BOUNDED APPROXIMATION BY POLYNOMIALS

BY
L. A. RUBEL and A. L. SHIELDS
Columbia University and the University of Illinois, University of Michigan ${ }^{1}$)

1. Introduction

In this paper we present a complete solution to the following problem: if G is an arbitrary bounded open set in the complex plane, characterize those functions in G that can be obtained as the bounded pointwise limits of polynomials in G. Roughly speaking, the answer is that a function is such a limit if and only if it has a bounded analytic continuation throughout a certain bounded open set G^{*} that contains G. This set G^{*} is the inside of the "outer boundary" of G. More precisely, if G is a bounded open set and if H is the unbounded component of the complement of G^{-}(the closure of G), then G^{*} denotes the complement of H^{-}.

A sequence of polynomials $\left\{p_{n}\right\}$ is said to converge boundedly to a function f in an open set G if the polynomials are uniformly bounded in G, and if $p_{n}(z)$ converges to $f(z)$ at each point $z \in G$. It follows that f is bounded in G. Also, by the Stieltjes-Osgood theorem (see [8], Chapter II, §7) the convergence is uniform on compact subsets of G and thus f is analytic in G.

Main theorem. Let G be a bounded open set in the plane and let foe a bounded analytic function in G. If there is a function F, analytic in G^{*} and agreeing with f in G, with $|F(z)| \leqslant$ M in G^{*}, then there is a sequence of polynomials $\left\{p_{n}\right\}$ such that
(i) $\lim p_{n}(z)=F(z) \quad\left(z \in G^{*}\right)$,
(ii) $\left|p_{n}(z)\right| \leqslant M \quad\left(z \in G^{*} ; \quad n=1,2, \ldots\right)$.

Conversely, if there is a sequence of polynomials converging to f at each point of G, and uniformly bounded in G, then there is a bounded analytic function F in G^{*} that agrees with f in G.
${ }^{(1)}$ The research of both authors was supported in part by the National Science Foundation, and the research of the first author was also supported in part by the Air Force Office of Scientific Research.
10-642907. Acta mathematica. 112. Imprimé le 2 Décembre 1964.

Fig. 1.
It is possible for a bounded function f to have a continuation F that is unbounded in G^{*}, even when both G and G^{*} are connected and simply connected (see §4).

To illustrate the theorem, let G be the open set consisting of the open unit dise with a ribbon winding around it infinitely often (see Fig. 1). Thus G has two components G_{1} and G_{2}. Let f_{1} and f_{2} be any two bounded analytic functions in G_{1} and G_{2}, respectively. Then there is a single sequence of polynomials converging boundedly to f_{1} in G_{1} and to f_{2} in G_{2}.

It is a classical result (see [5], Chapter I, § 1) that if G is the open unit dise, then every bounded analytic function in G can be boundedly approximated by polynomials. This result was extended to general Jordan domains by Carleman [3, pp. 3-5]. The next result, a corollary to the main theorem, is the most general result in this direction. The sufficiency, in the special case where G is connected, was proved by Farrell [4].

Corollary. Let G be a simply connected (but not necessarily connected) bounded open set. The necessary and sufficient condition that every bounded analytic function in G be the bounded limit of a sequence of polynomials is that G and H have the same boundary.

Bounded open sets G whose boundary coincides with the boundary of H will be called Carathéodory sets, following the terminology in the book of Markushevitch [6, Chapter V, 4.7]. E. Bishop [1] gives an equivalent definition and calls them "balanced" open sets. We shall see that Carathéodory sets are simply connected. See § 2.2 and $\S 2.8$ for a more detailed discussion.

More generally, in case G is not simply connected, the necessary and sufficient condition that every bounded analytic function in G be boundedly approximable by a sequence of polynomials is that the "inner boundary" of G should form a set of removable singularities for bounded analytic functions. The inner boundary is the set of those boundary points of G that are not boundary points of H.

It is interesting to compare these results with those obtained for other methods of approximation. For example, Runge's theorem may be thought of as answering the following question: if G is an open set, characterize those analytic functions in G that can be
approximated, uniformly on compact subsets of G, by polynomials. One version of Runge's theorem is the following.

Runge's theorem. Let G be an open set and let G^{\wedge} be the complement of the unbounded component of the complement of G. Then a function f can be approximated, uniformly on compact subsets of $G, b y$ a sequence of polynomials if and only if f has an analytic continuation throughout G^{\wedge}.
(In this statement, if G is not a bounded set, then the complements must be taken with respect to the extended plane.)

In the proof of our main theorem we shall use the following form of Runge's theorem (see [8], Chapter IV, § l): if G is a simply connected open set (not necessarily connected), if f is holomorphic in G, and if K is a compact subset of G, then for each $\varepsilon>0$ there is a polynomial p such that $|p-f|<\varepsilon$ on K. We do not use Mergelyan's theorem on uniform approximation by polynomials, but we state one version of it for comparison (see [7], Chapter I, § 4).

Mergelyan's theorem. Let K be a compact set and let K^{\wedge} be the complement of the unbounded component of the complement of K. Then a function f can be approximated uniformly on K by a sequence of polynomials if and only if f has an extension that is continuous on K^{\wedge} and analytic in the interior of K^{\wedge}.

A slight modification of our main theorem can be stated in a similar form.
Theorem. Let G be a bounded open set and let G^{*} be the complement of the closure of the unbounded component of the complement of the closure of G. Then a function f can be approximated pointwise on G by a uniformly bounded (on G) sequence of polynomials if and only if f has a bounded analytic continuation throughout G^{*}.

One might think that our theorem describes the closure of the set of polynomials in some reasonable topology. There are locally convex topologies on $B_{H}(G)$ (the bounded holomorphic functions on G) in which a sequence is convergent if and only if it converges boundedly, and our theorem implies that in such a topology the closure of the set of polynomials coincides with the closure of $B_{H}\left(G^{*}: G\right)$ (those bounded functions f in G that have bounded analytic extensions throughout $\left.G^{*}\right)$. However, we do not know any simple concrete description of the closure of $B_{H}\left(G^{*}: G\right)$. In many cases $B_{H}\left(G^{*}: G\right)$ is already closed, but this is not always the case (see § 4); it seems to depend in part on questions about the harmonic measure of subsets of the boundary. In short, the best formulation of our theorem. appears to be in terms of sequences rather than of topological closure.

The proof of the theorem is long. We sketch here an argument due to Farrell [4], for the case where G^{*} is connected. The proof for the general case requires additional techniques. $P(G)$ denotes the set of all those f in G that are bounded limits of polynomials in G. Thus $P(G) \subset B_{H}(G)$. We wish to show that $P(G)=B_{H}\left(G^{*}: G\right)$.

First, $P(G) \subset B_{H}\left(G^{*}: G\right)$, since if $p_{n} \rightarrow f$ then the p_{n} are uniformly bounded on the outer boundary of G, hence on the boundary of G^{*}, and consequently the p_{n} are uniformly bounded in G^{*}. Hence, some subsequence converges on G^{*} to a function which must be an extension of f. In the other direction, there exist simply connected regions G_{n}, with $G^{*} \subset G_{n} \subset G_{n}^{-} \subset G_{n-1}$ ($n=2,3, \ldots$) that "squeeze down" onto G^{*} in the sense that G^{*} is the largest connected open set that contains G and is contained in all the G_{n}. The sets G_{n} can be constructed metrically, or they can also be obtained as the inside of a sequence of equipotential curves of the equilibrium potential on G. By a theorem of Carathéodory, if Φ_{n} is the normalized mapping function of G_{n} onto the unit disc, then $\Phi_{n} \rightarrow \Phi$, where Φ is the normalized mapping function of G^{*}. Given f in $B_{H}\left(G^{*}\right)$, the functions $f_{n}(z)=f\left(\Phi^{-1}\left(\Phi_{n}(z)\right)\right)$ converge boundedly on G^{*} to f. By Runge's theorem, since G^{*-} is a compact subset of G_{n}, f_{n} can be approximated on G^{*} by a polynomial p_{n} with a uniform error at most $1 / n$, and hence the p_{n} converge boundedly to f in G^{*}.

2. Topological preliminaries

Throughout this paper G will be a bounded open set in the plane and H will be the unbounded component of the complement of the closure of G. For any set A in the plane we use the following notations.
$\partial A=$ boundary of A.
$A^{-}=$closure of A.
Definition 2.1. G^{*} is the complement of H^{-}.
Clearly $G \subset G^{*}$; we shall see that $\left(G^{*}\right)^{*}=G^{*}$.
Definition 2.2. If $\partial G=\partial H$, then G is called a Carathéodory set. If in addition G is connected, then it is called a Carathéodory domain.

Corollary 2.8 says that G^{*} is always a Carathéodory set. It can be shown that G is a Carathéodory set if and only if G is the union of some of the components of G^{*}.

We state the following facts without proof.
2.3. If B is any plane set and C is its complement, then $\partial B=\partial C$.
2.4. If B is open and A is the union of some of the components of B, then $\partial A \subset \partial B$. 2.5. $\partial\left(A^{-}\right) \subset \partial A$ for all sets A.

Lemma 2.6. $\partial G^{*}=\partial H^{-}=\partial H \subset \partial G$.
Proof. The first equality is 2.3 . From 2.3-5 we have

$$
\partial H^{-} \subset \partial H \subset \partial\left(\operatorname{compl} G^{-}\right)=\partial G^{-} \subset \partial G
$$

Thus it only remains to prove that $\partial H \subset \partial\left(H^{-}\right)$.
Let J be the complement of G^{-}. Since $\partial J=J-\cap G^{-}$, every neighborhood of every boundary point of J contains points of G.
H is a component of J and so $\partial H \subset \partial J$. Let $p \in \partial H$ and let U be any neighborhood of p. Then U contains points of G. Thus every neighborhood of p contains points of H^{-}and points of the complement of H^{-}, and so p is a boundary point of H^{-}. Q.E.D.

Lemma 2.7. H is the complement of $\left(G^{*}\right)^{-}$.
Proof. Clearly $G^{*} \subset \operatorname{compl} H$, but this is a closed set and so $\left(G^{*}\right)^{-\subset} \operatorname{compl} H$.
In the other direction, if p is not in H, then either p is not in H^{-}, in which case $p \in G^{*}$,, or $p \in \partial H$. In this case, from Lemma 2.6 we know that every neighborhood of p contains points of G^{*}, and thus p is in the closure of G^{*}. In short, compl $H \subset\left(G^{*}\right)^{-}$Q.E.D.

Corollary 2.8. G^{*} is a Carathéodory set and $\left(G^{*}\right)^{*}=G^{*}$.
This is immediate from the two preceding lemmas and the definition.
2.9. Of the many equivalent definitions of simple connectedness we shall use the following: an open set, connected or not, will be said to be simply connected if its complement(on the Riemann sphere) is connected. A bounded disconnected open set is simply connected. if each of its components is simply connected.

We require three more topological facts, the first two of which we state without proof.
2.10. If A and B are connected and if $A \cap B^{-} \neq \emptyset$, then $A \cup B$ is connected.
2.11. If $B_{1} \subset B_{2} \subset \ldots$ and if each B_{n} is connected, then the union of all the sets B_{n} is also connected.
2.12. If $A=A_{0} \cup A_{1} \cup \ldots$ where each set A_{n} is connected and $A_{0} \cap A_{n}^{-} \neq \emptyset$ for all n, then A is connected.

Proof. Let $B_{n}=A_{0} \cup A_{1} \cup \ldots \cup A_{n}$. It follows inductively from 2.10 that each B_{n} is connected, and the result now follows from 2.11.

Lemma 2.13. Each component of $G^{*} i s$ simply connected.
Proof. Let B be a component of G^{*}. We must show that the complement of B is connected. Indeed, the complement of B consists of the union of H^{-}and all the other components of G^{*}. By 2.11 it will be sufficient to show that the closure of each component of G^{*} meets H^{-}.

Let C be a component of G^{*}. By 2.3 and $2.4, \partial C \subset \partial G^{*}=\partial H^{-} \subset H^{-}$, and the result follows.

Carathéodory kernels. We recall a special case of Carathéodory's theorem on the convergence of regions and mapping functions (see [2], Chapter 5, pp. 120-123).

Definition 2.14. Let $\left\{D_{n}\right\}$ be a sequence of bounded, simply connected regions and let D be a region with $D \subset D_{n+1} \subset D_{n}$ (all n). Then ker $\left[D_{n}: D\right]$ denotes the union of all the connected open sets that contain D and are contained in $\cap D_{n}$.

It is easy to see that $\operatorname{ker}\left[D_{n}: D\right]$ is connected and simply connected.
Theorem 2.15 (Carathéodory). Let $B=\operatorname{ker}\left[D_{n}: D\right]$ and let $z_{0} \in D$. If Φ_{n} are the normalized mapping functions of the domains D_{n} onto the unit disc, then $\Phi_{n} \rightarrow \Phi$ uniformly on compact subsets of B, where Φ is the normalized mapping function of B onto the unit disc. Consequently,

$$
\Phi^{-1}\left(\Phi_{n}(z)\right) \rightarrow z
$$

uniformly on compact subsets of B.
(By normalized mapping functions, we mean that z_{0} is taken into zero, and the derivative at z_{0} is positive.)

Our main topological result is the construction, in case G is a Carathéodory set, of suitable open sets G_{n} that "squeeze down" on G. The construction given here is similar to that given by Markushevitch for the case where G is a Carathéodory region (see [6], Chapter V, § 4.2, 4.7).

According to a private communication from Morton Brown, it is possible to choose the numbers ε_{n} of our construction in such a way that each G_{n} has only finitely many components, each of which is bounded by a Jordan curve. In the appendix, we give a different construction, using potential theory, in which the boundary of each component is actually an analytic Jordan curve.

Theorem 2.16. Let the bounded open set G be a Carathéodory set. Then there exists a sequence of bounded, simply connected open sets G_{n} with the following properties:
(i) ${ }^{-} G^{-} \subset G_{n} \subset G_{n}^{-} \subset G_{n-1} \quad(n=2,3, \ldots) ;$
(ii) if B is any component of G and if B_{n} is the component of G_{n} containing B, then
and

$$
B^{-} \subset B_{n} \subset B_{n}^{-} \subset B_{n-1} \quad(n=2,3, \ldots)
$$

$$
B=\operatorname{ker}\left[B_{n}: B\right]
$$

The converse to this theorem is true but will not be proved here: if the sets G_{n} exist with the properties (i) and (ii), then G is a Carathéodory set.

Proof. Let $F_{n}=\left\{z \mid \operatorname{dist}(z, G)<\varepsilon_{n}\right\} \quad(n=1,2, \ldots)$, where ε_{n} decreases to 0 . Then F_{n} is open, and

$$
G^{-} \subset F_{n} \subset F_{n}^{-} \subset F_{n-1} \quad(n=2,3, \ldots)
$$

2.17. Let J_{n} be the complement of F_{n}^{-}. Then $J_{n} \subset J_{n}^{-} \subset J_{n+1}$. Indeed, $F_{n+1}^{-} \subset F_{n} \subset F_{n}^{-}$ and so $J_{n} \subset$ compl $F_{n} \subset J_{n+1}$. But compl F_{n} is closed.
2.18. Let H_{n} be the unbounded component of J_{n}. Then H_{n} is open and connected and $H_{n} \subset H_{n}^{-} \subset H_{n+1} \subset H$.

Indeed, H_{n}^{-}is a connected subset of J_{n+1} and therefore lies in one component, which must be H_{n+1}.
2.19. Let G_{n} be the complement of H_{n}^{-}. Then G_{n} is open and

$$
G^{-} \subset G_{n} \subset G_{n}^{-} \subset G_{n-1}
$$

just as in 2.17. Also, each component of G_{n} is simply connected by Lemma 2.13.
Let B be a component of G and let B_{n} be the component of G_{n} that contains B.
2.20. $B^{-} \subset B_{n} \subset B_{n}^{-} \subset B_{n-1}$. (The proof is similar to 2.18.)
2.21. Let $C=\operatorname{ker}\left[B_{n}: B\right]$. Then $B=C$.

Indeed, clearly $B \subset C$. If $B \neq C$, then, since C is connected, there is a point $p \in \partial B \cap C$. But G is a Carathéodory set and thus by $2.4 \partial B \subset \partial G \subset \partial H$. Since C is open, some neighborhood of p lies in C. But every neighborhood of p contains points of H, and so there is a point $q \in C \cap H$. Let Γ be an arc in H joining q to the point $z=\infty$, and let d be the distance from Γ to G^{-}. When $\varepsilon_{n}<d$ holds, this are is disjoint from F_{n}^{-}and therefore lies in H_{n}. But this is impossible, for if $q \in H_{n}$ then q cannot lie in B_{n} and hence cannot be in C. This completes the proof of the theorem.

Definition 2.22. Let G be a Carathéodory set and let B be a component of G. By the cluster at B, denoted by $K(B)$, we mean the union of all those components of G that are contained in the component of G^{-}that contains B.
2.23. With the hypotheses and notations of Theorem 2.16 and Definition 2.22 we have

$$
K(B) \subset B_{n} \quad(n=1,2, \ldots) .
$$

Here B_{n} is the component of G_{n} containing B.
Indeed, $G^{-} \subset G_{n}$ and hence each component of G^{-}is contained in some component of G_{n}.

3. The main theorem

We come now to the proof of the main theorem stated in the introduction. The second half of the theorem is easy to prove.

Lemma 3.1. Let f be analytic in G. If there is a sequence of polynomials $\left\{p_{n}\right\}$, uniformly bounded in G and converging to f at each point of G, then there is a bounded analytic function F in G^{*}, agreeing with f in G.

Proof. Since $\left|p_{n}\right| \leqslant M$ in G we have $\left|p_{n}\right| \leqslant M$ on ∂G; hence by Lemma 2.6 and the maximum modulus theorem, this holds throughout G^{*}. Therefore some subsequence of $\left\{p_{n}\right\}$ converges throughout G^{*} to an analytic function F, which furnishes the desired extension of f. Q.E.D.

The other half of the theorem states that every bounded analytic function in G^{*} is the bounded limit of polynomials (with the same bound). Since G^{*} is a Carathéodory set (Corollary 2.8) it will be sufficient to prove the following result.

Theorem 3.2. Let the bounded open set G be a Carathéodory set. Let foe analytic in G with $|f| \leqslant 1$ there. Then there is a sequence of polynomials, uniformly bounded by 1 in G, converging to f at each point of G.

The proof will require a series of lemmas; we use the notations of $\S 2$.
Lemma 3.3. Let E be a finite subsetof G and let B be a component of G. Assume that $f(z)=1$ in all the other components of G. Let $\varepsilon>0$ be given. Then there is a polynomial $p(z)$ such that
(i) $|f(z)-p(z)|<\varepsilon \quad(z \in E)$,
(ii) $|p(z)| \leqslant 1 \quad(z \in G)$.

The proof of this lemma will be given later; we first show how the lemma can be used to prove the theorem.

Let C_{1}, C_{2}, \ldots be an enumeration of all the components of G. If f is any bounded analytic function in $G(|f| \leqslant 1)$, then f_{n} will be defined by

$$
\begin{array}{ll}
f_{n}(z)=f(z) & \left(z \in C_{k} ; k=1,2, \ldots, n\right), \\
f_{n}(z)=1 & \left(z \in C_{k} ; k>n\right) .
\end{array}
$$

Let z_{1}, z_{2}, \ldots be a countable dense subset of G and let $E_{n}=\left\{z_{1}, \ldots, z_{n}\right\}$.
Lemma 3.4. Let n be a given positive integer and let $\varepsilon>0$ be given. Then there is a polynomial $p(z)$ such that
(i) $\left|f_{n}(z)-p(z)\right|<\varepsilon \quad\left(z \in E_{n}\right)$,
(ii) $|p(z)| \leqslant 1 \quad(z \in G)$.

Proof. Let $g_{i}(z)=f(z)$ in C_{i} and let $g_{i}(z)=1$ in all the other components of G. By the previous lemma, for each $i \leqslant n$ there is a polynomial p_{i} such that

$$
\begin{array}{ll}
\left|g_{i}(z)-p_{i}(z)\right|<\varepsilon / n & \left(z \in E_{n}\right), \\
\left|p_{i}(z)\right| \leqslant 1 & (z \in G) .
\end{array}
$$

Let $p=p_{1} p_{2} \ldots p_{n}$. Clearly p is a polynomial bounded by l, and on E_{n} we have

$$
\begin{aligned}
& \left|f_{n}-p\right| \leqslant\left|g_{1} \ldots g_{n}-p_{1} g_{2} \ldots g_{n}\right|+\left|p_{1} g_{2} \ldots g_{n}-p_{1} p_{2} \ldots g_{n}\right| \\
& \\
& \quad+\ldots+\left|p_{1} \ldots p_{n-1} g_{n}-p\right|<\varepsilon / n+\ldots+\varepsilon / n=\varepsilon .
\end{aligned}
$$

3.5. The theorem follows easily from this lemma. Indeed, choose $\varepsilon_{n} \rightarrow 0$. By the previous lemma there is a sequence of polynomials $\left\{p_{n}\right\}$, uniformly bounded by 1 in G, with $\left|t_{n}-p_{n}\right|<\varepsilon_{n}$ on E_{n}. But then p_{n} converges to f on the dense subset $\left\{z_{n}\right\}$ and hence at all points of G by the Stieltjes-Osgood theorem ([8], Chapter II, § 7).

Thus it remains to prove Lemma 3.3. To do this it will be sufficient to prove the following lemma.

Lemma 3.6. Let E be a finite subset of G, let $\varepsilon>0$ be given, let B be a component of G and assume that $f=1$ in all the other components. Then there is a simply connected open set Q containing G^{-}, and an analytic function $g,|g| \leqslant 1$ in Q, such that $|f-g|<\varepsilon$ on E.

Indeed, suppose that this lemma has been established. Since G^{-}is a compact subset of the simply connected set Q, we may apply Runge's theorem to obtain a polynomial p such that $|p| \leqslant 1$ and $|p-g|<\varepsilon$ on G^{-}, and hence $|p-f|<2 \varepsilon$ on E.

The proof of Lemma 3.6 will be given in several steps.
3.7. From Theorem 2.16 we have a sequence of sets $\left\{G_{n}\right\}$ "squeezing down" on G. Let us fix an integer n for the moment. We shall see later that for a suitable choice of n, the set G_{n} will serve as the set Q called for in Lemma 3.6.

Let B_{n} be the component of G_{n} containing B. We wish to define a function g in all of G_{n} as called for in the lemma. We begin by putting $g=1$ in all the components of G_{n} other than B_{n}. In Section 3.14 we shall show that if n is large enough, then g can be defined in B_{n} so as to satisfy the conditions of the lemma.
3.8. Let z_{0} be a point in B, and let Φ_{n} and Φ be the normalized mapping functions from B_{n} and B, respectively, onto the unit disc $D(|w|<1)$. As $n \rightarrow \infty$ we have, by Theorems 2.15 and 2.16,

$$
\Phi_{n}(z) \rightarrow \Phi(z) \quad(z \in B) .
$$

3.9. As in 2.22, the cluster at B, denoted by $K(B)$, means the union of all those components of G that are contained in the component of G^{-}that contains B. Let B, A_{1}, A_{2}, \ldots be an enumeration of these components. Since the mapping functions $\left\{\Phi_{n}\right\}$ are uniformly bounded on $K(B)$, some subsequence, which we continue to denote by $\left\{\Phi_{n}\right\}$, will converge on all of $K(B)$ to a function $s(z)$. We already know that $s(z)=\Phi(z)$ on B.
3.10. In each of the components $A_{1}, A_{2}, \ldots s(z)$ is a constant of modulus 1:

$$
s(z) \equiv \zeta_{i} \quad\left(z \in A_{i}\right),\left|\zeta_{i}\right|=1 .
$$

By the maximum modulus theorem, it is sufficient to show that in each component A_{i} there is at least one point where $|s|=1$. Actually we shall show that $|s(z)| \equiv 1$ in each A_{i}. Indeed, assume that at some point z^{\prime} in one of the components we had $\Phi_{n}\left(z^{\prime}\right) \rightarrow w^{\prime}$ and $\left|w^{\prime}\right|<1$. By 3.8, there is a point $z^{\prime \prime}$ in B at which $\Phi_{n}\left(z^{\prime \prime}\right) \rightarrow w^{\prime}$. But by Hurwitz' theorem, this would mean that for all sufficiently large n the function Φ_{n} would take the value w^{\prime} in a neighborhood of z^{\prime} and also in a neighborhood of $z^{\prime \prime}$, contradicting the fact that Φ_{n} is one-to-one in B_{n}.

Next, we require some results on functions analytic in the unit disc.
Lemma 3.11. Given $\varepsilon>0, \varrho<1$, and a finite set of points $\left\{\zeta_{i}\right\},\left|\zeta_{i}\right|=1$, there is a function $h(w)$, continuous in $|w| \leqslant 1$ and analytic in the open disc, such that $|h(w)| \leqslant 1(|w| \leqslant 1)$ and

$$
\begin{array}{cc}
|h(w)-1|<\varepsilon & (|w| \leqslant \varrho) \\
h\left(\zeta_{i}\right)=0 & (\text { all } i) .
\end{array}
$$

Proof. It is sufficient to prove this result in case there is just a single point ζ_{1} on the boundary; the general case follows by forming a product. We take $\zeta_{1}=-1$.

Let $g(w)=(1+w) / 2$, and let

$$
h_{r}(w)=\frac{w+r}{1+r w} \quad(0<r<1)
$$

Thus $h_{r}(-1)=-1$, and for r sufficiently close to 1 we have $h_{r}(w)$ close to 1 uniformly on $|w| \leqslant \varrho$. Fix r sufficiently close to 1 and for this r let $h(w)=g\left(h_{r}(w)\right)$. Since g is uniformly continuous and $g(1)=1$ and $g(-1)=0$, this h will be the required function.

Lemma 3.12. Given a finite set of points $\zeta_{i},\left|\zeta_{i}\right|=1(i=1, \ldots, m)$, and disjoint neighborhoods U_{i} of these points, and $\varepsilon>0$, there are neighborhoods V_{i} of the points ζ_{i} with $V_{i} \subset U_{i}$, and there is a polynomial p such that
(a) $|p(w)| \leqslant 1 \quad(|w| \leqslant 1)$,
(b) $|p(w)|<\varepsilon \quad\left(|w| \leqslant 1, w \notin U_{1} \cup U_{2} \cup \ldots \cup U_{m}\right)$
(c) $|p(w)-1|<\varepsilon \quad\left(|w| \leqslant 1, w \in V_{1} \cup V_{2} \cup \ldots \cup V_{m}\right)$.

Proof. It will be sufficient to take the points one at a time: for each i we find a polynomial $p_{i}(z)$ that is bounded by one, takes the value 1 at ζ_{i} and is small everywhere in the unit disc outside of U_{i}. The function p is then obtained by adding the p_{i} and dividing by a suitable constant to achieve the estimate (a).

If k is sufficiently large, then the functions

$$
p_{i}(w)=\frac{\left(\zeta_{i}+w\right)^{\ell}}{2} \quad(i=1, \ldots, m)
$$

will satisfy our requirements. Q.E.D.
Lemma 3.13. Given a finite subset E^{\prime} of the open disc $|w|<1$, and a finite number of boundary points ζ_{i}, and a function $F(w)$ analytic in $|w|<1$ with $|F| \leqslant 1$, and given $\varepsilon>0$, then there is a function $q(w)$ analytic in the open disc with $|q| \leqslant 1$, and there are neighborhoods V_{i} of the points ζ_{i} such that
(i) $|q-F|<\varepsilon$ on $\mathbb{E}^{\prime \prime}$,
(ii) $|q(w)-1|<\varepsilon \quad$ for $w \in V_{1} \cup \ldots \cup V_{m}$.

Proof. (We wish to thank Norman Hamilton for suggesting this line of proof.) Choose $\varrho<1$ so that $E^{\prime} \subset(|w| \leqslant \varrho)$. Let h be the function of Lemma 3.11, using a smaller ε, and let U_{i} be neighborhoods of the points ζ_{i} in which h is small. Now let p be the function of Lemma 3.12, using a smaller ε.

Put $q_{1}=h F+p$. This function is close to F on $(|w| \leqslant \varrho)$, and is close to 1 near the points ζ_{i}. It will be bounded in the whole dise by a number only slightly larger than 1. Dividing by this bound we obtain the desired q. Q.E.D.
3.14. We are now able to complete the proof of Lemma 3.6. We use the notations and results of the preceding sections. In Section 3.7 we showed that the chief problem was to define the function g in the component B_{n}.

The finite set E meets only a finite number of the components A_{i} in the cluster $K(B)$: say that it meets A_{1}, \ldots, A_{m}. Let $\zeta_{1}, \ldots, \zeta_{m}$ be the points on the boundary of the unit disc that were described in 3.10 , and let $E^{\prime}=\Phi(E \cap B)$. Then E^{\prime} is a finite set of points in the open unit dise.

Let $F(w)=f\left(\Phi^{-1}(w)\right)$. Then F is analytic and bounded by l in the disc. We may apply Lemma 3.13 to obtain a function $q(w)$ that is close to F on E^{\prime} and close to 1 near the points $\zeta_{i}(i=1, \ldots, m)$.

Fix n sufficiently large and let

$$
g(z)=q\left(\Phi_{n}(z)\right) \quad\left(z \in B_{n}\right) .
$$

Since Φ_{n} is close to Φ on compact subsets of B, and q is close to F on E^{\prime}, g will be close to f on $E \cap B$.

Also, Φ_{n} is close to ζ_{i} on compact subsets of $A_{i}(i=1, \ldots, m)$, and q is close to 1 in a neighborhood of ζ_{i}. Thus g is close to 1 on $E \cap A_{i}$. This completes the proof of Lemma 3.6; therefore Theorem 3.2 and the main theorem are established.
3.15. We turn now to the proof of the corollary stated in the introduction. We have already shown in Theorem 3.2 that if G is a Carathéodory set, then every bounded analytic function in G is the bounded limit of a sequence of polynomials.

In the other direction, let G be a bounded simply connected open set that is not a Carathéodory set, and let z_{0} be a boundary point of G that is not a boundary point of H. We claim that z_{0} is in G^{*}. Indeed, if not, then $z_{0} \in H^{-}$. But $H^{-}=H \cup \partial H$. By assumption, z_{0} is not in ∂H, and so $z_{0} \in H$. But this is impossible since $z_{0} \in G^{-}$, the complement of H.

Since G is simply connected, there is a single-valued function f such that $f^{2}=z-z_{0}$ in G. This function is not the bounded limit of polynomials in G. Indeed, if it were, then by the easy half of the main theorem, f could be extended to be analytic in G^{*}; in particular, f would be analytic at z_{0}, which is impossible.

4. Further remarks

The correct formulation of the main theorem is in terms of sequences, and not of topological closure. The next result supports this assertion.

Theorem 4.1. There exists a bounded, connected, simply connected open set G and functions $f_{,} f_{1}, f_{2}, \ldots$ analytic and uniformly bounded in G such that
(i) each f_{n} is the bounded limit of a sequence of polynomials,
(ii) f is the bounded limit of the sequence f_{n},
(iii) f is not the bounded limit of any sequence of polynomials.

Fig. 2.

Proof. The region G and the associated G^{*} are shown in Fig. 2.

Let

$$
f(z)=\frac{1}{1+\sqrt{z}} \quad(z \in G)
$$

where the square root is defined in the plane slit along the positive real axis, with the branch chosen so that $(-1)^{1 / 2}=i$. Then f is bounded in G, since in G the point $z=1$ can only be approached from above, so that as z approaches 1 within $G, f(z) \rightarrow 1 / 2$. Also, f has an analytic continuation throughout G^{*}, but the continuation is unbounded since now the point $z=1$ can be approached from below. Since G^{*} is connected, the continuation of f is unique, and so f does not have a bounded continuation. By the main theorem, f is not the bounded limit of any sequence of polynomials in G.

Let z_{n} be a sequence of points in the upper half plane that approach 1. Let

$$
f_{n}(z)=\frac{1}{z_{n}+\sqrt{z}},
$$

where the same branch of the square root is chosen as before. These functions f_{n} are uniformly bounded in G, and each has a bounded continuation throughout G^{*} (the continuations are not uniformly bounded in G^{*}). Indeed, $z^{\frac{1}{2}}$ lies in the upper half plane for all z in G^{*}, whereas $-z_{n}$ is in the lower half plane. By the main theorem, each f_{n} is the bounded limit of a sequence of polynomials. Finally, the f_{n} converge boundedly to f in G. Q.E.D.

Instead of bounded approximation by polynomials, one could consider bounded approximation by rational functions with assigned poles. This seems to lead to new difficulties.

Consider, for example, the case of two poles, at 0 and ∞, and let G be an open set such that neither 0 nor ∞ is in G^{-}. If $R(z)$ is a rational function with poles at 0 and ∞, then $R(z)=p(z)+q(1 / z)$ where p and q are polynomials. By analogy with the polynomial case, one might conjecture that a bounded f in G is the bounded limit of a sequence of such rational functions if and only if f has a bounded continuation throughout a larger open set G^{*}, where G^{*} is now defined as follows. Let J be the complement of G^{-}. Let $H=H_{1} \cup H_{2}$
where H_{1}, H_{2} are the components of J containing 0 and ∞, respectively. Then G^{*} is the complement of H^{-}.

The simplest example is the annulus: $G=\left\{z: r_{1}<|z|<r_{2}\right\}$. This presents no difficulty, since if f is bounded and analytic in G then, by the Laurent expansion, $f=f_{1}+f_{2}$ where f_{1} is bounded and analytic for $|z|<r_{2}$, and f_{2} is bounded and analytic for $|z|>r_{1}$.

This method does not work in general. For example, let G be a lune: $G=G_{1} \cap G_{2}$, where G_{1} is the dise $|z|<1$ and G_{2} is the set $\left|z-\frac{1}{4}\right|>\frac{3}{4}$. What we show is that the function $f=\log z$ (defined in the plane slit along the positive real axis, with $\log (-1)=i \pi$) admits no decomposition $f=f_{1}+f_{2}$, with f_{1} bounded in G_{1} and f_{2} bounded in G_{2}.

Assume such a decomposition exists. Then f_{1} has an analytic continuation (which we still call f_{1}) throughout the complement of the ray $L=[1, \infty)$, and f_{1} is bounded except near $z=\infty$. Indeed, f_{1} is already bounded and analytic in $|z|<1$, by assumption. Also $f_{1}=f-f_{2}$ in G, and both f and f_{2} are analytic in $G_{2}-L$, and bounded except near $z=\infty$. Note that as z crosses L from below, f_{1} jumps by $2 \pi i$.

Now let $g(z)=f_{1}(z)-\log (z-1)$, where the logarithm is a translation of the one previously chosen and thus is defined on the complement of L. Also, g is continuous across L, except possibly at $z=1$, since both f_{1} and the logarithm jump by $2 \pi i$ as z crosses L from below. Thus g is analytic except possibly at $z=1$. Near $z=1$ we have $|g| \leqslant c+|\log (z-1)|$, and thus g has a removable singularity at $z=1$. But $f_{1}=g+\log (z-1)$ and hence f_{1} is unbounded as $z \rightarrow 1$ in the complement of L, which is impossible.

5. Appendix

We present here a different proof of Theorem 2.16 based on potential theory. It has the advantage that the sets G constructed here have extremely smooth and simple boundaries.

We first state a number of results from classical potential theory that will be needed; definitions and proofs may be found in [9, Chapter III]. Our exposition is self-contained, in the sense that we use only the properties and results stated below. As before, we assume that G is a bounded open set and that H is the unbounded component of the complement of G^{-}.

Theorem 5.1. There exists a positive Borel measure μ, of total mass 1 , supported in ∂H, and a positive number V such that if

$$
P(z)=-\int \log |z-w| d \mu(w)
$$

then
(a) $P(z) \leqslant V$ everywhere;
(b) $P(z)=V$ throughout G^{*};
(c) P is harmonic in H and $P(z)<V$ there;
(d) P is superharmonic everywhere; in particular, P is lower semicontinuous;
(e) P is bounded on each compact set;
(f) $\lim P(z)=-\infty \quad(z \rightarrow \infty)$;
(g) if $p \in \partial H$ is a regular point for the Dirichlet problem, then $\lim P(z)=V \quad(z \rightarrow p)$;
(h) P is continuous except on the irregular points of ∂H;
(i) the set I of irregular points of ∂H is an F_{σ} set of capacity zero.

If G has only a finite number of components then ∂H will be a finite union of continua and by known results there are no irregular points. But if G is, for example, a union of disjoint dises with centers at $1 / n$ and radii $r_{n}(n=1,2, \ldots)$, then by Wiener's criterion [9 , Theorem III.62], if r_{n} approaches zero rapidly, then the point $z=0$ will be an irregular point. We handle the irregular points by introducing an Evans' function $E(z)$ for I. The next result is a simple extension of [9, Theorem III.27].

Theorem 5.2. Given a bounded F_{σ} set I of capacity zero, there exists a positive Borel measure m, supported in I^{-}, with total mass 1 , such that if

$$
E(z)=-\int \log |z-w| d m(w)
$$

then
(a) $E(z)$ is finite and harmonic for $z \notin I^{-}$, and $E(z)=+\infty$ for $z \in I^{-}$;
(b) $E(z)$ is superharmonic, and in particular is lower semicontinuous;
(c) $E(z)$ is everywhere continuous in the extended sense; in particular, $\lim E(z)=+\infty$ as z approaches any point in I^{-};
(d) $\lim E(z)=-\infty \quad(z \rightarrow \infty)$.

The remaining results that we need from potential theory are the maximum and strong maximum principles.

Theorem 5.3. If F is a superharmonic function in an open set W, if F is bounded below in W, if D is a bounded open set whose closure is contained in W, and if $F \geqslant t$ on ∂D, then $F \geqslant t$ throughout D.

In addition, if D is connected and if $F\left(z_{0}\right)=t$ for some point z_{0} in D, then $F(z) \equiv t$ throughout D.

We are now ready to prove Theorem 2.16. Recall the hypotheses: G is a bounded open set and $\partial G=\partial H$. The theorem asserts the existence of open sets G_{n} containing G and having certain properties. Roughly speaking, the sets G_{n} are the insides of the level lines of the
potential function $P(z)$ of Theorem 5.1. However, these level lines may touch ∂H at an irregular point, and to avoid this we use the Evans' function of Theorem 5.2.
5.4. Without loss of generality, we may assume that G^{-}is contained in the disc $|z|<\frac{1}{2}$. A simple estimate shows that $E(z)>0$ in this dise.
5.5. For $0<t<V$ let

$$
\begin{gathered}
F(z, t)=P(z)+(V-t) E(z), \\
\Gamma_{t}=\{z \mid F(z, t)=t\} .
\end{gathered}
$$

Γ_{t} is a closed set since $P(z)$ is continuous away from $I, E(z)$ is continuous, and $E(z) \rightarrow \infty$ in I^{-}.
5.6. There is a number t_{1} such that for $t \geqslant t_{1}$ the sets Γ_{t} are all contained in the disc $|z|<\frac{1}{2}$.

Indeed, by 5.1 (c) and 5.2 (a), there is an $\varepsilon>0$ and an $M>1$ such that if $|z| \geqslant \frac{1}{2}$ then $P(z)<V-\varepsilon$ and $E(z) \leqslant M$. For such z and all t we have

$$
F(z, t)<V-\varepsilon+(V-t) M .
$$

Let $t_{1}=V-\varepsilon / 2 M$. Then for $t \geqslant t_{1}$ we have

$$
F(z, t)<V-\varepsilon / 2<V-\varepsilon / 2 M \leqslant t
$$

and so z is not in Γ_{t}.
5.7. Choose a sequence $t_{1}<t_{2}<\ldots \rightarrow V$, where t_{1} is the number from 5.6. Let $\Gamma_{j}=\Gamma_{t_{j}}$. Then Γ_{i} and Γ_{j} are disjoint for $i \neq j$.

Indeed, if $z \in \Gamma_{i} \cap \Gamma_{j}$ then $\left(t_{i}-t_{j}\right) E(z)=t_{j}-t_{i}$, which is impossible since $E(z)>0$ by 5.4.
Definition 5.8. For each positive integer n let G_{n} be the union of all the bounded components of the complement of Γ_{n}.

We shall show that these sets satisfy all the conditions of Theorem 2.16. We require two preliminary results.
5.9. $F\left(z, t_{n}\right)>t_{n}$ in G_{n} and $F\left(z, t_{n}\right)<t_{n}$ in the unbounded component of the complement of Γ_{n}.

Proof. The first statement follows from 5.3. The second inequality is true for large z since the potential functions $P(z)$ and $E(z)$ tend to $-\infty$. If there were a point in the unbounded component at which $F>t_{n}$, then by connectedness, there would be a point where $F=t_{n}$, which is impossible.

Lemma 5.10 . The sets G_{n} are simply connected.

Proof. Fix n and let C be a component of G_{n}. We must show that C is simply connected. We shall consider the set C^{*} (the complement of the closure of the unbounded component of the complement of the closure of C). By Lemma 2.13 each component of C^{*} is simply connected, so it will be sufficient to show that C is one of the components of C^{*}.

Since $C \subset C^{*}, C$ will be contained in one of the components, A, of C^{*}. We must show that C coincides with A. If not, then since A is connected, some boundary point p of C lies in A.

From 2.3 and 2.4 we have

$$
\partial C \subset \partial\left(\operatorname{compl} \Gamma_{n}\right)=\partial \Gamma_{n}
$$

Hence $F^{\prime}\left(z, t_{n}\right)=t_{n}$ on ∂C. In particular, $F\left(p, t_{n}\right)=t_{n}$. But by $5.9, F>t_{n}$ throughout A, which is a contradiction.
5.11. $G \subset G_{n}$ for all n.

Indeed, by $5.1(b) P(z)=V$ in G and hence $F\left(z, t_{n}\right) \geqslant V>t_{n}$ for all n and all z in G. Thus G and Γ_{n} are disjoint, and by $5.9, G$ must be contained in G_{n}.
5.12. $G_{n}^{-} \subset G_{n-1} \quad(n \geqslant 2)$.

Proof. $F(z, t)$ decreases monotonically as t increases; hence (by 5.9)

$$
F\left(z, t_{n-1}\right)>F\left(z, t_{n}\right) \geqslant t_{n}>t_{n-1} \quad\left(z \in G_{n}^{-}\right) .
$$

Thus by $5.9, G_{n}^{-} \subset G_{n-1}$.
5.13. Let B be a component of G, and let B_{n} be the component of G_{n} that contains B. Then $B=\operatorname{ker}\left[B_{n}: B\right]$.

Proof. Let $Q=\operatorname{ker}\left[B_{n}: B\right]$. If B were a proper subset of Q, then Q would contain a boundary point p of B since Q is connected. Since

$$
p \in \partial B \subset \partial G=\partial H
$$

every neighborhood of p contains points of H. In particular, Q must contain a point q of H.
But by 5.1 (c), $P(q)<V$ in H and hence, for t_{m} sufficiently close to V,

$$
F\left(q, t_{m}\right)<t_{m} .
$$

Thus by $5.9, q$ is not contained in G_{m}, contradicting the fact that Q is contained in all the sets G_{m}. Q.E.D.

This completes the proof of Theorem 2.16. It can be shown that the boundary of each component of each G_{n} is an analytic Jordan curve since it is locally a level line of a harmonic function of non-vanishing gradient. Finally, each G_{n} has only finitely many components. 11-642907. Acta mathematica. 112. Imprimé le 2 décembre 1964.

Otherwise, there would be a point p, any neighborhood of which intersects infinitely many components of G_{n}. It follows that $p \in \Gamma_{n}$. But by Theorem 5.3, each component of G_{n} intersects the support of $d \mu$, so that p is in the support of $d \mu$ and hence $p \in \partial H$. But $\partial H \cap \Gamma_{n}$ is empty, and we are done.

References

[1]. Bishop, E., Boundary measures of analytic differentials. Duke Math.J., 27 (1960), 331-340.
[2]. Carathéodory, C., Conformal Representation. Cambridge University Press, Cambridge (1952).
[3]. Carleman, T., Die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen. Arkiv för Matematik, Astronomi och Fysik, 17 no. 9 (192223), 1-30.
[4]. Farrell, O. J., On approximation by polynomials to a function analytic in a simply connected region. Bull. Amer. Math. Soc., 41 (1934), 707-711.
[5]. Landau, E., Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie. Berlin (1929).
[6]. Markushevitch, A. I., Theory of Analytic Functions. Moscow-Leningrad (1950) (in Russian).
[7]. Mergelyan, S. N., Uniform approximation to functions of a complex variable. Uspehi Mat. Nauk, 7 (2) (1952), 31-122 (in Russian); Amer. Math. Soc. Transl. No. 101 (1954).
[8]. Saks, S. \& Zygmund, A., Analytic Functions. Warszawa-Wrocław (1952).
[9]. Tsujt, M., Potential Theory in Modern Function Theory. Tokyo (1959).
Received September 28, 1963

