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1. Introduction 

In  [4] I considered a continuous non-negative function ~ on R" with certain 

special properties and I defined for each Lipsehitz function / on the closed unit cube 

Q of R n, 
f a  

~F(/) = / ~b (grad /) dx. 
JQ 

This non-negative functional tF was shown to be lower semi-continuous on the set of 

Lipschitz functions with the 1: I topology and hence could be extended to a non-nega- 

tive lower semi-continuous functional on the summable functions. The main result 

of [4] was the following. 

If / is continuous on Q and such that  ~F(]) is finite, and if e > 0, then there exists 

a Lipschitz function g on Q such that  the set 

{x; x E Q and fix) # g(x)} 

has measure less than e and ~F(g)< ~F(/)+ e. This problem arose from a conjecture 

of C. Goffman concerning the approximation of non-parametric surfaces with finite 

area, by Lipschitz surfaces. See [2] and [3]. 

In  the present paper this theorem is proved without the continuity restriction, 

i.e., i t  is shown that  any function /, summable on Q and with ~F(/)< oo, can be 

approximated by a Lipschitz function in the manner described above. Also, in the 

new theorem, a more general ~ is taken, hence a more general functional iF. 

Throughout the present paper ~ denotes a non-negative continuous, real-valued 

function on R n with the following properties: 

(i) ~(~)~>~(~'), when I~1~]~1'1 . . . . .  [~.[>~[~[;  
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(ii) there exist constants A and B such that  

I1~11 <A+B4,(~) 
for all $ E R ~ ; 

(iii) there exists a continuous non-negative real-valued function 0 on R" such that  

~(r ~1, r ~ . . . . .  Cn ~) < 0(r r 
for all CER ~, ~ER ~; 

(iv) (s + t) ~b (~ + r 

for all ~, ~ER '~ and s>O, t>O. 

I t  is shown in 2.7 that,  if 2 is a non-negative continuous function on R n such 

that,  for each bounded open set U the functional 

L(t) = f v ) .  (grad 1) dx 

is lower semi-continuous on the Lipsehitz functions with respect to uniform conver- 

gence, then 

Since the function ~ considered in [4] yielded a lower semi,continuous functional, it 

must satisfy (iv) above. The ~ considered in [4] was postulated to satisfy (i) and 

(ii) above and one of the other conditions on it  implies (iii) above. Thus the 

considered in the preeent paper is at  least as general as tha t  of [4]. Example 1 

shows that  it is more general. 

Example 1. Let  n = 2 and 

r ~)  = ~ + ~ + I ~  I- 

Then ~ satisfies (i), (ii) and (iii). I t  can be shown to satisfy (iv) by means of the 

inequality 
(/z + t )~- l< /u ~ v v 
(s+t)v_ ~ s~-~_~ t~_ ~, (1) 

where /u, v, s, t are positive numbers and p >~ 1. This inequality can be derived from 

(x- l+~)u- i (xV-l+~c)>~( l+~)v ,  in which ~ > O , x > O ,  by the substitution ~=/t//~, 

x = sv/tl~. This latter inequality is easily verified by  differentiation with respect to x. 
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Now suppose that  ~ satisfies 1 (iv) of [4]. Then, for each ~ER a with ~=0 ,  

there exists a constant C~>0 and such that  r for all t > 0 .  

But  putting ~=  (1, 0), one obtains 

t2=~(C't) ,  t > 0 ,  

hence ~(s) = E s 2, s > 0. 

By putting ~ = (0, 1), one obtains t 2 + t = ~](C'" t) for t > 0, hence 

~ ( s )  = F ~ s 2 + F s ,  s > O, 

(2) 

contradicting (2). Thus r does not  satisfy 1 (iv) of [4]. 

I t  can also be shown that  ~b does not satisfy 1 (iii) of [4], but  this is not 

important, because [4] could have been written with 1 (iii) replaced by  (iii) of the 

present paper. 

The following is an example tha t  was not given in [4], the reason being that  I 

could not prove that  the postulates were satisfied. 

Example 2. Le t  = I1 1t ", 

where p~> 1. Then ~ satisfies (i), (ii) and (iii) and by using the inequality (1), one 

can show that  it  satisfies (iv). 

I t  is believed that  the approximation theorem of the present paper can be 

applied to the theory of discontinuous parametric surfaces. 

2. Preliminaries 

Let U be an open set of R n. As in [4], s denotes the set of all locally 

summable real-valued functions on U and ~(U)  denotes the subset of JC(U) consisting 

of all locally Lipschitz functions 

For each / E ~ ( U )  and each Borel subset B of U define 

(/, B) = fB ~ (g rad / )  dx. 

~ ( U )  denotes the subset of s consisting of all / with the property that,  for 

each compact subset C of U there exists a sequence {/(r)} of functions of :~(U)with 

f nj,r 
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as r--> oo and with lira inf ~ (/r C) < oo. 
r -@r 

My main aim in 2 is to define the BoreI measures dp(/, B) for functions [ of ~ ( U ) .  

THEOREM 2.1. 

Proof. 
tually disjoint measurable subsets B 1, Ba . . . . .  Bp such that ,  if 

M,,= sup 

then 

I/  /E:K(U) and B is a bounded Borel set with ~c_U, then 

~ { ~  fBgrad / dx} << ~ fB~(grad /) dx" 

/ is Lipschitz on B. Take e > 0. Divide B into a finite number  of mu- 

Now r t 0, , , .  ' rlgll 

/ " / 
:_m;B; j 

and by  1 (iv). 
1 �9 P 

~< m ~  r=l ~ re(B,) r (Mrl . . . . .  Mrn), 

which by  (1), < m--~  r (grad/ )  dx + e. 

THEOREM 2.2. I/  V is a bounded open set with V~_U, then (I)(f, V)is lower semi- 
continuous with respect to s convergence; i.e. if /,/(r)e~(U) and 

as r ---> ~ ,  then lira inf ap (/('), V) >~ ap (/, V). 
r . .~  oo 

Proof. For each gE3((U) and each bounded Borel set with B__U, define 
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Then, because of 1 (iv), 

jo 
(~)(g, V) = supj=~l ~ [./~l (g, Vt) /Mn (g, V,)] . . . . .  ) (v,), 

where the supremum is taken over all finite collections V, . . . . .  Vp of mutually disjoint 

open subsets of V. I t  is known (see [2], Theorem 3, p. 214) that  for each open 
subset W of V, 

lira inf fit (1('), W) ~>fi~ (1, W). (1) 
1" ---~ OO 

Then 

which, by (1), 

and by (2) 

Take e > 0  and let V, . . . . .  Vp be mutually disjoint open subsets of V such that  

[f,, (/, V,) f,n(/, V,)~ m(Vj)>r V)_e.  (2) 

i f i  , (/(r), V,) fin(/'>) Vj~ "V~(V]), lim inf q$(/(r)' V)>~lim infi=, ~ r !~-m~(Vj) ' .... m ( ~ i  ] 

[~1 (1, V,) ~. ( l  V~)~ , 

> (I) (I, V ) - e .  

When /Es A is a subset of U with d(A,~U)>O and r is a positive integer 

with (~n). r "  <:e/iA: ~ U), the symbol Y, (1) will be used (as in [3] and [4])to denote 
the well-known integral mean 

{3, (/)} (x) = P /(x + ~) d~, d~n, 
dO " " J o  

which is defined for x E A. 

THEORE~ 2.3. I / A  and B are Borel subsets o /U such that A ~_B andd(A, ~B) >0, 

i/ r is a positive integer such that (~n) .r- l<d(A,~B) and i/ ]e~(U), then 

r A} <r B). 

Proo/. (I) {:J, (1), A} = fa  r (grad 3r (/)} dx 

and since grad Y, (/)= Yr (grad/), 

r {Y, (/), A} = fa  r {Y, (grad/)} dx. 
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Hence, by 2.1, 

�9 (Yr (/), A} ~< far  ~ [f2lr... f~J~ ~ ( (grad/ )  (x + $)} d$] dx 

=r" f2" . . ,  f2'~ [ f  f{(gradl)(x+ ')}dx] d '  

and making the substitution y = x + 

= rn;lr . . .  ; l ~  [ f  s r { (grad /) (y)}dy] d~ 

['llr f~lr 

COROLLARY 2.4. I/  A and B are Borel subsets o/ U such that Ac_B and 

d(A, ,,~ B) > O, i/ r is a positive intejer such that (Vnn) �9 r -1 < i d(A, ~ B) and i / / e  ~ (U), 

then 
r {Y,~(I), A} < r B). 

THEOREM 2.5. I/  /ET~I(U), then there exists a subset F o] R 1 such that R I ~ F  

is countable and /or every open interval I with i ~_ U and the coordinates o/ its vertices 

all in F, 
sup lira sup (I){Y~r (/), C} = inf  lim inf (p{g(r), W}, 

where the supremum is taken over all compact subsets C o/ I and the in/imum over all 

open sets W such that i ~_ W ~- U and allsequences {g(r)} o//unctions o/~(U) that converge 

s to / on W. 

Proo/. For each bounded open set V with V_~ U, define 

/~ (V) = sup lim sup (I) {Y~(/), C}, 

where the supremum is taken over all compact subsets C of V and define 

(V) = inf lim inf (I) (g(~), W}, 

where the infimum is taken over all open sets W such that  V c_ W ~ U and all se- 

quences {g(~)} of functions of ~(U)  that  converge s to ] o n  W. 

I now prove ~ (V) ~< ~, (V) (1) 
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for every bounded open set V, with V G U. To show this, let C be a compact subset 

of V, W be an open set such tha t  V G W G U and {g~S)} be a sequence of functions of 

:~(U) tha t  converges s to / on W. Let  D be a compact  subset of V with C_~Int(D).  

Then, for all r > 2  V~n" {d(D, ,,~ W)} -~, one has by  2.4, 

r {3~ (g(~'), D} < r {g(s), W}. (2) 

But fD 32 (g(S)) - 32 (/)] dx <~ fwlg (s) - / I  dx ---> 0 

as s--> c~, hence by  2.2, 

lira inf O{32 (g(~)), I n t  (D)} ~> (I){3~ (/), I n t  (D)}, 
8 - -~  OO 

so tha t  by  (2), r (Y~ (/), c} << nm inf r {g% W} 
8 --~ OO 

for all r > 2.  l/n {d (D, ~ W)}-I. Then 

lira sup (I) (3r 2 ([), C} < lim in/(I) (g(s), W} 
r - - ~  oO S - : ~  oO 

so tha t  (1) is true. 

Now let D' be a compact subset of U. For each rational number  ~ and each 

i = 1 . . . . .  n, let 
L ~ = ( x ; x e R "  and x~<~}. 

There exists a strictly increasing sequence {rs} of positive integers such tha t  

~ (~) = lira (I) {3~s (/), L~ N Int  (D')} (3) 

exists for all rational :r and all i. For  each i, ~ is increasing and bounded, hence 

it can be extended uniquely to an increasing bounded function on R 1 tha t  is contin- 

uous on the left a t  each irrational point. Let  E~ denote the set of points where yJ~ 

is continuous and put  

E =  NE,. 

Then RI,~E is countable. I now show tha t  

~ ( I )=~( I ) ,  (4) 

for every open interval I such tha t  _? c In t  (D) and the coordinates of its vertices 

are all in E. To prove (4) let 
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I = (a 1, bl) •  • (a~, b,) 

be such an interval.  Take  e > 0, and let  ,r oc~', f l~,/~' ,  be such t ha t  cc~ < ai <~ ~ '  </5~ < 

bi </5~', 

K = ( ~ ,  # 7 )  x . . .  x (~;,, #;,') 

P u t  

and the  interval  

is contained in I n t  (D). 

tp  
J = (~ ' ,  ~ )  •  x (~,,/5~,). 

Le t  C' be a compact  subset of I containing J .  Then  

/a(I) >/l ira sup ap{y~ (]), C') >~ lira sup r {Y~, (/), J} ;  
f -4~ oo 8--~ co 

but ,  since ~ (r) converges s to  ! on K,  

v (I) ~< Jim inf q) {:JL (/), K} ; 
8 --IP C0 

hence (I) - / ~  (I) ~< lira sup �9 {Y~, (/), K .-. J )  
8-1 ,  OO 

< lim ~ [(I){:/2, (/), L~;.,,..L,,I, ) N Int (D')} + ~P{:I~, (/), L~.,NLp~i) N Int (D')}] 
S ---~. oo t ~ 1  

- , = 1  [~' ( ~ ' )  - ~'  (~;} + ~ '  ( ~ ' )  - ~ '  (~;}] < ~" 

Thus (4) is t rue.  

Now let  {Dr) be an increasing sequence of compact  subsets of U such t ha t  

lim In t  (Dr)= U. 
t ---~ cO 

B y  (4), there  exists for  each t a subse t  Ft  of R 1 such t ha t  R 1,.~ Ft is countable and 

#(I)=v(I) for  eve ry  open interval  I with J ' c  I n t  (Dr) and the coordinates of its 

vertices all in Ft. P u t  

F= ~Ft. 

Then R I ~  F is countable.  L e t  I be an open interval  with I -  ~ U and the  coordinates 

of its vertices all in F .  Then,  for  some t, 1 ~ - I n t  (Dr), hence i~(1)=v(I). 
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THEOREM 2.6. L e t / 6 ~ ( U ) .  There exists a unique Borel measure ~? on U such that: 

(i) /or each bounded open set V with ~ c_ U and  every sequence (/(r)} o/ /unctions 

o/ :K(U) with 

f vJ/(')- /[ dx -> O 
as r--> oo, it is true that 

]im inf ap (/(r), V) I> ~/(V) ; 
r - ~ o o  

(ii) /or each compact subset C o/ U, 

lim sup (I) {J~r (/), C) ~< ~ (C). 
r--~O0 

The measure ~ is regular and when /E 3~(U), 

( B) = ap (/, B) 

/or every Borel subset B o~ U. 

Hence, we define for each /E ~ ( U )  and each Borel subset B of U 

r (/, B) = V (B). 

Proo/. Let ju, v be as in the proof of 2.5. Let  F be a subset of R 1 such that  

R x ~ F  is countable and if Y denotes the collection of all open intervals I with [ c  U 

and the coordinates of the vertices of I all in E, then / , ( I )=  v(I) for every I EY. 

If  I EY and Is, 12 . . . .  are members of Y countable in number and such that  

I_~ U* Is, then 
/z(I) ~< ~/~(I,) ; (1) 

because, given e >0,  we can choose a compact subset C of I with 

lim sup (I){3~ (/), C) > / ~ ( I ) - e ;  
r - ~ o o  

now C can be covered by a finite collection Y' of the I~s; to each JeY', we can 

assign a compact subset Cj of J such that  C_c U JE~, Cj. Then 

r {89 (/), C} < 5 @ {Y~ (/), 8,}, 
Jey* 

hence lim sup (I)(3~r (/), C) < 5  lim sup (I)(:/~r (/), C~). 

so that  /~(I) - e < ~ /~ ( J )  < ~/~(I,) ; 
JEJ" 

thus (1) is true. 

6 --  6 4 2 9 4 5  Ac t s  mathematica I I I .  I m p r i m 6  le  12 m a r s  1964 .  
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I f  I E Y and ~ > O, e > O, then there exist intervals I~, ..., I n of J ,  with diameters 

less than (~, with I ~  U~_~I~ and with 

P 

#(I)  > ~ # ( I , )  - s ;  (2) 

because, we can certainly choose mutual ly  disjoint open intervals Jx . . . . .  J ~ E J  with 

diameters less than  �89 and with 1 =  U~=lJi ;  let It, Kt be intervals of I such tha t  

8~ 

and each I~ has diameter  less than  5; now let W be an open set containing i and 

g(~) a sequence of functions of :K(U) converging s to ] on W and such tha t  

lim inf �9 {g(r), W} < u(I) + �89 e =/~(I) + �89 e; 

P 

then /u(I) + �89 s > lira inf X (I) (g(T), Ji) 
r .---) ~ | = 1  

p I) 

>~ ~ lim inf (I)(g (T), J,) >~l~(Ki) 
i = l  r--~ a~ "= 

P P P 

s ( I , ) -  1 

thus (2) is true. 

I t  follows immediately from (1) and (2) tha t  there exists a unique Borel measure 

on U with 
~(I) = ~(1) = ~(I) 

for every I E :1. I t  follows from (1) tha t  ~ is regular. 

Let  V be a bounded open set with V _  U and let {/(T)} be a sequence of func- 

tions of :~(U) such tha t  

as r - >  r Take ~ > 0. The re  exists a finite number  11, ..., I r of mutual ly  disjoint 

open intervals of 3 with each Ij___ V and with 

P 

iffil 
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P 

Now lim inf r {/(r), V) >~ l im inf ~,, r {1('), Is) 

P p 

/>s=! ~' lim,.._>inf~ r {f"), Is} ~ ~TCJs) 

(where each J j  is an interval of a with j r  Is). Hence 

P 

lira inf q~ {f"), V) ~>~ ~](Ij) > ~/(V) - e. 

Thus (i) holds. 

Now take a compact subset C of U, Let e>0 .  There exists a finite number 

11 . . . . .  I~ of open cubes of I such that C g  I.JJ~=lls and 

P 

j~ l~(I j )  < ~(C) + e. 

One can now choose compact sets C 1 . . . . .  Cp such that  Cs~I j for each j and C _  ~ [J~=l Cs- 

Then 

lira sup (I) {a~ ([), C) ~ lim sup ~ (I) {a~ (]), Cs} 
r - ->  r I'--~ oO J = l  

P P 

~<s=,Y lim,_~=sup r  (1), Cs} < ~l/l(Is)= < 17(C)+e. 

Thus (if) holds. 

We have prowed the existence of the measure *7- If there existed a second 

measure r/l, it follows immediately from (i) and (if) that  i71(I)=la(I)=v(I ) for every 

ICY, hence iT1 and ~7 would be identical. 

When /e:g(U) and IcY  we obtain from (i), by putting /(r)=/, 

n(s) < @(/, 1). 

By (if) ~7"(i) >~ lira sup (I) {Y~ (1), i} 
I ' - ~  OO 

and, since Y~ (1) converges s to / on I it follows from 2.2 that  

~7 (i) 1> ,:p (/, s).  

But  since ~ is regular, ~(i)=v(I)=~(I). Thus zl(I)=O(],l) for all I e a .  Hence 

(B) = (P (/, B) 

for every Borel subset B of U. 
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The following theorem, mentioned in the introduction, shows that  1 (iv) is a 

necessary condition for ~b to yield a functional that  is lower-semicontinuous with 

respect to ~1 convergence on the open sets. 

THEORE~ 2.7. Let ~ be a non-negative continuous /unction on R" such that /or 

every bounded open set U o] R ~, the /unctional 

L(I) = f u ~ (grad ]) dx, 

is lower semi-continuous on the Lipschitz ]unctions with respect to uni/orm convergence. Then 

\s+t/<.s~. +t~ 

]or all ~,CER" and s>O, t>O. 

Proo]. Let ~, CER" and s>O, t>O. If one defines 2l(x)=2(x.A) ,  where A is 

an orthogonal matrix, it is easily verified that  2x yields a lower semi-continuous 

functional. Hence it can be assumed that  ~ / s -  F/t= m is of the form (~, 0 . . . .  ,0), 

where ~ >~ O. 

Define /(x) = ~ + ~  ~ t x l e = - ~ . x + S X l e  
s+t  " x = - ' x - -  s s+ t  t s+ t  

Pu t  U=(O,s+t)  • (0, 1) x (0,1) x ... x (0, 1). 

Define t(,)(x ) ~.xs (k-1)t~r  if k - l ( s + t ) r  " ~<xl~<-r--(s+t)+r'k-1 s 

=C'x+ks~ if k - l ( s + t ) + s < x l < < . ~ ( s + t ) "  
t r r 

Then, each 1 (r) is Lipsehitz and /(~) -*/  uniformly on U. 

But grad / = -~ + C. 
s + t  

Now grad /~')=~ if 
8 r 

�9 k - I  t s k - 1  ( s + t ) < x ~ < _ V _ ( s  + ) + ; ,  

=-~ if k - 1  
t r 

(s+t)+a- ~x l  <.k-r (S+t), 
r 
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3. Some approximation theorems 

T H ~ O R ~  3.1. Let C be a compact subset o/ an open set U and let / E ~ ( U ) .  

Let e >0. There exists a Lipschitz /unction g on R ~ with compact support and such 

that the set 
{x; x e C  and /(x):~g(x)} 

has measure less than ~. 

Proo/. Le t  D be a compact subset of U such that  C_~ In / (D) .  

sequence {](~) of functions of ~ ( U )  with 

fD[] (~-- /[ dx--> O 

as r--> oo and with lim inf r (l r D) < co, 
r-opoo 

There exists a 

hence by 1 (ii), lim,_.~cinf fD[1 + ]l grad/(') dx < oo. (1) 

Let J1, J2 . . . . .  Jv be a finite number of mutually non-overlapping closed cubes such 

that  C ~ _ Urn1Jj~_D.  By (1) and [3] 4.3, each of the functions, 

/ j ( x ) = / ( x )  if x e J ,  

= 0  if x ~ J ,  

belongs to the class B of [3]. Hence, the function 

P /*=y/, 

belongs to ]g, so that  by [3] 3.1, there exists a Lipschitz function g on R = with 

compact support and agreeing with l* except on a set of measure less than e. Since 

/* agrees with / almost everywhere on C, g is the required function. 
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LEMMA 3.2. Let A be a bounded measurable subset o/ R 1 and U an open set. 

Let ~ > O. There exist a /inite number I1, 12, ..., Ik o/ non-overlapping closed intervals 

such that : 

(i) each Ij  is contained in U, has its endpoints in A and has length less than s;  

(ii) (A N U ) ~  [.J~=l l j  has measure less than ~. 

Proo/. Let A'  be the set of all those points x of A N U such tha t  every open 

interval of R 1 containing x contains points of A N U to the left of x and points of 

A N U to the right of x. Then (A N U) , , ,A '  is countable, hence has zero measure. 

Let  A 1 be a compact subset of A'  such tha t  A ' -~A 1 has measure less than  e. Let  

be the collection consisting of all closed intervals tha t  are contained in U, have both 

endpoints in A and have length less than  ~. The interiors of the intervals of Y cover 

A1, hence there is a finite subeollection {J1 . . . . .  J~} of Y with 

P 

A1--- U In t  (J,). 
rffil  

Now let 11 . . . . .  Ik be mutual ly  non-overlapping closed intervals with 

k p 

U I j =  U J,., 
1=1 r = l  

with the endpoints of every I j  occurring among the endpoints of the J r ' s  and with 

each I t contained in a J r .  The I / s  have the required properties. 

THv.OBEM 3.3. Let / be Lipschitz on R", A be a measurable subset o/ R n and 

{/r} be a sequence o/ Lipschitz /unctions on R" such that lim,_,oo/r(x) =/(x)  /or almost 

all x E A .  Let ~ >0 and U be an open subset o/ R". Put  

Then 

(a) 

(b) 

A,.={x; xER" and 

~" --~ oo rNU OXt NU 

lim inf �9 {t,, A, N U} >/(I) (/, A N U). 

Proo/. (a) In  proving (a) we can assume A and U are bounded, because if not 

we could approximate the integral on the right-hand side of (a) with an integral over 

A 1 N U 1, where A 1 and U 1 are bounded. 
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(i) When n =  1. Suppose (a) is not true. Choose a subsequence {/r,} such that  

and lim /,, (x) =/(x) 
s --> oo 

for all x in a subset B of A with m(A, , ,B )=O.  
Let (~ > 0  be such that  for any finite set [a 1, bl] , ..., [a~, b~] of mutually non- 

overlapping closed intervals, contained in U and with lengths < ~, one has 

~. l] ,b j ) - , (a t )[ :>~ ; ' 1 ~ ' 1  

Let  K > 0 be a Lipschitz constant for /. 

By 3.2, there exist non-overlapping closed intervals 11 . . . . .  Ik such that :  

(A) each I t is contained in U, has its endpoints in B and has length less than 

rain (~, r//2 K);  

(B) ~ dx dx > dx - I c~. 
J = l  f l U  

Let Ij = [aj, flj]. Then for each )" and each s, 

f ijnA,, l ~ l dx >~ ' /(flj) - /(~j) ' - ' /(~j) - /~ , (aj) [ - ' /(fls) - /~ , (flj) ' ; (1) 

because, if Ijc_A~,, one has 

f,, dx >1 i f , ,  (~,) - I~, (o,,) I oA,, dx I 

I { I (~ , )  - I(~,)} + { l (m)  + h,  (~,)}  - { I  (/~) - I,, (/~,)} I 

>i I l (d,)  - I (~,)  I - l l (m)  - I , ,  (m) l - I I(/~,) - I , ,  (~,) I, 

and, if I t is not  contained in A,,, one can proceed as follows. Since I I(~J)- 1(~,) I < �89 n, 
it can be assumed that  each of [/(~j)-/~, (09)[, [/(fl~)-/~, (flj)[ is less than ~, hence 

~j, flsEA~. Let  ~ ,~EI j  be such that  ~<~,[09,~]_cAr, ,  [ / (~) - /~ , (~)[=~,  [~,flj]~_A~ 
and [/($) - /~,  ($)[ = ~. Then 

~  a:r l  
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But  I/ , .  (~) - / , .  (~,)l  = 1{/, .(~) - / ( ~ ) }  + {/(~,) - I,. (~,)} + {/(~) - / (~ , ) }1  

>/I/,. (~) - t(~) I - I/(~J) - / , .  (~,)l  - I / (~) - / ( ~ , )  I 

> �89 - I l(~J) - 1,. (~J) I 

> �89 -/(~,) I - I 1(~,) -/~. (~,)1 
and  similarly 

I tr. (~,) - / r .  (r > �89 - I(~,) ) - I 1(~./) - Yr. (~,) I, 

so t h a t  (1) is also t rue in this case. 

Now it  follows from (1) t h a t  

..o~1 dx ,~x >>./~lZ I / ( ~ . / ) - / ( ~ , ) l -  ./:1 Z I I (~,)-  It. (~,) l -  ./=~Z I/(/~./)- h. (/~,) I 

and since each c 9, 8i, E B, 

lim inf dx >~ ,_, I/(flt) - ](~ > 5 ~ o m , " v l d x l  .t=1 i=1 1 i d x  d x - � 8 9  , v  dx 

A contradiction.  

(ii) W h e n  n > l .  

of R n, let 

Then 

One can assume i = n .  For  each y ER '~-1 and each subset W 

W(y)={t;  t E R  1 and (y,t) EW}. 

lim inf fA, ne I ~ 

{where y = (x 1 . . . . .  xn-1)} and  by  Fa tou ' s  lemma 

JA,(~)o~(~)lax.I  J 

and by  (i) > ~ , ~ _ , [ ~ ( . ) n v ( . ) l ~ x ~ l d x . ] d X l . . . d x n - l = ~ . v l ~ x ~ l d x .  

(b) We can again assume tha t  A and U are bounded.  

For  each Lipschitz funct ion g on R n and  each bounded measurable subset B of 

R ~, pu t  

.... [ I 
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Since r is continuous and satisfies I (iv), it is easily verified tha t  

[f,(g,B n U,)~m(B n us), 
++, ~) :sup ,=,:~ r t ~ - ~  h- v~-j 

r {p (/, +~ n v,) I 
m(Wh J 

Then A f i V ~ = A N W j .  

89 

Therefore 

hence by 1 (i), 

By (a) 

I p(/,. A, n w,)~ >/. [r A n w,) l 
lira inf r [ re(A, n W,> J q~ ~ mTI~,) j 

T[ m(A n vj) I 2 . q . m ( A  N Vj)" 

lim in/(I) (1. A, N U) >~ lim in/-q~, dp I ft (/" A~ N Wr 1 m(A~ N Wj) 

>1~. ~ ) m(AN V a ) - � 8 9  
j = I  

TH]~OREN 3.4 . .Let  C be a compact subset o/ an open set U and let / q ~ ( U ) .  

Let e > O. There exists a Lipschitz /unction /o on U such that: 

(i) the set {x; xEC and /(x)#/o(x)} has measure less than e; 

(ii) (I) (f0, C) < (I) (f, C) + e. 

Proo/. Since there exists a Borel measurable function that  agrees with / a lm o s t  

everywhere, we can assume that  / is Borel measurable. Let  C 1 be a compact set 

contained in U and with C in its interior. Define 

where the supremum is taken over all finite collections Ul, ..., Uv of mutually disjoint 

open subsets of R =. 

Take e>O and let V 1 . . . . .  Vq be mutually disjoint open subsets of U such that  

r v')~ m(.4 n V,I>+</,AnVI-�89 
i ~ 1  [ m(A N Vi) J 

For each ~, let Wj be an open subset of Vj such that  A N Vj_~ Wj and m(W~) is suf- 

ficiently close to m(A I"1 Vj) that  

> ~ < / , ~  n v,) l 
T [ m ( A N V + ) j  2 - q . m ( A N  V+)" 
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l l (X)=/(X) if x E C  1, 

= 0  if x r  1. 

Then  /1 is Borel  measurable  and  summable  on R n and  

(I)(f, c )  = (I)(l, ~).  (1) 

B y  3.1, there  exists a Lipschitz  funct ion g on R" with  compac t  suppor t  and  such 

tha t ,  if 
E = {x; x e C and /z(x) =~g(x)}, 

then  m(E) < ~ e. (2) 

Le t  & be such t h a t  0 <  ~ < �89 e and  for every  Borel  subset  G of R n with re(G)< ~, 

one has  
r  �88 (3) 

Choose ~ > 0 and  such tha t ,  if 

B = { x ; x e R "  and I / l ( x ) - g ( x ) ] 4 ~ }  and  A = { x ; x e R "  and  / l (X)=g(x)} ,  

t hen  m(B ~ A ) <  �89 ~, (4) 

and  m(x; x E R" and I fl (x) - g(x) l = ~1} = O. 

Le t  {st} be an  increasing sequence of posi t ive integers such t h a t  

1 (')= Y~, (11) 

approaches  fl a lmost  everywhere .  P u t  

A,  = {x; x e R" and  I/(') (x) - g(x)[ ~< ~}. 

Denot ing characteris t ic  funct ions b y  Z, we have  

l im ~A, (x) = g~ (x) 

for  a lmos t  all x, hence b y  bounded  convergence,  

l im ~ [ZA, (x) -- )CB (x) l dx = O. 

Thus  there  exists an r 1 such t h a t  m { ( A r ~ B )  U ( B ~ A r ) } < � 8 9  for all r / > r  1. Hence  

b y  (4), 

re(A, ~ A) < & (5) 
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and m ( A  ,-, At) < ~ (6) 

for all r >/r r 

Le t  V be a bounded o p e n  set, containing C (consisting of the union of a finite 

number  of open intervals) and such tha t  

(l) (/1, V) < (I) (/a, C) + �88 e. (7) 

r V} < r V) + �88 ~ (8) Let  r 2 be such tha t  

for all r ~> r~. 

B y  3.3 there  exists an rs such tha t  

(I) {/% V rl A t }  > (I) (g, V N A ) -  ke  (9) 
for all r ~> r a. 

Le t  r ' = m a x  (rl, r~, ra) and pu t  h =/(r'). 

Define /o (x) = g(x) if x E At,, 

= h(x) - r I if h(x) > g(x) + ~1, 

= h(x) + r I if h(x) < g(x) - ~. 

Then [o is Lipschitz. To show tha t  lo satisfies condit ion (i), let  x e C a n d / ( x )  r fo (x).  

Then /1 (x) ~ ]o (x). I f  x E A~,, we have /1 (x) ~ g(x), so t ha t  x fi E.  I f  x ~ A~, and x ~ E, 

then  x E A  ~ A r , .  Thus we have shown tha t  

{x; x e C  and ] ( x ) ~ / o ( x ) } ~ _ E U  (A , - 'Ar . )  

and therefore,  by  (2) and (6), has measure less than  e. To verify tha t  (ii) is satisfied, 

we observe tha t  

off~ o ) = o f f ~  ~ ~  A,,) + O(I. ,  C n A~,) 

= (P(h, ~ ~  A~,)+ (P(g, ~ n A,,) 

<~ (P(h, C ,-, Ar.) + @(g, C 0 A )  + (I)(g, At .  ,,., A )  
and by  (3) and (5) 

which by  (9), 

and by  (7), (8) and (1), 

< (I)(h, C'~ A,,) + (I)(q, V n A ) +  �88 

< (I)(h, C , , , A c ) + * ( h ,  V f~A~ , )+ �89  

< (I)(h, V)+�89 

<~(/, o)§ 
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In this section, 

proved (4.3). 

J .  H .  M I C H A E L  

4. Approximation of functions on 

the approximation theorem described in the introduction is 

The functional ~F was defined in the introduction for Lipschitz functions t on 

the unit  cube Q by 

~F ([) = fQ r (grad/) dx = (P (/, Q) = r {[, In t  (Q)}. 

THEOREM 4.1. LF is lower semi-continuous on the LiTschitz /unctions with respect 

to F~ 1 convergence. 

Proo/. Let g, g(r) be Lipschitz functions on Q such that  

f [g(r)-g[dx--->O 

as r-->oo. Take e > 0  and let Q1 be an open cube with Q 1 -  In t (Q)  and 

(P(g, Q1) > r  Q ) -  t =~F(g) - e .  (1) 

Then lira inf ~F (g(~)) >/lira inf ~(g(~), Q1) 

and by 2.2 and (1), >~F(g) -e .  

As a result of 4.1, ~F extends to a lower semi-continuous functional on the set 

of functions summable on Q. Thus for a function ] summable on Q, 

~F(/) = inf [lim inf ~F (/('))], 

where the infimum is taken over all sequences {f(~)} of Lipschitz functions that  con- 

verge /~1 to ]. 

If / is summable on Q and ~F (f) is finite, it follows immediately that  / E ~ {Int (Q)}. 

Also, for every open cube Q1 with Q1 ~ Int  (Q), it follows from 2.6 that  (I)([, Q1)~< ~F (/), 

hence for every compact subset C of In t  (Q), (I)(f, C)~d ' ( [ ) .  Therefore 

(b{], In t  (Q)} <~F(/). 

THEORE~ 4.2. Let / be bounded, summable on Q and such that ~F(/) is finite. 

Let ~ > O. There exists a Lipschitz /unction g on Q such that the set 
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{x; x e Q  and / (x)4:g(x)}  

has measure less than e and 

Proo/. 

ap (g, Q) < ap (1, In t  (Q)} + e. 

9 3  

Le t  I/(x) l~<K for all x e Q .  Le t  a = ( � 8 9 1 8 9  . . . . .  �89 and for each t E [0, �89 pu t  

Qt = (2 t(x ~ a) + a; x e Q}. 

Let  D be the set of all rE(0,  �89 for which (I)(/, F r  (Qt)} =0 .  The complement  of D 

in (0, �89 is countable. Le t  t oED be such t ha t  0 < t 0 < � 8 9  

m(Q ~ Qt~ < �89 e (1) 

and (I) (/, I n t  (Q) -~ Qt~ < {1 + 0(1, 1 . . . . .  1 ) } - 1 2 - n - 2 8  (2) 

(0 is the  funct ion described in 1 (iii)). Le t  t 1 be such t ha t  to< tl< �89 and 

t l -  to > �89 (�89 - to), (3) 

0(~) ~< 1 + 0(1,  1 . . . . .  1) (4) 

for all ~ e R n such tha t  I ~, - 11 <<- 1 - (t 1 - to)/( �89 - to) for  all i. By  3.4, there  exists for  

each r, a Lipschitz funct ion g(r) on In t  (Q) such tha t  

re (x ;  x e Q t ,  and [(x)4:g(~)(x)}<r -1 

and aP(g (r), Qt,) < r  Qt3 + r-1. (5) 

We can assume tha t  I g(r) (x) I ~< K for all x E In t  (Q). Then  g(r) __> / in the s topology 

on Q*I so t ha t  by  2.6 
lim inf (I) (g(~), Qt,) >~ ~ (/, Qu). 

r --~ oo 

But  by  (5) lira sup ap (g(~), Qt,)<~ ap (/, Qt,), 
?' -r 00 

hence lim sup (I) (g(~), Qt, ~ Qt~ <<- ap (/, Qt, ~ Qt~ 
,'-..). oe~ 

Hence one can choose a large r, pu t  h = g(~) and obta in  

m ( x ;  xEQt ,  and /(x) 4=h(x)}< �89 ~, (6) 

ap (h, Qtl) < ap (/, Qt,) + �89 e (7) 

(I) (h, Qt, " Qt.) < {1 + 0 (I . . . . .  1)}-12 -n-1 e. (8) 
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Let ~ be the function on [0, 1] that  is linear on each of the intervals [0, �89 

[ � 8 9  o, �89 , [�89 1 ] and has ~ ( 0 ) = � 8 9  ~ ( � 8 9 1 8 9  ", N( �89189  o, N(1)= 

�89247  1. For each xEQ, define 

p(x) = (~(xl), ~(z2) . . . . .  ~ ( z n ) ) .  

Then p is a 1 -  1 Lipschitz transformation of Q onto Qt, such that p(x)= x for all 

x E Qto. Define 
g(x) = h {p(x)}, x E Q. 

Then g is Lipschitz on Q and by (1) and (6), the set (x; xEQ and /(x)~g(x)} has 

measure less than e. For almost all x E Q,,, Qt, we have 

( y~ Jy-v(z) 
so that  by 1 (iii) 

(grad g) ~< 0 {r/' (xz) . . . . .  ~' (x,)} �9 ~ [(grad h(y)}~=~(~)] 

and, since ~ '(xi)= 1 or (~189 it follows from (4) that  

(grad g) < (1 + 0 (1 . . . . .  1)}. ~ [{grad h(y)}~=v(x)], 

hence fo~r176162 . . . . .  1)} fQ~Q,,r 

But ~(x) (xl)" (x2) "'" ~f (x=) >~ \ �89  to/ 

so that  

. ~ ( P )  z x 
f o ~  o,.~b (grad g)dx<~ {1 +0(1 . . . . .  1)} 2" fQ_o, . r  [{grad h(y)}u=,(~)J - ~  ~ 

= { l + 0 ( 1  . . . . .  I ) } 2 " f  r (grad h) dy, 
do tx ~ Qt~ 

which by (8), < �89 e. Then 

(I) (g, Q) < (I) (h, Qt,)+ �89 e < (I) (h, Qt,)+ �89 

and by (7), <(I)(/, Int  (Q))+e. 

T H E O R ~  4.3. I /  / is summable on Q, ~F(/) is /inite and e > 0 ,  then there exists 

a Lipschitz /unction g on Q such that the set 
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{ x ; x E Q  and / ( x ) # g ( x ) }  

has measure less than e and ~ (g) < ~ (1) + ~. 

Proo/. Let  N > 0  be sufficiently large t ha t  the funct ion 

h(x) = N if /(x) 7> N,  

=/(x)  if I/(x) l <~N, 

= - N  if / ( x ) ~ < - N .  

agrees with / except  on a set of measure less t han  �89 e. Le t  {1(~)} be a sequence of 

Lipschitz functions converging E1 to  / on Q and such t ha t  

Define 

lim fQ ~b (grad/(~)) dx = ~f" (l). 

h (~) (x) = N if /(~) (x) >t N, 

=/(r) (x) if l/(~) (x) l ~<N, 

= - N  if / (~)(x)-<<-N.  

Then  each h (r) is Lipschitz,  h(r)-+ h in the s topology and by  1 (i), 

.(~ ~ (grad h (~)) dx <..(,~ dp (grad 1(~))dx, 

hence 1F (h) ~< 1F (/). 

B y  4.2, there  exists a Lipsehitz funct ion g on Q agreeing with H except  on a 

set of measure less t han  �89 e and with 

(I) (g, Q) < (~ (h, I n t  (Q)) + e 

hence ~F (g) < ~F (1) + ~. 

g is the  required function. 
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