than  or equal to  hi, so t ha t  (5.18) gives hj<~h for eve ry  j. 

On the other  hand,  given (h I . . . . .  hk)E'.H(/1 . . . . .  /k) we can choose / 0 e ~  ' with 

sing supp /o  = {0) so t ha t  hj is the support ing funct ion of ch sing supp/o  * / j  for j = 1 . . . . .  k 

(Theorem 5.3). Then  (5.17) gives tha t  the support ing funct ion of ch sing supp /o-X-/ 

is ~< sup~ hi, and if we choose h so t ha t  (0, h)E~/( /o , / ) ,  we obtain (5.16). 

COROLLARY 5.4. I f  under the assumptions o/ Theorem 5.4 at least one o/ the 

/unctions lj is slowly decreasing, then f is slowly decreasing. I/  ~(/j) only contains the 

supporting /unction of ch sing supp /j /or j= 1, 2,. . . ,  k, then ~t(/) only contains the 

supporting /unction o/ eh sing supp /. 

Example. If  / is a distr ibution with supp / =  {0) then  ] is a polynomial  and i t  

is trivial t ha t  t is slowly decreasing so t ha t  ~/(/) only contains the  funct ion 0. B y  
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Corollary 5.4 we therefore conclude tha t  if s u p p /  consists of a finite number  of 

points then ] is slowly decreasing and ~ (/) consists of the supporting function of supp 

only, hence Theorem 5.1 gives tha t  (1.2) is valid. This was also proved in [5]. 

6. Existence theorems for convolution equations 

Combination of the results obtained in section 5 with those of H5rmander  [5] 

immediately gives existence theorems for the convolution equation 

S ~ u = /  (6.1) 

when S E~ ' .  Let  f2 i and f2 s be two open sets in R n such tha t  

~ l  - supp S c ~s, (6.2) 

which implies tha t  S-)r u E O '  (~1) for every u E • '  (~S)" 

THEOREM 6.1. Let f21, f22 be convex. Then (6.1) has a solution u E O ' ( ~ s )  /or 

every /~0'(~'~1) i/ and only i/ ~ is slowly decreasing and every x ER n such that 

( x } -  k c f22 /or some k E ~ ( S )  is in /act in ~21. 

Proo/. Choose a fixed k E ~ ( S )  and set K =  (x; ( x ) - k c K s } ,  where K s is a con- 

vex compact subset of f22 so large tha t  f21 N K:#O (cf. (6.2)). Then K is convex. In  

view of Theorem 5.3 we can for every x E K N ~ l  choose ~ E ~ '  with sing supp ~ = {x~ 

so tha t  sing supp ~ ~e ~ = (x~ - k ~ Ks, and after  multiplying ~ by a function in C~ (f21) 

one may  assume tha t  ~ E E' (f21). I f  the equation (6.1) has a solution u E~)' ( ~ s ) f o r  

every / C O '  (f21) it now follows from Theorems 4.1 and 4.2 in t tSrmander  [5] tha t  

K ~ ~1 is relatively compact in ~2i, and since K is convex this shows tha t  K is a 

compact subset of ~1" In  particular this implies tha t  ~ ( S ) ,  so tha t  ~ is slowly 

decreasing according to Lemma 5.4. Thus the necessity of the conditions in the theo- 

rem is proved. To prove their sufficiency, let K s be a compact subset of ~s  and 

let ~EE'([21), sing supp ~ c K ~ .  I f  the distance from K 2 to ~ s  is ~, then the 

compact set 

M = {x; (x} - k ~ Ks} (6.3) 

also has distance at least (~ to C ~  since M + ( x ;  Ixl~<e)c~2, if ~<(~. Furthermore,  

M is contained in ch sing supp S § K s since o ~= k c ch sing supp S. Hence the closed 

convex hull of all sets (6.3) with k E ~ ( / )  is a compact subset K i o f /2  i with distance 

>/~ to C f2i, and we have 



302 L. HORMANDER 

<x,~><Hl(~) if <x ,~>+h(~)~<H~(~)  for some hET-t(S), 

where / t l  and  //2 are the support ing funct ions of K x and of K s. Since functions in ~H 

are upper  bounds of families of linear functions,  this means t h a t  

hlE~ , hE~(~), hx +h<~H ~ implies hx <.H r 

From Corollary 5.1 with [l=e} and  [~=]~ i t  follows therefore t h a t  ch sing supp 

~ - ~ c K ~  implies ch sing supp ~ v c K  1, when ~ E ~ ' ,  which is one of the requirements 

in the definition of a s t rongly S-convex pair  given in H6rmander  [5]. Since k c ch supp S 

we also have 
{x} - ch supp S c K s ~ x E K 1 

so the theorem of supports  (Theorem 4.2) gives t h a t  supp ~ : K  1 if ~v E ~ '  and  supp 

* ~ ~ K s. Hence the pair  (G1, G~) is s t rongly S-convex and  the  theorem follows 

f rom Theorem 4.5 in H6rmande r  [5]. 

COROLLARY 6.1. Let 0 ~ = S E E  ', and assume that "~t(S) consists o/ the supporting 

[unction o[ ch supp S alone. I[ ~2 is convex and ~1 is the largest open set such that 

(6.2) ho/ds, then the equation (6.1) has a solution u e D'  (~2) /or every / e D'  (G1)- 

An  example where Corollary 6.1 can be applied is t h a t  where the support  of S 

consists of a finite number  of points (see the example at  the end of section 5). 

This case was also discussed in [5]. 

R e f e r e n c e s  

[1]. BO~r~rESEN, T. & FENCHEL, W., Theorie der konvexen K6rper. Berlin, 1934. 
[2]. CARTAZr H., Th~orie du potentiel newtonien, ~nergie, capacitY, suites de potentiels. Bull. 

Soc. Math. France, 73 (1945), 74-106. 
[3]. EHRENPREIS, L., Solutions of some problems of division I I I .  Amer. J.  Math., 78 (1956), 

685-715. 
[4]. - - ,  Solutions of some problems of division IV. Amer. J.  Math., 82 (1960), 522-588. 
[5]. I-ISRMANDER, L., On the range of convolution operators. Ann. Math., 76 (1962), 148-170. 
[6]. - - - - ,  Hypoelliptic convolution equations. Math. Scand., 9 (1961), 178-184. 
[7]. - - - - ,  Linear Partial Di]/erential Operators. Berlin-G6ttingen-Heidelberg, 1963. 
[8]. KoosIs,  P., On functions which are mean periodic on a half line. Comm. Pure Appl. 

Math., 10 (1957), 133-149. 
[9]. LELONG, P., Les fonctions plurisousharmoniques. Ann. Sci. l~cole Norm. Sup., 62 (1945), 

301-338. 
[10]. LIONS, J. L., Supports dans la transformation de Laplace. J. Analyse Math., 2 (1952- 

53), 369-380. 
[ l l] .  RAP6, T., Subharmonic Functions. Berlin, 1937. 
[12]. SCHWARTZ, L., Thdorie des distributions. Paris, 1950-51. 

Received July 9, 1963. 


