
INEQUALITIES RELATED TO CERTAIN COUPLES OF 
LOCAL RINGS 

BY 

C H R I S T E R  LECH 

Uppsala 

L e t  Q be a (Noether ian)  local r ing wi th  m a x i m a l  idea l  m, and  le t  p be a p r ime  

ideal  in Q such t h a t  d im p + r ank  p = d im Q. Serre showed,  using homologica l  means ,  

t h a t  if Q is regular ,  t hen  the  local  r ing  Q, is also regula r  ([8], Theorem 5, p. 186). 

U n d e r  a special  a s sumpt ion  N a g a t a  ob t a ined  w h a t  migh t  be considered a qua n t i t a t i ve  

extens ion  of th is  resul t .  He  p roved  t h a t  if p is ana ly t i ca l l y  unramif ied ,  t hen  the  mul-  

t ip l i c i ty  of p is no t  larger  t h a n  t h a t  of 1It ([5], Theorem 10, p. 221). I n  the  p resen t  

p a p e r  i t  will be shown t h a t  unde r  a s l ight ly  di f ferent  special  a s sumpt ion  much  more  

can be said.  I n  fact ,  under  t h a t  a s sumpt ion  there  holds an  i nequa l i t y  be tween  cer ta in  

sum- t rans forms  of the  t t i l b e r t  funct ions  of p and  of 11t. One seems free to  bel ieve 

t h a t  a s imilar  inequa l i ty  would  hold t rue  also in the  genera l  case. To prove  this  i t  

would  suffice to p rove  an  analogous s t a t e m e n t  concerning f la t  couples of local rings.  

We shall  ac tua l ly  der ive  a theorem which impl ies  a pa r t i cu l a r  ins tance  of t h a t  s ta te -  

ment .  As a consequence we ob t a in  a genera l iza t ion  and  a new proof  of Serre 's  resul t .  

I n t roduc ing  a na tu r a l  measure  of how much  a local r ing  dev ia tes  f rom being regular ,  

we prove  t h a t  Q~ is no t  more  i r regular  t h a n  Q. Our  me thods  of proof  are  non-homo-  

logical in the  sense t h a t  t h e y  do no t  involve  a n y  homological  resolut ions.  

W e  shall  now descr ibe  our  resul ts  more closely.(1) 

L e t  Q be a local r ing wi th  m a x i m a l  idea l  11t. F o r  each non-nega t ive  in teger  n, 

define H(m;  n) as the  length  of the  Q-module lrtn/irt n+l. P u t  

(1) The necessary facts about local rings can be found in Nagata's book [6], where however the 
terminology is different in some respects. In particular the concepts which we have called rank and 
dimension of an ideal and dimension of a ring, are termed height and depth of an ideal and altitude 
of a ring. Concerning flatness, which is dealt with in the Sections 18 and 19 of the book, of. e.g. the 
appendix of [4]. 
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H (~ (m; n) = H(m; n), n = 0, l, 2 . . . . .  

Htk+i)(m; n) = ~ H(k)(m; v) n, k = 0, 1, 2 . . . . .  
v=O 

As functions of n the H(k)(m;n) ( k = 0 ,  1,2 . . . .  ) were referred to above as sum-trans- 

forms of H(111; n), which itself is called the Hilbert  function of 111. All these functions 

record some information about  Q and are equivalent in this respect. In  particular 

their behavior for large values of n determines the dimension and multiplicity of Q, 

and their values for n = 1 give the minimum number  of generators of m. In  fact, for 

large values of n each H(k)(m; n) is a polynomial in n, and if we denote the degree 

and leading coefficient of this polynomial by d(k) and a(k) resp., then, for k>~ 1, Q 

has the dimension d(k)+ 1 -  k and the multiplicity d(k)!a(k). The minimum number  

of generators of m is equal to H(k ) (m;1 ) -k .  We shall call the difference between 

the minimum number  of generators of m and the dimension of Q the regularity de/ect 

of Q, or, of Ill. Like the multiplicity, the regularity defect of Q can be calculated 

from H(k)(m; n) without any reference to the index k. I t  is a non-negative integer, 

which is equal to zero if and only if Q is regular, and gives a measure of how much 

this ring deviates from being regular. 

I f  p is a prime ideal of a Noetherian ring R, then by  the local ring associated 

with p we shall understand the ring of quotients R 0 of R with respect to p. We 

extend our notation by  putt ing H(O; n) = H(OR0; n), H (~) (p; n) = H (k)(pR0; n). Similarly 

we define the regularity defect of p by putt ing it equal to tha t  of OR,, i.e. to 

H(p; 1) - rank p. 

An integral domain S with field of quotients K will be said to have a /inite 

integral closure if the integral closure of S in K is a finitely generated S-module. 

Now we can state our first theorem. 

THEOREM 1. Let m and p be two prime ideals o / a  Noetherian ring, m containing p. 

Assume that rank lll/p = 1 and that the local ring associated with m / p  has a ]inite inte- 

gral closure. Then there exists a non-negative integer k such that 

H (k+l) (p; n) ~< H (k)(m; n) n = 0, 1, 2 . . . . .  

The proof can shortly be described as follows. We show by  direct calculations 

tha t  the result holds true with k = 1 if the local ring associated with m / p  is regular. 

Then we reduce the proof of the theorem to this special case by utilizing the pro- 

perties of suitably chosen prime ideals in a free polynomial extension of the origi- 

nal ring. 
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The significance of the theorem is most readily seen if one makes the additional 

hypothesis tha t  rank p = rank m -  1. This condition is necessary and sufficient in order 

tha t  H~k+l~(p;n) and H~k~(lll;n) shall have the same degree as polynomials in n for n 

large, and if it is fulfilled, one can conclude from the theorem, by  taking n ~ 1 and 

n-->oo, tha t  the regularity defect and multiplicity of p do not exceed the corre- 

sponding numbers for m. (The multiplicity par t  of this conclusion is contained in the 

above-mentioned result of Nagata,  cf. below.) 

The assumption tha t  rank tlt//~ = 1, does not indicate an absolute limit for the 

applicability of the theorem. I t  has rather  the effect of restricting the at tention to 

a crucial case. For suppose tha t  11t and p are prime ideals in a Noetherian ring such 

tha t  I!qD p and rank 111//p = r >  1. Then there is a chain of prime ideals, 

in which rank  pi-1/pt = 1 (i = 1, 2 . . . . .  r). I f  now the theorem is applicable to each 

link of this chain, i.e. if, for i =  1,2, . . . , r ,  the local ring associated with p~_l//p~ has 

a finite integral closure, then, putt ing together the results for each link, we infer tha t  

there exists a non-negative integer /c such tha t  

H~+r~(~; n) ~< H~(m;  n) n = 0, 1, 2 . . . . .  

If, in addition, rank 11t = rank m//p + rank p, then H ~+~(p; n) and H ~k~ (11l; n) have the 

same degree as polynomials in n for n large and it  follows in particular from the 

inequality tha t  the regularity defect and multiplicity of p do not exceed the corre- 

sponding numbers for 1ii. Thus we can state results for rank 11t//~ > 1 tha t  are quite 

analogous to those for rank m / p  = 1. Let  us note tha t  when rank llt/p equals one, our 

asstimptions, including the additional hypothesis tha t  rank p = rank Iit - 1, are equivalent 

to those of Nagata  in his result on the multiplicities of m and p. For, by  a theorem 

o f  Krull, a one-dimensional local integral domain has a finite integral closure if and 

only if it is analytically unramified (see [1]). 

In  view of what  has been said. the generality of the theorem is restricted pri- 

marily by  the assumption tha t  the local ring associated with u l /p  has a finite inte- 

gral closure. One may  ask if not to a large extent  the theorem would be valid also 

without this assumption. Trying to show this, we are lead to the following considera- 

tions. Let  m and p be pr ime ideals in a Noetherian ring R such tha t  11t~p and 

rank m / p  = 1. Denote by  R* the completion of the local ring associated with m, by 

11t* the maximal  ideal of R*, and by  p* a minimal prime ideal of pR*. Consider the 

diagram of prime ideals, 
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m I11" 

I 
By the theorem of Krull just mentioned, we can apply Theorem 1 to m* and p*. 

We should like to transfer the result to m and p. Since the Hflbert  functions of m 

and m* are identical, i t  would suffice to prove a suitable inequality interrelating the 

Hilbert  functions of p and p*. Now R~% is R~-flat, as is easily derived from the well- 

known fact tha t  R* is Rm-flat (see [6], (18.10)). Hence we see tha t  it would suffice 

to prove, and apply to the couple (R~, Rp%), the following s ta tement  (cf. [4], the in- 

troduction): 

Let  (Q0, Q) be a couple of local rings with maximal  ideals (m0, m). Suppose tha t  

Q contains Qo and is a flat  Qo-module and tha t  m0Q is an m-pr imary ideal. Then 

there exists a non-negative integer k such tha t  

H (~) (too; n) < H (k) (m; n) n = 0, 1, 2 . . . . .  

Thus we arrive a t  the problem to decide whether this statement is true, or, 

rather, to what extent it ks true; by proving a par t  or a weakened form of it, we 

will in general get a corresponding result concerning our original question. From one 

point of view this new problem seems advantageous. Without  loss of generality we 

can assume tha t  Q0 and Q are complete, since, if they are not  so from the beginning, 

we can pass to their completions. Thus for instance the structure theorems of Cohen 

are available. 

The supposition of the s ta tement  entails tha t  Q0 and Q have the same dimen- 

sion (see e.g. [41, p. 85). The s ta tement  therefore says in particular tha t  the regularity 

defect and multiplicity of m 0 do not exceed the corresponding numbers for m. We 

can par t ly  confirm these assertions. In  a previous paper  we have shown tha t  if the 

dimension of Q0 and Q is not  larger than  two, then the multiplicity of m 0 does not 

exceed tha t  o f ' m  ([4]). Here we shall show, this being one of our main objects, tha t  

the regularity defect of m 0 in no case exceeds tha t  of m. Actually we shall prove 

the following theorem which has this result as an immediate consequence. 

T ~ . O R E M  2. Let Q be a local ring, m its maximal ideal, and q an m-primary 

~deal. Assume that the ring Q/q is equicharacteristic and that q/q~ is a lree Q/q-module. 

Then the minimum number o I generators o/ q is not larger than the minimum number 

o/ generators o t m .  
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We get the result on the regularity defects of 1110 and 111 by  applying the theo- 

rem to the local ring Q and the m-primary ideal mmoQ. This application is possible: 

the ring Q/mmoQ is equicharaeteristie since it  contains a subring isomorphic to the 

field Qo/mm0, and mmoQ/mm~Q is a free Q/mmoQ.module since mlo/111o ~ is a free Q0/mmo- 

module and Q is Q0-flat (see below p. 78). I t  is also true tha t  11t o and mm0Q have 

the same minimum number  of generators. Thus, by the theorem, H(mmo; 1)<H(mm; 1), 

hence also H(m0; 1) - rank m o ~< H(m; 1) - rank 111. 

Returning to our original question, we obtain the result tha t  follows. 

THEOREM 3. Let Ilt and p be two prime ideals o I a Noetherian ring, 11t con- 

taining ~. Then 

H(O; 1) + rank 111/0 ~< H(111; 1). 

In  particular, i/ rank 111= rank 111/0 + rank p, then the regularity delect o/ p is not larger 

than that o I 111. 

This theorem contains the announced generalization of Serre's result. I t  also shows 

the correctness of a conjecture by  Gudrindon ([3], p. 4144) stating that  the supremum 

of H(O; 1) taken over all prime ideals p of a fixed local ring, is finite. 

The proof of Theorem 2 is divided into two cases. When Q/q is a ring of charac- 

teristic p > 0, we give a direct proof by taking advantage of the simple formula for 

the p th  power of a sum in such a ring. When Q/q has characteristic 0, we reduce 

the proof to the first case by  introducing a coefficient field of Q/q~ and specializing 

tha t  field. Thus in the second case we use the structure theorems of Cohen. By the 

aid of these theorems it is also possible to derive the following complementary result. 

ADDE~TDUM TO THEOREM 2. I 1 the minimum number o/ generators o/ q is not 

more than.one unit less than the minimum number o/ generators o I 111, then there exists 

a non-negative integer r such that Q/q has the lorm 

K[[x 1 . . . . .  xr]] /(q . . . . .  cr), 

where K is a field and K[[x 1 . . . . .  xr]] a ring o I ]ormal power series in r indeterminates 

over g .  

The proofs of Theorem 1, Theorem 2, and the Addendum to Theorem 2 follow 

below, each in a separate section. We conclude the paper  by  some remarks which 

especially concern the s tatement  about  Q0 and Q on the preceding page. 
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Proof of Theorem 1 

We begin by proving two lemmata,  of which the first represents a special case 

of the theorem and the second states a fundamental  fact concerning Hilbert  func- 

tions of prime ideals in free polynomial extensions. 

LEMMi  1. In  a local ring Q with maximal ideal m, let p be a prime ideal strictly 

contained in m such that m = (/)+ p /or some element / el Q. Then 

H(2)(O; n) ~< H (1)(m; n) n = 0, 1, 2 . . . . .  

Remark. Obviously one can express par t  of the assumption by  saying tha t  Q/O 

is regular. 

Proo/. H(1)(m;n) is equal to the length of the ideal (/, p)n+l. (1) We shall estimate 

this length from below. Since for k = 0, 1, 2 . . . .  the power p~ is contained in the sym- 

bolic power p(k), i.e. pkQo N Q, we can, as a first simplification, exchange the ideal 

(1, ~))n+i = i_l_k~n+l/ipk 

for Z /,p(k). 
t+k~n+l 

Consider the operation of adding to this ideal successively ]tO(k), 0 <~ i + k <~n, in order 

according to decreasing lexicographic height of (i § k, k). By this operation the length 

of the ideal is successively reduced to zero. Denote by  D(i, k) the decrease in length 

tha t  corresponds to the addition of fp(~). The total  length of the ideal is then equal 

to the sum of the D(i,k),  O<~i+k<~n, and it  suffices to estimate each of these 

numbers. Using an isomorphism of the form a + fi/fi ~ a/a N b, we see tha t  D(i, k) is 

equal to the length of the Q-module 

f p ( k ) / f p ( ~ ) f l (  ~. / , p ( ~ ) +  .~ /'P(~)I. \t+~>t+k ~-u~l+lC, g>k ] 

The denominator of this factor module is contained in 

/i0(k) n ((l  t+1) § p(k+l)), 

(1) The length of a p-primary ideal q in a Noetherian ring R is defined as the length of the 
R~-modnle R~/qRp. We shah use this notion only when p is a maximal ideal, in which case it can be 
equivalently defined as the length of the R-module R/q. 
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which, in view of the fact  t h a t  p ( k ) : / = p ( ~ ) ( k = 0 ,  1, 2 . . . .  ), can be wr i t t en  on the form 

l ' (p  (~) n ((1) + p(k+l))), 

or, still simpler, /t(/p(k) + p(k+i)). 

Thus  D(i, k) is a t  least  as large as the  length of the  Q-module 

Since (0) :/~___ p(k+l) :/~ = p(~+l), this  module  is isomorphic to 

p(~)/(/0 (~) + O(~+:)), 

or, since n t =  (/, p) and  pp(~)___ O(k+l), to 

The length of a Q-module which can be wr i t ten  on this form is equal  to the n u m b e r  

of e lements  in a minimal  sys tem of generators  of the  Q-module p(k)/p(k+l). Such a 

sys tem represents  in a na tura l  way  a sys tem of generators  of the Q~-module OkQ~//O~+IQo. 

The  n u m b e r  of e lements  is therefore not  less t han  H(p;  k). Thus  we have  shown t h a t  

D(i, k) >~ H(O; k). I t  follows t h a t  

H (1) (TE; n) ~ ~ D(i, k) >~ ~. H(p; k) = ~, H (1)(p; n -  i) = H(~)(O; n), 
O~t+k~<n O~t+k<~n t-0 

and the  proof is complete.  

LEMMA 2. Let Q be a Noetherian ring, Q[z] a polynomial ring over Q in one 

variabel z, and Ilt and ~J~ prime ideals in Q and Q[z] resp. such that ~J~ f3 Q = 11t. Then 

I H(lu; n) /or ~1~ = mQ[z] 
H ( ~ ;  n) = H (*) i--- n = 0, 1, 2 . . . . .  

[ tilt;n) /or ~ 4 m Q [ z ]  

Proo/. Withou t  loss of general i ty  we can assume t h a t  Q is a local ring with  the  

max ima l  ideal 11t, for if necessary we can replace  Q, m, and  ~J~ b y  Qm, vlIQm, and  

~Qm [z]. 
When  ~ = m Q [ z ] ,  i t  suffices to observe t h a t  Q[z] is a free and  hence a f la t  

Q-module and  t h a t  therefore Q[z]~ is Q-flat (see [6], (19.1)). 

Assume then  t h a t  ~J~ ~ luQ[z]. B y  factor ing the ring homomorph i sm Q[z]--->Q[z]/~J~ 

on the form Q[z]-->(Q/m)[z]-->Q[z]/~J~ we see t h a t  ~ is genera ted  b y  11t and  a poly- 
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nomial /E  Q[z] of positive degree and with the leading coefficient 1. We further see 

tha t  ~)~ is a maximal ideal and tha t  consequently 

H0)~; n) = lengthQ m (~j~./~[~+ 1). 

Form the ideal (m,/)  of the ring Q[/]. As a Q-module (m,/)n is a direct sum 

~ mn-vF, 

where 11t n-~ shall be understood as Q for u>~ n. By comparing this expression with 

the corresponding one for (m,/)  n+l we find that ,  as a Q-module, (m, /)n/(m, /) n+l is 

isomorphic to the direct sum of H(1)(m; n) copies of Q/m. In  view of this and of the 

fact tha t  Q[z] is a free and hence a flat  Q[/]-module (the number  of basis elements 

is equal to the degree of the polynomial /), we get by the fundamental  laws for 

flatness and for tensor products the Q[z]-isomorphisms 

~ . / ~ . + 1  ~ ((m, / ) ' / (m ,  /).+i) | ] ~ ((m, / ) ' / (m ,  /).+1) | (Q[z]/(/)) 

the direct sum of H(1)(m; n) copies of (Q/m)| (Q[z]/(/)) 

the direct sum of H (1)(11t; n) copies of Q[z]/~)J~. 

Thus lengthQEz] (~. /~j~.  +1)= Ho)(11t; n), 

which gives the result. 

To prove Theorem 1 we can assume without loss of generality tha t  the prime 

ideal 111 of the theorem is the maximal ideal of a local ring Q. The supposition then 

means tha t  p is a one-dimensional prime ideal in Q such tha t  Q/p has a finite inte- 

gral closure, say (Q/p) [c 1 . . . . .  cj], and we have to show tha t  there exists a non-negative 

integer /c such tha t  

H (k+l)(p; n) ~< H (k)(nl; n) n = 0, 1, 2 . . . . .  

Let  Z 1 . . . . .  Z] be a system of ~" independent indeterminates over Q and consider 

the naturally formed, composed homomorphism 

Q[z,  . . . . .  z~]--> ( Q / p )  [~, . . . . .  zs] ~ ( Q / p )  [c, . . . . .  cj], 

where for i = 1, 2 . . . . .  ~" the indeterminate zi is carried into the element ci. Let  ~ and ~J~ 

be the inverse images in Q[z 1 . . . .  , zj] of the zero ideal and an arbi t rary maximal ideal 

resp. in (Q/p)[c 1 . . . . .  cj]. 
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I t  is clear t ha t  ~ and ~)~ are prime ideals and tha t  ~ N Q = p. Moreover, it is 

no t  difficult to  show tha t  ~ n Q = l n  and tha t  r a n k ~ / ~ =  1 (see [6], Section 10). 

Since (Q/p)[c  I . . . . .  cj] is integrally closed, the local ring associated with ~ / ~  is also 

integrally closed. Hence its maximal  ideal can be generated by  a single element (see [6], 

Section 12). Thus we can apply  Lemma 1 to the local r ing associated with ~ and 

the prime ideal in this ring generated by  ~ .  This gives 

H(2)(~; n) ~ H(1)(~; n) n = 0 ,  1, 2 . . . . .  

We can calculate H ( ~ ;  n) by  applying Lemma 2 to the ~ extensions which are 

obtained by  successive adjunct ion of the indeterminates z 1 . . . . .  zj to  Q. The definition 

of (Q/p)[c  1 . . . . .  cj] implies tha t  for i = 1, 2 . . . . .  ] there are elements a~, b~ in Q/O with 

a i ~ 0  such tha t  a~ci-b~=O. This means t h a t  there are elements x~, y~ in Q with 

x~ ~ such tha t  x~z~-y~ E~ .  I t  follows tha t  ~ A Q[z~ . . . . .  z~] for no value of i is gen- 

erated by  ~ fl Q[z 1 . . . . .  Z~-l]. Hence we obtain  

H(~;n)=H(J)(p;n) n = 0 , 1 , 2  . . . . .  

B y  a similar bu t  less detailed discussion one finds tha t  among the numbers  

0, 1 . . . . .  ] there is a number  i such tha t  

H(~J~; n) = H (~) (m; n) n = 0, 1, 2 . . . . .  

so t ha t  certainly H(~J~; n) ~< H r n) n = 0, 1, 2 . . . . .  

(Actually one can show tha t  equal i ty  holds.) 

Insert ion of the expressions for H ( ~ ;  n) and H(~rJ~; n) t ha t  have now been ob- 

tained, in the inequali ty previously derived gives 

H(/+2)(O; n) < H(i+l)(m; n) n = 0, 1, 2 . . . . .  

which completes the proof of Theorem 1. 

Proof of Theorem 2 

Let  us first introduce a new notion and settle a question of notat ion.  

Le t  R be a commuta t ive  ring with un i ty  element and let /1 . . . . .  /8 be elements 

of R. The elements /1 , . . - , /s  are called independent in R, or if no confusion is to be 

feared, independent, if for every system a 1 . . . . .  as of s elements in R it  is t rue t h a t  

al/1 + . . .  + as/, = 0 implies a 1 . . . . .  a, e (/1 . . . . .  /,). 
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This condit ion can also be expressed by  the inclusions 

(/1 . . . . .  / ~ - 1 , / t + 1  . . . . .  / s)  : /~---  (/1 . . . . .  / s)  i = 1 , 2  . . . . .  s .  

I t  entails, if we pu t  ([1 . . . . .  /s) = q, t ha t  q/q2 is a free R/q-module  in which /1 . . . . .  /8 

represent a basis. Conversely, if R is a local ring and  if q is an ideal in R such t h a t  

q/q~ is a free R/q-module  with a basis consisting of s elements, then every minimal 

system of generators of q consists of s elements which are independent  in R. Let  us 

finally note t ha t  if /1 . . . . .  /2 are independent  in R and if R 1 is a un i t a ry  R-fiat  exten- 

sion of R, then [1 . . . . .  /s are independent  also in R 1 (cf. e.g. [4], the appendix).  

The length of a p r imary  ideal q = (ql . . . . .  qs) of a Noetherian ring (cf. note (1) p. 74) 

will be denoted by  L(q) or, al ternatively,  L(q I . . . . .  qs). I f  q =  (ql . . . . .  qs) = (1) we pu t  

L(q) = L(q 1 . . . . .  qs) = O. 

We shall prove four lemmata,  the last of which represents t h a t  case of the theo- 

rem in which the characterist ic of Q/q is positive. 

LV.MMA 3. Let /1 . . . . .  Is, gl be elements in a commutative ring with unity  element. 

Suppose that /1 . . . . .  /s are independent and that /1 E (gl). Then gl,/3 . . . . .  /s are also inde- 

pendent. Moreover, 

(13 . . . . .  Is) : g1-~  (11 . . . . .  t , ) .  

Proo/. Given a relation a l g l + a J 2 +  ... + a J s = O ,  i t  follows from the supposition, 

b y  multiplication with an element h I for which g lh l= /1 ,  t ha t  a l E ( / 1  . . . . .  [s), say 

a1=bl /1+ ... + bs/s. Inser t ion of this expression for a 1 in the given relation results in 

a linear relation between /1 . . . . .  /s with the coefficient a~+big 1 for /~ ( i = 2  . . . . .  s), 

whence, by  the supposition, at E (gl,/3 . . . . .  /s) ( i =  2 . . . . .  8). W h a t  has now been estab- 

lished concerning a 1 . . . . .  as proves the lemma. 

LEMMA 4. Let /1 . . . . .  /2, gl, hi be elements o/ a local ring. Suppose that/1 .. . . .  /s are 

independent, that the ideal (/1 . . . . .  /s) is zero-dimensional, and that / l = g l h s  . Then 

i ( / 1  . . . . .  /s)  = i ( g l , / 3  . . . . .  /s)  + L(hl , /3 . . . . .  /8). 

Proo[. The length of (/1 . . . . .  /8) equals the sum of the lengths of (/1 . . . . .  [s, g l ) a n d  

([1 . . . .  , [s) : gl (el. [6], (1.5), p. 3). By  Lemma 3 the lat ter  ideal is equal to (h 1, [~ . . . . .  [s). 

Hence the result. 

L~MMA 5. Let /1 . . . . .  /s be elements o/ a local ring Q with the maximal  ideal m =  

(u 1 . . . . .  uT). Let  p be a prime nun~ber, n a natural number, and k a non-negative integer. 

Then there exists an extension Q1 o/ Q with the /ollowing properties: 
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(i) Q1 i8 a /ree Q-module; 

(ii) Q1 is a local ring whose maximal ideal is generated by m; 

(iii) each o/ the elements /1 . . . . .  /s can be written on the /orm 

a~ . . . . . .  ~ ,u~  l . . .  u ~  + g ,  
[ l§247  

where g E lllkQ1 and where the eoe]/icients at ...... ~, are pn:th powers o/ elements 

in Qr 

Proo/. By induction on primarily s and /c the proof of the lemma can be reduced 

to a proof of the following assertion: If  a is an element of a local ring Q with maxi- 

mal ideal m = ( u  1 . . . .  ,ur), and if p is a prime, then there is an extension Q1 of Q 

such that  the conditions (i) and (ii) of the lemma are fulfilled and such that  a is 

congruent modulo mQ 1 to a p th  power in Qr This assertion is trivially true if a 

represents a p th  power in Q/m in which case we can take Q1 = Q. Otherwise we can 

choose QI= Q[z]/( z~ - a )  where z is a variable over Q. Obviously this choice makes 

Q1 in a natural way an extension of Q satisfying the condition (i). Since moreover Q~ 

is integral over Q, every maximal ideal of Q1 must contain mQ1 (see [6], Section 10). 

On the other hand, mQ1 is a maximal ideal, since Q1/mQ1 has the form (Q/m) [z]/(z p - 5), 

where 5 is the residue class represented by a in Q/m, and where consequently the 

polynomial z p - 5  is irreducible (cf. [9], the end of w 56). Hence the condition (ii) is 

also satisfied. I t  is finally evident that  a is congruent modulo mQ~ to a p th  power 

in Q1- 

LEMMA 6. Let Q be a local ring, m its maximal ideal, and q an m-primary ideal. 

Assume that Q/m and Q/q have the characteristic p > 0 and that q/q~ is a ]ree Q/q- 

module. Then the minimum number o/ generators o/ q is not larger than the minimum 

number o/ generators o/ m. 

Proo[. Denote by r and s the minimum numbers of generators of m and q resp. 

Pu t  m = ( U  1 . . . . .  Ur) and q=([1 . . . . .  [s). Choose natural numbers n and b such that  

pn>  L(q) and mk_~mq. Determine Q1 according to Lemma 5 so that  the conditions 

(i)-(iii) of this lemma become fulfilled for the quantities now actual. Pu t  

Q2 = Q1 [Zi . . . . .  Z r ] / ( Z l  zm --  U l  . . . . .  Zr ~m --  Ur), 

where z 1 . . . . .  zr are independent indeterminates over Q. Then Q2 is in a natural way 

an extension of Q and is free and hence flat over this ring. Moreover, Q~ is a 15cal 

ring, say with the maximal ideal m2, and L(mQ2)=p hr. Each of the elements/1 . . . . .  /s 
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can be wri t ten as a sum of pnth powers of elements in m s plus an element of 

mkQs___m2q. Since p Eq, i t  follows t h a t  there are elements gl . . . . .  gs in In s such t h a t  

/~ is congruent  modulo m2q to the pnth power of g~ (i = 1, 2 . . . . .  s). This implies t h a t  

qQ~. is generated by  the pnth powers of gl . . . . .  gs (of. [6], (4.1)). 

Since Q~ is Q-flat, it  follows t h a t  

L(qQ~) = L(mQs) L(q) = p"L(q) 

(see [6], (19.1)). 

On the other  hand, /1 . . . . .  /8 are independent  in Q and therefore, on account  of 

the flatness, also in Qs. This implies t ha t  also the pnth powers of gl . . . . .  g8 are in- 

dependent  in Q2- Hence, by  repeated application of Lemma 3 and Lemma 4, 

L(qQs) = PnS L( (gl . . . . .  gs) Qs) >1 Pn~. 

This gives a contradict ion for s >  r as, by  our choice of n, pn is larger than  L(q). 

Thus s ~ r, and the lemma is proved. 

To prove Theorem 2 we shall show tha t  if there were a counter-example to this 

theorem, we could construct  one to Lemma 6. 

Le t  Q be a local ring, m its maximal  ideal, and q an m-pr imary  ideal. I n  order 

t h a t  this triplet of objects shall be a counter-example to  Theorem 2 it  is necessary 

and sufficient t ha t  there exist integers r and s such t h a t  r= lengthQ(m/m2) ,  s =  

lengthQ(q/mq), lengthQ(q/q2)=sL(q), and s>r.  The necessity is obvious. Suppose on 

the other  hand  tha t  the conditions are fulfilled. Then q/q2 can be generated by  s 

elements, and consequently there is a Q-homomorphism of the direct  sum of s copies 

of Q/q onto q/qS. This homomorphism must  be an isomorphism as the modules con- 

s t i tut ing its domain and range have the same length. Thus  q/qS is a free Q/q-module.  

Hence the sufficiency. We note t ha t  to test  if the condition is satisfied in a special 

case, it suffices to know the lengths of the ideals m s, q, l~q, and qS. 

Suppose t h a t  the triplet  Q1, rex, ql is a counter-example to Theorem 2. Wi thou t  

loss of generali ty we can assume tha t  q~ = (0), so t h a t  in part icular  Q1 is zero-dimen- 

sional and hence complete, for if necessary we can pass from Q1 to Q1/q~. On account  

of Lemma 6 the characterist ic of Q1/ml mus t  be zero. Denote  the min imum number  

of generators of m I by r. By  the s t ructure  theorems of Cohen there is a ring homo- 

morphism K[x] -~ Q1 (onto), where K[x] is a polynomial  r ing in r variables x 1 . . . . .  xr over a 

field K of characterist ic zero, and where the inverse image of m 1 is (x 1 . . . . .  xr). Using 

from now on a nota t ion  which does no t  qu i te  agree wi th  tha t  of the theorem, let 

us denote the  inverse images of m 1, qI, and (0 )unde r  K[x]->QI by  m, q, and  a reap:, 
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so tha t  especially m = (xt . . . . .  xr). Then m ~_  a and, for a suitable choice of the natura l  

number  n, q___a___q2___m n. When  m is given as (x 1 . . . . .  x~), these inclusions assure us 

in part icular  t ha t  the ideals q and a are m-primary.  Le t  now _K be a field of positive 

characterist ic and let K[~] = ~ ' [ x l  . . . . .  ~ ]  be a polynomial  ring over _K in r variables. 

Let  fur ther  a and ~ be ideals in _KIll and pu t  nt = (xl . . . . .  ~) .  Applying the necessary 

and sufficient condition derived above, we see t h a t  the triplet  _K[~]/~, m / a ,  q / a  will 

be a counter-example to Lemma 6 if the following conditions are fulfilled: 1~2___~; 

q ~_ ~___ q~___ m~; the lengths of the (m-primary) ideals q, m q + a, and ~ coincide with 

the lengths of the ideals q, ntq + a, and a. We shall show how one can construct  K,  

q, and a f rom K, q, and a so tha t  these conditions become satisfied. 

Refine the chain 

K [ x ] ~ q ~ m q +  a _ _ a ~ q ~ _ _ m  ~ 

to a composit ion chain q0 ~ q l ~ . - .  ~ qk. 

Choose elements / 0=  l ,  11' 12 . . . . .  /k-1 of K[x] such tha t  

/, e q,, /, ~ q,+l (u=0 ,  1 . . . . .  ] c -  1). 

Denote  the power products  of degree n in x 1 . . . . .  x, by /k ,  ...,/m. Then q, = (/,,/,+1 . . . . .  /~) 

(v = 0, 1 . . . . .  k). Determine h, i, and  j such t h a t  qh = q, q~ = mq + a and qj = a. Consider 

the following, actual ly  valid inclusions: 

(x 1 . . . . .  xr) (/,)___ q,§ ( ~ = 0 ,  1 . . . . .  ] c -  1); 

q~ __ (x I . . . .  , x,) qh + qJ ; 

(xl . . . . .  xr) qh + qj - q,; 

q~_c qj. 

Within  these inclusions, replace first everywhere q, by  ( f , , / ,+ ,  . . . . .  /m) (# = 0 ,  1, . . . ,  k) 

and then every ideal-product  of the form (... a ,  . . . ) ( . . .  b . . . .  ) by  (.. .  a,b . . . .  ). I n  each 

of the inclusions thus obtained, express every polynomial  t ha t  occurs as a basis ele- 

men t  on the left-hand side as a linear combinat ion of the polynomials t h a t  occur as 

basis elements on the  r ight -hand side. Le t  those polynomials  which appear  as coeffi- 

cients in these linear combinations,  in conjunct ion with the polynomials /0,/1 . . . . .  /m, 
form the set S. 

Suppose now t h a t  we can find a valuat ion of K with valuat ion ring 0 and residue 

class field _K such t h a t  _K has positive characteristic and such t h a t  $ ~ D[x]. Let  _K[~] 

be a polynomial  ring over _~ in r variables xl . . . . .  xr. Then there is a natura l  r ing 

6 -  642906 Acta mathematica 112. Imprlm~ le 21 septembre 1964. 
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homomorphism 0[x]-->K[s mapping 0 onto ~" and carrying x, into s ( v = l , 2 ,  . . . , r ) .  

For / f i  0Ix], let f be the image of / under this homomorphism. Define the ideals 

~, (v =0 ,  1 . . . . .  k), ~, and ~ in /~[s by  putt ing ~, = (f,, f,+l, .--, ]m), q = qh, and a = qj. 

Obviously, these ideals, except q0, which equals (1), are pr imary for (s . . . . .  s 

over, i t  is seen tha t  the inclusions which were considered above, remain valid if x,, 

]~, and % are replaced by  s [~, and ~ for all possible values of the index /x. I t  

follows, first tha t  L(~)  - L(q~-l) ~< 1 (v = 1, 2 . . . . .  k), and hence, as evidently L(qk) - 

L(~0)=k, tha t  L (~ , )=v  (v=0 ,  1 . . . . .  k), then tha t  the ideals q, m q + a ,  and H have the 

same lengths h, i, and ] as the ideals q, m q + a ,  and a. Furthermore, it is clear tha t  

~ 2 _  ~ and tha t  q ~ a _  ~z =-7. ~tn. Thus /~, q, and ~ satisfy all the conditions posed. 

I t  only remains to find a valuation of the indicated kind. Let  ~ (v = 1, 2 . . . .  , N) 

be the elements of K tha t  occur as coefficients of the polynomials in the set 5. Let  

ul, . . . ,  uk be a transcendence basis of the subfield of K generated by  the ~ ,  and let 

for v = 1, 2 . . . . .  N the element ~ be a zero of a polynomial 

a,X '~  + b,X"~ -1 + ... 

with coefficients in the ring Z[xx . . . . .  xk] generated by x~ . . . . .  uk over the ring Z of 

rational integers. Fix a homomorphism Z[u~ . . . . .  xk] -+Z and choose a prime number  p 

such tha t  none of the elements a, is carried into 0 under the composed homomor- 

phism 
Z[~l . . . . .  ~ ]  -+ z - +  z / ( p ) .  

Obviously every valuation tha t  belongs to an extension K-->{K, cr of this composed 

homomorphism meets the requirements. Tha t  there exists at  least one such extension, 

follows from the theorem on extension of homomorphisms (specializations) (see e.g. [10], 

Chap. 6, Theorem 5', p. 13). 

Thus we have shown tha t  a counter-example to Theorem 2 leads to a counter- 

example to Lemma 6. This proves the theorem since the lemma has already been 

established. 

Proof  o f  the Addendum to Theorem 2 

The reasoning will largely run parallel to tha t  of the proof of Theorem 2 and 

will par t ly  be presented in a summary  fashion. 

Under the assumptions of Theorem 2 we have to show tha t  if the difference 

between the minimum number  of generators of m and the minimum number  of gen- 

erators of q is not larger than one unit, then Q/q has the form 

K[fx~ . . . . .  x,]]/(c~ . . . . .  cr). 
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The assertion can be given the seemingly stronger but  equivalent  wording tha t  in any  

representat ion of Q/q on the form K[[xl, . . . ,  xr]]/c the ideal c can be generated by  r 

elements. For  if c is an ideal (not necessarily zero-dimensional) of K[[x 1 . . . .  , xr]], and 

if R is a ring and b an ideal of R such t h a t  there are ring isomorphisms 

R ~ K[[x 1 . . . . .  xr]], R i b  ~ K[[x 1 . . . . .  x,]]/c, 

then b can be generated by  as few elements as c. To see this, one can first, by  a 

simple argument ,  pass to the case where c _  (x 1, ..., x~) ~. I n  R / b  there are a well- 

determined field and r well-determined elements which correspond by  the isomorphism 

to  K and  x I . . . . .  xr resp. By  lifting this field (ef. the method  in [2]) and these r 

elements in an a rb i t ra ry  way  from R//b to R, one obtains in a na tura l  manner  an  

isomorphism between R and K[[x 1 . . . . .  x,]] which induces the given isomorphism be- 

tween R / b  and .R/c and  consequently carries the ideals b and c into one another .  

Hence the result. 

We shall consider separately the two cases in which the characterist ic of Q/wi 

and Q/q is zero and different f rom zero resp. As in the proof of the theorem, a 

counter-example belonging to the first case can be t ransformed into one belonging to, 

the second. To show this, let us suppose t h a t  there exists a counter-example belonging 

to the first case. Using a t empora ry  notat ion,  we can assume (cf. p. 80) t h a t  it has  

the form K[x]/a,  111/a, q / a  where K denotes a field of characterist ic zero, x a set  

of r variables Xl, ..., x~ over K,  11t the ideal (x I . . . .  , x~), and q and a ideals such t h a t  

1It ~ ~_ a and q ~_ a ~ q~ ~ m n, n being some na tura l  number.  The integer lengthKtz~ (q/mq) 

which gives the min imum number  of generators of the ideal qK[[x]], mus t  be larger 

than  r. I n  view of the al ternative wording of the assertion, it suffices to derive from 

K, q, a a new triplet  K,  q, a satisfying the same conditions as in the proof of the 

theorem and  in addition the condition t h a t  the length of ~t~ shall coincide with tha t  

of Iltq. To meet  these requirements we have, roughly  speaking, to find a specializa- 

t ion which to a sufficient degree preserves the two chains 

K [ ~ ] ~ q _ _ _ m q + a ~ a ~ q ~ _ m  ~, 

g [ x ] ~ q ~ _ m q _ _ m  ~. 

This can be done by  treat ing separately each of the chains as in the proof of the  

theorem, say by  introducing the refinements {q,}~ and {q:}~ resp., ye t  choosing a 

common valuat ion which shall moreover  satisfy conditions sufficient to preserve the 

inclusions 
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h being the  length  of g, so t h a t  we can p u t  q = qh = q~. W e  con ten t  ourselves wi th  

these  indicat ions .  

I t  r ema ins  to consider  the  second case. Thus  we assume t h a t  the  charac te r i s t ic  

of Q / m  and  Q//g is a p r ime  p.  W i t h o u t  loss of genera l i ty  we can fu r the r  assume t h a t  

Q is zero-dimensional .  Le t  us denote  the  m i n i m u m  number  of genera tors  of n1 and  q 

b y  r and  s resp. ,  and  le t  n be an  a r b i t r a r y  na tu r a l  number .  We in t roduce  new objec t s  

according to  the  following list .  

C a coefficient r ing of Q in accordance  wi th  the  s t ruc tu re  theorems  of 

Cohen; 

C[x 1 . . . . .  xr] a po lynomia l  r ing over  C in r var iables;  

C[x 1 . . . . .  xr]--> Q a r ing h o m o m o r p h i s m  which carr ies  C in to  i tself  and  x 1 . . . . .  x~ in to  a 

sys tem of genera tors  of m; 

the  kerne l  of the  above  homomorph i sm;  

-F 1 . . . . .  F8 e lements  of the  ideal  (x 1 . . . . .  x~) of C[x 1 . . . . .  x~] which under  the  above  

homomorph i sm  are  carr ied  into a sys tem of genera tors  of q; 

C 1 an  extens ion  of C wi th  the  following proper t ies  (cf. L e m m a  5): 

(i) C 1 is a free C-module,  

(ii) C 1 is a local r ing  whose ma x ima l  ideal,  l ike t h a t  of C, is gen- 

e ra t ed  b y  p ,  

(iii) if we form in a n a t u r a l  way  the  common extens ion C~[x 1 . . . . .  x~] 

of C 1 and  C[x 1 . . . . .  xr], then  in th is  ex tens ion  each of the  ele- 

men t s  F 1 . . . . .  F8 is congruent  modulo  p ( x  1 . . . . .  x~) to  a po lynomia l  

whose coefficients are  p n t h  powers  of e lements  of C 1 and  whose 

cons t an t  t e rm is zero; 

C1[z 1 . . . . .  zr] a po lynomia l  r ing over  C 1 in r var iables ,  in which C[x 1 . . . . .  x~] is 

imbedded  b y  inclusion of C in C 1 and  iden t i f ica t ion  of x 1 . . . . .  x~ wi th  

the  p ' t h  powers  of z 1, . . . ,z~ resp.; 

G 1 . . . . .  G~ e lements  of Cl[z 1 . . . . .  zr] such t h a t  in th is  r ing the  congruences 

F~ = G ~  mod  p(z  1 . . . . .  zT) 

hold  t rue  for  i = 1, 2 . . . . .  r (cf. the  proof  of L e m m a  6). 
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Let  us write x for the set {x 1 . . . . .  xr}, similarly F fo r  { F  1 . . . . .  Fs}, etc. I f  R is a 

Noetherian ring and if A 1 . . . . .  At are elements or sets of elements in R which together 

generate a zero-dimensional pr imary ideal of R, we shall denot, e the length of this 

ideal by  L•(A1, . . . ,At).  

Obviously Cl[z ] is a flat C[x]-module, and it  is easy to see tha t  the ideal (p ,x)Cl[z  ] 
has the length pnr. Hence (see [6], (19.1)) 

Lc,t~ (F, 9.1) = pnrLccx ~ (F, ~I). 

The ideals (F, 9~) and (G m, i~I) in Cl[Z ] differ a t  most  by  elements in p(z). As p 6 (F, 9) 
and as (9~) contains a power of (z), it follows tha t  they are equal (cf. [6], (4.1)). 

Thus we can substitute the set of the p~th powers of G1 . . . . .  Gs for F on the left- 

hand side of the equality. Moreover, the elements represented by  these pn th  powers 

in Cl[z]/91Cl[Z ] must  be independent (cf. the introduction to the proof of Theorem 2). 

By  repeated application of Lemma 3 and Lemma 4 we therefore obtain (similarly as 

in the proof of Lemma 6) 

P'~s LClE~ (G, 9) = pnr Lctx~ (F, 2).  

Since the ideals on both sides contain p, we can pass to the respective residue class 

rings modulo (p). Denote the images of C, C1, 9 ,  F,  G, x, and z under the natural  

homomorphism of Cl[Z ] onto Cl[z]/pCl[z] by K, K1, a, [, g, x, and z resp. The images 

of x 1 . . . . .  x, and z, . . . . .  zr which are thus denoted by  the same symbols as their origi- 

nals, are obviously each a set of independent variables over K and K 1. Observing 

tha t  C[x]/pC[x] is naturally included in Cl[z]/pC~[z ] as Cl[z] is C[xJ-flat, we deduce 

LK,t~(g, a)=pn(~-8)LKtx~(f, a). 

Let  a be the isomorphism of Kl[Z ] into itself tha t  carries every element into its p th  

power. Application of (~n to the ring and the ideal on the left-hand side gives 

[~1 ( ' a ) - l ,  K t ~ h  

In  this formula we first replace K~" and K by  an infinite common extension field M. 

This does not affect the significance or validity of the formula: the ideals on both 

sides remain pr imary and their lengths unaltered (el. [6], (19.1)). Evident ly  we can 

then replace Mix] by the local ring R associated with (x)M[x]. Observing finally tha t  

the image of a under a n is contained in the p~th power of a, we derive 

La(/, a ~) <<- pn(~-') La(/, a). (*) 
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As any (x)-primary ideal of K[x] generates an ideal of the same length in R, 

we may  express the assertion to be proved as follows: if s =  r or s = r - 1 ,  then the 

ideal (a,/) of R can be generated by  r elements. We shall deduce this from (*). 

From now on, let (/), (a,/), (a ~ , / ) ,  and, later, (a,/) be understood as ideals of R. 

Assume first tha t  s =  r. Then, by (*), a ~  (/, a~n). As a is contained in the maxi- 

mal ideal of R and as n may  be taken arbitrarily large, we deduce tha t  a ~  (/) (el. 

[6], (4.2)), whence the result. 

Assume then that  s = r - 1 .  In  view of (*) the dimension of the local ring R/( / )  

cannot be larger than one. This ring must  therefore be a one-dimensional Macaulay 

local ring (see e.g. [6], Section 25, esp. (25.4)). Since M was chosen as an infinite 

field, we can, by  a result of Northeot t  and Rees, find an element a of (a, ]) such 

tha t  (a, /) /( /)  is integral over (a, / ) / ( / )  and consequently has the same multiplicity as 

this ideal (see [7]). Then 

e((a, ])/(/)) = lim 1 L((a~, ' / ) )  < L((a,/)) ~< L((a,/)) = e((a,/)/(/)) = e((a,/)/(/)), 
p 

where e( ) denotes the multiplicity of the ideal within the parentheses. The second 

step of this chain of equalities and inequalities follows by (*), and the two last steps 

by  the fact tha t  R/( / )  is a Macaulay local ring and by the choice of a resp. Since 

the outer terms of the chain are equal, the two middle ones must  also be so. This 

gives (a,/) = (a,/) and hence the result. 

The proof of the Addendum to Theorem 2 is thereby finished. 

R e m a r k s  
1. Concerning Theorem 2. 

I do not know if it is necessary to assume tha t  Q/q is equicharacteristic. I should 

rather  expect tha t  i t  is not. 

2. Concerning the Addendum to Theorem 2. 

One cannot cancel the assumption tha t  the minimum number  of generators of q 

is not more than one unit less than the minimum number  of generators of rrt. Example: 

(2 = K[x, y, z]/((x) 2 + (y, z)') (K a field, x, y, z variables, n/> 2), q = the ideal generated 

by  the element represented by x. 

3. Some alternatives to the statement about Qo and Q on p. 72. 

I f  p is a prime ideal of a Noetherian ring, let /(p; z) denote the function 

//(p; ~,) z" O < z < l .  
v~O 
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(Samuel's result on the polynomial behavior of H(p; ~) for ~ large entails tha t  /(p; z) 

can be represented by  an element of P[z, (1 _~)- i ] ,  p being the field of rationals.) 

In  the s ta tement  on p. 72 it  is assumed tha t  (Q0, Q) is a couple of local rings 

with maximal  ideals (too, m), tha t  Q contains Qo and is Qo-flat, and tha t  moQ is 

m-primary~ I t  is asserted tha t  there exists an integer k such tha t  

H(k)(mo;n)<~.H(k)(m;n) n = O ,  1,2 . . . . .  

Instead of this assertion one may  consider the following alternative assertions: 

A 1, H (1) (11t0; n )  ~ H (1) (11t; n )  n = 0,  1, 2 . . . . .  

A~. /(m0; a) < 1(111; z) for 0 < z < 1 

unless 1(11t0; a) -- I(Iit; z). 

A 3. 1(II10; Z) ~</(m; Z) for 0 < z < 1. 

One can ,show tha t  A~ is equivalent to the original assertion. Thus A1, As ,  and A a 

form a sequence of assertions of decreasing strength. Each of them would, if valid, 

make it possible to extend Theorem 1 or, in case of A 3, an essential pa r t  of this 

theorem to the general case where there is no restriction on the integral closure of 

m/p .  The consideration of A a is suggested by  the proof of Theorem 1 which seems 

to indicate tha t  the least value of k answering the claims of tha t  theorem, may  in- 

crease indefinitely with the minimum number  of generators tha t  are needed to form 

the integral closure of the local ring associated with 11t/p, and tha t  therefore only a 

limit result, corresponding to /c = ~ ,  can be valid if this integral closure is allowed 

to be infinite. As to A1, cf. below.--A priori, none, one, two, or all three of the state- 

ments  A1, As, A a might be valid. I have no clear opinion about  which of these four 

possibilities is most probable. 

4. A case in  which A 1 is valid. 

Keeping the notation just employed, I can show tha t  if, for some natural  num- 

ber r, Q / m o Q  has the form 

K[[xi . . . .  , x,]]/  (c 1 . . . . .  cr), 

K [ [ x  1 . . . . .  xr]  ] being a ring of formal power series in r indeterminates over a field K, 

then A 1 holds true. Thus, in view of the Addendum to Theorem 2, A i will in par- 

ticular hold true if H(m0; 1)>~H(m; 1 ) - 1 .  

In  outline the proof runs as follows. One may  assume tha t  Q0 and Q are zero- 

dimensional. These rings can then be represented on the forms Co[[U]]/a o and C[[z]]/a 
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resp., C o and C be ing  coefficient rings, u and z standing for sets of r indeterminates, 

and the inclusion of Q0 in Q being induced by  an injection q :  Co[[U]] .->C[[z]] which, 

as a result of the special assumption about  Q/m o Q, can be chosen so tha t  (1 = ~v(a0) C[[z]]. 

By  varying ~ in a way tha t  reminds of specialization in algebraic geometry, one can 

reduce the demonstration to the trivial case in which q carries each of the inde- 

terminates u into a corresponding indeterminate z. 

5. On the connexions between generalizations o/ Theorem 1 and statements o/ the 

types At,  A2, A a. 

We know tha t  A1, A~, and A s each would imply a generalization of Theorem 1. 

I can prove the following partial  converse. 

Suppose (as in A1, A~, As) tha t  (Q0, Q) is a couple of local rings with maximal  

ideals (m0, m), tha t  Q contains Q0 and is Qo-flat, and tha t  raoQ is m-primary.  Suppose 

further  tha t  Qo and Q are equicharaeteristic and tha t  Q/m is a separabel extension 

of its natural  subfield Q0/m0. Then there exists a Noetherian ring with prime ideals 

m 1 and Pl such tha t  m l D p l  , r a n k m J P l = l  , and 

/ / (01 ;  n )  = H( ln0 ;  n ) ,  n = (~, 1, 2 . . . . .  

H ( l u ~ ; n ) = H a ) ( m ; n )  n = 0 , 1 , 2 ,  . . . .  

This means tha t  any  result similar to Theorem 1 but  general enough to apply to 11t 1 

and Pl, would imply a corresponding result concerning Q0 and Q. 

The Noetherian ring tha t  contains m 1 and Pl is obtained by  a variation of 

/Lkizuki's example of a one-dimensional local domain without finite integral closure ([1]); 

actually the local ring associated with m l / p l  will not  have a finite integral closure 

except when moQ = m. As to the rSle of the assumption tha t  Q/m is a separable 

extension of Qo/mo, cf. [2]. 
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