PARAMETER ESTIMATION FOR STOCHASTIC PROCESSES

BY
\section*{T. S. PITCHER}
Lincoln Laboratory (${ }^{1}$), Massachusets Institute of Technology

1. Introduction

A stochastic process $[x(t), t \in I]$, or x for short, has associated with it a probability measure P_{x} defined on suitable subsets of the space of sample functions on I. The problems of determining when measures P_{x} and P_{y} associated with processes x and y are mutually absolutely continuous and of computing the Radon-Nikodym derivative $d P_{x} / d P_{y}$ have been much investigated in recent years. In particular, a necessary and sufficient criterion has been given in case x and y are Gaussian for determining the mutual absolute continuity of P_{x} and P_{y} [3]. If we take I to be an interval and x and y to have zero means and correlation functions $R_{x}(s, t)$ and $R_{y}(s, t)$ whose associated integral operators on $L_{2}(d t, I)$ are compact, then the criterion is that $R_{x}^{-\frac{1}{2}} R_{y} R_{x}^{-\frac{1}{2}}-I$ have an extension to a Hilbert-Schmidt operator and under these circumstances $d P_{x} / d P_{y}$ can be expressed in terms of the eigenfunctions and eigenvalues of this operator. In parameter estimation, however, where whole families (P_{α}) of measures must be considered, results of this type (which tend to involve separate calculations for each pair α_{1} and α_{2}) often involve prohibitive amounts of calculation and also obscure the role played by the parameter itself.

In [8] we attacked this problem under the assumption that the processes x_{α} were gotten from each other by the application of a one-parameter group T_{α} of transformations acting on the sample functions of the process. Specifically, we assumed given an algebra F of bounded random variables on which T_{α} operated as a group of automorphisms (intuitively $\left(T_{\alpha} f\right)(x)=f\left(T_{\alpha} x\right)$) such that the derivative $D T_{\alpha} f(x)=\partial T_{\alpha} f(x) / \partial \alpha$ existed and was uniformly bounded in α and x. It was shown there that the existence of a random variable p satisfying $\int p f d P_{x}=\int D f d P_{x}$ for all f in F implied the existence of a strongly continuous one-parameter group $\left[V(\alpha) \mid \alpha \geqslant 0\right.$] of contractions on $L_{1}\left(P_{x}\right)$

[^0]given for f in F by $(V(\alpha) f)(x)=Q_{\alpha}(x)\left(T_{-\alpha} f\right)(x)$ and that, under further assumptions, the $P_{x_{\alpha}}$ were mutually absolutely continuous and $Q_{\alpha}=d P_{x_{\alpha}} / d P_{x}$.

The above setup is not restricted to Gaussian processes and is sufficiently general to handle, for example, the mean value problem, $\left(T_{\alpha} x\right)(t)=x(t)+\alpha m(t)$. The requirement that $D T_{\alpha} f(x)$ be bounded, however, rules out many other cases of interest ${ }^{(1)}$ and section 2 of this paper is devoted to replacing it with the requirement that $D T_{\alpha} f$ be continuous in $L_{1}\left(P_{x}\right)$ and $O\left(e^{K|\alpha|}\right)$ in $L_{1}\left(P_{x}\right)$ norm. This is not, strictly speaking, less restrictive than the previous set of requirements but seems to be much more practical in applications. All the examples used in [8] and [9] will be easily seen to apply to the new situation.

Section 3 carries over some results of [8] and all the results of [9] to this new context and ends with two new theorems expressing the effect of an inequality of the form

$$
\int_{[x| | \varphi(x) \geqslant N]}|\varphi| d P \leqslant C e^{-\epsilon N}
$$

on the distribution of $\log \left(d P_{\alpha} / d P\right)$ and on the amount of information in P_{α} about P.
The results of sections 2 and 3 are applied in section 4 to the Gaussian case and section 5 consists of Gaussian examples. Section 5 as a whole is intended to show the wide range of parameter estimation problems which are associated with groups of transformations on the sample functions, but it is hoped that some of the examples (especially numbers 2 and 5) may be of interest in applications and that at least example 4 will be of interest in its own right.

2. The Semigroups $V_{+}(\alpha)$ and $V_{-}(\alpha)$

Let P be a probability measure defined on a σ-algebra S of subsets of a set X, F an algebra of bounded S-measurable functions dense in $L_{1}(P)$ and containing the constant functions, and T_{α} a one-parameter group of automorphisms of F which preserve bounds. We shall make the following assumptions throughout this section:
(A1) For every f in F,

$$
\lim _{\varepsilon \rightarrow 0} \frac{T_{\varepsilon} f-f}{\varepsilon}=D f
$$

exists in $L_{1}(P), D T_{\alpha} f$ is continuous and $\left\|D T_{\alpha} f\right\|_{1}=O\left(e^{K|\alpha|}\right)$ for some K independent of f,
(1) Example 1 of [8] does not satisfy this requirement and should not have been included there. It appears here as example 1 of section 5.
and
(A 2) There is a φ in $L_{1}(P)$ satisfying $\int \varphi f d P=\int D f d P$ for every f in F.
Throughout this section lim will mean limit in $L_{1}(P)$ norm unless otherwise specified and $\|f\|_{q}$ will mean the $L_{q}(P)$ norm of f. We note that \bar{F}, the uniform closure of F, contains $f \wedge g=\min (f, g)$ and $f \vee g=\max (f, g)$ whenever it contains f and g and that, since

$$
-\sup _{x \in X}\left|f_{n}(x)-f_{m}(x)\right| \leqslant T_{\alpha} f_{n}-T_{\alpha} f_{m} \leqslant \sup _{x \in X}\left|f_{n}(x)-f_{m}(x)\right|,
$$

($T_{\alpha} f_{n}$) is a uniformly convergent sequence whenever $\left(f_{n}\right)$ is, from which it follows that T_{α} can be extended to \bar{F} by setting $T_{\alpha}\left(\lim f_{n}\right)=\lim T_{\alpha}\left(f_{n}\right)$.

Lemma 2.1. D has an extension (which we also call D) to a domain Δ of bounded functions satisfying
(i) $\int \varphi f d P=\int D f d P$ for all f in Δ,
(ii) If f is in F and g is in Δ, then $f g$ is in Δ and $D(f g)=f D g+g D f$,
(iii) If $\left(f_{n}\right)$ is a sequence from Δ converging boundedly almost everywhere to some $f_{\text {, }}$, and if $D f_{n}$ is $L_{1}(P)$ convergent to g, then f is in Δ and $D f=g$.

Proof. If f and g are in F, then

$$
D(f g)=\lim _{\varepsilon \rightarrow 0} \frac{\left(T_{\varepsilon} f\right)\left(T_{\varepsilon} g\right)-f g}{\varepsilon}=\lim _{\varepsilon \rightarrow 0}\left[\frac{T_{\varepsilon} f-f}{\varepsilon}\left(T_{\varepsilon} g-g\right)+f \frac{T_{\varepsilon} g-g}{\varepsilon}+g \frac{T_{\varepsilon} f-f}{\varepsilon}\right],
$$

and

$$
\begin{aligned}
\left\|\frac{T_{\varepsilon} f-f}{\varepsilon}\left(T_{\varepsilon} g-g\right)\right\|_{1} & \leqslant\left\|\left(\frac{T_{\varepsilon} f-f}{\varepsilon}-D f\right)\left(T_{\varepsilon} g-g\right)\right\|_{1}+\left\|(D f)\left(T_{\varepsilon} g-g\right)\right\|_{1} \\
& \leqslant 2\|g\|_{\infty}\left\|\frac{T_{\varepsilon} f-f}{\varepsilon}-D f\right\|_{1}+\int|D f|\left|T_{\varepsilon} g-g\right| d P
\end{aligned}
$$

The first term in the inequality goes to 0 as ε goes to 0 while for some subsequence ε_{j}, chosen so that $T_{\varepsilon_{j}} g$ converges to g almost everywhere, the second term goes to 0 as j goes to ∞ by the dominated convergence theorem. Thus $D(f g)=f D g+$ $g D f$. Now consider the set of domains Δ, which contain only bounded functions, and onto which D can be extended so as to satisfy (i) and (ii) partially ordered by inclusion. If $\Delta_{1} \subset \Delta_{2}$ and D_{1} and D_{2} are the corresponding extensions of D, then, for any f in F and g in $\Delta_{1}, \int f D_{1} g d P=\int \varphi f g d P-\int g D f d P=\int f D_{2} g d P$ and since we can
find a sequence from F to converge boundedly and almost everywhere to any bounded measurable function, this implies that $D_{1} g=D_{2} g$, i.e., that D_{2} is an extension of D_{1}. Thus the union of a linearly ordered set of such domains is again a domain onto which D can be properly extended so, by Zorn's lemma, there is a maximal such domain Δ. If $\left(f_{n}\right)$ is a sequence from Δ converging boundedly almost everywhere to 0 and $D f_{n}$ is $L_{1}(P)$ convergent to g, then for any h in F,

$$
\int h g d P=\lim \int h D f_{n} d P=\lim \left(\int \varphi f_{n} h d P-\int f_{n} D h d P\right)=0
$$

by dominated convergence so $g=0$. Thus D can be extended to the set Δ^{\prime} of all g which are bounded, almost everywhere limits of sequences $\left(g_{n}\right)$ from Δ such that $D g_{n}$ is $L_{1}(P)$ convergent. For such g_{n} and g it is clear that $\left(f g_{n}\right)$, which is in Δ by (ii), converges boundedly almost everywhere to $f g$ and $D\left(f g_{n}\right)=f D g_{n}+g_{n} D f$ converges in $L_{1}(P)$ to $f\left(\lim D g_{n}\right)+g D f$ so that (ii) holds for the extension of D to Δ^{\prime}. Since, as is easily seen, (i) also holds for this extension, we must have $\Delta=\Delta^{\prime}$ so that Δ satisfies all the requirements of the lemma.

Since $T_{-\beta} f$ is $L_{1}(P)$ continuous, $\int_{0}^{\alpha} T_{-\beta} f d \beta$ exists as an $L_{1}(P)$ integral for every $\alpha \geqslant 0$ and has $L_{1}(P)$ derivative equal to $T_{-\alpha} f . \int_{0}^{\alpha} D T_{-\beta} f d \beta$ also exists as an $L_{1}(P)$ integral and has $L_{1}(P)$ derivative equal to $D T_{-\alpha} f$, from which it follows that $\int_{0}^{\alpha} D T_{-\beta} f d \beta=f-T_{-\alpha} f$. For f and g in F and $\alpha \geqslant 0$ we define

$$
V_{f}(\alpha)(g)=\exp \left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right) T_{-\alpha} g
$$

Lemma 2.2. $\int_{0}^{\alpha} T_{-\beta} f d \beta$ is in Δ and $D \int_{0}^{\alpha} T_{-\beta} f d \beta=\int_{0}^{\alpha} D T_{-\beta} f d \beta=f-T_{-\alpha} f . V_{f}(\alpha)(g)$ is in Δ and $D\left(V_{f}(\alpha)(g)\right)=\left(f-T_{-\alpha} f\right) V_{f}(\alpha)(g)+\left(V_{f}(\alpha)(1)\right) D T_{-\alpha} g$.

Proof. For any f in F we can find numbers $\nu_{i}^{n}, \beta_{i}^{n}$, and N_{n} for which $\sum_{i=1}^{N_{n}} \nu_{i}^{n} T_{-\beta_{i}^{n}} f$ converges boundedly almost everywhere to $\int_{0}^{\alpha} T_{-\beta} f d \beta$ and $\sum_{i=1}^{N_{n}} \nu_{i}^{n} D T_{-\beta_{i}^{n}} f$ converges in $L_{1}(P)$ to $\int_{0}^{\alpha} D T_{-\beta} f d \beta$ as n goes to ∞. Thus $\int_{0}^{\alpha} T_{-\beta} f d \beta$ is in Δ and $D \int_{0}^{\alpha} T_{-\beta} f d \beta=$ $\int_{0}^{\alpha} D T_{-\beta} f d \beta$ which proves the first assertion. A straightforward induction argument shows that $\left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right)^{n}$ is in Δ and that $D\left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right)^{n}=n\left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right)^{n-1}\left(f-T_{-\alpha} f\right)$. Finally,

$$
\sum_{n=0}^{N} \frac{1}{n!}\left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right)^{n} T_{-\alpha} g
$$

converges boundedly almost everywhere to $V_{f}(\alpha)(g)$ and

$$
D\left(\sum_{n=0}^{N} \frac{1}{n!}\left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right)^{n} T_{-\alpha} g\right)
$$

converges in $L_{1}(P)$ to $\left(f-T_{-\alpha} f\right) V_{f}(\alpha)(g)+V_{f}(\alpha)(1) D T_{-\alpha} g$ from which the last assertion follows.

Lemma 2.3. $\quad V_{f}(\alpha)(g)$ has $L_{1}(P)$ derivative $T_{-\alpha} f V_{f}(\alpha)(g)-V_{f}(\alpha)(1) D T_{-\alpha} g$, and

$$
\frac{\partial}{\partial \alpha} \int V_{f}(\alpha)(g) d P=\int(f-\varphi) V_{f}(\alpha)(g) d P
$$

Proof.

$$
\begin{aligned}
& \frac{V_{f}(\alpha+\varepsilon)(g)-V_{f}(\alpha)(g)}{\varepsilon} \\
& \quad=\exp \left(\int_{0}^{\alpha} T_{-\beta} f d \beta\right)\left\{\frac{\exp \left(\int_{\alpha}^{\alpha+\varepsilon} T_{-\beta} f d \beta\right)-1}{\varepsilon}\left(T_{-\alpha-\varepsilon} g-T_{-\alpha} g\right)\right. \\
& \left.\quad+\frac{\exp \left(\int_{\alpha}^{\alpha+\varepsilon} T_{-\beta} f d \beta\right)-1}{\varepsilon} T_{-\alpha} g+\frac{T_{-\alpha-\varepsilon} g-T_{-\alpha} g}{\varepsilon}\right\}
\end{aligned}
$$

The first term in the brackets is dominated by

$$
2\|g\|_{\infty}\left|\frac{\exp \left(\int_{\alpha}^{\alpha+\varepsilon} T_{-\beta} f d \beta\right)-1}{\varepsilon}-T_{-\alpha} f\right|+\|f\|_{\infty}\left|T_{-\alpha-\varepsilon} g-T_{-\alpha} g\right|
$$

which goes to 0 , the second term differs from $T_{-\alpha} f T_{-\alpha} g$ by less than

$$
\|g\|_{\infty} \frac{1}{\varepsilon} \int_{\alpha}^{\alpha+\varepsilon}\left|T_{-\alpha-\gamma} f-T_{-\alpha} f\right| d \gamma+\|g\|_{\infty} \frac{1}{\varepsilon}\left(e^{\varepsilon\|f\|_{\infty}-\varepsilon}\|f\|_{\infty}-1\right)
$$

which goes to 0 , and the third term goes to $-D T_{-\alpha} g$ so the first assertion is proved. We have, by Lemma 2.2,

$$
\begin{aligned}
\int(f-\varphi) V_{f}(\alpha)(g) d P & =\int\left[f V_{f}(\alpha)(g)-D\left(V_{f}(\alpha)(g)\right)\right] d P \\
& =\int\left[\left(T_{-\alpha} f\right) V_{f}(\alpha)(g)-V_{f}(\alpha)(1) D T_{-\alpha} g\right] d P
\end{aligned}
$$

and by the above argument this is

$$
\frac{\partial}{\partial \alpha} \int V_{f}(\alpha) g d P
$$

Lemma 2.4. If (f_{n}) is a sequence from F converging in $L_{1}(P)$ to $\varphi \wedge N$ and (f_{n}) is bounded above, then $V_{f_{n}}(\alpha)(g)$ converges in $L_{1}(P)$ to a limit $V_{N}(\alpha)(g)$. The limit is independent of the sequence used. The $V_{N}(\alpha)$ have unique extensions to positivity preserving contractions on $L_{1}(P)$ which satisfy $V_{N}(\alpha)(f g)=\left(V_{N}(\alpha)(g)\right) T_{-\alpha} f$ for all f in F and g in $L_{1}(P)$, and $\left\|V_{N}(\alpha)(g)\right\|_{\infty} \leqslant e^{\alpha N}\|g\|_{\infty}$ for all bounded $g . V_{N}(0)=I$ and the $V_{N}(\alpha)$ are strongly continuous in α.

Proof. The proof is exactly the same as the proof of the corresponding parts of Lemma 2.2 of [8] except for the relation involving L_{∞} norms. This relation is easily established for g in F and then can be extended to all bounded g by an approximation argument.

Lemma 2.5. $V_{N}(\alpha)$ is a strongly continuous semigroup whase generator A_{N} contains Δ in its domain and is defined there by:

$$
A_{N} f=(\varphi \wedge N) f-D f
$$

Proof. By using Riemann approximations to the integrals involved we can show that

$$
V_{N}(\alpha)\left(g \int_{\alpha}^{\beta} T_{-\gamma} f d \gamma\right)=V_{N}(\alpha)(g) \int_{\alpha}^{\alpha+\beta} T_{-\gamma} f d \gamma
$$

for any bounded g. Repeating this argument we get, for g in F,
and hence

$$
\begin{gathered}
V_{N}(\alpha)\left(\left(\int_{0}^{\beta} T_{-\gamma} f d \gamma\right)^{n} T_{-\beta} g\right)=V_{N}(\alpha)(1)\left(\int_{\alpha}^{\alpha+\beta} T_{-\gamma} f d \gamma\right)^{n} T_{-\alpha-\beta} g \\
V_{N}(\alpha) V_{f}(\beta)(g)=V_{N}(\alpha)(1) \exp \left(\int_{\alpha}^{\alpha+\beta} T_{-\gamma} f d \gamma\right) T_{-\alpha-\beta} g
\end{gathered}
$$

If $\left(f_{n}\right)$ is a sequence from F converging to $\varphi \wedge N$ and if $f_{n} \leqslant 2 N$ for all n, we have

$$
\begin{aligned}
& \| V_{N}(\alpha)\left(V_{N}(\beta)(g)\right)-V_{N}(\alpha+\beta)(g) \| \\
&= \lim _{n \rightarrow \infty}\left\|V_{N}(\alpha)\left(V_{f_{n}}(\beta)(g)\right)-V_{f_{n}}(\alpha+\beta)(g)\right\| \\
& \quad= \lim _{n \rightarrow \infty}\left\|V_{N}(\alpha)(1) \exp \left(\int_{\alpha}^{\alpha+\beta} T_{-\gamma} f_{n} d \gamma\right) T_{-\alpha-\beta} g-V_{f_{n}}(\alpha+\beta)(g)\right\| \\
& \quad \leqslant \limsup _{n \rightarrow \infty}\|g\|_{\infty} e^{2 \beta N}\left\|V_{N}(\alpha)(1)-\exp \left(\int_{0}^{\alpha} T_{-\gamma} f_{n} d \gamma\right)\right\|=0
\end{aligned}
$$

Again by using a straightforward Riemann approximation argument we can show that if f and g are in F and $\lambda>\|f\|_{\infty}+K$ then $\int_{0}^{\infty} e^{-\lambda \alpha} V_{f}(\alpha)(g) d \alpha$ is in Δ and

$$
D\left(\int_{0}^{\infty} e^{-\lambda \alpha} V_{f}(\alpha)(g) d \alpha\right)=\int_{0}^{\infty} e^{-\lambda \alpha}\left\{\left(f-T_{-\alpha} f\right) V_{f}(\alpha)(g)+V_{f}(\alpha)(1) D T_{-\alpha} g\right\} d \alpha
$$

It is easy to verify that $e^{-\lambda \alpha} V_{f}(\alpha)(g)$ has $L_{1}(P)$ derivative

$$
\begin{aligned}
-\lambda e^{-\lambda \alpha} V_{f}(\alpha)(g) & +e^{-\lambda \alpha} \frac{\partial}{\partial \alpha} V_{f}(\alpha)(g) \\
& =-\lambda e^{-\lambda \alpha} V_{f}(\alpha)(g)+e^{-\lambda \alpha}\left(T_{-\alpha} f V_{f}(\alpha)(g)-V_{f}(\alpha)(1) D T_{-\alpha} g\right)
\end{aligned}
$$

and, since this is $L_{1}(P)$ continuous and integrable, that

$$
\int_{0}^{\infty} \frac{\partial}{\partial \alpha}\left(e^{-\lambda \alpha} V_{f}(\alpha)(g)\right) d \alpha=\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{\partial}{\partial \alpha}\left(e^{-\lambda \alpha} V_{f}(\alpha)(g)\right) d \alpha=\lim _{n \rightarrow \infty}\left(e^{-n \lambda} V_{f}(n)(g)-g\right)=-g .
$$

Thus

$$
\begin{aligned}
(\lambda-f & +D) \int_{0}^{\infty} e^{-\lambda \alpha} V_{f}(\alpha)(g) d \alpha \\
& =\int_{0}^{\infty}\left\{\lambda e^{-\lambda \alpha} V_{f}(\alpha)(g)-e^{-\lambda \alpha} T_{-\alpha} f V_{f}(\alpha)(g)+e^{-\lambda \alpha} V_{f}(\alpha)(1) D T_{-\alpha} g\right\} d \alpha \\
& =-\int_{0}^{\infty} \frac{\partial}{\partial \alpha}\left(e^{-\lambda \alpha} V_{f}(\alpha)(g)\right) d \alpha=g .
\end{aligned}
$$

Now choosing a sequence (f_{n}) from F converging to $\varphi \wedge N$ and bounded above by $2 N$ and taking $\lambda>2 N+K$, we have $\int_{0}^{\infty} e^{-\lambda \alpha} V_{f_{n}}(\alpha)(g) d \alpha$ uniformly bounded and

$$
\left\|\int_{0}^{\infty} e^{-\lambda \alpha} V_{f_{n}}(\alpha)(g) d \alpha-\int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha\right\|_{1} \leqslant \int_{0}^{\infty} e^{-\lambda \alpha}\left\|V_{f_{n}}(\alpha)(g)-V_{N}(\alpha)(g)\right\|_{1} d \alpha
$$

which goes to 0 since the integrand is dominated by $e^{2 N \alpha}\|g\|_{\infty}$ and goes to 0 everywhere. Hence there is some subsequence (which we also call $\left(f_{n}\right)$) for which

$$
\int_{0}^{\infty} e^{-\lambda \alpha} V_{f_{n}}(\alpha)(g) d \alpha
$$

converges boundedly almost everywhere to

$$
\int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha
$$

and it is easily seen that
$D\left(\int_{0}^{\infty} e^{-\lambda \alpha} V_{f_{n}}(\alpha)(g) d \alpha\right)$
converges to

$$
g+\left(\varphi_{N}-\lambda\right) \int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha
$$

in $L_{1}(P)$. Thus

$$
\int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha
$$

is in Δ and

$$
\left(\lambda-\left(\varphi_{N}-D\right)\right) \int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha=g
$$

It follows now for every g in $L_{1}(P)$ by a simple continuity argument that

$$
\int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha
$$

is in the domain of the closure \bar{B}_{N} of the operator B_{N} defined on Δ by $B_{N}(f)=$ $(\varphi \wedge N) f-D f$ and that

$$
\left(\lambda-\bar{B}_{N}\right) \int_{0}^{\infty} e^{-\lambda \alpha} V_{N}(\alpha)(g) d \alpha=g
$$

for all $\lambda>2 N+K$. The lemma follows from this [2; Cor. 16, p. 627].
Theorem 2.1. For any $\alpha \geqslant 0, V_{N}(\alpha)$ converges strongly to a limit $V(\alpha)$. The $V(\alpha)$ form a strongly continuous semigroup satisfying
(1) $\|V(\alpha)\| \leqslant 1$,
(2) $V(\alpha)(f g)=V(\alpha)(f) T_{-\alpha} g$ if g is in \bar{F},
(3) $V(\alpha)$ preserves positivity,
and
(4) the generator A of $[V(\alpha) \mid \alpha \geqslant 0]$ contains Δ in its domain and is defined there by the equation $A f=\varphi f-D f$.

Proof. The proof is exactly the same as the proof of Theorem 2.1 of [8] except for the size of the domain of A. It will be sufficient to show that

$$
V(\alpha)(f)=f+\int_{0}^{\alpha} V(\beta)(A f) d \beta
$$

for f in Δ since then we will have

$$
\lim _{\varepsilon \rightarrow 0} \frac{V(\varepsilon)(f)-f}{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \int_{0}^{\varepsilon} V(\beta)(A f) d \beta=A f
$$

However,

$$
\begin{aligned}
& \left\|V(\alpha)(f)-f-\int_{0}^{\alpha} V(\beta)(A f) d \beta\right\|_{1} \\
& \quad=\lim _{N \rightarrow \infty}\left\|V_{N}(\alpha)(f)-f-\int_{0}^{\alpha} V(\beta)(A) d \beta\right\|_{1} \\
& \quad=\lim _{N \rightarrow \infty}\left\|\int_{0}^{\alpha}\left(V(\beta)(A f)-V_{N}(\beta)\left(A_{N} f\right)\right) d \beta\right\|_{1} \\
& \quad \leqslant \limsup _{N \rightarrow \infty}\left\{\int_{0}^{\alpha}\left\|V(\beta)(A f)-V_{N}(\beta)(A f)\right\|_{1} d \beta+\int_{0}^{\alpha}\left\|V_{N}(\beta)\left(A f-A_{N} f\right)\right\|_{1} d \beta\right\},
\end{aligned}
$$

and the first integrand is dominated by $2\|A f\|_{1}$ and goes to 0 everywhere while the second integral is dominated by $\int_{0}^{\alpha}\left\|A f-A_{N} f\right\|_{1} d \beta=\alpha\left\|A f-A_{N} f\right\|_{1}$ which goes to 0 .

We can also construct the 'backward' semigroups $\left[V_{N}(-\alpha) \mid \alpha \geqslant 0\right]$ and $[V(-\alpha) \mid \alpha \geqslant 0]$ (called $V_{-}(\alpha)$ in [8]) by replacing T_{α}, D, and φ by $T_{-\alpha},-D$, and $-\varphi$. With this extended definition of $V(\alpha)$; (1), (2), and (3) of Theorem 2.1 are now satisfied for all α and (4) is supplemented by:
(4') the genenerator of $[V(-\alpha) \mid \alpha \geqslant 0]$ contains the operator $-A$ defined on Δ by $-A f=-\varphi f+D f$.

Examples given in [8] show that $V(-\alpha)$ need not be $[V(\alpha)]^{-1}$ and that, in fact, $V(\alpha)$ may not have an inverse.

Theorem 2.2. $V(-\alpha)(V(\alpha)(f))(x)=e_{\alpha}(x) f(x)$ for all α where $e_{\alpha}=V(-\alpha)(V(\alpha)(1))$. e_{α} is L_{1} continuous, nondecreasing for $\alpha \leqslant 0$ and nonincreasing for $\alpha \geqslant 0,0 \leqslant e_{\alpha} \leqslant e_{0}=1$. For $\alpha \geqslant 0$,

$$
\begin{aligned}
& \int_{0}^{\alpha} V(-\beta)\left([(\varphi \wedge N)-\varphi] V_{N}(\beta)(1)\right) d \beta \text { increases to } e_{\alpha}-1 \text { and } \\
& \int_{0}^{\alpha} V(\beta)\left([\varphi-(\varphi \vee-N)] V_{N}(-\beta)(1)\right) d \beta \text { increases to } e_{-\alpha}-1 \text { as } N \text { goes to } \infty .
\end{aligned}
$$

If $e_{\alpha}=1$ for some $\alpha \neq 0$, then $V(\alpha)$ is a group.
Proof. By (2) of Theorem 2.1, if f is in F, then

$$
V(-\alpha)(V(\alpha)(f))=V(-\alpha)\left(V(\alpha)(1) T_{-\alpha} f\right)=V(-\alpha)(V(\alpha)(1)) f
$$

from which the first assertion follows. Clearly, $e_{0}=1$ and $e_{\alpha} \geqslant 0$ and since $\left\|e_{\alpha} f\right\| \leqslant\|f\|$, we also have $e_{\alpha} \leqslant 1$. Assume now that $\alpha \geqslant 0$. From Lemma 2.3, $V_{f}(\alpha)(1)$ is in Δ and this coupled with Lemma 2.2 shows that $V(-\alpha)\left(V_{f}(\alpha)(1)\right)$ has an $L_{1}(P)$ derivative and

$$
\begin{aligned}
\frac{\partial}{\partial \alpha} V(-\alpha)\left(V_{f}(\alpha)(1)\right) & =V(-\alpha)\left(A\left(V_{f}(\alpha)(1)\right)\right)+V(-\alpha)\left(T_{-\alpha} f V_{f}(\alpha)(1)\right) \\
& =V(-\alpha)\left((f-\varphi) V_{f}(\alpha)(1)\right)
\end{aligned}
$$

Since this derivative is $L_{1}(P)$ continuous,

$$
V(-\alpha)\left(V_{f}(\alpha)(1)\right)=1+\int_{0}^{\alpha} V(-\beta)\left((f-\varphi) V_{r}(\beta)(1)\right) d \beta
$$

Choosing a sequence $\left(f_{n}\right)$ from F which converges to $\varphi \wedge N$ almost everywhere and in $L_{1}(P)$ norm and satisfies $f_{n} \leqslant 2 N$, and letting n go to ∞ yields;

$$
V(-\alpha)\left(V_{N}(\alpha)(1)\right)=1+\int_{0}^{\alpha} V(-\beta)\left([(\varphi \wedge N)-\varphi] V_{N}(\beta)(1)\right) d \beta
$$

from which the limit relation for $e_{\alpha}-1$ follows. If $0 \leqslant \alpha \leqslant \gamma$, then

$$
e_{\gamma}-e_{\alpha}=\lim _{N \rightarrow \infty} \int_{\alpha}^{\gamma} V(-\beta)\left([(\varphi \wedge N)-\varphi] V_{N}(\beta)(1)\right) d \beta \leqslant 0 .
$$

The corresponding facts for $e_{-\alpha}$ are similarly proved and then the remainder of the theorem is proved in the same way as Theorem 2.2 of [8] is.

Theorem 2.3. If $V(\alpha)$ is a group, then all the $V(\alpha)$ are isometries and there are probability measures P_{α} on S satisfying $\int f d P_{\alpha}=\int T_{\alpha} f d P$ for all f in F. The P_{α} are mutually absolutely continuous and $V(\alpha)(1)=d P_{\alpha} / d P$.

Proof. Since both $V(\alpha)$ and $[V(\alpha)]^{-1}=V(-\alpha)$ are contractions, $V(\alpha)$ is an isometry. If $\left(f_{n}\right)$ is a sequence from \bar{F} decreasing to 0 everywhere, then $\int T_{\alpha} f_{n} d P=\int V(\alpha)\left(T_{\alpha} f_{n}\right) d P=$ $\int V(\alpha)(1) f_{n} d P$ and this decreases to 0 by the dominated convergence theorem. Hence the linear functionals $l_{\alpha}(f)=\int T_{\alpha} f d P$ defined on the lattice \bar{F} can be extended to Daniell integrals $\bar{l}_{\alpha}\left[7\right.$, chap. III] and we define P_{α} to be the associated measures. For any f in $\bar{F}, \int f d P_{\alpha}=\int T_{\alpha} f d P=\int V(\alpha)\left(T_{\alpha} f\right) d P=\int V(\alpha)(1) f d P$ from which it easily follows that the P_{α} are mutually absolutely continuous, that they are defined on the same field S and that $V(\alpha)(1)=d P_{\alpha} / d P$.

We can define mappings $V^{p}(\alpha)$ of F into $L_{p}(P)$ by setting $V^{p}(\alpha)(f)=[V(\alpha)(1)]^{1 / p} T_{-\alpha} f$ and each of these clearly has a unique extension to a positivity preserving contraction operator on $L_{p}(P)$.

Lemma 2.6. For all nonnegative f in $L_{p}(P), V^{p}(\alpha)(f)=\left[V(\alpha)\left(f^{p}\right)\right]^{1 / p}$.
Proof. We will only prove this for $\alpha \geqslant 0$ since the other case is essentially the same. For any nonnagative f in \bar{F} we can find a set of polynomials Q_{n} such that
$Q_{n}(f)$ converges uniformly to f^{p} and hence also $T_{-\alpha} Q_{n}(f)=Q_{n}\left(T_{-\alpha} f\right)$ converges uniformly to $\left(T_{-\alpha} f\right)^{p}$. Then

$$
V(\alpha)\left(f^{p}\right)=\lim _{n \rightarrow \infty} V(\alpha)\left(Q_{n}(f)\right)=\lim _{n \rightarrow \infty} V(\alpha)(1) T_{-\alpha}\left(Q_{n}(f)\right)=V(\alpha)(1)\left(T_{-\alpha} f\right)^{p}=\left[V^{p}(\alpha)(f)\right]^{p}
$$

If $\left(f_{n}\right)$ is a sequence from \bar{F} converging in $L_{p}(P)$ to a nonnegative f, then

$$
V^{p}(\alpha)(f)=\lim _{n \rightarrow \infty} V^{p}(\alpha)\left(f_{n}\right)=\lim _{n \rightarrow \infty}\left[V(\alpha)\left(f_{n}^{p}\right)\right]^{1 / p}
$$

but $\quad \lim _{n \rightarrow \infty} \int\left|\left[V(\alpha)\left(f_{n}^{p}\right)\right]^{1 / p}-\left[V(\alpha)\left(f^{p}\right)\right]^{1 / p}\right|^{p} d P \leqslant \lim _{n \rightarrow \infty} \int\left|V(\alpha)\left(f_{n}^{p}\right)-V(\alpha)\left(f^{p}\right)\right| d P=0$
so the lemma is proved.
THEOREM 2.4. $V^{p}(\alpha), \alpha \geqslant 0$ and $V^{p}(\alpha), \alpha \leqslant 0$ are strongly continuous semigroups of operators on $L_{p}(P)$ for every $1<p<\infty$.

Proof. The strong continuity of $V^{p}(\alpha)$ follows from the fact that, for nonnegative f in $L_{p}(P)$;
$\int\left|V^{p}(\alpha)(f)-V^{p}(\beta)(f)\right|^{p} d P=\int\left|\left[V(\alpha)\left(f^{p}\right)\right]^{1 / p}-\left[V(\beta)\left(f^{p}\right)\right]^{1 / p}\right|^{p} d P \leqslant \int\left|V(\alpha)\left(f^{p}\right)-V(\beta)\left(f^{p}\right)\right| d P$ and the semigroup property from the fact that (again for nonnegative f in $L_{p}(P)$);

$$
\begin{aligned}
V^{p}(\alpha)\left(V^{p}(\beta)(f)\right) & =\left[V(\alpha)\left(\left[V^{p}(\beta) f\right]^{p}\right)\right]^{1 / p}=\left[V(\alpha)\left(\dot{V}(\beta)\left(f^{p}\right)\right)\right]^{1 / p} \\
& =\left[V(\alpha+\beta)\left(f^{p}\right)\right]^{1 / p}=V^{p}(\alpha+\beta)(f) .
\end{aligned}
$$

3. φ 's of exponential bound and the smoothing of P_{α} with respect to a Gaussian kernel

The first theorem of this section is simply a restatement of Theorem 3.4 of [8] for this case.

Theorem 3.1. If (A1) and (A2) hold and either
or

$$
\begin{gathered}
\int_{[x \mid q(x) \geqslant N]} \varphi d P \leqslant C e^{-\varepsilon N} \quad \text { if } N \geqslant N_{0} \\
-\int_{[|x| \varphi(x) \leqslant-N]} \varphi d P \leqslant C e^{-\varepsilon N} \quad \text { if } \quad N \geqslant N_{0}
\end{gathered}
$$

for some positive numbers C, ε, and N_{0}, then $V(\alpha)$ is a group of isometries.

Proof. Under the first assumption we have, for $\alpha<\varepsilon$,

$$
\begin{aligned}
\left\|e_{\alpha}-1\right\| & =\lim _{N \rightarrow \infty}\left\|\int_{0}^{\alpha} V(-\beta)\left(\left(\varphi_{N}-\varphi\right) V_{N}(\beta)(1)\right) d \beta\right\| \\
& \leqslant \limsup _{N \rightarrow \infty} \int_{0}^{\alpha}\left\|\left(\varphi_{N}-\varphi\right) V_{N}(\beta)(1)\right\| d \beta \\
& \leqslant \limsup _{N \rightarrow \infty} C \int_{0}^{\alpha} e^{N \beta} e^{-N \varepsilon} d \beta=0
\end{aligned}
$$

and by Theorem 2.2 this is sufficient. The other case is similar.
The next result is a generalization of Theorem 4.2 of [8]. We assume that X, S, P, F, and T_{α} are given as in section 2 and satisfy both (A1) of that section and
(A3) There exist probability measures P_{α} satisfying

$$
\int T_{\alpha} f d P=\int f d P_{\alpha}
$$

for all f in F.
(A3) is equivalent to several other assumptions, for example, that $T_{\alpha} f_{n}$ decreases to 0 everywhere whenever f_{n} does but is generally the easiest one to verify in practice.

Let $K_{\sigma}(\alpha)$ for positive σ be given by $K_{\sigma}(\alpha)=(2 \pi \sigma)^{-\frac{1}{2}} \exp \left(-\alpha^{2} / 2 \sigma\right)$ and l_{σ} be the linear functional on \bar{F} given by $l_{\sigma}(f)=\int_{-\infty}^{\infty} K_{\sigma}(\alpha)\left(\int T_{\alpha} f d P\right) d \alpha$. $l_{\sigma}(f)$ exists because $\int T_{\alpha} f d P$ is continuous and bounded in α and l_{σ} is clearly order preserving in \bar{F}. If $\left(f_{n}\right)$ is a sequence from \bar{F} converging monotonely to 0 , then $\int T_{\alpha} f_{n} d P=\int f_{n} d P_{\alpha}$ is bounded by $\left\|f_{0}\right\|_{\infty}$ and converges to 0 so $l_{\sigma}\left(f_{n}\right)$ converges to 0 and it follows that there is a probability measure P^{σ} satisfying

$$
\int f d P^{\sigma}=\int_{-\infty}^{\infty} K_{\sigma}(\alpha)\left[\int T_{\alpha} f d P\right] d \alpha
$$

for all f in \bar{F}. We will write

$$
\|f\|_{\nu}^{\sigma} \text { for }\left[\int|f|^{p} d P^{c}\right]^{1 / p} \text { and }\|f\|_{p} \text { for }\left[\int|f|^{p} d P\right]^{1 / p}
$$

Theorem 3.2. If X, S, P, F and T_{α} satisfy (A1) and (A3), then $X, S P^{\sigma}$, F and T_{α} satisfy (A 1) for every positive σ. There is a φ^{σ} in $L_{1}\left(P^{\sigma}\right)$ satisfying $\int \varphi^{\sigma} f d P^{\sigma}=$ $\int D^{\sigma} f d P^{\sigma}$ for every f in F and

$$
\int_{\left|\psi^{\sigma}\right| \geqslant N}\left|\varphi^{\sigma}\right| d P^{\sigma} \leqslant \sqrt{\frac{2}{\pi \sigma}} N e^{-t \sigma(N-1)^{3}} .
$$

For every real α and positive σ there is a probability measure P_{α}^{α} satisfying $\int f d P_{\alpha}^{\alpha}=$ $\int T_{\alpha} f d P^{\sigma}$ for f in F and these measures are mutually absolutely continuous. If there is a φ in $L_{1}(P)$ satisfying (A2), then each P_{α} is absolutely continuous with respect to each P_{β}^{σ} and we have

$$
\int\left|\frac{d P_{\alpha}}{d P_{\alpha}^{\sigma}}-1\right| d P_{\alpha}^{\sigma} \leqslant \sqrt{\frac{2 \sigma}{\pi}}\|\varphi\|_{1}
$$

Proof. We first have to show that $T_{\alpha} f$ has an $L_{1}\left(P^{\sigma}\right)$ continuous derivative $D^{\sigma} T_{\alpha} f$ and that $\left\|D^{\sigma} T_{\alpha} f\right\|_{1}^{\boldsymbol{\sigma}}=O\left(e^{K|\alpha|}\right)$. If f is in F

$$
\begin{aligned}
\| \frac{1}{\alpha} & \left(T_{\alpha} f-f\right)-\frac{1}{\beta}\left(T_{\beta} f-f\right)| |_{1}^{\alpha} \\
& =\int_{-\infty}^{\infty} K_{\sigma}(\gamma)\left[\int\left|\frac{1}{\alpha}\left(T_{\alpha+\gamma} f-T_{y} f\right)-\frac{1}{\beta}\left(T_{\beta+\gamma} f-T_{\gamma} f\right)\right| d P\right] d \gamma \\
& =\int_{-\infty}^{\infty} K_{\sigma}(\gamma)\left[\int\left|\frac{1}{\alpha} \int_{0}^{\alpha}\left(D T_{\delta+\gamma} f-D T_{\gamma} f\right) d \delta-\frac{1}{\beta} \int_{0}^{\beta}\left(D T_{\delta+\gamma} f-D T_{\gamma} f\right) d \delta\right| d P\right] d \gamma \\
& \leqslant \int_{-\infty}^{\infty} K_{\sigma}(\gamma)\left[\frac{1}{\alpha} \int_{0}^{\alpha}\left\|D T_{\delta+\gamma} f-D T_{\gamma} f\right\| d \delta+\frac{1}{\beta} \int_{0}^{\beta}\left\|D T_{\delta+\gamma} f-D T_{\gamma} f\right\| d \delta\right] d \gamma
\end{aligned}
$$

The integrand above is dominated by $C K_{\sigma}(\gamma) e^{\text {Kivi }}$ and goes to 0 as α and β do so the limit $D^{\sigma} f$ exists. Moreover,

$$
\begin{aligned}
\left\|D^{\sigma} T_{\alpha} f-D^{\sigma} T_{\beta} f\right\|_{1}^{\sigma} & =\lim _{\varepsilon \rightarrow 0} \int_{--\infty}^{\infty} K_{\sigma}(\gamma)\left\{\int\left|\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left(D T_{\alpha+\gamma+\delta} f-D T_{\beta+\gamma+\delta} f\right) d \delta\right| d P\right\} d \gamma \\
& \leqslant \limsup _{\varepsilon \rightarrow 0} \int_{-\infty}^{\infty} K_{\sigma}(\gamma) \frac{1}{\varepsilon}\left[\int_{0}^{\varepsilon}\left\|D T_{\alpha+\gamma+\delta} f-D T_{\beta+\gamma+\delta} f\right\|_{1} d \delta\right] d \gamma \\
& =\int K_{\sigma}(\gamma)\left\|D T_{\alpha+\gamma} f-D T_{\beta+\gamma} f\right\|_{1} d \gamma
\end{aligned}
$$

because of the $L_{1}(P)$ continuity and exponential bound of $D T_{\alpha} f$. Again the integrand is bounded by $C K_{\sigma}(\gamma) e^{K|\gamma|}$ and goes to 0 as α goes to β and the $L_{1}\left(P^{\sigma}\right)$ continuity of $D^{\sigma} T_{\alpha}$ follows from this by the dominated convergence theorem. A similar calculation shows that

$$
\left\|D^{\sigma} T_{\alpha} f\right\|=\int_{-\infty}^{\infty} K_{\sigma}(\gamma)\left[\int\left|D T_{\alpha+\gamma} f\right| d P\right] d \gamma \leqslant A \int_{-\infty}^{\infty} K_{\sigma}(\gamma) e^{K|\alpha+\gamma|} d \gamma=O\left(e^{K|\gamma|}\right)
$$

We can show as in Lemma 4.4 of [8] that a φ_{σ} exists in $L_{1}\left(P^{\sigma}\right)$ satisfying $\int \varphi^{\sigma} f d P^{\sigma}=$ $\int D^{\sigma} f d P$ for every f in F and

$$
N P^{\sigma}\left(\left|\varphi^{\sigma}\right| \geqslant N\right) \leqslant \int_{\left|\varphi^{\sigma}\right| \geqslant N}\left|\varphi^{\sigma}\right| d P^{\sigma} \leqslant \frac{B}{\sigma} P\left(\left|\varphi^{\sigma}\right| \geqslant N\right)+2 K_{\sigma}(B)
$$

for every positive N and B. Setting B equal to $\sigma(N-1)$ gives

$$
P\left(\left|\varphi^{\sigma}\right| \geqslant N\right) \leqslant \sqrt{\frac{2}{\pi \sigma}} e^{-\frac{1}{\varepsilon} \sigma(N-1)^{2}}
$$

and using the same B again

$$
\int_{\left|\varphi^{\sigma}\right| \geqslant N}\left|\varphi^{\sigma}\right| d P \leqslant(N-1) \sqrt{\frac{2}{\pi \sigma}} e^{-\frac{1}{2} \sigma(N-1)^{2}}+\frac{2}{\sqrt{2 \pi \sigma}} e^{-\frac{1}{2} \sigma(N-1)^{2}}=\sqrt{\frac{2}{\pi \sigma}} N e^{-\frac{1}{2} \sigma(N-1)^{2}}
$$

The existence of the measures P_{α}^{σ} now follows from Theorems 3.1 and 2.3 and the remainder of the theorem is proved exactly as in [8].

We are now in a position to generalize the theorems of [9]. The next four theorems are restatements of Theorems 1 through 4 of that paper.

Theorem 3.3. If X, S, P, T_{α}, and F satisfy (A1) and (A3) and the P_{α} are mutually absolutely continuous, then T_{α} can be extended to all finite S-measurable functions and the mappings $U(\alpha)$ of $L_{1}(P)$ defined by $U(\alpha)(f)=\left(d P_{\alpha} / d P\right) T_{-\alpha} f$ form a strongly continuous group of isometries. The extension of T_{α} is linear and positive and satisfies
(1) If f_{n} converges to 0 almost everywhere, so does $T_{\alpha} f_{n}$,
(2) $T_{\alpha}(f g)=T_{\alpha}(f) T_{\alpha}(g)$,
(3) $T_{\alpha}\left(T_{\beta} f\right)=T_{\alpha+\beta} f$,
(4) $T_{\alpha}\left(\frac{d P_{\beta}^{\sigma}}{d P_{\gamma}^{\tau}}\right)=\frac{d P_{\beta-\alpha}^{\sigma}}{d P_{\gamma-\alpha}^{\tau}}$,
and
(5) If either side of the equation $\int T_{\alpha} h d P_{\beta}^{\sigma}=\int h d P_{\beta+\alpha}^{\sigma}$ exists, so does the other side and they are equal.

Proof. This theorem is proved in exactly the same way as is Theorem 1 of [9].
Theorem 3.4. If X, S, P, T_{α}, F, and φ satisfy (A 1), (A2), and (A 3), then the generator A of $[U(\alpha) \mid \alpha \geqslant 0]$ contains F in its domain and is defined there by: $A f=\varphi f-D f$. $U(\alpha)(\varphi)$ is almost always integrable on every finite interval and the equation $d P_{\alpha} / d P=$ $1+\int_{0}^{\alpha} U(\beta)(\varphi) d \beta$ defines a continuous version of the stochastic process $d P_{\alpha} / d P$.

Proof. The only difficulty in applying the proof of Theorem 2 of [9] here arises from the fact that $D f$ is not necessarily bounded. That proof can still be used, how-
ever, to show that $A(1)=\varphi$ since $D(1)=0$. For any f in F we can find a sequence α_{i} going to 0 such that $T_{-\alpha_{i}} f-f$ converges to 0 almost everywhere and we have then

$$
\begin{aligned}
& \left\|\frac{U\left(\alpha_{i}\right)(f)-f}{\alpha_{i}}-(\varphi f-D f)\right\|_{1} \leqslant\left\|\left[\frac{1}{\alpha_{i}}\left(U\left(\alpha_{i}\right)(1)-1\right)-\varphi\right]\left(T_{-\alpha_{i}} f-f\right)\right\|_{1} \\
& \\
& +\left\|\varphi\left(T_{-\alpha_{i}} f-f\right)\right\|_{1}+\left\|\frac{T_{-\alpha_{i}} f-f}{\alpha_{i}}+D f\right\|_{1}+\left\|\left[\frac{1}{\alpha_{i}}\left(U\left(\alpha_{i}\right)(1)-1\right)-\varphi\right] f\right\|_{1}
\end{aligned}
$$

The first and fourth terms are dominated by $2\|f\|_{\infty}\left\|\alpha_{i}^{-1}\left(U\left(\alpha_{i}\right)(1)-1\right)-\varphi\right\|_{1}$ which goes to 0 , the second term goes to 0 by the dominated convergence theorem and the third term also goes to 0 . Thus a subsequence of $(U(\alpha) f-f) / \alpha$ converges to $\varphi f-D f$ and this implies that $A(f)=\varphi f-D f[4$; Theorem 10.5.4, p. 318]. The rest of the proof is exactly the same as the proof of Theorem 2 of [9].

If (A 1) and (A2) hold for X, S, P, T_{α}, and F, then φ is uniquely determined in $L_{1}(P)$ but not in $L_{1}\left(P^{\sigma}\right)$: As in [9] we call φ a normalized solution of (A2) if φ vanishes almost everywhere with respect to P^{σ} on the set where $d P / d P^{\sigma}$ vanishes. Since the P_{α}^{α} are mutually absolutely continuous, the transformations T_{α} can be extended to all finite S-measurable functions, and, in particular, to φ.

Theorem 3.5. Let φ be a normalized solution of (A2). If, for some $\gamma>0$ (or $\delta<0$), $T_{-\beta} \varphi$ is integrable on $[0, \gamma]$ (or $[\delta, 0]$) almost everywhere with respect to P^{σ}, then the P_{α} are mutually absolutely continuous, $T_{-\beta} \varphi$ is almost always integrable on every finite interval, and $\log \left(d P_{\alpha} / d P\right)=\int_{0}^{\alpha} T_{-\beta} \varphi d \beta$.

Proof. The proof is the same as the proof of Theorem 3 of [9].
Theorem 3.6. Suppose that $X, S, P, T_{\alpha}, F, \varphi$, and P_{α} satisfy (A1), (A2), and (A3), that φ is in $L_{2}(P)$ and that the P_{α} are mutually absolutely continuous. If e is any random variable with $\int_{J}\left[\int e^{2} d P_{\alpha}\right]^{\frac{1}{\frac{1}{2}}} d \alpha<\infty$ for some interval J containing the origin, and if we define the bias $b(\alpha)$ of the estimate e by: $\alpha+b(\alpha)=\int e d P_{\alpha}$, then at almost every point of $J, b(\alpha)$ has a derivative and

$$
\int(e-\alpha)^{2} d P_{\alpha} \geqslant \frac{1+\frac{d b}{d \alpha}}{\int \varphi^{2} d P}
$$

If, in addition, $T_{\beta} e$ is continuous in $L_{2}(P)$ on J, then $b(\alpha)$ has a continuous derivative and satisfies the inequality at every point.

Proof. The proof is the same as the proof of Theorem 4 of [9].

For the remaining theorems of this section we will assume that X, S, P, T_{α}, F, and φ satisfy (A1), (A2), and
(A4) There exist positive numbers C, ε, and N_{0} such that

$$
\int_{\{x| | \varphi(x) \mid \geqslant N]}|\varphi| d P \leqslant C e^{-\varepsilon N}
$$

$$
\text { for all } N \geqslant N_{0} \text {. }
$$

We will write $e_{N}(\alpha)$ for $V_{N}(-\alpha)\left(V_{N}(\alpha)(1)\right)$. Clearly, $0 \leqslant e_{N}(\alpha) \leqslant e(\alpha) \leqslant 1$.

Lemma 3.1. $0 \leqslant \int\left(1-e_{N}(\alpha)\right) d P \leqslant(C / N) e^{-(\varepsilon-|\alpha| \mid N}$ for all $N \geqslant N_{0}$.
Proof. We will do the case $\alpha \geqslant 0$ and the other will follow from the symmetry of the problem. As in the proof of Theorem 2.2 we can show that
so

$$
\begin{aligned}
1-V_{N}(-\alpha) V_{N}(\alpha)(1) & =-\int_{0}^{\alpha} V_{N}(-\beta)[\varphi \wedge N+(-\varphi \wedge N)] V_{N}(\beta)(1) d \beta \\
\int\left(1-e_{N}(\alpha)\right) d P & \leqslant \int_{0}^{\alpha} \int|\varphi \wedge N+(-\varphi \wedge N)| V_{N}(\beta)(1) d P d \beta \\
& \leqslant \int_{0}^{\alpha} e^{\beta N} \int_{|\varphi|>N}|\varphi| d P d \beta \leqslant \frac{C}{N} e^{-(\varepsilon-\alpha) N}
\end{aligned}
$$

Lemma 3.2. If the sequence $\left(h_{n}\right)$ from F converges in $L_{1}(P)$ to φ, then
and

$$
\begin{aligned}
& e_{N}(\alpha)=\lim _{n \rightarrow \infty} \exp \left(\int_{0}^{\alpha} T_{\beta}\left(\left|h_{n}\right| \wedge N-N\right) d \beta\right) \quad \text { if } \quad \alpha \geqslant 0 \\
& e_{N}(\alpha)=\lim _{n \rightarrow \infty} \exp \left(\int_{0}^{\alpha} T_{\beta}\left(\left|h_{n}\right| \wedge N-N\right) d \beta\right) \quad \text { if } \quad \alpha \leqslant 0
\end{aligned}
$$

Proof. We can find sequences $\left(f_{n}\right)$ and $\left(g_{n}\right)$ in F to satisfy $\left\|f_{n}-h_{n} \wedge N\right\|_{\infty} \leqslant 1 / n$ and $\left\|g_{n}-\left(h_{n} \vee-N\right)\right\|_{\infty} \leqslant 1 / n$. $\left(f_{n}\right)$ converges in $L_{1}(P)$ to $\varphi \wedge N$ and $\left(g_{n}\right)$ to $-(\varphi \vee-N)$ so, if $\alpha \geqslant 0$,

$$
\begin{aligned}
e_{N}(\alpha) & \left.=\lim _{n \rightarrow \infty} V_{N}(-\alpha) V_{f_{n}}(\alpha)(1)\right)=\lim _{n \rightarrow \infty} V_{N}(-\alpha)(1) \exp \left(\int_{0}^{\alpha} T_{\beta} f_{n} d \beta\right) \\
& =\lim _{n \rightarrow \infty}\left\{\exp \left(\int_{0}^{\alpha} T_{\beta}\left(f_{n}+g_{n}\right) d \beta\right)+\left(V_{N}(-\alpha)(1)-\exp \left(\int_{0}^{\alpha} T_{\beta} g_{n} d \beta\right)\right) \exp \left(T_{\beta} f_{n} d \beta\right)\right\}
\end{aligned}
$$

but the second term in the brackets is bounded in norm by

$$
e^{\alpha(N+1 / n)}\left\|V_{N}(-\alpha)(1)-\exp \left(\int_{0}^{\alpha} T_{\beta} g_{n} d \beta\right)\right\|_{1}
$$

which goes to 0 since $\int_{0}^{\alpha} T_{\beta} g_{n} d \beta=\int_{0}^{\alpha} T_{-(-\beta)} g_{n} d \beta$ and $\left(g_{n}\right)$ converges to $-(\varphi \vee-N)=$ $(-\varphi \wedge N)$, and the first term converges to $\lim _{n \rightarrow \infty} \exp \left(\int_{0}^{\alpha} T_{\beta}\left(\left|h_{n}\right| \wedge N-N\right) d \beta\right)$. The proof for $\alpha \leqslant 0$ is similar.

Lemma 3.3.

$$
\log \frac{d P_{\alpha}}{d P}-\left(\log \frac{d P_{\alpha}}{d P}\right) \wedge \alpha N \leqslant-\log e_{N}(-\alpha)
$$

Proof. We take sequences $\left(f_{n}\right)$ and $\left(h_{n}\right)$ as in Lemma 3.2 and then refine them so that $\int_{0}^{\alpha} T_{-\beta} t_{n} d \beta$ converges almost everywhere to $\log V_{N}(\alpha)(1)$ and $\int_{-\alpha}^{0} T_{\beta}\left(h_{n}-h_{n} \wedge N\right) d \beta$ converges almost everywhere to $-\log e_{N}(-\alpha)$ (α being taken positive). We will still write $\left(f_{n}\right)$ and $\left(h_{n}\right)$ for the new sequences. Since $\int_{0}^{\alpha} T_{\beta} f_{n} d \beta \leqslant \alpha N+\varepsilon_{n}$ where ε_{n} goes to 0 as n goes to ∞,

$$
\left(\log \frac{d P_{\alpha}}{d P}\right) \wedge \alpha N \geqslant\left(\log V_{N}(\alpha)(1)\right) \wedge \alpha N \geqslant \lim _{n \rightarrow \infty} \int_{0}^{\alpha} T_{-\beta} f_{n} d \beta=\lim _{n \rightarrow \infty} \int_{-\alpha}^{0} T_{\beta}\left(h_{n} \wedge N\right) d \beta
$$

Hence, for any positive M,

$$
\log V_{N+M}(\alpha)(1)-\left(\log \frac{d P_{\alpha}}{d P}\right) \wedge \alpha N \leqslant \lim _{n \rightarrow \infty} \int_{-\alpha}^{0} T_{\beta}\left(h_{n}-h_{n} \wedge N\right) d \beta=-\log e_{N}(-\alpha)
$$

The proof now follows from Theorem 3.1 on letting M go to ∞. The proof for $\alpha \leqslant 0$ is similar.

Theorem 3.7. If X, S, P, T_{α}, F, and φ satisfy (A1), (A2), and (A4), then

$$
P\left(\log \frac{d P_{\alpha}}{d P}<M\right) \leqslant C_{1} e^{-\left(\varepsilon_{\varepsilon}| | x \mid-1\right)(M-1)}
$$

if $|\alpha|<\varepsilon$ and $M \geqslant|\alpha| N_{0}+1$, and

$$
P\left(\log \frac{d P_{\alpha}}{d P}<-M\right) \leqslant D_{1} e^{-(\varepsilon /|\alpha|-2)(M-1)}
$$

if $|\alpha|<\frac{1}{2} \varepsilon$ and $M \geqslant|\alpha| N_{0}+1$. For any $p, 1<p<\infty, \int\left|d P_{\alpha} / d P\right|^{p} d P$ is bounded in any interval $|\alpha| \leqslant \alpha_{0}<\varepsilon /(p+1)$.
2-642906 Acta mathematica 112. Imprimé le 11 septembre 1964.

Proof. By Lemma 3.3,

$$
\left[\log \frac{d P_{\alpha}}{d P}-\left(\log \frac{d P_{\alpha}}{d P}\right) \wedge \alpha N\right] \wedge 1 \leqslant\left[-\log e_{N}(-\alpha)\right] \wedge 1 \quad \text { if } \quad N \geqslant N_{0}
$$

Using this inequality, Lemma 3.1, and the fact that
gives

$$
\left[-\log e_{N}(-\alpha)\right] \wedge 1 \leqslant\left(1-e_{N}(-\alpha)\right) /\left(1-e^{-1}\right)
$$

$$
\begin{aligned}
P\left(\log \frac{d P_{\alpha}}{d P} \geqslant \alpha N+1\right) & \leqslant \frac{1}{1-e^{-1}} \int\left(1-e_{N}(-\alpha)\right) d P \\
& \leqslant \frac{C}{1-e^{-1}} \frac{1}{N} e^{-(\varepsilon-|\alpha|) N}=\frac{C}{1-e^{-1}} \frac{1}{N} e^{-(\varepsilon| | \alpha \mid-1)(\alpha N)} .
\end{aligned}
$$

Setting

$$
C_{1}=\frac{C}{1-e^{-1}} \frac{1}{N_{0}} \text { and } M=\alpha N+1
$$

yields the first formula of the theorem.
By Theorem 3.3

$$
\begin{aligned}
P\left(\log \frac{d P_{\alpha}}{d P}<-M\right) & =P\left(\log \frac{d P}{d P_{\alpha}}>M\right) \\
& =P\left(T_{-\alpha}\left(\log \frac{d P_{-\alpha}}{d P}\right)>M\right)=P_{-\alpha}\left(\log \frac{d P_{-\alpha}}{d P}>M\right)
\end{aligned}
$$

If f is the characteristic function of the set where $\log \left(d P_{-\alpha} / d P\right)>M$, then

$$
\begin{aligned}
P\left(\log \frac{d P_{\alpha}}{d P}<-M\right) & =\int f \frac{d P_{-\alpha}}{d P} d P \leqslant \sum_{k=0}^{\infty} e^{M+k+1} P\left(\log \frac{d P_{-\alpha}}{d P}>M+k\right) \\
& \leqslant C_{1} \sum_{k=0}^{\infty} e^{M+k+1} e^{-(\varepsilon| | \alpha \mid-1)(M+k+1)}=D_{1} e^{-(\varepsilon| | \alpha \mid-2)(M-1)}
\end{aligned}
$$

which is the second formula of the theorem.
Finally, if $|\alpha| \leqslant \alpha_{0}<\varepsilon /(p+1)$,

$$
\begin{aligned}
\int\left(\frac{d P_{\alpha}}{d P}\right)^{p} d P & \leqslant e^{p\left(|\alpha| N_{0}+1\right)}+\sum_{k=0}^{\infty} e^{p\left(|\alpha| N_{0}+k+2\right)} P\left(\log \frac{d P_{\alpha}}{d P}>|\alpha| N_{0}+k+1\right) \\
& \leqslant A_{p}+\sum_{k=0}^{\infty} e^{p\left(|\alpha| N_{0}+k+2\right)} C_{1} e^{-(\varepsilon| | \alpha \mid-1)\left(\alpha N_{0}+k\right)} \\
& =A_{p}+B e^{p\left(|\alpha| N_{0}+2\right)} e^{-(\varepsilon-|\alpha|) N_{0}} \sum_{k=0}^{\infty} e^{-(\varepsilon /|\alpha|-(p+1)) k} \\
& \leqslant A_{p}+B_{p} e^{p\left|\alpha_{0}\right| N_{0}} e^{-\left(\varepsilon-\left|\alpha_{0}\right|\right) N_{0}} \sum_{k=0}^{\infty} e^{-\left(\varepsilon| | \alpha_{0} \mid-(p+1)\right) k}
\end{aligned}
$$

where A_{p} and B_{p} are independent of α and this completes the proof.

The information contained in a probability measure P about a probability measure Q, written $I(P, Q)$ is given by:

$$
I(P, Q)=\int \log \frac{d Q}{d P} d P+\int \log \frac{d P}{d Q} d Q
$$

Theorem 3.8. If X, S, P, T_{α}, F, and φ satisfy (A1), (A 2), and (A 4), then for any α, β, and $\gamma, I\left(P_{\alpha}, P_{\beta}\right)=I\left(P_{\alpha+\gamma}, P_{\beta+\gamma}\right) . I\left(P_{\alpha}, P_{\beta}\right)$ is finite whenever $|\alpha-\beta|<\frac{1}{3} \varepsilon$ and $I\left(P_{\alpha}, P_{\beta}\right)=O\left((\alpha-\beta)^{2}\right)$ as α converges to β.

Proof. From Theorem 3.3

$$
T_{\alpha}\left(e^{f}\right)=\lim _{n \rightarrow \infty} T_{\alpha}\left(\sum_{k=0}^{n} \frac{f^{k}}{k!}\right)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{\left(T_{\alpha} f\right)^{k}}{k!}=e^{T_{\alpha} f}
$$

for any measurable f so $\exp \left(T_{\alpha} \log g\right)=T_{\alpha} g=\exp \left(\log T_{\alpha} g\right)$, i.e., $T_{\alpha} \log g=\log T_{\alpha} g$ for any measurable g. Hence,

$$
\begin{aligned}
I\left(P_{\alpha+\gamma}, P_{\beta+\gamma}\right) & =\int \log \frac{d P_{\alpha+\gamma}}{d P_{\beta+\gamma}} d P_{\beta+\gamma}+\int \log \frac{d P_{\beta+\gamma}}{d P_{\alpha+\gamma}} d P_{\alpha+\gamma} \\
& =\int T_{\gamma} \log \frac{d P_{\alpha+\gamma}}{d P_{\beta+\gamma}} d P_{\beta}+\int T_{\gamma} \log \frac{d P_{\beta+\gamma}}{d P_{\alpha+\gamma}} d P_{\alpha} \\
& =\int \log \frac{d P_{\alpha}}{d P_{\beta}} d P_{\beta}+\int \log \frac{d P_{\beta}}{d P_{\alpha}} d P_{\alpha}=I\left(P_{\alpha}, P_{\beta}\right) .
\end{aligned}
$$

Now, by Theorem 3.7, if $|\alpha| \leqslant \alpha_{0}<\frac{1}{3} \varepsilon$, then

$$
\int\left|T_{\alpha} \varphi\right|^{2} d P=\int|\varphi|^{2} \frac{d P_{\alpha}}{d P} d P \leqslant\left\{\int|\varphi|^{4} d P \int\left(\frac{d P_{\alpha}}{d P}\right)^{2} d P\right\}^{\frac{1}{2}}=C<\infty
$$

Since the $L_{1}(P)$ norm is dominated by the $L_{2}(P)$ norm, $T_{-\beta} \varphi$ is integrable on $[0, \alpha]$ and by Theorem 3.5, $\left|\log \left(d P_{\alpha} / d P\right)\right|=\left|\int_{0}^{\alpha} T_{-\beta} \varphi d \beta\right| \leqslant \int_{0}^{\alpha}\left|T_{-\beta} \varphi\right| d \beta .\left(d P_{\alpha} / d P\right) T_{-\gamma} \varphi$ is also integrable on $[0, \alpha]$ so, almost everywhere,

Hence,

$$
\begin{aligned}
\left|\frac{d P_{\alpha}}{d P}-1\right| & =\left|\int_{0}^{\alpha} \frac{d P_{\gamma}}{d P} T_{-\gamma} \varphi d \gamma\right| \leqslant \int_{0}^{\alpha} \frac{d P_{\gamma}}{d P} T_{-\gamma}|\varphi| d \gamma \\
0 \leqslant I\left(P, P_{\alpha}\right) & \leqslant \int\left\{\int_{0}^{\alpha} T_{-\beta}|\varphi| d \beta\right\}\left\{\int_{0}^{\alpha} \frac{d P_{\gamma}}{d P} T_{-\gamma}|\varphi| d \gamma\right\} d P \\
& =\int_{0}^{\alpha} d \beta \int_{0}^{\alpha} d \gamma \int\left(T_{-\beta+\gamma}|\varphi|\right)|\varphi| d P \leqslant C \alpha^{2}
\end{aligned}
$$

4. The Gaussian case

Let (X, S, P) be a set, a σ-algebra of subsets and a probability measure, and let L be a linear set of real-valued S-measurable random variables whose joint distributions with respect to P are Gaussian. We will write H for the L_{2}-closure of L. All limit operations in this section will be with respect to the $L_{2}(P)$ norm unless otherwise specified. Let T_{α} be a one-parameter group of linear transformations of L into itself. We make the following assumptions:
(i) 1 (the constant function) is in L and $T_{\alpha} 1=1$ for all α.
(ii) H is separable.
(iii) For every x in $L, D x=\lim _{\varepsilon \rightarrow 0}\left(T_{\varepsilon} x-x\right) / \varepsilon$ exists and $D T_{\alpha} x$ is L_{2} continuous in α.
(iv) There exists a ψ in $L_{2}(P)$ satisfying $\int \psi x y d P=\int(x D y+y D x) d P$ for all x and y in L.

Lemma 4.1. If $x_{0}=1, x_{1}, x_{2}, \ldots$ is a complete orthonormal set in L, then

$$
\begin{aligned}
\varphi & =\lim _{n \rightarrow \infty} \sum_{0 \leqslant i<j \leqslant n}\left(\int\left(x_{i} D x_{j}+x_{j} D x_{i}\right) d P\right) x_{i} x_{j}+\sum_{i=1}^{n}\left(\int x_{i} D x_{i} d P\right)\left(x_{i}^{2}-1\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{E}\left(\sum_{i=0}^{n}\left(x_{i} D x_{i}-\int x_{i} D x_{i} d P\right) \mid x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

exists and satisfies $\int p x y d P=\int(x D y+y D x) d P$ for every x and y in $L . \varphi$ is independent of the particular sequence x_{1}, \ldots.

Proof. The random variables $x_{i} x_{j}-\delta_{i j}$ are orthogonal and the first expression for φ is just the Fourier expansion for ψ with respect to this orthogonal set which guarantees its L_{2} convergence. The equality of the two expressions is proved by computing the Fourier coefficients of the second with respect to this orthogonal set noting that $\mathrm{E}\left(x_{i} x_{j} \mid x_{1}, \ldots, x_{n}\right)=0$ if $i \leqslant n<j$. If $i<j$, then clearly $\int \varphi x_{i} x_{j} d P=\int\left(x_{i} D x_{j}+x_{j} D x_{i}\right) d P$ and

$$
\int \varphi x_{i}^{2} d P=\int \varphi\left(x_{i}^{2}-1\right) d P=\sqrt{2} \int \varphi \frac{\left(x_{i}^{2}-1\right)}{\sqrt{2}} d P=2 \int x_{i} D x_{i} d P
$$

so $\int \varphi z w d P=\int(z D w+w D z) d P$ holds for z and w which are finite linear combinations of the x_{i}. By the same argument any other complete orthonormal set $y_{0}=1, y_{1}, \ldots$
in L gives rise to a φ^{\prime} which is the expansion of ψ over the orthogonal set $y_{i} y_{j}-\delta_{i r}$ and satisfies the desired equation for z and w which are finite linear combinations. of the y_{i}. However, if $\sum_{k=1}^{n} a_{i k} x_{k}$ converges to y_{i} then, since all the random variables. involved are Gaussian $\left(\sum_{k=1}^{n} a_{i k} x_{k}\right)\left(\sum_{l=1}^{n} a_{j l} x_{l}\right)$ converges to $y_{i} y_{j}$ so the spaces spanned by the $x_{i} x_{j}-\delta_{i j}$ and the $y_{i} y_{j}-\delta_{i j}$ are the same and $\varphi=\varphi^{\prime}$. It now follows, on applying the Gram-Schmidt procedure to the sequence $1, z, w, x_{1}, x_{2}, \ldots$ and forming φ with respect to the resulting complete orthonormal sequence that $\int \varphi z w d P=\int(z D w+w D z) d P$ for all z and w in L.

Lemma 4.2. If x is in $L,\left\|D T_{\alpha} x\right\|=O\left(e^{K \alpha}\right)$ for $K=\sqrt{3}\|p\|_{2}$.
Proof. If $f(\alpha)=\int\left(T_{\alpha} x\right)^{2} d P$, then

$$
f^{\prime}(\alpha)=2 \int\left(T_{\alpha} x\right) D T_{\alpha} x d P=\int \varphi\left(T_{\alpha} x\right)^{2} d P \leqslant 3^{-\frac{1}{1}} K\left(\int\left(T_{\alpha} x\right)^{4} d P\right)^{\frac{1}{2}}
$$

Writing m and σ for the mean and variance of $T_{\alpha} x$,

$$
\left|f^{\prime}(\alpha)\right| \leqslant 3^{-\frac{1}{2}} K\left(3 \sigma^{2}+6 \sigma m^{2}+m^{4}\right)^{\frac{1}{2}} \leqslant K\left(\sigma+m^{2}\right)=K f(\alpha) .
$$

Hence

$$
\int\left(T_{\alpha} x\right)^{2} d P \leqslant\left(\int x^{2} d P\right) e^{K|\alpha|}
$$

and

$$
\left\|D T_{\alpha} x\right\|^{2}=\lim _{\varepsilon \rightarrow 0}\left\|T_{\alpha}\left(\frac{T_{\varepsilon} x-x}{\varepsilon}\right)\right\|^{2} \leqslant \lim _{\varepsilon \rightarrow 0} \sup \int\left(\frac{T_{\varepsilon} x-x}{\varepsilon}\right)^{2} d P e^{\delta|\alpha|}==\|D x\|^{2} e^{\kappa|\alpha|}
$$

Lemma 4.3. There exist independent normalized Gaussian random variables y_{n} in H and numbers λ_{n} and μ_{n} for which $\varphi=\sum_{n=1}^{\infty} \lambda_{n}\left(y_{n}^{2}-1\right)+\sum_{n=1}^{\infty} \mu_{n} y_{n}$

Proof. We may write $\varphi=\varphi_{0}+\varphi_{1}$ where $\varphi_{0}=\sum_{1 \leqslant i<j} a_{i j} x_{i} x_{j}+\sum_{i=1}^{\infty} a_{i}\left(x_{i}^{2}-1\right)$ and $\varphi_{1}=\sum_{i=1}^{\infty} b_{i} x_{i}$. For any Gaussian random variable $x,\left(\int x^{4} d P\right)^{\frac{1}{2}} \leqslant 3^{\frac{1}{4}}\left(\int x^{2} d P\right)^{\frac{1}{4}}$ so

$$
\left|\int \varphi_{0} x y d P\right| \leqslant\left\|\varphi_{0}\right\|_{2}\left(\int x^{2} y^{2} d P\right)^{\frac{1}{2}} \leqslant\left\|\varphi_{0}\right\|_{2}\left(\int x^{4} d P\right)^{\frac{1}{2}}\left(\int y^{4} d P\right)^{\frac{1}{2}} \leqslant K\|x\|\|y\|
$$

if x and y are in H. Thus the equation $\int(T x) y d P=\int \varphi_{0} x y d P$ defines a bounded self-adjoint operator on H. Also, for any complete orthonormal set $\left(x_{i}\right)$,

$$
\sum_{i, j=0}^{\infty}\left(\int\left(T x_{i}\right) x_{j} d P\right)^{2}=2 \sum_{i<j}\left(\int \varphi_{0} x_{i} x_{j} d P\right)^{2}+\sum_{i=1}^{\infty} \int \varphi_{0}\left(x_{i}^{2}-1\right) d P \leq 2\left\|\varphi_{0}\right\|_{2}^{2}
$$

so T is a Hilbert-Schmidt operator and hence is completely continuous. Let $\left(y_{n}\right)$ be the eigenvectors and $\left(2 \lambda_{n}\right)$ the corresponding eigenvalues of T. Eiy the same argument used in Lemma 4.1, the random variables $y_{i} y_{j}-\delta_{i j}$ span the subspace of $L_{2}(P)$ containing φ_{0} so we have

$$
\varphi_{0}=\sum_{i<j}\left(\int \varphi_{0} y_{i} y_{j} d P\right) y_{i} y_{j}+\sum_{n=1}^{\infty}\left(\int \varphi_{0} \frac{\left(y_{n}^{2}-1\right)}{\sqrt{2}} d P\right) \frac{y_{n}^{2}-1}{\sqrt{2}}=\sum_{n=1}^{\infty} \lambda_{n}\left(y_{n}^{2}-1\right)
$$

Since φ_{1} can be expanded over any complete orthonormal set, the lemma is proved.
Lemma 4.4. There exist positive numbers ε, C, and N_{0} such that $\int_{|q| \geqslant N}|\varphi| d P \leqslant$ $C e^{-\varepsilon N}$ whenever $N \geqslant N_{\mathbf{0}}$.

Proof. It will be sufficient to show that $\int e^{\delta|q|} d P<\infty$ for some $\delta>0$ since then

$$
\int_{[x| | \varphi(x) \geqslant N]}|\varphi| d P \leqslant N e^{-\delta N} \int_{[x| | \varphi(x) \geqslant \geqslant N]} e^{\delta|\varphi|} d P \leqslant\left(\int e^{\delta|\varphi|} d P\right) e^{-\frac{1}{2} \delta N}
$$

for large enough N. Also, since $e^{\delta|\varphi|} \leqslant e^{\delta \varphi}+e^{-\delta \varphi}$, it will be sufficient to show that $e^{\delta \varphi}$ is integrable for small $|\delta|$. Writing $\varphi=\varphi_{0}+\varphi_{1}$ as in the preceeding lemma,

$$
\int e^{\delta \varphi} d P=\int e^{\delta \varphi_{0}+\delta \varphi_{1}} d P \leqslant \int e^{2 \delta \varphi_{0}} d P+\int e^{2 \delta \varphi_{1}} d P
$$

and the second term on the right is finite because φ_{1} is Gaussian so it only remains to show that $e^{8 \varphi_{0}}$ is integrable. Taking $|\delta|<\inf \frac{1}{2} \lambda_{n}^{-1}$, we have

$$
\int \exp \left(\delta \sum_{j=1}^{N} \lambda_{j}\left(y_{j}^{2}-1\right)\right) d P=\prod_{j=1}^{N} \int \exp \left(\delta\left(y_{j}^{2}-1\right)\right) d P=\prod_{j=1}^{N}\left(1-2 \delta \lambda_{j}\right)^{\frac{1}{2}} \exp \left(-\delta \lambda_{j}\right) .
$$

The infinite product converges to a finite limit because

$$
\left|1-\left(1-2 \delta \lambda_{j}\right)^{\frac{1}{2}} \exp \left(-\delta \lambda_{j}\right)\right|=O\left(\delta^{2} \lambda_{j}^{2}\right) \quad \text { and } \sum_{j=1}^{\infty} \delta^{2} \lambda_{j}^{2} \leqslant 2 \delta^{2}\|\varphi\|_{2}^{2}
$$

so, taking a subsequence N_{k} for which $\sum_{j=1}^{N_{k}} \lambda_{j}\left(y_{i}^{2}-1\right)$ converges almost everywhere to φ_{0} and applying Fatou's lemma,

$$
\int e^{\delta \varphi_{0}} d P \leqslant \lim _{k \rightarrow \infty} \prod_{j=1}^{N_{k}}\left(1-2 \delta \lambda_{j}\right)^{\frac{1}{2}} \exp \left(-\delta \lambda_{j}\right)<\infty .
$$

Let F be the set of random variables of the form $f\left(x_{1}, \ldots, x_{n}\right)$ where f is a bounded, real-valued function of n real variables with bounded first and second derivatives and the x_{i} belong to L.

Lemma 4.5. $\quad T_{\alpha}$ is well-defined on F by: $T_{\alpha} f\left(x_{1}, \ldots, x_{n}\right)=f\left(T_{\alpha} x_{1}, \ldots, T_{\alpha} x_{n}\right)$. Writing f_{i} for the partial derivative of f with respect to the i th appearing variable, we have

$$
D f=\lim _{\alpha \rightarrow 0} \frac{T_{\alpha} t-f}{\alpha}=\sum_{i=1}^{n} f_{i}\left(x_{1}, \ldots, x_{n}\right) D x_{i}
$$

$D T_{\alpha} f$ is continuous in $L_{2}(P)$ and hence in $L_{1}(P)$ and $\left\|D T_{\alpha} f\right\|_{1} \leqslant\left\|D T_{\alpha} f\right\|_{2}=O\left(e^{K|\alpha|}\right)$.
Proof. We have to show that if $f\left(x_{1}, \ldots, x_{n}\right)=g\left(y_{1}, \ldots, y_{m}\right)$, then

$$
f\left(T_{\alpha} x_{1}, \ldots, T_{\alpha} x_{n}\right)=g\left(T_{\alpha} y_{1}, \ldots, T_{\alpha} y_{m}\right)
$$

After eliminating those variables on which f or g has only a constant dependence, the remaining sets of variables $\left(x_{1}, \ldots, x_{n}\right)$ and (y_{1}, \ldots, y_{m}) must clearly span the same subspace of L. Hence each y_{i} can be written as a linear combination of the x_{i} and the first assertion of the lemma follows from this. By Taylor's theorem

$$
\left|\frac{T_{\alpha} f-f}{\alpha}-\sum_{i=1}^{n} f_{i}\left(x_{1}, \ldots, x_{n}\right) D x_{i}\right| \leqslant \sup _{1 \leqslant t, j \leqslant n}\left\|f_{i j}\right\|_{\infty} \sum_{k=1}^{n} \frac{\left|T_{\alpha} x_{k}-x_{k}\right|^{2}}{\alpha}
$$

and this goes to zero in $L_{2}(P)$ since the x_{k} are Gaussian. A similar argument proves the L_{2} continuity of $D T_{\alpha} f$. Finally,

$$
\left\|D T_{\alpha} f\right\|_{2} \leqslant \sup _{i}\left\|f_{i}\right\|_{\infty} \sum_{j=1}^{n}\left\|D T_{\alpha} x_{j}\right\|=O\left(e^{K|\alpha|}\right)
$$

Lemma 4.6. If f is in F, then $\int \varphi f d P=\int D f d P$.
Proof. We can assume, after making the appropriate linear change of variables, that $f=f\left(x_{1}, \ldots, x_{n}\right)$ where $x_{0}=1, x_{1}, \ldots, x_{n}$ are the first $n+1$ terms in a complete orthonormal set. If $D x_{j}=\sum_{k=1}^{\infty} \alpha_{j k} x_{k}+\beta_{j}$, then

$$
\mathrm{E}\left(x_{j} D x_{j}-\int x_{j} D x_{j} d P \mid x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{n} \alpha_{j k} x_{j} x_{k}-\alpha_{j j}+\beta_{j} x_{j} \text { if } j \leqslant n
$$

We have

$$
\begin{aligned}
\int f \varphi d P & =\int f \mathrm{E}\left(\sum_{j=1}^{n}\left(x_{j} D x_{j}-\int x_{j} D x_{j} d P\right) \mid x_{1}, \ldots, x_{n}\right) d P \\
& =(2 \pi)^{-\frac{1}{2} n} \int f\left(a_{1}, \ldots, a_{n}\right) \sum_{j=1}^{n}\left(\sum_{k-1}^{n} \alpha_{j k} a_{j} a_{k}-\alpha_{j j}+\beta_{j} a_{j}\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{n} a_{l}^{2}\right) d a_{1} \ldots d a_{n} .
\end{aligned}
$$

Using

$$
\left(\sum_{k=1}^{n} \alpha_{j k} a_{j} a_{k}-\alpha_{j j}+\beta_{j} a_{j}\right) \exp \left(-\frac{1}{2} a_{j}^{2}\right)=-\frac{\partial}{\partial a_{j}}\left[\left(\sum_{k=1}^{n} \alpha_{j k} a_{k}+\beta_{j}\right) \exp \left(-\frac{1}{2} a_{j}^{2}\right)\right]
$$

and integrating by parts leads to the desired equation.

Theorem 4.1. If (i) through (iv) are satisfied, then the measures P_{α} are mutually absolutely continuous and T_{α} can be extended to all S-measurable functions. $T_{-\alpha} \varphi(x)$ is integrable on every finite interval for almost every x and $\log \left(d P_{\alpha} / d P\right)=\int_{0}^{\alpha} T_{-\beta} \varphi d \beta$. For some ε and N_{0}, the results of Theorem 3.7 hold for $\log \left(d P_{\alpha} / d P\right)$.

Proof. The lemmas of this section prove that the hypothesis of Theorems 3.1 and 3.7 hold for X, S, P, F, T_{α}, and φ. For ε as in Lemma 4.4 and $|\alpha| \leqslant \frac{1}{3} \varepsilon$, Theorem 3.7 implies that $\int\left(d P_{\alpha} / d P\right)^{2} d P \leqslant C^{2}<\infty$, so $\int T_{\alpha}|\varphi| d P=\int|\varphi|\left(d P_{\alpha} / d P\right) d P \leqslant C\|\varphi\|_{2}$. Hence $\int \frac{\frac{1}{-\frac{1}{2} \varepsilon} \int}{} \int T_{\alpha}|\varphi| d \alpha d P \leqslant \frac{2}{3} \varepsilon C\|\varphi\|_{2}<\infty$, which proves that $T_{-\alpha} \varphi$ is almost always integrable on $[-\varepsilon / 3, \varepsilon / 3]$. The remainder of the theorem now follows from Theorem 3.5.

Theorem 4.2. If (i) through (iv) are satisfied and the sequence $\left(\varphi_{n}\right)$ converges to φ in $L_{2}(P)$, then $T_{-\beta} \varphi_{n}$ is almost always integrable on $[0, \alpha]$ and $\int_{0}^{\alpha} T_{-\beta} \varphi_{n} d \beta$ converges in $L_{1}(P)$ to $\log \left(d P_{\alpha} / d P\right)$ for almost all α in some nondegenerate interval $\left[-\alpha_{0}, \alpha_{0}\right]$. For some subsequence $\left(n_{j}\right), \int_{0}^{\alpha} T_{-\beta} \varphi_{n_{j}} d \beta$ converges to $\log \left(d P_{\alpha} / d P\right)$ almost everywhere with respect to $d P d \alpha$. In particular if, for some complete orthonormal sequence $x_{0}=1, x_{1}, \ldots$ from $L, \sum_{i=1}^{n}\left(x_{i} D x_{i}-\int x_{i} D x_{i} d P\right)$ is L_{2}-convergent, then

$$
\sum_{i=1}^{n}\left(\frac{1}{2} x_{i}^{2}-\frac{1}{2}\left(T_{-\alpha} x_{i}\right)^{2}-\alpha \int x_{i} D x_{i} d P\right)
$$

converges in $L_{1}(P)$ to $\log \left(d P_{\alpha} / d P\right)$ for α in $\left[-\alpha_{0}, \alpha_{0}\right]$ and for some subsequence $\left(n_{j}\right)$,

$$
\sum_{i=1}^{n_{j}}\left(\frac{1}{2} x_{i}^{2}-\frac{1}{2}\left(T_{-\alpha} x_{i}\right)^{2}-\alpha \int x_{i} D x_{i} d P\right)
$$

converges to $\log \left(d P_{\alpha} / d P\right)$ almost everywhere with respect to $d P d \alpha$.
Proof. For $|\alpha|<\varepsilon / 3$.

$$
\int\left|\int_{0}^{\alpha} T_{-\beta}\left(\varphi-\varphi_{n}\right) d \beta\right| d P \leqslant \int_{0}^{\alpha}\left(\int\left|\varphi-\varphi_{n}\right| \frac{d P_{-\beta}}{d P} d P\right) d \beta \leqslant C\left\|\varphi-\varphi_{n}\right\|_{2} \alpha
$$

which proves the almost everywhere integrability of $T_{-\beta} \varphi_{n}$ on $[-\varepsilon / 3, \varepsilon / 3]$ and the $L_{1}(d P d \alpha)$ convergence of $\int_{0}^{\alpha} T_{-\beta} \varphi_{n} d \beta$ to $\int_{0}^{\alpha} T_{-\beta} \varphi d \beta$ for α in this interval. For some subsequence $\left(n_{j}\right), \int_{0}^{\alpha} T_{-\beta} \varphi_{n_{j}} d \beta$ converges almost everywhere $d P d \alpha$ on the interval and thus, because the P_{α} are all equivalent,

$$
\int_{0}^{N \alpha} T_{-\beta} \varphi_{n_{j}} d \beta=\sum_{k=0}^{N-1} T_{-k \alpha} \int_{0}^{\alpha} T_{-\beta} \varphi_{n_{j}} d \beta
$$

converges almost everywhere to $\int_{0}^{N \alpha} T_{-\beta} \varphi d \beta$ with respect to $d P d \alpha$. The remainder of the theorem will be proved if we show that $\int_{0}^{\alpha} T_{-\beta}(x D x) d \beta=\frac{1}{2} x^{2}-\frac{1}{2}\left(T_{-\alpha} x\right)^{2}$ for x in L. For some sequence $\left(\varepsilon_{n}\right)$ converging to $0,\left(T_{-\beta+\varepsilon_{n}} x-T_{-\beta} x\right) / \varepsilon_{n}$ converges almost everywhere to $D T_{-\beta} x$ and $\left(T_{\varepsilon_{n}} x-x\right) / \varepsilon_{n}$ converges almost everywhere to $D x$ but then, since $P_{-\beta}$ is equivalent to $P, T_{-\beta}\left(T_{\varepsilon_{n}} x-x\right) / \varepsilon_{n}$ converges almost everywhere to $T_{-\beta} D x$ so $T_{-\beta} D x=D T_{-\beta} x$. Thus the integrand $T_{-\beta}(x D x)=\left(T_{-\beta} x\right)\left(D T_{-\beta} x\right)$ is L_{2} continuous and $\int_{0}^{\alpha} T_{-\beta}(x D x) d \beta$ has $\left(T_{-\alpha} x\right)\left(D T_{-\alpha} x\right)$ as L_{2} derivative. The L_{2} derivative of $\frac{1}{2} x^{2}-$ $\frac{1}{2}\left(T_{-\alpha} x\right)^{2}$ is given by

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0}-\frac{1}{2}\left[\left(T_{-\alpha-\varepsilon} x\right)^{2}-\left(T_{-\alpha} x\right)^{2}\right] & =\lim _{\varepsilon \rightarrow 0}\left[-T_{-\alpha} x\left(\frac{T_{-\alpha-\varepsilon} x-T_{-\alpha} x}{\varepsilon}\right)-\left(\frac{T_{-\alpha-\varepsilon} x-T_{-\alpha} x}{\varepsilon}\right)^{2}\right] \\
& =\left(T_{-\alpha} x\right)\left(D T_{-\alpha} x\right)
\end{aligned}
$$

(using again the fact that the random variables are Gaussian) and this proves the validity of the desired equation since both sides vanish for $\alpha=0$. Example 4 of the next section shows that $\sum_{i=1}^{\infty}\left(x_{i} D x_{i}-\int x_{i} D x_{i} d P\right)$ need not converge to φ.

Before going to the next section we wish to discuss assumptions (i) through (iv) made at the beginning of this one. (i) which is simply a normalization and (iii) which expresses the continuity of T_{α} seem necessary in this context but (ii), the separability of H, could have been avoided. We have not thought it worth-while to make the minor changes in proofs and notation required for the nonseparable case since it is of infrequent occurrence in applications. Assumption (iv) is rather awkward as stated. In practice one generally chooses a complete orthonormal set $x_{0}=1, x_{1}, x_{2}, \ldots$ from L; computes $\varphi=\sum_{i=0}^{\infty} x_{i} D x_{i}$, which satisfies the desired equation when x and y are finite linear combinations of the x_{i} 's; and then shows by a continuity argument that the equation is satisfied for all x and y in L. The following example shows that this continuity is not automatic.

Let x_{1}, x_{2}, \ldots be an orthonormal set and define $y_{n}=A_{n} \sum_{k=1}^{\infty} k^{-n} x_{k}$ where A_{n} is chosen to make $\left\|y_{n}\right\|=1$. The x_{i} 's and y_{j} 's are linearly independent since

$$
z=\sum_{i=1}^{N} \alpha_{i} x_{i}+\sum_{j=1}^{M} \beta_{j} y_{j}=0
$$

implies that $\beta_{1}=\lim _{n \rightarrow \infty} n \int z x_{n} d P=0, \beta_{2}=\lim _{n \rightarrow \infty} n^{2} \int z x_{n} d P=0$, etc. L is to be all finite linear combinations of $x_{0}=1$, the x_{i} 's, and the y_{i} 's, and T_{α} is defined by:

$$
T_{\alpha} x_{n}=x_{n}+C_{n}\left(e^{a_{n} \alpha}-1\right) y_{n} \quad \text { and } T_{\alpha} y_{n}=e^{a_{n} \alpha} y_{n}
$$

This gives $D x_{n}=a_{n} C_{n} y_{n}$ and $D T_{\alpha} y_{n}=a_{n} e^{a_{n} \alpha} y_{n}$. Choosing $C_{n}=0$ gives

$$
\varphi=\sum_{i=1}^{\infty} x_{i} D x_{i}=0 \quad \text { but } \int\left(x_{k} D y_{n}+y_{n} D x_{k}\right) d P=a_{n} \int x_{k} y_{n} d P=a_{n} A_{n} k^{-n} \neq 0=\int \varphi x_{k} y_{n} d P
$$

This example can be patched up by cutting down the size of L but the following one can't. This time we take $a_{n}=n$ and $C_{n}=n^{-2}$ giving $\varphi=\sum_{i=1}^{\infty} x_{i} D x_{i}=\sum_{i=1}^{\infty} i^{-1} y_{i} x_{i}$ which is L_{2} convergent but cannot satisfy (iv) because $\left\|D T_{\alpha} y_{n}\right\|_{2}=n e^{n \alpha} \neq O\left(e^{K|\alpha|}\right)$ contradicting Lemma 4.2 .

It would be very interesting to have a converse to Theorem 4.1, that is, a theorem asserting that if (i), (ii), and (iii) hold and if mutually absolutely continuous measures P_{α} satisfying $\int T_{\alpha} x d P=\int x d P_{\alpha}$ exist, then a ψ satisfying (iv) must exist. Under these assumptions Theorem 3.3 implies that $V(\alpha) f=\left(d P_{\alpha} / d P\right) T_{-\alpha} f$ is a strongly continuous group with generator A and the desired theorem is easily seen to be equivalent to the assertion that the constant function 1 is in the domain of A and $A(1)$ is in $L_{2}(P)$.

Finally, it should be pointed out that the relation between φ and T_{α} is not one to one. This shows up even in the finite dimensional case as the following example shows. Let y_{1} and y_{2} be independent normalized Gaussian random variables and let L be all finite linear combinations of $y_{0}=1, y_{1}$, and y_{2}. For each real ν let D_{v} be the transformation given by:

$$
D_{v}\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
\lambda_{1} y_{1}+\nu y_{2} \\
-\nu y_{1}+\lambda_{2} y_{2}
\end{array}\right)
$$

and let $T_{\alpha}^{(v)}$ be the group given by $T_{\alpha}^{(\nu)}=e^{\alpha D_{v}}$. Then y_{1} and y_{2} are the variables whose existonce is proved in Lemma 4.3 and $\varphi_{v}=y_{1} D_{v} y_{1}-\int y_{1} D_{v} y_{1} d P+y_{2} D y_{2}-\int y_{2} D y_{2} d P=$ $\lambda_{1}\left(y_{1}^{2}-1\right)+\lambda_{2}\left(y_{2}^{2}-1\right)$ which is independent of ν.

5. Gaussian examples

Example 1. Translation of a random entire function.
Let $\left(a_{n}\right)$ be a sequence of independent normalized (mean 0 and variance 1) Gaussian random variables and $\left(\zeta_{n}\right)$ a sequence of real numbers satisfying $\sum_{n=0}^{\infty}\left(\zeta_{n+1} / \zeta_{n}\right)^{2}<\infty$. For each $t,-\infty<t<\infty$ and $k=0,1, \ldots$ the series $x^{(k)}(t)=\sum_{n=0}^{\infty}\left(\zeta_{n+k} a_{n+k} / n!\right) t^{n}$ converges with probability 1 because the independent random variables

$$
y_{n}=\frac{\zeta_{n+k} a_{n+k}}{n!} t^{n} \text { satisfy } \sum_{n=0}^{\infty} \int y_{n}^{2} d P \log ^{2} n<\infty
$$

([1], Theorem 4.2, p. 157) and applying this result to an unbounded sequence t_{n} shows that the defining series for each $x^{(k)}$ has infinite radius of convergence with probability 1. It is also easy to see that $x^{(k)}(t)$ is the $L_{2}(P)$-limit of $\sum_{n=0}^{N}\left(\zeta_{n+k} a_{n+k} / n!\right) t^{n}$ for each k and t. We take L to be all finite linear combinations of the constant function and the random variables $x^{(k)}(t)$ for $-\infty<t<\infty$ and $k=0,1, \ldots$ and define T_{α} by:

$$
T_{\alpha} x^{(k)}(t)=x^{(k)}(t+\alpha)
$$

The set $x^{(k)}(0) / \zeta_{k}=a_{k}$ is orthonormal and dense in L so H is separable.

Now

$$
\begin{aligned}
& \int\left|\frac{T_{\alpha} x^{(k)}(t)-x^{(k)}(t)}{\alpha}-x^{(k+1)}(t)\right|^{2} d P \\
& \quad=\int\left|\sum_{n=0}^{\infty} \frac{\zeta_{n+k+1} a_{n+k+1}}{(n+1)!}\left[\frac{(t+\alpha)^{n+1}-t^{n+1}}{\alpha}-(n+1) t^{n}\right]\right|^{2} d P \\
& \quad=\sum_{n=0}^{\infty} \frac{\left(\zeta_{n+k+1}\right)^{2}}{((n+1)!)^{2}}\left|\frac{(t+\alpha)^{n+1}-t^{n+1}}{\alpha}-(n+1) t^{n}\right|^{2} \rightarrow 0
\end{aligned}
$$

so $D x^{(k)}(t)=x^{(k+1)}(t)$. The continuity of $D T_{\alpha} x^{(k)}(t)=x^{(k+1)}(t+\alpha)$ is guaranteed by the fact that it has L_{2} derivative $x^{(k+2)}(t+\alpha)$.

The assumption on the ζ_{n} 's implies the $L_{2}(P)$ convergence of

$$
\varphi=\sum_{k=0}^{\infty} \frac{x^{(k)}(0)}{\zeta_{k}} D\left(\frac{x^{(k)}(0)}{\zeta_{k}}\right)=\sum_{k=0}^{\infty} \frac{\zeta_{k+1}}{\zeta_{k}}\left(\frac{x^{(k)}(0)}{\zeta_{k}}\right)\left(\frac{x^{(k+1)}(0)}{\zeta_{k+1}}\right) .
$$

From its definition φ satisfies $\int \varphi y z d P=\int(y D z+z D y) d P$ for all y and z which are finite linear combinations of the $x^{(k)}(0)$. For arbitrary s and t

$$
\begin{aligned}
\int \varphi x^{(i)}(s) x^{(j)}(t) d P= & \lim _{n \rightarrow \infty} \int \varphi\left(\sum_{m=0}^{N} \frac{x^{(m+i)}(0)}{m!} s^{m}\right)\left(\sum_{n=0}^{N} \frac{x^{(n+j)}(0)}{n!} t^{n}\right) d P \\
= & \lim _{n \rightarrow \infty} \int\left[\left(\sum_{m=0}^{N} \frac{x^{(m+1)}(0)}{m!} s^{m}\right)\left(\sum_{n=0}^{N} \frac{x^{(n+j+1)}(0)}{n!} t^{n}\right)\right. \\
& \left.\quad+\left(\sum_{m=0}^{N} \frac{x^{(m+i+1)}(0)}{m!} s^{m}\right)\left(\sum_{n=0}^{N} \frac{x^{(n+j)}(0)}{n!} t^{n}\right)\right] d P \\
= & \int\left[x^{(i)}(s) x^{(j+1)}(t)+x^{(i+1)}(s) x^{(j)}(t)\right] d P
\end{aligned}
$$

so φ satisfies condition (iv) of section 4 and the theorems of that section are applicable here.

Theorem 5.1. Under the stated assumptions the measures P_{α} associated with the stochastic processes $x_{\alpha}(t)=x(t+\alpha)=\sum_{n=0}^{\infty}\left(\zeta_{n} a_{n} / n!\right)(t+\alpha)^{n}$ are mutually absolutely continuous. Some subsequence of $\frac{1}{2} \sum_{n=0}^{N}\left[\left(x^{(n)}(0) / \zeta_{n}\right)^{2}-\left(x^{(n)}(\alpha) / \zeta_{n}\right)^{2}\right]$ converges almost everywhere $(d P d \alpha)$ to $\log \left(d P_{\alpha} / d P\right)$.

Example 2, The Doppler shift.
Let $z(t)$ be a complex Gaussian process on an interval I with mean value f in $L_{2}(d t)$ and correlation function $R(s, t)$ in $L_{2}(d s \times d t)$. The integral operator R on $L_{2}(d t)$ associated with the kernel $R(s, t)$ is completely continuous, hence has a complete set $\left(\xi_{k}\right)$ of eigenvectors with corresponding eigenvalues $\left(\lambda_{k}\right)$. The λ_{k} are nonnegative and satisfy $\sum_{k=1}^{\infty} \lambda_{k}^{2}<\infty$. We further assume that all the λ_{k} are strictly positive and that the real-valued, Gaussian random variables x_{k} and y_{k} given by:

$$
x_{k}+i y_{k}=\sqrt{\frac{2}{\lambda_{k}}} \int_{I}(z(t)-f(t)) \bar{\xi}_{k}(t) d t
$$

are independent of each other and of all the other x_{l} and y_{l}. For a bounded function $a(t)$ on I and a real α the transformation $z(t) \rightarrow e^{\alpha a(t)} z(t)$ is called the Doppler shift of z by $\alpha[6]$.

We take L to be the set of all finite linear combinations of the constant function and the real-valued random variables u_{g} and v_{g} given by $u_{g}+i v_{g}=\int_{I} z(t) g(t) d t$ for g 's in $L_{2}(d t)$, and define T_{α} by the equation $T_{\alpha}\left(u_{g}+i v_{g}\right)=u_{e \alpha a_{g}}+i v_{e^{\alpha a_{g}}} . T_{\alpha}$ is well defined since

$$
g(t)=\sum_{k=1}^{\infty} \sqrt{\frac{2}{\lambda_{k}}}\left(\int u_{g} x_{k} d P-i \int u_{g} y_{k} d P\right) \xi_{k}=\sum_{k=1}^{\infty} \sqrt{\frac{2}{\lambda_{k}}}\left(\int v_{g} y_{k} d P+i \int v_{g} x_{k} d P\right) \xi_{k},
$$

and the T_{α} obviously form a group. We have

$$
\begin{aligned}
& \| \int_{I} z(t) \\
& \left.\quad=\int_{I} \left\lvert\, \frac{e^{\varepsilon a(t)}-1}{\varepsilon}-a(t)\right.\right)\left.g(t) d t R^{\frac{1}{2}}\left(\left(\frac{\varepsilon^{\varepsilon a}-1}{\varepsilon}-a\right) g\right)(t)\right|^{2} d t+\left[\int_{I} f(t)\left(\frac{e^{\varepsilon a(t)}-1}{\varepsilon}-a(t)\right) g(t) d t\right]^{2} \\
& \quad \leqslant C \int_{I}\left|\left(\frac{e^{\varepsilon a(t)}-1}{\varepsilon}-a(t)\right) g(t)\right|^{2} d t
\end{aligned}
$$

which goes to 0 by the dominated convergence theorem as ε goes to 0 so $D u_{g}=u_{a g}$ and $D v_{g}=v_{a g}$. It now follows from the fact that $D T_{\alpha} u_{g}=u_{a e^{\alpha a_{g}}}$ and $D T_{\alpha} v_{g}=v_{a e^{\alpha a_{g}}}$ have $L_{2}(P)$ derivatives that they are $L_{2}(P)$ continuous.

The set comprising 1 , the x_{k} 's, and the y_{k} 's is a complete orthonormal subset of L. Elementary but tedious calculations yield the following equations in which $\boldsymbol{R}(c)$ and $\mathcal{J}(c)$ stand for the real and imaginary parts of c.

$$
\begin{aligned}
& \int\left(x_{k} D x_{l}+x_{l} D x_{k}\right) d P=\int\left(y_{k} D y_{l}+y_{l} D y_{k}\right) d P \\
& =\boldsymbol{R}\left(\sqrt{\frac{\lambda_{k}}{\lambda_{l}}} \int_{I} a(t) \xi_{k}(t) \bar{\xi}_{l}(t) d t+\sqrt{\frac{\lambda_{l}}{\lambda_{k}}} \int_{I} a(t) \bar{\xi}_{k}(t) \xi_{l}(t) d t\right) \text { if } k \neq l, \\
& \int\left(x_{k} D y_{l}+y_{l} D x_{k}\right) d P=\mathcal{J}\left(\sqrt{\frac{\lambda_{k}}{\lambda_{l}}} \int_{I} a(t) \xi_{k}(t) \bar{\xi}_{l}(t) d t-\sqrt{\frac{\lambda_{l}}{\lambda_{k}}} \int_{I} a(t) \bar{\xi}_{k}(t) \xi_{l}(t) d t\right), \\
& \int x_{k} D x_{k} d P=\int y_{k} D y_{k} d P=2 \int_{I} R(a(t))\left|\xi_{k}(t)\right|^{2} d t \\
& \int D x_{k} d P=\sqrt{\frac{2}{\lambda_{k}}} R\left(\int_{I} f(t) a(t) \bar{\xi}_{k}(t) d t\right), \\
& \int D y_{k} d P=\sqrt{\frac{2}{\lambda_{k}}} \mathcal{J}\left(\int_{I} f(t) a(t) \xi_{k}(t) d t\right) .
\end{aligned}
$$

Theorem 5.2. If

and

$$
\begin{gathered}
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty}\left|\sqrt{\frac{\lambda_{k}}{\lambda_{l}}} \int_{I} a(t) \xi_{k}(t) \bar{\xi}_{l}(t) d t+\sqrt{\frac{\lambda_{l}}{\lambda_{k}}} \int_{I} a(t) \bar{\xi}_{k}(t) \xi_{l}(t) d t\right|^{2}<\infty \\
\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}\left|\int a(t) f(t) \bar{\xi}_{k}(t) d t\right|^{2}<\infty
\end{gathered}
$$

then the conclusions of Theorem 4.1 hold for this case. In particular, the measures P_{α} associated with the processes $e^{\alpha a(t)} z(t)$ are mutually absolutely continuous.

Proof. The hypotheses of the theorem and the computations immediately preceeding the theorem imply the existence of

$$
\begin{aligned}
\varphi=\sum_{j=1}^{\infty} & {\left[\left(\int D x_{j} d P\right) x_{j}+\left(\int D y_{j} d P\right) y_{j}\right] } \\
& +\sum_{1 \leqslant j<k}\left[\left(\int\left(x_{k} D x_{j}+x_{j} D x_{k}\right) d P\right) x_{j} x_{k}+\int\left(\left(y_{k} D y_{j}+y_{j} D y_{k}\right) d P\right) y_{j} y_{k}\right] \\
& +2 \sum_{j=1}^{\infty}\left[\left(\int x_{j} D x_{j} d P\right)\left(x_{j}^{2}-1\right)+\left(\int y_{j} D y_{j} d P\right)\left(y_{j}^{2}-1\right)\right] \\
& +\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(\int\left(x_{j} D y_{k}+y_{k} D x_{j}\right) d P\right) x_{j} y_{k}
\end{aligned}
$$

in $L_{2}(P)$. We can show, exactly as in Lemma 4.6, that

$$
\int \varphi w_{1} w_{2} d P=\int\left(w_{1} D w_{2}+w_{2} D w_{1}\right) d P
$$

if the w_{j} are finite linear combinations of the constant function and the x_{k} 's and y_{k} 's. If $\left(g_{n}\right)$ is any sequence in $L_{2}(d t)$ converging to g, then $\int_{I}(z-f)(t) g_{n}(t) d t$ is $L_{2}(P)$ convergent to $\int_{I}(z-f)(t) g(t) d t$. Hence for g and h in $L_{2}(d t)$ if we set $\alpha_{k}=\int_{I} g(t) \xi_{k}(t) d t$ and $\beta_{k}=\int_{I} h(t) \xi_{k}(t) d t$ we have

$$
\begin{aligned}
& \int \varphi u_{g} u_{h} d P=\lim _{N \rightarrow \infty} \int \varphi\left[R\left(\sum_{k=1}^{N} \sqrt{\frac{\lambda_{k}}{2}} \alpha_{k}\left(x_{k}+i y_{k}\right)+\int_{I} f(s) g(s) d s\right)\right] \\
& \times\left[R\left(\sum_{k=1}^{n} \sqrt{\frac{\overline{\lambda_{k}}}{2}} \beta_{k}\left(x_{k}+i y_{k}\right)+\int f(t) h(t) d t\right] d P\right. \\
& =\int R\left(\int_{I} z(s) g(s) d s\right) R\left(\int z(t) a(t) h(t) d t\right) d P \\
& +\int R\left(\int_{I} z(s) a(s) g(s) d s\right) R\left(\int_{I} z(t) h(t) d t\right) d P \\
& =\int\left(u_{g} D u_{h}+u_{h} D u_{p}\right) d P .
\end{aligned}
$$

The proofs that $\int \varphi u_{g} v_{h} d P=\int\left(u_{g} D v_{h}+v_{h} D u_{g}\right) d P$ and that $\int \varphi v_{g} v_{h} d P=\int\left(v_{g} D v_{h}+v_{h} D v_{q}\right) d P$ are similar. This shows that the hypotheses of Theorem 4.1 are satisfied and thus proves the theorem.

Theorem 5.3. If
and

$$
\begin{aligned}
& \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{\lambda_{j}}{\lambda_{k}}\left|\int_{I}\right| a(t)\left|\overline{\xi_{j}(t)} \xi_{k}(t) d t\right|^{2}<\infty \\
& \sum_{j=1}^{\infty} \frac{1}{\lambda_{j}}\left|\int_{I} a(t) f(t) \bar{\xi}_{k}(t) d t\right|^{2}<\infty
\end{aligned}
$$

then some subsequence of

$$
\sum_{k=1}^{N}\left\{\frac{1}{\lambda_{k}}\left|\int_{I}(z-f)(t) \bar{\xi}_{k}(t) d t\right|^{2}-\frac{1}{\lambda_{k}}\left|\int_{I}\left(e^{\alpha a(t)} z(t)-f(t)\right) \bar{\xi}_{k}(t) d t\right|^{2}-\alpha \int 2 \boldsymbol{R}(a)(t)\left|\xi_{k}(t)\right|^{2} d t\right\}
$$

converges almost everywhere $(d P d \alpha)$ to $\log d P_{\alpha} / d P$.
Proof. If we set $A_{k}=x_{k} D x_{k}+y_{k} D y_{k}-\int\left(x_{k} D x_{k}+y_{k} D y_{k}\right) d P$, then we get, after a lengthy calculation

$$
\begin{aligned}
\int A_{k} A_{j} d P= & \delta_{j k} \frac{2}{\lambda_{j}}\left|\int_{I} a(t) f(t) \bar{\xi}_{j}(t) d t\right|^{2}+\delta_{j k} \frac{2}{\lambda_{j}} \sum_{l=1}^{\infty} \lambda_{l}\left|\int_{I} a(t) \bar{\xi}_{j}(t) \xi_{l}(t) d t\right|^{2} \\
& +\left.\left.\delta_{j k} 8\left|\int_{I} a(t)\right| \xi_{j}(t)\right|^{2} d t\right|^{2}+8 \int R(a(t))|\xi(t)|^{2} d t \int R(a(s))\left|\xi_{k}(s)\right|^{2} d s \\
& +\int \bar{a}(\delta) \xi_{j}(s) \xi_{k}(s) d s \int \bar{a}(t) \bar{\xi}_{j}(t) \xi_{k}(t) d t+\int a(s) \xi_{j}(\delta) \xi_{k}(s) d s \int a(t) \xi_{j}(t) \xi_{k}(t) d t .
\end{aligned}
$$

The hypotheses of the theorem imply the convergence of $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|\int A_{j} A_{k} d P\right|$ so that $\left\|\sum_{j=l}^{m} A_{j}\right\|^{2}$ which is dominated by $\sum_{j=l}^{\infty} \sum_{k=l}^{\infty}\left|\int A_{j} A_{k} d P\right|$ goes to 0 as l goes to ∞. Thus $\sum_{k=1}^{N} A_{k}$ converges to φ and Theorem 4.2 applies.

Example 3. Rotation of a random periodic function.
We consider the process $x(t)$ for $-\pi \leqslant t<\pi$ given by

$$
x(t)=\sum_{n=1}^{\infty} \sigma_{n} x_{n} \sin n t+\tau_{n} y_{n} \cos n t
$$

where $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sets of independent normalized Gaussian random variables which are independent of each other and $\left(\sigma_{n}\right)$ and $\left(\tau_{n}\right)$ are sets of real numbers such that $\sum_{n=1}^{\infty}\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)<\infty$. We take L to be the set of all finite linear combinations of 1 and the x_{n} 's and y_{n} 's and set

$$
T_{\alpha} x_{n}=(\cos n \alpha) x_{n}-\frac{\tau_{n}}{\sigma_{n}}(\sin n \alpha) y_{n} \quad \text { and } \quad T_{\alpha} y_{n}=\frac{\sigma_{n}}{\tau_{n}}(\sin n \alpha) x_{n}+(\cos n \alpha) y_{n}
$$

Trivially, $D x_{n}=-n\left(\tau_{n} / \sigma_{n}\right) y_{n}$ and $D y_{n}=n\left(\sigma_{n} / \tau_{n}\right) x_{n}$ so that both $D T_{\alpha} x_{n}$ and $D T_{\alpha} y_{n}$ again have $L_{2}(P)$ derivatives and hence are $L_{2}(P)$ continuous.

$$
\text { Theorem 5.4. If } \quad \sum n^{2}\left(\frac{\tau_{n}}{\sigma_{n}}-\frac{\sigma_{n}}{\tau_{n}}\right)^{2}<\infty \text {, }
$$

then the measures P_{α} associated with the processes $x(t+\alpha)$ are mutually absolutely con. tinuous and some subsequence of

$$
\sum_{n=1}^{N} \frac{1}{2}\left(\sin ^{2} n \alpha\right)\left(1-\frac{\sigma_{n}^{2}}{\tau_{n}^{2}}\right) x_{n}^{2}+\frac{1}{2}\left(\sin ^{2} n \alpha\right)\left(1-\frac{\tau_{n}^{2}}{\sigma_{n}^{2}}\right) y_{n}^{2}-(\sin n \alpha \cos n \alpha)\left(\frac{\tau_{n}}{\sigma_{n}}-\frac{\sigma_{n}}{\tau_{n}}\right) x_{n} y_{n}
$$

converges to $\log d P_{\alpha} / d P$ almost everywhere ($d P d \alpha$).
Proof. The condition insures the $L_{2}(P)$ convergence of

$$
\varphi=\sum_{n=1}^{N}\left(x_{n} D x_{n}+y_{n} D y_{n}\right)=\sum_{n=1}^{N} n\left(\frac{\tau_{n}}{\sigma_{n}}-\frac{\sigma_{n}}{\tau_{n}}\right) x_{n} y_{n}
$$

and we can show as in the proof of Lemma 4.6 that $\int q z w d P=\int(z D w+w D z) d P$ for z and w which are finite linear combinations of 1 and the x_{n} 's and y_{n} 's, i.e., for z and w in L. The theorem now follows from Theorems 4.1 and 4.2 plus the fact that

$$
\begin{aligned}
& \frac{1}{2} x_{n}^{2}+\frac{1}{2} y_{n}^{2}-\frac{1}{2}\left(T_{-\alpha} x_{n}\right)^{2}-\frac{1}{2}\left(T_{-\alpha} y_{n}\right)^{2}=\frac{1}{2}\left(\sin ^{2} n \alpha\right)\left(1-\frac{\sigma_{n}^{2}}{\tau_{n}^{2}}\right) x_{n}^{2} \\
& \quad+\frac{1}{2}\left(\sin ^{2} n \alpha\right)\left(1-\frac{\tau_{n}^{2}}{\sigma_{n}^{2}}\right) y_{n}^{2}-(\sin n \alpha \cos n \alpha)\left(\frac{\tau_{n}}{\sigma_{n}}-\frac{\sigma_{n}}{\tau_{n}}\right) x_{n} y_{n}
\end{aligned}
$$

Example 4. Linear fractional transformations of random analytic functions.
Let $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ where $c_{n}=\sigma_{n} x_{n}+i \tau_{n} y_{n},\left(\sigma_{n}\right)$ and (τ_{n}) are bounded sequences of positive real numbers, and $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sets of independent normalized Gaussian random variables which are independent of each other. For any z with $|z|<1$ the series defining $f(z)$ is almost everywhere convergent since

$$
\sum_{n=0}^{\infty}|z|^{2 n} \int\left|c_{n}\right|^{2} d P \log ^{2} n \leqslant C \sum_{n=0}^{\infty}|z|^{2 n} \log ^{2} n<\infty
$$

[1, Theorem 4.2, p. 157] so f has radius of convergence at least 1 almost always.

If we set

$$
L_{\alpha}(z)=\frac{(\cosh \alpha) z+\sinh \alpha}{(\sinh \alpha) z+\cosh \alpha},
$$

then, for any fixed θ the linear fractional transformations $T_{\theta, \alpha}: T_{\theta, \alpha}(z)=e^{i \theta} L_{\alpha}\left(e^{-i \theta} z\right)$ form a one-parameter group each member of which takes the sets $[z||z|<1]$ and $[z||z|=1]$ into themselves. Furthermore, any linear fractional transformation preserving these sets is of this form. We shall find necessary conditions on the coefficients σ_{n} and τ_{n} for the mutual absolute continuity of the measures associated with the processes $f_{\theta, \alpha}$:

$$
f_{\theta, \alpha}(z)=f\left(T_{\theta, \alpha} z\right)
$$

We take for L all finite linear combinations of the constant function and random variables of the form $u_{k}(z)=\boldsymbol{R}\left(f^{(k)}(z)\right)$ and $v_{k}(z)=\boldsymbol{J}\left(f^{(k)}(z)\right)$ for $k=0,1, \ldots$ and $|z|<1$ (we have written \mathcal{R} and \mathfrak{J} for the real and imaginary parts of a number and $f^{(k)}$ for the k th derivative of f). T_{α} is defined, for fixed θ, by:

$$
T_{\alpha} u_{k}(z)=\overparen{R}\left(\left(\frac{d}{d z}\right)^{k} f\left(T_{\theta, \alpha} z\right)\right) \quad \text { and } \quad T_{\alpha} v_{k}(z)=\mathcal{J}\left(\left(\frac{d}{d z}\right)^{k} f\left(T_{\theta, \alpha} z\right)\right)
$$

$T_{\alpha} u_{k}(z)$ and $T_{\alpha} v_{k}(z)$ are linear combinations of

$$
u_{0}\left(T_{\theta, \alpha} z\right), \ldots, u_{k}\left(T_{\theta, \alpha} z\right), v_{0}\left(T_{\theta, \alpha} z\right), \ldots, v_{k}\left(T_{\theta, \alpha} z\right)
$$

with coefficients which are functions of z analytic for $|z| \leqslant 1$.
We wish to show that

$$
\begin{aligned}
& D\left(T_{\alpha} u_{k}(z)+i T_{\alpha} v_{k}(z)\right) \\
& =\left(e^{i \theta}-e^{-i \theta} z^{2}\right)\left(T_{\alpha} u_{k+1}(z)+i T_{\alpha} v_{k+1}(z)\right) \\
& \quad-2 k e^{-i \theta} z\left(T_{\alpha} u_{k}(z)+i T_{\alpha} v_{k}(z)\right)-k(k-1) e^{-i \theta}\left(T_{\alpha} u_{k-1}(z)+i T_{\alpha} v_{k-1}(z)\right)
\end{aligned}
$$

the last term being replaced by 0 if $k=0$. It will follow from this, as in the previous examples, that $D T_{\alpha} u_{k}(z)$ and $D T_{\alpha} v_{k}(z)$ are themselves in L, hence $L_{2}(P)$ differentiable in α, hence $L_{2}(P)$ continuous in α. We note first that

$$
\left.\left\|\frac{\|\left(T_{\theta, \alpha+\varepsilon} w\right)-f\left(T_{\theta, \alpha} w\right)}{\varepsilon}-f^{(1)}\left(T_{\theta, \alpha} w\right) \frac{\left(e^{i \theta}-e^{-i \theta} w^{2}\right)}{\left((\sinh \alpha) w e^{-i \theta}+\cosh \alpha\right)^{2}}\right\|^{2}\right)
$$

which goes to 0 uniformly for $|w| \leqslant 1$. Hence, taking Γ to be a circle of sufficiently small radius r about z,

$$
\begin{aligned}
& \left\|\frac{T_{\alpha+\varepsilon}\left(u_{k}(z)+i v_{k}(z)\right)-T_{\alpha}\left(u_{k}(z)+i v_{k}(z)\right)}{\varepsilon}-\left(\frac{d}{d z}\right)^{k}\left(\frac{f^{(1)}\left(T_{\theta, \alpha} z\right)\left(e^{i \theta}-e^{-i \theta} z^{2}\right)}{\left((\sinh \alpha) z e^{-i \theta}+\cosh \alpha\right)^{2}}\right)\right\| \\
& \quad=\left\|\frac{k!}{2 \pi i} \int_{\Gamma}\left(\frac{f\left(T_{\theta, \alpha+\varepsilon} w\right)-f\left(T_{\theta, \alpha} w\right)}{\varepsilon}-\frac{f^{(1)}\left(T_{\theta, \alpha} w\right)\left(e^{i \theta}-e^{-i \theta} w^{2}\right)}{\left((\sinh \alpha) w e^{-i \theta}+\cosh \alpha\right)^{2}}\right) \frac{1}{(w-z)^{k+1}} d w\right\| \\
& \quad \leqslant \frac{k!}{2 \pi} \frac{2 \pi r}{r^{k+1}} \sup _{w \in \Gamma}\left\|\frac{f\left(T_{\theta, \alpha+\varepsilon} w\right)-f\left(T_{\theta, \alpha} w\right)}{\varepsilon}-f^{(1)}\left(T_{\theta, \alpha} w\right) \frac{\left(e^{i \theta}-e^{-i \theta} w^{2}\right)}{\left((\sinh \alpha) w e^{-i \theta}+\cosh \alpha\right)^{2}}\right\|
\end{aligned}
$$

and this goes to 0 as ε goes to 0 so

$$
\begin{aligned}
D T_{\alpha}\left(u_{k}(z)+i v_{k}(z)\right) & =\left(\frac{d}{d z}\right)^{k}\left[\frac{f^{(1)}\left(T_{\theta, \alpha} z\right)\left(e^{i \theta}-e^{-i \theta} z^{2}\right)}{\left((\sinh \alpha) z e^{-i \theta}+\cosh \alpha\right)^{2}}\right] \\
& =\left(\frac{d}{d z}\right)^{k}\left[\left(\frac{d}{d z} f\left(T_{\theta, \alpha} z\right)\right)\left(e^{i \theta}-e^{-i \theta} z^{2}\right)\right]
\end{aligned}
$$

from which the desired formula follows.
3-642906 Acta mathematica 112. Imprimé le 11 septembre 1964.

The sets $\left(x_{k}\right)$ and $\left(y_{k}\right)$ form a complete orthonormal set and are contained in L since

$$
x_{k}=\frac{1}{\sigma_{k} k!} u_{k}(0) \text { and } y_{k}=\frac{1}{\tau_{k} k!} v_{k}(0) .
$$

We have

$$
\begin{aligned}
& \int D x_{k} d P= \int D y_{k} d P=0 \text { and } \\
& \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left\{\left(\int\left(x_{j} D x_{k}+x_{k} D x_{j}\right) d P\right)^{2}+\left(\int\left(x_{j} D y_{k}+y_{k} D x_{j}\right) d P\right)^{2}\right. \\
&\left.+\left(\int\left(y_{j} D x_{k}+x_{k} D y_{j}\right) d P\right)^{2}+\left(\int\left(y_{j} D y_{k}+y_{k} D y_{j}\right) d P\right)^{2}\right\} \\
&=\sum_{j=0}^{\infty}\{ \cos ^{2} \theta\left[(j+1) \frac{\sigma_{j+1}}{\sigma_{j}}-j \frac{\sigma_{j}}{\sigma_{j+1}}\right]^{2}+\sin ^{2} \theta\left[(j+1) \frac{\tau_{j+1}}{\sigma_{j}}-j \frac{\sigma_{j}}{\tau_{j+1}}\right]^{2} \\
&\left.+\sin ^{2} \theta\left[(j+1) \frac{\sigma_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\sigma_{j+1}}\right]^{2}+\cos ^{2} \theta\left[(j+1) \frac{\tau_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\tau_{j+1}}\right]^{2}\right\}
\end{aligned}
$$

Theorem 5.5. If the four series,

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\left[(j+1) \frac{\sigma_{j+1}}{\sigma_{j}}-j \frac{\sigma_{j}}{\sigma_{j+1}}\right]^{2}, \quad \sum_{j=1}^{\infty}\left[(j+1) \frac{\tau_{j+1}}{\sigma_{j}}-j \frac{\sigma_{j}}{\tau_{j+1}}\right]^{2}, \\
& \sum_{j=1}^{\infty}\left[(j+1) \frac{\sigma_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\sigma_{j+1}}\right]^{2}, \text { and } \sum_{j=1}^{\infty}\left[(j+1) \frac{\tau_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\tau_{j+1}}\right]^{2} .
\end{aligned}
$$

all converge, then the measures associated with the processes $f_{\theta, x}(z)$ are mutually absolutely continuous, i.e., $f(z)$ is equivalent to any process gotten from it by applying a linear fractional transformation taking $|z|<1$ into itself and $|z|=1$ into itself.

Proof. For each θ the function

$$
\begin{aligned}
& \varphi=\sum_{j=0}\left\{\cos \theta\left[(j+1) \frac{\sigma_{j+1}}{\sigma_{j}}-j \frac{\sigma_{j}}{\sigma_{j+1}}\right] x_{j} x_{j+1}+\sin \theta\left[-(j+1) \frac{\tau_{j+1}}{\sigma_{j}}+j \frac{\sigma_{j}}{\tau_{j+1}}\right] x_{j} y_{j+1}\right. \\
&\left.+\sin \theta\left[(j+1) \frac{\sigma_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\sigma_{j+1}}\right] y_{j} x_{j+1}+\cos \theta\left[(j+1) \frac{\tau_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\tau_{j+1}}\right] y_{j} y_{j+1}\right\}
\end{aligned}
$$

is in $L_{2}(P)$ by hypothesis and we can show as in the proof of Lemma 4.6 that $\int \varphi w_{1} w_{2} d P=\int\left(w_{1} D w_{2}+w_{2} D w_{1}\right) d P$ for all w_{i} which are finite linear combinations of the x_{k} 's and y_{j} 's. It follows from this by straightforward calculations that

$$
\begin{aligned}
& \int \varphi u_{0}(z) u_{0}(w) d P=\int D\left(u_{0}(z) u_{0}(w)\right) d P \\
& \int \varphi u_{0}(z) v_{0}(w) d P=\int D\left(u_{0}(z) v_{0}(w)\right) d P \text { and } \\
& \int \varphi v_{0}(z) v_{0}(w) d P=\int D\left(v_{0}(z) v_{0}(w)\right) d P
\end{aligned}
$$

Because of the $L_{2}(P)$ continuity of $f(z)$ and the fact that all the $f(z)$ are (complex) Gaussian, we have, for properly chosen contours Γ_{1} and Γ_{2}

$$
\begin{aligned}
\int \varphi u_{k}(z) u_{l}(w) d P= & \frac{k!l!}{(2 \pi i)^{2}} \int \varphi \int_{\Gamma_{1}} R\left(\frac{f\left(z^{\prime}\right) d z^{\prime}}{\left(z^{\prime}-z\right)^{k+1}}\right) \int_{\Gamma_{2}} R\left(\frac{f\left(w^{\prime}\right) d w^{\prime}}{\left(w^{\prime}-w\right)^{l+1}}\right) d P \\
= & \frac{k!l!}{(2 \pi i)^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{\mathbf{2}}} \int \varphi R\left(\frac{f\left(z^{\prime}\right) d z^{\prime}}{\left(z^{\prime}-z\right)^{k+1}}\right) R\left(\frac{f\left(w^{\prime}\right) d w^{\prime}}{\left(w^{\prime}-w\right)^{i+1}}\right) d P \\
= & \frac{k!l!}{(2 \pi i)^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{\mathbf{z}}}\left\{R\left(\frac{f\left(z^{\prime}\right) d z^{\prime}}{\left(z^{\prime}-z\right)^{k+1}}\right) R\left(\frac{\left(e^{i \theta}-e^{-i \theta}\left(w^{\prime}\right)^{2}\right) f^{(1)}\left(w^{\prime}\right) d w^{\prime}}{\left(w^{\prime}-w\right)^{l+1}\left((\sinh \alpha) w e^{-i \theta}+\cosh \alpha\right)^{2}}\right)\right. \\
& \left.+\Omega\left(\frac{\left(e^{i \theta}-e^{-i \theta}\left(z^{\prime}\right)^{2}\right) f^{(1)}\left(z^{\prime}\right) d z^{\prime}}{\left(z^{\prime}-z\right)^{k+1}\left((\sinh \alpha) z e^{-i \theta}+\cosh \alpha\right)^{2}}\right) R\left(\frac{f\left(w^{\prime}\right) d w^{\prime}}{\left(w^{\prime}-w\right)^{l+1}}\right)\right\} d P \\
= & \int\left\{u_{k}(z) D u_{l}(w)+\left(D u_{k}(z)\right) u_{l}(w)\right\} d P .
\end{aligned}
$$

Similar arguments show that $\int \varphi u_{k}(z) v_{l}(w) d P=\int\left(u_{k}(z) D v_{l}(w)+v_{l}(w) D u_{k}(z)\right) d P$ and $\int \varphi v_{k}(z) v_{l}(w) d P=\int\left(v_{k}(z) D v_{l}(w)+v_{l}(w) D v_{k}(z)\right) d P$ and this completes the proof of the theorem.

Theorem 4.2 is not applicable to this example since

$$
\begin{aligned}
\| \sum_{j=0}^{n-1} \cos \theta & {\left[(j+1) \frac{\sigma_{j+1}}{\sigma_{j}}-j \frac{\sigma_{j}}{\sigma_{j+1}}\right] x_{j} x_{j+1}+\sin \theta\left[-(j+1) \frac{\tau_{j+1}}{\sigma_{j}}+j \frac{\sigma_{j}}{\tau_{j}}\right] x_{j} y_{j+1} } \\
& +\sin \theta\left[(j+1) \frac{\sigma_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\sigma_{j+1}}\right] y_{j} x_{j+1}+\cos \theta\left[(j+1) \frac{\tau_{j+1}}{\tau_{j}}-j \frac{\tau_{j}}{\tau_{j+1}}\right] y_{j} y_{j+1} \\
& -\sum_{j=0}^{n}\left(x_{j} D x_{j}+y_{j} D y_{j}\right) \|^{2} \\
=\| & -\cos \theta(n+1) \frac{\sigma_{n+1}}{\sigma_{n}} x_{n} x_{n+1}+\sin \theta(n+1) \frac{\tau_{n+1}}{\sigma_{n}} x_{n} y_{n+1} \\
& -\sin \theta(n+1) \frac{\sigma_{n+1}}{\tau_{n}} y_{n} x_{n+1}+\cos \theta(n+1) \frac{\tau_{n+1}}{\tau_{n}} y_{n} y_{n+1} \|^{2} \\
= & \cos ^{2} \theta(n+1)^{2}\left[\left(\frac{\sigma_{n+1}}{\sigma_{n}}\right)^{2}+\left(\frac{\tau_{n+1}}{\tau_{n}}\right)^{2}\right]+\sin ^{2} \theta(n+1)^{2}\left[\left(\frac{\tau_{n+1}}{\sigma_{n}}\right)^{2}+\left(\frac{\sigma_{n+1}}{\tau_{n}}\right)^{2}\right]
\end{aligned}
$$

and in order to have this go to 0 and the series in the theorem converge, we would need both

$$
\lim _{n \rightarrow \infty}(n+1) \frac{\sigma_{n+1}}{\sigma_{n}}=0 \text { and } \lim _{n \rightarrow \infty}\left|(n+1) \frac{\sigma_{n+1}}{\sigma_{n}}-n \frac{\sigma_{n}}{\sigma_{n+1}}\right|=0
$$

which would imply

$$
\lim _{n \rightarrow \infty} n(n+1)=\lim _{n \rightarrow \infty}\left((n+1) \frac{\sigma_{n+1}}{\sigma_{n}}\right)\left(n \frac{\sigma_{n}}{\sigma_{n+1}}\right)=0 .
$$

If we set $\sigma_{k}=\tau_{k}=\varrho_{k} k^{-\frac{1}{2}}$, we get the process $f(z)=\sum_{k=0}^{\infty} \varrho_{k} k^{-\frac{1}{2}}\left(a_{k}+i b_{k}\right) z^{k}$ whose boundary behavior has been extensively studied (see [5] for example). The measure associated with this $f(z)$ is rotationally invariant and the conditions of Theorem 5.5 boil down to the convergence of $\sum_{k=1}^{\infty} k(k+1)\left(\varrho_{k+1} / \varrho_{k}-\varrho_{k} / \varrho_{k+1}\right)^{2}$ in this case. If $\varrho_{k}=k^{\varepsilon}$, the terms in this series converge to $4 \varepsilon^{2}$ so the series diverges unless $\varepsilon=0$, i.e., the only process of the form $f(z)=\sum_{k=0}^{\infty} k^{-\gamma}\left(x_{k}+i y_{k}\right) z^{k}$ to which Theorem 4.1 applies is the one with $\gamma=\frac{1}{2}$.

Example 5. A test for the independence of processes.
Let $z(t)$ be a vector process $\binom{x(t)}{y(t)}$ defined on an interval $I, x(t)$ and $y(t)$ being independent Gaussian processes with means $m_{x}(t)$ and $m_{y}(t)$ which are square integrable on I and correlation functions $R_{x}(s, t)$ and $R_{y}(s, t)$ which are square integrable on $I \times I$. Let $\left(\xi_{k}(t)\right)$ be the eigenfunctions of the integral operator R_{x} with kernel $R_{x}(s, t)$ and $\left(\lambda_{k}\right)$ be the associated eigenvalues. Let $\left(\eta_{k}(t)\right)$ and $\left(\mu_{k}\right)$ be the eigenfunctions and eigenvalues of R_{y}. We assume that all λ_{k} and μ_{k} are strictly positive in order to avoid some inessential complexities. We want to compare $z(t)$ with the 'mixed' process $z_{\alpha}(t)=\binom{x(t) \cos \alpha+y(t) \sin \alpha}{-x(t) \sin \alpha+y(t) \cos \alpha}$.

The set L is to comprise all finite linear combinations of 1 and functions of the form $x_{f}=\int_{I} x(t) f(t) d t$ and $y_{f}=\int_{I} y(t) f(t) d t$ for square integrable $f . T_{\alpha}$ is defined on L by: $T_{\alpha} x_{f}=x_{f} \cos \alpha+y_{f} \sin \alpha$ and $T_{\alpha} y_{f}=-x_{f} \sin \alpha+y_{f} \cos \alpha$. It is evident that $D T_{\alpha} x_{f}=$ $-x_{f} \sin \alpha+y_{f} \cos \alpha$ and $D T_{\alpha} y_{f}=-x_{f} \cos \alpha-y_{f} \sin \alpha$ and that these are $L_{2}(P)$ continuou in α. The random variables
and

$$
\begin{aligned}
& x_{k}=\frac{1}{\sqrt{\lambda_{k}}} \int_{I}\left(x-m_{x}\right)(t) \xi_{k}(t) d t \\
& y_{k}=\frac{1}{\sqrt{\mu_{k}}} \int_{I}\left(y-m_{y}\right)(t) \eta_{k}(t) d t
\end{aligned}
$$

for $k=1,2, \ldots$ form a complete orthonormal subset of L and the following formulas, in which we have written (f, g) for $\int_{I} f(t) g(t) d t$, are easily verified:
(1) $D x_{k}=\frac{1}{\sqrt{\lambda_{k}}}\left(y, \xi_{k}\right)$
(2) $D y_{k}=\frac{-1}{\sqrt{\mu_{k}}}\left(x, \eta_{k}\right)$
(3) $\int D x_{k} d P=\frac{1}{\sqrt{\lambda_{k}}}\left(m_{y}, \xi_{k}\right)$
(4) $\int D y_{k} d P=\frac{-1}{\sqrt{\mu_{k}}}\left(m_{x}, \eta_{k}\right)$
(5) $\int\left(x_{k} D x_{l}+x_{l} D x_{k}\right) d P=\int\left(y_{k} D y_{l}+y_{l} D y_{k}\right) d P=0$
(6) $\int\left(x_{k} D y_{l}+y_{l} D x_{k}\right) d P=\left(\sqrt{\frac{\mu_{l}}{\lambda_{k}}}-\sqrt{\frac{\lambda_{k}}{\mu_{l}}}\right)\left(\eta_{l}, \xi_{k}\right)$.

Theorem 5.6. If the series,

$$
\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}}\left(\mathrm{~m}_{y}, \xi_{j}\right)^{2}, \quad \sum_{j=1}^{\infty} \frac{1}{\mu_{j}}\left(m_{x}, \eta_{j}\right)^{2}, \quad \text { and } \quad \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(\sqrt{\frac{\mu_{j}}{\lambda_{k}}}-\sqrt{\frac{\lambda_{k}}{\mu_{j}}}\right)^{2}\left(\eta_{j}, \xi_{k}\right)^{2}
$$

all converge, then the measures associated with the vector processes z_{x} are mutually absolutely continuous and Theorem 4.1 holds for this example.

Proof. As in the previous examples the convergence of the three series implies the existence of a φ in $L_{2}(P)$ satisfying $\int \varphi w_{1} w_{2} d P=\int\left(w_{1} D w_{2}+w_{2} D w_{1}\right) d P$ for w_{i} which are finite linear combinations of 1 and the x_{k} 's and y_{k} 's. For any f and g in $L_{2}(d t)$,

$$
\begin{aligned}
\int \varphi x_{f} x_{g} d P= & \lim _{N \rightarrow \infty} \int \varphi\left(\sum_{n=1}^{N} \sqrt{\lambda_{n}}\left(f, \xi_{n}\right) x_{n}+\left(m_{x}, f\right)\right)\left(\sum_{m=1}^{N} \sqrt{\lambda_{n}}\left(g, \xi_{n}\right) x_{n}+\left(m_{x}, g\right)\right) d P \\
= & \lim _{N \rightarrow \infty}\left\{\int\left(\sum_{n=1}^{N} \sqrt{\lambda_{n}}\left(f, \xi_{n}\right) x_{n}+\left(m_{x}, f\right)\right)\left(\sum_{m=1}^{N}\left(g, \xi_{n}\right) y_{n}\right) d P\right. \\
& \left.+\int\left(\sum_{n=1}^{N}\left(f, \xi_{n}\right) y_{n}\right)\left(\sum_{m=1}^{N} \sqrt{\lambda_{n}}\left(g, \xi_{n}\right) x_{n}+\left(m_{x}, g\right)\right) d P\right\} \\
= & \int\left(x_{f} D x_{g}+x_{g} D x_{f}\right) d P .
\end{aligned}
$$

We can show by similar calculations that $\int \varphi x_{f} y_{g} d P=\int\left(x_{f} D y_{g}+y_{g} D x_{f}\right)$ and that $\int \varphi y_{f} y_{g} d P=\int\left(y_{f} D y_{g}+y_{g} D y_{f}\right) d P$. Hence Theorem 4.1 applies and the theorem is proved.

It is interesting to note that the convergence of the first series is equivalent to the mutual absolute continuity of the measures associated with the processes $x(t)$ $m_{x}(t)+\alpha m_{y}(t)$ and the convergence of the second series is equivalent to the mutual absolute continuity of the measures associated with the processes $y(t)-m_{y}(t)+\alpha m_{x}(t)[10]$.

Example 6. Adding independent Gaussian processes.
Consider the vector process $\binom{x(t)}{y(t)}$ where x and y are independent Gaussian processes on an interval I with mean 0 and correlation functions R_{x} and R_{y} which are square integrable on $I \times I$. We wish to compare this process with $\binom{x(t)+\alpha y(t)}{y(t)}$. We define L to be all random variables of the form

$$
c+x_{f}+y_{g}=c+\int_{I} x(t) f(t) d t+\int_{I} y(s) g(s) d s
$$

for square integrable functions f and g and real numbers $c . T_{\alpha}$ is defined by: $T_{\alpha}\left(c+x_{f}+y_{g}\right)=c+x_{f}+\alpha y_{f}+y_{g}$, giving $D x_{f}=y_{f}$ and $D y_{g}=0$. If the integral operator R_{x} has eigenfunctions $\left(\xi_{k}\right)$ and eigenvalues $\left(\lambda_{k}\right)$ and the operator R_{y} has eigenfunctions (η_{k}) and eigenvalues (μ_{k}), then the random variables

$$
1, \quad x_{k}=\frac{1}{\sqrt{\lambda_{k}}} x_{\xi_{k}}, k=1, \ldots \quad \text { and } \quad y_{k}=\frac{1}{\sqrt{\mu_{k}}} y_{\eta_{k}}, k=1, \ldots
$$

form a complete orthonormal set.
Theorem 5.7. If

$$
\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{\mu_{j}}{\lambda_{k}}\left[\int_{I} \eta_{j}(t) \xi_{k}(t) d t\right]^{2}<\infty
$$

then the measures P_{α} associated with the vector stochastic processes $\binom{x(t)+\alpha y(t)}{y(t)}$ are mutually absolutely continuous and some subsequence of

$$
\sum_{k=1}^{n}\left(\frac{\alpha x_{k}}{\sqrt{\lambda_{k}}} y_{\xi_{k}}-\frac{1}{2} \frac{\alpha^{2}}{\lambda_{k}} y_{\xi_{k}}^{2}\right)
$$

converges almost everywhere $(d P d \alpha)$ to $\log d P_{\alpha} / d P$.

Proof. The convergence of the double series guarantees the convergence of $\varphi=\lim \sum_{k=1}^{n} x_{k} D x_{k}$ since

$$
\begin{aligned}
\int\left|\sum_{k=n+1}^{m} x_{k} D x_{k}\right|^{2} d P & =\sum_{k=n+1}^{m} \int\left(\frac{1}{\sqrt{\lambda_{k}}} x_{k} y_{\xi_{k}}\right)^{2} d P \\
& =\sum_{k=n+1}^{m} \frac{1}{\lambda_{k}} \int_{I} \int_{I} R_{y}(s, t) \xi_{k}(s) \xi_{k}(t) d s d t \\
& =\sum_{j=1}^{\infty} \sum_{k=n+1}^{m} \frac{\mu_{j}}{\lambda_{k}}\left(\eta_{j}, \xi_{k}\right)^{2},
\end{aligned}
$$

where we have written $\left(\eta_{j}, \xi_{k}\right)$ for $\int_{I} \eta_{j}(t) \xi_{k}(t) d t$. We can show as in Lemma 4.6 that $\int \varphi x_{f} x_{g} d P=\int\left(y_{f} x_{g}+x_{f} y_{g}\right) d P$ whenever f and g are finite linear combinations of the ξ_{k} 's. $x_{f_{n}}$ converges to x_{f} and $y_{f_{n}}$ to y_{f} in $L_{2}(P)$ whenever f_{n} converges to f in $L_{2}(d t)$ and it follows easily that assumption (iv) is satisfied in this case.

The theorem now follows from Theorems 4.1 and 4.2 since

$$
\frac{1}{2} \sum_{k=1}^{n}\left(x_{k}^{2}-\left(T_{-\alpha} x_{k}\right)^{2}+y_{k}^{2}-\left(T_{-\alpha} y_{k}\right)^{2}\right)=\sum_{k=1}^{n}\left(\frac{\alpha x_{k}}{\sqrt{\lambda_{k}}} y_{\xi_{k}}-\frac{1}{2} \frac{\alpha^{2}}{\lambda_{k}} y_{\xi_{k}}^{2}\right)
$$

Now

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{\mu_{j}}{\lambda_{k}}\left(\xi_{k}, \eta_{j}\right)^{2}=\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}\left(R_{y} \xi_{k}, \xi_{k}\right)=\int \sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}\left(y_{\xi_{k}}\right)^{2} d P
$$

so the convergence of the double series implies that the y sample functions are in the range of $R_{x}^{\frac{1}{x}}$ with probability 1 , i.e., that the measures Q_{y} associated with the processes $x(t)+y(t)$ are absolutely continuous with respect to P almost always. The expression for the likelihood ratio is exactly $d P_{\alpha} / d P(x, y)=d Q_{y} / d P(x)$ as one would expect. Conversely, as was shown in [11], the condition that the y sample functions be in the range of $R_{x}^{\frac{1}{x}}$ with probability 1 is necessary for the mutual absolute continuity of the P_{α}.

References

[1]. Dоов, J. L., Stochastic Processes. New York, John Wiley and Sons, 1953.
[2]. Dunford, N. \& Scewartz, J. T., Linear Operators. New York, Interscience Publishers, Inc., 1958.
[3]. Feldman, J., Equivalence and perpendicularity of Gaussian processes. Pacific J. Math., 8 (1958), 699-708.
[4]. Hille, E. \& Phillips, R. S., Functional Analysis and Semigroups. Providence, R. I., American Mathematical Society, 1957.
[5]. Hunt, G. A., Random Fourier transforms. Trans. Amer. Math. Soc. 71 (1951), 38-69.
[6]. Kelly, E., Reed, I. S., \& Root, W. L., The detection of radar echoes in noise. J. Soc. Indust. Appl. Math., 8 (1960), 309-341.
[7]. Loomis, L., An Introduction to Abstract Harmonic Analysis. New York, Van Nostrand, 1953.
[8]. Pitcher, T. S., Likelihood ratios for stochastic processes related by groups of transformations. Illinois J. Math., 7 (1963), 396-414.
[9]. - Likelihood ratios for stochastic processes related by groups of transformations, II. Illinois J. Math. To appear.
[10]. - Likelihood ratios of Gaussian processes. Ark Mat., 4 (1959), 35-44.
[11]. -- On the sample functions of processes which can be added to a Gaussian process. Ann. Math. Statist., 34 (1963), 329-333.

[^0]: ${ }^{(1)}$ Operated with support from the U.S. Army, Navy, and Air Force.
 1-642906 Acta mathematica 112. Imprimé le 11 septembre 1964.

