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1. Introduction

In [4] I considered a continuous non-negative function ¢ on E” with certain
special properties and I defined for each Lipschitz function f on the closed unit cube
Q of R,

()= [ ard .

This non-negative functional ¥ was shown to be lower semi-continuous on the set of
Lipschitz functions with the £, topology and hence could be extended to a non-nega-
tive lower semi-continuous functional on the summable functions. The main result
of [4] was the following.

If f is contimious on @ and such that W(f) is finite, and if £ >0, then there exists

a Lipschitz function g on @ such that the set
{e; x€Q and f(z)+g(x)}

has measure less than & and W(g9) <¥(f)+& This problem arose from a conjecture
of C. Goffman concerning the approximation of non-parametric surfaces with finite
area, by Lipschitz surfaces. See [2] and [3].

In the present paper this theorem is proved without the continuity restriction,
ie., it is shown that any function f, summable on @ and with ¥(f)< oo, can be
approximated by a Lipschitz function in the manner described above. Also, in the
new theorem, a more general ¢ is taken, hence a more general functional ¥

Throughout the present paper ¢ denotes a non-negative continuous, real-valued

function on R" with the following properties:

(i) $(&)>(&"), when |&]=]&/], ..., |&]=]&l;
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(ii) there exist constants 4 and B such that

€]l < A4+B(E)
for all £€ R";

(iii) there exists a continuous non-negative real-valued function 0 on R" such that

A1 6y Lo ko -ons Ln E1)<O(0) - ()
for all Z€R", £€R";

(iv) (s+t)¢(i—i%)<s¢(%)+t¢(%);
for all & €R" and s>0, t>0.

It is shown in 2.7 that, if 1 is a non-negative continuous function on R" such
that, for each bounded open set U the functional

L(f)= f  (grad ) de
U

is lower semi-continuous on the Lipschitz functions with respect to uniform conver-

£+¢ 3 ¢
(s+t)l(é_+—_t) <si (;)'Ftl(—t)

Since the function ¢ considered in [4] yielded a lower semi-continuous functional, it

gence, then

must satisfy (iv) above. The ¢ considered in [4] was postulated to satisfy (i) and
(ii) above and one of the other conditions on it implies (iii) above. Thus the ¢
considered in the precent paper is at least as general as that of [4]. Example 1

shows that it is more general.
Example 1. Let n=2 and
By, E)=E1+ E+|&,|-

Then ¢ satisfies (i), (i) and (iii). It can be shown to satisfy (iv) by means of the
inequality

R M

e Sy o 1

(8+t)9-1 89—1 tp_l ( )
where u, v, s, t are positive numbers and p>1. This inequality can be derived from
( '+ af’ @ ' +a) > (1+«)?, in which «a>0, x>0, by the substitution a=u/v,
x=sy/tu. This latter inequality is easily verified by differentiation with respect to x.
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Now suppose that ¢ satisfies 1 (iv) of [4]. Then, for each £€R" with £+%0,
there exists a constant C;>0 and such that ¢(t&)=x(Cst) for all t>0.
But putting £=(1, 0), one obtains

£=n(C't), t>0,
hence nEs)=Es, s>0. 2)
By putting £=(0,1), one obtains t*+¢=x(C""t) for t>0, hence
n(s)=Fts*+ Fs, s>0,

contradicting (2). Thus ¢ does not satisfy 1 (iv) of [4].

It can also be shown that ¢ does not satisfy 1 (iii) of [4], but this is not
important, because [4] could have been written with 1 (iii) replaced by (iii) of the
present paper. '

The following is an example that was not given in [4], the reason being that I
could not prove that the postulates were satisfied.

Example 2. Let $&) = &l

where p>1. Then ¢ satisfies (i), (ii) and (iii) and by using the inequality (1), one
can show that it satisfies (iv).

It is believed that the approximation theorem of the present paper can be

applied to the theory of discontinuous parametric surfaces.

2. Preliminaries

Let U be an open set of R". As in [4], L(U) denotes the set of all locally
summable real-valued functions on U and X(U) denotes the subset of L(U) consisting
of all locally Lipschitz functions

For each f€X(U) and each Borel subset B of U define

o(f, B)= qu(gma ) da.

M(U) denotes the subset of L(U) consisting of all f with the property that, for
each compact subset C of U there exists a sequence {/”} of functions of X(U) with

[i—flaeso
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as r— oo and with lim inf @ (f, 0) < oo.

My main aim in 2 is to define the Borel measures ®(f, B) for functions f of M(U).

Taeorem 2.1. If f€X(U) and B is a bounded Borel set with BSU, then

1 1
i {m f it d”} <m(B) L«ﬁ(grad 1) da.

Proof. f is Lipschitz on B. Take £¢>0. Divide B into a finite number of mu-
tually disjoint measurable subsets B,, B,, ..., B, such that, if

M= 222 |om, |
then % qS'(M,l, ...,M,,,)m(B,)<f é(grad f) dz+ e m(B). Q)
r=1 B
Now { f gradfdx} {——(ﬁ— f }
m{B) 6:::1 T "m(B) |5 |0z,
3, o 3 Mum(B)
g - p
g m(B)
and by 1 (iv). <m—:é—) gl m(B,) ¢ (M,,, ..., M,),
which by (1), <'”T(]:B—)f ¢ (grad f) dxz +e.
B

TaroREM 2.2. If V is a bounded open set with V< U, then ®(f,V) is lower semi-

continuous with respect to L, convergence; i.e. if f, " €X(U) and

f |/ —f|dz—0
v
as r—> oo, then lim inf @, V)= (f, V).

Proof. For each g€ X (U) and each bounded Borel set with BS U, define

i (9, B)=f
B

o9

3.1:,

dzx.
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Then, because of 1 (iv),

_ e (g, 7)) (9, 75)
(I)(g: V)*Supj§:1¢( :n(Vj) PACERTY m(Vj) )m(V})s

where the supremum is taken over all finite collections V,, ..., V, of mutually disjoint
open subsets of V. It is known (see [2], Theorem 3, p. 214) that for each open

subset W of V,
lim inf 3 (1", W) > i (f, W). )

Take £¢>0 and let V,,...,V, be mutually disjoint open subsets of V such that

2 i b V -n ’
pY. (”;n(ﬁ V,)j)’ "m‘{ V‘j’)’)) m(V)>®0(, V)—e. @

Then :

» = (T e (r)

lim inf $(/°, ¥)>lim inf 3 $ (";;f( V’J_;”), ”’;rff(v;)vf) m(V)),
. 2 /21 (f’ V}‘) /Zn (f Vé)

which, by (1), 221(;5 ( m(V) " m(V) )m(V,-)
and by (2) >0, V)—e.

When f€L(U), 4 is a subset of U with d(4,~U)>0 and r is a positive integer

with (Vn)-r"'<d(4,~ U), the symbol J, (f) will be used (as in [3] and [4]) to denote
the well-known integral mean

1/r 1/r
{70} @)= fo fo fa+ &) dE, ... dE,,

which is defined for z€ 4.

TaEOREM 2.3. If A and B are Borel subsets of U such that A< B and d(4,~ B)>0,
if r is a positive integer such that (Vn)-r*<d(d,~B) and if f€EX(U), then

Q{J,(f), A}<D(f, B).

Proof. @{J.(f), A} = J; ¢ {grad J,(f)} dx
and since grad J,(f)=J, (grad f),
O, 4} = [ $(9, @rad ) e
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Hence, by 2.1,
1/r 1r
®{9,(f), 4} <fAr" Uﬁ fo 4 {(grad /) (x+§)}d§] iz

= " f:”. . J:IT [JA H{(grad f) (x + &)} dx] dé

and making the substitution y=z+§&

= T”fom- .- f:lr UA,& ¢ {(grad ) ()} dy] dé

1/r r |
<r"f0 fo [L¢{<gradf)(y)}dy]dé=<I>(f>B)-

CoROLLARY 2.4. If A and B are Borel subsets of U such that ASB and

d(4,~B)>0, if r is a positive integer such that (Vn)-r* <1 d(4, ~B) and if f€ X (U),
then
O {J%(f), A} <@(f, B).

TueEorREM 2.5. If f€M(U), then there exists a subset F of R' such that R'~F
is countable and for every open interval I with IS U and the coordinates of its vertices

all in F,
sup lim sup @ {J?(f), C} =inf lim inf ®{g", W},
¥—> o0 7> 00

where the supremum is taken over all compact subsets C of I and the infimum over all
open sets W such that I = W < U and all sequences {g™} of functions of X(U) that converge
LotofonW.

Proof. For each bounded open set V with VU, define
p(V)=sup lim sup Q{J%f, C},
where the supremum is taken over all compact subsets C' of V and define
y(V)=inf lirnioionf @ {9, W},

where the infimum is taken over all open sets W such that V S W<U and all se-

quences {g”} of functions of JX(U) that converge £, to f on W.

I now prove w(V)<wv(V) (1)
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for every bounded open set V, with ¥ <U. To show this, let €' be a compact subset
of V, W be an open set such that VS W< U and {§} be a sequence of functions of
XU}y that converges £, to f on W. Let D be a compact subset of ¥V with €< Int (D).
Then, for all r>2Vn-{d(D, ~W)}™", one has by 2.4,

O (T2 (4), D} < DL, W} @)

But f |:7$(g<s>)—:;%(f)wx<f 1g®— | dz—0
D w
as s —> oo, hence by 2.2,
lim inf ®{J? (¢°), Int (D)} = ®{F2(f), Int (D)},
so that by (2), {72 (f), C} <lim inf ®{g®, W}

for all r>2-Vn{d(D, ~W)}'. Then

lim sup ®{J: (f), 0} <lim inf ®{y®, W}
so that (1) is true.

Now let D’ be a compact subset of U. For each rational number « and each

1=1,...,n, let ‘
Ly={x;x€R" and x;<a}.

There exists a strietly increasing sequence {r;} of positive integers such that
pi ()= lim ® {7, (f), L 0 Int (D)} @3)
S=>»00
exists for all rational o and all 4. For each ¢, y, is increasing and bounded, hence
it can be extended uniquely to an increasing bounded function on R! that is contin-

uous on the left at each irrational point. Let E, denote the set of points where y;
is continuous and put

E=NE,.
-1
Then R'~E is countable. I now show that

pl)=»1), @)

for every open interval I such that I < Int (D) and the coordinates of its vertices
are all in £. To prove (4) let
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I=(ay, b)X... X (@n, ba)
be such an interval. Take ¢>0, and let ai, &', fi, Bi’, be such that o <@ <o’ <fi <
bi << [3;’,

i

pile) i) Fp(B) —pu () <mMee
and the interval K=(, f1)%... X (atn, B )
is contained in Int (D). Put

J = (a1, )% ... X (on 5 Ba)-
Let C" be a compact subset of I containing J. Then
p(I)> lim sup @{J7(f), '} > lim sup {72, (), J};
but, since J?(f) converges £, to f on K,

»(I)< lim inf ®{F2 (f), K};

hence v(I}— p(I)< lim sup O{F (f), K~J}
< slim ‘:Zl [®{T% (), Lu;- 1~ Lays) N Int (D)} + @{T7 (f), Lg;i~ Lgyg) 0 Int (D')}]
= igl [yi (o) — i (i) + e (B) —wu (Bi)] <&

Thus (4) is true.
Now let {D,} be an increasing sequence of compact subsets of U such that

tlim Int (D))=U.

By (4), there exists for each ¢ a subset. F, of R' such that R'~F; is countable and
u()=v(I) for every open interval I with I< Int (D) and the coordinates of its

vertices all in F,. Put

Then R'~ F is countable. Let I be an open interval with /S U and the coordinates
of its vertices all in F. Then, for some ¢, < Int (D,), hence u(I)=y(I).
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THEOREM 2.6. Let f€MM(U). There exists a unique Borel measure 1 on U such thai:
(i) for each bounded open set V with V< U and. every sequence {f"} of functions
of X(U) with

flf‘”—fldx—>0

v

as r— oo, it is true that
lim inf @ (f”, V)=9(V);
r—> 00

(ii) for each compact subset C of U,
lim sup ® {2 (f), C} <7 (C).
T—>oc0

The measure ) is regular and when f€X(U),
7(B)=(f, B)
for every Borel subset B of U.
Hence, we define for each f €M (U) and each Borel subset B of U
(f, B)=n(B).

Proof. Let u,v be as in the proof of 2.5. Let F be a subset of R' such that
R'~F is countable and if J denotes the collection of all open intervals I with IS U
and the coordinates of the vertices of I all in F, then u(I)=w»(I) for every I€J.

If 1€eJ and I,, 1, ... are members of J countable in number and such that
I€ U1, then
M(I)égu(L); (n

because, given ¢>0, we can choose a compact subset C' of I with
lim sup {77 (f), C} > p(I)~¢;
T—>00

now O can be covered by a finite collection J' of the Iis; to each JE€J', we can

assign a compact subset C; of J such that C< U, e C;. Then

O{JF (), Cy < 2, @{T7 (1), €3},

hence lim sup @ (J% (f), C} <ng1’ lim sup ®{J: (f), C,}.
so that uld)y—e <J§ u(JJ)< 'z‘u(l,-) ;

thus (1) is true.
6 — 642945 Acta mathematica I1I. Imprimé le 12 mars 1964.
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If I€J and >0, £>0, then there exist intervals I,, ..., I, of J, with diameters
less than 6, with I< U?.,I; and with

w() >§1u(lt) —&; 2)

because, we can certainly choose mutually disjoint open intervals J,,...,J,€J with
diameters less than }é and with 7= U}, Ji; let I,, K, be intervals of I such that
K.cJ, J,<1,
£
”(Ii)_,u'(Ki)<§§

and each I; has diameter less than &; now let W be an open set containing I and

g a sequence of functions of J(U) converging L, to f on W and such that

lim inf @ {g", W} <v(I)+3e=pul)+}s;
P
then ul)+}e>lim infiz (g™, Jy)
r—>00 §=1

P »
> lim inf ® (¢, J)) >_Zlv(K,-)
i=]l r—>00 i=
4 yy »
=i§1 w(Ky) >¢=21 wI)—}e =i§1'u(l‘) —1e;
thus (2) is true.
It follows immediately from (1) and (2) that there exists a unique Borel measure
n on U with
n(I)=u(l)=»I)

for every I€J. It follows from (1) that % is regular.
Let V be a bounded open set with V< U and let {f{”} be a sequence of func-
tions of X (U) such that

f|/<*>—/]dx->0

as r—> oo, Take £>0. There exists a finite number I,,...,I, of mutually disjoint

open intervals of J with each I;=V and with

Sy >n(V)—e.

i=1
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D
Now lim inf ®{f", V}>lim inf 3 ®{f, I,}
T->00 r—>00 j=1
p4d P
= > lim inf ®{/®, I,} > > n(J;)
Vs B i1
(where each J; is an interval of J with J,=1,). Hence

tim int O/, V}> 3 9(T) >n(V) .

r—>0o0
Thus (i) holds.
Now take a compact subset C' of U. Let £>0. There exists a finite number
I,,...,I, of open cubes of I such that C< U?.,I; and

g L) <n(C)+e.

One can now choose compact sets C, ..., C,, such that C;< I, for each § and C< UF-1 Cs.
Then

lim sup ®{J?(f), C} < lim sup ﬁld) {F2 (), O’,}

D D

<2 lirrn sup ®{JZ (f), C;} < g (I <)+

i=1
Thus (ii) holds.

We have prowed the existence of the measure 7. If there existed a second
measure 7, it follows immediately from (i) and (ii) that #, ()= pu()=v(I) for every
I€J, hence , and 5 would be identical.

When f€X(U) and I€J we obtain from (i), by putting f@ =7,

W <®(f, I).

By (ii) n(I)= lim sup o {J7 (), I}

and, since J7(f) converges £, to f on I it follows from 2.2 that
n()=0(f, I).

But since % is regular, n(I)=v{I)=n(). Thus 5(I)=®(f,I) for all T€J. Hence

n(B) =, B)

for every Borel subset B of U.
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The following theorem, mentioned in the introduction, shows that 1 (iv) is a
necessary condition for ¢ to yield a functional that is lower-semicontinuous with

respect to L£; convergence on the open sets.

TaeorEM 2.7. Let 1 be a non-negative continuous function on R" such that for
every bounded open set U of R", the functional

L(f)= fvl(grad ) de,

is lower semi-continuous on the Lipschitz functions with respect to uniform convergence. Then

(s +t)z(§+5)<sz(§)+u(§)

for all £&,€ER" and >0, ¢>0.

Proof. Let & CER"™ and >0, t>0. If one defines 4, (x)=A(x-4), where 4 is
an orthogonal matrix, it is easily verified that A, yields a lower semi-continuous
functional. Hence it can be assumed that &/s—(/t=w is of the form (g, 0, ...,0),
where 0.

Define fy=EtE b tme L sme
s+t 8 s+t 1 s+t
Put U=(0,s+1t)x(0,1) x(0,1)x ... x (0, 1).
. &-x (k—1)tp ., k-1 E—-1 8
) () = & F w—2 d
Define O () p " if " B+ <z, < " (8+t)+r’
Cx ksp ., k-1
=T+T if " (+t)+ <:cl\ (s+t)

Then, each f is Lipschitz and f® —funiformly on U.

But grad f= ff
Now gradf‘”-g if —1(s+z)<x,<k—l(s+z)+‘;,

-1

(s+8)+- “<m < (s+t),

i

o~ [
-
=
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hence L(f™y=sA (g) + A (%) )
But, by hypothesis lim inf L(f) = L(f),

& g E+¢
so that Sﬂ. (g) + M, (_t) = (S + t) }. (m) .

3. Some approximation theorems

TureorEM 3.1. Let C be o compact subset of an open set U and let f€M(U).
Let £>0. There exists a Lipschitz function g on R™ with compact support and such

that the set
{x; x€C and f(x)+g(x)}

has measure less than .

Proof. Let D be a compact subset of U such that C'< Int (D). There exists a
sequence {f"} of functions of X(U) with

f |f”—fldz—>0

as r— oo and with lim inf @ (f, D) < oo,
Tr=>00
hence by 1 (ii), lim inf f [1+] grad /O |*1t dz < oo. )
T D

Let J,,J,,...,J, be a finite number of mutually non-overlapping closed cubes such
that 0< U/ J;&D. By (1) and [3] 4.3, each of the functions,

file)=f(x) if z€J,
=0 it z¢dJ,

belongs to the class B of [3]. Hence, the function

belongs to B, so that by [3] 3.1, there exists a Lipschitz function ¢ on E* with
compact support and agreeing with f* except on a set of measure less than e. Since

f* agrees with f almost everywhere on C, g is the required function.
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Lemma 3.2. Let A be a bounded measurable subset of R' and U an open set.
Let £>0. There exist a finite number I,,1,,...,I, of non-overlapping closed intervals
such that :

(i) each I, is contained in U, has its endpoints in A and has length less than &;
(il) (AnU)~Ujf1l; has measure less than e.

Proof. Let A’ be the set of all those points z of 4 N U such that every open
interval of R! containing z contains points of 4 N U to the left of # and points of
ANnU to the right of z. Then (ANU)~ A’ is countable, hence has zero measure.
Let A, be a compact subset of A’ such that A'~.4, has measure less than ¢. Let J
be the collection consisting of all closed intervals that are contained in U, have both
endpoints in 4 and have length less than . The interiors of the intervals of J cover
A,, hence there is a finite subcollection {J,...,J,} of J with

p
A, < UInt (J,).

r=1

Now let I,,...,I; be mutually non-overlapping closed intervals with

with the endpoints of every I; occurring among the endpoints of the J,’s and with
each I; contained in a J,. The I;’s have the required properties.

TueEOREM 3.3. Let f be Lipschitz on R*, A be a measurable subset of R" and
{f,} be a sequence of Lipschitz functions on R" such that lim,_, . f,(x)=f(x) for almost
all x€A. Let n>0 and U be an open subset of R*. Put

A,={z; x€R" and |f,(x)—fx)|<7n}.

Then
L ofr of
AN > — R d
(a) hﬂ;nf P dx Lnu o, dz, an
(b) lim inf ®{f,, 4, nU}=>®(f, AnU).

Proof. (a) In proving (a) we can assume A4 and U are bounded, because if not
we could approximate the integral on the right-hand side of (a) with an integral over
4,nU,, where 4, and U, are bounded.
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(i) When n=1. Suppose (a) is not true. Choose a subsequence {f,s} such that

dx=f
AnU

and lim £, (x)=f(z)

afs,
dx

df

dx

lim
§—>00 Ar OU

dx—a, >0

for all x in a subset B of 4 with m(4 ~ B)=0.

Let >0 be such that for any finite set [a,, b,], ..., [@,, b,] of mutually non-
overlapping closed intervals, contained in U and with lengths <4, one has

» b df
|f(bi)—f(aj)l>j§1 fa; dx

dx—} e

p
i=1
Let K>0 be a Lipschitz constant for f.

By 3.2, there exist non-overlapping closed intervals I,,..., I, such that:

(A) each I, is contained in U, has its endpoints in B and has length less than
min (8, /2 K);

L df af .
(B) igl fli ‘E dx>fAnU a-’l_v dx—*foc.
Let I,=[a;, f;]. Then for each j and each s,
df,
f, G |32 =1 1B) — Fe) | = fe) = i, (@) |~ | 1B — £, (B | (1)

because, if ;< A,’, one has

flm Ar,

df,
2\ da>f,, (B) —fr, ()]

dz
=[{H(B)) — Ho)} + {f(e) + fr, ()} — {F(B) — fr, (B}
> 1B) ~ fa) | = | Ho) = r, () | = | F(B) — 1+, (B,

and, if I; is not contained in 4, , one can proceed as follows. Since |f(8)) — f(a;)| < § 7,
it can be assumed that each of |f(a)—~f, (&), |f(B))—fr, (B;)| is less than #, hence
;, Bi€ A, . Let & LEI; be such that E<{, [, E1S A, , |{(&)~fr, (E)|=n, [, BIS 4,
and |f(¢)~f,, ({)|=n. Then

f d
IjnAr‘

dx

Ts

de >\, (€)= fr, (@) |+, B) —Fr, (D)]-
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But 1., (&)= i, () | = |{F:, (&) = (&)} + {flo) = Fr, (&)} + {1(&) = Hea}]
=1, (&) = &) | = 1) — £y, ()| = | (&) — Haty)]
>3~ fla) ~fr, ()|
> 3|18 — He) | — | Ha) = fr, ()|

and similarly

\fr, (B — Fr, 1> 3 | 1B — Hap | = | HB) — r, (B)),

so that (1) is also true in this case.
Now it follows from (1) that

J‘Ar‘nU

and since each a4 §,,€B,

k

dz> 3 | 1B) = He)| = 3 1)~ (@) = 2 1B~ 1, ()]

j=1

dfy,
dx

af

M dx— o.

de—%a> fAnU

x S [ef
dx >,§11f(ﬁ1)—f(“7)\ >J'Z:1fli “E’

o f df,,
lnsllglf AU | dx
A contradiction.

(ii) When n>1. One can assume i=n. For each y€ER" ' and each subset W

of R* let
W(y)={t; t€R' and (y,t)EW}.

Then

dx=1lim inf [f é‘ﬁ
r>o  Jrnt L) awnu) |02,

{where y=(z,,...,2n_1)} and by Fatou’s lemma

> f [lim inf J‘
Re-1 | T—oo Ar()NU®)

and by (i) >f [f dx,,]dxl...dxn4=f
Rn—t ANU®W) AnU

(b) We can again assume that A and U are bounded.

o,

lim inf
r>0w Janu |0%,

dx,,] dz, ...dxq, 3

o,
ox,

dx,,] dz, ...dx, 1,

of

oxy,

o

dx.
%y, “

For each Lipschitz function g on R™ and each bounded measurable subset B of

R, put
,a(g,B)=(f % dx,...,j dx).
B B

ox,

99
0%y,
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Since ¢ is continuous and satisfies 1 (iv), it is easily verified that

g’Bn Ui)

m(BnU)} B0,

®(g, B) =sup Z ¢{

where the supremum is taken over all finite collections U, ..., U, of mutually disjoint
open subsets of R
Take ¢>0 and let V,,...,V, be mutually disjoint open subsets of U such that

g¢{%}mm NV)>®(f,AnU)—}e.

For each §, let W; be an open subset of ¥, such that 4 n V,S W, and m(W,) is suf-
ficiently close to m(d4 n V;) that

¢{ﬂ(f,A n Vi)} >¢{ﬂ(f,A n V,»)}_ e
m(W,) mAnNV)] 2-¢gmAnVy)

Then AnV;=4AnW, By (a)

lim inf ot x> f af dz,
T3>0 ArnW; 3561 ANWj 313,
hence by 1 (i),
o » A4, N W) af,Anw,)
1 £ alf j } { 1}
oy 4’{ mid, 0 W) J= P m(W)
L plat a0V e
m(A NV, 2.g-m(AnV,)
Therefore
. - . . e 71 144 Ar n W
hrn_a) :an q)(.fh A,- n U) = llﬂloilfjgl QS {%ﬁ’ﬁz} m(A, n WJ)

TuEOREM 3.4. Let C be a compact subset of an open set U and let f€M(U).
Let £€>0. There exists a Lipschitz function f, on U such thai:

(i) the set {x; x€C and f(x)*={f,(x)} has measure less than &;

(i) @, C)<®O(f,C)+e.

Proof. Since there exists a Borel measurable function that agrees with f almost
everywhere, we can assume that f is Borel measurable. Let C; be a compact set

contained in U and with C in its interior. Define
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h@)=fx) if z€C,
=0 if z¢C,.
Then f, is Borel measurable and summable on R" and
Q(f,C)=(}, 0). (1)
By 3.1, there exists a Lipschitz function g on R" with compact support and such
that, if
E={x;2€C and f,(x)*+g(z)},
then m(E)< }e. (2)

Let 6 be such that 0<d<1e and for every Borel subset G of R" with m(G) <4,

one has

O(g, N < te. ®3)
Choose 7 >0 and such that, if

B={z; x€R" and |f,(»)—g(x)|<n} and A={x; x€R* and f,(x)=g(x)},

then m(B~A4)<16, 4)
and m{x;x€R" and |f,(x)—g(x)|=n}=0.
Let {s,} be an increasing sequence of positive integers such that

=35, ()
approaches f, almost everywhere. Put

A,={x; x€R" and |f?(x)—g(x)|<y}.
Denoting characteristic functions by %, we have
71:)11; X4 (2) =15 (2)

for almost all #, hence by bounded convergence,

im | |Z4 (x)— %z (x)|dz=0.
T—>00 R

Thus there exists an 7, such that m{(4,~B)U (B~ A4,)}<}4é for all r>r,. Hence

by (4),
m(A,~A)<é (5)
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and m(d~A4,)<éb (6)

for all r>r,.
Let ¥ be a bounded open set, containing C (consisting of the union of a finite
number of open intervals) and such that

O(f,, V)< @(f, O) + e (™
Let 7, be such that O{f”, Vi<d(f,V)+1e (8)

for all r>r,.

By 3.3 there exists an r, such that

O, VNnd}>D(g. Vnd)—te 9
for all r=r,.
Let v =max (ry, 75, 7;) and put k=f".
Define folx)=g(x) if z€A,,

=hx)—n if hx)>g(x)+n,
=h(x)+n if Ax)<glz)—n.
Then f, is Lipschitz. To show that f, satisfies condition (i), let x € C and f(x) +{, (z).

Then f, (z)=*f,(»). If 2€4,, we have f,(z)=+g(x), so that z€E. If x¢ 4, and z¢ £,
then x€ 4~ A4,.. Thus we have shown that

{x; x€C and f@)*£fy(x)}SEU (4~ A4,)

and therefore, by (2) and (6), has measure less than e. To verify that (ii) is satisfied,

we observe that

D(fy, C)=D(fy, C~A4;) + D (fy, C N 4y)
=0k, C~4.)+D(g,Cn A4,)

<O(h, O~ A,)+D(g, O N A)+D(g, Ay ~ A)
and by (3) and (5)

<P, C~A,)+Dg, V nA)+ }e,
which by (9),
<@, C~A4)+ PR, VN4 )+ie

<Ok, V)+ie
and by (7), (8) and (1),
<®{f,C)+e.
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4. Approximation of functions on Q

In this section, the approximation theorem described in the introduction is

proved (4.3).
The functional ¥ was defined in the introduction for Lipschitz functions f on
the unit cube @ by

¥ (f)= JQ $(grad f) dv=0(f, @) = {f, Tnt (@)}

TaeorEM 4.1. W is lower semi-continuous on the Lipschitz functions with respect

to £, convergence.

Proof. Let g¢,9™ be Lipschitz functions on @ such that
f lg” —g|dz—~0
Q

ag 7r—>oco, Take ¢>0 and let @, be an open cube with Q, < Int (@) and

®(g,Q,)>D(g, Q) —e=T(g9)—e. I
Then lim inf ¥ (¢} = lim inf ® (¢, Q,)
and by 2.2 and (1), =W(g)—e.

As a result of 4.1, ¥ extends to a lower semi-continuous functional on the set

of functions summable on @. Thus for a function f summable on @,

W (f) = inf [lim inf ¥ ()],

where the infimum is taken over all sequences {f”} of Lipschitz functions that con-
verge £, to f.

If f is summable on @ and W (f) is finite, it follows immediately that f € M {Int (Q)}.
Also, for every open cube @, with 671 < Int (Q), it follows from 2.6 that ®(f, @) <V (f),
hence for every compact subset C of Int (Q), ®(f,C) <V (f). Therefore

o{f, Int (@)} <Y (f).

TaEOREM 4.2. Let f be bounded, summable on Q and such that ¥ (f) is finite.
Let £¢>0. There exists a Lipschitz function g on Q such that the set
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{x; z€Q and f(x)*+g(x)}

has measure less than ¢ and
O(g,Q)<P{f, Int (@)} +e.
Proof. Let |f(x)|<K for all x€Q. Let a=(}, }, ..., 1) and for each t€[0, }], put
Q:={2t(x—a)+a; z€Q}.

Let D be the set of all £€(0,}) for which ®{f, Fr (Q,)} =0. The complement of D
in (0, 1) is countable. Let {,€D be such that 0<?,< 3},

m@Q~@Q)<te 1)
and Off, Int (@) ~Q}<{1+6(1,1,...,1)}7 127" 2% )
(6 is the function described in 1 (jii)). Let ¢, be such that f,<¢, <%, and

b~ 1> (3 — 1), ®3)

0(0)<1+6(1,1,...,1) (4)

for all {€R" such that |{,—1|<1—(f,—1%,)/(3 —¢,) for all i. By 3.4, there exists for
each 7, a Lipschitz function ¢ on Int (@) such that

m{x; x€Q, and flx)+g¢® (@)} <r?
and O (g, Q)<O(f, Q) +r . (5)

We can assume that |¢” (z)|<K for all 2€ Int (§). Then g©—>f in the C, topology

on ) so that by 2.6
lim inf ® (¢, Q) > (f, Qy,)-

But by (5) lilgaj;}p D (9", Q) <O (f, Qv),

hence lim sup © (4, @~ Qu) < f, @~ Qo).

Hence one can choose a large r, put A=g¢g® and obtain
m{z; x€Q, and f(x)+h(z)}<1ie, (6)
O, Q) <P(f, Q) +1e (M
D, Q~Q)<{L+06q,...,1)} T2 " g, (8)
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Let # be the function on [0, 1] that is linear on each of the intervals [0, 1 —{],
[3—te 3 +41 [+, 1] and has n(0)=3—t, n(3—t)=4—tp, n(E T o) =%+t n(1)=
++1t,. For each z€(Q, define )

p(x) = (n(=,), N(xg)s -5 ().

Then p is a 1—1 Lipschitz transformation of @ onto @, such that p(x)=z for all

2 €6;,. Define
g(®)=h{p(z)}, z€Q.

Then ¢ is Lipschitz on @ and by (1) and (6), the set {x; x€Q and f(x)=g(z)} has

measure less than e. For almost all x€@Q~ @, we have

og {6h} ,
AT TYA xi),
ox; |0y y=zz(1r)77 (=)

‘l’ (grad g) <6 {77' (xq), -ees 7’]’ (xn)} : ¢ [{gl‘ad h(y)}y=p(z)]

so that by 1 (iii)

and, since %' (x;)=1 or (¢, —t,)/(3 —4), it follows from (4) that

¢ (grad g) <{1 +0(1’ ARRE 1)}¢[{grad h(y)}y=ﬂ(1)],

hence f é(gradg)dr<{1+6(1,...,1)} J; . é [{grad k(y)}y-» ] dz.
Q~ Q1 ~ Q1

a(p)__ 1 wanl ’ tl_to " -n
But é@—)—ﬂ (xl) n (.’132) e (xn) = (—é— to) =2
so that
n a(p)
$(grad g)dx<{1+6(1,...,1)} 2 ¢ [{grad h(¥)}y-5 )] dx
Q@ @~ Qs o (x)

={1+0(1,...,1)}2"f ¢ (grad h) dy,

Qt ~ Q1
which by (8),<4e& Then
(D(g: Q) <(I)(h’ Qto)+ % £<®(hs Qt1)+%£

and by (7), < ®(f, Int (Q)) +&.

THEOREM 4.3. If f is summable on Q, ¥ (f) is finite and £>0, then there exisls

a Lipschitz function g on Q such that the set
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{zx; z€Q and f(x)*g(x)}

has measure less than & and ()< ¥ (f) +e.

Proof. Let N>0 be sufficiently large that the function
hz)=N if f(x)>N,
=fz) if [f(z)|<N,
=—-Nif flx)<—N.

agrees with f except on a set of measure less than 1e. Let {f”} be a sequence of

Lipschitz functions converging £, to f on @ and such that

lim fqﬁ(grad ) de="F (f).
r=>00 Q

Define P (=N it [P @)=N,
=f"(@) i |f”@)]|<N,
~ N if fP@) <—N.

Then each A™ is Lipschitz, A” — % in the £, topology and by 1 (i),

f ¢ (grad A7) dx<f ¢ (grad ) dz,
Q Q
hence ¥ (k) <W(f).
By 4.2, there exists a Lipschitz function ¢ on @ agreeing with H except on a

set of measure less than }e and with
O(9, Q)< Dk, Int (@) +¢
hence Vg <V (f)+e

g is the required function.
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