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Introduction 

The theory of subadditive functions is sufficiently well developed to suggest thai> 

it may be a very useful tool of analysis. The present paper, in which we first prov~ 

a maximal theorem for subadditive functions and then apply it to a rather wide clas~ 

of problems, is offered as further evidence of this point of view. 

Our maximal theorem does not seem to be included in the category of maximar 

ergodic theorems. I t  does have some points of contact with that  of Hardy and Little- 

wood, but the situation is roughly that  our theorem gives more precise informatior~ 

about a smaller class of functions. We first consider some variations of the defini- 

tion of subadditivity of real-valued functions defined over En, n-dimensional Euclidea~ 

space. For the maximal theorem itself, a kind of evenness of the functions involved~ 

is assumed. We then construct the maximal function corresponding to each properly 

chosen subadditive function; and the maximal theorem, which is a statement about 

the comparability of some integral norms involving the original function and its 

corresponding maximal function is given. In the second theorem, some limitations on 

the maximal theorem are noted. In  the next section, applications are presented, first 

for some well-known subadditive functions to which the maximal theorem applies 

directly. A minor variation of the theorem is then applied to some integral trans- 

forms. Finally, we obtain a kind of local maximal theorem in a result which is 

related to the differentiability of integrals. Modifications of the original a rgument  

are more serious for this result, and we make use of the maximal theorem of Hardy 

and Littlewood here. In the last section, sums whose terms involve subadditive func-- 

tions are introduced. The main result of this section is a statement about the. 
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equivalence of a sum and an integral involving certain subadditive functions. Finally, 

we relate this result to our maximal theorem. 

For a real-valued function 4, defined on E,,, the ordinary definition of subaddi- 

t ivity of ~b consists of the condition 

r162162 u,v in z~. (1) 

In  addition, we shall always insist tha t  a subadditive function (in any of the senses 

given) be non-negative, measurable, and finite everywhere. The finiteness assumption 

is rather weak under the circumstances (cf. [5. p. 240]). For  our maximal theorem, 

we can be somewhat more general than in (1) and say that  r is subadditive on E .  

if there exists a constant C > 0 such that  

r + v) ~< c[r + r u, v in E..  (2) 

(2) is much more convenient for several reasons, among which is the fact tha t  any 

positive power of a subadditive function is subadditive. I t  is also sufficient for most 

of our results. Where (I) is required, we shall say that  ~ is strictly subadditive. I t  is 

known [5] that '  if ~ is strictly subadditive on El ,  then it  is bounded on compact 

subsets. We shall prove below that  something analagous is true in E~. Together 

with the measurability condition, this gives sense to the following definition. The 

non-negative measurable function r is generalized subadditive ff there exist constants 

C > 0  and Q, 0 < ~ < 1 ,  such that  

r  ~ r dv, u in E, ,  u # 0 .  (3) 

Xt is indicated below how (2) implies (3). The notion of generalized subadditivity is 

too broad for most of our results, but  it may be used occasionally. We also discuss 

subadditivity for functions defined on subsets of En, e.g. spheres and the interval 

~(0, c~). The only restriction required in the above definitions is tha t  the points in- 

volved be in the appropriate sets. 

The following two theorems are essentially known ([2], [3]) and will be useful in 

~vhat follows. The notation SR refers to the solid sphere of radius R about  the 

origin in E. .  

T ~ v . o ~ , M  A. Let r be subadditive on SR in E, ,  n >  1. Let lal, P2 . . . . .  pn be line- 

.arIy independent unit vectors, 0 < p <. c~, and ~ p > - 1. There exist constanfs A and B, 

depending only on ac, T, n, and the vectors {pt} such that 
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The restriction tha t  ~ p  > - 1  may  be omit ted for the second inequality. In  [3], 

the theorem was proved only for ~b strictly subadditive, R = co, and 0 < p  < oo. There 

is no difficulty in extending tha t  proof to cover the above theorem. For p = oo, the  

norm is to be interpreted as sup r and the condition ~ p > - 1  becomes ~>~0. 

THEORE~ B. Let r be generalized subadditive on SR in En. Let o~ be real, and 
1 <~ p < q <. co. Then 

By generalized subadditive in SR, we mean there exist a C and a ~, 0 < ~ <  1, 

such tha t  for x in Sn, x@O, 

~ fN r )V(x)=(x+Sql~l)nZR. 

In  [3], the theorem was stated only for r strictly subadditive and proved only for  

subbadditive. We sketch a proof of the above theorem for the sake of complete- 

ness. Let  x@0. By H61der's inequality 

,1 , .  

The two C's t ha t  occur in the preceding inequality are, of course, different. Nor-  

maUy, throughout the paper, the dependence of constants on parameters,  etc. will 

not be indicated. Thus 

r (u) du) <C (fN(x) Cp (u) IX[ ~ ~ X ~ ( f N ( x ) r  \l/v \lip dn) . 
lu l  - 

Replacing N(x) by  Sn in the last integral does not invalidate the inequality, and this 

proves the theorem for q =  oo. I f  q < o~, denote the right-hand integral of the theo- 

rem by  M. Since q ' p > 0 ,  

r (x) .< C Cv (x) Mq_V, x @ 0. 
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An integration completes the proof. 

then  the restriction that  9 <  1 may 

subadditivity. 

I t  is not hard to see that  if we take ~ > 0 ,  

be omitted in the definition of generalized 

1. The maximal theorem 

As part  of the hypothesis for the maximal theorem, we shall require another 

condition. If ~ is subadditive and is also an even function on SR, then 

r ~< C [r + v) + ~(v)], u, v in SR. (2') 

We shall say that  ~ is subadditive-even in SR if there exists a constant C such that  

(2) and (2') are both satisfied. Standard examples of functions, subadditive in the 

strict sense, are subadditive-even. I t  is to be noted for future reference that  if 

satisfies (2) and (2') on (0, oo), then its even extension to ( - o o ,  oo), with ~b (0)= 0, 

<loes too. 

We now introduce the maximal function corresponding to any subadditive-even 

:function ~b on SR. Let  

co(t)= sup ~(v), t in (0, R). (4) 
Ivl<~t 

(o(t) is finite everywhere (ef. Lemma 1), increasing, and subadditive; for 

sup ~b(v) ~< sup ~b(u + v) ~< C sup ~(u) + C sup r 
u 48  Ivl<s+t Ivl<t lul<s I~l~t 

:It also satisfies (2') since it is increasing. 

THEORE~ 1. Let q~ be subadditive-even on S n i n E , .  Let r be real, and 0<p~< oo. 

i /  o~ is de/ined by (3), then 

t l - 7~  dt <~ C l u ln + z,----~ du. 

The constant C on the right side of the above inequality depends on ~,p,  n, 

.~nd the constants occurring in (2) and {2'). I t  is clear that  the integral on the left 

side of the inequality dominates the one on the right so that  the theorem is a state- 

ment about the equivalence of the two integrals. For  the proof, we shall consider 

~only the case R =  oo, i.e. functions ~ subadditive-even on En. The adjustments in 

s proof for the case R < oo are quite minor. Also, since any positive power af a 
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subadditive-even function is also subadditive-even, then it is necessary to consider 

only two values of p, i.e. p =  1 and p =  ~ .  

Our first lemma states more than is necessary for the proof of the theorem, for 

which it  is implicitly assumed anyway tha t  ~ is locally integrable, a t  least away 

from the origin. However, the extra information is included very cheaply and in. 

dudes a proof of the fact tha t  a subadditive function is generalized subadditive. 

LEMMA 1. Let ~ be subadditive on En. Then it is bounded on compact subsets 

o/ En, and there exists a constant C such that 

~ ( u ) ~  f,v_ul~,<,u,j ~(v)dv, u*O.  

The proof of the first s ta tement  is an adaptat ion of an argument  in [5, p. 240]. 

We first restrict ~ to an open hyperquadrant ,  say E +, defined as those u such tha t  

each coordinate is strictly positive. Let  u belong to E +, and let r  Let H(u) 

denote the hyperreetangle in E + with 0 and u as opposite vertices. Let  I H(u)l denote 

its volume. Let  F(u) denote the subset of H(u) such tha t  r A /2  C for v in iV(u) 

where C is given by  (2). Then, H(u) = F(u) U (u - F(u)) so tha t  IF(u)I, the measure of F(u), 

is at  least IH(u)l/2. I f  r were unbounded in R, a hyperrectangle of E +, defined by  

and ~ as opposite vertices, there exists a sequence Um in R such tha t  r 2 Cm. 

For u in R, I H(u)I>~]H(~)I , and the set of points v in H(~) such tha t  r  has 

measure a t  least IH(~)I/2. This implies tha t  r is oo on a set of positive measure, a 

contradiction. We have thus established tha t  r is bounded on compact sets of E +. 

Let  S0 denote the sphere of radius 5 about  the origin. Let  1 denote the point all 

of whose coordinates are unity. Then 

r < c [4( - ]) + r + 1)]. 

I f  u belongs to So with t~ < 1, then u + 1 belongs to a compact subset of E +. Thus 

r is bounded on So and so on any  sphere about  the origin. 

For the proof of the second inequality, we note tha t  if v belongs to the sphere 

of radius tul/6 about  u/2, then so does u - v .  Thus, integrating the inequality 

r < c [r + r - v)] 
over this sphere gives 

l ul n r < c I r dv 
dl V-Ul2l<~lUll6 

as desired. 

The following result is the key step in the proof of the theorem. 
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L ~ . y ~ A  2. Let r be subadditive-even on (0, o~). Then /or u > 0 ,  

C f2Ul3 
o~(u) = sup r < r dr. 

O<v~u d u130 

C f2u~3 
By Lemma 1, r ~<ud ujs 9b(t) dt = Cv2(u ). (5) 

The second equality is simply a definition of ~p. We have 

3 /,2u/3 
vd(v) <~ u Ju,9 r dr, u /3  <~ v < u. (6) 

We temporarily fix v in the interval (0, u/3)  and consider 

f ~+2~la 2(u - v) 
Z(s) = ~(t) dr, u - v  

: s+v/3 3 

Z, being continuous, has a minimum at so, say. Then 

w U - -  v ~2(u-v)1a V ~2u18 
Z(So) ~< - ~ -  g(s0) <~ | g(s) ds ~ ~ | r dt. 

J(u-v )13  ") J Ul3 

That is 1 g(So ) ~< 3~(u). (7) 
V 

:By the evenness property, r C[r r An integration shows 

by (5) and (7). Since u / 9  <~ ( u - v ) / 3  <~ s o, the integral on the right does not exceed 

C ;2u/3 
u :  .~30 ~(t) dr. 

Along with (6), this shows that  

C ?~=/3 
~(') < ~ J~,3o ~(t) dr, , < u. 

But r C y~(v), and so co(u) does not exceed a constant multiple of the integral on 

the right. 

To complete the proof of the theorem, we let 

r (u~) = ~(0 . . . . .  0, u, 0 . . . . .  0), i = 1 , 2  . . . . .  n. 
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Each 44 is subadditive-even in its single variable. 

corresponding to 44. By an inductive process, 

n 

44(u,). 

n 

Thus, o)(t) < C ~  o), (t). 

169 

Let  o)4 be the maximal  function 

r t~J8 ~2t18 44 (u4) 
and w~l)(t)<~-[Jt/ao 44(u4)du4<-Ct ~ u~+~ du4 

J t/3o 

by Lemma 2. Hence 

o)4(t) < o)~" (t) + o)?)(t) 

~ o)~1) (t) f :  d t (  2tl3 r fo ~ 44(ut) dt <~ C t . I  t/8o u~ +~ utl+ ~ dui. 

A similar inequahty applies to  o)~2)(t) so tha t  

foo)'(t) f~~ 44(u4). 
dt <~ C r162 in 4[1+~ aut. 

Now an application of the second inequality in Theorem A (for which there is no 

restriction on ~) suffices for the proof of the case p = 1. Since any  positive power 

of a subadditive-even function is also subadditive-even, we may  replace 4 by  4 p, o) 

by Co) p , and x by  x p  for the case 0 < p < ~  and p # l .  For the case p = ~ o ,  we 

obtain from Lemma 2 that,  if 4 is subadditive-even on (0, c~), then 

o)(t) C sup -r 
t - ~ -  ~< o<u<t u 

I t  is then an easy step to show, again by  the use of Theorem A, tha t  for 4 sub- 

additive-even on E=, 

sup co (t) < C sup 4(u) 
,>0 - l u l  

We are unable to decide how much the evenness hypothesis can be weakened, 

but  it  cannot be omit ted entirely from Lemma 2, as can be seen by  considering 

monotone decreasing functions. Lemma 2 provides a direct connection between our 

Letting o)~1) (t) = sup0<ui<t r and r = sup-t<=,<0 r (ui), we have 
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maximal  theorem and t h a t  of H a r d y  and Litt lewood. 

and positive funct ion on (0, R), let 

0 (u; 4) = sup 1 ~(v) de. 
O<,e<u ~: -~ 

Thus, if r is any  integrable 

This is the maximal  funct ion of H a r d y  and Litt lewood. Lemma 2 shows t h a t  if 

is subadditive-cven, then o~(u)<.CO(u;~). Thus, if r is in L p, p > l ,  then so is co. 

For  our  theorem, this corresponds to  the case n = 1 and g p  = - 1 .  

The theorem has been proved for all real ~, bu t  for several impor tan t  cases, 

there are essential restrictions on ~. 

TH~.OR~.M 2. (i). Let ~ be positive and measurable on (0, oo) and satis/y ~(u)<~ 

C • [~(u + v) + ~(v)] there /or some positive C. Let 

f: r 
uV-: du < 

/or some a < O. Then qb is identically O. 

(ii). Let ~ be strictly subadditive on Sn in E,.  Let 

fs q~'(u) , l u l . + , ,  eu+- 

/or some o~ >1 1 and some p, 0 < p < c~. Then ~ is identically 0. 

Let  m be a large positive integer. By  some obvious substi tutions,  we have 

f :  l fo~ ) 1 f ~ q ~ ( ( r a - - 1 ) u )  
~k(u) = ~  ~+" (m 1)" u ~+~ 

2 ~ du du ~ - du. 

Using the above inequali ty shows tha t  this exceeds 

1 f~ ~(u) C(m - 1)" ui~= du. 

Let t ing m go to cr we see t h a t  the integral  is 0 so tha t  ~ is equivalent  to  0. Bu t  

given u > 0 ,  there exists v > 0  such t h a t  r  + v ) =  ~b(v)=0 so tha t  r = 0 .  

For  the proof of (ii}, we m a y  reduce it to  the one-dimensional case by  Theorem 

A and  use a known theorem for t h a t  [2]. 

Pa r t  (i} shows in par t icular  t h a t  a non-tr ivial  subaddit ive-even function cannot  

be in any  L p class on E ~. 
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2. Some applications of the maximal theorem 

Let  / belong to L r (En), 1 ~< r~< ~ ,  and let 

This function is subadditive-even on En, and a direct application of Theorem 1 to it  

gives a result due to Taibleson [6], presumably with a quite different proof. I f  / is 

in class Lr(Tn), where Tn is the n-dimensional toms,  then substitution of T ,  for E,~ 

in the above integral gives a subadditive-even function for which the appropriate 

domain of integration is again Tn. By minor changes in the proof, it can be' shown 

tha t  the s ta tement  of the maximal  theorem holds in this case. 

For the definition of ~ r (u ; / )  for r= ~ ,  we mean, as usual, ess supx II(x+u)-[(xll. 
I f  / is bounded in the ordinary sense over E,,  the function defined by  

r 1) = s u p  I / ( x + u ) - / ( x ) l  
3~ 

is also subadditive-even. 

nuity.  Let  

This is sometimes called the ordinary modulus of conti- 

co(t;/) = sup sup I / ( x + u ) - l ( x ) ]  
lul<<.t x 

denote the rectified modulus of continuity (el. [5, p. 249] for the terminology), og(t ;/) 

is also the  maximal  function associated with ~(u;/) .  

Other examples of subadditive-even functions to which the maximal  theorem 

applies directly are constructed by  use of mixed norms [1] ra ther  than ordinary norms. 

For  convenience, this will be done in only two dimensions. Let  / be a measurable 

function in E 2, and 1 <<.pl, p2< ~ .  The mixed norm of / is then given by  

dy l/(x, y)l"dx)"/"} 1'''. 

Let  u = (ux, uz) be a point of E2, and define gu (x, y) =/(x  + ul, y + u2) - / ( x ,  y). Let 

(u; / )  = II gu 

Since there is a triangle inequality for mixed norms [1], it is not  hard to show tha t  

this function is subadditive, in fact strictly subadditive. I t  is also even, and Theorem 1 

applies. 

If, in the definition of 4, (u; /) ,  the first difference of / i s  replaced by  the second 
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symmetric difference, a function is obtained which is also important  in applications. 

Thus, let 

( r E  ] ] / \i/r ~ , ( u ; / )  = . / ( x + u ) + / ( x - u ) - 2 / ( x )  "dx . 

Although this function is not subadditive, it has certain features which allow analysis 

of the above type in obtaining a maximal  theorem, at  least in dimension one. I t  is 

easy to show (cf. [2, p. 381]) tha t  

a,(u +v;/)<2a,(u;  /)+ 2a , (v ; / )+a , (u -v ; / ) ;  

a~(v;/)<2a~(u;/)+ 2 a r ( u - v ; / ) + a , ( 2 u - v ; / ) .  

The first inequality is the analogue of the subaddit ivity property,  and the second 

follows from it by  the evenness of at. We indicate briefly how it is possible to prove 

a maximal theorem for q~ in dimension one from these two properties. From the 

first inequality, if follows tha t  a~ is generalized subadditive. Thus, if u > 0, 

ar (u; /)  < ~O_v f|Tu/s ar (v; /)  dv. 
U Jul8 

Now fix v, 0 < v < u/8 ,  and let 

fs-v/s ~28-v/8 u - - v . <  7 ( u - v )  
g(s) = a, ( t ; / )  dt 4- ar ( t; /)  dr, T "~ s <~ - -  

J s-7v/8 J 2 s-7v/8 8 

Taking Z(So) as the minimum functional value, we may  show, as in the proof of 

Lemma 2, tha t  
,~(80) ~ C f 7u/4 

- a r  ( t ; / )  dr .  
V Ju/16 

From the second of the above inequalities for at, we have for 0 < t < s o tha t  

ar ( t ; / )  < 2 ~ (s o; / )  + 2 ~,  (s o - t ; / )  + a ,  (2 So - t ; / ) .  

Integrat ion of this over (v/8, 7v/8)  when 0 < v < u /8  shows tha t  

v 4- C fTu/4 a r (V; / )<~2ar (S~176  ~ 2 a r ( s ~  u Juno - -  ar  ( t ;  1) dr.  

A similar inequality holds if u / 8  <~ v <~ u so tha t  

C ~7u/4 
sup ar (v ;/) < a~ (t;/) dr. 

O<v~u J Ul16 

The proof may  be completed as in Theorem 1. 
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Certain integral transforms of positive functions will be generalized subadditive 

if the kernel satisfies a kind of uniform generalized subadditivity condition in one of 

the variables. The situation is well illustrated in the following transform, which is a 

k i n d  of Riesz fractional derivative. Let  

r ~>0. (8) 

We shall assume that  / is non-negative, integrable, and with compact support so that  

there is no question about the definition of 4. I t  is not  hard to show that  ~ is 

generalized subadditive. Furthermore, a maximal theorem holds for 4. to(t) will de- 

note, as before, sup0<l=l<tr 

THEOREM 3. Let r be de/ined by (8) with / non-negative, integrable, and with 
compact support. Let 0<f t .  Then r is generalized subadditive, and i/ n = l ,  and o~ is 
real, 0 < p <  cr then 

f o  to ~ (t) 

To prove the first statement of the theorem, it is enough to establish the ex- 

istence of C, independent of u and w, such that  

C ~ ]w-v]~dv, u # w .  

But there is a hyperplane through u which is orthogonal to the line segment joining 

u and w, and which divides En into two half spaces. Let  H -  denote the half space 

not containing w. If  v belongs to H -  and satisfies ]u-v] <[u[ /2 ,  then 

lu -wl< lw-v l  and lu-wl "<lw-vl ". 

Since the measure of the set of such points is one-half the volume of the solid sphere 

defined by [ u - v ]  < ]u[/2, the above inequality is established. 

From the obvious inequalities 

Iw - u  -vl"< o [Iw ' 2 u ]  ~ + I w -  2 vl"], 

Iw-~l" < OEIw- �89 (~ + v)lP + lw-vl ~] 
it follows that  

r + v) < c [r u) + r v)], r < 0 [r (�89 (u + v)) + r (9) 
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Now it is enough to confine at tention to the interval (0, oo). Rewriting the first 

inequality of (9) as ~b(u) < C [4(2 u -  2 v) + r (2 v)] and integrating over (u/4, 3 u/4),  

we obtain 
C /,3,,/2 

The last expression is a definition of ~o(u). We have 

~o(v) < C f3,,~ U 
- _.-$(w)dw, 5 < v < < . u .  
U JUl6 

Fix v in the interval (0, u/3) ,  and let 

f 
Sl2+3Vl4 

Z(s) = a,~2+~/4 ,k(t) dr, 
u - v ( u -  v) 
- - 2  <s~<3 2 

Let  Z(So) be a minimum for Z. I t  can be shown, as in the proof of Lemma 2, tha t  

~ f3u14 Z(s~ ~<-- r dt. 
V J ut4 

The second inequality of (9) may  be written as 

4,(0 < c[r189 + t)) + r 

Substitution of this into the integral defining ~ and using the above estimate of 

Z(so)/v shows tha t  
C l" ~=t~ 

W(v) <. u )=/6 ~(t) dt. 

Thus, sup ~b(v) <-C f8=/~ o<v<t, u a=/6 r dr. 

Now the proof can be completed as in Theorem 1. 

The considerations of the next  example are very much in the spirit of the max- 

imal theorem, but  rather more modifications are necessary. I t  is a kind of local ver- 

sion of the first example, and we shall take advantage of the Hardy-Li t t lewood 

maximal  theorem. Our motivation for this example is its importance in a convergence 

theorem for trigonometric polynomials (cf. [4]). Since the result is a kind of local 

one, it is more appropriate to use bounded regions of integration and to consider 

periodic functions. For technical reasons, we shall confine at tention to the E 1 case. 

For a function /, locally integrable on Ea, let 
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f 
x+t 

sup 
O<lvKt J x - t  

Let / satisfy the condition 

175 

(lO) 

; I/(x+u):l(=)[" ~ lul,§ ~ dxdu< c~. (ll) 

THEOREM 4. 

Let co(t, x) be de/ined by (10). 

belongs t o  L ~ ( - ~, ~). 

Let 

Let the periodic /unction / satis/y (1 l) with 1 < p < o~ and 0 < a < 1. 

Then the /unction 

o~(t, x) 
~u (x) = sup 

0<t~<~ t l+a 

+r 

r [ / ( 8 §  r > O .  
--T 

The following inequality, which is quite easy to see, is the analogue of the sub- 

additivity property. 

r162 IvJ<r. (12) 

I t  is also easy to see that  Cr ( - u ,  x)~<r (u, x) if l ul ~< r, and so 

r162162162162  [u[, [vl<r. 

The latter inequality is an analogue of the evenness property. (12) leads to 

r  [v[<r. 

Let 0 < u  ~< r. Integrate the preceding to obtain 

~T(u,x) << C f ~''~ - ~,13 r (V, Z) dv = C ~ ,  (u, z) .  

We are now prepared to repeat the proof of Lemma 2 with only minor modifications. 

This leads to the result that  if v belongs to (0, u), then 

v22r(v,x) < C f 2"1~ - -  Ju/30 r  (t, X) dt. 

But r (v, x) ~ CyJ2~ (v, x), and so But r 
C f2U/3  

sup r (v, x) ~ - -  ~16r (t, x) dt, 0 < u <~ r. 
O<v<~ u J u/30 
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Since ~br ( - u, x) < ~b2r (u, x), then Since ~br ( - u, x) < ~b2r (u, x), then 
C f2U/3 

eOr (u, x) = sup ~r (v, x) < ~32~ (t, x) dr, 0 < u < r. 
O<lvl<u dUl30 

Let  r = t .  Then co~(t,x)=eo(t,x) as defined by  (10). By Fubini 's theorem, 

Ct=-('lq) | ds Ir is+v)-/(s) l  dv If(s + v) - l (s)  l dv < v=+(,,.) o~(t, x) -.~-[ J=-32t ds J tl30 j =-82~ J ti30 

where l / p +  l / q =  1. Applying H6lder 's  inequality to the inner integral gives 

" ' = '  

o~(t, x) <. Ct'J=_s=t ds vl+~ = j =-3=t g(s) ds 

where the last equality simply defines g(s). Thus 

o~(t, x) 1 ~X+32 t 
sup ~ < C sup ~ ~ g(s) ds. 

Since ]x I < g  and 0 < t < ~ ,  then ]x+32t[ < 3 3 = .  Thus, the right side of the preceding 

inequality is dominated by  the Hardy-Lit t lewood maximal function corresponding to 

the function g and the interval ( -  33 g, 33~) (cf. [7, p. 30]). But  g is periodic and 

of class L ~. Hence p is also of class L p. 

3. Sums and integrals involving subadditive functions 

In  the sense tha t  a countable set is of dimension 0, our first result of this sec- 

tion is in the same category as Theorem A: it  asserts the equivalence of an integral 

over a certain domain with an integral over a lower dimensional domain. This theo- 

rem generalizes one of Peetre, who is responsible for the L ~ case in unpublished 

work. We may  dispense with the evenness requirement here. However, the result i s  

rather  delicate, and we shall require both  strict subadditivity and a continuity con- 

dition. Without  the latter, the theorem is false, as shown by  simple examples. We 

use below the notation " - ~ "  to mean the equivalence of two integrals: i.e. both  are 

infinite, both are 0, or both  are finite, non-zero with their ratios bounded above and 

below by  constants independent of the functions chosen from a certain function class. 

THV.OR~.M 5. Let ~ be strictly subadditive and le/t lower continuous on (0, c~). 

Let 0 < ~ < 1  and 0 < p < o o .  Then 
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f: 
r (u). ~ r k) 
~ -  au ~- k~-r162 2 kw " 

There is no part icular  significance in the use of the sequence {2 k} in the sum 

on the right. We m a y  use any  sequence of the form {bk}, b > 1. For  p = oo, we mean  

) 4  r ~) 
sup _ ( u  ~ sup 2~ ~ . 
u>0  ? ~  k 

The fact  t ha t  the series does no t  exceed a constant  multiple of the integral  

needs proof  only for the  case p < ~ ,  where it is quite elementary,  and  a considerable 

weakening of the hypothesis  is possible. Le t  2 k-2 ~ < u ~ 2  ~-~. Then, 

r (2 ~) < C [4" (u) + r 2~ - u)]. 

Since, under  the circumstances, 2 k-1 ~< 2 ~ -  u ~ 2 ~, we have 

Summing over k now gives the result. 

For  the proof t h a t  the integral does no t  exceed a constant  multiple of the 

series, we begin with a lemma. 

LEMMA 3. Let 0 < v < c o ,  0 < a < l ,  and let ~b be as above. Then 

r ~) 
sup ~ < C sup 
u <~ v U 2 k  <.<. v 2 k ~  " 

Since, for u in (0, v), u =  ~ ~g2 k wi th  ek equal to 1 or  0, it follows from the  
2k~u  

cont inui ty  condition tha t  

r < y ~ r  k) < y r 
2k~<u 2k~<u 

Let  r  k) ~< A 2 k~ for all 2 k in (0, v). We m a y  assume A is finite, for otherwise there 

is noth ing  to  prove. Then 

r ~ 2k~<~CAu ~. 
2 k  <~u 

This completes the proof of the lemma, and  by  letting v approach  oo, we have the 

proof of the theorem for the case p = oo. The case p = 1 is relatively easy to t reat ;  

and  if 0 < p <  1, then  ~bv is str ict ly subaddit ive and  satisfies the same cont inui ty  

condition as 4. Since 0 < ~p  < 1, this case can be reduced to  t h a t  for which p = 1. 

1 2 -  642907.  A c t a  m a t h e m a t i c a .  112. I m p r i m ~  le 2 D~eembre  1964. 
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Thus, from now on, we restrict at tention to values of p satisfying 1 < p <  ~ .  

For this, the following easily verified inequality is required. Given p, 1 < p <  c~, and 

>0,  there is a constant A, depending only on p and e such that  if x and y are 

complex numbers, then 

I~§ yl~ < A Izl~ + (1 +~)lyl ~. (13) 

Let  x = r  k) and y = r  ~) in (13). Thus 

CP (u) ~< [r k) + r - 2 k) p ~< A r k) + (1 + ~) CP(u - 2k). 

After multiplication by 2 -k(l+pa), an integration shows that  

2 -k(l+~) f2~+~r du<~A2-k'~'~bz'(2k)+(l+e)2-k(l+~) r 
J2~ 

Summing with respect to k, we obtain 

N 

f 2 -k(l+p~) .d'+'r ~ 2 - k ~ r  ~ 2 -k(~+~) r du. 5 
k=-N J2 k k~-N k=-N 

Denote the sum on the left by SN. We shall prove that  

N f ~ b  ~ l+e S,r TN=o (1). (14) (1 + e) 7~ 2 -~(1+~) (u) du < 21+~--Lq 
k ~ - N  

Since e can be chosen so that  1 + e <  2 ~ + ~ -  l, and since lim~ Sn is clearly equivalent 

to the integral of the theorem, establishing (14) will complete the proof of the theo- 

rem. 

We apply Abel's transformation to the sum on the left of (14) to obtain 

fO ~' 1 S ~ +  22+~,~,2N(l+p,,) f2-~r 2-k(l+va) CV (U) ~< 21+P a -- 1 
k=,-N dO 

Denote the second term on the right by T N. We note, by use of Lemma 3, tha t  

f:o -~ du <~ C (2k). TN < 22+ ~ 2 N r (u) < 22+~ sup r (u) sup 2 - ~  r 
U p~ U<~2-N - - ~ -  k<~ - N  

The last term on the right is o(1) since the series of the theorem is assumed to 

converge. (Otherwise there is nothing to prove.) This completes the proof of (14) 

and of the theorem. 
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If  r is strictly subadditive and left lower semi-continuous on a finite interval 

(0, a), then the equivalence of the theorem holds for this interval since ~b may  be 

defined as 0 on (a, ~ ) a n d  the theorem apphed to this extended function. 

I f  ~b is strictly subadditive on E= and satisfies the proper continuity condition, 

then it can be shown by  Theorems A and 5 tha t  certain integrals over E~ are equiv- 

alent to infinite series, the terms of which involve the values of ~b on the coordi- 

nate axis. An application of Theorem B in the one-dimensional case to the integral 

of Theorem 5 gives an inequality involving series. Thus, if ~b is continuous and  

strictly subadditive on (0, ~ ) ,  if 0 < ~ < 1 ,  and if l<p<q<<.~ ,  then. 

(~=~_ r162 (~q (2k)\ 1/q ~b p (2k)~ lip 

I t  is instructive to compare this inequality with the series analogue of Theorem B. 

Thus, we shall say tha t  the sequence {a=} of positive reals is subadditive if am+= < am + an, 

m, n = l ,  2, ... . Let  0 < p < q ~ < c r  and let ~ be real. Then 

,q x l/q a~n blip 

The proof of this is a direct adaptat ion of the proof of Theorem B. However, the  

result does not apply directly to (15) since {2 k} is not an additive class, and so 

{r is not necessarily a subadditive sequence. 

Now let r be strictly subadditive-even on (0, c~); i.e. let it satisfy (2) and (2') 

with C =  1. Also let ~b be left lower semi-continuous there. Most of the examples 

we have cited are strictly subadditive, even, and continuous so tha t  we are talking 

about  a large class of functions. Let  to(u)=supo<v<ur This is the maximal  func- 

tion associated with the even extension to E 1 of ~b. I t  is not hard to see tha t  to is 

left continuous and strictly subadditive so tha t  Theorem 5 is applicable. (Actually, 

the conclusion of Theorem 5 is valid for any  positive, monotone function.) By use 

of the maximal  theorem, we are led to our final result. 

COI~OLLARY. Let r be strictly subadditive-even and le/t lover semi-continuous on. 

(O,c~). Let O<p<~cr and 0 < ~ < 1 .  Then 

(2)~ top k 
k=-~ 2 k~ - ~ (2k) 

- -  2kw �9 
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