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1. Introduction 

W h a t  does i t  mean  to cut  a topological  space X along a subset  A? Consider two 

examples :  

(1) X is the  plane,  and  A is a t r i e d  (i.e. a Y). 

(2) X is a MSbius band,  and  A is the  equator .  

Note  t h a t  bo th  sets A have  e m p t y  inter ior ,  or, in the  t e rmino logy  of [20], are  thin; 

this  is necessary  if " c u t t i n g "  is to  make  much  sense. Now in bo th  examples ,  i t  is i n tu i t i ve ly  

clear  wha t  happens  when X is cut  a long A:  The  space X is rep laced  b y  a space X, and  if(s) 

p:  X - ~ X  is the  funct ion which maps  each po in t  of X to the  po in t  of X where i t  came from 

before cut t ing,  while A denotes  p - l ( A ) ,  t hen  p maps  X - A  homeomorph ica l ly  onto  X - A .  

I n  (1), X is the  p lane  wi th  a ( topological ly)  circular  hole, and  A is the  b o u n d a r y  of the  hole. 

I n  (2), where cu t t ing  is occasional ly  per formed  as a par lor  t r ick,  X is a cylinder,  A is a 

circle which is one of the  two components  of the  b o u n d a r y  of X, and  p lA is a double  

covering. Le t  us t r y  to  iden t i fy  those common proper t ies  of p and  A c  X which will lead  to  

a general  concept  of cut t ing.  (a) 

F i r s t  of all, p is cont inuous  and  closed, a n d - - a s  observed  a b o v e - - m a p s  X - A  homeo-  

morph ica l ly  onto X - A .  Moreover,  in bo th  examples  p lA is f ini te- to-one,  bu t  in genera l  

this  r equ i rement  mus t  be somewhat  relaxed,  as the  following example  shows: 

(3) I n  the  plane,  X consists of the  in te rva ls  jo in ing (0,0) to  (x, 1) for all x in  S =  

{1,�89189 ..... 0}, and  A ={(0,0)}.  

(1) Supported in part by a National Science Foundation grant. 
(*) We use -~-~ to denote an onto map. 
(a) I t  should be noted that a somewhat different method of cutting was implicitly considered by 

R. H. Fox in [7]. In many important cases (including Examples (1), (2), and (3)), Fox's cuts agree with 
ours; in general, however, Fox's map PF is a restriction of our map p, and the range of PF (unlike the 
range of p) need not be all of X. The exact relation between these two ways of cutting will be established 
in section 16. 
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In  this example, it is intuitively clear (remembering tha t  X - A  must  be homeo- 

morphic to X - A )  tha t  X consists of the intervals joining (x,0) to (x, 1) for x in S, while A 

consists of the points (x, 0) with x in S, and p is obvious. Note tha t  here p I A is not finite- 

to-one (since p-l(0,  0) = S • (0)), but  it is (compact, totally disconnected)-to-one, and tha t  

will always be the case. 

To isolate the essential property of A c X, consider what would happen if we cut X 

along A. I f  the original cut of X along A was performed properly, the answer must  be: 

Nothing happens. More precisely, if p: X - ~ X  is the map obtained by  cutting X along A, 

then p is a homeomorphism. Now the crucial property of A c  X which causes this behavior 

is tha t  A nowhere cuts X in the following sense:(1) A is thin in X, and whenever xEA and 

U is a neighborhood of x in X, then U - A  does not split into two disjoint open sets both 

having x in their closure. 

This completes our discussion of what to expect from cuts, and brings us to our 

principal theorem, which asserts that,  for Tychonoff spaces, such cuts are always possible, 

and are essentially unique in the following sense: I f  p: X - ~ X  and Pl: X I - ~ X  are both conse- 

quences, satisfying our conditions, of cutting X along A, then p and Pl are equivalent; 

tha t  is, there exists a homeomorphism k: X-~X1 such tha t  p = p l o k .  

THEOREM 1.1. Let X be a Tychono// space and A a thin subset. (~) Then there exist-- 

essentially uniquely---a Tychono// (a) space X with nowhere cutting subset A, and a continuous 

closed p: X- -~X which maps X - A  homeomorphically onto X - A  and maps A (compact, 

totally disconnected)-to-one onto A. 

In  the situation described in Theorem 1.1, we will say that  (X,A,p) is an (X,A)-cut. 

After some preliminary results in section 2 on proper maps (i.e. closed maps with 

inverse images of points compact) and monotone-light factorizations, and in section 3 on 

nowhere cutting sets, the proof of Theorem 1.1 will be given in section 4. I t  is not long, and 

depends only on Propositions 2.3, 3.5, 3.11 and 3.12. 

Since the map p in Theorem 1.1 is proper, it follows [12; Theorem 2.2] tha t  if X is 

compact, so is X, and if A is compact, so is A. The same is true for paracompactness and 

local compactness [12; Theorem 2.2]. Unfortunately, however, metrizability of X need 

not be inherited by X, as the following example shows: 

(1) This  concep t  (bu t  n o t  th i s  ter~l inology) was  i n t roduced  b y  J .  de  Groot  [11]. (See also Freu-  
d e n t h a l  [7].) For  c o m p a c t  spaces ,  i t  h a s  r ecen t ly  rece ived  considerable  a t t e n t i o n  f rom Sklyarenko  

(see, for ins tance ,  [17]), who  calls Y a per]oct compac t i f i ca t ion  of X if Y - X  nowhere  cu ts  Y. Whi l e  some  

of our  work  is s imi lar  in spir i t  to  Sk lyarenko ' s ,  t he re  is l i t t le over lap.  

(~) Note  t h a t  we need  no t  a s s u m e  t h a t  A is closed. 
(a) Propos i t ions  2.4 a n d  2.5 i mp ly  t h a t  essent ia l  u n i q u e n e s s  ac tua l ly  e x t e n d s  to H a u s d o r f f  spaces  

X (since, sub jec t  to t he  o the r  a s s u m p t i o n s ,  t h e y  are  a u t o m a t i c a l l y  Tychono f f  spaces).  
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(4) X consists of 0 and all n -1 for n = 1,2 ..... and A consists of 0 alone. 

Here geometric intuit ion is little help in determining X and p:  X-->X. (Note tha t  X =~ X, 

since X - A  splits into {n-1]n even} and {n-l ln odd}, both  having 0 in their closure). 

As a mat te r  of fact, X = f l ( X - A )  ( that  is, the Stone-~ech compactification of the countable 

discrete space X - A ) ,  and p is the unique extension of the ident i ty  map  on X - A . ( 1 )  

This follows from Theorem 1.1, once it is known tha t  f l ( X - A )  is to ta l ly  disconnected 

[10; p. 90] and that ,  if E is a Tychonoff  space, f i e -  E nowhere cuts f ie  (Proposition 3.5). 

This example is ra ther  typical; whenever one's  geometric intui t ion fails to  produce X 

for metrizable X, one m a y  expect X to be non-metrizable.  All the same, it would be nice 

to  have a somewhat  more precise criterion for metrizability, and  fo r t una t e ly - - a t  least for 

separable metric X - - a  very  sat isfactory one is available. Let  us say  tha t  A c X nowhere 

scatters X if, whenever aEA and U is a neighborhood of a in X,  then any  disjoint open 

covering of U - A  is locally finite at  a. This concept  is discussed in section 6. Now it is no t  

hard  to show tha t  A nowhere scatters X if and only if A nowhere scatters X (Proposition 

7.2), and  that ,  in a first countable (3) space, nowhere cut t ing sets are nowhere scattering 

(Proposition 6.2). Hence if X is to be metrizable, or even first countable, A mus t  nowhere 

scatter  X. (This implies that ,  in Example  (4) above, X cannot  be metrizable). Tha t  estab- 

lishes the  easier half of the following fundamenta l  result, proved in section 7. 

T H E O R E M  1.2. I /  (X,A,p) is an (X,A)-cut, and X is separable(3) metric, then the ]ol- 

lowing are equivalent. 

(a) X is separable metric. 

(b) X is first countable- 

(c) A nowhere scatters ~ .  

For  compact  spaces, Theorem 1 .2- - together  with Theorem 1 .1~has  some bearing on 

the Freudenthal  compactif icat ion [8], which is discussed at  the end of section 7. 

While in general we have only an existence theorem to guarantee  tha t  cuts are pos- 

sible, there are three situations where we can describe them more explicitly. Firstly,  if X 

is metrizable, A nowhere scatters X,  and  X - A  is locally connected, then X is s imply the 

completion (or pa r t  of the completion if X is not  complete) of X - A  remetrized in a natura l  

manner  (see section 8). Secondly (see section 9), if X is a locally finite simplicial complex 

and  A a subcomplex, then X and A are also easily described complexes, and p is piecewise 

(1) More generally, X =fl(X-A) whenever X is compact metric and X - A  is 0-dimensional. 
(2) X is ]irst countable if, for x E X, there exists a countable base for the neighborhoods of x. 
(a) I do not know whether this result, or something like it, remains true for arbitrary metric spaces. 

(See, however, the special cases treated in Theorem 8.1 and Proposition 11.1.) 



4 E. MICHAEL 

linear. Finally (section 10), if X is a mapping cylinder with base A,  then X is a mapping 

cylinder with base A. 

Perhaps the most important  example of nowhere cutting sets are sets which are 

collared in the sense of M. Brown [5] (see Example 3.6). I f  A is collared in X, we say tha t  

A is multicollared in X, and such sets are studied in section 11. 

In  section 12 we show tha t  if a thin subset has certain properties locally, then it also 

has them globally. A typical result, whose proof depends on a theorem of M. Brown [5; 

Theorem 1], asserts tha t  a locally multicollared subset of a metric space is multicollared. 

I f  X - A  has only finitely many  components, then these are in a natural  one-to-one 

correspondence with the components of X, and, under certain additional hypotheses 

(which are always satisfied if X is E" and A is non-empty,  closed, and connected), with the 

components of A. This is proved in section 13. 

In  section 14 we generalize the process of cutting to a process for "completing a spread", 

and generalize Theorem 1.1 accordingly. In  section 15, we compare this completion process 

to a somewhat different one due to 1%. H. Fox. In section 16, finally, we compare the cutting 

process which grows out of Fox's  completion to the one studied in this paper, 

To conclude, the author gratefully acknowledges many  helpful conversations with 

Morton Brown and John Isbell. 

2. Proper maps, monotone-light factorizatlons, and spreads 

According t o  Bourbaki [4; w 10, Definition 1 and Theorem 1], a continuous map 

/: E-->F is proper if it is closed, and inverse images of points are compact. (Such maps are 

called compact by Vainstein [21], fitting by  Henriksen and Isbell [12], and perfect by  

Aleksandrov [1].) Proper maps are compact in the sense of Whyburn  [24; 8] (i.e. inverse 

images of compact sets are compact); the converse is true in metric spaces [24; 8.2], but  

not in general. 

The following result is known, but  I have not found an explicit s tatement  in print. 

P R O I ' O S I T I O ~  2.1. Let /: E---~F be proper. I /  E is dense in a Hausdor/] space El,  

and F c  F1, then any continuous extension/1:E1--->F1 o / f  maps E 1 - E  into F 1 - F .  

Proof. Suppose not. Then there is an x 6 E 1 - E with fx(x) E F. Let y E fl(X) and A = f-l(y).  

Now A is compact and x ~ A ,  so there exist disjoint open U and V in E 1 with xE U and 

A c V .  Then x E ( U N E ) - c ( E - V ) - ,  so 

y = fl(x) e F  n ( / l ( E -  V))-  = F N (/(E - V))-  = ](E - V), 

which is false. That  completes the proof. 
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Proposition 2.1 shows tha t  the requirements of Theorem 1.1 are somewhat redundant.  

In  fact, if p: X-~-~X is a proper map which maps X - A homeomorphically onto X - A ,  then 

p automat ica l ly  maps A onto A. 

The following result was proved by  Bourbaki [4; w 10, Proposition 5], and will be used 

later. 

P R O P O S I T I O N  2.2. I /  h: E-->G and g: G->F are continuous, i] G is Hausdor//, and 

i[ / = go h, then / is proper i/ and only i]g and h are both proper. 

Recall tha t  a continuous/:  E-->F is monotone (resp. light) i f / - l (y )  is connected (resp. 

totally disconnected) for every y E F. I f  ]: E-->F is continuous, then / = g o h  is a monotone- 

light factorization of / if, for some G, the map h: E - ~ G  is monotone and g: G-->F is light. 

Moreover, we also require tha t  h be a quotient (=quasi-compact) map, meaning tha t  U 

is open in G whenever h-l(U) is open in E. This last requirement is not standard, but  it  

permits the conclusion, following Whyburn [23; Theorem 2], that  the monotone-light 

factorization--if  it exists--is  essentially unique. In  fact, G must  then--essent ia l ly--be  the 

space of all components of all /-l(y) (yE F) with the quotient topology, and h: E - ~ G  

must  be the quotient map. There is then a unique g: G - ~ F  such tha t  goh=/ ,  and 

this g is continuous. I f  F is a Tl-space, it can be shown tha t  g must  be light, so that  

then the monotone-light factorization of / exists. While G is a Tl-space whenever F is, 

G need not be Hausdorff even when E and F are both metrizable. I f  / is proper, however, 

then G is Hausdorff whenever E and F are Hausdofff,  so tha t  g and h are then also 

proper by  Proposition 2.2. This was asserted by  Ponomarev [16] for compact E and F 

(which is all we need in the proof of Proposition 2.3 below), but his proof is valid in 

general. Since these facts are neither well known nor very accessible, we take time out to 

outline their proofs. 

To show tha t  g light if F is T 1, let yEF,  and suppose Ccg-~(y) is connected. Then 

C is connected, and C~g-l (y)  since g-l(y) is closed. Since the inverse image, under a mono- 

tone quotient map, of a closed connected set is connected (this is easily verified), h-l(C) 

must  be connected, and hence is contained in a component of / - l (y) .  Hence 0 - - a n d  thus 

C--contains a t  most  one point. 

To show tha t  G is Hausdorff whenever E and F are Hausdofff and / is proper, let 

Yl, Y2 E G, and let us separate them by  disjoint open sets U 1 and U~. I f  g(Yl)4= g(Y~), this is 

trivial. I f  g(Yl) =g(Y2) =z, then h-l(yl) and h-l(y2) are different components of the compact 

Hausdorff space/- l (z) ,  and hence [3; p. 233] there exists a clopen C 1 in / - l (z )  containing 

h-l(yl) and not h-l(y~). Then C 1 and C 2 =/-l(z)  -C1  can be separated in E by disjoint open 

sets W1 and We. :Now W = W 1 U W2 is an open set containing/-l(z) ,  so, since / is closed 
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z has an open neighborhood V in F with ]-I(V) = W. Now if W~' = Wi N/-I(V), then Wt' is 

an open inverse set under h, so we may  let Ul =h(W~'). 

The result just proved, together with Proposition 2.2, imphes tha t  G inherits any  

property possessed by  both E and F which implies Hausdorff and is preserved by  images 

(or inverse images) of proper maps. Among such properties are metrizabihty [19], para- 

compactness [12], and normality [23; Theorem 9], but  not the property of being a Tychonoff 

space [12; 4.2]. Nevertheless, we have the following result, which is all we shall really need 

concerning monotone-light factorizations. 

e R o P o S I T I 0 N 2.3. I /  /: E--+F is proper, and i / E  and F are Tychono//spaces, then 

so is the middle space G o/the (essentially unique) monotone.light/actorization o/ /, and the 

/actors are proper. 

Proo/. Let ]: flE-->flF be the continuous extension o f / .  If  [ = ~ o y  is the monotone- 

light factorization of [, then the middle space G is (compact) Hausdorff by  the result of 

Ponomarev [16] considered earlier. Since / is proper, E=/-X(F) by Proposition 2.1. Let 

G=g-I(F) (so tha t  E=h-I(G)), and let g=~]G and h=f~]E. Then g and h are proper, and 

/ =gob is a monotone-hght factorization of/ ,  with middle space G. That  completes the proof. 

Note tha t  Proposition 2.2 was not needed to show tha t  the factors in Proposition 2.3 

are proper. 

We conclude this section with a look at  spreads in the sense of R. H. Fox [7]. According 

to Fox, a continuous/:  X--> Y is a spread if X and Y are T 1 and if the eloper/subsets of all 

/-I(U),  with U open in Y, are a base for the open subsets of X. Every  spread is clearly light, 

but  a simple example in [7; p. 255, footnote] shows tha t  the converse is false. Nevertheless, 

we have the following result, a special case of which appears in [7; p. 255, footnote]. (We 

use the fact tha t  a totally disconnected compact Hausdorff space is O.dimen~ional, in the 

sense of having a elopen ( = closed and open) base [14; p. 20, A].) 

P R O P O S I T I O N  2.4. I] p: E-->F is light and proper, and i/ E is Hausdor//, then p 

is a spread. 

Proo/. Let xEE,  and let U be a neighborhood of x in E. Let  Z=p-l(p(x)) .  Since Z is 

0-dimensional, there exists a clopen C 1 in Z with x E C I = ( U N Z  ). Let C2=Z-C1 . Then 

C 1 and C~ are disjoint compact subsets of E, so can be separated by  disjoint open sets W1 

and W 2, and we may  suppose W I ~  U. Let  W = W1 U W2; then W is an open neighborhood 

of Z in E, so V = F - p ( E - W )  is an open neighborhood of p(x) in F,  with p - l ( V ) ~  W. 

But  now W 1 N p- l (V)  is a elopen subset of p-l(V),  and 

xe(W1 np-l (V))  = U, 
which completes the proof. 
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Further  results on the relation of spreads to proper maps are found in sections 14 and 15. 

The following proposition is due to J.  R. Isbell; the analogous result for regular spaces 

was proved by Fox in [7]. 

P R O P O S I T I O n  2.5. (Isbell). 1/ p: E-->F is a ~r and i / F  is a Tychono]/ space, 

then so is E. 

Proo/. Since p is a spread, E is by  assumption T r Now let x E E, and let V be a basic 

open neighborhood of x, so that  V is clopen in p- l (W) for some open neighborhood W 

of p(x). To define a continuous/:  E-->I with/(x) = 0 a n d / ( E  - V) = 1, first pick a continuous 

g: F-->I with g(p(x))=0 and g ( F - W ) = 1 ,  and then let / be gop on V and 1 elsewhere. 

This / is continuous, since it is gop on V and 1 on E -  V, and V and E - V are closed sets 

whose union is E. That  completes the proof. 

3. Nowhere cutting sets 

I f  A is a subset of a topological space X,  then A nowhere cuts X if A is thin in X (i.e. 

has empty  interior) and if, whenever a EA  and U is a neighborhood of a in X, then U - A  

does not split into two disjoint open sets both having a in their closure. (This requirement 

clearly need only be satisfied by  all U in some local base at  a.) Our first three lemmas 

follow directly from the definition. 

L ~. M M A 3.1. The/ollowing properties o /a  thin A c X are equivalent. 

(a) A nowhere cuts X .  

(b) I /  U is open in X ,  and {U1, U2} is a disjoint open covering o/ U - A ,  then (UI, U~} 

is a disjoint open covering o] U (where U~ is the closure o/U~ in U). 

The following corollary shows how "nowhere cutting" is related to some similar con- 

cepts. The implication (b) ~ (c) follows from Lemma 3.1, and the others are clear. 

COROLLARY 3.2. Suppose A c X is thin. Then always ( a ) =~ ( b ) :~ ( c ) ; i / X  is locally 

connected, then (a), (b), and (c) are equivalent. 

(a) X - A  is locally connected at A (i.e. i / a E A ,  every neighborhood U o /a  in X contains 

a neighborhood V o / a  with V - A  connected). 

(b) A nowhere cuts X .  

(c) I] U c X is open and connected, then U -  A is connected. 

Note that ,  if X is not locally connected, the conditions of Corollary 3.2 need not be 

equivalent. For instance, let Q be the rationals, and X = Q  • I; then A =Q • (0} satisfies 

(b) (see Proposition 3.4) but  not (a), while A =Q • {�89 satisfies (c) but  not (b). 
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L ~, M M A 3.3. Let A c X ,  and let ~ll be a collection o/open subsets o / X  which covers A.  

Then A nowhere cuts X i /and only i / A  N U nowhere cuts U/or every U E ~l. 

We now prove two important  propositions. 

P R O P O S I T I O N 3.4. I / E  is a topological space, E • {0} nowhere cuts E • I.  

Proo/. Clearly E • {0} is thin. Now let (x, 0 ) e E  • {0}. I t  suffices to show that ,  if 

U= V • [0,t) is a rectangular neighborhood of (x,0) in E x I ,  and if {U1, U~} is a disjoint 

open covering of U - A ,  then U 1 and U~ cannot both have (x,0) in their closure. Now for 

each x 'EV,  {x'} x(O,t) is  connected, and thus entirely in U 1 or entirely in U2. Hence 

U~= Vl • (0,t), where {V 1, V~} is a disjoint open covering of V. But  then (x,0)E U~ only if 

x E V~, and tha t  completes the proof. 

Note tha t  the proof of Proposition 3.4 actually proves the following stronger result: 

I] B c  Y is thin, and Y -  B is locally connected at B (see Corollary 3.2), then E x B nowhere 

cuts E • Y. 

Our next  result was proved in the proof--al though not explicitly stated in the state- 

m e n f ~ f  [13; Lemma 4]. (See also [17; Corollary to Theorem 1].) For completeness, we 

reproduce the proof. 

P R o P o S I T I O N 3.5. [13] [17]. I] E is a Tychono//space, fiE - E nowhere cuts fiE. 

Proo]. Let x Erie - E, let U be an open neighborhood of x in fiE, and let U N E split 

into two disjoint open sets V 1 and V~. Since E is dense in fiE, the set (U N E)-  =V1 U V2 

contains U, where the closures are taken in fiE. We must  show tha t  x ~ V1 fl V2- 

Suppose xE V1 N V2. Pick a continuous ~: flE-->I such that  ~(x) = 0  and q~(flE - U) = 1. 

Define/:  E-->I by 

/ (x)=�89 if x EV~ and ~ ( x ) <  �89 

/(x) = ~(x) otherwise. 

Then ] is continuous on each of the open sets V~ and E-({xEE]q~(x)<�89 N V2), and 

since these sets cover E, / is continuous on E. The continuous extension [ of )t over fiE 

coincides with ~ on V1, so [(x)=O, and is>~�89 on V~, so [(x)>~�89 This contradiction shows 

tha t  x ~ V1 f3 V~, and the proof is complete. 

We now come to our list of examples of nowhere cutting sets A ~ X. For Example  

3.6, recall tha t  A is collared in X in the sense of [5] if there exists a homeomorphism h 

from A x [0,1) onto an open neighborhood of A in X such tha t  h(a,O) =a for every aEA.  

EXAMPLE 3.6. A is collared in X .  (This formally strengthens Proposition 3.4, and 

follows from Proposition 3.4 and Lemma 3.3.) 
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EXAMPLE 3.7. A is thin, and X - A is locally connected at A .  (See Corollary 3.2.) 

EXAMPLE 3.8. X is an n-mani/old, and dim A ~<n-2.  (This follows from Corollary 

3.2 and the fact [14; p. 48, Corollary 1] tha t  a connected n-manifold remains connected 

after removal of a subset of dimension < n - 2 . )  

EXAMPLE 3.9. X is a metric space, A is thin, and X - A  is uni]ormly locally con- 

nected. (1) (This follows from Example  3.7.) 

EXAMPLv. 3.10. E is a Tychono]/ space, E ~ X ~ flE, and A = X - E. (This follows 

from Proposition 3.5 and the trivial fact that,if  B nowhere cuts Y and if ( Y - B ) c X c  Y, 

then B N X nowhere cuts X.) 

We now prove some results which will be needed elsewhere in this paper. 

PROPOSITION 3.11. Let /: X--~--~Y be a quotient map. Let A c  Y, wi th/- l (y)  connected 

/or all yEA,  and suppose/-I(A) nowhere cuts X .  Then A nowhere cuts Y. 

Proo[. We use Lemma 3.1. Clearly A is thin. Suppose U is open in Y, and {VD V2} 

is a disjoint open covering of U - A .  Let U'=/-I(U),  and V;=/-I(Vi)  for i=1 ,2 .  Then 

U' is open in X, and {V;, V~} is a disjoint open cover of U' - [ - I (A ) .  I f  V; is the closure of 

V, in U', then, by Lemma 3.1, {V~, V~) is a disjoint open covering of U'. Since [-~(z) is 

connected for all zEA,  V; =/-~(/(V[)) for i=1,2 ,  so tha t  {/(V~),/(V~)} is a disjoint open 

covering of U. By Lemma 3.1, tha t  completes the proof. 

The following result was proved by  E. Sklyarenko [17; Lemma 2]. 

PROPOSITION 3.12 [17]. Let X be Hausdor H, p: X--~ Y proper, A c y nowhere cutting, 

and p I p - I ( Y - A )  one-to-one. Then p is monotone. 

Proo/. I f  yE Y - A ,  then p- l (y)  consists of a single point. So suppose yEA.  I f  p-l(y) 

is not connected, then p-l(y) is the union of two disjoint closed--hence compact- -subsets  

C I and C~, which can be separated by  disjoint open sets W1 and W2. I f  W = W1 0 W~, 

then W is a neighborhood of p-l(y),  so p(W) is a neighborhood of y in Y. Let  

V~ = W~ - p - l ( A ) ;  since p maps p - l ( y _ A )  homeomorphically onto Y - A ,  {p(V1),p( V~)} 

is a disjoint open cover of p ( W ) - A .  Since V1 and V2 intersect p-l(y), both (p(V1))- and 

(p(V~))- contain y. That  contradicts the assumption tha t  A nowhere cuts Y, and the proof 

is complete. 

I f  X is normal in Proposition 3.12, t hen - -a s  the proof shows--i t  suffices if p is open 

or closed (rather than proper). 

(I) A metric space M is uni]ormly locally connected if to every e > 0 corresponds a (~ > 0 such that 
any two points x, y of M, with ~(x,y) <(5, lie in a connected subset of M of diameter <e. 
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PROPOSITION 3.13. I] Z c  Y c  X, and i/ Y - Z  nowhere cuts Y and X -  Y nowhere 

cuts X, then X - Z  nowhere cuts X. 

Proo/. We use Lemma 3.1. Clearly X - Z  is thin in X. Let  U ~ X  be open, and {U1, U2} 

a disjoint open cover of U - (X - Z )  = U fl Z. Let  V = U f3 Y, V1 = U1 N Y, and V~ = U2 N Y. 

If  W, is the closure of V, in V ( i=1,2) ,  then {W1, W,} is a disjoint open covering of V 

(Lemma 3.1), and hence, if R, is the closure of W, in U ( = t h e  closure of V, in U), then 

{R D R,} is a disjoint open cover of U. By Lemma 3.1, that  completes the proof. 

Recall that  (X,A,p) is an (X,A)-cut if the conditions of Theorem 1.1 are satisfied. 

L E M M A 3.14. I / (X ,  A,p) is an (X, A)-cut, and i / U  is open in X, then (p-i(U), p-I(U n A), 

p]p-l(U)) is a (U, U N A)-eut. 

Proo/. Clearly U N A is thin in U, and p-l(U N A) nowhere cuts p-l(U) by Lemma 3.3. 

The other requirements for a (U, U N A)-cut in Theorem 1.1 are also clearly satisfied, and 

that  is all we need. 

4. Proof  of  Theorem 1.1 

Let ]: fi(X-A)-->flX be the continuous extension of the injection map ]: X-A-->X.  

Let • =]-I(X),  and / = ] I X .  Then /: X - ~ X  is proper. We will show that,  if p: X--~X 

and A =io-l(A), then (X,A,p) is an (X,A)-cut if and only if p is the light factor of a mono- 

tone-hght factorization o f / .  Since such factorizations exist (with the middle space Tycho- 

neff and both factors proper) and are essentially unique (Proposition 2.3), that  will prove 

our theorem. 
h p 

Suppose X-->X-+X is the monotone-light factorization o f / ,  with h and p proper, and 

let A =p-l(A).  N o w / - 1 ( X - A )  = X - A  by Proposition 2.1, so / m a p s / - 1 ( X - A )  homeo- 

morphically onto X - A ,  and hence p maps p - I ( X - A ) = X - A  homeomorphically onto 

X - A .  By assumption, p is light and proper. Finally, A nowhere cuts X by Proposition 

3.11, because h is closed and h-l(A) =/-I(A) = 2  - ( X  - A ) ,  which nowhere cuts 2~ by Exam- 

ple 3.10. 

Suppose, conversely, that  (X,A,p) is an (X,A)-cut. Let  k = p - l [ ( X - A ) ;  then 

k: (X - A)-->X is a homeomorphism into. Let  k: fl(X -A)-->flX and@: flX-->flX be the continu- 

ous extensions of k and p, respectively. Then i5 o k agrees with ] on the dense set X - A ,  

and hence on all of f i (X -A) .  Now ~5-1(X)=X by Proposition 2.1, so k-1(X)=]- I (X)=X.  

Let  g = k[j~. Then / = p e g ,  p and g are proper, and p is light, so we need only check that  g 

is monotone. Note that  g-l(X - A )  = X  - A  by Proposition 2.1, and g is one-to-one on X - A ;  

hence g is monotone by Proposition 3.12, and the  proof is complete. 
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5. Lift ing mappings 

In  this section we prove a theorem (Theorem 5.3) which generalizes the uniqueness 

part  of Theorem 1.1. The theorem is preceded by  some preliminary results on extending 

maps defined on dense sets; these results have some independent interest, and will also be 

used to prove Theorem 14.2. 

Our first result is a very general extension theorem for continuous functions defined 

on sets with nowhere cutting complement, l~ecall tha t  a set-valued function ~ from E to 

the space 2 F of non-empty subsets of F is upper semi-continuous if (xE E iq~(x)~ V} is 

open in E for every open V c  F, and t h a t / :  E-->F is a selection for ~ if it is continuous and 

/(x)Eq~(x) for every xEE.  

PEOrOSITION 5.1. Let qD: E---~2 F be upper semi-continuous, with F regular and every 

q~(x) compact and totally disconnected, and let B ~  E be nowhere cutting, Then any selection g 

/or ~ ] ( E - B) extends uniquely to a selection / ]or q~. 

Proo/. Uniqueness of ] follows from the denseness of E - B .  To prove existence, it 

suffices [4; w 8, Theorem 1] to show that,  if xoEB and E o = ( E - B )  U (Xo}, then g can be 

extended to a continuous/:  Eo-->F with/(Xo) E~(x0). Let  us do that.  

For each neighborhood U of x0 in E0, let 

s ( u )  = ( g ( U -  {x0}))- n ~(x0). 

Since ~ is upper semi-continuous, S(U) is not empty.  Hence if 

$ = {S(U)]U a neighborhood of x 0 in E0} , 

$ is a collection of closed subsets of ~(x0) with the finite intersection property, and so has 

a non-empty intersection S. 

Now pick any Yo E S, and define/:  Eo-->F by 

/(x)=g(x) if x E E - B ,  

/(xo) = Yo. 

We will show tha t  / is continuous (which will imply tha t  Yo is actually the only point in S). 

We need only show continuity at  x o. So let V be an open neighborhood of Yo in F,  

and let C 1 be clopen in ~(x0) with yoEC1c (V N ~(x0) ). Let  C 2 =q~(xo)-C1. Then C 1 and C~ 

are disjoint compact subsets of F, so can be separated by  open sets W1 and W~, and we may  

suppose W1c V. Let  W = W 1 U W~, and U =g-l(W); then (Xo} U U is a neighborhood of 

x o in E o since ~ is upper semi-continuous. Let  Ui=g-x(w~) for i = 1,2. Now (x0} nowhere 
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cuts E 0 (since B nowhere cuts E), so x o is not in the closure of both U1 and U2 and hence 

{x0} U V~ or {Xo} U U s is a neighborhood of x• But  if (xo} U U 2 were a neighborhood of 

xo, then 

y o E S c  S({xo} U Us) c (9(U2))- cW2,  

which contradicts Y0 E W 1. Hence {x0} U U 1 is a neighborhood of x 0. But  

/({X0} ~J U1) = g(U1) ~J {Y0} c V, 

so / is continuous at  x 0, and the proof is complete. 

COROLLARY 5.2. Let ~: X--> Y and q: Y--> Y be continuous, with Y regular and q light 

and proper. Let A c  X be nowhere cutting. Then any continuous g: ( X - A ) - > u  such that 

7~] ( X - A ) = q o g ,  can be extended uniquely to a continuous f: X-->Y such that g = q o f .  

Proo/. For each x E X, let q~(x) = q-l(g(x)) = (q-lo~) (x). Since q is closed, the set-valued 

map q-1 is upper semi-continuous, and hence so is ~. Also, if x E X - A ,  then ~0(x) is compact 

and totally disconnected, and g(x) Eq~(x). Hence, by Proposition 5.1 there exists an f: X-->u 

satisfying our requirements, which completes the proof. 

/: 
A ~ f-l(B), making the/ollowing diagram commutative. 

THV, OR]~M 5.3. Let (X,A,p) be an (X,A)-cut, and (Y,B,q) a (Y,B)-cut. Suppose 

X-->Y is continuous with A ~  /-I(B). Then there exists a unique map I: X->Y, with 

f 
X Y 

I 
P~ ~q 

x / Y 

I] / is a homeomorphism onto, so is I. 

Proo]. Define g: X - A - ~ Y  by g(x)=q-l(/(p(x)), and note tha t  g is single-valued and 

continuous. Let  g =lop.  The first assertion now follows from Corollary 5.2. 

I f  / is a homeomorphism onto, we similarly obtain a continuous h: Y-->X such tha t  

p o h  = / - l oq .  But  h o t  is then the identity on the dense set X - A ,  and hence on all Gf X, 

and similarly f o h  is the identity on Y. Hence f and h are inverse homeomorphisms onto, 

and the proof is complete. 

Note tha t  Coronary 5.4, with / a homeomorphism onto, yields a new proof not de- 

pending on section 2- -of  essential uniqueness in Theorem 1.1. 
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6. Nowhere scattering sets 

Recall from section 1 tha t  a subset A of X nowhere scatters X if, whenever U is a neigh- 

borhood of aEA,  then every disjoint open covering ~ of U - A  is locally finite a t  a (i.e. a 

has a neighborhood W which intersects only finitely many  V E ~). 

I t  is easily checked that,  for A c X to nowhere scatter X, it is sufficient if each neigh- 

borhood U of a E A contains a neighborhood V of a such tha t  V -  A has only finitely many  

components. (This occurs, for example, if A is a subeomplex of a locally finite simplicial 

complex.) That  this condition is not necessary, however, is shown by  Example  (3) of the 

introduction. 

I f  the definition of nowhere scattering is altered by  requiring ~ to be finite and W 

to intersect only one V E ~, then one obtains a characterization of nowhere cutting. Hence 

if the definition of nowhere scattering is merely changed by  requiring ~ to be finite, one 

obtains a characterization of sets A which are both nowhere cutting and nowhere scattering. 

This yields the following analogue of Lemma 3.1. 

LEM~A 6.1. The ]ollowing properties o] a thin A c X are equivalent. 

(a) A nowhere cuts and nowhere scatters X .  

(b) I /  U is open in X ,  and {V~}~ is a disjoint open covering o / U - A ,  then {V~}~ is a 

disjoint open covering o / U  (where V~ denotes the closure o / V ,  in U). 

I t  is now easily checked tha t  all results in section 3 after Lemma 3.1, with the excep- 

tion of Proposition 3.5 and Example  3.10, remain true if "nowhere cutt ing" is replaced by 

"nowhere cutting and nowhere scattering". 

Simple examples, like a point on a line, show that  a nowhere scattering subset need 

not be nowhere cutting. The converse implication is, in general, also false (consider Example  

3.10, with E the integers), but we can prove: 

P R O P O S I T I O N 6.2. In / i rs t  countable spaces, nowhere cutting sets are nowhere scattering. 

Proo/. Let X be such a space and A a nowhere cutting subset. Let  xEA,  let U be a 

neighborhood of x in X, and ~q a disjoint open covering of U - A .  We suppose tha t  no 

neighborhood of x intersects only finitely m a n y  V E ~q, and obtain a contradiction. 

First, let us show tha t  no V E ~ has x in its closure. Suppose x E V0 for some V 0 E ~; 

then V 0 and ( U - A )  - V 0 form a disjoint open covering of U - A ,  so x is not in the closure 

of ( U - A ) - V  o. Hence some neighborhood of x intersects only V 0, contradicting our 

assumption. 

Now let B1, B2 .... be a base for the neighborhoods of x in X. By induction, we can 

pick elements Vi and Wi of ~q (i -- 1,2 .... ), all distinct, such tha t  V~ N B~ =~ o and Wt N B~ =~ o 
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for all i; this is easily done, since x e ( U - A ) -  (because A is thin). Now let V =  LI~IVi, 

and W = ( U - A ) - V .  Then V and W form a disjoint open covering of U - A ,  and both 

have x in their closure, which is a contradiction. This completes the proof. 

In  the remainder of this section, we characterize nowhere scattering sets under special 

circumstances. These results will not be needed for the proof of Theorem 1.2. 

PROPOSITION 6.3. I /  X is a locally compact (1) metric space and A ~  X is O-dimen- 

sional, then A nowhere scatters X i[, a~A only i[, every disjoint open covering o / X - A  is lo- 

cally/inite at every point o / A .  

Proo]. The condition is clearly necessary. To prove sufficiency, let aEA,  let U be an 

open neighborhood of a in X, and ~ a disjoint open covering of U - A .  We must show that  

is locally finite at a. 

Let R be open, with a e R c R ~  U and R compact. Let C be a clopen subset of A 

such that  a e C ~ ( R  N A), and let 

N = {xeR id (x ,C  ) < d(x,A -C)}.  

Then N is open in X, and N N A = C. Also B = J~ - h r does not intersect A and is compact. 

Now let ~{9={VN~IVEI9};  it suffices to show that  2/9 is locally finite at a. Now 

~/3 = ~ 1  U 2{92, where 

l/91 = {WE ~ql W N B~: o}, and 202 = {We 201W~N} .  

Since 1/91 is a disjoint, open covering of B, and B is compact, ~91 is finite. Now the ele- 

ments of 202, as well as their union W2, are clopen in 2 ~ - A  and in N - A ,  and hence in 

X - A .  Hence 202 U {(X - A )  - W2} is a disjoint open covering of X - A ,  and is therefore 

--along with ~//92--1ocally finite at a. Hence so is l/9, and the proof is complete. 

In  the proof of Proposition 6.5 below, we need the following unpublished result of 

H. H. Corson. 

LEM~A 6.4 (H. H. Corson). A compact Hausdor]/ space, which is the continuous image 

o / a  separable metric space, is metrizable. 

Proo/. If E is compact Hausdorff, then E • E is regular and the diagonal A is closed 

in E z E. Hence (E • E) - A  can be covered by open sets whose closures in E • E miss A; 

since ( E x E ) - A  is also the continuous image of a separable metric space, it has the 

Lindel6f property, so (E • E) - A  is covered by countably many such sets. Hence A is a 

(1) It suffices ff X is locally compact at every point of A. 
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G~ in E • E, which implies that  E is metrizable. (Proo/: Let A = f]~~ 1Un, with Un open, 

and pick open Vn., in E (i = 1 ..... k(n)) such that  

k(n) 

A c [3 (V~, i x Vn, t) c U~ for all n; 

then the set of all such Vn. ~ is a countable base for E.) That  completes the proof�9 

Recall that,  if E is a topological space and x E E, then the quasi.component of E con- 

taining x is 

f') {Cc E[C clopen, xeC}. 

The space Q(E) of quasi-components of E is topologized by taking all sets of the form 

{CeQ(E)[Cc U} U clopenin E 

as a base for the open sets. This topology makes the natural projection ~: E--~Q(E) 

continuous, but not, in general, a quotient map. 

PROPOSITION 6.5. I[ X is a compact metric space, the /ollowing properties o/ a 

O-dimensional subset A are equivalent: 

(a) A nowhere scatters X. 

(b) Every disjoint open covering o / X - A  is/inite. 

(c) The space Q o/quasi.components o / X - A  is compact metric. 

(d) X - A  has only countably many clopen (in X - A )  subsets. 

Proo/. (a)~ (b). Let ~/be  a disjoint open covering of X - A .  By assumption, each xEA 

has an open neighborhood intersecting only finitely many U E~. Surely every point of 

X -  A has such a neighborhood, so X is covered by such neighborhoods, and hence, being 

compact, by finitely many of them. Hence ~ is finite. 

(b) ~ (a). This follows from Proposition 6.3. 

(b) ~ (c). Compactness of Q follows from (b), and metrizability from Lemma 6.4. 

(c) ~ (d). (After l~reudenthal [9; 2.4].) By (c), Q has a countable, clopen base B. Thus 

each elopen set S c Q  is the union of sets in B, and, since S is compact, of finitely many. 

Hence Q, and thus also X - A ,  has only countably many clopen sets. 

(d) ~ (b). If ~ were an infinite disjoint covering of X - A ,  each of the uncountably 

many subcollcctions of ~ would have a different clopen union, contradicting (d). 

Note that,  under the assumptions of Proposition 6.5, the property of A nowhere 

scattering X was characterized entirely in terms of properties of X - A  alone. 
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7. Proof of  Theorem 1.2; application to Freudenthal compactification 

Throughout this section, let (X, A,p) be an (X,A)-cut. 

PROPOSITION 7.1. A nowhere scatters X i/, and only i/, A nowhere scatters X. 

Proo/. Suppose A nowhere scatters X. Let  aEA, let U be a neighborhood of a in X, 

and ~q a disjoint open covering of U - A .  Now for each xEp-l(a), the set p-l(U) is a neigh- 

borhood of x in X, and 

•--I(V ) = {p-l(V) I VeV} 

is a disjoint open covering of p-l(U) - A .  Hence x has a neighborhood N ,  with the property 

of intersecting only finitely many  elements of p-l(~q). Since p-l(a) is compact, it is covered 

by  finitely many  open (in X) sets with this property,  and hence by  a single one (their 

union), say _N. Then p(N) is a neighborhood of a (since p is closed) intersecting only finitely 

many  VE~0. 

Suppose A nowhere scatters X. Let  xEA, let U be a neighborhood of x in X, and ~0 

a disjoint open covering of U - A .  Since p is a spread (Proposition 2.4), there exists a neigh- 

borhood M of p(x) in X, and a clopen subset N of p-l(M), such tha t  xEN~ U. Then 

{p(VAN)I VE'O} together with ( M - A ) - p ( V )  form a disjoint open covering of M - A ,  

and hence p(x) has a neighborhood W intersecting only finitely many  elements of this 

covering. But  then p- l (W) N N intersects only finitely many  elements of *0, and the proof 

is complete. 

Proposition 6.2 and half of Proposition 7.1 imply tha t  (b )~  (c) in Theorem 1.2. To 

prove the harder result (e) ~ (a), we need some preliminary results about  bases in X and X. 

First, some notation: A base B for X - A  is called lull if, whenever a E A, U a neighbor- 

hood of a in X, and C clopen in U - A ,  then (V N C) E B for some neighborhood V of a in X. 

I f  G is open in X -  A, let 

G* = ( J { U = X  I U open in X, U f t ( X - A ) = O ) .  

Note that ,  since A is thin in X, G*c  C4. 

LEMMA 7.2. I] B is a/ull base/or X - A ,  then {(p-I(B))*IBEB } is a base/or X. 

Proo/. Suppose B is a full base for X -  A. Let  x e X, and V a neighborhood of x. We 

must  find a BE B such tha t  xep-l(B)*c V. Pick an open U in X such tha t  xE U c  U c  V. 

I f  x E X - A ,  we now merely pick BEE such tha t  p(x)EB~p(U-A).  So suppose xEA. 

Since p is a spread (Proposition 2.4), there exists a neighborhood M of p(x) in X, and 
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clopen subset N of p-~(M), such that  x E N c U. By assumption, there exists a neighborhood 

W of p(x) in X such that  B =  W N p ( N - A )  is in B. Now 

p-l(B) : p - i ( W )  ~ ( I V - A ) :  (p-l(W) (1 ~)  N ( X - A ) ,  

SO X E (p-i(W) N N) c p-l(B)* c p - i ( B ) -  c ~ c U c  V, 

which completes the proof. 

LEM~rA 7.3. A Hausdor// space E, which is a continuous image o] a separable metric 

space, has a countable collection ~ll open subsets such that, i[ x # y are in E, then there exist 

disjoint U~, Uu in ~ll with xE Ux and yE Uy. I / E  is O-dimensional, the U E~l may be chosen 

clopen. 

Proo]. Since E is Hausdorff, the diagonal A is closed in E • E. Hence ( E •  E ) - A  

can be covered by open rectangles V • W; if E is 0-dimensional, V and W may  be chosen 

clopen. Since (E • E ) - -A  has the LindelSf property, this covering has a countable sub- 

covering {V, • Wi}iaa~-l, and w e  let ~ /=  { V~}~x U {Wi}/cW_~l, 

L~M~A 7.4. I / X  is separable metric, and A nowhere scatters X,  then X - A  has a count- 

able/uU base. 

B ~ Proo/. Let { n}n=l be a countable base for X. For each n, let En be the space of quasi- 

components of B~ - A ,  and let/~: B~ -A---~E~ be the natural  map. Topologize E n by taking 

as base for the open sets all sets U such t h a t / n - l ( U )  is clopen in B ~ - A .  Clearly En is 

Hausdorff  and 0-dimensional, and ]n is continuous, so we can apply Lemma 7.3. Let  ~l~ be 

a collection of clopen subsets of E~ with the property guaranteed by Lemma 7.4, and, for 

convenience, let us suppose tha t  it is closed under finite intersections. Let W~ = 

{/~-I(U)[UEll~}, and let :~ be the collection of finite unions of sets of the form 

Bm N W (W E ~19~, m,n = 1,2 .... ). Let  us show tha t  :~, which is clearly a countable base for 

X -  A, is full. 

Let  aEA, U a neighborhood of a in X, and C a clopen subset of U - A .  We must  find 

a neighborhood V of a such that  (V N C) EY. Since {Bn}7_l, is a base for X, we may  assume 

tha t  U = B  k for some k. Denote B k - A  by B~. 

First, let us show that,  if x E C, then there exists a Wx E Y3k containing x, and a neigh- 

borhood N ,  of a, such tha t  (N, N W , ) c  C. Let  Q be the quasi-component of B~ which con- 

tains x; clearly Q c  C. Using our assumptions about  ~/k, we can now pick a decreasing se- 

quence {Sj}~I from l/~k whose intersection is Q. Let  So=B'~. Let ~ be the disjoint open 

covering of B~ consisting of C and all sets of the form ( B ~ - C )  N (Sj-Sj+~) for j = 0 , 1  ..... 

Since A nowhere scatters X, there exist a neighborhood N ,  of a which intersects only 

finitely many  elements of ~0. Hence, for some J0, the set N ,  does not intersect 

2-642945 Acta Mathematica. 111. Imprim6 le 11 mars 1964 
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(B'k-C) N (Sj-Sj+I) for any ?>~J0. Let  Wz=Sj0. Then Nz does not intersect (B'k-C) N Wx, 

so NxN Wx does not intersect B'~-C, and thus, since WxcB'~, we have (N~N W~)cC. 

Now {Wx Ix E C} is a subcollection of the countable collection ]Ok, and hence can be 

re-indexed as {Wj}~_I. For each ?', let Nj be a neighborhood of a such that  (N s N Wj)c  C. 

Note that  C~  U ~ l  Wj. Now let ~ be the disjoint open covering of B~ consisting of B' k--C 

and all sets CN (W s -  j-1 U ~=1 W~) for ?" = 1,2 ..... Since A nowhere scatters X, there exists a 

neighborhood N of a which intersects only finitely many elements of ~ ,  and hence misses 

- Ui=l Wi) for all ~ greater than some index r. Hence (N fl C )c  0 ~1 W j .  Now C n (Wj J-1 

pick m so that  a fi BmC (N N ( n  7=1N j)). Then 

(Bm N C)= (Bm N (N N C)) ~ b (Bm N W,)= b (Bm N (N, N W,)) C (Bm N C). 
1=1 i=1 

Hence (Bin N C) = ( b  (Bin N Wj)) E 5, 
1=1 

which completes the proof. 

Proo] o] Theorem 1.2. That  (a)~  (b) is obvious. As observed cartier, (b)~ (c) follows 

from Propositions 6.2 and 7.1. Lastly, (e)~ (a) follows from Lemmas 7.2 and 7.4 and 

Urysohn's metrization theorem, which completes the proof of Theorem 1.2. 

We conclude this section by using Theorem 1.2 to relate cuts to the Freudenthal 

compactification. If D is a separable metric space, then a metric compactification X of D 

is called a Freudenthal compacti]ication of D if X - D is 0-dimensional and nowhere cuts X. 

If it exists, the Freudenthal compactification is essentially unique [8]. We now prove 

PROPOSITION 7.5. Let A be a thin, O.dimensional subset o /a  compact metric space X, 

and suppose that X - A  satis]ies one o] the equivalent properties o] Proposition 6.5. I] 

(X, A,p) is an (X, A)-cut, then X is a Freudenthal compacti/ication o / X -  A. 

Proo/. By Proposition 6.5, A nowhere scatters X, so X is metrizable by Theorem 1.2. 

Since X is compact and p is proper, X must be compact [12]. Since p is a spread (Proposi- 

tion 2.4) and A is 0.dimensional, so is A=p-I (A) .  Finally, A always nowhere cuts X, 

and that  completes the proof. 

The following corollary was proved (differently) by Freudenthal [8] [9]. 

COROLLARY 7.6, The/ollowing properties of a separable metric space D are equivalent: 

(a) D has a Freudenthal compacti/ication. 

(b) D satis/ies the conditions o/Corollary 6.5, and has a metric compacti/ication X with 

X - A  O-dimensional. 

Proo]. That  (a)~ (b) follows from Proposition 6.2 and Corollary 6.5, while (b)~ (c) 

follows from Proposition 7.5. 
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8. Locally connected metric spaces 

I f  (Y, d) is a locally connected metric space, one can always obtain a metric d* on Y 

such tha t  

(a) d* and d generate the same topology, 

(b) d* is uniformly locally connected, (1) 

(c) d* ~>d, 

(d) d*(x,y) <~a if x and y lie in a connected subset of d-diameter ~<a. 

In  fact, if Y is connected, such a d* is obtained [22] by  letting 

d*(x,y) =inf ( d i a m A I A c X  , A connected, x and y in A}. 

I f  Y is not connected, one can still obtain such a d* as follows: In  each of the (open) com- 

ponents Y~ of Y, pick a point p~. I f  x and y are in the same component of Y, define d*(x, y) 

as above; if they are in different components, say x E Y~ and y E Y~, let 

d*(x, y) =d*(x,p~) + d(p~,p~) § d*(pz, y) + 1. 

I t  is easy to chek that  this works. 

For simplicity, the following result is stated for complete spaces, but, as we shall 

see, an analogous result is true in general. The hypothesis tha t  A nowhere scatters X is 

essential, however, for otherwise X could not be metrizable (Propositions 6.2 and 7.1). 

Our proof will be purely metric, making no use of the general existence theorem for 

cuts. 

T H]~ O RE~ 8.1. Let X be a complete metric space, A c X thin and nowhere scattering, 

and X - A locally connected. Let ( Y, d) be X - A with the induced metric, let X be the completion 

of ( Y,d*) (where d* is as above), let p: X-->X be the uniformly continuous extension of the 

infection i: ( Y,d*)-->X, and let A = X -  Y. Then (X,A,p) is an (X,A)-cut. 

Before proving Theorem 8.1, we need a lemma, whose notation is tha t  of the theorem. 

L~MMA 8.2. I] aEA, x ~ E X - A ,  and p(x~)--~a, then some subsequence xnk of x~ con. 

verges in X (to an x with p(x) =a).  

Proof. We will pick a decreasing sequence of infinite sets Sk (k ~> 1) of positive integers 

such that ,  if m, nESk, and k >  1, then d*(xn, Xm)~k -1. This will suffice, for we can then 

inductively pick n k so that  nk E S k and nk+l > n~. 

{1) See footnote (1) on page 9 
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Begin by  letting S x be the set of all positive integers. Suppose tha t  Sx,...,S k have 

been found, and let us pick Sk+l. Let  U be the open �89 l)- l-sphere about  a in X, and 

let ~0 be the set of components of U - A ;  since X - A  is locaUy connected, each V E ~  is 

open. Since A nowhere scatters X, there exists a neighborhood W of a which intersects only 

finitely many  V E ~.  Hence S~ has an infinite subset Sk+l such tha t  all p(x~) with n E Sk+ 1 

are in one clement of ~,  say V0- But  V 0 is connected with d-diameter ~ ( k +  1) -1, hence 

with d*-diameter ~< (k + 1) -x, and thus Sk+ x satisfies all our requirements. This completes 

the proof of Lemma 8.2. 

Proo/ o/ Theorem 8.1. We must verify tha t  X, A, and p satisfy all the requirements of 

Theorem 1.1. 

(a) p is closed: Let E be closed in X, and let y E X  be in (p(E))-, so tha t  p(x=)-->y for 

suitable x n E E. We must  show tha t  y Ep(E). 

Pick z n E X - A  whose distance from Xn is less than n-L Then d(p(x~), p(z~))<n -x, so 

p(z=)-->y. I f  y E X - A ,  then z-->p-l(y), so x--->p-X(y), hence p-X(y)EE and yEp(E). I f  

y EA, then, by  Lemma 8.2, z~ has a subsequence z=~ converging to some z E X with p(z)=y. 

;But then x~k--+z, and hence zEE and yEp(E). 

(b) p is onto: This follows from (a). 

(c) p maps X - A  homeomorphically onto X - A :  This follows from the definitions. 

(d) p ( A ) c  A: This follows from (c) and Proposition 2.1. 

(e) p-X(x) is compact/or xEA: Since X and X are metrizable, and p is closed,.T-X(x) 

has compact boundary [19] [21]. But  p-l(x) is a subset of the thin set A, and thus coincides 

with its boundary. 

(f) A nowhere cuts X: A is thin in X by  definition, and X - A  is uniformly locally con- 

nected. Hence A nowhere cuts X by  Example 3.9. 

(g) p is light: We will actually prove tha t  p is a spread (see section 2). Let  U be a 

neighborhood of x E X, and pick r so tha t  S, the d*-sphere about x of radius r, is contained 

:in U. Let W be the d-sphere about  p(x) of radius ~r. Let  ~ be the collection of components 

of p-x (W)-A .  Since X - A  is uniformly locally connected, A nowhere cuts and nowhere 

scatters X (see Example 3.9 and the remark following Lemma 6.1), and hence (Proposi- 

t ion 6.1) {VI VE ~} is a disjoint open covering of p-l(W), with V denoting the closure of 

V in p-X(W). Pick V 0 E ~ such tha t  x E V0. I t  remains to show tha t  V0c U. 

:If y, zE Vo, then p(y), p(z) are in the connected subset p(Vo) of X - A ,  and since 

2(Vo) ~ W, we have d*(y, z) <~ �89 Since x E V0, it follows tha t  d*(x, y) <~ lr for every y E V0, 

so V0c S c  U. Tha t  completes the proof. 

We conclude this section with a remark about what happens to Theorem 8.1 if X is 
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not complete. In  tha t  case, X is not the whole completion of (Y, d*); it is the subset of this 

completion consisting of all points which are limits of sequences u~ E Y such tha t  i(u,) 

converges in X. The map p: X-->X and the set A are defined as before. The above proof of 

Theorem 8.1 goes through unchanged in this more general situation. 

9. Simplicial complexes 

Let K be a locally finite simplicial complex, and let I KI carry the usual (metrizable) 

topology for which U ~  I KI is open provided its intersection with each simplex of K is 

relatively open. Call a subcomplex L of K thin if each simplex of L is a face of at  least one 

simplex of K which is not in L. I t  is clear tha t  L is thin in K if and only if ILl is thin in I K I 
in the sense of having empty  interior. 

Suppose now tha t  L is thin in K. Let  K* be the disjoint union of the maximal  simpliees 

of K, and let ze: K*-,--~K be the natural  projection. I f  s and t are simpliees of K*, with 

faces s' and t' such tha t  ze(s')=ze(t')~L, then we write x, , ,y  whenever xEs', yet ' ,  and 

:~(x) =n(y). We now define the equivalence relation : - o n  I K*I by letting x-----y whenever 

there exists a sequence x = x 0 ..... xn = y such tha t  x~ ~ xi+ 1 for i = 0, ..., n - 1. Let  E = [ K* l / -- 

be the quotient space, and q: I K* [-~E the quotient map. Since x-= y implies z(x)=:~(y), 

there exists a p: E - ~  I K I such tha t  ~ = p  o q. Now let K be the set of all q(s), with s a simplex 

of K*. In  general, K need not be a complex, because the intersection of two simplices of 

K need not be a simplex of K, but  only a finite union of such simplices. However, under 

these circumstances K', the barycentrie subdivision of K, is a complex, and p: K'--,--~K' 

(where K '  is the barycentrie subdivision of K) is simplicial. Note tha t  I KI = I K'I = E. 

Finally, let L =p-~(L). 

THEOREM 9.1. I] L is a thin subcomplex o /a  locally/inite simplicial complex K, and 

i /K ,  L, and p: K--,-~K are as above, then (] K I, ILl, p) is a (] K I, ]LI)-cut. 

Proo/. I t  follows from the definitions tha t  p maps ]K] - ILl homeomorphically onto 

K - L ,  and maps ILl onto ILl.  Let  us show tha t  p is closed. I f  g is a finite complex, this 

is clear, since then I K ] is compact. In  general, let A c ] K] be closed, and let us show tha t  

p(A) is closed. By definition, we must  show tha t  p(A) n S is closed for every simplex s of 

K. But  p-~(s) is a/ ini te subcomplex of K, so tha t  A n p-l(s) is compact, and hence p(A) n s = 

p(A Np-l(s)) is also compact. So p is closed; since K is locally finite, each p-l(x) is finite, 

so p is proper and light. I t  remains to show tha t  ILl nowhere cuts ]K]. We do this by  

showing tha t  ]L I satisfies the conditions of Example 3.7. 

:First of all, L is clearly thin in K, so ]L I is thin in ]K ]. Now let x E ILl,  and let U be a 

neighborhood of x in I KI;  we must  find a neighborhood V of x in I KI such tha t  V - I L l  
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is connected. Let S be the star of x in K. Now the definitions imply that, if s and t are simpli- 

ces in S, then there exist simpliees s =s o ..... sn =t in S such that  s~ N s~+l +L for i =0  ..... n - 1. 

But this implies that, if V is a barycentric neighborhood of x in IS I, then V - I L l  is 

polygonally connected, and that  completes the proof. 

Now that  we have a combinatorial description of cuts, what can be said about L in case 

K is an (n+l)-manifold,  and L is dimensionally homogeneous? If d i m L < n ,  then 

(K,L) =(K,L).  If  dim L = n §  1, then L is not thin. So suppose dim L = n .  The following 

example shows what can happen: 

EXAMPLE 9.2. Let IKI : E3, and let ILl consist o! two tangent spheres. Then ILl ho~ 
three components: Two o/ them are spheres, and the third consists o/ two tangent spheres. 

The above example shows that  the components of I L ] need not be manifolds, but the 

following theorem asserts that  they cannot get much worse than two tangent spheres. 

T~EORV, M 9.3. Let K be a triangulated (n + 1)-mani/old (not necessarily combinatorial), 

and L a homogeneously n-dimensional subcomplex. Then L is homogeneously n-dimensional, 

and each (n - 1)-simplex o / L  is the/ace o/exactly two n-simplices o /L .  

Pro(>/. First we must show that  I LI is the union of n-simplices. Let x E ILl, and let s 

be an (n+  1)-simplex of K containing x. Then p(s) is an (n+ 1)-simplex of K containing 

p(x). Since K is a manifold, we can pick (n+  1)-simplices t o ..... t k in K, all containing 

p(x), such that  t o =p(s), (tt N t~+i)~L for i =0  ..... k - 1 ,  and tk has an n-dimensional face u 

which contains p(x )and  is in L. Then the definitions imply that  x Ep-l(u)N 8 k, where skis 

the unique (n+  1)-simplex of K such that  p(sk)=tk. But p--i(u)N 8 k is an n-simplex of L, 

so L is indeed the union of n-simplices. 

Next, let s "-1 be an (n-1)-simplex of L; we must show that  S ~, the collection of 

n-simplices of L which contain s n-l, has exactly two elements. 

Let s n+l be any element of S TM, the collection of all (n + 1)-simplices of K which con- 

tain 8 n-1 .  The definition of K implies that  S n+l is obtained by starting with s n+l, and then 

successively adding--in both directions--simplices which intersect some element of S n+l 

already obtained in an n-simplex not contained in L. Now the definition of K implies that  

every element of S ~ is a face of exactly one element of S ~+1. Hence if the above process of 

adding simp]ices'ends ' i n ' b o t h  directions with an (n+  1)-simplex having a face in S n, 

then S n has exactly two elements and we are through. If  not, the two arms of the process 

would meet, and each element of S TM would intersect two others in n-simplices of K not 

lying in L. But then each element of T TM = (p(s) IsES n+l) would intersect two others in 
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n-simplices of K not lying jn L; since K is a manifold, T n+l would then consist of all (n + 1)- 

simplices of K containing p(sn-1), and so p(s n-l) would not lie in any n-simplex of L, which 

contradicts our assumptions. That  completes the proof. 

10. l~Iapphag cylinders 

I f / :  E--->F is a continuous function, then the mapping cylinder CI is obtained by tak- 

ing the disjoint union (E x I)U 2", and identifying (x, 0) with ](x) for all x EE. Let  

~I: (E x I) U F--~Cf be the quotient map. Then z r  maps F homeomorphieally onto ~I(F) 

(called the base of Cs), and this is used to identify ~r(F) with F. 

LEMMA 10.1. I /  / is closed, then so is gr. 

Proo/. Let A c  (E x I) U 2, be closed, and write A O (E x (0)) = B  x (0) and A N 2" =C. 

Then 

~l(~r(A))  fl (E x I ) = A  U (/-I(/(B) U C) • {0}), 

and ~71(7t/(A)) N F =/(B) U C, 

so ~il(~1(A)) is closed in (E x I) U 2", and therefore gf(A) is closed in Cf. 

LEMMA 10.2. I /  E and 2" are Tychono// spaces, and / :  E-~--~F is proper, then Cf is 

Tychono//. 

Proo/. Let [: flE--->flF be the continuous extension of /, and write ~ for nT. Let  

X =~((E x 1) U 2,). Since / is proper, ]-1(2,) = E  by Proposition 2.1, so ~-I(X) =(E x 1) U F. 

Hence gl (E x 1) U F is a closed map- -and  hence a quotient map-- f rom (E x 1) U F onto 

X, so that  the Tychonoff space X is homeomorphic to CI. This completes the proof. 

The requirement in Lemma 10.2 that  / is proper seems to be essential. In fact, if E is 

the Wychonoff plank ( = ( { x < ~ }  •162  F is a point, then /: E - ~ F  is 

continuous and closed, but  C I not a Tychonoff space. 

PROPOSITION 10.3. I /  E and 2, are Tychono// spaces, /: E--~--~F light and proper, 

and i / p  =~rl E x I,  then (E x I,  E x {0), p) is a (C I, F)-cnt. 

Proo/. Since / is onto, 2' is thin in Cf. By Lemma 10.2, Cj is Tychonoff. By Lemma 10.1, 

p is closed. And E x (0) nowhere cuts E x I by Proposition 3.4. All other requirements are 

obviously satisfied, and that  completes the proof. 

LEMMA 10.4. I / / :  E--~F is a monotone quotient map, then 2, nowhere cuts C r. (Hence, 

i / C  I is Tychono/], (Or, F) is a (Cf, F)-cut.) 
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Proo/. Since / is a quotient map, so is ~fl E x I .  The lemma now follows from Proposi- 

tion 3.11. 

J.  Isbell asked what  happens when the requirements on / are relaxed, and conjectured 

the answers given below. 

Suppose h: E-+G and g: G - ~ F  are continuous, and /=hog. Then we can define a 

continuous g*: Ca-~--+Cs as follows: I f  k: (E x I )  U G �9 ~(E x I )  U F is the map which is the 

identity on E x I and is g on G, then g* =~ioko~7~ 1. This g* is single valued, and is con- 

tinuous because g * o ~ a = z l o k  , which is continuous. Note that,  if g is closed, then so is ]c, 

and hence also g*. Similarly, if g is proper or light, so is g*. 

PROPOSITIO~ 10.5. Let E and F be Tychono H spaces, and /: E-+-*F proper. Let 
h g 

E-+~G-+-*F be the monotone-light /actorization o/ / (see Proposition 2.3). Then (Ca, G,g*) 

is a (CI, F)-cut. 

Proo/. By Proposition 2.5, h and g are proper. By  Lemma 10.2, Ca and CI are both 

Tychonoff. Since g is proper and light, so is g*. By Lemma 10.4, G nowhere cuts Ch. All 

other requirements are clearly satisfied, and tha t  completes the proof. 

THEOREM 10.6. Let /: E-->F be continuous, with/(E) dense in F, and C s Tychouo//. 

Then / has a/actorization h E - - > ~ F ,  with h(E) dense in G, Ch Tychono]/, and g light and 

proper, such that (Ch, G,g*) is a (CI, F)-cut. 

Proo]. Let ~: fl(E x I )  U flF-->flC r be the continuous extension of ~f: (E x I )  U F-->C s. 

Since ~r(E x I )  is dense in Cr, we have ~(fl(E x 1)=tic k Let R =~- l (Cr )n  fl(E x I) ,  and 

let 7}=~ I R. Then z}: R-+-+C r is proper, and hence (Proposition 2.3) has a monotone-light 

factorization R q ~ S ~ C I ,  with p and q proper. Let G=p-I(F), and let us show tha t  

(S, G,p) is a (Cr, F)-cut. We know tha t  p is light and proper. Now 7~ r maps E x (0,1] homee- 

morphically onto C I -  F, so (Proposition 2.1) E x (0,1] =ze-l(Ci-F), and hence E x (0,11 = 

q-I(S-G); this implies tha t  p maps S - G  homcomorphically onto Cr-F .  I t  remains to 

show tha t  G nowhere cuts S. Since q is closed and monotone, it suffices to check by  Pro- 

position 3 .11-- that  q-l(G) nowhere cuts R. But  (E x I ) - ( E  x (0,1]) =E x (0) nowhere 

cuts E x I (Proposition 3.4), and R -  (E x I )  nowhere cuts R (Example 3.10), so q- l (G)= 

R -  (E x (0,1]) nowhere cuts R (Proposition 3.13). 

Define h: E-->G by h(x)=q(x,O), and g: G - ~ F  by  g=pl G. Then g(h(x))=p(q(x,O))= 

~1(x,0) =/(x) for all xEE, s o / = g o h .  Since p is light and proper, so is g. Let  us show that  

(Ca, G,g*) is a (Cr, F)-cut. Define k: Ch-+--~S by  k=p-log *. Then k is single valued and 

continuous, because koga is the identity on G and coincides with q on E x I .  Also k is one- 
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to-one and onto, and maps G identically onto G. Now pok  =g*,  which is proper because 

g is proper. Hence k is a homeomorphism by  Proposition 2.2. Since (S, G,p) is a (C s, F)-cut, 

this implies tha t  (Ca, G,g*) is also a (C I, F)-cut. 

11, Muhicollared sets 

According to M. Brown [5], a subset B of a space Y is collared in Y if there exists a 

homeomorphism h from B • [0,1) onto an open neighborhood of B in Y such tha t  h(b,O) =b 

for every b E B. Collared sets are always nowhere cutting (Example 3.6); if, with the nota- 

tion of Theorem 1.1, A is collared in X, we say tha t  A is multicollared in X. 

Let  us illustrate this concept by  answering a rather special question: I f  X is an n-mani- 

fold (without boundary), and A ~ X  is multicollared, what can A look hke? Since A is 

collared in X, we have A • (�89 homeomorphic to a subset V of X - A  which is open in X. 

Then p(V), which is homeomorphic to V, is open in X, so A • E 1 is an n-manifold. Now 

if n = 2  or 3, this implies [3] tha t  A is an (n-1) -mani fo ld  (so that  each component of A 

is a line or a circle if n =2), and hence, if A is closed, X is an n-manifold with boundary A. 

I f  n>~4, however, A need not be a manifold: In  fact, for n>~4 there exist non-manifolds 

B such tha t  B • E I = E  ~ [2]; if we let X = B  • E ~ and A = B  • {0}, then A is the disjoint 

union of two copies of B, and is thus not a manifold. (Whether such examples exist with 

X triangulable and A a subcomplex is unknown.) 

We now return to the general theory. For multicollared sets the metrizabihty question 

is easily settled: 

PROPOSITION 11.1. I /  A c X is multicollared, and i / X  is metrizable, so is X. 

Proo]. Let h be a homeomorphism from A x [0,1) onto an open neighborhood U of A 

in X. Then A is homeomorphic to h(A x {�89 ( X - A ) ,  so A is metrizable, and hence so 

is U ~ A .  Also U=p-l(p(U)), andp(U)  is open in X and hence an F ,  in X, so U is an Fo in 

X. Thus the paracompact  space X, being the union of the open Fa-set U and the dense set 

X - A ,  both of which are metrizable, is itself metrizable [6; Corollary 1.2]. That  completes 

the proof. 

We now characterize multicollared sets in terms of mapping cylinders (see Section 10). 

Since collared sets are defined in terms of I '  =[0 ,1) - - ra ther  than  I =[0,1]-~to permit  the 

use of open neighborhoods, we will find it convenient to use the "half-open" mapping 

cylinder C~, which is defined just like C r except t h a t / i s  replaced by I ' .  All results which 

were proved for C I is section 10 are equally valid for C~. 

Recall from section 1 (just before the statement of Theorem 1.1) tha t  two maps 

/1: EI-+-~F and/2: E2-~F are called equivalent, and we write/1 -=/2, if there exists a homeo- 

morphism h: E1--~E ~ such t h a t / 1  =/2 ~ 
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PROPOS:TION 11.2. The ]ollowing properties o] a thin subset A o] a Tychono]] space 

X are equivalent: 

(a) A is multicollared. 

(b) For some proper map ]: A--~-+A, there exists a homeomorphism k ]rom C'I onto an 

open neighborhood U of A in X such that k(a) =a ]or all aEA. 

Moreover, if ] is as in (b), and if (X,A,p) is an (X,A)-cut, then ]--p]A.  

Proo]. (a) ~ (b). Let  (X,A,p) be an (X,A)-cut. Let  h be a homeomorphism from A • I '  

(where 1' denotes [0,1)) onto an open neighborhood U of A in X such tha t  h (x ,0 )=x  for 

every x in A. Let U=p(U); then U=p-:(U),  so p[U: U - ~ U  is closed, and hence so is 

poh :  A • I ' -~U .  :Now let f = p l A ,  and let V: A • l'~-->C'r be the projection map. Since ] 

is closed, so is ~0 (Lemma 10.1). Moreover, if x:, x2EA • I ' ,  then V(x:) =~(x~) if and only if 

poh(xl) =poh(x~). We can therefore define a homeomorphism k: C'z~-~U by k = (poh)oq~ -1, 

and then/~(a) = a  for every aEA. 

(b )~  (a). Let ~: A • I'--->C'I be the projection map. Then, by  Proposition 10.3, 

(-4 • I ' ,  .4 • {0},V) is a (C~,A)-cut, and hence (A • I ' , A  • {0},ko~)is a (g ,A)-cut .  Now if 

(X,A,p) is an (X,A)-cut, then, by  Lemma 3.14, (p-:(U),A,p[p-l(U)) is also a (U,A)-eut. 

Since cuts are essentially unique, and .4 • {0} is collared in _~ • 1', we must  have A col- 

lared in p-:(U), and hence in X. 

Finally, under these circumstances we have 

plA  ko l(  • • {0}) = f, 

and tha t  completes the proof. 

Local properties of multicollared sets are treated in the next  section. 

An interesting example of a multicollared set was pointed out to me by  J.  Isbell. 

Let  X be the n-fold cartesian product of the circle, and Y the n-fold symmetric product, 

obtained from X by  identifying points whose coordinates differ only by a permutation. 

Let ~: X - - ~ Y  be the quotient map. Let A consist of those points of X whose coordinates 

are not all different. Then A is a multicollared subset of X. Moreover, Y and X are mani- 

folds with boundaries ~(A) and A, respectively, and ~op:  X - ~ Y  is an n!-fold covering 

of Y. (If n =2,  then X is a torus, Y a Mhbius band, and X a cylinder.) 

12. Local properties 

M. Brown's principal theorem about collared sets [5; Theorem 1] asserts tha t  locally 

collared subsets o /a  metric space are collared, where B D Y is called locally collared if B can 

be covered by  open subsets U of Y for which U N A is collared in U (or, equivalently, 
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in Y). If we similarly call A c X locally multicoUared if A can be covered by open subsets 

U of X such that  U N A is multicollared in U (or, equivalently by Lemma 3.14, in X), 

then we can prove the following consequence and analogue of Brown's theorem. 

T H E 0 R E M 12.1. A locally multicollared subset o /a  metric space is multicollared. 

Proo/. Let X be metric, A c X locally multicollared. Then A is covered by open subsets 

U of X for which U f] A is multicollared in U. Now if (X,A,p) is an (X,A)-cut, then 

(p-l(U), p - I (UNA) ,  p]p-~(U)) 

is a (U, U (~ A)-cut for each U by Lemma 3.14, and hence p- l (U (] A) is collared in p-l(U).  

Hence A is locally collared in X, and is therefore collared in X (by Brown's theorem) 

provided A has a metrizable neighborhood V in X. Now each p-l(U N A) is collared in X, 

and hence (just as in the proof of Proposition 11.1) has a metrizable neighborhood Vv 

in X. But  then V, the union of all the Vv, is a neighborhood of A which is locally metrizable 

and paraeompact (by [12; Theorem 2.2], since p is proper and V =p-l(p(V))), and hence 

is metrizable by the Nagata-Smirnov theorem. That  completes the proof. 

Recall that  a funct ion/ :  .4 -~A is a double covering of A if A can be covered by open 

subsets V for which /-I(V) splits into two disjoint open subsets, both of which / maps 

homeomorphically onto V; if one can take V =A, then / is called the trivial double covering. 

If (X,A,p) is an (X,A)-eut, we say that  A (trivially) double-cuts X if p ]A  is a (trivial) 

double covering of A; similarly, A locally (trivially) double cuts X if A is covered by open 

subsets U of X for which A N U (trivially) double cuts U. Note that,  locally, double-cutting 

and trivially double-cutting is the same thing, but  She equator of a MSbius band shows 

that  globally they are distinct. 

The following result is proved just like Theorem 12.1 (except that  Brown's theorem 

and Proposition 11.1 are, of course, not needed in the proof). 

PROPOSITION 12.2. A locally double-cutting subset o/ a Tychono/] space is double- 

cutting. 

According to [4], A c X is bi-collared in X if there exists a homeomorphism h from 

A • ( - 1 , 1 )  onto an open neighborhood of A in X such that  h(a,O)=a for every a6A.  

More generally, call A double-collared in X if there exists a double covering/:  .4-~A,  and 

a homeomorphism h from C} (see the definition before Proposition 11.2) onto an open 

neighborhood of A in X, such that  h(a)=a for all a6A.  Now it follows from Proposition 

11.2 that  A is double-collared (resp. bi.collared) in X i] and only i / A  is multicoUared and 

double.cutting (resp. trivially double-cutting) in X. Define locally bi.collared and locally 
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double.collared in the  obvious way. As before, bi-collared and double-collared coincide 

locally, bu t  the equator  of a MSbius band  shows tha t  globally they  are distinct. 

The following result now follows immediate ly  from Theorem 12.1 and Proposi t ion 12.2. 

COROLLARY 12.3. A locally bi-collared (=locally double-collared) subset o/ a metric 

space is double-collared. 

13. Components 

Let  (X,A,p)  be an (X,A)-cut ,  and suppose tha t  X - A  has only finitely m a n y  compo- 

nents  C 1 .... ,C,.  I f  D~=p-I(C~), then D 1 .... , D ,  are the  components  of X - A .  Clearly 

X = / )  1 U ... U/)~, where /)~ is the closure of D~ in X. Moreover, since A nowhere cuts 

X, and  the D~ are all open in X - A ,  the sets/)~ ..... / ) ,  are disjoint. Since they  are connected, 

t hey  are the components  of X. 

Now let A~=/gi  N A for i = 1  ..... n. Then the A~ are disjoint, and  A = A 1 U  ... (JAn. 

Hence the A~ are the components  of A, provided they  are connected and  non-empty .  

This need no t  always happen even when A is connected: For  example, if X is a circle, and 

A consists of one point,  then X is a closed interval, and A = A t consists of the two end points. 

Another  example is obtained by  taking X = E 2 and A an open line segment in X; here 

A = A  1 also consists of two disjoint copies of A. However,  we can prove the following 

result, which was first obtained by  J .  Jaworowski  for X = E ~ and  multicollared A. 

THV.ORE~ 13.1. Suppose that X is paracompact, locally connected, and unicoherent, (1) 

and that A ~= o is closed and connected. Then each A~ is connected and non-empty, so that A 

and X -  A have the same number o/components. 

Proof. I f  some A~ were empty ,  then  D~ would be clopen in X. Bu t  then C i is a clopen 

subset of X which is neither e m p t y  nor  X, which contradicts  the connectedness of X.  

Let  us show t h a t  A~ is connected. Suppose not.  Then A i = E  U iv, where E and  F are 

non-empty,  disjoint, and closed. Since X is paracompact ,  and  p proper, X is also paracom- 

pact  [12; Theorem 1.2] and  thus  normal.  Hence there exist disjoint open subsets U and 

V of X containing E and  F ,  respectively. Let  W = U U V. 

Before continuing, let us show tha t  X - C ~  is connected. I n  fact, 

X - C i = A  U (Uj,~ Oj), 

where A and each C: is connected, and A i? Cj is no t  e m p t y  (otherwise C j = C j  would be a 

non-trivial  clopen subset of X). This implies tha t  X -  Ct is connected. 

(1) X is unicoheren$ [18] if it is connected and, whenever X =A u B with A and B both closed and 
connected, then A n B is connected. Examples include all connected, locally connected, simply connected 
Hausdorff spaces (in particular E n for all n, and S n for n > 1), as well as projective n-space pn for n > 1. 
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Now D~ - W =/)~ - W is closed in X, so p(D~ - W) is dosed  in X. Hence its complement  

R = ( X -  C~) U p(W) is open. Since X -  C~ is connected and R is locally coimected, X -  C~ is 

contained in a connected, open subset S of R. l~ow S (J C~ = X ,  X is unicoherent,  and  

S and  C~ are connected and open, so S N C~ is connected by  [18; Theorem 3]. Also p-l(S) 

is open in X and contains As, so p-~(S) fi D~ intersects both  U and V. Since it is also con- 

tained in W = U U V, it is disconnected. But  p-l(S) N D t = p - l ( S  n Ci), which is homeo- 

morphie to S N C~, yielding a contradiction. 

14. The proper completion of a spread 

Let  D and X be Tychonoff  spaces, a n d / :  D-->X a spread (see section 2). Then  an 

extension p:  X-->X of / is a proper completion of ] if X is Tychonoff,  p is light and proper  

(hence a spread by  Proposi t ion 2.4), and X - D nowhere cuts X. (1) The following theorem 

generalizes Theorem 1.1, and reduces to it in case / is a homeomorphism from D onto a 

dense subset of X.  

T H E O R E ~  14.1. I /  D and X are Tychono/] spaces, every spread/: D-->X has an-- 

essentially unique (~)----=proper completion p: X-->X. 

Proo/. Let  us prove existence; uniqueness will follow from Theorem 14.2 below. 

Let  f: flD--->flX be the unique continuous extension o f / ,  let E = / - I (X) ,  and let g =lIE. 

Then g: E--->X is proper, and . :henee  (Proposition 2;3) has a monotone-l ight  factorizat ion 
q P 

E-->X-->X, with p and q both  proper  and X Tychonoff.  Let  us show tha t  q maps  D homeo- 

morphical ly into X (this follows easily f rom Proposi t ion 2,1 in the impor tan t  special case 

where / ,  regarded as a map from D onto riD), is proper). 

To prove tha t  q is one-to-one on D, we must  show tha t  two points d I =~ d~ of D cannot  

lie in a connected subset of some g-l(x). I n  fact, if di, d~E(D N g-l(x))=/-l(x), then  some 

basic neighborhood U of d I misses d2, where U is clopen i n / - I ( W )  for some open neighbor- 

hood W of x. Let  V=g-I(W). Then VN D=/-I(W), and since E - D  nowhere cuts E 

(Example 3.10), U (the closure of U in V) is clopen in V (Lemma 3.1). Since g - l (x )~  V, 

we see tha t  d I and d~ are separated by  the clopen subset 0 fi g-l(x) of g-l(x), and  hence do 

not  lie in a connected subset of g-l(x). 

To prove tha t  q] D is a homeomorphism,  it remains to show tha t  q(U) is open in 

q(D) for every open U c  D, and it suffices to consider basic sets U, which are clopen in 

/-I(W) for some open W in X. I f  V=g-I(W), then, as we saw above, U (the closure of 

(1) By Propositions 2.4 and 2.5, X is automatically Tychonoff if it is Hausdorff. 
(2) In the sense that any two such completions p : X-->X and Pl : Xv->X are equivalent (i.e. there 

exists a homeomorphism k : X-~-~X1, which keeps D pointwise fixed, such that p =p~ok). 
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U in V) is clopcn in V. Now V is an inverse set under g, and hence also under q, so tha t  U 

is also an inverse set under q (since q is monotone). Hence q(U) is open in X, and 

q(U) =q(U Cl D) =q(U) N q(D), 

so tha t  q(U) is open in q(D). 

As observed above, E - D  nowhere cuts E (Example 3.10). Since q ID  is a homeo- 

morphism, q-l(X - q(D)) = X - D by  Proposition 2.1; since q is monotone, this implies 

(Proposition 3.11) tha t  X - q ( D )  nowhere cuts X. 

To complete the proof of existence, we now identify D with q(D), so that  p lq(D) be- 

comes identified with ]. 

To establish essential uniqueness in Theorem 14.1, we now prove the following ana- 

logue of Theorem 5.3. 

THEOREM 14.2. Let p: X-->X and q: u be proper completions o/spreads [: D-->X 

and g: E--> Y, respectively. Let o~: X--+ Y be continuous. Then any continuous ~: D--->E such 

that gofi = ~r can be extended to a continuous or: X-->u such that qoet = coop. 

ot  
X > g 

/ 
X 

D >E 

6' 

q 

\ 
> Y 

I[ o~ and fl are homeomorphisms onto, so is a. 

Proo[. Letting ~ r=~op  and A = X - D ,  the first par t  of the theorem follows from 

Corollary 5.2 (with g replaced by  fl, and f by  ~). 

I f  ~ and fl are homeomorphisms onto, then we can similarly extend/3 -1 to a continuous 

ct': Y->K such tha t  p o ~ ' =  ~-1o q. But  r ct is then the identity on the dense subset D of 

X, and hence on all of X. Similarly, ctoct' is the identity on Y. Hence ~ and ct' are inverse 

homeomorphisms onto, and the proof is complete. 

The following result is now a consequence of Propositions 2.4 and 2.5, Theorem 14.1, 

and the fact tha t  a restriction of a spread is spread. 

COROLLARY 14.3. I /  F is a Tychono// space, then a m a p / :  E-->F is a spread i / a n d  

only i / [  can be extended to a light proper map p: G--->F /or some Tychono[[ space GD E. 
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15. The Fox completion of a spread 

In  [7], R. H. Fox presented a method of completing spreads which is, in general, 

different from the one considered in the previous section (and leads to a different concept 

of cutting). We shall refer to it as the Fox completion, to distinguish it from the proper 

completion considered in section 14. We need two preliminary concepts. 

Fox calls a spread p: E-->F complete if it satisfies the following condition: I f  y E F, and 

if to every open neighborhood W of y one assigns a quasi-component (see section 6) Qw of 

p- l (W) so that  Qw1CQw2 whenever W1C W2, then NwQwis  non-empty (and hence con- 

sists of one point). 

If  A ~ X is thin, we say t ha t  A nowhere separates X if, whenever U is a neighborhood 

of x E A, and ~ is a clopen covering of U - A ,  then x has a neighborhood W such tha t  

W - A  is covered by  finitely many  VE~f. I f  a particular xEA has this property,  we say 

tha t  A does not separate X at x. (Clearly every nowhere separating set is nowhere cutting 

and nowhere scattering, but  the converse is, in general, false (see section 16).) 

We now call p: X-->X a Fox completion of a spread/ :  D-->X if p is a complete spread 

which extends ], and if X - D  nowhere separates X. This is the definition given in [15], 

where it is shown that  it generalizes the definition given by  Fox in [7] for locally connected 

D. The following result was proved in [7] for locally connected D, and in [15] for arbi- 

t ra ry  D. 

THEORWM 15.1. Every spread has an---essentially unique (1)--Fox completion. 

To claryfy the relation between Fox completions and proper completions, we need 

PROI'OSITION 15.2. I /  E is Hausdor//, every light, proper map p: E-->F is a complete 

spread. 

Proo/. That  p is a spread was asserted in Proposition 2.4. To show tha t  p is complete, 

let y E Y and the Qw be as in the definition of complete spread. Let  us show tha t  

Qw N p- l (y) :v  o for every W. I f  not, the fact tha t  / is closed implies tha t  there exists an 

open neighborhood V c W of y such tha t  p- l (V) misses Qw. But then Qvc Qw N p-l(V) = 

which is impossible. 

Since every Qw N p-l(y)  is non-empty,  the collection of all such sets has the finite 

intersection property,  and hence (since p-l(y) is compact) has a non-empty intersection. 

That  completes the proof. 

(x) See footnote (3) on page 29. 
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The converse of Proposition 15.2 is false, as is shown by  mapping an infinite discrete 

space into a point. 

From Proposition 15.2, and the essential uniqueness of both proper and Fox comple- 

tions, we now obtain the following corollary. 

COROLLARY 15.3. Let/: D-->X be a spread and let p: X-->X and p~: XF--->X be proper 

and Fox completions o] /, respectively. Then the/ollowing are equivalent: 

(a) p and PF are equivalent (i.e. proper and Fox completions o/[ coincide). 

(b) p~ is a proper map. 

(c) X - D  nowhere separates X. 

In  general, Fox and proper completions of a spread are different, as examples in the 

t ex t  will show. They are, however, always related by  the following result. 

THEOREM 15.4. I / p :  X->X is a proper completion o/a spread/: D-->X, and i/ 

Y = D U (x E X - D I X -  D does not separate X at x~, 

then g =Pl Y is a Fox completion o//. 

Proo/. Clearly Y -  D nowhere separates Y. Since p is a spread (Proposition 2.4), so is 

g. I t  remains to show tha t  g is complete. 

Let  x EX, and for each open neighborhood W of x let Qw be a quasi-component of 

g-l(W) so tha t  W1c W~ implies Qw1cQw2. We must  find a yE ["lwQw. 

For each W, let Q'w be the quasi-component of p-l(W) which contains Qw. Then 

Qwl~Qw ~ whenever WI~ W2, so (since p is a complete spread by Proposition 15.1) there 

is a y E N w Qw. Clarly y Ep-l(x). 

Let us show that  y E Y. This is clear if y E D, so suppose y ~ D. Let  N be an open 

neighborhood of y in X, and ~ a clopen covering of N N D. Pick an open neighborhood 

W of x and a clopen subset U of p-l(W) so tha t  yEUczV.  Let  ~ = ( V N  U[ V E ~ ;  then 

is a clopen covering of U N D. Now Y - D  nowhere separates Y, so Qw N D:~o by [15; 

Lemma 4.1], and hence Q'w N D 4= o. Since y EQw N U, we have Qw ~ U, and thus Qw N R 04 = 

for some RoE~. Now R0 N U is clopen in U because X - D  nowhere cuts X (Proposition 

3.1), so that  QwCR0 N U. Hence R0 N U is a neighborhood of y in Z, and (R0 N U) N D = 

Roc  V 0 for some VoE~. Hence X - D  does not separate X at  y, and therefore yE Y. 
�9 1 / Thus yE YNQw=g-  (W) NQw, so it remains to show tha t  g-l(W) NQw~Qw. Since 

the opposite inclusion follows from the definition of Qw, it suffices to show tha t  no elopen 

subset U of g-I(W) disconnects g-~(W) fi Qw. Suppose it  did. Since Y - D nowhere cuts Y, 

we would have U N p- l (W) clopen in p- l (W) (by Proposition 3.1) and disconnecting Q~, 

which is impossible. That  completes the proof. 
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16. F o x  cuts  and proper cuts  

I f  A is a thin subset of a Tl-space , then applying Theorem 15.2 and Proposition 2.1 

to the injection m a p / :  X - A - - > X  yields the following analogue of Theorem 1.1. 

THEOREM 16.1. Let A be a thin subset o /a  Tl-space X .  Then there exist--essentially uni- 

quely---a Tl-space XF with nowhere separating subset AF, and a spread p #  Xt-->X which 

maps X F - A  t homeomorphically onto X -  A and maps A t into A.  

Let us call the triple (Xt, At ,pt)  described in Theorem 16.1 a Fox (X,A)-cut. I f  X is 

a Tychonoff space, then the triple (X,A,p) which has hitherto simply been called an 

(X,A)-cut will now, for distinction, be called a proper (X,A)-cut. Applying Theorem 15.4 

to the present special situation, we see tha t  Xt  can always be obtained as a certain subset 

of X, with Pt  =P I Xt. In  general P t  (unlike p) need not be onto X, as is shown by Example  

(4) of the introduction, where At  is empty.  (A similar example can be constructed with 

both X and X - A  locally connected). 

I t  follows from Corollary 15.3 that,  if (X,A,p) is a proper (X,A)-eut, then it is a Fox 

(X,A)-cut if, and only if, A nowhere separates X. To prepare for some further (and more 

useful) criteria in this direction, we now introduce the following concept, which is formally 

stronger than nowhere scattering: I f  A c X ,  then A nowhere shatters X if, whenever U 

is a neighborhood of x E A  and ~q is a clopen covering of U - A ,  then x has a neighborhood 

W such tha t  W - A  is covered by finitely many  VE ~. Clearly A nowhere separates X if 

a n d  only if A nowhere cuts and nowhere shatters X. 

That  nowhere shatters is actually strictly stronger than nowhere scatters is seen by  

letting X be the space of ordinals ~< ~ (the first uncountable ordinal), and letting 

A = {~); it is not hard to check tha t  here A nowhere scatters ,(and nowhere cuts) X, but  

A does not nowhere shatter X. I don ' t  know whether the concepts coincide in metrizable 

spaces, or whether they are interchangeable in Proposition 6.2. We do, however, have 

the following result. 

LEMMA 16.2. "A  nowhere scatters X "  and "A nowhere shatters X "  are equivalent under 

either o/the/ollowinq circumstances. 

(a) X is separable metric. 

(b) X - A  is locally connected. 

Proo/. We need only show that,  in either case, if A nowhere scatters X then A nowhere 

shatters X. So let U be an open neighborhood of x E A, and ~ a clopen covering of U -  A. 

3- -  642945 Acta  Mathematica.  111. I m p r i m ~  le 12 m a r s  1964 
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(a) Let  {V~}n~176 be a countable subcovering of 75, and let Un= Vn-[.J~:-~ Vi. Then 

(Un}~=l~ is a disjoint open covering of U - A ,  so x has a neighborhood W such that  W - A  

is covered by finitely many U~, and hence by finitely many V E 75. 

(b) If C is the collection of components of U - A ,  then C is a disjoint, open refine- 

ment of 75. But  then x has a neighborhood W such that  W -  A is covered by finitely many 

C E C, and hence by finitely many V E 75. That  completes the proof. 

Another useful fact about nowhere shattering sets is, the following result, which is 

analogous to - -and  has the same proof as--Proposition 7.1. 

LE~MA 16.3. I ]  (X,A,p)  is an (X,A)-cut, then A nowhere shatters X i/, and only i/, A 

nowhere shatters X .  

We now prove 

T~]:OREM 16.4. Let (X,A,p) and (XF, AF,Pr) be proper and Fox (X,A)-cuts, respec- 

tively. Then (a), (b) and (c) are always equivalent, and they are equivalent to (d) i / X  is separ- 

able metric. 

(a) p is equivalent to PF (i.e. proper and Fox (X,A)-cnts coincide). 

(b) PF is a proper map. 

(c) A nowhere shatters X .  

(d) X is separable metric. 

Proo/. The equivalence of (a) and (b) is a special case of Corollary 15.3. By that  

corollary, they are also equivalent to A nowhere separating X; since A surely nowhere 

cuts X, this is equivalent to A nowhere shattering X, which is equivalent to (c) by Lemma 

16.3. If X is separable metric, finally, (c) is equivalent to (d) by Lemma 16.2 (a) and Theorem 

1.2. That  completes the proof. 

I t  follows from Proposition 15.3 that  Fox and proper (X,A)-cuts surely coincide if 

X has a base consisting of sets U such that  X - U has only finitely many components; in 

particular, this occurs if A is a subcomplex of a locally finite simplicial complex X. An 

example where these cuts coincide, but  where no such base can be found, is given by 

Example (3) of the introduction. 

In conclusion, consider a metrizable space X with thin subset A. Although there are 

many situations where X~ is metrizable while X is not (e.g. Example (4) of the introduction 

where A F is empty), an example in [15; section 5] shows that  in general X F need not bc 

metrizable. If X - A  is locally connected, however, Fox [7; p. 246, Lemma] showed that  

XF must have a countable base (and hence be metrizable) whenever X does. We now prove 
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PROPOSITION 16.5. I / A  is a thin subset o / a  metrizable space, and i / X - A  is locally 

connected, then X~ is metrizable. In /ac t ,  given a metric on X one can explicitly construct the 

metric space X~ by the method o/section 8. 

Proo/. I t  suffices to observe tha t  Theorem 8.1 (as well as the remark  a t  the end of 

section 8) remains t rue wi thout  assuming tha t  A nowhere scatters X,  provided " (X ,A) -  

cu t"  is replaced by  " F o x  (X,A)-cut" .  I n  fact, wi thout  assuming tha t  A nowhere scatters 

X,  par t  (g) of the proof of Theorem 8.1 explicitly proves tha t  p is a spread, and it  is easy 

to chek tha t  this spread is complete. Since X - A  is uniformly locally connected, A nowhere 

separates X, and  hence (X,A,p)  satisfies all the conditions for a Fox  (X,A) .cut .  That  

completes the proof. 
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