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1. Introduction 

Let  1) be a region of connectivity n in the z-plane which contains the point of 

infinity and whose boundary C consists of n smooth Jordan  curves C1, C2,..., Cn. Each 

curve Cr is the boundary of a bounded simply connected region Dj and we write 

D =  (J~_ID s. The Neumann-Poincard integral equation is 

/ (s) = ~ fc  K(s, t) / (t) dr, (1) 

where s and t represent the arc length parameter  on C, z(s) is a parametric repre- 

sentation of C in terms of its arc length, ~/~nt represents differentiation in the direc- 

tion of the inward normal at  z(t), and 

a 1 
K(s, t) = ~ log [z(s) - z(t) [" (2) 

This integral equation plays an important  role in potential theory and conformal 

mapping. I t  can be solved by  iteration and the Neumann-Liouville series so obtained 

converges like a geometric series whose ratio is 1/I/t [ where ~t is the lowest eigen- 

value of (1) whose absolute value is greater than one. The eigenvalues of (1) are 

known as the Fredholm eigenvalues of C. They are all real, satisfy I~t I ~> 1, and those 

for which 121 > 1 lie symmetrically about  the origin. Those of modulus one are referred 

to as the trivial eigenvalues. In  order to have an estimate for the rate of conver- 

gence of the Nenmann-Liouville series, it has been an important  problem to estimate 

from below the lowest non-trivial positive Fredholm eigenvalue, which will be denoted 

by ~t in what  follows. 

(1) This work was supported by the National Science Foundation. 
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Ahlfors [1] showed how quasiconformal mapping leads to a very practical method 

for obtaining such estimates when C is the boundary of a simply connected region/~. 

In particular, he showed that  if /~ admits a quasiconformal reflection [3] of maximal 

eccentricity k, i.e., a quasiconformal mapping / of /~ onto its exterior D which leaves 

C pointwise fixed and for which [/zl < k[/~], then 2/> 1/k.  

Since a quasiconformal reflection is not possible for multiply connected regions 

in the plane, Royden [10] embedded the given region /~ in a compact Riemann sur- 

face oil which the exterior of / )  had the same topological structure as /) .  An in- 

tegral equation analogous to (1) is then studied and its lowest non-trivial eigenvalue 

can be estimated by using a quasieonformal relfection. However the kernel K is no 

longer the Diriehlet kernel (2) but  involves the Green's function of the Riemann sur- 

face which generally is unknown. 

Returning to simply connected domains, Warschawski [15, 16] showed how eigen- 

value estimates can be obtained for a domain which is "close" to a domain for which 

such estimates are known, for example, for "nearly-circular" or "nearly-convex" do- 

mains. Schiller [11] used variational methods to obtain such estimates for simply 

connected regions and similar methods are used in [12, 13] to obtain estimates for 

c~rtain multiply connected regions. 

In this paper, a generalization of the Ahlfors method is presented which is ap- 

plicable to multiply connected regions, and which gives a practical method for obtaining 

estimates for the lowest non-trivial positive eigenvalue 2 for the Neumann-Poinear~ 

equation (1). Let  /-) be a domain of connectivity n containing co and having Jordan 

curves C1, C 2 . . . . .  Cn as its boundary. Each Ck is the boundary of a simply connected 

bounded domain D~, and D =  I.J~=l Dk, C=  I.J~=l Ck. We shall prove the following 

theorem. 

THEOICEM 1. Let ~(z) be a quasicon/ormal homeomorphism o/ the whole z-plane 

onto the whole $-plane with $(oo)= o~ which is K-quasieon/ormal in D and M-quasi- 

con/ormal in ~ .  Let ~ map the curve system C onto a curve system C*. We shall as- 

sume that the Jordan curves in C ang C* have continuous curvature. 1 / 2  and 2* denote 

the Fredholm eigenvalue o/ C and C* respectively, then 

1 2 + 1  
K M 2 - 1  

2 " + 1  K _~,+1 
< X ~ _  1 ~< M ~ I .  

(3) 

Two curve systems C and C* are called quasiconformally equivalent if there is 

a quasiconformal homeomorphism of the whole plane which takes C onto C*. We 
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denote by  ~*  a class of canonical domains for domains of connectivity n, and assume 

that  each domain / )*E ~* is bounded by a curve system C* for which 2*> I. Let  

:~* denote the class of curve systems C* which are boundaries of domains / ) * e  ~*.  

We then have: 

THEOREM 2. The conformal mapping o] ~) onto a domain D*eO* can be ex- 

tended to a quasicon]ormal homeomorphism o] the whole plane if, and only i], 2 > 1. 

COROLLARY. The curve system C is quasiconformally equivalent to a curve system 

C* E ~* i/, and only i], 2 > 1. In  particular, C is quasicon]ormaUy equivalen$ to a system 

o/ circles if, and only if, 2 > 1. 

Finally the cross-ratio condition given by Ahlfors in [3] can be extended to curve 

systems C consisting of n-Jordan curves. We shall prove 

THEOR]~M 3. A curve system C i8 quasiconformally equivalent to a system of 

circles i], and only if, there is a constant A such that 

(P1 P2 " P~ Pa) /  (P1Pa " P4 P~) <<" A < ~o 

]or any ]our points P1, P~, P3, P4 which follow each other in this order on any Ck, 

k=  1, 2, . . . ,n .  

2. The Fredhoim eigenvalues 

Let  us assume that  the curve system C is such that  the spectrum of the integral 

equation (1) consists of at  most a countable sequence {2n}. This is the case, for 

example, when C is given parametrically in terms of arc length by a function z(s) 

which is of class C 2, that  is, when C has continuous curvature. We then denote by 

2 the smallest Fredholm eigenvalue satisfying )L > 1. 

The eigenvalue ~ may be characterized by  the following extremal property. If  

is any function which is harmonic in /~, (regular at  co), and has a single valued 

harmonic conjugate, and if h is harmonic in D and satisfies h = ~ on C, then we shall 

call s and h an admissible pair of harmonic functions for C. Then for any admis- 

sible pair h and h, we have 

f D(Vh) 2 - 1 <  2 + 1  

2 ~  -~ f f ~ .  ( ~ ~ < 2 _  1, (4) 

8* t -- 642945 
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where dv is the area element. Equality holds on the right when, and only when, 

is the harmonic conjugate of the double-layer potential with density on C equal to 

an eigenfunction belonging to 2. Equality holds on the left when, and only when, 

is the harmonic conjugate of the double-layer potential with density on C equal to 

an eigenfunction belonging to -2. Those admissible pairs for which equality holds 

are called extremal for 2 and -2 respectively. 

Now let ~'(z) be a quasiconformal homcomorphism of the whole z-plane onto the 

whole Z-plane which carries infinity into infinity. If $ e C I, then the partial deriva- 

tives Sz and ~ are defined by 

Every quasiconformal homeomorphism $ of the whole plane has generalized derivatives 
Sz and ~ [6, 8, 9] which arc locally integrablc and satisfy 

for all r E C 1 with compact support, the integration extended over the whole plane. 

I t  will be convenient to write p = ~-z and cl = $z" We say that  ~ has maximal eccen- 

tricity k in a region ~2 if there is a number k <  1 such that  I Iq /p l l~  ~<k, that  is, if 

Iq l</cIpl  holds almost everywhere on a .  If we set g = ( l + k ) / ( 1 - k ) ,  we call g the 

maximal dilatation of ~, and ~- is called K-quasiconformal. Note that  if the maxi- 

mal dilatation is equal to 1 in a region ~,  then ~ is conformal in ~.  

We now assume that  ~- is K-quasiconformal in D and M-quasiconformal in /).  

The mapping ~" carries the region /~ into a region /)* and each Dj (]= 1, ..., n) goes 

into a region D*. Likewise, we shall write C* for the image of C and C* for the 

image of each Cj. We shall let 2* denote the lowest positive non-trivial Fredholm eigen- 

value for the curve system C*. 

3.  T h e  e a s e  M = I  

We now consider the special case in which M = 1, that  is, ~-(z) is conformal in 

/ )  and K-quasiconformal in D. Any admissible harmonic function ~ in /~ {i.e., the 

first member of an admissible pair for C) transforms into a function ~* defined by 

~*(~(z)) = ~(z). (5) 

Since $(z) is conformal, ~* is also harmonic, is regular at infinity, and has a single- 
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valued harmonic conjugate in ]~*. Thus ~* is eligible to be the first member of an 

admissible pair for C*, and 

ff~, (Vh)2dv~=I[.IJ~, (V)~*)2 dT;" (6) 

For the harmonic function h in D forming an admissible pair with )~, we shall like- 

wise define its transform h* by 

h* (~(z)) = h(z). (7) 

Since ~ is not conformal in  D, we cannot assert that  h* is harmonic in D*. On the 

other hand, the generalized derivatives ~ and ~ satisfy the usual chain rule and in- 

tegrals transform according to the classical rule in which the Jacobian of $ is taken 

to be Ip[~-lql~; e.f. [4]. We then have 

+ /(IPl+lql) dn=2ffD, + ~ )(IPl+lql)d'CClPl-lql) JJ.\ k l a r  ( 

(8) 
J JD* 

Since the inverse of ~(z) also has maximal dilatation K in D*, we also have 

(9) 

The pair ]~ and h is an admissible pair for C, so from (4), (6), and (9), we 

conclude that  

~ t+ l  fj~(Vh)'dv~ lffD,(Vh)'dv: 
- >1 >~ K , ( 1 0 )  

holds. If we now let g* be the function Which is harmonic in D* and has the same 

boundary values as h* (and hence the same as h*), the Dirichlet principle tells us that  

ffD* (Vh*)* dvr ~> ffD* (Vg*)*d~r (11) 

holds. Therefore, the combination of (1O) and (11) gives us 
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- -  * (12) 
- 1  K [ / ' , ( V h , ) 2 d ~  : ' j j 5  

where ~t* and 9* are an admissible pair for C*. 

Thus to each admissible pair ~, h for C corresponds an admissible pair ]~*, g* 

such that  (11) holds. In  particular, we shall let h~ be the harmonic conjugate of the 

double-layer potential with density on C* equal to a Fredholm eigenfunction belonging 

to F ,  and we take as ~ the function s For this h, there is a function h in 

D which has the same boundary values as ~ and is harmonic in D (the solution of 

a suitable Dirichlet problem). To this admissible pair I/, h for C corresponds the 

admissible pair ~*, g~ for C* which is extremal for F ,  and we have 

f f  " - -  *,2d. c ~. + 1  >/ 1 ~).(Vgl) $ 1 ~.* + 1 (13) 

Since the inverse of $(z) is also conformal in D and K-quasieonformal in D, this 

ihequality (13) also holds when ~* and ~ are interchanged. Then we can write 

l X + 1  ~ * + I ~ < K X + I  (14) ~---7 < 2 - - ~  ~ - ~  

This proves (3) in the special case M = 1. Looking back over the proof, we see 

that  it was only for convenience that  we normalized the problem at  infinity, so that  

the restriction ~ ( ~ ) =  ~ can be relaxed to allow ~ to be any quasieonformal ho- 

meomorphism of the whole sphere. Then the inequality (12) can already be used 

to deduce the fact tha t  ~ remains invariant under a linear fractional transformation 

of the plane, for in this case, M=K =1 and )~=F.  This fact was observed by 

Bergman and Schiffer in [5]. 

4. T h e  case  K - - 1  

When K =  1, ~ is conformal in D and we shall assume that  ~ is M-quasiconfor- 

mal in D. From the left inequality in (3), we get that  

(15) 
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holds for each admissible pair of functions ~, h for C. Using (7) to define h* and 

the conformality of ~ in D, we have 

f f (16) 

If  we use (5) to define s we have from an argument  similar to (8) and (9) tha t  

If  we replace ~* by the harmonic function f* in /)* which is regular at  infinity and 

which assumes the same boundary values as ~* on C, we may  use the Diriehlet 

principle to conclude tha t  

f f fo,(Vt*) dv:. (18) 

I t  is now possible tha t  the function ]* does not have a single-valued harmonic 

conjugate in /)*. Since f* is regular at  infinity, we have 

~ 

J C  

Let  o)j denote the harmonic measure of the contour C* relative to /)*, and 

o o ~ cls. 

Since the matr ix  (pj~), k =  1 . . . . .  n -  l, j = 1 . . . . .  n -  1, is positive definite, it is possible 

to solve the system of equations 

,~ -1  ( d *  
~sPJ~ = 3c* 9n d8, k = 1 ,2 ,  . . . ,  n -  1, 

for the coefficients ~z, ~e . . . . .  ~n-z. We then define the function 

n--1 

5 
i=1 

Now ~* has a single-valued harmonic conjugate. Furthermore, each eoj is Dirichlet 

orthogonal to harmonic functions ~* which have single-valued harmonic conjugates, 

for we have 

9 -- 642945 Acta mathematica. 111. I m p r i m 6  le 20 m a r s  1964 
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Therefore 

(19) 

has been established. 

The new funct ion g* differs f rom [* on C* by  a constant  for each 1" = 1, 2 . . . .  , n. 

Hence ~* differs f rom h* on each Cj by  some constant ,  say ~* = h* + c a on C~' j = 1, 2 . . . . .  n. 

The functions g* and h* have the same Diriehlet We then define g * = h * + c  a in D*. 

integrals in D*, so we have 

~ t + l  1 f f S ,  (v~*)~dw" 
/> (20) 

Mffo.(Va*),d,: 
I f  we now take for ~* the harmonic  conjugate ~* of the double-layer potent ial  

with densi ty on C* a Fredholm eigenfunetion corresponding to - 2 " ,  we can define 

/l(Z)=9*(~(z)) zeC. 

We next  solve the Dirichlet problem in ~) and D for functions ~1 and  h 1 respectively, 

bo th  of which assume the boundary  values /1 on C. The function )bl m a y  not  have 

a single-valued conjugate,  bu t  by  adding a suitable linear combinat ion of harmonic  

measures to h 1, we get  an admissible fucnt ion gl in ~ and by  adding suitable con- 

s tants  to h 1 in each component  of D, we get  a funct ion gl in D such tha t  gl, gl 

form an admissible pair  for C. Since gl and [1 differ by  constants  on each com- 

ponent  of Ca, the chain of operations going from ( 1 5 ) t o  (20 ) s t a r t i ng  with ~ = g l  

and h = gl lead to the extremal  admissible pair  ~*= ~* and  g * =  g*. This allows us to 

write 

'ff  ). -]- 1 (Vgl)2d~'z M �9 (Vg~)~dv~ 1 )~* + 1 

- 1 (Vgl)2d~: z (Vg*) 2 d ~  
$ 

(21) 

Thus  we have proved (3) for the case in which K = 1. 
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5. Factorization of quasieonformal mappings 

To complete the proof of Theorem 1, we shall use the following lemma: 

L]~MMA 1. Every homeomorphism / o/ the plane which is K-quasicon/ormal in D 

and M-quasicon/ormal in D can be /actored to the composition o/two mappings /= hog 

where g is con]ormal in ~ and K-quasicon/ormal in D and h is con/ormal in g(D) 

and M-quasieon/ormal in g([)). 

Since / is quasiconformal, it has generalized derivatives /z and /~ which satisfy 

/z=/~/~ where HlaH~<~k=(g-1)/(K+l) in D and ]]IXH~<m=(M--1)/(M+I) i n D ;  

cf. [6]. In general, a mapping ~ is called v-conformal if its generalized derivatives 

satisfy r  For convenience, we shall again normalize / so t h a t / ( o r  c~. For  

any measurable function v, we can use the fundamental existence theorem [4] which 

says that  there exists a unique v-conformal homeomorphism of the whole plane with 

fix points 0, 1, and cr 

There is a v-conformal homeomorphism of the whole z-plane onto the whole w- 

plane satisfying 
(a) g ( o ~ ) =  oo, 

(b) v(z)=tt(z) for zf iD,  

(c) v ( z )=0  for z e / ) .  

Thus g is conformal in b and K-quasieonformal in D. The eonformality of g in 

/~ assures us tha t  g~(z)=g'(z)#O holds for all zE/) ,  and we may define ~(z)= 

g'(z)/g'(z) for zE/~. We then have l~(z)l=-I for z ~ .  

Now let ~ be a v*-conformal homeomorphism of the whole w-plane onto the ~- 

plane satisfying 
(a*) ~F(oo) = o~, 

(b*) v*(w)=O if wEg(D), 

(c*) v*(w)=lX(g-X(w))~(g-l(w)) if wGg(/)). 

The mapping ~F is conformal in g(D) and since ] ~] = 1, 1F is M-quasiconformal in g(/)). 

Using the formulas [4], (W o 9)z = ~F~. gz + ~ ~ and (~F o g)~ = iF w g~ + ~F~ ~ along 

with y~ = (g~) and y~ = (g~), we deduce that  for z ED, 

holds and for z E/), 

( , r  o g )~ / ( , r  o g),  = I 'F~/ 'Fw I I~ /g~  I = m ~, = F, 
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holds. Thus f and ~Fog are both tt conformal in the whole plane. Let  L be a 

similarity transformation L(~)= a S +  b with a and b selected so tha t  / and L o (~F o g) 

agree a t  0,1,  and oo. Since / , r  and L~=0 ,  we have 

(L o (~F o g)); (W' o g); 
(L o (W" og)). (~F og)~ - # "  

Now [ and L o ( L F o 9 )  are both # conformal and they agree on 0, 1 and oo, which 

makes them identical. I f  we set h = L o~F, we have the decomposition [ = h o g  required 

in the lemma. 

Theorem 1 can now be deduced from Lemma 1 by factoring the mapping which 

is K-quasiconformal in D and M-quasiconformal in D into the composition of g and 

h as given in the lemma. The mapping g carries C into a curve system C' in the 

w-plane having Fredholm eigenvalue 9.'. The mapping h then carries the curve system 

C' into the curve system C* with eigenvalue 4*. From (14) and (21) we deduce 

; t * + l  _ ) . ' + 1  4 + 1  

which is the right side of (2). The same argument  applied to the inverse of ~ proves 

the left side of (2) and Theorem 1 is proved. 

6. Simply connected regions 

When / )  is simply connected, it may be mapped conformally on to the exterior of 

the unit  circle with infinity going into infinity. Let  us now assume tha t  this mapping 

can be extended to be a homeomorphism of the whole plane onto the whole plane 

which is K-quasicoifformal in D, t h e  exterior of /~. Then if )~ is the Fredholm eigen- 

value of C, the boundary of / ) ,  and if 4" is the Fredholm eigenvalue of ~(C)= C*, 
Theorem 1 tells us tha t  

~.+1 J . * + l  
a_ <gp l- 

For  a circle, )L*= co, so we have 

4 + 1  I + k  
- - ~ K = - -  
4 - 1  1 - k '  

where /c is the maximal eccentricity of ~ in D. This yields the inequality 
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1 
/> ~ (22) 

as an estimate for ~. 

Let  a* represent the mapping a(z)= 1/2 which is a reflection in the unit circle. 

The composite mapping a =  ~-1 o a*o  ~ is a mapping of ~ onto D which leaves the 

points of C fixed. Hence ~ is conformal in /~, K-quasiconformal in D, and since a* 

is anticonformal (maximal dilatation 1 and sense reversing), w e  see that  a is also K- 

quasiconformal. Ahlfors has called such mapping K-quasiconformal reflections of / )  

onto D, cf. [13]. 

The existence of a K-quasiconformal reflection enables us to define the homeo- 

morphism of the plane taking /~ onto [~]>  1 conformally and D onto [~1< 1 K-qua- 

siconformally. We simply let ~ be the conformal mapping of / )  onto ]~[> 1 with 

~ ( ~ ) = ~ ,  and we set ~ = a * o ~ o a  -1 in D. 

We now see that  when D is a simply connected region, we can choose D* to 

be the unit circle and we obtain as a special case of Theorem 1 the following theo- 

rem of Ahlfors [1]: 1/ ~) admits a K-quasicon/ormal reflection, then its Fredholm 

eigenvalue satisfies 
1 

where k = ( K -  1) / (K § 1). 

7. Eigenvalue  est imates  

The mapping ~ = z + 1/z maps a circle [z[= a, a > 1, onto an ellipse Ca with foci 

at ~ = 2 and ~ = - 2 ,  semi-major axis of length a+ 1/a and semiminor axis of length 

a - 1 / a .  (Any ellipse is similar to such an ellipse.) This mapping ~ takes the region 

[z l>  a conformally onto the exterior /)a of Ca. The mapping ~ can be extended to 

give a quasiconformal mapping of I zl < a onto the interior Da of Ca by the following 

definition: if I z I < 1, 

(z) = z + ~-~. (23) 

For  this mapping ~(z) in [z[ < 1, we have ~z= 1 and ~z = 1/a S, so ~/$z  = 1/a 2 

and we see that  $ has maximal eccentricity 1/a S in [z [ < 1. If  2" represents the Fred- 

holm eigenvalue for the ellipse, we have 

1 
).*+ 1 1 + ~  

~ * - 1  1 '  
a 2 
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or simply 2* ~ a 2. (24) 

According to Sehiffer [11], the exact value of 2* for the ellipse Ca is actually a 2, so 

our method has yielded a sharp estimate in this case. 

We now consider the doubly connected region ~ contained between two confoeal 

ellipses. By a similarity mapping, these may be brought into the standard position 

with loci at  - 2  and 2. The semi-major axes of the two ellipses can then be written 

in the form a + 1/a  and b + l / b  where b > a > 1. Thus the region / )  is the conformal 

image of the annulus a < I z [ < b under the mapping ~ = z + 1/z. Let  Da represent the 

interior of the ellipse Ca and Do the exterior of the ellipse Cb. The function ~ = z + 1/z 
also gives us a conformal mapping o f  [ z ]>b  onto Db and the extension to ] z l < a  

defined by (23) gives us a mapping of ]z l< a onto Da with maximal eccentricity 1/a 2. 
The Fredholm eigenvalue 2 for the annulus a <  I z] < b is 2 = (b/a)2; cf. [13]. Then 

Theorem 1 gives us the estimate 

1 b 2 
2 " + 1  1 +a-~a~+ 1 (a2+ 1) (b2+a2) 
2 " - 1  ~ < ~  b 2 ( a 2 - 1 )  ( b 2 - a 2 )  ' 

1 1 a 2 a 2 

--1) (52-a 2) (25) 
or simply 2*/> 1 + (a2 b2 + a4 

This lower bound for the region between confoeal ellipses can be compared with the 

lower bound 

2* >/1 + (a2 - 1) (b - a) (26) 
b + a  3 

obtained by variational methods in [13]. I t  is readily shown tha t  (25)gives a larger 

lower bound for 2" than does (26). 

Another way that  Theorem 1 can be used to get estimates for the lowest posi- 

tive, non-trivial, Fredholm eigenvalue is demonstrated in the following. The affine 

mapping ~=az+b2 has maximal eccentricity k=]b/a 1. This mapping carries an 

annulus k<lz  I < 1 into the region ~ between concentric similar ellipses. Since 2 for 

the annulus is 1 /R 2, we can obtain an estimate for the eigenvalue 2 of the boundary 

of /~. We have 
2 " + 1  ( l a l + l b l ) 2  I + R  ~ 
2 " - - - ~  4 - -  - -  R 2 .  - ( l a l  Ibl)  2 1 

This same kind of argument can be applied to any region which is the affine (or 
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more generally, quasiconformal) image of a region whose eigenvalue 2 is known. In  

particular, estimates are known for such regions as circular regions (i.e., regions whose 

boundary components are circles), or regions bounded by the n components of a 

limniseate (i.e., the level curves of I P(z)[= m, where P(z) is an nth degree polyno- 

mial with n simple zeros and m is sufficiently small so that  each level curve encloses 

just one zero of P and no critical points of P). These may be found in [13]. For 

example, in the case of a circular domain bounded by circles I z - a~ [ = Rt, i = 1, 2 . . . . .  n, 

2 >~min ( ~ + -  aJ[~ ~ (27) 
~.j \ R + + R j ]  " 

We shall close this section with an estimate for ~ for a curve system each of 

whose curves Cj, ?'= 1, 2 . . . . .  n, is smooth and star-shaped with respect to a point aj 

in this interior region Dj. We shall further suppose that  each closed set Dj U Cj is 

contained in a disk ] z - a j ]  < R s and that  the n disks I z - a j ]  < Rj are disjoint. 

I f  a curve C, which is star-shaped with respect to the origin, is given in polar 

coordinates by the equation r =g(0), we can easily define a quasiconformal homeo- 

morphism F of the whole plane which carries a circle I z l =  Q< R onto C and which 

is the identity mapping in [z l>  R. Such a mapping is given by 

Ig(~O)re +~ for r < ~  

[ re +~ for r/> R. 
Using the facts that  

~r r ~r z ~0 1 ~0 - 1 
- - .  = - -  

~z 2 z' ~ 2 r' ~z 2 iz' ~ 2iX' 

we can compute expressions for ]F~/Fz ]. In  order to express the results in geome- 

trical terms, let us observe that  g'(O)/g(O)=tan v(O), where v(0) is the angle between 

the radius vector from 0 to g(O)e ~~ and the normal vector to C at g(O)e +~ We have 

I F+/F+ I = 

tan 2 ~(0) for r <  
4 + tan ~ ~(0) 

1--  ~ z tan ~ 

for Q < r > R  

0 for r > R .  
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Let us introduce the following notation: 

a =g.l.b. ~ f l=  1.u.b. ~ - Q 

We can then show that  if ~ is chosen such that  a < 1 ([ z [ = ~  lies inside of C) 

72 
4--+-r~ for  r < q 

]$ ' : /Fz l  2 < (1 - a)2+ (1 -F)272  for O< r<R 
(1 - a)  2 + (1 - F)* 7 2 + 4 (1 - # )  (a  - / Z )  

0 for r>R. 

On the other hand, if Q is chosen so that  ~ >/1 (C lies inside of ]z I = ~), then 

72 
~ _  7~ for r < 

IF~/F~I 2 < (f l_ ])2+ (1-/z)2r2 for  o <  r < R 
( f l -  1)2+ (1 -/Z)2 72+ 4 (1 -/Z) ( a - / z )  

0 for ~ > R .  

Now if the curve C s of a curve system C is star-shaped with respect to a point 

a s, the curve Cj is given by a polar equation [z-aj[ =gs(0), 0 = a r g  (z-as). We have 

assumed that  there are radii Rj, j = 1 . . . . .  n such that  gs (0) < R s for all 0 and the disks 

Iz-as]<Rj, ]=1, ...,n are mutually disjoint. Select Qs such that  0<Qs<Rj.  We de- 

fine a quasiconformal mapping [ of the whole plane which takes the system of circles 

I z -as l= ~j onto the curve system C as follows: 

/(z)={;(z-as;gs, Ry,~s) fOrelsewhere.lz--ajl<Rs, i = l  . . . . .  n, 

The desired estimate for the eigenvalue 2 of the system C of star-shaped curves 

is then 
2 + 1  l + k l + m L + l  
,t ---Z1 ~< i - k 1 - m L - 1' (28) 

where L =  min [\lJa'-a'!l 2, k = m a x  ks, ~n-~- m a x  m t ,  
t,]=Z ..... n \ ~i'~-~1 ] 1 = 1  . . . . .  n i = 1  . . . . .  n 

' 0  
k j = T J  4 1 / 4 ~ ,  7j=l .u .b .  [tan v,(O)l=l.u.b, gj( )l 
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- 1 b ~J Qs Q~ :~J=g" " " 2 '  flj =l .u.b.  
t01<~ gJt ) iol<. g , ~ '  / ~ - R j  

(1 - ~J)~ + (1 -/~t)2Y~ if flj,.<l 
and my= ( 1 -  ~t)2 + (1 - Ft)~ Y~ + 4 (1 -/xt) (~t - Ft) 

(fit-- 1)2 + (1 --Pt)2Y~ if ztt >~ 1. 
( f i t -  1) 3+ (1 -Ft)* y~ + 4 (1 - F , )  (at - g t )  

The alternative flt~ 1 holds when the circle I z - a t l = ~ t  has been selected so as to lie 

within C t and the alternative at/> 1 holds when C, lies within the circle I z - a t l = Q s .  

When y t<  ~ ,  the numbers mj are all less than 1, for g t (0)<Rj  means that  ~t>/xt, 

while FJ < 1. Thus we have a lower bound for 2 which is greater than 1. Each of 

the quantities appearing in the estimate for ~ has a simple geometrical significance; 

for example v~(O) is the angle between the vector z - a r  and the normal to Cj at  z, 

where z - ar = gj (0) e ~~ 

8. Quasieonformal equivalence of curve systems 

Curve systems C and C* are called quasiconformally equivalent if there is a 

quasiconformal homeomorphism of the whole plane taking C onto C*. Let us now 

remove the restriction in the definition of 2 tha t  the system C have continuous cur- 

vature. For an arbitrary system of Jordan curves bounding a region ~ of connec- 

t ivi ty n, with ocE~), we shall define A as the greatest lower bound of all numbers 

L such that  

ff (vh)'av 
L -1 ~< ~-(_ (7h)2d ~ < L 

J JD  

holds for all admissible pairs of harmonic functions h and ]/ for C. We then set 

2 =  (A+ 1 ) / ( A -  1). 

A glance at  the proof of Theorem 1 will convince one that  if / is a quasicon- 

formal homeomorphism of the whole plane which is K-quasiconformal in D and M- 

quasiconformal in 2), then to each admissible pair of functions h, // for C, there 

corresponds in a one-to-one fashion (by transplanting the boundary values) an ad- 

missible pair h* and 1~* for C* such that  

<. K M  <. KMA*. 
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Thus A<~KMA*, and application of the same reasoning to the inverse function shows 

tha t  (3) holds for arbi t rary finite systems of Jordan  curves. Consequently ~t* > 1 holds 

for the eigenvalue of C* (i.e., A * <  oo), if, and only if, ~t > 1 (i.e., A < oo) holds for 

the eigenvalue of C. 

Let  O* represent a class of canonical domains for domains of connectivity n, 

and ~* denote the class of curve systems which are boundaries of domains in ~)*. 

We shall assume tha t  each curve system C*E~* has ~t* >1 .  The circular domains 

discussed at  the end of the preceding section are examples of such domains. We shall 

now prove the following theorem, suggested to the author by L. V. Ahlfors, who 

showed by  a similar argument  tha t  ~t > 1 is sufficient for the existence of a quasi- 

conformal reflection in the simply connected case. 

TH~OR~.M 2. The /unction f which maps 1~ con/ormally onto ~ * E O *  can be ex- 

tended to a quasicon/ormal homeomorphism o/ the whole plane i/, and only i[, ,~ > 1. 

I f  the extension is possible, the fact tha t  ~t*> 1 implies tha t  ~t > 1 is shown in 

the preceding paragraphs. The proof tha t  Jt > 1 implies the possibility of such an 

extension draws heavily from the work of Ahlfors and Beurling [7]. Let  us suppose 

tha t  ~ > 1. In  order to prove tha t  f can be extended to a quasiconforma] homeo- 

morphism of the whole plane, it suffices to focus our at tention on each component 

De and prove tha t  ~ can be extended into De to give a quasiconformal mapping of 

De onto D* e .  

Consider four distinct points P1, P~, Pa, P4 in counterclockwise orientation on Ce. 

Let  a denote the arc PIPg. between PI  and P2 on Ce and f l=PaPa. Let  d(a, fl) 

denote the extremal  distance between the arcs ~ and fl relative to De. Then 

(;fo )' g(~,fl)= (Vh)~dr , (29) 
k 

where h is the real par t  of the holomorphie function which maps De onto the rec- 

tangle with P1, P2, Pa, 1)4 going into vertices, ~ going into the edge h = 0, and fl going 

into the edge h =  1. (If C is smooth, h is characterized as the harmonic function in 

De satisfying h = 0  on e, h = I  on fl, and Oh/O~=O on C e - ( e U ~ ) . )  Let  ~ be the 

harmonic function in / )  which has a single-vMued conjugate harmonic function, as- 

sumes some constant values bj on each Cj, ~'+ ]r and has the same values as h on Ce. 

I f  we extend h to D by  h--b j  in Dj then h and ~ form an admissible pair for C 

and we conclude tha t  
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ffD~ (V h) ~ dr 

A - l <  f f~(vh)'~ --~: < A. (30) 

If we transplant h to /)* by means of the conformal mapping [ (i.e., ~* ([(z))= 

~(z)) we have 

This gives us A-1 ~<''~(Vh. d ~ I I "  )~ - -  -<< A. (31) 

ffD.(V h )~dv 

We next observe that  )r takes the points P1, Pv  Pa, Pa on Ck into four points 

P*, P~, P~, P~ on the curve C*; the arc a goes into ~* and fl into fl*. 

The harmonic function ~* has value 0 on a* and 1 on 8*- Let h* denote the 

harmonic function in D* which assumes the same boundary values as )~* on C*. 

(Thus h* is constant in each region D*, ~#k.) Then if t* denotes the eigenvalue of 

C*, we have for the admissible pair h*, ~*: 

(A,)_l<ffD*(Vhl)~dv 
ffo (vh )~d~v <A*. (32) 

Multiplication of (31) and (32) yields 

~D (Vh) zdv 
(AA*) -1 4 ~ < AA*. (33) 

f f D  (Vh*) dr  

I t  is easily demonstrated (by the standard argument using ]Vh* I ds as a com- 

peting metric in the definition of extremal distance) that  if g* is the harmonic func- 

tion in D* which assumes values 0 on cr 1 on fl*, and is the real part of the holo- 

morphie function which maps D* * * k onto a rectangle with P~*, P~, Pz, P~ going into 

vertices, then 

1 f fD(Va . )~dv<~  (Vh,),dv ' (34) d(a*,fl*) ~ ?, 
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where d(a*,/5*) represents the extremal distance between the arcs a* and /5* relative 

to the region D*. From (29), (33) and (34), we conclude that  

d(a*, /5*)/d(o~, /5) >1 (AA*) -1. 

The same result applies to the complementary arcs ~ = P2 P3 and ~ = P4 P v  so we have 

d(6:*, fi*)/d(~, fi) >~ A A  -1, 

but  d(a,/5) d(~, ~) = 1, and d(a*,/5*) d(&*, ~*) = 1, so we have obtained 

0 <  B -1 < d(o~*, /5*)/d(o~, /5) < B < oo, (35) 

where B = AA* - (2 + 1) (2* + 1 ) (36) (~ - ~ )  (~* - ~ )  

The condition (35) guarantees that  the mapping ] of D onto ~*  can be extended 

to a quasiconformal homeomorphism of Dk onto D~. The proof of the following lemma 

will show how (35) can be transformed into the condition given in [7] which assures 

us tha t  a boundary correspondence on the real axes can be extended into the upper 

half planes. 

L~.MI~A 2. I /  there is a constant B <  oo such that B -1 < d(x*,/5*) < B / o r  any arcs 

a and /5 on Ck /or which d(a,/5) = 1, then / can be extended to give a quasicon/ormal 

mapping o/ Dk onto D* k .  

The region Dk can be mapped conformally onto the upper half plane U. Then 

the points P1, P~,/)3,/)4 correspond to some points Q1, Q2, Qa, Q4 in increasing order 

on the real axis. Likewise we can map D* k onto the upper half plane U*. The points 

P~, P* p* p* 2, a, 4 correspond to four points Q*, Q~, Q~, Q~ on the real axis. Both mappings 

shall be chosen to tha t  Q4 = oo and Q* = oo. The boundary correspondence between 

Ck and C~ defined by f induces a boundary correspondence $ of the real axis onto 

itself such that  Q~=~(Q~), i = l ,  2, 3, 4. 

The extremal distances d(x,/5) and d(x*,/5") are conformal invariants. If $ ( ~ ) = ?  

and $(/5)=~, we have d ( 7 , 6 ) = 1  and 

0<B-X~<d(? *,6*)~<B< oo. (37) 

Let  us denote the cross ratio Q2 Q3" Q-~4/~Qz"  Q3Q, by Z. I t  is pointed out in 

[7] tha t  d(?,(~)=P(Z),  where P is a monotone increasing function of Z satisfying 
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P ( 0 ) = 0 ,  P(1) - -1 ,  p ( ~ ) = o o  and P(Z-1)=(P(•)) -1. If we select the points Q1, Q'~, 

Qa, Q4 to have the coordinates x - h ,  x, x+h ,  ~ ,  then g = l  and d ( $ , ~ ) = P ( g ) = ] .  

We now have 

g,  Q~ Q~ �9 Q~ Q* _ ~ (x + h) - r (x) 
Q~ Q*. Q~ Q~ r - r  h) 

1 ~<r162 (38) 
and from (37), O < p ~ V ~ - ~ r 1 6 2  ) (B)< ~ .  

This is just the necessary and sufficient condition given in [7] for the existence of a 

quasiconformal mapping of U onto U* with the boundary correspondence 4" Thus 

the conformal mapping ] can be continued quasiconformally into each Dk to give us 

a quasiconformal homeomorphism of the whole plane, and Theorem 2 is proved. 

I t  is furthermore shown in [7] that  there is an extension of / into each compo- 

nent of D which has maximal dilatation K not greater than [P-I(B)]2. Since P(@)= 

1 +0(@) log @, where 0(@) increases from 0(1)= .2284 to 0 ( ~ ) =  1 / ~ =  .3183, we obtain 

the estimate 
K ~  e (8 1)/(.1142). (39) 

An immediate consequence of Theorem 2 is the following corollary. 

COROLLARY. The curve system C is quasicon/ormaUy equivalent to a curve system 

C* E ~* i], and only i], A > 1. In  particular, C is quasicon/ormaUy equivalent to a system o/ 

circles i/, and only i/, ~ > 1. 

In [3] Ahlfors gave a geometrical condition on a simple closed curve C which is 

necessary and sufficient for C to admit a quasiconformal reflection. This condition 

can also be extended to a curve system C consisting of n Jordan curves to give us 

the following theorem. 

THEORE~ 3. A curve system C is quasicon/ormaUy equivalent to a system o/circles 

i/, and only i/, there is a constant A such that 

(P1 P~" 1)31)4)/(t)1 P~" P., Pd) ~< A < co (40) 

/or any/our points P1, P2, Pa, P4 which/ollow each other in this order on any Ck, lc = 1, 2 . . . . .  n. 

The necessity of the condition (40) can be deduced easily as follows. If C is 

quasiconformally equivalent to a system of circles C*, then each C~ is mapped onto 

a circle C~. The quasiconformal mapping from Dk to D~, followed by the reflection 

in C*, and this followed by the quasiconformal mapping of D* onto D~ gives us a 
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quasiconformal  reflection in C~. The condition (40) is just  the  necessary (and suffi- 

cient) condition for the existence of a quasiconformal  reflection in C~ (see [3]). 

I n  order to show the sufficiency of the  condit ion (40). we shall show, using 

Ahlfors '  a rgumen t  in [3], t h a t  (40) implies the condition given in L e m m a  2, where 

the cons tant  B depends upon  A. We denote  by  P~ P~ the arc of C~ be tween P~ and 

P~. Then we set  

o~=P~Ps, f l=P~P~, 5:=PIP~, f l = P a P a .  

As before, we can m a p  ~ conformal ly  onto a circular domain,  so t ha t  the  four 

P1, P~, a, k. points  P1, P2, Ps, P4 on Ck go into four points  * * P* P* on the  circle C* The 

arcs corresponding to :r fi, ~, fl are :r fl*, ~*, fl* respectively.  A linear fract ional  trans- 

fo rmat ion  can be used to t ake  Pa--> ~ .  This leaves the cross rat io  invar iant ,  so t h a t  

(40) says 
~P~ P~ ~< A P~ Pa,  (41) 

using the same let ters  for points  a f ter  the  linear fractional  t ransformat ion .  

We select ~ and  fl so t h a t  dDk (:r f l )=  1, where dD(~, fl) represents  the ex t remal  

dis tance be tween ~ and  fl relat ive to D. Then for any  point  P on fi, we have  

P2 P1 ~ A P~ P or PP2 >~ A-1 P1 P2" For  any  point  Q on a, we have  QP2 <~ AP2 Ps so 

we see t ha t  the  points  of ~ are a t  mos t  a t  a distance r 1 = A P2Ps f rom P2- 

We shall nex t  prove  t h a t  P I P z < ~ A 2 e ~ P 2 P  a. I f  P1P~/PzPs > A 2 e ~,~ were to 

hold, then PP2/QP~ > e ~" would hold for any  points  P Eft and  Q E ~. Thus  a and  fl 

would be separa ted  by  an  annulus whose radii have  rat io e ~'~. The ex t remal  dis tance 

between the  two circles of such an annulus is 1, so dDk (~, f l )>  1, a contradict ion.  

Thus we mus t  have  P1 P~ ~< A2 e ~ p~ Ps" Likewise, interchanging P1 and  Pa yields 

P~Pa<~A~e~P1P 2. I f  Q1E~ and Q~Efl, then  

Q1 Q~ >~ A-1 Q1 P1 >~ A-2  P1 P~ ~> A-4 e ~ p~ Pa" 

The  m i n i m u m  distance f rom ~ to fl is thus  a t  least  r 2 = A4 e 2~ p2pa" 

As a compet ing  metr ic  in the  definit ion of ds(~,f l ) ,  we now use ~ldz[ where 

= 1 in the  circular disk of radius r 1 + r 2 abou t  P2 and  ~ = 0 elsewhere. Then  for any  

curve ~, in ~ which goes f rom ~ to fl, f~[dz[>~r  2 while f . f s ~ d v < ~ ( r l + r 2 )  ~, so 

r~ -1(1 +AS e~  ) 2. 
d5 (~, fl) ~> ~(r~ + r~) 2 
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The same estimate applies to d 5 (~,fl), and since d 5 ( ~ , f l ) - d S ( ~ , ~ ) = l ,  we also 

obtain an upper  bound for d~(~,~); i.e. 

~:-1 (1 § A 5 e2") -1 ~< d~ (~, fl) ~< ~ (1 + A 5 e~). (42) 

Since /~ was mapped  conformally onto the circular domain /)* and extremal  

distance is a conformal invariant,  we have ds(a, fl)=d~.(a*,fl* ). We now make use 

of two facts :  (1) the extremal  distance is decreased if the domain /~* is expanded 

to be the whole complement  of D*" k, and (2), the extremal distances between ~* and 

fl* relative to D* and relative to the complement  of D* are the same. Thus 

gD** (~*, fl*) ~< (1 § 

The same a rgument  applied to ~*, ~* yields a lower bound for do** (a*, fl*), so t h a t  

~-1 (1 § A ~ e2") -1 < dDk. (~*, fl*) ~< :~ (1 § A 5 e 2") (43) 

when dD,(~,fl)= 1. Use of L e m m a  2 completes the proof of Theorem 3. 
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