WEIGHTED TRIGONOMETRICAL APPROXIMATION ON R^{1} WITH APPLICATION TO THE GERM FIELD OF a STATIONARY GAUSSIAN NOISE

BY

N. LEVINSON and H. P. McKEAN, JR.

Massachusetts Institute of Technology (${ }^{(}$)

Contents

1 a. Introduction (weighted trigonometrical approximation) 100
1 b. Introduction (probabilistic part) . 101
2. Hardy functions . 102
3. Discussion of $Z^{-} \supset Z^{+/-} \supset Z^{-} \cap Z^{+}$. 103
4. Discussion of Z^{\cdot}. 105
5. Proof of $Z^{\cdot} \subset Z^{0+}(\Delta$ Hardy or not) . 111

6 a. Proof of $Z^{-} \cap Z^{+} \supset Z^{0+}(\Delta$ Hardy or not) . 113

6c. A condition that $Z^{-} \cap Z^{+}=Z^{\cdot}(\Delta \mathrm{Hardy})$. 115
6 d. A condition that genus $Z^{\cdot}=0(\Delta$ Hardy $)$. 118
6 e. Rational weights . 120
7. A condition that $Z^{+/-}=Z^{\cdot}(\Delta$ Hardy $)$. 121
8. A condition that $Z^{0+}=Z$. 123
9. Discussion of Z. 124
$10 a$. Special case ($1 / \Delta=1+c_{1} a^{2}+$ etc. $)$. 125
10 b. Special case ($\Delta=e^{-2|\alpha|^{\frac{1}{2}}}$) . 128
11. An example (Δ Hardy, $\operatorname{dim} Z_{0}=\infty, \boldsymbol{Z}^{*}=\boldsymbol{Z}^{0+} \neq \boldsymbol{Z}_{\text {. }}$) 130
12. Hardy weights with arithmetical gaps . 133
13. Entire functions of positive type . 135

${ }^{(1)}$ Supported in part by the Office of Naval Research and in part by the National Science Foundation, GP-149.

Notation

$f^{*}(\gamma)(\gamma=a+i b)$ denotes the regular extension of $f^{*}(a)=f(a)^{*}$ so that $f^{*}(\gamma)=$ $\left(f\left(\gamma^{*}\right)\right)^{*},\left(\gamma^{*}=a-i b\right)$.
\int stands for $\int_{-\infty}^{+\infty}$.
\int_{1} and the like stand for \int_{1}^{∞}, etc.
$\boldsymbol{e}(\gamma)$ means e^{γ}.

1a. Introduction (weighted trigonometric approximation)

Given a non-trivial, even, non-negative, Lebesgue-measurable weight function $\Delta=\Delta(a)$ with $\int \Delta<\infty$, let Z be the (real) Hilbert space $L^{2}\left(R^{1}, \Delta d a\right)$ of Lebesguemeasurable functions f with

$$
f^{*}(-a)=f(a), \quad\|f\|=\|f\|_{\Delta}=\left(\int|f|^{2} \Delta\right)^{\frac{1}{2}}<\infty
$$

subject to the usual identifications, and putting $Z^{\text {cd }}=$ the $\operatorname{span}(i n Z)$ of $e(i a t)(c \leqslant t \leqslant d)$, introduce the following subspaces of Z :
(a) $Z^{-}=Z^{-\infty}$,
(b) $Z^{+}=Z^{0 \infty}$,
(c) $Z^{+/-}=$the projection of Z^{+}onto Z^{-},
(d) $Z \cdot=$ the class of entire functions $f=f(\gamma)(\gamma=a+i b)$ with

$$
\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta \leqslant 2 \pi} \lg \left|f\left(R e^{i \theta}\right)\right| \leqslant 0,
$$

which, restricted to the line $b=0$, belong to Z,
(e) $Z^{0+}=\bigcap_{\delta>0} Z^{0 \delta}$,
(f) $Z .=$ the span of $(i a)^{d}, d=0,1,2$, etc., $\int a^{2 d} \Delta<\infty$,
(g) $Z^{-\infty}=\bigcap_{t<0} Z^{-\infty t}$.
$Z^{-\infty \infty}=Z$ since $f \in Z$ implies $f \Delta \in L^{1}\left(R^{1}\right)$, and in that case $f \Delta=0$ if $\int f \Delta e(-i a t)=0$ ($t \in R^{1}$); the functions $f \in Z$ are of 0 (minimal) exponential type, so-called.
Z is either dense in Z or a closed subspace of Z; the second alternative holds in the case of a Hardy weight:

$$
\int \frac{\lg \Delta}{1+a^{2}}>-\infty
$$

and under this condition

$$
Z^{-} \supset Z^{+/-} \supset Z^{-} \cap Z^{+} \supset Z^{0+}=Z \cdot \supset Z .
$$

Given a Hardy weight Δ, the problem is to decide if some or all of the above subspaces coincide; for instance, as it turns out, $Z^{+/-}=Z$. if and only if $\Delta^{-1}=|f|^{2}$ with f entire of minimal exponential type, while $Z \cdot=\boldsymbol{Z}^{0+}$ for the most general Hardy weight.
$Z \neq Z^{-}$in the Hardy case, while in the non-Hardy case $Z=Z^{-} \cap Z^{+}=Z^{-\infty}$, and, if $\Delta \in \downarrow$ also, then $Z=Z^{0+}$ too. ($\Delta \in \downarrow$ means that $\Delta(a) \geqslant \Delta(b)$ for $0 \leqslant a<b$.)
$Z^{+l^{-}}$and Z^{0+} receive special attention below for reasons explained in the next part of the introduction.
S. N. Bernstein's problem of finding conditions on a weight $\Delta \leqslant 1$ so that each continuous function f with $\lim _{|a| \uparrow \infty}|f| \Delta=0$ should be close to a polynomial p in the sense that $|f-p| \Delta$ be small, is similar to the problem of deciding if $Z .=Z$ or not, and it turned out that S. N. Mergelyan's solution of Bernstein's problem [10] and I. O. Hačatrjan's amplification of it [5] could be adapted to the present case.

1b. Introduction (probabilistic part)

$\Delta d a$ can be regarded as the spectral weight of a centered Gaussian motion with sample paths $t \rightarrow x(t) \in R^{1}$, universial field B , probabilities $P(\mathrm{~B})$, and expectations $E(f)$:

$$
E[x(s) x(t)]=\int e^{i a(t-s)} \Delta
$$

Bring in the (real) Hilbert space Q which is the closed span of $x(t)\left(t \in R^{1}\right)$ under the norm $\|f\|=\left[E\left(f^{2}\right)\right]^{\frac{1}{2}}$ and map $x(t) \rightarrow e(i a t) \in Z . Q$ is mapped $1: 1$ onto Z, inner products being preserved, and with the notations $Q^{c d}=$ the span of $x(t)(c \leqslant t \leqslant d)$ and $\mathrm{B}^{c d}=$ the smallest Borel subfield of B measuring $x(t)(c \leqslant t \leqslant d)$, a perfect correspondence is obtained between
(a) $Z^{-}, Q^{-}=Q^{-\infty 0}$, and $\mathrm{B}^{-}=\mathrm{B}^{-\infty 0}=$ the past,
(b) $Z^{+}, Q^{+}=Q^{0 \infty}$, and $\mathrm{B}^{+}=\mathrm{B}^{0 \infty}=$ the future,
(c) $Z^{+/-}$, the projection $Q^{+/-}$of Q^{+}onto Q^{-}, and $\mathrm{B}^{+/-}=$the smallest splitting field of past and future,
(d) $Z^{0+}, Q^{0+}=\bigcap_{\delta>0} Q^{0 \delta}$, and $\mathrm{B}^{0+}=\bigcap_{\delta>0} \mathrm{~B}^{0 \delta}=$ the germ,
(e) Z., Q. $=$ the span of $x^{(d)}(0), d=0,1,2$, etc., $E\left[x^{(d)}(0)^{2}\right]<\infty$, and the associated field B.,
(f) $Z^{-\infty}, Q^{-\infty}=\bigcap_{t<0} Q^{-\infty t}$, and $\mathrm{B}^{-\infty}=\bigcap_{t<0} \mathrm{~B}^{-\infty t}=$ the distant past.
$\mathrm{B}^{-}, \mathrm{B}^{+}, \mathrm{B}^{0+}$, etc. do not just include the fields of Q^{-}, Q^{+}, Q^{0+}, etc., but for instance, if $f \in Q$ is measurable over \mathbf{B}^{0+}, then it belongs to Q^{0+}; the proof of this fact and its analogues is facilitated by use of the lemma of Tutubalin-Freldlin [11]: if the field A is part of the smallest Borel field containing the fields of B and C and if C is independent of A and B then $A \subset B$.
$\mathrm{B}^{+/-}$($=$the splitting field) needs some explanation. Given a pair of fields such as B^{-}(= the past) and B^{+}(= the future), a field $\mathrm{A} \subset \mathrm{B}^{-}$is said to be a splitting field of B^{-}and B^{+}, if, conditional on $\mathrm{A}, \mathrm{B}^{+}$is independent of B^{-}. B^{-}is a splitting field, and as is not hard to prove, a smallest splitting field exists, coinciding in the present (Gaussian) case with the field of the projection $Q^{+/-}$(see H. P. McKean, Jr. [9] for the proof). $\mathrm{B}^{+/-}$and so also $Z^{+/-}$is a measure of the dependence of the future on the past.

Because $Z=Z^{0+}$ for a Hardy weight, the condition $\Delta^{-1}=|f|^{2}(f$ entire of minimal exponential type) for $Z^{+/-}=Z$ is equivalent in the Hardy case to the condition that the motion split over its germ ($\mathrm{B}^{+/-}=\mathrm{B}^{0+}$); this is the principal result of this paper from a probabilistic standpoint. Tutubalin-Freǐdlin's result [11] that if $\Delta \geqslant|a|^{-d}$ as $|a| \uparrow \infty$ for some $d \geqslant 2$ then $\mathrm{B}^{0+}=\mathrm{B}$., is the sole fact about B^{0+} that has been published to our knowledge.

2. Hardy functions

An even Hardy weight Δ can be expressed as $\Delta=|h|^{2}, h$ belonging to the Hardy class H^{2+} of functions $h=h(\gamma) \quad(\gamma=a+i b)$ regular in the half plane ($b>0$) with $h^{*}(-a)=h(a)$ and $\int|h(a+i b)|^{2} d a$ bounded ($b>0$); such a Hardy function satisfies

$$
\lim _{b \downarrow 0} \int|h(a+i b)-h(a)|^{2} d a=0 \quad \text { and } \quad \int|h(a+i b)|^{2} d a \leqslant \int|h(a)|^{2} d a \quad(b>0)
$$

Hardy functions can also be described as the (regular) extensions into $b>0$ of the Fourier transforms of functions belonging to $L^{2}\left(R^{1}, d t\right)$ vanishing on the left half line $(t \leqslant 0)$. According to Beurling's nomenclature, each Hardy function comes in 2 pieces: an outer factor o with

$$
\lg |o(\gamma)|=\frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg |h(c)| d c \quad(\gamma=a+i b)
$$

and an inner factor j with

$$
|j(\gamma)| \leqslant 1 \quad(b>0), \quad|j(\gamma)|=1 \quad(b=0) ;
$$

the complete formula for the outer factor of h is

$$
o(\gamma)=e\left[\frac{1}{\pi i} \int \frac{\gamma c-1}{\gamma+c} \lg |h(c)| \frac{d c}{1+c^{2}}\right] .
$$

$Z^{+} h=H^{2+}$, i.e., $e(i \gamma t) h(t \geqslant 0)$ spans out the whole of H^{2+}, if and only if h is outer. H^{2-} stands for the analogous Hardy class for $b<0 . L^{2}\left(R^{1}, d a\right)$ is the (perpendicular) direct sum of H^{2-} and H^{2+}. Hardy classes $H^{1 \pm}$ are defined in the same manner except that now it is $\int|h(a+i b)| d a$ that is to be bounded. H^{1+} can be described as those functions h belonging to $L^{1}\left(R^{1}, d a\right)$ with $\int e(-i a t) h d a=0(t \leqslant 0)$; it is characteristic of the moduli of such functions that $\int \lg |h| /\left(1+a^{2}\right)>-\infty$ (see [7] for proofs and additional information).

3. Discussion of $Z^{-} \mathbf{Z}^{+/-} \mathbf{Z}^{+} \cap^{+}$

Given Δ as in $1 a$, Hardy or not, the inclusions $Z \supset Z^{-} \supset Z^{+l^{-}} \supset Z^{-} \cap Z^{+}$are obvious, so the problem is to decide in what circumstances some or all of the above subspaces coincide. As it happens,
(a) either $\int \lg \Delta /\left(1+a^{2}\right)=-\infty$ and $Z=Z^{-} \cap Z^{+}=Z^{-\infty}$ or $\quad \int \lg \Delta /\left(1+a^{2}\right)>-\infty$ and $Z \neq Z^{-} \neq Z^{-} \cap Z^{+}$;
in the second (Hardy) case, $\int \lg \Delta /\left(1+a^{2}\right)>-\infty, \Delta=|h|^{2}$ with h outer belonging to H^{2+}, and the following statements hold:
(b) $Z^{-} \neq Z^{+1-}$ if and only if $\mathrm{i}=h / h^{*}$, restricted to the line, coincides with the ratio of 2 inner functions,
(c) $Z^{+/-}=Z^{-} \cap Z^{+}$if and only if $\mathrm{j}=h / h^{*}$, restricted to the line, coincides with an inner function.
(a) goes back to Szegö; the rest is new.

Proof of (a) adapted from [7]. $Z \neq Z^{-}$implies that for the coprojection f of $e(i a s)$ upon $Z^{-}, f \Delta \neq 0$ for some $s>0$. Because the projection belongs to Z^{-}, $e(-i a s) f e(i a t) \in Z^{-}(t \leqslant 0)$ and so is perpendicular (in $\left.Z\right)$ to f; also, f is perpendicular to $e(i a t)(t \leqslant 0)$, so

$$
\int e^{i a s}|f|^{2} \Delta e^{-i a t} d a=\int f \Delta e^{-i a t} d a=0 \quad(t \leqslant 0)
$$

But in view of $\int|f| \Delta \leqslant\|f\|_{\Delta}\left(\int \Delta\right)^{\frac{1}{2}}<\infty$, it follows that $f \Delta$ belongs to the Hardy class H^{1+}, whence $\int \lg (|f| \Delta) /\left(1+a^{2}\right)>-\infty$. But also $\int \lg \left(|f|^{2} \Delta\right) /\left(1+a^{2}\right)<\infty$ since $f \in Z$, and so $\int \lg \Delta /\left(1+a^{2}\right)>-\infty$, as stated. On the other hand, $\int \lg \Delta /\left(1+a^{2}\right)>-\infty$ implies $\Delta=|h|^{2}$ with h outer belonging to H^{2+}, and $Z \neq Z^{-}$follows: indeed, since Δ is even, $h^{*}(-a)=h(a)$, and since $h^{2} \in H^{1+}$,

$$
\int e^{-i a t} h^{2} d a=\int e^{-i a t} \mathrm{j} \Delta d a=0 \quad(t \leqslant 0) \quad\left(\mathrm{j}=h / h^{*}\right),
$$

stating that $j \in Z$ is perpendicular to $Z^{-} . Z^{-} \neq Z^{-} \cap Z^{+}$follows, since, in the opposite case, $Z^{-} \subset Z^{+}$so that $Z^{+}=Z$ and hence also $Z^{-}=Z$, against the fact that Δ is a Hardy weight. $Z^{-\infty}=\bigcap_{t<0} Z^{-\infty t}=Z$ follows in the non-Hardy case.

Proof of (b). Given $\int \lg \Delta /\left(1+a^{2}\right)>-\infty$, let $\Delta=|h|^{2}$ with h outer as before and prepare 3 simple lemmas.
$Z^{+} h=H^{2+}$ since h is outer as stated in 2.
$Z^{-} h=\mathrm{j} H^{2-}$ because $Z^{-} h^{*}=\left(Z^{+} h\right)^{*}=\left(H^{2+}\right)^{*}=H^{2-}$.
$Z^{+1-} h=\mathrm{i} p \mathrm{j}^{-1} H^{2+}, p$ being the projection in $L^{2}\left(R^{1}\right)$ upon H^{2-}; indeed, $\mathrm{i} p \mathrm{j}^{-1}$ is a projection and coincides with the identity just on $\mathfrak{j} H^{2-}$.

Coming to the actual proof of (b), if the inclusion $Z^{-} \supset Z^{+/-}$is proper, then $Z^{-} h=\mathrm{j} H^{2-}$ contains a function $f=\mathrm{j}\left(j_{2} o_{2}\right)^{*}$ perpendicular to $Z^{+l-} h=\mathrm{j} p \mathrm{j}^{-1} H^{2+}, j_{2}$ being an inner and $o_{2} \in H^{2+}$ an outer function. Because $\mathrm{j} p \mathrm{j}^{-1}=1$ on $\mathrm{j} H^{2-}$, it follows that f is perpendicular in $L^{2}\left(R^{1}\right)$ to H^{2+}, so $f \in H^{2-}$, i.e., $f=\left(j_{1} o_{1}\right)^{*}, j_{1}$ being an inner and $o_{1} \in H^{2+}$ an outer function; in brief, $\mathfrak{i}\left(j_{2} o_{2}\right)^{*}=\left(j_{1} o_{1}\right)^{*}$. Because $\left|o_{1}\right|=\left|o_{2}\right|$ on the line $b=0$, the outer factors can be cancelled, proving that $i=j_{2} / j_{1}$. On the other hand, if $\mathrm{j}=j_{2} / j_{1}$, then $f=\mathrm{i}\left(j_{2} h\right)^{*} \neq 0$ belongs to $\mathrm{j} H^{2-}=Z^{-} h$. Also $f=\left(j_{1} h\right)^{*} \in H^{2-}$ so that f is perpendicular in $L^{2}\left(R^{1}\right)$ to H^{2+}, and since $f \in \mathfrak{j} H^{2-}$, it must be perpendicular to $\mathrm{i} p \mathrm{j}^{-} H^{2+}=Z^{+/-} h$ also. $Z^{-} \neq Z^{+/-}$follows, completing the proof.

Proof of (c). $Z^{-} \neq \boldsymbol{Z}^{-} \cap \boldsymbol{Z}^{+}$in the Hardy case, so if $\boldsymbol{Z}^{+/-}=\boldsymbol{Z}^{-} \cap Z^{+}$, then $Z^{-} \neq \boldsymbol{Z}^{+/-}$, and according to (b), $\dot{\mathrm{j}}=h / h^{*}$ is a ratio j_{2} / j_{1} of inner functions with no common
factor．$f \in Z^{-} h=j H^{2-}$ is perpendicular in $L^{2}\left(R^{1}\right)$ to $Z^{+l-} h=j p j^{-1} H^{2+}$ if and only if $\mathfrak{j}^{-1} f \in H^{2-}$ is perpendicular to $p \mathfrak{i}^{-1} H^{2+}$ ，or，and this is the same，to $\mathfrak{j}^{-1} H^{2+}$ ，and so， computing annihilators in $\mathfrak{j} H^{2-},\left(Z^{+/-} h\right)^{0}=\mathfrak{j} H^{2-} \cap H^{2-}$ ．Now $f \in \mathfrak{j} H^{2-} \cap H^{2-}$ can be ex－ pressed as $\left(j_{2} / j_{1}\right) j_{3}^{*} o_{3}^{*}=j_{4}^{*} o_{4}^{*}$ and the outer factors have to match，so $j_{2} j_{4}=j_{1} j_{3}$ ，and since j_{1} and j_{2} have no common factors，j_{1} divides $j_{4}\left[1\right.$, p．246］and $f \in ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 口 𧘇 ~\left(1 / j_{1}\right) H^{2-}$ ． Because $j_{1}^{*} H^{2-} \subset H^{2-}, Z^{+1-} h$ can now beidentified as $\left[j H^{2-} \cap\left(1 / j_{1}\right) H^{2-}\right]^{0}=\mathrm{j} H^{2-} \cap\left(1 / j_{1}\right) H^{2+}$ ， the annihilator being computed in $\mathfrak{j} H^{2-}$ ；this is because $\left(1 / j_{1}\right) H^{2-}=\mathfrak{j} j_{2}^{*} H^{2-} \subset \mathfrak{j} H^{2-}$ and $\left(1 / j_{1}\right) H^{2-} \oplus \mathrm{j} H^{2-} \cap\left(1 / j_{1}\right) H^{2+}$ is a perpendicular splitting of $\mathfrak{j} H^{2-}$ ．But according to this identification，if $Z^{+/-}=Z^{-} \cap Z^{+}$，then $\mathfrak{i}\left(j_{1} h\right)^{*}=\left(1 / j_{1}\right) h \in Z^{+/-} h \subset Z^{+} h=H^{2+}$ ，and h being outer，it follows that j_{1} has to be constant，completing half the proof；the opposite implication is obvious using the above identification of $Z^{+/-} h$ in conjunction with $\left(Z^{-} \cap Z^{+}\right) h=\mathrm{j} H^{2-} \cap H^{2+}$ ．

Example．$h=(1-i \gamma)^{-3 / 2}$ is outer belonging to H^{2+} and $Z^{-}=Z^{+/-}$；indeed， $[(1+i \gamma) /(1-i \gamma)]^{3 / 2}=j_{2} / j_{1}$ would mean that $j_{1}^{2}[(1+i \gamma) /(1-i \gamma)]^{3}=j_{2}^{2}$ ，and this would make j_{2}^{2} have a root of odd degree at $\gamma=i$ ．

An outer function h belonging to H^{2+} is determined by its phase factor $\mathrm{j}=h / h^{*}$ if and only if $\operatorname{dim} Z^{-} \cap Z^{+}=1$ ；indeed，if $\operatorname{dim} Z^{-} \cap Z^{+}=1$ and if o is an outer func－ tion belonging to H^{2+} with $o / o^{*}=\dot{d}$ ，then $o \in j H^{2-} \cap H^{2+}=Z^{-} \cap Z^{+} h$ and，as such， is a multiple of h ．On the other hand，if $o / 0^{*}=j$ implies $o=$ constant $\times h$ ，then $\operatorname{dim} Z^{-} \cap Z^{+}=1$ because if o is the outer factor of $f \in Z^{-} \cap Z^{+} h=\mathrm{j} H^{2-} \cap H^{2+}$ ，then $o / o^{*}=j / j$ with j an inner multiple of the inner factor of $f .(j+1) o$ is outer［7，p．76］， and since $(j+1) o /(j+1)^{*} o^{*}=\mathrm{j}$ ，it is a multiple of $h . i(j-1) o$ is likewise a multiple of h ，and so o itself is a multiple of $h, j=1$ ，and f too is a multiple of h ．

4．Discussion of \boldsymbol{Z}－

Before proving the rest of the inclusions $\boldsymbol{Z}^{-} \cap Z^{+} \supset Z^{0+} \supset \boldsymbol{Z} \supset \boldsymbol{Z}$. ，Mergelyan＇s solution of Bernstein＇s ploblem，and his proof also，is adapted to the present needs．

Given Δ ，Hardy or not，let $Z \cdot=Z_{\Delta}$ be the class of entire functions f of minimal exponential type which，restricted to $b=0$ ，belong to Z ，let $\Delta^{+}=\Delta\left(1+a^{2}\right)^{-1}$ ，suppose $\int \Delta^{+}=1$ ，and putting

$$
\sigma^{*}(\gamma)=\text { the least upper bound of }|f(\gamma)|: f \in Z_{\Delta^{+}},\|f\|_{\Delta^{+}} \leqslant 1
$$

let us check that the following alternative holds：
either $\quad \sigma \equiv \infty(b \neq 0)$,
$\sup \int \frac{\lg ^{+}|f|}{1+a^{2}}=\int \frac{\lg \sigma^{*}}{1+a^{2}}=\infty$, for $f \in Z_{\Delta^{+}}$with $\|f\|_{\Delta^{+}} \leqslant 1$,
and Z is dense in Z,
or $\quad \lg \sigma^{*}$ is a continuous, non-negative, subharmonic function,
$\int \frac{\lg \sigma^{*}}{1+a^{2}}<\infty$,
$\lg \sigma^{*}(\gamma) \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg \sigma^{*}(c) d c \quad(\gamma=a+i b, b>0)$,
$\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \sigma^{\cdot}\left(R e^{i \theta}\right) \leqslant 0$,
and $Z \cdot$ is a closed subspace of Z;
the second alternative must hold in the case of a Hardy weight as will be proved in $6 b$. Because $\left(f\left(\gamma^{*}\right)\right)^{*}=f(-\gamma) \in Z$. if $f \in Z^{*}$,

$$
\sigma^{*}(\gamma)=\sigma^{*}\left(\gamma^{*}\right)=\sigma^{*}(-\gamma)
$$

this fact is used without additional comment below.
Break up the proof into simple lemmas.
(a) $\sigma^{\cdot}(\gamma) \equiv \infty(b \neq 0)$ if and only if $Z \cdot$ is dense in Z.

Proof of (a). $\sigma^{\cdot}(\beta)=\infty(\beta=a+i b, \quad b \neq 0)$ implies that $f \in Z_{\Delta^{+}}$can be found with $\|f\|_{\Delta^{+}} \leqslant 1,|f(\beta)|>\delta^{-1}$, and hence

$$
\left\|\frac{1}{c-\beta}+\frac{f-f(\beta)}{(c-\beta) f(\beta)}\right\|_{\Delta}=\left\|\frac{f}{(c-\beta) f(\beta)}\right\|_{\Delta} \leqslant|f(\beta)|^{-1}\left\|\frac{c-i}{c-\beta}\right\|_{\infty}\|f\|_{\Delta^{+}}<\text {constant } \times \delta .
$$

Breaking up $[f-f(\beta)] /(\gamma-\beta) f(\beta)$ into the sum of its odd and even parts f_{1} and f_{2} and then into the sum (with coefficients of modulus 1) of 4 pieces:

$$
f_{11}=\frac{1}{2}\left(f_{1}+f_{1}^{*}\right), \quad f_{12}=\frac{i}{2}\left(f_{1}-f_{1}^{*}\right), \quad f_{21}=\frac{i}{2}\left(f_{2}+f_{2}^{*}\right), \quad f_{22}=\frac{1}{2}\left(f_{2}-f_{2}^{*}\right),
$$

each of which belongs to $Z_{\dot{\Delta}}$, it follows that if $g \in Z$ is perpendicular to $Z_{\dot{\Delta}}$, then $\int g \Delta /(c-\beta)=0(\beta=a+i b, b \neq 0)$, whence

$$
\int \frac{b}{(c-a)^{2}+b^{2}} g \Delta d c=0 \quad(b>0)
$$

and $g \Delta=0$ as desired. On the other hand, if Z_{Δ} is dense in Z, then it is possible to find an entire function f of minimal exponential type with $\|1 /(c-\beta)-f\|_{\Delta}<\delta$ $(\beta=a+i b, b \neq 0)$. Bring in an entire function g with $[g-g(\beta)] /(\gamma-\beta) g(\beta)=-f$; then

$$
\delta>\left\|\frac{g}{(c-\beta) g(\beta)}\right\|_{\Delta} \geqslant a \text { positive constant depending upon } \beta \text { alone } \times \frac{\|g\|_{\Delta^{+}}}{|g(\beta)|^{\prime}}
$$

and so

$$
|g(\beta)|>\text { constant } \times \delta^{-1}\|g\|_{\Delta^{+}}
$$

g is now split into the sum (with coefficients of modulus 1) of 4 members g_{11}, g_{12}, g_{21}, g_{22} of $Z_{\Delta^{+}}$, and it develops that

$$
\begin{aligned}
\text { constant } \times \delta^{-1}\|g\|_{\Delta^{+}} & <|g(\beta)| \leqslant\left|g_{11}(\beta)\right|+\left|g_{12}(\beta)\right|+\left|g_{21}(\beta)\right|+\left|g_{22}(\beta)\right| \\
& \leqslant \sigma^{\cdot}(\beta)\left(\left\|g_{11}\right\|_{\Delta^{+}}+\left\|g_{12}\right\|_{\Delta^{+}}+\left\|g_{21}\right\|_{\Delta^{+}}+\left\|g_{22}\right\|_{\Delta^{+}}\right) \\
& \leqslant 2 \sigma^{*}\left(\left\|g_{1}\right\|_{\Delta^{+}}+\left\|g_{2}\right\|_{\Delta^{+}}\right) \leqslant 2 \sqrt{2} \sigma^{\cdot}\left(\left\|g_{1}\right\|_{\Delta^{+}}^{2}+\left\|g_{2}\right\|_{\Delta^{+}}^{2}\right)^{\frac{1}{2}} \\
& =2 \sqrt{2} \sigma^{*}\|g\|_{\Delta^{+}}
\end{aligned}
$$

making use of $\int g_{1}^{*} g_{2} \Delta^{+}=0$. But since δ can be made small, $\sigma^{*}(\beta)$ is in fact $=\infty$.
(b) Z. dense in Z implies

$$
\sup \int \frac{\lg ^{+}|f|}{1+a^{2}}=\int \frac{\lg \sigma^{\cdot}}{1+a^{2}}=\infty, \text { for } f \in Z_{\Delta^{+}}^{*} \text { with }\|f\|_{\Delta^{+}} \leqslant 1
$$

Proof of (b). Given $f \in Z_{\Delta^{+}}$, if $\beta=a+i b \quad(b>0)$, then

$$
\lg |f(\beta)| \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg ^{+}|f(c)| d c
$$

as follows from Nevanlinna's theorem [2:1.2.3] on letting $R \uparrow \infty$ and using

$$
\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \left|f\left(R e^{i \theta}\right)\right| \leqslant 0
$$

Now apply (a).
(c) $\lg \sigma^{*}(\beta) \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg \sigma^{*}(c) d c \quad(\beta=a+i b, b>0)$.

Proof of (c). Obvious from (b).
(d) Z^{\cdot} non-dense implies that σ^{*} is bounded in the neighborhood of each point $\beta=a+i b \quad(b>0)$; in fact, if Z^{\cdot} is non-dense $\lg \sigma^{*}$ is a non-negative continuous subharmonic function $(b \neq 0)$.

Proof of (d). Given $\beta=a+i b \quad(b>0)$ and a point α near it, take $g \in Z_{\Delta^{+}}$with $\|g\|_{\Delta^{+}} \leqslant 1$ and $|g(\alpha)|$ close to $\sigma^{-}(\alpha)$, and let $f=1+[(\gamma-\beta) /(\gamma-\alpha)][(g-g(\alpha)) / g(\alpha)]$, observing that f need not belong to $Z_{\Delta^{+}}$since $f^{*}(-a)=f(a)$ can fail.

$$
\|f\|_{\Delta^{+}}=\left\|\frac{\beta-\alpha}{c-\alpha}-\frac{\beta-\alpha}{c-\alpha} \frac{g}{g(\alpha)}+\frac{g}{g(\alpha)}\right\|_{\Delta^{+}} \leqslant\left\|\frac{\beta-\alpha}{c-\alpha}\right\|_{\infty}\left(1+|g(\alpha)|^{-1}\right)+|g(\alpha)|^{-1},
$$

and so, as in the second part of the proof of (a),

$$
1=|f(\beta)| \leqslant 2 \sqrt{2} \sigma^{\cdot}(\beta)\|f\|_{\Delta^{+}} \leqslant 2 \sqrt{2} \sigma^{\cdot}(\beta)\left[\left\|\frac{\beta-\alpha}{c-\alpha}\right\|_{\infty}\left(1+|g(\alpha)|^{-1}\right)+|g(\alpha)|^{-1}\right]
$$

proving that $\sigma^{*}(\alpha)$ is bounded on a neighborhood of β if $\sigma^{*}(\beta)<\infty$. Because $1 \in Z_{\Delta^{+}}$, $\sigma^{*} \geqslant 1\left(\int \Delta^{+}=1\right.$ is used at this place), so $\lg \sigma^{*} \geqslant 0$, and since $\lg |f|$ is subharmonic for each $f \in Z_{\Delta+}, \lg \sigma^{*}$ is also subharmonic. But now it follows that if $\sigma^{*}(\beta)=\infty$ at one point $\beta=a+i b \quad(b>0)$, then it is also ∞ at some point of each punctured neighborhood of β, and arguing as in the first part of the proof of (a) with f perpendicular to $Z_{\Delta}^{-}, \int f \Delta /(c-\alpha) d c$ is found to vanish at some point of each punctured neighborhood of β and hence to be $\equiv 0$. Z. dense in Z follows as before, so Z non-dense implies the (local) boundedness of σ°. It remains to prove that σ° is continuous $(b \neq 0)$. On a small neighborhood of $\alpha=a+i b,|f|\left(f \in Z_{\Delta^{+}}^{\cdot}\right)$ lies under a universal bound, σ^{*}. An application of Cauchy's formula implies that $\left|f^{\prime}\right|$ lies under a universal bound on a smaller neighborhood of α, and so $\left|f\left(\beta_{2}\right)-f\left(\beta_{1}\right)\right|$ lies under a universal constant B times $\left|\beta_{2}-\beta_{1}\right|$ as β_{1} and β_{2} range over this smaller neighborhood. But then

$$
\left|f\left(\beta_{2}\right)\right| \leqslant\left|f\left(\beta_{1}\right)\right|+B\left|\beta_{2}-\beta_{1}\right|<\sigma^{*}\left(\beta_{1}\right)+B\left|\beta_{2}-\beta_{1}\right|
$$

so that

$$
\sigma^{*}\left(\beta_{2}\right) \leqslant \sigma^{*}\left(\beta_{1}\right)+B\left|\beta_{2}-\beta_{1}\right|
$$

and interchanging the roles of β_{1} and β_{2} completes the proof of (d).
(e) $Z \cdot$ non-dense implies $\int \lg ^{+}|f| /\left(1+a^{2}\right) \leqslant \int \lg \sigma^{-} /\left(1+a^{2}\right)<\infty$.

Proof of (e). Z non-dense implies the existence of $g \in Z$ perpendicular to Z_{Δ},
and since, if $f \in Z_{\Delta^{+}},(f-f(\beta)) /(\gamma-\beta)$ is the sum (with coefficients of modulus 1) of 4 members of Z_{Δ},

$$
\int \frac{g^{*} f}{c-\beta} \Delta=\int \frac{g^{*} \Delta}{c-\beta} f(\beta) \equiv \hat{g} f \quad\left(f \in Z_{\Delta^{+}}^{*}, b \neq 0\right)
$$

Because \hat{g} is regular and bounded $(b \geqslant 1), \int \lg |\hat{g}(a+i)| /\left(1+a^{2}\right)>-\infty$; also

$$
|\hat{g} f(a+i)| \leqslant\|g\|_{\Delta}\|f\|_{\Delta^{+}}\left\|\frac{c-i}{c-a-i}\right\|_{\infty}
$$

so that $\sigma^{*}(a+i) \leqslant$ constant $\times\left(1+a^{2}\right)^{\frac{1}{2}}|\hat{g}(a+i)|^{-1}$ and $\int \lg \sigma^{*}(a+i) /\left(1+a^{2}\right)<\infty$. But as in the proof of (b),

$$
\lg |f(\alpha)| \leqslant \frac{1}{\pi} \int \frac{\lg \sigma^{*}(c+i)}{(c-a)^{2}+1} d c \quad\left(f \in Z_{\Delta^{+}}^{*}\right)
$$

and so

$$
\int \frac{\lg \sigma^{\cdot}(a)}{1+a^{2}} d a \leqslant \int \lg \sigma^{*}(c+i) d c \frac{1}{\pi} \int \frac{d a}{1+a^{2}} \frac{1}{(c-a)^{2}+1}=2 \int \frac{\lg \sigma^{*}(c+i)}{c^{2}+4} d c<\infty
$$

as stated.
(f) If Z is non-dense in Z then it is a closed subspace of Z and

$$
\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \sigma^{*}\left(R e^{i \theta}\right) \leqslant 0 .
$$

Proof of (f).

$$
R^{-1} l g \sigma^{*}\left(R e^{t \theta}\right) \leqslant \frac{1}{\pi} \int \frac{\sin \theta\left(1+c^{2}\right)}{(c-R \cos \theta)^{2}+R^{2} \sin ^{2} \theta} \frac{\lg \sigma^{*}}{1+c^{2}} d c \quad(0<\theta<\pi)
$$

according to (d). A simple estimate, combined with $\sigma^{*}(\gamma)=\sigma^{*}\left(\gamma^{*}\right)$ verifies

$$
\varlimsup_{R \uparrow \infty} R^{-1} \lg \sigma^{*}\left(R e^{i \theta}\right) \leqslant 0 \quad(\theta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4) .
$$

Phragmén-Lindelöf is now applied to each of the sectors between $\pi / 4,3 \pi / 4,5 \pi / 4$, $7 \pi / 4$; for instance, in the sector $[\pi / 4,3 \pi / 4]$, each $f \in Z_{\Delta^{+}}$with $\|f\|_{\Delta^{+}} \leqslant 1$ satisfies

$$
\begin{array}{ll}
\left|f(\gamma) e^{i \gamma y^{\frac{1}{\delta} \delta}}\right| \leqslant\left|f\left(R e^{i \theta}\right)\right| e^{-R \delta} \leqslant A \quad(\pi / 4 \leqslant \theta \leqslant 3 \pi / 4) \\
\left|f(\gamma) e^{i \gamma \gamma^{\frac{2}{2} \delta}}\right| \leqslant \sigma^{\cdot}\left(R e^{i \theta}\right) e^{-R \delta} \leqslant B \quad(\theta=\pi / 4,3 \pi / 4)
\end{array}
$$

with a constant B not depending upon f, and so
or

$$
\begin{aligned}
& \left|f(\gamma) e^{i \gamma(2 \delta)^{\frac{1}{2}}}\right| \leqslant B \quad(\pi / 4 \leqslant \theta \leqslant 3 \pi / 4), \\
& \sigma^{*}\left(R^{i \theta}\right) \leqslant B e^{R(2 \delta)^{\frac{1}{2}}} \quad(\pi / 4 \leqslant \theta \leqslant 3 \pi / 4)
\end{aligned}
$$

Z. closed follows since $|f|\left(f \in Z_{\Delta}^{\prime}\right)$ lies under a universal bound (σ^{*}) on any bounded region of the plane.

Mergelyan's alternative is now proved; several additional comments follow.
Given $f \in Z_{\Delta^{+}},(\gamma+i)^{-1} f h \in H^{2+}$ while $(\gamma+i)^{-1} \in H^{2+}$ is an outer function, so that

$$
\begin{aligned}
\lg |f h(i)|^{2} & \leqslant \frac{1}{\pi} \int \frac{\lg \left|(c+i)^{-1} f h\right|^{2}}{1+c^{2}}+\frac{1}{\pi} \int \frac{\lg |c+i|^{2}}{1+c^{2}} \\
& =\frac{1}{\pi} \int \frac{\lg |f h|^{2}}{1+c^{2}} \leqslant \lg \left(\frac{1}{\pi} \int \frac{|f|^{2} \Delta}{1+c^{2}}\right)=\lg \left(\frac{1}{\pi}\|f\|_{\Delta^{+}}^{2}\right)
\end{aligned}
$$

and so $\pi^{\frac{1}{2}} \sigma^{*}(i) \leqslant|h(i)|^{-1}$. Now it is proved that this upper bound is attained if and only if h^{-1} is entire of minimal exponential type. Using the compactness that

$$
\lim _{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \sigma^{*}\left(R e^{i \theta}\right) \leqslant 0
$$

ensures, it is possible to choose $f \in Z_{\Delta^{+}}^{*}$ with $f(i)=\sigma^{*}(i)$ and $\|f\|_{\Delta^{+}}=1$. As before,

$$
|f h(i)|^{2} \leqslant e\left[\frac{1}{\pi} \int \frac{\lg |f|^{2} \Delta}{1+a^{2}}\right] \leqslant \frac{1}{\pi} \int \frac{|f|^{2} \Delta}{1+a^{2}}=\frac{1}{\pi}
$$

so if $\pi^{\frac{1}{2}} \sigma^{*}(i)=|h(i)|^{-1}$, then the converse of Jensen's inequality implies that $f h$ is constant; the other implication is trivial.
$\sigma^{*}(i)$ can also be computed from a Szegö minimum problem:

$$
\frac{1}{\sigma^{*}(i)^{2}}=\inf \int \frac{|1-f|^{2} \Delta}{1+a^{2}}, \text { for } f \in Z_{\Delta^{+}}^{*} \text { with } f(i)=0
$$

as the reader can easily check.
Because of the compactness of Z used above, it is possible in the non-dense case to find $f=f_{\nu} \in Z_{\Delta^{+}}$with $f(\gamma)=\sigma^{-}(\gamma)$ and $\|f\|_{\Delta^{+}}=1 . f_{\gamma}$ is unique and is perpendicular (in $Z_{\Delta^{+}}$) to each $f \in Z_{\Delta^{+}}$vanishing at $\gamma f_{\alpha}(\beta) \sigma^{*}(\alpha)$ acts as a Bergman reproducing kernel for $Z_{\Delta^{+}}$since
implies

$$
\begin{gathered}
\int f_{\alpha}^{*}[f-f(\alpha)] \Delta^{+}=0 \quad\left(f \in Z_{\Delta^{+}}^{*}\right) \\
\int f_{\alpha}^{*} f_{د^{+}}=f(\alpha) \int f_{\alpha}^{*} \Delta^{+}=\frac{f(\alpha)}{\sigma^{*}(\alpha)} \int\left|f_{\alpha}\right|^{2} \Delta^{+}=\frac{f(\alpha)}{\sigma^{*}(\alpha)}
\end{gathered}
$$

5. Proof of $Z^{\cdot} \subset Z^{0+}$ (Δ Hardy or not)

To begin with, each $f \in Z$ can be split into an even part $f_{1}=\frac{1}{2}[f(\gamma)+f(-\gamma)] \in Z \cdot$ and an odd part $f_{2} \in Z$; the proof is carried out for an even function $f \in Z$ with Hadamard factorization

$$
f(\gamma)=\gamma^{2 m} \prod_{n=1}^{\infty}\left(1-\frac{\gamma^{2}}{\gamma_{n}^{2}}\right)
$$

the odd case being left to the reader. A simple estimate justifies us in ignoring the root of f at $\gamma=0$; indeed $f_{\delta}=\delta^{2 m}\left(1-\gamma^{2} / \delta^{2}\right)^{m} f / \gamma^{2 m}$ is an even entire function of minimal exponential type, $\left|f_{\delta} / f\right|$ tends to 1 as $|\gamma| \uparrow \infty$ so that $f_{\delta} \in Z$, and $\left\|f_{\delta}-f\right\|_{\Delta}$ tends to 0 as $\delta \downarrow 0$ so that if $f_{\delta} \in Z^{0+}$ then so does f.

Bring in the function

$$
g(\gamma)=\prod_{\left|\gamma_{n}\right|<d}\left(1-\frac{\gamma^{2}}{\gamma_{n}^{2}}\right) \prod_{n>a \delta}\left(1-\frac{\gamma^{2} \delta^{2}}{n^{2}}\right),
$$

depending upon a small positive number δ and a large integral number d. Given $\delta>0, \varepsilon>0$, and $A<\infty$, it is possible to find $d_{1}=d_{1}(\delta, \varepsilon, A)$ and a universal con. stant B so that for each $d \geqslant d_{1}$,
(a) $|f-g|<\varepsilon \quad(|a|<A)$
(b) $|g|<B|f| \quad(A \leqslant|a|<d / 2)$
(c) $|g|<B \quad(|a| \geqslant d / 2)$
(d) $g \in L^{2}\left(R^{1}\right)$.

It is best to postpone the proof of (a), (b), (c), (d) and to proceed at once to the
Proof that $f \in Z^{0+}$. Using (a), (b), (c) above,

$$
\|f-g\|_{\Delta}^{2}<\varepsilon^{2} \int \Delta+2(B+1)^{2} \int_{A}^{d_{/ 2}}|f|^{2} \Delta+2 \int_{d / 2}(B+|f|)^{2} \Delta
$$

tends to 0 as $d \uparrow \infty, A \uparrow \infty$, and $\varepsilon \downarrow 0$ in that order. Because the entire function g differs from $\sin \pi \delta \gamma$ by a rational factor and, as such, is of exponential type $\pi \delta$, it follows from (d) in conjuction with the Paley-Wiener theorem that

$$
g(a)=\int_{|t|<\pi \delta} e^{i a t} \hat{g}(t) d t \text { with } \int_{|t|<\pi \delta}|\hat{g}|^{2} d t<\infty
$$

But $\int_{|t|<\pi \delta} e(i a t) \hat{g} d t \in Z^{|t| \leqslant \pi \delta}$, as is obvious upon noting the bound

$$
\left\|\int_{|t|<\pi \delta} e^{i a t} \hat{g} d t\right\|_{\Delta}^{2} \leqslant 2 \pi \delta \int_{|t|<\pi \delta}|\hat{g}|^{2} \int \Delta
$$

and so $f \in \bigcap_{\delta>0} Z^{|t|<\pi \delta}=Z^{0+} \quad($ see $6 a)$.
Coming to the proof of (a), (b), (c), (d) above, it is convenient to introduce

$$
p(\gamma)=p_{m}(\gamma)=\pi \gamma \prod_{n=1}^{m}\left(1-\frac{\gamma^{2}}{n^{2}}\right)
$$

and to check the existence of a universal constant B such that $Q \equiv|\sin (\pi a) / p(a)|$ is bounded as in
(e)

$$
Q / B< \begin{cases}e^{-a!/ m} & |a|<m \\ e^{-a / 2} & m \leqslant|a|<2 m \\ e^{-m-2 m \lg (a / m)} & |a| \geqslant 2 m .\end{cases}
$$

Proof of (e).
$Q=\prod_{n>m}\left(1-a^{2} / n^{2}\right)$ for $|a|<m$, and since $1-c \leqslant e(-c), Q<e\left(-a^{2} /(m+1)\right)$. Stirling's approximation is now used to estimate p below for $|a| \geqslant m$, removing first a factor $a-m$ in case $m \leqslant|a|<m+\frac{1}{1}$. and then $|\sin \pi a|$ is estimater above bv 1 or
on this range. On the other hand, if m is the biggest integer $<d \delta$ and if $|a|<d / 2$, then $\delta|a|<m$ so that the first appraisal listed under (e) supplies us with the bound

$$
Q(a \delta)=\prod_{n>d \delta}\left(1-a^{2} \delta^{2} / n^{2}\right)<B e^{-a^{2} \delta t /(m+1)}<B e^{-a^{2} \delta / 2 d}
$$

and it follows that

$$
B|f(a)|>\prod_{|\gamma n|<d}\left|1-\frac{a^{2}}{\gamma_{n}^{2}}\right| \prod_{n>d \delta}\left(1-\frac{a^{2} \delta^{2}}{n^{2}}\right)=|g|
$$

as desired.
Proof of (c) and (d). On the range $|a| \geqslant d / 2$,

$$
\begin{aligned}
\lg \prod_{\left|\gamma_{n}\right|<d}\left|1-\frac{a^{2}}{\gamma_{n}^{2}}\right| & \leqslant \int_{0}^{d} \lg \left(1+\frac{a^{2}}{R^{2}}\right) \#(d R) \\
& =\#(d) \lg \left(1+\frac{a^{2}}{d^{2}}\right)+\int_{0}^{d} \frac{2 a^{2}}{a^{2}+R^{2}} \frac{\#}{R} d R \\
& \leqslant 2 \#(d) \lg (3|a| / d)+2 \int_{0}^{d} \frac{\#}{R} d R \\
& =o[d+d \lg (|a| / d)]
\end{aligned}
$$

for large d, while according to (e), if $|a| \geqslant d / 2$ and if m is the biggest integer $<d \delta$, then

$$
Q(a \delta)<B e\left[-\frac{1}{2} d \delta(1+\lg (a / d))\right]
$$

But then $|g|<B$ for large d as stated in (c), while for $d>8 / \delta$

$$
|g|<B e\left[-\frac{1}{4} d \delta(1+\lg (a / d))\right] \quad(|a|>d / 2) .
$$

But for still larger $d, d \delta(1+\lg (a / d))-8 \lg a>0$ for $a>d / 2$, since the left side is positive at $a=d / 2$ and increasing for $a>d / 2$. Thus

$$
|g|<B / a^{2} \quad(|a|>d / 2)
$$

so that $g \in L^{2}\left(R^{1}\right)$ as stated in (d).

6a. Proof of $Z^{-} \cap Z^{+} \supset Z^{0+}$ (Δ Hardy or not)

Given $f \in Z^{0+} \subset Z^{+}$, then $e(-i a \delta) f \in Z^{-\delta 0} \subset Z^{-}$, and

$$
\begin{aligned}
\left\|\left(e^{-i a \delta}-1\right) f\right\|_{\Delta} & \leqslant \max _{|a| \leqslant n}\left|e^{-i a \delta}-1\right|\|f\|_{\Delta}+2\left(\int_{|a|>n}|f|^{2} \Delta\right)^{\frac{1}{2}} \\
& \leqslant n \delta\|f\|_{\Delta}+2\left(\int_{|a|>n}|f|^{2} \Delta\right)^{\frac{1}{2}}
\end{aligned}
$$

is small for $\delta=n^{-2}$ and $n \uparrow \infty$, so that $f \in Z^{-}$also. Our proof justifies 8-642906 Acta mathematica 112. Imprimé le 22 septembre 1964.

$$
Z^{0+}=\bigcap_{\delta<0} Z^{\delta 0}=\bigcap_{\delta>0} Z^{|t|<\delta}
$$

this fact will be used without additional comment below.

6 b. Proof of $Z^{0+}=Z \cdot(\Delta$ Hardy)

$Z^{0+} \subset Z^{\cdot}$ is proved next for a Hardy weight Δ. Combined with the previous result $Z^{0+} \supset Z$, this gives $Z^{0+}=Z$.

Given $f \in Z^{0+}$, it is possible to find a finite sum

$$
f_{n}=\sum c_{k}^{n} e\left(i \gamma t_{k}^{n}\right) \text { with } 0 \leqslant t_{k}^{n}<1 / n,\left\|f-f_{n}\right\|_{\Delta}<1 / n
$$

and hence

$$
\left\|f_{n}\right\|_{\Delta}<1 / n+\|f\|_{\Delta} \leqslant 1+\|f\|_{\Delta} .
$$

Phragmén-Lindelöf is now applied to obtain bounds on $\left|f_{n}\right|$. Because $\left|f_{n}\right|$ is bounded ($b \geqslant 0$) and f_{n} is entire, $f_{n} h \in H^{2+}$, so

$$
\int\left|f_{n} h(a+i b)\right|^{2} d a \leqslant \int\left|f_{n}\right|^{2} \Delta
$$

is bounded $(b>0, n \geqslant 1)$, and an application of Cauchy's formula to a ring supplies us with the bound

$$
\left|f_{n} h\right| \leqslant B_{1} \quad(b \geqslant 1, n \geqslant 1) .
$$

Also, $\left|e(-i \gamma / n) f_{n}\right|$ is bounded $(b<0)$, so

$$
\left|e^{-i \gamma / n} f_{n} h^{*}\right| \leqslant B_{2} \quad(b \leqslant-1, n \geqslant 1)
$$

with a similar proof. Next, the underestimate

$$
\begin{aligned}
\pi \lg |h(a+i b)|=\pi \lg \left|h^{*}(a-i b)\right| & \geqslant \int \frac{b \lg ^{-}|h|}{(c-a)^{2}+b^{2}} d c \geqslant B_{3}\left(1+a^{2}\right) \int \frac{\lg ^{-}|h|}{1+c^{2}} d c \\
& \geqslant B_{4}\left|e^{-B_{5} \gamma^{2}}\right| \quad\left(1 \leqslant b \leqslant 2, B_{4}>0\right)
\end{aligned}
$$

justifies the bound

$$
\left|g_{n}\right| \leqslant B_{6} \text { for } 1 \leqslant b \leqslant 2, n \geqslant 1 \text { with } g_{n} \equiv e\left(-B_{5} \gamma^{2}\right) f_{n}
$$

Because $\left|g_{n}\right|$ tends to 0 at the ends of the strip $|b| \leqslant 2$, it is bounded $\left(\leqslant B_{6}\right)$ in the whole strip according to the maximum modulus principle. In particular, $\left|f_{n}\right| \leqslant B_{7}$ on the disc $|\gamma| \leqslant 2$. A second underestimate of $|h|$ is obtained from the Poisson integral
for $\lg |h|: \lim _{R \uparrow \infty} R^{-1} \lg \left|h\left(R e^{i \theta}\right)\right|=0(\theta=\pi / 4,3 \pi / 4)$, and it follows from the resulting bound

$$
\left|f_{n}\right| \leqslant B_{8} e^{\delta R} \quad(R \geqslant 1, \theta=\pi / 4,3 \pi / 4)
$$

and its companion

$$
\left|e^{-i \gamma / n} f_{n}\right| \leqslant B_{9} e^{\delta R} \quad(R \geqslant 1, \theta=5 \pi / 4,7 \pi / 4)
$$

combined with an application of Phragmén-Lindelöf to each of the 4 sectors between $\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$, that

$$
\left|f_{n}\right| \leqslant B_{10} e^{(\delta+1 / n) R}
$$

But now it is legitimate to suppose that as $n \uparrow \infty, f_{n}$ tends on the whole plane to an entire function f_{∞}; moreover, this function is specified on the line $b=0$ since $\left\|f_{n}-f\right\|_{\Delta}$ tends to 0 as $n \uparrow \infty$. Accordingly, the entire function f_{∞} is an extension of f, and since $\left|f_{\infty}\right| \leqslant B_{10} e(\delta R)$, it is clear that $f \in Z_{\dot{\Delta}}$ as desired.

If Δ is non-Hardy then it is possible for Z^{0+} to contain $Z \cdot$ properly. Indeed let $\Delta(a)$ be even, non-increasing for $a>0$, and non-Hardy. Then, as will be proved in 8 , $Z^{0+}=Z \neq Z$.
Δ non-Hardy does not ensure that Z is dense in Z; in fact if $\left.\int_{-1}^{1} \lg \Delta / 1+a^{2}\right)=-\infty$ while $\Delta \geqslant 1 / a^{2}(|a| \geqslant 1)$, then $f \in Z$ satisfies $\int|f|^{2} /\left(1+a^{2}\right)<\infty$, and a simple application of Phragmén-Lindelöf implies that f is constant; in short, $\operatorname{dim} Z^{-}=1$.
$6 c$. A condition that $Z^{-} \cap Z^{+}=Z \cdot(\Delta$ Hardy)
$Z^{-} \cap Z^{+}=Z \cdot$ if Δ is a Hardy weight and if $\int_{-d}^{+d} \Delta^{-1}<\infty(d<\infty)$.

Proof. The idea is that $f \in Z^{-} \cap Z^{+}$is regular for $b \neq 0$ and can be continued across $b=0$ if Δ is not too small (see T. Carleman [3] for a similar argument).

Given $f \in Z^{-} \cap Z^{+}$, then $f h \in H^{+2}, \lim _{b \downarrow 0} f(a+i b)=f(a)$ except at a set of points of Lebesgue measure 0 [7, p. 123], and so the Lebesgue measure of

$$
A \equiv\left(a: \sup _{0 \leqslant b<\delta}|f(a+i b)|>\varepsilon^{-1},|a|<d\right)
$$

tends to 0 as δ and $\varepsilon \downarrow 0$; it is to be proved that

$$
\sup _{0 \leqslant b<\delta} \int_{A}|f(a+i b)| d a
$$

is small for small δ and ε for each $d<\infty$. Bring in the summable weight

$$
\begin{aligned}
B & =\Delta^{-1} & & (|c| \leqslant 2 d) \\
& =\left(1+c^{2}\right)^{-1} & & (|c|>2 d)
\end{aligned}
$$

then for larged,

$$
\begin{aligned}
& \left(\int_{A}|f(a+i b)| d a\right)^{2} \\
& \quad \leqslant \int|f h(a+i b)|^{2} d a \int_{A}[\Delta(a+i b)]^{-1} d a \\
& \quad \leqslant\|f\|_{\Delta}^{2} \int_{A} d a e\left[\frac{1}{\pi} \int_{|c| \leqslant 2 d} \frac{b}{(c-a)^{2}+b^{2}} \lg \Delta^{-1} d c\right] e\left[\frac{1}{\pi} \int_{|c|>2 a} \frac{b}{(c-a)^{2}+b^{2}} \lg \Delta^{-1} d c\right] \\
& \quad \leqslant 2\|f\|_{\Delta}^{2} \int_{A} d a e\left[\frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg B d c\right]
\end{aligned}
$$

and an application of Jensen's inequality implies

$$
\begin{aligned}
\sup _{0 \leqslant b<\delta}\left[\int_{A}|f(a+i b)| d a\right]^{2} & \leqslant 2\|f\|_{\Delta}^{2} \int_{0} B d c \sup _{0 \leqslant b<\delta} \int_{A} \frac{b}{(c-a)^{2}+b^{2}} \frac{d a}{\pi} \\
& \downarrow 2\|f\|_{\Delta}^{2} \int_{\delta, \varepsilon>0} B d c=0 \quad(\delta, \varepsilon \downarrow 0) .
\end{aligned}
$$

Using this appraisal, it follows that

$$
\lim _{b \downarrow 0} \int_{-d}^{+d}|f(a+i b)-f(a)| d a=0
$$

the analogous result for $b<0$ follows from a similar appraisal. Choose c so that $f(c+i b)$ tends boundedly to $f(c)$ as $b \downarrow 0$ and define

$$
g(\gamma)=\int_{c}^{a} f(\xi+i b) d \xi+i \int_{0}^{b} f(c+i \eta) d \eta \quad(\gamma=a+i b)
$$

g is regular $(b \neq 0)$ since $f \in Z^{-} \cap Z^{+}$is such, it is continuous across $b=0$ and hence entire, so $f=g^{\prime}$ is likewise entire, and all that remains to be proved is that f is of minimal exponential type.

Because $f h \in H^{2+}, \int|\lg | f h| | /\left(1+a^{2}\right)<\infty$, and since $\lg ^{+}|f| \leqslant \lg ^{+}|f h|-\lg ^{-}|h|$, the integral $\int|\lg | f\left|\mid /\left(1+a^{2}\right)\right.$ is also convergent; also, $\left.\lg \right| f h \mid$ is smaller than its Poisson integral, so

$$
\lg ^{+}\left|f\left(R e^{i \theta}\right)\right| \leqslant \frac{1}{\pi} \int \frac{R \sin \theta \lg ^{+}|f(c)| d c}{R^{2}-2 R c \cos \theta+c^{2}} \quad(0<\theta<\pi)
$$

$\lg |h|$ being expressible by its Poisson integral since h is an outer function. According to this bound,

$$
\int_{0}^{\pi} \lg ^{+}\left|f\left(R e^{i \theta}\right)\right| d \theta \leqslant \frac{2}{\pi} \int_{0} \lg ^{+}|f(c)| \lg \left|\frac{R+c}{R-c}\right| \frac{d c}{c}
$$

and

$$
\begin{aligned}
\int_{R}^{2 R} d R \int_{0}^{\pi} d \theta \lg ^{+}\left|f\left(R e^{i \theta}\right)\right| & \leqslant \frac{2}{\pi} \int_{0} \lg ^{+}|f(c)| d c \int_{R / c}^{2 R / c} \lg \left|\frac{t+1}{t-1}\right| d t \\
& <B_{1}\left(1+R^{2}\right) \int_{0} \frac{\lg ^{+}|f(c)|}{1+c^{2}}
\end{aligned}
$$

as a simple appraisal justifies. A similar bound holds for $\lg ^{+}|f|$ in the lower half plane $b<0$, so that

$$
\int_{R}^{2 R} d R \int_{0}^{2 \pi} d \theta \lg ^{+}\left|f\left(R e^{i \theta}\right)\right|<B_{2}\left(1+R^{2}\right)
$$

and it follows that between each large R and its double $2 R$ can be found an R_{1} with

$$
\int_{0}^{2 \pi} \lg ^{+}\left|f\left(R_{1} e^{i \theta}\right)\right| d \theta<2 B_{2} R_{1}
$$

An application of the Poisson-Jensen formula now supplies us with the bound

$$
\lg ^{+}|f|<B_{3} R \quad(R \uparrow \infty)
$$

and a second application of the fact that $\lg ^{+}|f|$ is smaller than its Poisson integral supplies the additional information that

$$
\overline{\lim }_{R \uparrow \infty} R^{-1} \lg ^{\dagger}\left|f\left(R e^{i \theta}\right)\right| \leqslant 0 \quad(\theta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4)
$$

Phragmén-Lindelöf is now applied to each of the 4 sectors between, with the result that

$$
\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg ^{+}\left|f\left(R e^{i \theta}\right)\right| \leqslant 0
$$

and the proof is complete.
A second proof of $Z^{0+} \subset Z$. can be based on the above; indeed, if $f \in Z^{0+}$ and if f_{n} is chosen as in $6 b$, then

$$
\int\left|\left(f-f_{n}\right) h(a+i)\right|^{2} d a \leqslant\left\|f-f_{n}\right\|_{\Delta}^{2}<1 / n^{2}
$$

and so $f(a+i) \in Z_{\Delta(a+i)}^{0+}$ with $\Delta(a+i)=|h(a+i)|^{2}$. But $\Delta(a+i)$ is positive and continuous, so

$$
Z_{\Delta(a+i)}^{0+} \subset Z_{\Delta(a+i)}^{-} \cap Z_{\Delta(a+i)}^{+}=Z_{\Delta(a+i)},
$$

proving that $f(a+i)$ is entire of minimal exponential type.
$Z \neq Z^{-} \cap Z^{+}$if, for instance, $\int_{-1}^{+1} \Delta / a^{2}<\infty$; indeed in this case,
while

$$
\frac{1}{ \pm i a+\delta}=\int_{0}^{\infty} e^{-\delta t} e^{ \pm i a t} d t \in Z^{ \pm} \quad(\delta>0)
$$

$$
\left\|\frac{1}{i a \pm \delta}-\frac{1}{i a}\right\|_{\Delta}^{2} \leqslant \delta^{2} \int_{|a|>1} \Delta+\int_{|a| \leqslant 1} \frac{\Delta}{a^{2}} \frac{\delta^{2}}{a^{2}+\delta^{2}}
$$

tends to 0 as $\delta \downarrow 0$, so that $1 / i a \in Z^{-} \cap Z^{+}$.
The Hardy weight $\Delta=a^{2} e\left(-2|a|^{-\frac{1}{2}}\right) /\left(1+a^{4}\right)$ illustrates the point that $f \in Z^{-} \cap Z^{+}$ can be regular in the punctured plane but have an essential singular point at $\gamma=0$. Define $f=\gamma^{-1} \cos \left(1 / \gamma^{\frac{1}{2}}\right)$; then $f_{\delta}=f(\gamma+i \delta)(\delta>0)$ is of modulus $\leqslant|a|^{-1} e\left(1 /|a|^{\frac{1}{2}}\right)$ on the line so that $\left\|f-f_{\delta}\right\|_{\Delta}$ tends to 0 as $\delta \downarrow 0$, while, as an application of the PaleyWiener theorem justifies, $f_{\delta}=\int_{0}^{\infty} e(i a t) f_{\delta}(t) d t$ with \hat{f}_{δ} and $t f_{\delta} \in L^{2}[0, \infty) . f_{0_{+}}=f \in Z^{+}$ follows and a similar argument with $\delta<0$ proves that $f \in Z^{-}$also.

$6 d$. A condition that genus $Z^{\prime}=0$ (Δ Hardy)

Each $f \in Z$. is of genus 0 and $\int_{1} \lg \max _{0 \leqslant \theta<2 \pi}\left|f\left(R e^{i \theta}\right)\right| / R^{2}<\infty$ if $\int_{1} \lg ^{-} \Delta(i b) / b^{2}>-\infty$ or, and this is the same, if $\int_{1} \lg ^{-} \Delta \lg a / a^{2}>-\infty$.

Proof. To begin with, $\int_{1} \lg ^{-} \Delta(i b) / b^{2}$ and $\int_{1} \lg ^{-} \Delta(a) \lg a / a^{2}$ converge and diverge together; indeed, since $\int_{1} \lg ^{+} \Delta(a) \lg a / a^{2} \leqslant \int_{1} \Delta<\infty$, the convergence of $\int_{1} \lg ^{-} \Delta(a) \lg a / a^{2}$ combined with the Poisson formula

$$
\lg \Delta(i b)=\frac{1}{\pi} \int \frac{b}{a^{2}+b^{2}} \lg \Delta(a) d a
$$

leads at once to the bound

$$
\int_{1} \frac{|\lg \Delta(i b)|}{b^{2}} \leqslant \frac{1}{\pi} \int|\lg \Delta(a)| d a \int_{1} \frac{d b}{b\left(b^{2}+a^{2}\right)}
$$

the second integral converging, since

$$
\int_{1} \frac{d b}{b\left(b^{2}+a^{2}\right)} \sim \frac{\lg a}{a^{2}} \quad(a \uparrow \infty) .
$$

On the other hand, if $\int_{1} \lg ^{-} \Delta(i b) / b^{2}>-\infty$, then $\int_{1} \lg ^{-} \Delta(a) \lg a / a^{2}$ is not smaller than a positive multiple of

$$
\begin{aligned}
\int_{1} \lg ^{-} \Delta(a) d a \frac{1}{\pi} \int_{1} \frac{d b}{b\left(b^{2}+a^{2}\right)} & \geqslant \int_{1} \frac{d b}{b^{2}} \frac{1}{\pi} \int \frac{b}{a^{2}+b^{2}} \lg ^{-} \Delta(a) d a \\
& =\int_{1} \frac{d b}{b^{2}}\left(\lg \Delta(i b)-\frac{1}{\pi} \int \frac{b}{a^{2}+b^{2}} \lg ^{+} \Delta(a) d a\right) \\
& \geqslant \int_{1} \lg ^{-} \Delta(i b) / b^{2}-\text { constant } \times \int \lg ^{+} \Delta(a)>-\infty
\end{aligned}
$$

Given $\int_{1} \lg ^{-} \Delta(i b) / b^{2}>-\infty$, if $f \in Z_{\Delta}^{-}$, then f is of genus 0 and

$$
\int_{1} \lg \max _{0 \leqslant \theta<2 \pi}\left|f\left(R^{i \theta}\right)\right| / R^{2}<\infty
$$

indeed, since $\Delta(i b)$ is bounded ($b \geqslant 1$),

$$
\begin{aligned}
\Delta^{o}(b)=\Delta^{o}(-b) & =\Delta(i b) / b^{2} & & (b>1) \\
& =1 & & (0 \leqslant b \leqslant 1)
\end{aligned}
$$

is a Hardy weight, and if $f \in Z_{\Delta}$, then $|f h|$ is bounded $(b \geqslant 1),\left|f h^{*}\right|$ is bounded $(b \leqslant-1)$, and $\int|f(i b)|^{2} \Delta^{0} d b<\infty$, i.e., $f(i \gamma) \in Z_{\Delta^{\circ}}^{\circ}$. But then $\int_{1}|\lg | f(i b)| | / b^{2}<\infty$, and combining this with $\int_{1}|\lg | f(a)| | / a^{2}<\infty$ and an application of Carleman's theorem, one finds that the sum of the reciprocals of the moduli of the roots of f has to converge [2; 2.3.14], i.e., that the genus of f is 0 . Because $f^{+}=f+f^{*} \in Z_{\dot{\Delta}}$ satisfies

$$
\int_{1} \lg ^{+}\left|f^{+}(i b)\right| b^{2}<\infty \text { and } \int_{1} \lg ^{+}\left|f^{+}(a)\right| / a^{2}<\infty
$$

it is of genus 0 . It is also even, so $\int_{1} \lg \max _{0 \leqslant \theta<2 \pi}\left|f_{+}\left(R e^{i \theta}\right)\right| / R^{2}<\infty[2 ; 2.12 .5]$; the same holds for $f_{-}=f-f^{*} \in Z_{\Delta}^{*}$ since γf_{--}is entire, even, and of genus 0 , so

$$
\int_{1} \lg \max _{0 \leqslant \theta<2 \pi}\left|f\left(\operatorname{Re}^{i \theta}\right)\right| / R^{2}<\infty
$$

as stated.
$\int \lg ^{-} \Delta(i b) / b^{2}$ can diverge even though each $f \in Z_{\Delta}$ is of genus 0 , as can be seen from the Hardy weight Δ :

$$
\begin{aligned}
e^{a^{\frac{1}{2}} \Delta} & =1 \text { on }[0,1)+[2,3)+\text { etc. } \\
& =e\left[-a / \lg ^{2}(a+1)\right] \text { on }[1,2)+[3,4)+\text { etc. }
\end{aligned}
$$

Δ is Hardy since $\left(a \lg ^{2}(a+1)\right)^{-1}$ is summable, while

$$
\int_{1} \lg -\Delta \lg a / a^{2} \leqslant \sum_{\substack{d \text { odd } \\ d \geqslant 1}} \int_{d}^{d+1}(a \lg (a+1))^{-1}=-\infty
$$

so that $\int_{1} \lg \Delta(i b) / b^{2}=-\infty$. Given $f \in Z_{\Delta}^{*}$,

$$
B_{1}=\|f\|_{\Delta}^{2}>\int_{2 d}^{2 d+1}|f|^{2} e^{-2 a^{\frac{1}{2}}}>|f|^{2} e^{-2 a^{\frac{1}{4}}}
$$

at some point $2 d \leqslant a<2 d+1(d \geqslant 0)$, so an application of the Duffin-Schaeffer theorem [2; 10.5.1] applied to $f e\left(-\gamma^{\frac{1}{2}}\right)$ on the half plane $a \geqslant 0$ supplies us with the bound $|f| e\left(-a^{\frac{1}{2}}\right)<B_{2}$ on the half line $a \geqslant 0$. $|f| e\left(|a|^{\frac{2}{2}}\right)<B_{3}$ on the left half line for similar reasons. Phragmén-Lindelöf applied to $f e\left(-(2 \gamma)^{\frac{1}{2}} e^{-i \pi / 4}\right)$ on the half plane $b \geqslant 0$ together with an analogous argument on $b>0$ supplies the bound $|f|<B_{4} e\left[(2 R)^{\frac{1}{2}}\right]$ on the whole plane, and it follows that f is of genus 0 .

6e. Rational weights

$\operatorname{dim} Z^{+1-}=d<\infty$ if and only if Δ is a rational function of degree $2 d$.
See, for example, Hida [6] from whom the following proof is adapted.
Proof. $\operatorname{dim} Z^{+/-}=d<\infty$ implies $Z^{+/-} \neq Z$, so Δ is a Hardy weight and can be expressed as $|h|^{2}$ with h outer. Define the Fourier transform $f(t)=(1 / 2 \pi) \int e(-i a t) f(a) d a$ and note that if $\mathrm{i}=h / h^{*}$ and if p is the projection upon H^{2-}, then $Z^{+1-} h=\mathrm{j} p \mathrm{i}^{-1} H^{2+}$ is of the same dimension d as

$$
\begin{aligned}
{\left[p \mathrm{i}^{-1} H^{2+}\right]^{\wedge} } & =\operatorname{span}\left[p \mathrm{X}^{-1} e^{i a t} h: t>0\right]^{\wedge}=\operatorname{span}\left[p e^{i a t} h^{*}: t>0\right]^{\wedge} \\
& =\operatorname{span}\left[\left(e^{i a t} h^{*}\right)^{\wedge} i(s): t>0\right] \\
& =\operatorname{span}[(\hat{h}(t-s) i(s): t>0]
\end{aligned}
$$

where $i(s)$ is the indicator of $s \leqslant 0 .\left[p \mathrm{j}^{-1} H^{2+}\right]^{\wedge}$ has a unit perpendicular basis f_{1}, \ldots, f_{d}, and $\hat{h}(t-s)=c_{1}(t) f_{1}(s)+\ldots+c_{d}(t) f_{d}(s)(s \leqslant 0)$ with (real) coefficients c_{1}, \ldots, c_{d}. Choose $g_{1}, \ldots, g_{d} \in C^{\infty}(-\infty, 0]$ vanishing near $-\infty$ and 0 with $\operatorname{det}\left[\int_{-\infty}^{0} f_{i} g_{j}\right] \neq 0$; then

$$
\sum_{i \leqslant d} c_{i} \int_{-\infty}^{0} f_{i} g_{j} d s=\int_{-\infty}^{0} \hat{h}(t-s) g_{j} d s \quad(j \leqslant d, t>0)
$$

so that $c_{1}, \ldots, c_{d} \in C^{\infty}(0, \infty)$, and it follows that $\hat{h} \in C^{\infty}(0, \infty)$ also. Given $0<t_{0}<\ldots<t_{d}$, a dependence with non-trivial (real) coefficients must prevail between $\hat{h}\left(t_{0}-s\right), \ldots, \hat{h}\left(t_{d}-s\right)$ $(s \leqslant 0)$, and since $\hat{h} \in C^{\infty}(0, \infty)$, it is possible to find a differential operator D with constant (real) coefficients and degree $\leqslant d$ annihilating \hat{h} on the half line $t>0$. But this means that \hat{h} is a sum of $\leqslant d$ terms $t^{a} e^{b t} \sin ^{\cos } c t$, the permissible a filling out a series $0,1,2$, etc., $b<0$, and the trigonometrical factors either absent or both permissible.
Δ rational of degree $\leqslant 2 d$ follows at once upon taking the inverse Fourier transform. On the other hand, if Δ is rational of degree $2 d$, then it is a Hardy weight $|h|^{2}$ with h outer, h is also rational (of degree d), \hat{h} is a sum of terms $t^{a} e^{b t} \cos c t$ as above, the number of them coinciding with $\operatorname{deg} h$ and the trigonometrical factors either absent or present in pairs, and $\operatorname{dim} Z^{+1-}=d$ follows from $\operatorname{dim} \operatorname{span}[\hat{h}(t-s) i(s): t>0]=d$.
Δ rational of degree $2 d$ implies that
(a) $h=p_{0} p_{1} / p_{2}, \quad p_{0}, p_{1}, p_{2}$ being polynomials in i γ with roots on the line in the case of p_{0} and in the open half plane $b<0$ in the case of p_{1} and p_{2}, and of degrees $d_{0}, d_{1}, d_{2}(=d)$ with $d_{0}+d_{1}<d_{2}$,
(b) $Z \cdot=Z^{0+}=Z .=$ polynomials in $i \gamma$ of degree $<d_{2}-d_{1}-d_{0}$,
(c) $Z^{-} \cap Z^{+}=1 / p_{0} \times$ polynomials in $i \gamma$ of degree $<d_{2}-d_{1}$,
(d) $Z^{+1-}=1 / p_{0} p_{1}^{*} \times$ polynomials in i γ of degree $<d_{2}(=d)$,
esp.,
(e) $Z \cdot=Z^{-} \cap Z^{+}$if and only if h has no roots on $b=0$,
(f) $Z^{-} \cap Z^{+}=Z^{+/-}$if and only if h has no roots in $b<0$,
(g) $Z^{+/-}=Z^{-} \cap Z^{+}=Z^{-}-Z^{0+}=Z$. if and only if h has no roots at all.

Proof of (a). Obvious.
Proof of (b). $f \in Z_{\Delta}$ implies $\int|f|^{2} /\left(1+a^{2}\right)^{d}<\infty$, and a simple application of Phrag. mén-Lindelöf implies that f is a polynomial; the bound on its degree is obvious.

Proof of (c). $f \in Z^{-} \cap Z^{+}$implies $p_{0} f \in Z_{\Delta^{\circ}}^{-} \cap Z_{\Delta^{\circ}}^{+}\left(\Delta^{o}=\left|p_{1} / p_{2}\right|^{2}\right)$, and since Δ^{0} is bounded from 0 on bounded intervals, $p_{0} f \in Z_{\Delta^{\circ}}$ (Section 6 c). But then $p_{0} f$ has to be a polynomial as in the proof of (b) above, the bound on the degree of this polynomial is obvious, and the rest of the proof is a routine application of $Z^{-} \cap Z^{+} h=$ $\mathrm{j} H^{2-} \cap H^{2+}\left(\mathrm{j}=h / h^{*}\right)$.

Proof of (d). Use the formula $Z^{+1-} h=j H^{2-} \cap\left(1 / j_{1}\right) H^{2+}\left(\mathrm{j}=j_{2} / j_{1}\right)$ of Section 3 and match dimensions.

Proof of (e), (f), (g). Obvious.

7. A condition that $Z^{+/-}=Z^{*}$ (Δ Hardy)

Given a Hardy weight $\Delta=|h|^{2}$ (h outer), $Z^{+/-}=Z$ if and only if h is the reciprocal of an entire function of minimal exponential type.

Proof. Suppose h is the reciprocal of an entire function f of minimal exponential type; then $h=1 / f$ implies $\int_{|a|<d} \Delta^{-1}<\infty(d<\infty)$, so $Z=Z^{-} \cap Z^{+}(6 c)$, and to complete the proof of $Z^{+1-}=Z$, it is enough to check that $\mathfrak{j}=h / h^{*}=f^{*} / f$ is an inner function (Section 3(c)). But $1 / f=h$ being outer, it is root-free ($b \geqslant 0$), and

$$
\lg |f|=\frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg |f| d c \quad(b>0)
$$

while f^{*}, as an entire function of minimal exponential type with $\int \lg \left|f^{*}\right| /\left(1+a^{2}\right)<\infty$, satisfies

$$
\lg \left|f^{*}\right| \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg \left|f^{*}\right| d c \quad(b>0)
$$

so f^{*} / f is regular ($b>0$) with

$$
\begin{aligned}
& \left|f^{*} / f\right|=1 \quad(b=0) \\
& \left|f^{*} / f\right| \leqslant e\left[\frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg \left|f^{*} / f\right| d c\right]=1 \quad(b>0)
\end{aligned}
$$

i.e., f^{*} / f is inner.

On the other hand, if $Z^{+/-}=Z$ and if p is the projection upon H^{2-}, then the projection of $e(i a t)(t>0)$ upon Z^{-}:

$$
\begin{aligned}
h^{-1} \mathrm{i} p \mathrm{i}^{-1} e^{i a t} h & \left(\mathrm{i}=h / h^{*}\right) \\
= & h^{-1} \mathrm{i} p e^{i a t} h^{*} \\
= & h^{-1} \mathrm{i} \frac{1}{2 \pi} \int_{-\infty}^{0} e^{i a s} d s \int e^{-i c s} e^{i c t} h^{*} d c \\
= & h^{-1} \mathfrak{i} \frac{1}{2 \pi} \int_{-\infty}^{0} e^{i a s} d s\left(\int e^{-i c(t-s)} h d c\right)^{*} \\
= & h^{-1} \mathfrak{1} \frac{1}{2 \pi} \int_{-\infty}^{0} e^{i a s} d s \hat{h}(t-s) \quad\left(\hat{h}=\frac{1}{2 \pi} \int e^{-i a t} h d t=\hat{h}^{*}\right)
\end{aligned}
$$

belongs to Z, and since its conjugate also belongs to Z,

$$
\frac{e^{-i a t}}{2 \pi h} \int_{t}^{\infty} e^{i a s} \hat{h} d s \equiv f_{t}(a) \in Z_{\Delta} \quad(t>0)
$$

Choose $t>0$ belonging to the Lebesgue set of \hat{h} so that $\lim _{\boldsymbol{\sigma} \downarrow 0} \delta^{-1} \int_{t}^{t+\delta} \hat{h} d s=\hat{h}(t) \neq 0$ and $\delta^{-1} \int_{t}^{t+\delta}|\hat{h}| d s$ is bounded as $\delta \downarrow 0$.

$$
\begin{aligned}
2 \pi\left\|f_{t+\delta}-f_{t}\right\|_{\Delta^{+}} & \leqslant\left\|\left(e^{-i a(t+\delta)}-e^{-i a t}\right) \int_{t+\delta}^{\infty} e^{i a s} \hat{h} d s\right\|_{1 /\left(1+a^{z}\right)}+\left\|e^{-i a t} \int_{t}^{t+\delta} e^{i a s} \hat{h} d s\right\|_{1 /\left(1+a^{2}\right)} \\
& =\left\|\left(e^{i a \delta}-1\right) \int_{t+\delta}^{\infty} e^{i a s} \hat{h} d s\right\|_{1 /\left(1+a^{3}\right)}+\left\|\int_{t}^{t+\delta} e^{i a s} \hat{h} d s\right\|_{1 /\left(1+a^{2}\right)} \\
& \leqslant \text { constant } \times \delta\left\|\int_{t+\delta}^{\infty} e^{i a s} h d s\right\|_{1}+\int_{t}^{t+\delta}|\hat{h}| d s\left(\int \frac{d a}{1+a^{2}}\right)^{1 / 2} \\
& <\text { constant } \times \delta,
\end{aligned}
$$

and it follows, thanks to the bound $\overline{\lim }_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \sigma^{\cdot}\left(R e^{t \theta}\right) \leqslant 0$, that $\delta^{-1}\left(f_{t+\delta}-f_{t}\right)$ can be made to tend on the whole plane to some $f \cdot \in Z_{\Delta^{+}}^{*}$ as $\delta \downarrow 0$ via some series $\delta_{1}>\delta_{2}>$ etc. Going back to the definition of $f_{t} \equiv f$, it develops that

$$
-\hat{h}(t) / 2 \pi h(a)=\left[i a f+f^{\bullet}\right] \in Z_{\Delta^{+}},
$$

and the proof is complete.

8. A condition that $Z^{0+}=Z$

$$
\begin{aligned}
& Z^{0+}=Z \text { if } \int_{1} d a / a^{2} \lg \int_{a} \Delta e^{-2 B}=-\infty \text { with } 0 \leqslant B \in \uparrow, \int_{1} e^{-2 B}<\infty, \text { and } \\
& \int_{1} B / a^{2}<\infty
\end{aligned}
$$

Δ has to be non-Hardy for this integral to diverge since

$$
\begin{aligned}
\int_{1} \frac{d a}{a^{2}} \lg \int_{a} \Delta e^{-2 B} & \geqslant \int_{1} \frac{d a}{a^{2}} \lg \left[a^{3} \int_{a} \frac{\Delta e^{-2 B}}{c^{3}}\right] \\
& =\int_{1} \frac{\lg (2 a)}{a^{2}} d a+\int_{1} \frac{d a}{a^{2}} \lg \left[\frac{a^{2}}{2} \int_{a} \frac{\Delta e^{-2 B}}{c^{3}}\right] \\
& \geqslant \int_{1} \frac{\lg (2 a)}{a^{2}} d a+\int_{1} \frac{d a}{a^{2}}\left[\frac{a^{2}}{2} \int_{a} \frac{\lg \Delta e^{-2 B}}{c^{3}}\right] \\
& \geqslant \int_{1} \frac{\lg (2 a)}{a^{2}} d a+\frac{1}{2} \int_{1} d a \int_{a} \frac{\lg \Delta}{c^{-}}-\int_{1} d a \int_{a} \frac{B}{c^{3}} \\
& >\text { constant }+\frac{1}{2} \int_{1} \lg ^{-} \Delta / a^{2}
\end{aligned}
$$

also, if $\Delta \in \downarrow$, then $\int_{1} d a a^{-2} \lg \int_{a} \Delta e^{-2 B}$ and $\int_{1} \lg ^{-} \Delta / a^{2}$ converge or diverge together, since under this condition,

$$
\begin{aligned}
\int_{1} \frac{d a}{a^{2}} \lg \int_{a} \Delta e^{-2 B} & \leqslant \int_{1} \frac{d a}{a^{2}}\left(\lg \Delta+\lg \int_{a} e^{-2 B}\right) \\
& \leqslant \int_{1} \lg \Delta / a^{2}+\lg \int_{1} \frac{d a}{a^{2}} \int_{a} e^{-2 B} \\
& <\int_{1} \lg \Delta / a^{2}+\text { constant }
\end{aligned}
$$

esp., if $\Delta \epsilon \downarrow$, then $Z^{0+}=Z$ if and only if $\int_{1} \lg \Delta / a^{2}=-\infty$.
As to the proof of the original statement, if $\int_{1} d a a^{-2} \lg \int_{a} \Delta e^{-2 B}=-\infty$ with B as above and if $Z^{0+} \neq Z$, then $Z^{|t|<\delta} \neq Z$ for small δ, and it is possible to find $f \in Z$ with $\int f e(i a t) \Delta d a=0(|t|<\delta)$. But

$$
\int_{a}|f| \Delta e^{-B} \leqslant\|f\|_{\Delta}\left(\int_{a} \Delta e^{-2 B}\right)^{\frac{1}{2}} \quad(a \geqslant 1)
$$

so that

$$
\int_{1} \frac{d a}{a^{2}} \lg \int_{a}|f| \Delta e^{-B}=-\infty
$$

and according to Levinson [8, p. 81], this cannot happen unless $f=0$.

9. Discussion of \mathbf{Z}.

I. O. Hačatrjan's contribution to the Bernstein problem [5] is adapted as follows. Consider the span $Z_{0}=Z_{\cdot \Delta}$ of (real) polynomials p of $i \gamma$ belonging to Z, let $\int a^{2 d} \Delta<\infty(d \geqslant 1)$, let $\sigma .(\gamma)$ be the least upper bound of $|p(\gamma)|$ for $p \in Z_{. \Delta^{+}}$with $\|p\|_{\Delta^{+}} \leqslant 1$, and let us prove that the following alternative holds:
either $\quad \sigma . \equiv \infty \quad(b \neq 0)$,
$\sup \int \frac{\lg ^{+}|p|}{1+a^{2}}=\int \frac{\lg \sigma .}{1+a^{2}}=\infty$, for $p \in Z_{\cdot \Delta^{+}}$with $\|p\|_{\Delta^{+}} \leqslant 1$,
and $Z=Z$,
or $\quad \lg \sigma$. is a continuous, non-negative, subharmonic function, $\int \frac{\lg \sigma .}{1+a^{2}}<\infty$,
$\lg \sigma \cdot(\gamma) \leqslant \frac{1}{\pi} \int \frac{b}{(c-a)^{2}+b^{2}} \lg \sigma .(c) d c \quad(\gamma=a+i b, b>0)$,
$\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \sigma .\left(R e^{i \theta}\right) \leqslant 0$, and Z. $\neq Z$;
in the second case, $Z . \subset Z$, the two coinciding if and only if $\sigma . \equiv \sigma^{\circ}(b \neq 0)$.

Proof. The proof is identical to the discussion of Z• (Section 4), excepting the final statement to which attention is now directed.

Given $\sigma_{\bullet}=\sigma^{\cdot}<\infty$ while $Z_{.} \neq Z$, then it would be possible to find $f \in Z_{\Delta}^{*}, f \neq 0$, with $\int f^{*} a^{d} \Delta=0(d \geqslant 0)$; this implies

$$
\int f^{*} \frac{p-p(\beta)}{c-\beta} \Delta=0 \quad(\beta=a+i b, b \neq 0)
$$

and it follows that

$$
\left|\int \frac{f^{*} \Delta}{c-\beta}\right|=\left|\int \frac{f^{*} \Delta p}{(c-\beta) p(\beta)}\right| \leqslant\left\|\frac{c-i}{c-\beta} f\right\|_{\Delta}|p(\beta)|^{-1}\|p\|_{\Delta^{+}} \quad(\beta=a+i b, b \neq 0)
$$

esp.,

$$
\left|\int \frac{t^{*} \Delta}{c-i b}\right|=o\left(\sigma_{.}(i b)^{-1}\right) \quad \text { as }|b| \uparrow \infty .
$$

Chose $g \in Z_{\Delta^{+}}^{*}$; then $\int f^{*} g \Delta(c-\beta)^{-1}$ tends to 0 at both ends of $a=0$ so that

$$
\hat{g} \equiv \int f^{*} \frac{g-g(\beta)}{c-\beta} \Delta
$$

satisfies

$$
\begin{aligned}
|\hat{g}(i b)| & \leqslant o(1)+|g(i b)|\left|\int \frac{f^{*} \Delta}{c-i b}\right| \\
& =o(1)+|g(i b)| o\left(\sigma \cdot(i b)^{-1}\right) \\
& =o(1)+|g(i b)| o\left(\sigma^{*}(i b)^{-1}\right) \\
& =o(1) \quad(|b| \uparrow \infty),
\end{aligned}
$$

and since \hat{g} is entire of minimal exponential type, Phragmén-Lindelöf implies $\hat{g} \equiv 0$. But then $\int f^{*} g(c-\beta)^{-1} \Delta=g(\beta) \int f^{*} \Delta(c-\beta)^{-1}=0$ if β is a root of $g \in Z_{\Delta^{+}}(b \neq 0)$, so taking $g=(\gamma-i) f \in Z_{\Delta^{+}}$and $\beta=i,\|f\|^{2}=\int f^{*} g(c-i)^{-1} \Delta=0$, and the proof is complete.
$10 a$. Special case ($1 / \Delta=1+c_{1} a^{2}+$ etc.)
Hačatrjan [5] states the analogue for the Bernstein problem of the following result:
If $1 / \Delta=1+c_{1} a^{2}+c_{2} a^{4}+$ etc. $\left(c_{1}, c_{2}\right.$, etc. $\left.\geqslant 0\right)$ and if $\int a^{2 d} \Delta<\infty(d \geqslant 0)$, then either Δ is non-Hardy and Z. $=Z$ or Δ is Hardy and $Z .=Z$.

Proof. $p_{d}=\sum_{n \leqslant d} c_{n} \gamma^{2 n}$ can be expressed as $\left|q_{d}\right|^{2}, q_{d}$ being a polynomial in $i \gamma$ of degree d with no roots in the closed half plane $b \geqslant 0$. As $d \uparrow \infty$,
while

$$
\begin{gathered}
\lg \left|q_{d}(i)\right|^{2}=\frac{1}{\pi} \int \frac{\lg \left|q_{d}\right|^{2}}{1+c^{2}} \uparrow \frac{1}{\pi} \int \frac{\lg \Delta^{-1}}{1+c^{2}} \\
\left\|q_{d}\right\|_{\Delta^{+}}^{2}=\frac{1}{\pi} \int \frac{p_{a} \Delta}{1+c^{2}} \uparrow 1,
\end{gathered}
$$

so either $\int \lg \Delta /\left(1+c^{2}\right)=-\infty, \sigma .(i)=\infty$, and $Z .=Z$ or Δ is Hardy $\left(\Delta=|h|^{2}\right.$ with h outer). Because $\left|q_{d}\right|^{2}=p_{d} \leqslant \Delta^{-1}$, an application of Lebesgue's dominated convergence test shows that $h^{-1}=\lim _{d \uparrow \infty} q_{d}(b \geqslant 0)$ in the second case.

Now in the second case, if $f \in Z_{\Delta}^{*}$ is perpendicular to $Z_{\cdot \Delta}$, if $g \in Z_{\Delta^{+}}$, and if

$$
\hat{g}(\beta) \equiv \int f^{*} \frac{g-g(\underline{\beta})}{c-\beta} \Delta
$$

as before, then

$$
\left|q_{d}(i b) \int \frac{f^{*} \Delta d c}{c-i b}\right|=\left|\int \frac{f^{*} q_{d} \Delta d c}{c-i b}\right| \leqslant\|f\|_{\Delta}\left(\int \frac{\left|q_{d}\right|^{2} \Delta d c}{c^{2}+b^{2}}\right)^{1 / 2} \leqslant\|f\|_{\Delta}\left(\int \frac{d c}{c^{2}+b^{2}}\right)^{1 / 2}=\|f\|_{\Delta}(\pi / b)^{1 / 2},
$$

and so

$$
\begin{aligned}
|\hat{g}(i b)| & \leqslant\left|\int \frac{f^{*} g \Delta d c}{c-i b}\right|+|g(i b)|\left|\int \frac{f^{*} \Delta d c}{c-i b}\right| \\
& \leqslant\|f\|_{\Delta}\left(\int \frac{c^{2}+1}{c^{2}+b^{2}}|g|^{2} \Delta^{+} d c\right)^{1 / 2}+\inf _{d>0}\left|\frac{g(i b)}{q_{d}(i b)}\right|\left|\int \frac{f^{*} q_{d} \Delta d c}{c-i b}\right| \\
& =o(1)+|g h(i b)|\|f\|_{\Delta}(\pi / b)^{1 / 2} .
\end{aligned}
$$

Since the Poisson integral applies as an inequality to $\lg \left|(\gamma+i)^{-1} g h\right|$ and as an equality to $\lg |\gamma+i|$,

$$
|g h(i b)|^{2} \leqslant e\left[\frac{1}{\pi} \int \frac{b}{b^{2}+c^{2}} \lg |g h|^{2}\right] \leqslant \frac{1}{\pi} \int \frac{b\left(c^{2}+1\right)}{b^{2}+c^{2}}|g|^{2} \Delta^{+}=o(b)
$$

and so $\lim _{b \uparrow \infty}|\hat{g}(i b)|=0$. Repeating the proof as $b \downarrow-\infty$ justifies $\lim _{b \downarrow-\infty}|\hat{g}(i b)|=0$, and now $\hat{g}=f=0$ follows as in Section 9.

A special case of the above is the fact that if h is the reciprocal of an entire function and if the roots of h^{-1} fall in the sector $-3 \pi / 4 \leqslant \theta \leqslant-\pi / 4$, then $Z .=Z$; obvious improvements can be made, but $Z .=Z$ does not hold without some condition on the roots of h^{-1} as the example of Section 11 proves.

As a second application, it will be proved that

$$
Z .=Z \cdot \text { in case } \Delta(a)=e\left(-2|a|^{p}\right)(0<p<1)
$$

similar but more complicated cases can be treated in the same fashion (see below).

Proof. It suffices to construct a weight $\Delta^{0}=\left(1+c_{1} a^{2}+\text { etc. }\right)^{-1}$ with non-negative coefficients, positive multiples of which bound Δ above and below. Define $\#(R)=$ $\left[\theta R^{p}+1 / 2\right]$ with an adjustable $\theta>0$, the bracket denoting the integral part, and let

$$
\begin{aligned}
-\lg \Delta^{o}(a) & =\int_{0} \lg \left(1+\frac{a^{2}}{R^{2}}\right) \#(d R)=2 a^{2} \int_{0} \frac{\#(R) d R}{\left(a^{2}+R^{2}\right) R} \\
& =\frac{2 a^{2}}{p} \int_{0} \frac{[\theta c+1 / 2] d c}{\left(a^{2}+c^{2 / p}\right) c} \quad\left(c=R^{p}\right) \\
& =J_{1}+J_{2} \\
J_{1} & =\frac{2 a^{2}}{p} \int_{0} \frac{[\theta c+1 / 2]+1 / 2-(\theta c+1 / 2)}{\left(a^{2}+c^{2 / p}\right) c} d c \\
J_{2} & =\frac{2 a^{2} \theta}{p} \int_{0}\left(a^{2}+c^{2 / p}\right)^{-1} d c .
\end{aligned}
$$

with
and

In J_{2}, subtitute $c=|a|^{p} t$ and let $\theta^{-1}=(2 / p) \int_{0}\left(1+t^{2 / p}\right)^{-1}$, obtaining $J_{2}=2|a|^{p}$. Coming to J_{1}, note that the numerator under the integral sign is periodic and that its average over a period is 0 , so that J_{1} tends to a constant as $|a| \uparrow \infty . J_{1}$ is then bounded, so Δ is bounded above and below by positive multiplies of Δ°, and the proof is complete.
$Z .=Z \cdot$ also holds in the more general case of a Hardy weight.

$$
\Delta=\Delta(0) e\left(-\int_{0}^{|a|} \frac{\omega(c)}{c} d c\right)
$$

provided $\omega \in \uparrow$ and $\omega(c) \lg c$ tends to ∞ as $c \uparrow \infty$.
Proof. Under the above condition it is possible, according to Y. Domar [4], to find a reciprocal weight $1 / \Delta^{\circ}=1+c_{1} a^{2}+$ etc. with non-negative coefficients such that Δ is bounded above by a positive multiple of Δ° and below by a positive multiple of $\Delta^{\theta}=\Delta^{\theta}(\theta a)$ with a constant depending upon $\theta>1$ alone. Because

$$
Z_{\Delta^{\theta}}=Z_{\Delta^{\theta}} \supset Z_{\Delta}^{\prime},
$$

each $f \in Z_{\Delta}$ can be approximated in $Z_{\Delta^{\theta}}$ by a polynomial p so as to have

$$
\int|f(a / \theta)-p(a / \theta)|^{2} \Delta \leqslant \mathrm{constant} \times \theta\|f-p\|_{\Delta^{\theta}}^{2}
$$

small, and to complete the proof it suffices to check that $f_{\theta}(a)=f(a / \theta)$ tends to f in Z_{Δ} as $\theta \downarrow 1$. But this is obvious from the fact that

$$
\left\|f_{\theta}\right\|_{\Delta}^{2}=\theta \int|f|^{2} \Delta(\theta a) \sim\|f\|_{\Delta}^{2} \quad(\theta \downarrow 1)
$$

while f_{θ} tends to f pointwise under a local bound.
By the same method it is easy to prove that if Δ has the above form with $\omega \in \uparrow$ and $\int_{1} \omega / c^{2}=\infty$ (non-Hardy case), then $Z .=Z$.

Domar's paper was brought to our notice through the kindness of Professor L. Carleson.

10 b. A special case $\left(\Delta=e^{-2|a|^{\frac{1}{2}}}\right)$

$\Delta=\exp \left(-2|a|^{\frac{1}{2}}\right)$ falls under the discussion of $10 a$, but it is entertaining to check $Z=Z$. from scratch using the following special proof.

$$
\Delta=|h|^{2} \text { with }
$$

$$
h=e\left[-(2 \gamma)^{\frac{1}{2}} e^{-i \pi / 4}\right]=\int_{0}^{\infty} e^{i \gamma t} \frac{e^{-1 / 2 t}}{\left(2 \pi t^{3}\right)^{\frac{1}{2}}} d t
$$

and h is outer since

$$
\lg |h(i)|=-2^{\frac{1}{2}}=\frac{1}{\pi} \int \frac{\lg |h|}{1+a^{2}}
$$

(see [7, p. 62]).
Given $f \in Z_{\Delta}$, a simple application of Phragmén-Lindelöf supplies us with the bound

$$
f(\gamma) \leqslant B e[(\sqrt{2}+\delta) \sqrt{R}] \quad(\delta>0) ;
$$

hence, $\left|f\left(\gamma^{2}\right)\right| \leqslant B e[(\sqrt{2}+\delta) R]$, and according to Pólya's theorem [2; 5.3.5],

$$
\begin{aligned}
& \qquad f\left(\gamma^{2}\right)=\int e^{\gamma w} g=\int e^{-\gamma w} g=\int \cosh (\gamma w) g d w, \\
& \text { i.e., } \quad f(\gamma)=\int \cosh (\sqrt{\gamma} w) g d w,
\end{aligned}
$$

the integral being extended over $|w|=2^{\frac{1}{1}}+\delta$ and g being regular outside $|w|=2^{\frac{1}{2}}$ and at ∞. Accordingly, if $f \in Z$ is perpendicular to Z., then

$$
\begin{aligned}
0 & =\int f a^{d} \Delta d a=\int g d w \int \cosh (\sqrt{a} w) a^{d} \Delta d a \\
& =\int g\left[\int_{0}^{\infty} \cosh (\sqrt{a} w) a^{d} e^{-2 a^{\frac{1}{2}}}+\int_{0}^{\infty} \cos (\sqrt{a} w)(-a)^{d} e^{-2 a^{\frac{1}{2}}}\right] \\
& =\int g D^{2 d}\left[\int_{0}^{\infty} \cosh (\sqrt{a} w) e^{-2 a^{\frac{1}{2}}}+\int_{0}^{\infty} \cos (\sqrt{a} w) e^{-2 a^{\frac{1}{2}}}\right] \\
& =2 \int g D^{2 d+1}\left[\int_{0}^{\infty} \sinh (a w) e^{-2 a}+\int_{0}^{\infty} \sin (a w) e^{-2 a}\right] \\
& =\int g D^{2 d+1}\left[\frac{1}{2-w}-\frac{1}{2+w}+\frac{1}{2 i+w}-\frac{1}{2 i-w}\right] \\
& =\int g D^{2 d+1} \frac{16 w}{16-w^{4}} .
\end{aligned}
$$

Because $\int e^{\gamma w} g=f\left(\gamma^{2}\right)$ is an even function, $\int g w^{d}=0\left(d\right.$ odd) and since $w /\left(16-w^{4}\right)$ is a sum of powers $w^{d}(d \equiv l(4))$, it follows that
and so

$$
\begin{aligned}
0 & =\int g D^{d}\left[\frac{1}{2-w}-\frac{1}{2+w}+\frac{1}{2 i+w}-\frac{1}{2 i-w}\right] \quad(d \geqslant 0) \\
0 & =\int g\left[\frac{1}{2-w+t}-\frac{1}{2+w-t}+\frac{1}{2 i+w-t}-\frac{1}{2 i-w+t}\right] d w \\
& =g(t+2)+g(t-2)-g(t-2 i)-g(t+2 i)
\end{aligned}
$$

for small $|t|$.
Draw four circles, each of radius 2^{\ddagger}, having centers at $2,2 i,-2$ and $-2 i$ respectively. The circles with centers at 2 and $2 i$ are tangent at A, which is $1+i$. The circles with centers at 2 and $-2 i$ are tangent at B, which is $1-i$. The point C is $-3+i$ and lies on the circle with center at -2 . Using this diagram depicting 4 discs on each of which just one of the summands can be singular, it follows that $g(t-2)=-g(t+2)+g(t-2 i)+g(t+2 i)$ can be singular only at A and B since the second member is non-singular on the rest of $|t-2| \leqslant 2^{\frac{1}{2}}$. Now if $g(t-2)$ is singular at A, then $g(t+2)$ is singular at $C=A-4$ and that is impossible, so $g(t-2)$ cannot be singular at A, nor, for similar reasons, at B. But then g is entire, and by Cauchy's theorem, $f\left(\gamma^{2}\right)=\int \cosh (\gamma w) g=0$, completing the proof.
$\boldsymbol{Z}^{-}=\boldsymbol{Z}^{+/-} \neq \boldsymbol{Z}^{-} \cap \boldsymbol{Z}^{+}=\boldsymbol{Z}^{+}=\boldsymbol{Z}^{\boldsymbol{0}}=\boldsymbol{Z}$. can be proved at little extra cost. $\boldsymbol{Z}^{-} \cap \boldsymbol{Z}^{+}=\boldsymbol{Z}^{-}$ is obvious from Section 6, and so it suffices to prove that $\mathfrak{j}=h / h^{*}=e\left[2 i \operatorname{sgn}(a)|a|^{\frac{1}{2}}\right]$ is not a ratio j_{2} / j_{1} of inner functions (Section 3). But in the opposite case, $\mathfrak{j} f \in H^{2+}$ ($f=j_{1} h$), so that
9-642906 Acta mathematica 112 . Imprimé le 22 septembre 1964.

$$
\begin{aligned}
0 & =\frac{1}{2} \int e^{-l a t} \mathrm{j} f d a \quad(t<0) \\
& =\operatorname{Re}\left[\int_{0}^{\infty} e^{-t a t} e^{2 t a^{\frac{1}{2}}} f d a\right]=\operatorname{Im}\left[\int_{0}^{\infty} e^{b t} e^{(i 2)^{\frac{1}{t}}(i-1)} f(i b) d b\right],
\end{aligned}
$$

since

$$
\left|\int_{0}^{\pi / 2} e^{-i R e^{i \theta t}} e^{2 i R^{\frac{1}{i} e^{i \theta i} 2}} f\left(R e^{i \theta}\right) R e^{i \theta} \partial d \theta\right| \leqslant \int_{0}^{\pi / 2} e^{R \sin \theta t} e^{\left.-2 R^{\frac{1}{2}} \sin \theta \right\rvert\, 2} e^{-\{2 R)^{\frac{1}{2} \cos (\theta \theta / 2-\pi / 4)}} R d \theta
$$

tends to 0 as $R \uparrow \infty$. Because $f=f^{*}(a=0)$,

$$
0=\operatorname{Im}\left[e^{(2 b)^{\frac{1}{2}}(i-1)} f(i b)\right]=\sin (2 b)^{\frac{1}{2}} e^{-(2 b)^{\frac{1}{2}}} f(i b) \quad(b \geqslant 0),
$$

and that is absurd.
An entertaining illustration of the delicacy of the projection $Z^{+/-}$is thus obtained. $Z^{+1-} \neq Z^{\cdot}$ as was just proved, so naturally the condition that $Z^{+1-}=Z^{0}$, to wit, that $\Delta=|f|^{-2}$ with f entire of minimal exponential type, does not hold. But as proved in $10 a, e\left(-2|a|^{\frac{1}{2}}\right)$ is bounded above and below by positive multiples of such a weight.
11. An example (Δ Hardy, $\operatorname{dim} Z .=\infty, Z^{*}=Z^{0+} \neq Z$.)

A weight Δ exists with the following properties:
(a) $\int \lg \Delta /\left(1+a^{2}\right)>-\infty$, i.e., Δ is a Hardy weight,
(b) $\int a^{2 d} \Delta<\infty(d \geqslant 0)$, i.e., $\operatorname{dim} Z .=\infty$,
(c) $\boldsymbol{Z} . \neq \boldsymbol{Z}=\boldsymbol{Z}^{0+}$.

Consider for the proof

$$
\begin{gathered}
\delta_{n}=1 / \sinh \pi n, \quad \gamma+n=n^{2}-i \delta_{n}, \quad \gamma-n=-n^{2}-i \delta_{n} \\
1 / h(\gamma)=\prod_{|n|>0}\left(1-\frac{\gamma}{\gamma_{n}}\right), \quad \Delta=|h|^{2}, \\
f=\frac{\sin \pi \sqrt{\gamma} \sinh \pi \sqrt{\gamma}}{\pi^{2} \gamma}=\prod_{n \geqslant 1}\left(1-\frac{\gamma^{2}}{n^{4}}\right), \quad \text { and } \quad g=f /\left(1-\gamma^{2}\right)=\prod_{n \geqslant 2}\left(1-\frac{\gamma^{2}}{n^{4}}\right),
\end{gathered}
$$

and break up the proof into a series of simple lemmas.
(a) $0<B_{1}<|f h|<B_{2}$ if $\left|\gamma \pm n^{2}\right| \geqslant \frac{1}{2}(n \geqslant 1)$, while $0<B_{3}<|f h|\left|\left(\gamma-\gamma_{ \pm n}\right) /\left(\gamma \mp n^{2}\right)\right|$ $<B_{4}$ if $\left|\gamma \pm n^{2}\right|<\frac{1}{2}$; a similar appraisal holds with h^{*} in place of h.
(b) $g \in Z_{\Delta}$.
(c) Δ is a Hardy weight and $\int a^{2 d} \Delta<\infty \quad(d \geqslant 0)$.
(d) $g \notin Z \cdot \Delta$.

Proof of (a). Obvious.
Proof of (b). g is entire of minimal exponential type with $g^{*}(-a)=g(a)$, so it is enough to check that $\|g\|_{\Delta}<\infty$. But (a) supplies us with the bound $|f h|<B_{5}$, so $|g h|<B_{5} /\left(1-a^{2}\right)$, and since $|g h|<B_{6}$ for small $|a|,\|g\|_{\Delta}<\infty$.

Proof of (c). h^{-1} is entire and free of roots in the closed half-plane $b \geqslant 0$, and $\Delta(a+i b) \in \downarrow$ as a function of $b>0$, so it suffices to check

$$
\int_{8} a^{2 d} \Delta \leqslant \sum_{n=3}^{\infty} \int_{n^{2}-n+\frac{1}{2}}^{n^{2}+n+\frac{1}{4}} a^{2 d} \Delta<\infty \quad(d \geqslant 0)
$$

But on $\left|a-n^{2}\right|<\frac{1}{2}$,

$$
\Delta<B_{4}^{2}|f|^{-2} \frac{\left(a-n^{2}\right)^{2}}{\left(a-n^{2}\right)^{2}+\delta_{n}^{2}}, \quad \frac{\left|a-n^{2}\right|}{|f|}=\frac{\pi^{2} a}{\sinh \pi \sqrt{a}}\left|\frac{a-n^{2}}{\sin \pi \sqrt{a}}\right|<B_{7} n^{3} e^{-\pi n}
$$

and hence

$$
a^{2 d} \Delta<B_{8} \frac{n^{2 a+6} e^{-2 \pi n}}{\left(a-n^{2}\right)^{2}+\delta_{n}^{2}}
$$

on this range, while on the rest of $n^{2}-n+\frac{1}{4} \leqslant a<n^{2}+n+\frac{1}{4}$,

$$
a^{2 d} \Delta<(n+1)^{2 d} B_{2}^{2}|f|^{-2}<B_{9} n^{2 d+6} e^{-2 \pi n}
$$

so that

$$
\int_{n^{2}-n+\frac{1}{2}}^{n^{2}+n+\frac{1}{2 d}} a^{2 d} \Delta<B_{10}\left[n^{2 d+6} e^{-2 \pi n} \int \frac{d a}{a^{2}+\delta_{n}^{2}}+n^{2 d+7} e^{-2 \pi n}\right]<B_{11} n^{2 d+7} e^{-\pi n}
$$

which is the general term of a convergent sum.
Proof of (d). $g \in Z_{\cdot \Delta}$ implies the existence of polynomials $p_{\delta} \in Z_{\cdot \Delta}$ with $\left\|g-p_{\delta}\right\|_{\Delta}<\delta$. p_{δ} can be supposed even since g is such; also, as $\delta \downarrow 0, p_{\delta}$ tends to g on the whole plane under a local bound $(\sigma .<\infty)$, so that $p_{0+}(0)=g(0)=1$, and according to Hurwitz's theorem, the roots of p_{δ} tend to the roots $\pm 2^{2}, \pm 3^{2}$, etc. of g. Rotate the roots of p_{δ} onto the line $b=0$ and put its bottom coefficient $=1$, defining a new polynomial q_{δ} with $\left|q_{\delta}\right| \leqslant\left|p_{\delta} / p_{\delta}(0)\right|(b=0)$ and $\left\|q_{\delta}\right\|_{\Delta} \leqslant\left\|p_{\delta}\right\|_{\Delta} /\left|p_{\delta}(0)\right|$ bounded as $\delta \downarrow 0$; it is this boundedness of $\left\|q_{\delta}\right\|_{\Delta}$ that leads to a contradiction.

Evaluate $\int q_{\delta}^{2} h^{*}$, integrating about the semicircle $R e^{i \theta}(-\pi / 2 \leqslant \theta \leqslant \pi / 2)$ and then down along the segment joining $i R$ to $-i R$ with R half an odd integer. Bound the integral on the arc with the aid of $\left|f h^{*}\right|<B_{2}$ and let $R \uparrow \infty$, obtaining

$$
\frac{1}{2 \pi} \int q_{\delta}^{2} h^{*}(i b) d b=\sum_{n=1}^{\infty} \frac{q_{\delta}^{2}\left(\gamma_{n}^{*}\right)}{\left(1 / h^{*}\right)^{\prime}\left(\gamma_{n}^{*}\right)} \equiv Q_{\delta} .
$$

Because $h^{*}(i b)>0$ and $\left|q_{\delta}(i b)\right| \geqslant\left|p_{\delta}(i b) / p_{\delta}(0)\right|$, an application of Fatou's lemma combined with $\left|f h^{*}\right|>B_{1}>0$ justifies the under-estimate:

$$
Q_{0+} \geqslant \frac{1}{2 \pi} \int g^{2} h^{*}(i b)>B_{13} \int_{1} f(i b) / b^{4}>B_{14} \int_{1} e^{\pi(2 b)^{\frac{1}{y}}} / b^{5}=\infty .
$$

Q_{δ} is now estimated again with the contradictory result that it is bounded as $\delta \downarrow 0$.
$\int\left(q_{\delta} h\right)^{2}=0$, the integral being taken around the arc $R e^{i \theta}(0 \leqslant \theta \leqslant \pi / 2)$, down the segment joining $i R$ to 0 , and thence out along the segment joining 0 to R with \boldsymbol{R} half an odd integer. Bound the integral along the are as before and let $\boldsymbol{R} \uparrow \infty$, obtaining

$$
\int_{0}^{\infty}\left(q_{\delta} h\right)^{2}(i b)=-i \int_{0}^{\infty}\left(q_{\delta} h\right)^{2}(a) \leqslant\left\|q_{\delta}\right\|_{\Delta}^{2}<B_{15}
$$

the first integrand being positive.
$\int\left(q_{\delta} h\right)^{2}\left(\gamma-\gamma_{n}\right) /\left(\gamma-\gamma_{n}^{*}\right)$ is now evaluated along the same curve, giving

$$
-\int_{0}^{\infty}\left(q_{\delta} h\right)^{2}(i b) \frac{i b-\gamma_{n}}{i b-\gamma_{n}^{*}}-i \int_{0}^{\infty}\left(q_{\delta} h\right)^{2}(a) \frac{a-\gamma_{n}}{a-\gamma_{n}^{*}}=4 \pi i \delta_{n}\left(q_{\delta} h\right)^{2}\left(\gamma_{n}^{*}\right) ;
$$

this supplies the bound

$$
4 \pi \delta_{n}\left|q_{\delta} h\left(\gamma_{n}^{*}\right)\right|^{2} \leqslant \int_{0}^{\infty}\left(q_{\delta} h\right)^{2}(i b)+\int_{0}^{\infty}\left|q_{\delta} h\right|^{2}(a)<2 B_{15}=B_{16},
$$

and it follows that

$$
Q_{0+}<B_{16} \sum_{n=1}^{\infty} e^{\pi n}\left|\frac{h^{-2}\left(\gamma_{n}^{*}\right)}{\left(1 / h^{*}\right)^{\prime}\left(\gamma_{n}^{*}\right)}\right|
$$

But, since

$$
\begin{gathered}
\left|\left(\gamma-\gamma_{n}^{*}\right) h^{*}\right|<B_{4} \frac{\left|\gamma-n^{2}\right|}{|f|} \text { near } \gamma=\gamma_{n}^{*} \\
\left|\left(1 / h^{*}\right)^{\prime}\left(\gamma_{n}^{*}\right)\right|^{-1} \leqslant 2 B_{4} e^{-\pi n} /\left|f\left(\gamma_{n}^{*}\right)\right| \\
\left|h\left(\gamma_{n}^{*}\right)\right|^{-2}<4 B_{3}^{-2}\left|f\left(\gamma_{n}^{*}\right)\right|^{2}
\end{gathered}
$$

while
and combining these bounds leads at once to the desired contradiction:

$$
Q_{0+}<B_{17} \sum_{n=1}^{\infty}\left|f\left(\gamma_{n}^{*}\right)\right|<B_{18} \sum_{n=1}^{\infty} n^{-3}<\infty .
$$

Z is sometimes closed under $f \rightarrow{ }^{\prime} f=i f^{\prime}$, but this can fail; indeed in the above case,

$$
\Delta>\frac{B_{3}^{2}}{|f|^{2}} \frac{\left(a-n^{2}\right)^{2}}{\left(a-n^{2}\right)^{2}+\delta_{n}^{2}}>B_{19} \frac{n^{6} \delta_{n}^{2}}{\left(a-n^{2}\right)^{2}+\delta_{n}^{2}} \quad\left(\left|a-n^{2}\right|<\sqrt{\delta_{n}}\right),
$$

while on the same range, $\quad|y|>B_{20} e^{\pi n} n^{-7}$
so that $\|g\|_{\Delta}=\infty$ because

$$
\int_{n^{2}-\delta_{n}^{\frac{1}{4}}}^{n^{2}+\delta_{\frac{k}{\frac{1}{2}}}^{6}} \frac{n^{6} \delta_{n}^{2} e^{2 \pi n-14}}{\left(a-n^{2}\right)^{2}+\delta_{n}^{2}}>B_{21} n^{-8} \int_{-\delta_{n}^{\frac{1}{2}}}^{+\delta_{\frac{1}{2}}^{\frac{1}{2}}} \frac{1}{a^{2}+\delta_{n}^{2}}>B_{22} n^{-8} e^{\pi n} \quad(n \uparrow \infty)
$$

is the general term of a divergent sum.

12. Hardy weights with arithmetical gaps

Consider a weight Δ that bounds above a decreasing Hardy weight $|h|^{2}$ (h outer) on an arithmetical series of intervals:

$$
|a-(2 n-1) c|<d \quad(0<d<c, n=0, \pm 1, \text { etc. })
$$

but is otherwise unspecified. Then
(a) $Z \cdot$ is a closed subspace of Z,
(b) $Z \cdot \supset Z^{0+}$, and hence in accordance with Section $5, Z \cdot=Z^{0+}$.

As an application, it is easy to derive the lemma of Tutubalin-Freĭdlin [11]: that if $\Delta \geqslant|a|^{-2 m}(m>0)$ far out, then $Z^{0+}=Z$; indeed, according to (b), $f \in Z^{0+}$ is an entire function of minimal exponential type, and since $\infty>\int|f|^{2} /\left(1+a^{2}\right)^{m}$, a simple application of Phragmén-Lindelöf implies that f is a polynomial (of degree $<m$). Actually, it is enough to have $\Delta \geqslant|a|^{-2 m}$ on an arithmetical series of intervals, as the reader can easily check using (b) and the Duffin-Schaeffer theorem [2; 10.5.1].

Proof of (a). Similar to that of (b).
Proof of (b). $f \in \mathbb{Z}^{0+}$ implies the existence of a sum f_{δ} of trigonometrical functions $e($ iat $)$ with $|t|<\delta$, real coefficients, and $\left\|f-f_{\delta}\right\|_{\Delta}<\delta$, and it follows that

$$
B_{1}>\left\|f_{\delta}\right\|_{\Delta}^{2} \geqslant \int_{(2 n-1) c-d}^{(2 n-1) c+d}\left|f_{\delta} h\right|^{2} \geqslant 2 d\left|f_{\delta} h\left(a_{n}\right)\right|^{2}
$$

for some $\left|a_{n}-(2 n-1) c\right|<d$ with a constant B_{1} not depending upon δ. Bring in an
entire function g of exponential type $\leqslant \varepsilon$ with $|g|<|h|$ far out on $b=0$ and $|g| \geqslant \frac{1}{2}$ on the two 45° lines: to be explicit, let

$$
g(\gamma)=e^{-\prod_{n=n_{1}}^{\infty} \cos \left(\gamma / \gamma_{n}\right)}
$$

with

$$
\text { l }<\gamma_{1}<\gamma_{2}<\text { etc. }
$$

and

$$
\begin{array}{rlrl}
\#(R)=\sum_{\gamma_{n}<R} 1 & =0 & & (R<1) \\
& =\left[3 \int_{1}^{R} \frac{\lg |h|^{-1}}{A} d A\right] & (R \geqslant 1),
\end{array}
$$

the bracket denoting the integral part and $|h(1)|$ being supposed $\leqslant 1$, choose n_{1} so that

$$
\begin{aligned}
|g(\gamma)| & \leqslant \prod_{n=n_{1}}^{\infty} e^{R / \gamma_{n}}=e\left[R \int_{C} \frac{\#(d B)}{B}\right] \quad\left(C=\gamma_{n_{1}},|\gamma|=R\right) \\
& \leqslant e\left[R \int_{C} \frac{\#(B)}{B^{2}}\right]<e\left[3 R \int_{C} \frac{d B}{B^{2}} \int_{1}^{B} \frac{\lg |h|^{-1}}{A} d A\right] \\
& =e\left[3 R \frac{1}{C} \int_{1}^{C} \frac{\lg |h|^{-1}}{A} d A+3 R \int_{C}^{\infty} \frac{\lg |h|^{-1}}{B^{2}} d B\right] \\
& <e^{\varepsilon R}
\end{aligned}
$$

and use the obvious $|\cos a|<e\left(-a^{2} / 3\right)(|a| \leqslant 1)$ to bound $|g(a)|$ for large $|a|$ as follows:

$$
\begin{aligned}
e^{\frac{2}{y}}|g(a)| & \leqslant \prod_{\gamma_{n} \geqslant|a|} e^{-a^{2} / 3 \gamma_{n}^{2}}=e\left[-\frac{a^{2}}{3} \int_{|a|} \frac{\#(d R)}{R^{2}}\right] \\
& =e\left[\frac{a^{2}}{3} \int_{|a|} \frac{\#(R)-\#(|a|)}{R^{3}}\right] \\
& <e\left[\frac{a^{2}}{2} \int_{|a|} \int_{|a|}^{R} \frac{-\lg |h|^{-1}}{A} d A \frac{d R}{R^{3}}+\frac{a^{2}}{3} \int_{|a|} \frac{d R}{R^{3}}\right] \\
& =e\left[-\frac{a^{2}}{2} \int_{|a|} \frac{\lg \mid h h^{-1}}{R^{3}} d R+\frac{2}{3}\right] \\
& \leqslant \frac{a^{2}}{2} \int_{|a|}|h| \frac{d R}{R^{3}} e^{\frac{1}{2}} \\
& \leqslant|h| e^{\frac{3}{3}} .
\end{aligned}
$$

$f_{\delta} g$ is then entire of exponential type $\delta+\varepsilon$ and $\left|f_{\delta} g\left(a_{n}\right)\right|<B_{2}$ with a constant B_{2} not depending upon δ. An application of the Duffin-Schaeffer theorem [2; 10.5.3] implies $\left|f_{\delta} g\right|<B_{3}$ on the whole line $b=0$ if $\delta+\varepsilon$ is small enough, B_{3} being likewise independent of δ. Phragmén-Lindelöf now implies that $\left|f_{\delta} g\right|<B_{3} e[(\delta+\varepsilon) R]$, and since $|g| \geqslant \frac{1}{2}$ on the two 45° lines, $\left|f_{\delta}\right|<2 B_{3} e[(\delta+\varepsilon) R]$ there. Phragmén-Lindelöf is now applied to each of the 4 sectors between the 45° lines; this supplies us with the bound $\left|f_{\delta}\right|<2 B_{3} e[2(\delta+\varepsilon) R]$, establishing the compactness of f_{δ} as $\delta \downarrow 0$, and it follows that each limit function f_{0+} is entire of exponential type $\leqslant 2 \varepsilon$ with $\left\|f-f_{0+}\right\|_{\Delta}=\mathbf{0}$. But this means that f is the restriction to $b=0$ of an entire function of exponential type $\leqslant 2 \varepsilon$, and since ε can be made as small as desired, $f \in Z_{\Delta}^{*}$, and the proof is complete.

13. Entire functions of positive type

Given a Hardy weight $\Delta=|h|^{2}$ and a positive number ϱ, let $Z Z^{\circ}$ be the class of entire functions $f=f(\gamma)$ of exponential type $\leqslant \varrho$:

$$
\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \left|f\left(R e^{i \theta}\right)\right| \leqslant \varrho
$$

which, restricted to the line $b=0$, belong to Z. Then

$$
Z^{\cdot \theta}=Z^{|t| \leqslant e+}=\bigcap_{e^{\prime}>e} Z^{|t| \leqslant e^{\prime}}
$$

Proof. We first prove the inclusion

$$
Z^{-\varrho} \supset Z^{|t| \leqslant e^{+}}
$$

If $f \in Z^{\mid t_{1} \leqslant e^{+}}$, then it is possible to find (real) sums of trigonometrical functions:

$$
f_{n}(\gamma)=\sum_{k \leqslant n} c_{k}^{n} e\left(i \gamma t_{k}^{n}\right)
$$

with $\left|t_{k}^{n}\right|<\varrho+1 / n$ and $\left\|f-f_{n}\right\|_{\Delta}<1 / n$. Given $\delta>1 / n, f_{n} e[i \gamma(\varrho+\delta)] h$ belongs to H^{2+}, and much as in Section 6b,

$$
\left|f_{n} h\right|<B_{1} e^{(\varrho+\delta) R} \quad(b \geqslant 1), \quad\left|f_{n} h^{*}\right|<B_{2} e^{(e+\delta) R} \quad(b \leqslant-1),
$$

and

$$
\left|f_{n}\right|<B_{3} \quad(|\gamma| \leqslant 2)
$$

with constants B_{1}, B_{2}, B_{3} not depending upon n. An appraisal of h on $\theta=\pi / 4,3 \pi / 4$ and of h^{*} on $\theta=5 \pi / 4,7 \pi / 4$ leads to

$$
\left|f_{n}\right|<B_{4} e^{(e+2 \delta) \pi}
$$

much as in Section $6 b, B_{4}$ being likewise independent of n, and since $\left\|f-f_{n}\right\|_{\Delta}<1 / n$, it follows that as $n \uparrow \infty, f_{n}$ tends on the whole plane to an entire function f_{∞} of exponential type $\leqslant \varrho$, coinciding with f on $b=0$. But then $f \in Z^{\bullet e}$, and the inclusion is proved.

As in Section 5, it suffices for the proof of the opposite inclusion:

$$
Z^{\cdot e} \subset Z^{|t| \leqslant e^{+}}
$$

to consider even functions $f \in \mathbb{Z}^{\bullet}$ with Hadamard factorization

$$
f(\gamma)=\prod_{n=1}^{\infty}\left(1-\frac{\gamma^{2}}{\gamma_{n}^{2}}\right)
$$

Because

$$
\lg ^{+}|f(a)|^{2} \leqslant \lg ^{+}\left(|f(a)|^{2} \Delta\right)-\lg ^{-} \Delta \leqslant|f(a)|^{2} \Delta-\lg ^{-} \Delta
$$

f satisfies

$$
\int \frac{\lg ^{+}|f(a)|}{1+a^{2}}<\infty ;
$$

it follows that

$$
\varlimsup_{R \nmid \infty} R^{-1} \lg \left|f\left(R e^{i \theta}\right)\right| \leqslant \varrho|\sin \theta|
$$

[8, p. 27] and that the roots of f in the half-plane $a>0$ have a density $D \leqslant \varrho / \pi$:

$$
\lim _{n \rightarrow \infty} n /\left|\gamma_{n}\right|=D
$$

[8, Theorem VIII]. Also, it is permissible to assume that the roots of f are real. Consider for the proof

$$
f_{1}(\gamma)=\prod_{n=1}^{d}\left(1-\frac{\gamma^{2}}{\gamma_{n}^{2}}\right) f_{2}(\gamma) \quad \text { with } \quad f_{2}(\gamma)=\prod_{n>d}\left(1-\frac{\gamma^{2}}{\left|\gamma_{n}^{2}\right|}\right)
$$

Then $\left|f_{1}(a)\right| \leqslant|f(a)|$ and the roots of $f_{2}(\gamma)$ have the same density D; this implies [2; 8.2.1] that f_{2} is of type πD. Hence f_{1} is also of type πD and so $f_{1} \in Z^{\bullet e}$. But then $\left(\gamma^{2}-1\right)^{d} f_{2} \in Z^{\bullet e}$, so $\left(\gamma^{2}-1\right)^{n} f_{2} \in Z^{\cdot e}(n \leqslant d)$. All these functions have real zeros and hence we may assume them in $Z^{|t| \leqslant \varrho+} . f_{1}$ is a sum of these, so $t_{1} \in Z^{|t| \leqslant \varrho+}$, and since $\left\|f-f_{1}\right\|_{\Delta}$ is small for large d it follows that $f \in Z^{|t| \leqslant \varrho^{+}}$also. From here on the roots of f are real: $0<\gamma_{1} \leqslant \gamma_{2} \leqslant$ etc.

Given $\varrho^{\prime}>\varrho$, let us grant the existence of an entire function g of exponential type $\leqslant \varrho^{\prime}$ with $\|f-g\|_{\Delta}$ as small as desired and $g \in L^{2}\left(R^{1}\right)$. As in Section 5, an application of the Paley-Wiener theorem implies $f \in Z^{|t| \leqslant Q^{\circ}}$, and $f \in Z^{|t| \leqslant \varrho^{+}}$follows. Accordingly, it suffices to produce such an entire function g.

Given a small positive number $\varepsilon<1$, define

$$
\begin{gathered}
\delta=(\varepsilon / 8)^{2}, \quad D_{*}=D-\delta / 2, \quad D^{*}=D+\delta / 2 \\
g_{1}(\gamma)=\prod_{\gamma_{n} \leqslant d}\left(1-\frac{\gamma^{2}}{\gamma_{n}^{2}}\right), \quad g_{2}(\gamma)=\prod_{n>D^{* d}}\left(1-\frac{D^{* 2} \gamma^{2}}{n^{2}}\right), \quad g_{3}(\gamma)=\prod_{n>e d}\left(1-\frac{\varepsilon^{2} \gamma^{2}}{n^{2}}\right),
\end{gathered}
$$

and let us check the following lemmas leading to the properties of $g=g_{1} g_{2} g_{3}$ needed for the proof of $f \in Z^{\mid \ell \leqslant \Omega+}$ indicated above; in the lemmas, c_{1}, c_{2}, etc. denote positive constants depending upon ε alone, and it is understood that if ε and/or d is unspecified, then ε has to be small enough and d large enough, the smallest admissible d depending in general upon ε. At a first reading, just note the statements of lemmas (a)-(g) and then turn to (h).
(a) g is an entire function of exponential type $\pi\left(D^{*}+\varepsilon\right) \leqslant \varrho+\pi(\delta / 2+\varepsilon)$.

Proof of (a). Obvious.
(b) $|f-g|$ tends to 0 as $d \uparrow \infty$ independently of $\varepsilon(<1)$ and of $|a| \leqslant A$ for each $A>0$.

Proof of (b).

$$
e\left(-2 A^{2} \varepsilon^{2} / n^{2}\right) \leqslant 1-a^{2} \varepsilon^{2} / n^{2} \leqslant 1 \quad(|a| \leqslant A)
$$

for $n>\varepsilon d$ and $d>2 A$, so that as $d \uparrow \infty$

$$
e\left(-2 A^{2} \sum_{n>\varepsilon d} \varepsilon^{2} n^{-2}\right) \leqslant g_{3}(a) \leqslant 1
$$

is close to 1 independently of $\varepsilon(<1)$ and of $|a| \leqslant A$.
(c) $|g| \leqslant B|f|$ for $|a| \leqslant d / 2, B$ being the universal constant involved in the appraisal (e) of Section 5.

Proof of (c). Because the roots of f have density D,

$$
n / D^{*}<\gamma_{n}<n / D_{*} \quad\left(n \geqslant n_{0}\right)
$$

with n_{0} depending only upon D_{*} and D^{*} and so only upon ε. Given $d>n_{0}$ and $0 \leqslant a \leqslant d / 2$, if δ is so small that $D^{*} / D_{*}<2$, then
so that

$$
\left|f / g_{1}\right|=\prod_{\gamma_{n}>d}\left(1-\frac{a^{2}}{\gamma_{n}^{2}}\right)>\prod_{n>D_{*} d}\left(1-\frac{D^{* 2} a^{2}}{n^{2}}\right)
$$

$$
\left|t / g_{1} g_{2}\right|>\prod_{D_{*} d<n \leqslant D^{* d}}\left(1-\frac{D^{* 2} a^{2}}{n^{2}}\right)
$$

and since, in this product,

$$
D^{* 2} a^{2} / n^{2}<\frac{(D+\delta / 2)^{2}}{4(D-\delta / 2)^{2}}<\frac{1}{2}
$$

for small δ, the bound $1-c>e(-2 c)\left(0<c \leqslant \frac{1}{2}\right)$ implies

$$
\left|f / g_{1} g_{2}\right|>e\left[-2 a^{2} D_{D_{*} d<n \leqslant D * d}^{* 2} n^{-2}\right]>e\left[-3 a^{2}\left(D^{*}-D_{*}\right) / d\right]=e\left(-3 a^{2} \delta / d\right)
$$

On the other hand, the appraisal (e) of Section 5 implies

$$
g_{3}<B e\left(-a^{2} \varepsilon / d\right) \quad(0 \leqslant a \leqslant d / 2)
$$

and since $3 \delta<\varepsilon$ for small ε, the desired bound follows.
(d) $|g|<c_{1} \quad\left(d / 2<|a| \leqslant D_{*} d / D^{*}\right)$.

Proof of (d). Given $d>2 n_{0}$ with n_{0} as in the proof of (c), it. is possible to find c_{2} and c_{3} depending upon $n_{0}=n_{0}(\varepsilon)$ (and so upon ε) such that

$$
\left|g_{1}\right|<c_{1} a^{c_{2}} \prod_{n<D_{*} a}\left(\frac{D^{* 2} a^{2}}{n^{2}}-1\right) \prod_{D * a<n<D_{*} d}\left(1-\frac{D_{*}^{2} a^{2}}{n^{2}}\right)
$$

for $d / 2<a \leqslant D_{*} d / D^{*}$. Define $c_{3}=c_{1} /\left(\pi D^{*}\right)$; then

$$
\left|g_{1} g_{2}\right|<c_{3} a^{c_{2}-1}\left|\sin \pi D^{*} a\right| J_{1} / J_{2} J_{3},
$$

$J_{1}=\prod_{D * a<n<D_{*} d} \frac{n^{2}-D_{*}^{2} a^{2}}{n^{2}-D^{* 2} a^{2}}, \quad J_{2}=\prod_{D_{*} a \leqslant n \leqslant D^{*}}\left(\frac{a^{2} D^{* 2}}{n^{2}}-1\right), \quad J_{3}=\prod_{D_{*} d \leqslant n \leqslant D_{*} d}\left(1-\frac{D^{* 2} a^{2}}{n^{2}}\right)$.
J_{1} is supposed non-void since the proof simplifies in the opposite case; also, it is supposed below that the smallest integer $n_{1}>D^{*} a$ does not exceed $D^{*} a+\frac{1}{2}$, the discussion of J_{1} being simpler and that of J_{2} just a little more complicated if $n_{1}>$ $D^{*} a+\frac{1}{2}$. Bring out the leading factor of J_{1} :

$$
\frac{n_{1}^{2}-D_{*}^{2} a^{2}}{n_{1}^{2}-D^{* 2} a^{2}}<\frac{n_{1}-D_{*} a}{n_{1}-D^{*} a} \leqslant \frac{1+a \delta}{n_{1}-D^{*} a}<\frac{e^{a \delta}}{n_{1}-D^{*} a}
$$

the product of other factors of J_{1} does not exceed

$$
\begin{aligned}
\prod_{D * a+\frac{1}{2}<n<D_{*} d} \frac{n-D_{*} a}{n-D^{*} a} & =e\left[\sum_{D * a+\frac{1}{2}<n<D_{*} a} \lg \left(1+\frac{a \delta}{n-D^{*} a}\right)\right] \\
& <e\left[2 \int_{0}^{D_{*} d-D * a} \lg (1+a \delta / c) d c\right] \\
& <e\left[2 a \delta \int_{0}^{D^{* / \delta}} \lg (1+1 / c) d c\right]
\end{aligned}
$$

since $D_{*} d<2 D^{*} a$, and using the bound $\lg (1+1 / c)<1 / c$, it follows that

$$
J_{1}<e\left[2 a \delta\left(\int_{0}^{1} \lg (1+1 / c) d c+\lg D^{*} / \delta\right)\right] \frac{e^{a \delta}}{n_{1}-D^{*} a}<\frac{e^{a \delta^{\frac{1}{2}}}}{n_{1}-D^{*} a}
$$

for small δ. Stirling's approximation is now applied to obtain an underestimate of J_{2} for small δ, using $D^{*} a-\left(n_{1}-1\right)>\frac{1}{2}$:

$$
\begin{aligned}
J_{2} & >\prod_{D_{*} a \leqslant n \leqslant D^{*} a} \frac{D^{*} a-n}{n}>\frac{\Gamma(a \delta)}{\left(D^{*} a\right)^{a \delta+1}} \\
& >c_{4}(a \delta)^{a \delta-\frac{1}{2}} e^{-a \delta}\left(D^{*} a\right)^{-a \delta-1} \\
& >c_{4}\left(D^{*} a\right)^{-\frac{\xi}{2}}\left(\delta / e D^{*}\right)^{a \delta} \\
& =c_{4}\left(D^{*} a\right)^{-\frac{8}{2}} e\left[-a \delta\left(\lg \frac{D^{*}}{\delta}+1\right)\right] \\
& >c_{4}\left(D^{*} a\right)^{-\frac{3}{2}} e^{-a \delta^{\frac{t}{2}}}
\end{aligned}
$$

with a universal constant c_{4}. Similarly

$$
\begin{aligned}
J_{3} & \geqslant \prod_{D_{*} d \leqslant n \leqslant D^{* d}}\left(\frac{n-a D^{*}}{n}\right) \geqslant \frac{\Gamma\left(D^{*}(d-a)\right)}{\Gamma\left(D_{*} d-a D^{*}+1\right)\left(D^{*} d\right)^{\delta d+1}} \\
& \geqslant c_{5} \frac{\left[D^{*}(d-a)\right]^{D^{*}(d-a)-\frac{1}{2}} e^{-D^{*}(d-a)}}{\left(D_{*} d-a D^{*}\right)^{D_{*} d-a D^{*}+\frac{1}{2}} e^{-D_{*} d+a D^{*}}\left(D^{*} d\right)^{\delta d+1}}, \\
& \geqslant c_{5} \frac{e^{-\delta d}}{\left(D_{*} d-a D^{*}\right) D^{*} d}\left[\frac{D^{*}(d-a)}{D_{*} d-a D^{*}}\right]^{D_{*} d-a D^{*-\frac{1}{2}}}\left(\frac{d-a}{d}\right)^{\delta d} \\
& \geqslant c_{5} \frac{e^{-\delta d}}{D^{*} D_{*} d^{2}}\left(1-\frac{a}{d}\right)^{\delta d} \geqslant c_{5} e^{-2 \delta a} a^{-2}\left(1-\frac{D_{*}}{D^{*}}\right)^{\delta d} /\left(4 D^{*} D_{*}\right) \\
& \geqslant c_{5} a^{-2} e\left[-2 \delta a-\delta d \lg \left(D^{*} / \delta\right)\right] /\left(4 D^{*} D_{*}\right) \geqslant c_{5} a^{-2} e(-\sqrt{\delta} a) /\left(4 D^{*} D_{*}\right)
\end{aligned}
$$

with a universal constant c_{5}. Combining the bounds for J_{1}, J_{2}, J_{3} and using $0<n_{1}$ $D^{*} a \leqslant \frac{1}{2}$, it follows that

$$
\left|g_{1} g_{2}\right|<c_{6} a^{c_{2}+3}\left|\frac{\sin \pi D^{*} a}{n_{1}-D^{*} a}\right| e^{3 a \delta^{\frac{1}{2}}}<c_{7} a^{c_{2}+3} e^{3 a \delta^{\frac{\delta^{2}}{2}}}<c_{7} e^{4 a \delta^{\frac{1}{2}}}
$$

with c_{7} depending upon ε alone, d being increased if need be so as to achieve $a^{c_{3}+3}<e\left(a \delta^{\frac{1}{2}}\right)$. But now the familiar appraisal (e) of Section 5 implies

$$
\left|g_{3}\right|<B e^{-4 a \delta^{\frac{1}{2}}}
$$

and so

$$
|g|=\left|g_{1} g_{2} g_{3}\right|<B c_{7} \equiv c_{1}
$$

completing the proof of (d).
(e) $|g|<c_{8} \quad\left(D_{*} d / D^{*}<|a| \leqslant d\right)$.

Proot of (e). $\quad\left|g_{1}\right|<c_{9} a^{c_{10}} \prod_{n<D, a}\left(\frac{D^{* 2} a^{2}}{n^{2}}-1\right)$
for $D_{*} d / D^{*}<a \leqslant d$ with constants c_{9} and c_{10} depending upon $n_{0}=n_{0}(\varepsilon)$ alone, so

$$
\left|g_{1} g_{2}\right|<c_{11} a^{c_{10}}\left|\sin \pi D^{*} a\right| / J_{4}
$$

with

$$
\begin{aligned}
J_{4}=\prod_{D_{*} a \leqslant n \leqslant D^{*} d}\left|1-\frac{D^{* 2} a^{2}}{n^{2}}\right| & \geqslant \prod_{D_{*} a \leqslant n \leqslant D^{*} d}\left|1-\frac{D^{*} a}{n}\right| \\
& \geqslant\left|\frac{n_{2}-D^{*} a}{n^{2}}\right| \frac{\Gamma\left(D^{*} d-D_{*} a\right) \Gamma(a \delta)}{\left(D^{*} d\right)^{D^{*} d-D_{*} a+3}}
\end{aligned}
$$

n_{2} being determined from $-\frac{1}{2}<n_{2}-D^{*} a \leqslant \frac{1}{2}$. Both gamma functions contribute to this underestimate if, as is supposed below, $D^{*} a$ is not too close to $D_{*} a$ or to $D^{*} d$; the appraisal of J_{4} is similar in the opposite case. Stirling's approximation is now applied to obtain

$$
J_{4}>c_{12}\left|n_{2}-D^{*} a\right|\left(D^{*} d\right)^{-5} J_{5} J_{6}
$$

with

$$
J_{5}=e\left[-D^{*} d\left(\frac{d-a}{d}\right) \lg \left(\frac{d}{d-a}\right)\right]
$$

and

$$
J_{6}=e\left[-D^{*} d\left(\frac{a \delta}{D^{*} d}\right) \lg \left(\frac{D^{*} d}{a \delta}\right)\right]
$$

Because $d-a \leqslant d\left(1-D_{*} / D^{*}\right)=d \delta / D^{*}$ and $a \delta \leqslant d \delta$, both J_{5} and J_{6} are bigger than $e\left(-a \delta^{\ddagger}\right)$ for small δ, so

$$
J_{4}>c_{13}\left|n_{2}-D^{*} a\right| a^{-5} e(-3 a \sqrt{\delta}),
$$

and the proof is completed as in (d) above.
(f) $|g|<c_{14}(d<|a| \leqslant 2 d)$.

Proof of (f). $\quad\left|g_{1}\right|<c_{15} c^{c_{10}} \prod_{n<D * d}\left(\frac{D^{* 2} a^{2}}{n^{2}}-1\right) e^{2 \pi \delta}$
for $d<a \leqslant 2 d$, the exponential accounting for the factors of

$$
\prod_{D_{*} d \leqslant n \leqslant D * d}\left(\frac{D^{* 2} a^{2}}{n^{2}}-1\right)
$$

that exceed 1 ; the rest of the proof is similar to but simpler than that of (e).
(g) $|g|<c_{17} \quad(|a|>2 d)$, and $g \in L^{2}\left(R^{1}\right)$.

Proof of (g). $\quad\left|g_{1}\right|<c_{18} a^{c_{10}} \prod_{n \leqslant D^{* d}}\left(\frac{D^{* 2} a^{2}}{n^{2}}-1\right)$
for $a>2 d$, so

$$
\left|g_{1} g_{2}\right|<c_{20} a^{c_{10}}\left|\sin \pi D^{*} a\right| \leqslant c_{20} a^{c_{10}}
$$

and using the familiar appraisal (e) of Section 5 to bound g_{3}, it develops that

But

$$
\begin{gathered}
|g|<B c_{21} c^{c_{22}} e^{-\varepsilon d(1+2 \lg a / d))}, \\
d \lg (a / d)>\frac{d \lg 2}{\lg (2 d)} \lg a \quad(a>2 d), \\
|g|<c_{23} a^{c_{22}-2 \varepsilon d \lg 2 / \lg (2 d)}
\end{gathered}
$$

and so
is bounded ($a>2 d$) and belongs to $L^{2}\left(R^{1}\right)$ if d is large enough.
(h) $\|f-g\|_{\Delta}$ can be made as small as desired by appropriate choice of ε and d.

Proof of (h).

$$
\frac{1}{2}\|f-g\|_{\Delta}^{2} \leqslant \int_{0}^{A}|f-g|^{2} \Delta+(2 B+1)^{2} \int_{A}^{d / 2}|f|^{2} \Delta+\int_{d / 2}^{\infty}\left(c_{24}+|f|\right)^{2} \Delta
$$

with an adjustable number A, a universal constant B, and c_{24} (= the greatest of $c_{1}, c_{8}, c_{14}, c_{17}$) depending upon ε alone, provided ε is small enough and $d(>2 A)$ is large enough, the smallest admissible d depending upon ε. A is now chosen so large that $(2 B+1)^{2} \int_{A}^{\infty}|f|^{2} \Delta<1 / n$ and then ε is chosen so small that $c_{24}=c_{24}(\varepsilon)<\infty$ and d is made so big that neither $\int_{0}^{A}|f-g|^{2} \Delta$ nor $\int_{d / 2}^{\infty}\left(c_{24}+|f|\right)^{2} \Delta$ exceeds $1 / n$, with the result that $\|f-g\|_{\Delta}^{2}<6 / n$.

14. Another condition for $\mathbf{Z}^{+/-}=\mathbf{Z}^{\mathbf{0}+}$ (Δ Hardy)

Because $Z^{|t| \leqslant \varrho^{+}}$is closed so is $Z^{\cdot e}$, but it is possible to go another step and prove that,
if $\quad \sigma^{\cdot \varrho}(\gamma)=\sup |f(\gamma)| \quad f \in Z_{\Delta_{+}}^{e},\|f\|_{\Delta^{+}} \leqslant 1$,
then $\lg \sigma^{\bullet e}$ is a non-negative, continuous subharmonic function such that

$$
\varlimsup_{R \uparrow \infty} R^{-1} \max _{0 \leqslant \theta<2 \pi} \lg \sigma^{\circ \varrho}\left(R e^{i \theta}\right)=\varrho .
$$

Proof. Only the last statement needs a proof. Given $f \in Z_{\Delta^{+}}^{\circ},(\gamma+i)^{-1} e^{i v e} f h \in H^{2+}$, and so

$$
\lg \left|\frac{e^{i \gamma e} f h}{\gamma+i}\right| \leqslant \frac{1}{\pi} \int \frac{b d c}{(c-a)^{2}+b^{2}} \lg \frac{|f h|}{|a+i|} \quad(\gamma=a+i b, b>0) ;
$$

this leads at once to

$$
\lg \left[e^{-b e} \sigma^{\cdot o}(\gamma)\right] \leqslant \frac{1}{\pi} \int \frac{b d c}{(c-a)^{2}+b^{2}} \lg \sigma^{\cdot \theta}
$$

since $h(\gamma) /(\gamma+i)$ is outer. $\int \lg \sigma^{\circ o} /\left(1+a^{2}\right)<\infty$ is now proved as in Section $4(\mathrm{e})$, and it follows that

$$
\varlimsup_{R \uparrow \infty} R^{-1} \lg \sigma^{\cdot \theta}\left(R e^{i \theta}\right) \leqslant \varrho|\sin \theta|
$$

for $\theta=\pi / 4,3 \pi / 4$; the same holds by a similar argument for $\theta=5 \pi / 4,7 \pi / 4$. An application of Phragmén-Lindelöf as in Section 4 (f) completes the proof that $\sigma^{\circ e}$ is of type $\leqslant \varrho$, and that the equality must hold follows since $e(-i \gamma \varrho) \in Z_{\Delta^{+}}^{\bullet}$.

As an application of the bound for $\sigma^{\circ \varrho}$, it will be proved that if $Z^{|t| \leqslant \varrho} \supset Z^{+/-}$, and indeed if the projection of $e(i a s)$ upon Z^{-}belongs to $Z^{|t| \leqslant Q^{+}}$for a single $s>0$, then $Z^{+1-}=Z^{0+}$. Suppose that projection belongs to $Z^{|t| \leqslant \varrho+}$ for a single $s>0$; then it does so far a whole (bounded) interval of s with a larger ϱ, and selecting such an s from the Lebesgue set of

$$
h=\frac{1}{2 \pi} \int_{0} e^{-i a t} \hat{h}(a) d a
$$

and arguing as in Section 7 with $\sigma^{\cdot e}$ in place of σ^{*}, it is found that h^{-1} is an entire function of exponential type $\leqslant \varrho$. But then $\mathrm{j}=h / h^{*}$ is inner as in Section 7 so that $Z^{+/-}=Z^{-} \cap Z^{+}$; also $Z^{-} \cap Z^{+}=Z \cdot$ since $1 / \Delta$ is locally summable (Section $6 c$), and so $Z^{+-}=Z=Z^{0+}$ as stated.

References

[1]. Beurling, A., On two problems concerning linear transformations in Hilbert space. Acta Math., 81 (1949), 239-255.
[2]. Boas, R., Entire Functions. Academic Press, New York, 1954.
[3]. Carleman, T., L'intégrale de Fourier et questions qui s'y rattachent. Uppsala 1944.
[4]. Domar, Y., Closed primary ideals on a class of Banach algebras. Math. Scand., 7 (1959), 106-125.
[5]. Hačatrjan, I. O., Weighted approximation of entire functions of degree 0 by polynomials on the real axis. Dokl. Akad. Nauk SSSR, 145 (1962), 744-747; Sov. Math., 3 (1962), 1106-1110.
[6]. Hida, 'I'., Canonical representations of Gaussian processes and their applications. Mem. CJll. Sci., U. of Kyoto, ser. A, Math., 33 (1960), 109-155.
[7]. Hofrman, K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.
[8]. Levinson, N., Gap and Density Theorems. New York, 1940.
[9]. McKean, H. P., Jr., Brownian motion with a several dimensional time. Teor. Veroyatnost. i Primenen, 8 (1963), 357-378.
[10]. Mergelyan, S. N., Weighted approximation by polynomials. Uspehi Mat. Nauk, 11 (1956), 107-152; Amer. Math. Soc. Translations, 10 (1958), 59-106.
[11]. Tutubalin, V. N. \& Freidlin, M. I., On the structure of the infinitesimal σ-algebra of a Gaussian process. Teor. Veroyatnost. i Primenen., 7 (1962), 196-199.

