THE RADON TRANSFORM ON EUCLIDEAN SPACES, COMPACT TWO-POINT HOMOGENEOUS SPACES AND GRASSMANN MANIFOLDS

BY

SIGURĐUR HELGASON

The Institute for Advanced Study, Princeton, N. J., U.S.A.(1)

§ 1. Introduction

As proved by Radon [16] and John [13], a differentiable function f of compact support on a Euclidean space \mathbf{R}^{n} can be determined explicitly by means of its integrals over the hyperplanes in the space. Let $J(\omega, p)$ denote the integral of f over the hyperplane $\langle x, \omega\rangle=p$ where ω is a unit vector and \langle,$\rangle the inner product in \mathbf{R}^{n}$. If Δ denotes the Laplacian on $\mathbf{R}^{n}, d \omega$ the area element on the unit sphere \mathbf{S}^{n-1} then (John [14], p. 13)

$$
\begin{align*}
& f(x)=\frac{1}{2}(2 \pi i)^{1-n}\left(\Delta_{x}\right)^{\frac{1}{2}(n-1)} \int_{\mathrm{S}^{n-1}} J(\omega,\langle\omega, x\rangle) d \omega, \quad(n \text { odd }) ; \tag{1}\\
& f(x)=(2 \pi i)^{-n}\left(\Delta_{x}\right)^{\frac{1}{2}(n-2)} \int_{\mathrm{S}^{n-1}} d \omega \int_{-\infty}^{\infty} \frac{d J(\omega, p)}{p-\langle\omega, x\rangle}, \quad(n \text { even }), \tag{2}
\end{align*}
$$

where, in the last formula, the Cauchy principal value is taken.
Considering now the simpler formula (1) we observe that it contains two dual integrations: the first over the set of points in a given hyperplane, the second over the set of hyperplanes passing through a given point. Generalizing this situation we consider the following setup:
(i) Let X be a manifold and G a transitive Lie transformation group of X. Let Ξ be a family of subsets of X permuted transitively by the action of G on X, whence Ξ acquires a G-invariant differentiable structure. Here Ξ will be called the dual space of X.
(ii) Given $x \in X$, let \check{x} denote the set of $\xi \in \Xi$ passing through x. It is assumed that each ξ and each \check{x} carry measures μ and ν, respectively, such that the action of G on X and Ξ permutes the measures μ and permutes the measures ν.

[^0](iii) If f and g are suitably restricted functions on X and Ξ, respectively, we can define functions f on $\Xi, g \check{g}$ on X by
$$
f(\xi)=\int_{\xi} f(x) d \mu(x), \quad \check{g}(x)=\int_{\check{x}} g(\xi) d v(\xi)
$$

These three assumptions have not been made completely specific because they are not intended as axioms for a general theory but rather as framework for special examples. In this spirit we shall consider the following problems.
A. Relate function spaces on X and Ξ by means of the transforms $f \rightarrow \hat{f}$ and $g \rightarrow \hat{g}$.
B. Let $\mathbf{D}(X)$ and $\mathbf{D}(\Xi)$, respectively, denote the algebras of G-invariant differential operators on X and Ξ. Does there exist a map $D \rightarrow \hat{D}$ of $\mathbf{D}(X)$ into $\mathbf{D}(\Xi)$ and a map $E \rightarrow \check{E}$ of $\mathbf{D}(\Xi)$ into $\mathbf{D}(X)$ such that

$$
(D f)^{\wedge}=\hat{D} f, \quad(E g)^{\vee}=\check{E} \check{g} \check{g}
$$

for all f and g above?
C. In case the transforms $f \rightarrow f$ and $g \rightarrow g$ are one-to-one find explicit inversion formulas. In particular, find the relationships between f and $(f)^{\wedge}$ and between g and $\left.(g)\right)^{\wedge}$.

In this article we consider three examples within this framework: (1) The already mentioned example of points and hyperplanes (§ 2-§4); (2) points and antipodal manifolds in compact two-point homogeneous spaces (§5-§6); p-planes and q-planes in \mathbf{R}^{p+q+1} ($\S 7$ $\S 8$). Other examples are discussed in [11] which also contains a bibliography on the Radon transform and its generalizations. See also [5].

The following notation will be used throughout. The set of integers, real and complex numbers, respectively, is denoted by \mathbf{Z}, \mathbf{R} and \mathbf{C}. If $x \in \mathbf{R}^{n},|x|$ denotes the length of the vector $x ; \Delta$ denotes the Laplacian on \mathbf{R}^{n}. If M is a manifold, $C^{\infty}(M)$ (respectively $D(M)$) denotes the space of differentiable functions (respectively, differentiable functions with compact support) on M. If $L(M)$ is a space of functions on M, D and endomorphism of $L(M)$ and $p \in M, f \in L(M)$ then $[D f](p)$ (and sometimes $D_{p}(f(p))$) denotes the value of $D f$ at p. The tangent space to M at p is denoted M_{p}. If τ is a diffeomorphism of a manifold M onto a manifold N and if $f \in C^{\infty}(M)$ then f^{r} stands for the function $f \circ \tau^{-1}$ in $C^{\infty}(N)$. If D is a differential operator on M then the linear transformation of $C^{\infty}(N)$ given by $D^{\text {a }}$: $f \rightarrow\left(D f^{\tau^{-1}}\right)^{\tau}$ is a differential operator on N. For $M=N, D$ is called invariant under τ if $D^{\boldsymbol{z}}=D$.

The adjoint representation of a Lie group G (respectively, Lie algebra (S) will be denoted Ad_{G} (respectively $\left.\operatorname{ad}_{G}\right)$. These subscripts are omitted when no confusion is likely.

§ 2. The Radon transform in Euclidean space

Let \mathbf{R}^{n} be a Euclidean space of arbitrary dimension n and let Ξ denote the manifold of hyperplanes in \mathbf{R}^{n}.

If f is a function on \mathbf{R}^{n}, integrable on each hyperplane in \mathbf{R}^{n}, the Radon transform of f is the function \hat{f} on Ξ given by

$$
\begin{equation*}
\hat{f}(\xi)=\int_{\xi} f(x) d \sigma(x), \quad \xi \in \Xi \tag{1}
\end{equation*}
$$

where $d \sigma$ is the Euclidean measure on the hyperplane ξ. In this section we shall prove the following result which shows, roughly speaking, that f has compact support if and only if \hat{f} does.

Theorem 2.1. Let $f \in C^{\infty}\left(\mathbf{R}^{n}\right)$ satisfy the following conditions:
(i) For each integer $k>0|x|^{k} f(x)$ is bounded.
(ii) There exists a constant $A>0$ such that $\hat{f}(\xi)=0$ for $d(0, \xi)>A, d$ denoting distance.

Then

$$
f(x)=0 \quad \text { for } \quad|x|>A
$$

Proof. Suppose first that f is a radial function. Then there exists an even function $F \in C^{\infty}(\mathbf{R})$ such that $f(x)=F(|x|)$ for $x \in \mathbf{R}^{n}$. Also there exists an even function $\hat{F} \in C^{\infty}(\mathbf{R})$ such that $\hat{F}(d(0, \xi))=\hat{f}(\xi)$. Because of (1) we find easily

$$
\begin{equation*}
\widehat{F}(p)=\int_{\mathbf{R}^{n-1}} F\left(\left(p^{2}+|y|^{2}\right)^{\frac{1}{2}}\right) d y=\Omega_{n-1} \int_{0}^{\infty} F\left(\left(p^{2}+t^{2}\right)^{\frac{1}{2}} t^{n-2} d t\right. \tag{2}
\end{equation*}
$$

where Ω_{n-1} is the area of the unit sphere in \mathbf{R}^{n-1}. Here we substitute $s=\left(p^{2}+t^{2}\right)^{-\frac{k}{2}}$ and then put $u=p^{-1}$. Formula (2) then becomes

$$
\begin{equation*}
u^{n-3} \hat{F}\left(u^{-1}\right)=\Omega_{n-1} \int_{0}^{u}\left(F\left(s^{-1}\right) s^{-n}\right)\left(u^{2}-s^{2}\right)^{\frac{1}{(n-3)}} d s \tag{3}
\end{equation*}
$$

This formula can be inverted (see e.g. John [14], p. 83) and we obtain

$$
\begin{equation*}
F\left(s^{-1}\right) s^{-n}=c s\left(\frac{d}{d\left(s^{2}\right)}\right)^{n-1} \int_{0}^{s}\left(s^{2}-u^{2}\right)^{\frac{1}{2}(n-3)} u^{n-2} \widehat{F}\left(u^{-1}\right) d u \tag{4}
\end{equation*}
$$

where c is a constant. Now by (ii), $\hat{F}\left(u^{-1}\right)=0$ for $0<u \leqslant A^{-1}$ so by (4), $F\left(s^{-1}\right)=0$ for $0<s \leqslant A^{-1}$, proving the theorem for the case when f is radial.

Now suppose $f \in C^{\infty}\left(\mathbf{R}^{n}\right)$ arbitrary, satisfying (i) and (ii). Let K denote the orthogonal group $\mathbf{0}(n)$. For $x, y \in \mathbf{R}^{n}$ we consider the spherical average

$$
f^{*}(x, y)=\int_{K} f(x+k \cdot y) d k
$$

where $d k$ is the Haar measure on $\mathbf{O}(n)$, with total measure 1. Let $R_{2} f^{*}$ be the Radon transform of f^{*} in the second variable. Since $\left(f^{\tau}\right)^{\wedge}=(\hat{f})^{\tau}$ for each rigid motion τ of \mathbf{R}^{n} it is clear that

$$
\begin{equation*}
\left[R_{2} f^{*}\right](x, \xi)=\int_{K} f(x+k \cdot \xi) d k, \quad x \in \mathbf{R}^{n}, \xi \in \Xi \tag{5}
\end{equation*}
$$

where $x+k \cdot \xi$ is the translate of $k \cdot \xi$ by x. Now it is clear that the distance d satisfies the inequality

$$
d(0, x+k \cdot \xi) \geqslant d(0, \xi)-|x|
$$

for all $x \in \mathbf{R}^{n}, k \in K$. Hence we conclude from (5)

$$
\begin{equation*}
\left[R_{2} f^{*}\right](x, \xi)=0 \quad \text { if } \quad d(0, \xi)>A+|x| . \tag{6}
\end{equation*}
$$

For a fixed x, the function $y \rightarrow f^{*}(x, y)$ is a radial function in $C^{\infty}\left(\mathbf{R}^{n}\right)$ satisfying (i). Since the theorem is proved for radial functions, (6) implies that

$$
\int_{K} f(x+k \cdot y) d k=0 \text { if }|y|>A+|x|
$$

The theorem is now a consequence of the following lemma.
Lemma 2.2. Let f be a function in $C^{\infty}\left(\mathbf{R}^{n}\right)$ such that $|x|^{k} f(x)$ is bounded on \mathbf{R}^{n} for each integer $k>0$. Suppose f has surface integral 0 over every sphere which encloses the unit sphere. Then $f(x) \equiv 0$ for $|x|>1$.

Proof. The assumption about f means that

$$
\begin{equation*}
\int_{\mathrm{S}^{n-1}} f(x+L \omega) d \omega=0 \text { for } L>|x|+1 \tag{7}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\int_{|y| \geqslant L} f(x+y) d y=0 \quad \text { for } \quad L>|x|+1 . \tag{8}
\end{equation*}
$$

Now fix $L>1$. Then (8) shows that

$$
\int_{|y| \leqslant L} f(x+y) d y
$$

is constant for $0 \leqslant|x|<L-1$. The identity

$$
\int_{\mathbb{S}^{n-1}} f(x+L \omega)\left(x_{i}+L \omega_{i}\right) d \omega=x_{i} \int_{\mathbb{S}^{n-1}} f(x+L \omega) d \omega+L^{2-n} \frac{\partial}{\partial x_{i}} \int_{|y|<L} f(x+y) d y
$$

then shows that the function $x_{i} f(x)$ has surface integral 0 over each sphere with radius L and center $x(0 \leqslant|x|<L-1)$. In other words, we can pass from $f(x)$ to $x_{i} f(x)$ in the identity (7). By iteration, we find that on the sphere $|y|=\dot{L}(L>1) f(y)$ is orthogonal to all polynomials, hence $f(y) \equiv 0$ for $|y|=L$. This concludes the proof.

Remark. The proof of this lemma was suggested by John's solution of the problem of determining a function on \mathbf{R}^{n} by means of its surface integrals over all spheres of radius 1 (John [14], p. 114).

§ 3. Rapidly decreasing functions on a complete Riemannian manifold

Let M be a connected, complete Riemannian manifold, \tilde{M} its universal covering manifold with the Riemannian structure induced by that of $M, \tilde{M}=\tilde{M}_{1} \times \ldots \times \tilde{M}_{l}$ the de Rham decomposition of \tilde{M} into irreducible factors ([17]) and let $M_{i}=\pi\left(\tilde{M}_{i}\right)(\mathbf{l} \leqslant i \leqslant l)$ where π is the covering mapping of \tilde{M} onto M. Let $\Delta, \tilde{\Delta}, \Delta_{i}, \tilde{\Delta}_{i}$ denote the Laplace-Beltrami operators on $M, \tilde{M}, M_{i}, \tilde{M}_{i}$, respectively. It is clear that $\tilde{\Delta}_{i}$ can be regarded as a differential operator on \bar{M}. In order to consider Δ_{i} as a differential operator on M, let $f \in C^{\infty}(M)$, $\tilde{f}=f \circ \pi$. Any covering transformation τ of M is an isometry so $\left(\tilde{\Delta}_{i}(f \circ \pi)\right)^{\tau}=\tilde{\Delta}_{i}(f \circ \pi)$; hence $\tilde{\Delta}_{i}(f \circ \pi)=F \circ \pi$, where $F \in C^{\infty}(M)$. We define $\Delta_{i} f=F$. Because of the decomposition of \bar{M} each $m \in M$ has a coordinate neighborhood which is a product of coordinate neighborhoods in the spaces M_{i}. In terms of these coordinates, $\Delta=\sum_{i} \Delta_{i}$; in particular Δ_{i} is a differential operator on M, and the operators $\Delta_{i}(1 \leqslant i \leqslant l)$ commute.

Now fix a point $o \in M$ and let $r(p)=d(o, p)$. A function $f \in C^{\infty}(M)$ will be called rapidly decreasing if for each polynomial $P\left(\Delta_{1}, \ldots, \Delta_{l}\right)$ in the operators $\Delta_{1}, \ldots, \Delta_{l}$ and each integer $k \geqslant 0$

$$
\begin{equation*}
\sup _{p} \mid(1+r(p))^{k}\left[P\left(\Delta_{1}, \ldots, \Delta_{l} f\right](p) \mid<\infty\right. \tag{1}
\end{equation*}
$$

It is clear that condition (1) is independent of the choice of o. Let $S(M)$ denote the set of rapidly decreasing functions on M.

In the case of a Euclidean space a function $f \in C^{\infty}\left(\mathbf{R}^{n}\right)$ belongs to $\boldsymbol{S}\left(\mathbf{R}^{n}\right)$ if and only if for each polynomial P in n variables the function $P\left(D_{1}^{2}, \ldots, D_{n}^{2}\right) f$ (where $D_{i}=\partial / \partial x_{i}$) goes to zero for $|x| \rightarrow \infty$ faster than any power of $|x|$. Then the same holds for the function $P\left(D_{1}, \ldots, D_{n}\right) f$ (so $S\left(\mathbf{R}^{n}\right)$ coincides with the space defined by Schwartz [18], II, p. 89) as a consequence of the following lemma which will be useful later.

Lemma 3.1. Let \dagger be a function in $C^{\infty}\left(\mathbf{R}^{n}\right)$, which for each pair of integers $k, l \geqslant 0$ satisfies

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{n}}\left|(1+|x|)^{k}\left[\Delta^{l} f\right](x)\right|<\infty . \tag{2}
\end{equation*}
$$

Then the inequality is satisfied when Δ^{l} is replaced by an arbitrary differential operator with constant coefficients.

This lemma is easily proved by using Fourier transforms.
Lemma 3.2. A function $F \in C^{\infty}\left(\mathbf{R} \times \mathbf{S}^{n-1}\right)$ lies in $\mathbf{S}\left(\mathbf{R} \times \mathbf{S}^{n-1}\right)$ if and only if for arbitrary integers $k, l \geqslant 0$ and any differential operator D on S^{n-1},

$$
\begin{equation*}
\sup _{\omega \in \mathrm{S}^{n-1}, r \in \mathbf{R}}\left|(\mathrm{I}+|r|)^{k} \frac{d^{l}}{d r^{l}}(D F)(\omega, r)\right|<\infty . \tag{3}
\end{equation*}
$$

Proof. It is obvious that (3) implies that F is rapidly decreasing. For the converse we must prove (\mathbf{S}^{n-1} being irreducible) that (3) holds provided it holds when $l \geqslant 0$ is even and D an arbitrary power $\left(\Delta_{S}\right)^{m}(m \geqslant 0)$ of the Laplacian Δ_{S} on S^{n-1}. Let $G(\omega, r)=d^{l} / d r^{l}(F(\omega, r))$. Of course it suffices to verify (3) as $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$ varies in some coordinate neighborhood on S^{n-1}. Let $x_{i}=|x| \omega_{i}(1 \leqslant i \leqslant n)$ and suppose G extended to a C^{∞} function \tilde{G} in the product of an annulus $A_{\varepsilon}:\left\{x \in \mathbf{R}^{n}| | x_{1}^{2}+\ldots+x_{n}^{2}-1 \mid<\varepsilon<1\right\}$ with \mathbf{R}. Regardless how this extension is made, (3) would follow (for even l) if we can prove an estimate of the form

$$
\begin{equation*}
\sup _{\omega \in \mathbb{S}^{n-1}, r \in \mathbf{R}}\left|(1+|r|)^{k}\left[D^{r} \tilde{G}\right](\omega, r)\right|<\infty \tag{4}
\end{equation*}
$$

for an arbitrary derivative $D^{\gamma}=\partial^{|\gamma|} / \partial x_{1}^{\gamma_{1}} \ldots \partial x_{n}^{\gamma_{n}}\left(|\gamma|=\gamma_{1}+\ldots+\gamma_{n}\right)$. Now, by Sobolev's lemma (see e.g. [3], Theorem 6', p. 243) [$\left.D^{\gamma} \tilde{G}\right](\omega, r)$ can be estimated by means of L^{2} norms over A_{ε} of finitely many derivatives $D_{x}^{\alpha} D_{x}^{\gamma}(\widetilde{G}(x, r))$. But the L^{2} norm over A_{ε} of $D_{x}^{\alpha} D_{x}^{\gamma}(\tilde{G}(x, r))$ is estimated by the L^{2} norm over A_{ε} of $\Delta_{x}^{m}(\tilde{G}(x, r)), m$ being a suitable integer (see [12], p. 178-188). Now suppose \tilde{G} was chosen such that for each r, the function $x \rightarrow \tilde{G}(x, r)$ is constant on each radius from 0 . Then
and

$$
\begin{gathered}
\Delta_{x}(\widetilde{G}(x, r))=|x|^{-2}\left[\Delta_{S} G\right](\omega, r) \quad(x=|x| \omega) \\
\Delta_{x}^{m}(\tilde{G}(x, r))=\sum_{i} f_{i}(|x|)\left[\left(\Delta_{S}\right)^{i} G\right](\omega, r)
\end{gathered}
$$

where the sum is finite and each f_{i} is bounded for $||x|-1|<\varepsilon$. Hence the L^{2} norm over A_{ε} of $\left(\Delta^{m}\right)_{x}(\tilde{G}(x, r))$ is estimated by a linear combination of the L^{2} norms over S^{n-1} of $\left[\left(\Delta_{S}\right)^{i} G\right](\omega, r)$. But these last derivatives satisfy (3), by assumption, so we have proved (4).

This proves (3) for l even. Let $H(\omega, s)$ be the Fourier transform (with respect to r) of the function $(D F)(\omega, r)$. Then one proves by induction on k that

$$
\sup _{\omega \in \mathbb{S}^{n-1}, s \in \mathbf{R}}\left|(1+|s|)^{l} \frac{d^{k}}{d s^{k}} H(\omega, s)\right|<\infty
$$

for all $k, l \geqslant 0$ and now (3) follows for all $k, l \geqslant 0$ by use of the inverse Fourier transform.

§4. The Radon transforms of $\boldsymbol{S}\left(\mathbf{R}^{n}\right)$ and $\mathcal{D}\left(\mathbf{R}^{n}\right)$

If $\omega \in \mathbf{S}^{n-1}, r \in \mathbf{R}$ let $\xi(\omega, r)$ denote the hyperplane $\langle x, \omega\rangle=r$ in \mathbf{R}^{n}. Then the mapping $(\omega, r) \rightarrow \xi(\omega, r)$ is a two-fold covering map of the manifold $\mathbf{S}^{n-1} \times \mathbf{R}$ onto the manifold Ξ of all hyperplanes in \mathbf{R}^{n}; the (differentiable) functions on Ξ will be identified with the (differentiable) functions F on $\mathbb{S}^{n-1} \times \mathbf{R}$ which satisfy $F(\omega, r)=F(-\omega,-r)$. Thus $\mathcal{S}(\Xi)$ is, by definition, a subspace of $S\left(\mathbf{S}^{n-1} \times \mathbf{R}\right)$. We also need the linear space $S_{H}(\Xi)$ of functions $F \in S(\Xi)$ which have the property that for each integer $k \geqslant 0$ the integral $\int F(\omega, r) r^{k} d r$ can be written as a homogeneous k th degree polynomial in the components $\omega_{1}, \ldots, \omega_{n}$ of ω. Such a polynomial can, since $\omega_{1}^{2}+\ldots+\omega_{n}^{2}=1$, also be written as a ($k+2 l$)th degree polynomial in the ω_{i}.

We shall now consider the situation outlined in the introduction for $X=\mathbf{R}_{n}$, Ξ as above and G the group of rigid motions of X. If $x \in X, \xi \in \Xi$, the measure μ is the Euclidean measure $d \sigma$ on the hyperplane ξ, ν is the unique measure on \check{x} invariant under all rotations around x, normalized by $v(\check{x})=1$. We shall now consider problems A, B, C from § 1 . If f is a function on X, integrable along each hyperplane in X then according to the conventions above

$$
\begin{equation*}
f(\omega, r)=\int_{\langle x, \omega\rangle=r} f(x) d \sigma(X), \quad \omega \in \mathbb{S}^{n-1}, r \in \mathbf{R} . \tag{1}
\end{equation*}
$$

Theorem 4.1. The Radon transform $f \rightarrow \hat{f}$ is a linear one-to-one mapping of $\boldsymbol{S}(X)$ onto $S_{H}(\Xi)$.

Proof. Let $f \in S(X)$ and let f denote the Fourier transform

$$
f(u)=\int f(x) e^{-i\langle x, u\rangle} d x, \quad u \in \mathbf{R}^{n}
$$

If $u \neq 0$ put $u=s \omega$, where $s \in \mathbf{R}$ and $\omega \in \mathbb{S}^{n-1}$. Then

$$
f(s \omega)=\int_{-\infty}^{\infty} d r \int_{\langle x, \omega\rangle=r} f(x) e^{-i\langle x, \omega\rangle s} d \sigma(x)
$$

so we obtain

$$
\begin{equation*}
f(s \omega)=\int_{-\infty}^{\infty} f(\omega, r) e^{-i s r} d r \tag{2}
\end{equation*}
$$

for $s \neq 0$ in $\mathbf{R}, \omega \in \mathbf{S}^{n-1}$. But (2) is obvious for $s=0$ so it holds for all $s \in \mathbf{R}$. Now according to Schwartz [18], II, p. 105, the Fourier transform $f \rightarrow f$ maps $S\left(\mathbf{R}^{n}\right)$ onto itself. Since

$$
\frac{d}{d s}(f(s \omega))=\sum_{i=1}^{n} \omega_{i} \frac{\partial f}{\partial u_{i}} \quad\left(u=\left(u_{1}, \ldots, u_{n}\right)\right)
$$

it follows from (2) that for each fixed ω, the function $r \rightarrow f(\omega, r)$ lies in $\boldsymbol{S}(\mathbf{R})$. For each $\omega_{0} \in \mathbb{S}^{n-1}$, a subset of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ will serve as local coordinates on a neighborhood of ω_{0}. To see that $\hat{f} \in S(\Xi)$, it therefore suffices to verify (3) § 3 for $F=f$ on an open subset N of \mathbf{S}^{n-1} where ω_{n} is bounded away from 0 and $\omega_{1}, \ldots, \omega_{n-1}$ serve as coordinates, in terms of which D is expressed. Putting $\mathbf{R}^{+}=\{s \in \mathbf{R} \mid s>0\}$ we have on $N \times \mathbf{R}^{+}$
so

$$
\begin{align*}
& u_{1}=s \omega_{1}, \ldots, u_{n-1}=s \omega_{n-1}, u_{n}=s\left(1-\omega_{1}^{2}-\ldots-\omega_{n-1}^{2}\right)^{\frac{1}{2}} \tag{3}\\
& \frac{\partial}{\partial \omega_{i}}(f(s \omega))=s \sum_{i=1}^{n-1} \frac{\partial f}{\partial u_{i}}-s \omega_{i}\left(1-\omega_{1}^{2}-\ldots-\omega_{n-1}^{2}\right)^{\frac{1}{2}} \frac{\partial f}{\partial u_{n}}
\end{align*}
$$

It follows that if D is any differential operator on S^{n-1} and k, l integers $\geqslant 0$ then

$$
\begin{equation*}
\sup _{\omega \in N, s \in \mathbf{R}}\left|\left(1+s^{2 k}\right)\left[\frac{d^{l}}{d s^{l}} D f\right](\omega, s)\right|<\infty . \tag{4}
\end{equation*}
$$

We can therefore apply D under the integral sign in the inversion formula

$$
\begin{equation*}
f(\omega, r)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s \omega) e^{i s r} d s \tag{5}
\end{equation*}
$$

and obtain

$$
\left(1+r^{2 k}\right) \frac{d^{l}}{d r^{l}}\left(D_{\omega}(f(\omega, r))\right)=\frac{1}{2 \pi} \int\left(1+(-1)^{k} \frac{d^{2 k}}{d s^{2 k}}\right)\left((i s)^{l} D_{\omega}(f(s \omega))\right) e^{i s r} d s
$$

Now (4) shows that $\hat{f} \in \mathcal{S}(\Xi)$. Finally, if k is an integer $\geqslant 0$ then

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(\omega, r) r^{k} d r=\int_{-\infty}^{\infty} r^{k} d r \int_{\langle x, \omega\rangle=r} f(x) d \sigma(x)=\int_{\mathbf{R}^{n}} f(x)\langle x, \omega\rangle^{k} d x \tag{6}
\end{equation*}
$$

so $\hat{f} \in S_{H}(\Xi)$. The Fourier transform being one-to-one it remains to prove that each $g \in S_{H}(\Xi)$ has the form $g=\hat{f}$ for some $f \in \boldsymbol{S}\left(\mathbf{R}^{n}\right)$. We put

$$
G(s, \omega)=\int_{-\infty}^{\infty} g(\omega, r) e^{-i r s} d r
$$

Then $G(-s,-\omega)=G(s, \omega)$ and $G(0, \omega)$ is a homogeneous polynomial of degree 0 in ω, hence independent of ω. Hence there exists a function F on \mathbf{R}^{n} such that

$$
\begin{equation*}
F(s \omega)=\int_{-\infty}^{\infty} g(\omega, r) e^{-i r s} d r, \quad s \in \mathbf{R}, \omega \in \mathbb{S}^{n-1} \tag{7}
\end{equation*}
$$

It is clear that F is C^{∞} in $\mathbf{R}^{n}-\{0\}$. To prove that F is C^{∞} in a neighborhood of 0 we consider the coordinate neighborhood N on \mathbf{S}^{n-1} as before. Let $h\left(u_{1}, \ldots, u_{n}\right)$ be any function of class C^{∞} in $\mathbf{R}^{n}-\{0\}$ and let $h^{*}\left(\omega_{1}, \ldots, \omega_{n-1}, s\right)$ be the function on $N \times \mathbf{R}^{+}$obtained by means of the substitution (3). Then
and

$$
\frac{\partial h}{\partial u_{i}}=\sum_{j=1}^{n-1} \frac{\partial h^{*}}{\partial \omega_{j}} \cdot \frac{\partial \omega_{j}}{\partial u_{i}}+\frac{\partial h^{*}}{\partial s} \cdot \frac{\partial s}{\partial u_{i}} \quad(1 \leqslant i \leqslant n)
$$

$$
\frac{\partial \omega_{j}}{\partial u_{i}}=\frac{1}{s}\left(\delta_{i j}-\frac{u_{i} u_{j}}{s^{2}}\right) \quad(1 \leqslant i \leqslant n, \quad 1 \leqslant j \leqslant n-1)
$$

$$
\frac{\partial s}{\partial u_{i}}=\omega_{i}(1 \leqslant i \leqslant n-1), \quad \frac{\partial s}{\partial u_{n}}=\left(1-\omega_{1}^{2}-\ldots-\omega_{n-1}^{2}\right)^{\frac{1}{1}} .
$$

Hence

$$
\begin{gathered}
\frac{\partial h}{\partial u_{i}}=\frac{1}{s} \frac{\partial h^{*}}{\partial \omega_{i}}+\omega_{i}\left(\frac{\partial h^{*}}{\partial s}-\frac{1}{s} \sum_{j-1}^{n-1} \omega_{j} \frac{\partial h^{*}}{\partial \omega_{j}}\right) \quad(1 \leqslant i \leqslant n-1), \\
\frac{\partial h}{\partial u_{n}}=\left(1-\omega_{1}^{2}-\ldots-\omega_{n-1}^{2}\right)^{\frac{1}{2}}\left(\frac{\partial h^{*}}{\partial s}-\frac{1}{s} \sum_{j=1}^{n-1} \omega_{j} \frac{d h^{*}}{\partial \omega_{j}}\right)
\end{gathered}
$$

In order to use these formulas for $h=F$ we write

$$
F(s \omega)=\int_{-\infty}^{\infty} g(\omega, r) d r+\int_{-\infty}^{\infty} g(r, \omega)\left(e^{-i r s}-1\right) d r
$$

and by assumption, the first integral is independent of ω. Thus, for a constant $K>0$,

$$
\left|\frac{1}{s} \frac{\partial}{\partial \omega_{i}}(F(s \omega))\right| \leqslant K \int\left(1+r^{4}\right)^{-1} s^{-1}\left|e^{-i s r}-1\right| d r \leqslant K \int \frac{|r|}{1+r^{4}} d r .
$$

This shows that all the derivatives $\partial \boldsymbol{F} / \partial u_{i}(1 \leqslant i \leqslant n)$ are bounded in a punctured ball $0<|u|<\varepsilon$ so F is continuous in a neighborhood of $u=0$. More generally, let q be any integer >0. Then we have for an arbitrary q th order derivative,

$$
\begin{equation*}
\frac{\partial^{\alpha} h}{\partial u_{i_{1}} \ldots \partial u_{i_{q}}}=\sum_{i+j \leqslant q} A_{i, j}(\omega, s) \frac{\partial^{i+j} h^{*}}{\partial \omega_{k_{1}} \ldots \partial \omega_{k_{i}} \partial s^{j}} \tag{8}
\end{equation*}
$$

where the coefficient $A_{i, j}(\omega, s)=O\left(s^{j-q}\right)$ near $s=0$. Also

$$
\begin{gather*}
F(s \omega)=\int_{-\infty}^{\infty} g(\omega, r) \sum_{k=0}^{q-1} \frac{(-i s r)^{k}}{k!} d r+\int_{-\infty}^{\infty} g(\omega, r) e_{q}(-i r s) d r \tag{9}\\
e_{q}(t)=\frac{t^{q}}{q!}+\frac{t^{q+1}}{(q+1)!}+\ldots
\end{gather*}
$$

where

Then it is clear that the first integral in (9) is a polynomial in u_{1}, \ldots, u_{n} of degree $\leqslant q-1$ and is therefore annihilated by the differential operator (8). Now, if $0 \leqslant j \leqslant q$,

$$
\begin{equation*}
\left|s^{j-q} \frac{\partial^{j}}{\partial s^{j}}\left(e_{q}(-i r s)\right)\right|=\left|(-i r)^{q}(-i r s)^{j-q} e_{q-j}(-i r s)\right| \leqslant K_{j} r^{q} \tag{10}
\end{equation*}
$$

where K_{j} is a constant, because the function $t \rightarrow(i t)^{-p} e_{p}(i t)$ is obviously bounded on \mathbf{R} $(p \geqslant 0)$. Since $g \in S(\Xi)$ it follows from (8), (9), (10) that each q th order derivative of F with respect to u_{1}, \ldots, u_{n} is bounded in a punctured ball $0<|u|<\varepsilon$. Hence $F \in C^{\infty}\left(\mathbf{R}^{n}\right)$. That F is rapidly decreasing is now clear from formula (7), Lemma 3.1 and the fact that ([8], p. 278)

$$
\Delta h=\frac{\partial^{2} h^{*}}{\partial s^{2}}+\frac{n-1}{s} \frac{\partial h^{*}}{\partial s}+\frac{1}{s^{2}} \Delta_{S} h^{*}
$$

where Δ_{S} is the Laplace-Beltrami operator on S^{n-1}. If f is the function in $S(X)$ whose Fourier transform is F then $\hat{f}=g$ and the theorem is proved.

Let $S^{*}(X)$ denote the space of all functions $f \in S(X)$ which satisfy $\int f(x) P(x) d x=0$ for all polynomials $P(x)$. Similarly, let $S^{*}(\Xi)$ denote the space of all functions $g \in S(\Xi)$ which satisfy $\int g(\omega, r) P(r) d r \equiv 0$ for all polynomials $P(r)$. Note that under the Fourier transform, $\boldsymbol{S}^{*}(X)$ corresponds to the space $S_{0}\left(\mathbf{R}^{n}\right)$ of functions in $\boldsymbol{S}\left(\mathbf{R}^{n}\right)$ all of whose derivatives vanish at the origin.

Corollary 4.2. The transforms $f \rightarrow f$ and $g \rightarrow \check{g}$, respectively, are one-to-one linear maps of $S^{*}(X)$ onto $S^{*}(\Xi)$ and of $\boldsymbol{S}(\Xi)$ onto $\boldsymbol{S}^{*}(X)$.

The first statement follows from (6) and the well-known fact that the polynomials $\langle x, \omega\rangle^{k}$ span the space of homogeneous polynomials of degree k. As for the second, we observe that for $f \in S(X)$ and ξ_{0} a fixed plane through 0
so

$$
\begin{align*}
& \left(f^{\smile}(x)=\int_{K} f\left(x+k \cdot \xi_{0}\right) d k=\int_{K}\left(\int_{\xi_{0}} f(x+k \cdot y) d y\right) d k\right. \\
& =\int_{\xi_{0}} d y \int_{K} f(x+k \cdot y) d k=\Omega_{n-1} \int_{0}^{\infty} r^{n-2}\left(\frac{1}{\Omega_{n}} \int_{S^{n-1}} f(x+r \omega) d \omega\right) d r, \\
& \quad(f)^{\vee}(x)=\frac{\Omega_{n-1}}{\Omega_{n}} \int_{X}|x-y|^{-1} f(y) d y \tag{11}
\end{align*}
$$

This formula is also proved in [4]. Now the right-hand side is a tempered distribution, being the convolution of a tempered distribution and a member of $S(X)$. By [18], II, p. 124, the Fourier transform is given by the product of the Fourier transforms so if $f \in S^{*}(X)$ we see that $(\hat{f})^{\vee}$ has Fourier transform belonging to $S_{0}(X)$. Hence $(\hat{f})^{\vee} \in S^{*}(X)$ and the second statement of Cor. 4.2 follows.

Remarks. A characterization of the Radon transform of $S(X)$ similar to that of Theorem 3.1 is stated in Gelfand-Graev-Vilenkin [5], p. 35. Their proof, as outlined on p. 36-39, is based on the inversion formula (1) § 1 and therefore leaves out the even-dimensional case. Corollary 4.2 was stated by Semyanistyi [19].

Now let $\mathcal{D}(X)$ and $\mathcal{D}(\Xi)$ be as defined in $\S 1$, and put $\mathcal{D}_{H}(\Xi)=S_{H}(\Xi) \cap \mathcal{D}(\Xi)$. The following result is an immediate consequence of Theorem 2.1 and 4.1.

Corollary 4.3. The Radon transform $f \rightarrow \hat{f}$ is a linear one-to-one mapping of $\mathcal{D}(X)$ onto $\mathcal{D}_{H}(\Xi)$.

Concerning problem B in §l we have the following result which is a direct consequence of Lemmas 7.1 and 8.1, proved later.

Proposition 4.4. The algebra $\mathbf{D}(X)$ is generated by the Laplacian Δ, the algebra $\mathbf{D}(\Xi)$ is generated by the differential operator $\square: g(\omega, r) \rightarrow\left(d^{2} / d r^{2}\right) g(\omega, r)$ and

$$
(\Delta f)^{\wedge}=\square \hat{f}, \quad(\square g)^{\imath}=\Delta \check{g}
$$

for $f \in \boldsymbol{S}(X), g \in C^{\infty}(\Xi)$.
The following reformulation of the inversion formulas (1), (2) § 1 gives an answer to problem C.

Theorem 4.5. (i) If n is odd,

$$
\begin{array}{ll}
f=c \Delta^{\frac{1}{(n-1)}}\left((\hat{f})^{\smile}\right), & f \in S(X) ; \\
g=c \square^{\frac{1}{2}(n-1)}\left(\left(g^{\prime}\right)^{\wedge}\right), & g \in S^{*}(\Xi),
\end{array}
$$

where c is a constant, independent of f and g.
(ii) If n is even,

$$
\begin{array}{ll}
f=c_{1} J_{1}\left((f)^{\vee}\right), & f \in S(X) \\
g=c_{2} J_{2}\left((g)^{\wedge}\right), & g \in S^{*}(\Xi)
\end{array}
$$

where the operators J_{1} and J_{2} are given by analytic continuation

$$
J_{1}: f(x) \rightarrow \underset{\alpha=1-2 n}{\operatorname{anal} . \text { cont. }} \int_{R^{n}} f(y)|x-y|^{\alpha} d y
$$

and c_{1}, c_{2} are constants, independent of f and g.
Proof. In (i) the first formula is just (1) § 1 and the second follows by Prop. 4.4. We shall now indicate how (ii) follows from (2) §1. Since the Cauchy principal value is the derivative of the distribution $\log |p|$ on \mathbf{R} whose successive derivatives are the distributions $P f \cdot\left(p^{-k}\right)$ (see [18], I, p. 43) we have by (2) § 1

$$
\begin{equation*}
f(x)=(2 \pi i)^{-n}(n-1)!\int_{\mathbb{S}^{n-1}}\left(P f \cdot\left(p-\langle\omega, x\rangle^{-n}\right)(\hat{f}(\omega, p)) d \omega\right. \tag{12}
\end{equation*}
$$

On the other hand, if $\varphi \in C^{\infty}(X)$ is bounded we have by Schwartz [18], I, p. 45

$$
\begin{gather*}
{\left[J_{1} \varphi\right](0)=\lim _{\varepsilon \rightarrow 0}\left[\int_{|x| \geqslant \varepsilon}|x|^{1-2 n} \varphi(x) d x+\varepsilon(\varphi)\right],} \\
\text { where } \quad \varepsilon(\varphi)=\sum_{k} H_{k}\left[\Delta^{k} \varphi\right](0) \frac{\varepsilon^{1-n+2 k}}{1-n+2 k}, \quad H_{k}=\frac{\pi^{\frac{1}{2 n}}}{2^{2 k-1} k!\Gamma\left(\frac{1}{2} n+k\right)} . \tag{13}
\end{gather*}
$$

In particular

$$
\begin{equation*}
\left[J_{1}\left((f)^{\llcorner }\right](0)=\lim _{\varepsilon \rightarrow 0}\left[\Omega_{n} \int_{\varepsilon}^{\infty} r^{-n} F(r) d r+\varepsilon(\hat{f})^{\llcorner }\right)\right] \tag{14}
\end{equation*}
$$

where $F(r)$ is the average of $(\hat{f})^{\smile}$ on the sphere $|x|=r$. In order to express (14) in terms of \hat{f} we assume f is a radial function and write $f(p)$ for $f(\omega, p)$. Then

$$
\begin{gather*}
F(r)=C \int_{0}^{\frac{1}{1} \pi} f(r \cos \theta) \sin ^{n-2} \theta d \theta, \quad C^{-1}=\int_{0}^{\frac{1}{2} \pi} \sin ^{n-2} \theta d \theta \tag{15}\\
{\left[\Delta^{k}(\hat{f})^{\breve{ }}\right](0)=\left(\frac{d^{2 k}}{d p^{2 k}} \hat{f}\right)(0) .} \tag{16}
\end{gather*}
$$

If $q_{n}(p)$ is the Taylor series of $f(p)$ around 0 up to order $n-2$ we get upon substituting (15) and (16) into (14),

$$
\left(J_{1}\left((\hat{f})^{-}\right)\right)(0)=C \Omega_{n} \lim _{\varepsilon \rightarrow 0} \int_{0}^{\frac{1}{2} \pi} \sin ^{n-2} \theta \cos ^{n-1} \theta d \theta \int_{\varepsilon \cos \theta}^{\infty} p^{-n}\left(f(p)-q_{n}(p)\right) d p,
$$

which on comparison with (12) gives

$$
\begin{equation*}
f(0)=c_{1} J_{1}\left(f(\hat{f})^{\breve{ }}\right)(0), \quad c_{1}=\text { const. } \tag{17}
\end{equation*}
$$

Now put for $\varphi \in C^{\infty}(X), x, y \in X$,

$$
\varphi_{x}^{*}(y)=\int_{K} \varphi(x+k y) d k
$$

and let us prove

$$
\begin{equation*}
\left[J_{1} \varphi_{x}^{*}\right](0)=\left(\left(J_{1} \varphi\right)_{x}^{*}\right)(0) \quad \text { if } \varphi \text { is bounded. } \tag{18}
\end{equation*}
$$

In view of (13) this is a consequence of the obvious formula

$$
\int_{|y| \geqslant \varepsilon}|y|^{1-2 n} \varphi_{x}^{*}(y) d y=\int_{|y| \geqslant \varepsilon}|y|^{1-2 n} \varphi(x+y) d y
$$

and the Darboux equation ([8], p. 279) $\left[\Delta^{k} \varphi_{x}^{*}\right](0)=\left[\Delta^{k} \varphi\right](x)$. Now, a direct computation shows that $\left((\hat{f})^{\vee}\right)_{x}^{*}=\left(\left(f_{x}^{*}\right)^{\wedge}\right)^{\vee}$ for $f \in S(X)$ and since f_{x}^{*} is radial we get from (17), (18)

$$
f(x)=f_{x}^{*}(0)=c_{1}\left[\left(J_{1}\left((\hat{f})^{\smile}\right)\right)_{x}^{*}\right](0)=c_{1}\left[J_{1}(\hat{f})^{\smile}\right](x)
$$

Finally the inversion formula for $g \in S^{*}(\Xi)$ would follow from the first one if we prove

$$
\begin{equation*}
\left(J_{1} f\right)^{\wedge}=c_{0} J_{2} \hat{f}, \quad f \in S^{*}(X), c_{0} \text { constant. } \tag{19}
\end{equation*}
$$

To see this we take the one-dimensional Fourier transform on both sides. The function $J_{1} f$ is the convolution of a tempered distribution with a rapidly decreasing function. Hence it is a tempered distribution (Schwartz [18], II, pp. 102, 124) whose Fourier transform is (since $f \in S^{*}(X)$) a function in $S(X)$. Hence $J_{1} f \in S(X)$. Similarly $\left(J_{2} \hat{f}\right)(\omega, p)$ is a rapidly decreasing function of p. Using the relation between the 1-dimensional and the n-dimensional Fourier transform ((2) §4) and the formula for the Fourier transform of $\operatorname{Pf} \cdot r^{\lambda}$ (Schwartz [18], II, p. 113) we find that both sides of (19) have the same Fourier transform, hence coincide. This concludes the proof.

Remark (added in proof). Alternative proofs of most of the results of $\S 4$ have been found subsequently by D. Ludwig.

§ 5. The geometry of compact symmetric spaces of rank one

In this section and the next one we shall study problems A, B and C for the duality between points and antipodal manifolds in compact two-point homogeneous spaces. In the present section we derive the necessary geometric facts for symmetric spaces of rank one, without use of classification.

Let X be a compact Riemannian globally symmetric space of rank one and dimension >1. Let $I(X)$ denote the group of isometries of X in the compact open topology, $I_{0}(X)$ the identity component of $I(X)$. Let a be a fixed point in X and s_{o} the geodesic symmetry of X with repsect to o. Let \mathfrak{H} denote the Lie algebra of $I(X)$ and $\mathfrak{u}=\mathfrak{f}+\mathfrak{p}$ the decomposition of \mathfrak{u} into eigenspaces of the involutive automorphism of \mathfrak{a} which corresponds to the automorphism $u \rightarrow s_{0} u s_{0}$ of $I(X)$. Here \neq is the Lie algebra of the subgroup K of $I(X)$ which
leaves o fixed. Changing the distance function d on X by a constant factor we may, since \mathfrak{H} is semisimple, assume that the differential of the mapping $u \rightarrow u \cdot o$ of $I(X)$ onto X gives an isometry of \mathfrak{p} (with the metric of the negative of the Killing form of \mathfrak{u}) onto X_{o}, the tangent space to X at o. Let L denote the diameter of X and if $x \in X$ let A_{x} denote the corresponding antipodal manifold, that is the set of points $y \in X$ at distance L from $x ; A_{x}$ is indeed a manifold, being an orbit of K. The geodesics in X are all closed and have length $2 L$ and the Exponential mapping Exp at o is a diffeomorphism of the open ball in X_{o} of center 0 and radius L onto the complement $X-A_{a}$ (see [10], Ch. $X, \S 5$).

Proposition 5.1. For each $x \in X$, the antipodal manifold A_{x}, with the Riemannian structure induced by X, is a symmetric space of rank one, and a totally geodesic submanifold of X.

Proof. Let $y \in A_{x}$. Considering a geodesic in X through y and x we see that x is fixed under the geodesic symmetry s_{y}; hence $s_{y}\left(A_{x}\right)=A_{x}$. If σ_{y} denotes the restriction of s_{y} to A_{x}, then σ_{y} is an involutive isometry of A_{x} with y as isolated fixed point. Thus A_{x} is globally symmetric and σ_{y} is the geodesic symmetry with respect to y. Let $t \rightarrow \gamma(t)(t \in \mathbf{R})$ be a geodesic in the Riemannian manifold A_{x}. We shall prove that γ is a geodesic in X. Consider the isometry $s_{\gamma(t)} s_{\gamma(0)}$ and a vector T in the tangent space $X_{\gamma(0)}$. Let $\tau_{r}: X_{\gamma(0)} \rightarrow X_{\gamma(r)}$ denote the parallel translation in X along the curve $\gamma(\varrho)(0 \leqslant \varrho \leqslant r)$. Then the parallel field $\tau_{r} \cdot T$ $(0 \leqslant r \leqslant t)$ along the curve $r \rightarrow \gamma(r)(0 \leqslant r \leqslant t)$ is mapped by $s_{\gamma(t)}$ onto a parallel field along the image curve $r \rightarrow s_{\gamma(t)} \gamma(r)=\sigma_{\gamma(t)} \gamma(r)=\gamma(2 t-r)(0 \leqslant r \leqslant t)$. Since $s_{\gamma(t)} \tau_{t} T=-\tau_{t} T$ we deduce that $s_{\gamma(t)} s_{\gamma(0)} T=-s_{\gamma(t)} T=\tau_{2 t} T$. In particular, the parallel transport in X along γ maps tangent vectors to γ into tangent vectors to γ. Hence γ is a geodesic in X. Consequently, A_{x} is a totally geodesic submanifold of X, and by the definition of rank, A_{x} has rank one.

Let $Z \rightarrow \operatorname{ad}(Z)$ denote the adjoint representation of \mathfrak{u}. Select a vector $H \in \mathfrak{p}$ of length L. The space $\mathfrak{a}=\mathbf{R} H$ is a Cartan subalgebra of the symmetric space X and we can select a positive restricted root α of X such that $\frac{1}{2} \alpha$ is the only other possible positive restricted root (see [10], Exercise 8, p. 280 where Σ is by definition the set of positive restricted roots). This means that the eigenvalues of $\operatorname{ad}(H)^{2}$ are $0, \alpha(H)^{2}$ and possibly $\left(\frac{1}{2} \alpha(H)\right)^{2}(\alpha(H)$ is purely imaginary). Let $\mathfrak{u}=\mathfrak{u}_{0}+\mathfrak{u}_{\alpha}+\mathfrak{u}_{\boldsymbol{q}^{\alpha}}$ be the corresponding decomposition of \mathfrak{u} into eigenspaces and put $\mathfrak{f}_{\beta}=\mathfrak{u}_{\beta} \cap \mathfrak{f}, \mathfrak{p}_{\beta}=\mathfrak{u}_{\beta} \cap \mathfrak{p}$ for $\beta=0, \alpha, \frac{1}{2} \alpha$. Then $\mathfrak{p}_{0}=\mathfrak{u}$ and $\mathfrak{f}_{\beta}=\operatorname{ad} H\left(\mathfrak{p}_{\beta}\right)$ for $\beta \neq 0$.

Proposition 5.2. Let S denote the subgroup of K leaving the point $\operatorname{Exp} H$ fixed, and let \mathfrak{Z} denote the Lie algebra of S. Then
(i) $\mathfrak{B}=\mathscr{f}_{0}+\mathfrak{f}_{\alpha}$ if H is conjugate to 0 ;
(ii) $\mathfrak{B}=\mathfrak{F}_{0}$ if H is not conjugate to 0 ;
(iii) If $\frac{1}{2} \alpha$ is a restricted root then H is conjugate to 0 .

Proof. If exp: $\mathfrak{H} \rightarrow I(X)$ is the usual exponential mapping then a vector T in belongs to \mathfrak{B} if and only if $\exp (-H) \exp (t T) \exp (H) \in K$ for all $t \in \mathbf{R}$. This reduces to

$$
T \in 弓 \text { if and only if ad } H(T)+\frac{1}{3!}(\text { ad } \quad H)^{3}(T)+\ldots=0
$$

In particular, \mathfrak{Z} is the sum of its intersections with $\mathfrak{f}_{0}, \mathfrak{f}_{\alpha}$ and $\mathfrak{f}_{\frac{1}{2} \alpha}$. If $T \neq 0$ in $\mathfrak{f}_{\beta}\left(\beta=0, \alpha, \frac{1}{2} \alpha\right)$ the condition above is equivalent to $\sinh (\beta(H))=0$. Thus (ii) is immediate ([10], Ch. VII, Prop. 3.1). To prove (i) suppose H is conjugate to 0 . Whether or not $\frac{1}{2} \alpha$ is a restricted root we have by the cited result, $\alpha(\mathbf{H}) \in \pi i \mathbb{Z}$ so $\mathfrak{f}_{\alpha} \in 马$. We have also $\Xi \cap \mathfrak{f}_{i_{i} \alpha}=\{0\}$ because otherwise $\frac{1}{2} \alpha(H) \in \pi i Z$ which would imply that $\frac{1}{2} H$ is conjugate to 0 . This proves (i). For (iii) suppose H were not conjugate to 0 . The sphere in X_{0} with radius $2 L$ and center 0 is mapped by Exp onto o. It follows that the differential $d \operatorname{Exp}_{2 H}$ is 0 so using the formula for this differential ([10], page 251, formula (2)) it follows that $\left(\frac{1}{2} \alpha\right)(2 H) \in \pi i \mathbf{Z}$ so $\alpha(H) \in \pi i \mathbf{Z}$ which is a contradiction.

Proposition 5.3. Suppose H is conjugate to 0 . Then all the geodesics in X with tangent vectors in $\mathfrak{a}+\mathfrak{p}_{\alpha}$ at o pass through the point $\operatorname{Exp} H$. The manifold $\operatorname{Exp}\left(\mathfrak{a}+\mathfrak{p}_{\alpha}\right)$, with the Riemannian structure induced by that of X, is a sphere, totally geodesic in X.

Proof. Let $\mathfrak{G J}$ denote the complexification of \mathfrak{u} and B the Killing form of $\mathfrak{A S}$. Since the various root subspaces $\mathbb{G S}^{\beta}$, (3 $^{\gamma}(\beta+\gamma \neq 0)$ are orthogonal with respect to $B([10], \mathrm{p} .141)$ it follows without difficulty (cf. [10], p. 224) that

$$
B\left(\left[\mathfrak{f}_{0}, \mathfrak{p}_{\alpha}\right], \mathfrak{p}_{\frac{1}{2} \alpha}\right)=B\left(\left[\mathfrak{f}_{\alpha}, \mathfrak{p}_{\alpha}\right], \mathfrak{p}_{z_{2} \alpha}\right)=0
$$

Also, if $Z \in \mathfrak{u}_{0}$ then $B([H, Z],[H, Z])=-B\left(Z,(\operatorname{ad} H)^{2} Z\right)=0$ so \mathfrak{u}_{0} equals the centralizer of H in \mathfrak{H}. Thus $\left[\mathfrak{f}_{0}, \mathfrak{a}\right] \approx 0$. Also $\left[\mathfrak{f}_{\alpha}, \mathfrak{a}\right]=\mathfrak{p}_{\alpha}$. Combining these relations we get

$$
\left[\mathfrak{\xi}, \mathfrak{a}+\mathfrak{p}_{\alpha}\right] \subset \mathfrak{a}+\mathfrak{p}_{\alpha} .
$$

Let S_{o} denote the identity component of S and Ad the adjoint representation of the group $I(X)$. Then the tangent space to the orbit $\operatorname{Ad}\left(S_{0}\right) H$ at the point H is $[\xi, \mathbf{R} H]$ which equals p_{α}, and by the relation above this orbit lies in the subspace $a+p_{\alpha}$. It follows that $\operatorname{Ad}\left(S_{0}\right) H$ is the sphere in $a+p_{\alpha}$ of radius L and center 0 . But if $s \in S$ the geodesic $t \rightarrow s \cdot \operatorname{Exp} t H=$ $\operatorname{Exp}(\operatorname{Ad}(s) t H)$ passes through $\operatorname{Exp} H$ so the first statement of the proposition is proved.

By consideration of the root subspaces $\operatorname{ss}^{\beta}$ as above, it is easy to see that the subspace $\mathfrak{a}+\mathfrak{p}_{\alpha}$ of \mathfrak{p} is a Lie triple system. Thus the Riemannian manifold $X_{\mathfrak{p}}=\operatorname{Exp}\left(\mathfrak{a}+\mathfrak{p}_{\alpha}\right)$ is a totally geodesic submanifold of X ([10], p. 189). It is homogeneous and is mapped into itself by the geodesic symmetry s_{0} of X, hence it is globally symmetric, and being totally geodesic, has rank one. If Z is a unit vector in \mathfrak{p}_{α}, the curvature of $X_{\mathfrak{p}}$ along the plane section spanned by H and Z, is (cf. [10], p. 206)

$$
-L^{-2} B([H, Z),[H, Z])=-L^{-2} \alpha(H)^{2}
$$

But since $X_{\mathfrak{p}}$ has rank one, every plane section is congruent to one containing H; hence $X_{\mathfrak{p}}$ has constant curvature. Finally, $X_{\mathfrak{p}}-\{\operatorname{Exp} H\}$ is the diffeomorphic image of an open ball, hence simply connected. Since $\operatorname{dim} X_{\mathfrak{p}}>1$ it follows that $X_{\mathfrak{p}}$ is also simply connected, hence a sphere.

Proposition 5.4. The antipodal manifold $A_{\text {Exp } H}$ is given by

$$
\begin{aligned}
& A_{\operatorname{Exp} H}=\operatorname{Exp}\left(\mathfrak{p}_{\frac{1}{\alpha}}\right) \text { if } H \text { is conjugate to } 0 . \\
& A_{\operatorname{Exp} H}=\operatorname{Exp}\left(\mathfrak{p}_{\alpha}\right) \text { if } H \text { is not conjugate to } 0 .
\end{aligned}
$$

Proof. The geodesics from $\operatorname{Exp} H$ to o intersect $A_{\text {Exp } H}$ in o under a right angle (Gauss' lemma; see e.g. [1], p. 34 or [9], Theorem 3). By Propositions 5.2 and 5.3 we deduce that the tangent space $\left(A_{\operatorname{Exp} H}\right)_{o}$ equals $\mathfrak{p}_{\frac{1}{\alpha} \alpha}$ if H is conjugate to 0 and equals p_{α} if H is not conjugate to 0. Now use Prop. 5.1.

The next result shows that there is a kind of projective duality between points and antipodal manifolds.

Proposition 5.5. Let $x, y \in X$. Then
(i) $x \neq y$ implies $A_{x} \neq A_{y}$;
(ii) $x \in A_{y}$ if and only if $y \in A_{x}$.

Proof. If $z \in A_{x}$ then the geodesics which meet A_{x} in z under a right angle all pass through a point z^{*} at distance L from z (Prop. 5.3 and Prop. 5.4); among these are the geodesics joining x and z. Hence $z^{*}=x$ and the result follows.

Proposition 5.6. Let $A(r)$ denote the surface area of a sphere in X of radius r $(0<r<L)$. Then

$$
A(r)=\Omega_{p+q+1} \lambda^{-p}(2 \lambda)^{-q} \sin ^{p}(\lambda r) \sin ^{q}(2 \lambda r)
$$

where $p=\operatorname{dim} \mathfrak{p}_{\frac{1}{2} \alpha}, q=\operatorname{dim} \mathfrak{p}_{\alpha}, \Omega_{n}$ is the area of the unit sphere in \mathbf{R}^{n} and

$$
\lambda=\frac{1}{2 L}|\alpha(H)|
$$

Proof. As proved in [8], p. 251, the area is given by

$$
\begin{equation*}
A(r)=\int_{\|z\|=r} \operatorname{det}\left(A_{z}\right) d \omega_{r}(Z) \tag{1}
\end{equation*}
$$

where $d \omega_{r}$ is the Euclidean surface element of the sphere $\|Z\|=r$ in \mathfrak{p}, and

$$
A_{z}=\sum_{0}^{\infty} \frac{T_{Z}^{n}}{(2 n+1)!},
$$

where T_{Z} is the restriction of (ad $\left.Z\right)^{2}$ to \mathfrak{p}. The integrand in (1) is a radial function so

$$
A(r)=\Omega_{p+q+1} \cdot r^{p+q} \cdot \operatorname{det}\left(A_{H_{r}}\right), \quad\left(H_{r}=\frac{r}{L} H\right)
$$

Since the nonzero eigenvalues of $T_{H_{r}}$ are $\left(\frac{1}{2} \alpha\left(H_{r}\right)\right)^{2}$ with multiplicity p and $\alpha\left(H_{r}\right)^{2}$ with multiplicity q we obtain

$$
A(r)=\Omega_{p+q+1} r^{p+q}\left(\frac{\sin \lambda r}{\lambda r}\right)^{p}\left(\frac{\sin 2 \lambda r}{2 \lambda r}\right)^{q}
$$

where $\lambda=\frac{1}{2} L^{-1}|\alpha(H)|$.

§ 6. Points and antipodal manifolds in two-point homogeneous spaces

Let X be a compact two-point homogeneous space, or, what is the same thing (Wang [21]) a compact Riemannian globally symmetric space of rank one. We preserve the notation of the last section and assume $\operatorname{dim} X>1$. Let $G=I(X)$ and let Ξ be the set of all antipodal manifolds in X, with the differentiable structure induced by the transitive action of G. On Ξ we choose a Riemannian structure such that the diffeomorphism $\varphi: x \rightarrow A_{x}$ of X onto Ξ (see Prop. 5.5) is an isometry. Let Δ and $\hat{\Delta}$ denote the Laplace-Beltrami operators on X and Ξ, respectively. The measures μ and v on the manifolds ξ and $\check{x}(\S 1)$ are defined to be those induced by the Riemannian structures of X and Ξ. If $x \in X$, then by Prop. 5.5

$$
\check{x}=\{\varphi(y) \mid y \in \varphi(x)\} .
$$

Consequently, if g is a continuous function on Ξ,

$$
\check{g}(x)=\int_{\check{x}} g(\xi) d v(\xi)=\int_{y \in \varphi(x)} g(\varphi(y)) d \nu(\varphi(y))=\int_{\varphi(x)}(g \circ \varphi)(y) d \mu(y)
$$

12-652923. Acta mathematica. 113. Imprimé le 10 mai 1965.

$$
\begin{equation*}
\check{g}=(g \circ \varphi)^{\wedge} \circ \varphi . \tag{I}
\end{equation*}
$$

Because of this correspondence between the integral transforms $f \rightarrow \hat{f}$ and $g \rightarrow g$ it suffices to consider the first.

Problems A, B, and C now have the following answer.

Theorem 6.1.

(i) The algebras $\mathbf{D}(X)$ and $\mathbf{D}(\Xi)$ are generated by Δ and $\hat{\Delta}$ respectively.
(ii) The mapping $f \rightarrow f$ is a linear one-to-one mapping of $C^{\infty}(X)$ onto $C^{\infty}(\Xi)$ and

$$
(\Delta f)^{\wedge}=\hat{\Delta} f
$$

(iii) Except for the case when X is an even-dimensional real projective space,

$$
f=P(\Delta)\left((f)^{2}\right), \quad f \in C^{\infty}(X)
$$

where P is a polynomial, independent of f, explicitly given below.
Proof. Part (i) is proved in [8], p. 270. Let [$\left.M^{r} f\right](x)$ be the average of f over a sphere in X of radius r and center x. Then

$$
\begin{equation*}
f(\varphi(x))=c\left[M^{L} f\right](x), \tag{2}
\end{equation*}
$$

where c is a constant. Since Δ commutes with the operator M^{r} ([8], Theorem 16, p. 276) we have

$$
(\hat{\Delta} f) \circ \varphi=\Delta(f \circ \rho)=c M^{L} \Delta f=(\Delta f)^{\wedge} \circ \varphi,
$$

proving the formula in (ii). For (iii) we have to use the following complete list of compact Riemannian globally symmetric spaces of rank 1 : The spheres $\mathbb{S}^{n},(n=1,2, \ldots)$, the real projective spaces $\mathbf{P}^{n}(\mathbf{R}),(n=2,3, \ldots)$, the complex projective spaces $\mathbf{P}^{n}(\mathbf{C}),(n=4,6, \ldots)$, the quaternion projective spaces $\mathbf{P}^{n}(\mathbf{H}),(n=8,12, \ldots)$ and the Cayley projective plane \mathbf{P}^{16} (Cay). The superscripts denote the real dimension. The corresponding antipodal manifolds are also known ([2], pp. 437-467, [15], pp. 35 and 52) and are in the respective cases: A point, $\mathbf{P}^{n-1}(\mathbf{R}), \mathbf{P}^{n-2}(\mathbf{C}), \mathbf{P}^{n-4}(\mathbf{H})$, and \mathbf{S}^{8}. For the lowest dimensions, note that $\mathbf{P}^{1}(\mathbf{R})=\mathbf{S}^{1}$, $\mathbf{P}^{2}(\mathbf{C})=\mathbf{S}^{2}, \mathbf{P}^{4}(\mathbf{H})=\mathbf{S}^{4}$. Let $A_{1}(r)$ denote the area of a sphere of radius r in an antipodal manifold in X. Then by Prop. 5.6,

$$
A_{1}(r)=C_{1} \sin ^{p_{1}}\left(\lambda_{1} r\right) \sin ^{\alpha_{1}}\left(2 \lambda_{1} r\right),
$$

where C_{1} is a constant and $p_{1}, q_{1}, \lambda_{1}$ are the numbers p, q, λ for the antipodal manifold.

The multiplicities p and q are determined in Cartan [2], and show that $\frac{1}{2} \alpha$ is a restricted root unless X is a sphere or a real projective space. Ignoring these exceptions we have by virtue of the results of $\S 5$:
$L=\operatorname{diameter} X=\operatorname{diameter} A_{x}$
$=$ distance of 0 to the nearest conjugate point in X_{0}
$=$ smallest number $M>0$ such that $\lim _{r \rightarrow M} A(r)=0$.
We can now derive the following list:
$X=S^{n}: p=0, q=n-1, \lambda=\pi / 2 L, A(r)=C \sin ^{n-1}(2 \lambda r), A_{1}(r) \equiv 0$.
$X=\mathbf{P}^{n}(\mathbf{R}): p=0, q=n-1, \lambda=\pi / 4 L, A(r)=C \sin ^{n-1}(2 \lambda r), A_{1}(r)=C_{1} \sin ^{n-2}(2 \lambda r)$.
$X=\mathbf{P}^{n}(\mathbf{C}): p=n-2, q=1, \lambda=\pi / 2 L, A(r)=C \sin ^{n-2}(\lambda r) \sin (2 \lambda r), A_{1}(r)=C_{1} \sin ^{n-4}(\lambda r) \sin (2 \lambda r)$.
$X=\mathbf{P}^{n}(\mathbf{H}): \quad p=n-4, \quad q=3, \quad \lambda=\pi / 2 L, \quad A(r)=C \sin ^{n-4}(\lambda r) \sin ^{3}(2 \lambda r)$,
$A_{1}(r)=C_{1} \sin ^{n-8}(\lambda r) \sin ^{3}(2 \lambda r)$.
$X=\mathbf{P}^{16}($ Cay $): p=8, q=7, \lambda=\pi / 2 L, A(r)=C \sin ^{8}(\lambda r) \sin ^{7}(2 \lambda r), A_{1}(r)=C_{1} \sin ^{7}(2 \lambda r)$.
In each case, C and C_{1} are constants, not necessarily the same for all cases. Now if $x \in X$ and $f \in C^{\infty}(X)$ let $[I f](x)$ denote the average of the integrals of f over the antipodal manifolds which pass through x. Then $(\hat{f})^{\breve{ }}$ is a constant multiple of $I f$. Fix a point $o \in X$ and let K be the subgroup of G leaving o fixed. Let ξ_{o} be a fixed antipodal manifold through o and let $d \sigma$ be the volume element on ξ_{0}. Then

$$
[I f](g \cdot o)=\int_{K}\left(\int_{\xi_{0}} f(g k \cdot y) d \sigma(y)\right) d k=\int_{\xi_{0}}\left[M^{r} f\right](g \cdot o) d \sigma(y)
$$

where r is the distance $d(o, y)$ in the space X between the points o and y. Now if $d(o, y)<L$ there is a unique geodesic in X of length $d(o, y)$ joining o to y and since ξ_{o} is totally geodesic, $d(o, y)$ is also the distance between o and y in ξ_{0}. Hence, using geodesic polar coordinates in the last integral we find

$$
\begin{equation*}
[I f](x)=\int_{0}^{L} A_{1}(r)\left[M^{r} f\right](x) d r \tag{3}
\end{equation*}
$$

In geodesic polar coordinates on X, the Laplace-Beltrami operator Δ equals $\Delta_{r}+\Delta^{\prime}$ where Δ^{\prime} is the Laplace-Beltrami operator on the sphere in X of radius r and ([10], p. 445)

$$
\Delta_{r}=\frac{d^{2}}{d r^{2}}+\frac{1}{A(r)} \frac{d A}{d r} \frac{r}{d r} \quad(0<r<L)
$$

The function $(x, r) \rightarrow\left[M^{r} f\right](x)$ satisfies

$$
\begin{equation*}
\Delta M^{r} f=\Delta_{r}\left(M^{r} f\right) \tag{4}
\end{equation*}
$$

([8], p, 279 or [6]). Using Prop. 5,6, we have

$$
\begin{equation*}
\Delta_{r}=\frac{\partial^{2}}{\partial r^{2}}+\lambda(p \cot (\lambda r)+2 q \cot (2 \lambda r)) \frac{\partial}{\partial r} \quad(0<r<L) \tag{5}
\end{equation*}
$$

(compare also [7], p. 302). Now (iii) can be proved on the basis of (3) (4) (5) by the method in [8], p. 285, where the case $\mathbf{P}^{n}(\mathbf{R})$ (n odd) is settled. The case $X=\mathbf{S}^{n}$ being trivial we shall indicate the details for $X=\mathbf{P}^{n}(\mathbf{C}), \mathbf{P}^{n}(\mathbf{H})$ and $\mathbf{P}^{16}(\mathbf{C a y})$.

Lemma 6.2. Let $X=\mathbf{P}^{n}(\mathbf{C}), f \in C^{\infty}(X)$. If m is an even integer, $0 \leqslant m \leqslant n-4$ then

$$
\begin{aligned}
& \left(\Delta-\lambda^{2}(n-m-2)(m+2)\right) \int_{0}^{L} \sin ^{m}(\lambda r) \sin (2 \lambda r)\left[M^{r} f\right](x) d r \\
& =-\lambda^{2}(n-m-2) m \int_{0}^{L} \sin ^{m-2}(\lambda r) \sin (2 \lambda r)\left[M^{r} f\right](x) d r
\end{aligned}
$$

For $m=0$ the right-hand side should be replaced by

$$
-2 \lambda(n-2) f(x)
$$

Lemma 6.3. Let $X=\mathbf{P}^{n}(\mathbf{H}), f \in C^{\infty}(X)$. Let m be an even integer, $0<m \leqslant n-8$. Then

$$
\begin{aligned}
& \left(\Delta-\lambda^{2}(n-m-4)(m+6)\right) \int_{0}^{L} \sin ^{m}(\lambda r) \sin ^{3}(2 \lambda r)\left[M^{r} f\right](x) d r \\
& =-\lambda^{2}(n-m-4)(m+2) \int_{0}^{L} \sin ^{m-2}(\lambda r) \sin ^{3}(2 \lambda r)\left[M^{r} f\right](x) d r .
\end{aligned}
$$

Also

$$
\left(\Delta-4 \lambda^{2}(n-4)\right)\left(\Delta-4 \lambda^{2}(n-2)\right) \int_{0}^{L} \sin ^{3}(2 \lambda r)\left[M^{r} f\right](x) d r=16 \lambda^{3}(n-2)(n-4) f(x)
$$

Lemma 6.4. Let $X=\mathbf{P}^{16}(\mathbf{C a y}), f \in C^{\infty}(X)$. Let $m>1$ be an integer. Then

$$
\begin{aligned}
&\left(\Delta-4 \lambda^{2} m(11-m)\right) \int_{0}^{L} \sin ^{m}(2 \lambda r)\left[M^{r} f\right](x) d r \\
&=-32 \lambda^{2}(m-1) \int_{0}^{L} \sin ^{m-2}(2 \lambda r) \cos ^{2}(\lambda r)\left[M^{r} f\right](x) \\
&+4 \lambda^{2}(m-1)(m-7) \int_{0}^{L} \sin ^{m-2}(2 \lambda r)\left[M^{r} f\right](x) d r \\
&\left(\Delta-4 \lambda^{2}(m+1)(10-m)\right) \int_{0}^{L} \sin ^{m}(2 \lambda r) \cos ^{2}(\lambda r)\left[M^{r} f\right](x) d r \\
&= 4 \lambda^{2}(3 m-5) \int_{0}^{L} \sin ^{m}(2 \lambda r)\left[M^{r} f\right](x) d r \\
&+4 \lambda^{2}(m-1)(m-15) \int_{0}^{L} \sin ^{m-2}(2 \lambda r) \cos ^{2}(\lambda r)\left[M^{r} f\right](x) d r
\end{aligned}
$$

Iteration of these lemmas gives part (iii) of Theorem 6.1 where the polynomial $P(\Delta)$ has degree equal to one half the dimension of the antipodal manifold and is a constant multiple of

1 (the identity), $\quad X=\mathbf{S}^{n}$
$(\Delta-x(n-2) 1)(\Delta-\varkappa(n-4) 3) \ldots(\Delta-x 1(n-2)), \quad X=\mathbf{P}^{n}(\mathbf{R})$
$(\Delta-x(n-2) 2)(\Delta-x(n-4) 3) \ldots(\Delta-x 2(n-2)), \quad X=\mathbf{P}^{n}(\mathbf{C})$
$[(\Delta-\varkappa(n-2) 4)(\Delta-\varkappa(n-4) 6) \ldots(\Delta-\varkappa 8(n-6))][(\Delta-\varkappa 4(n-4))(\Delta-\varkappa 4(n-2))], X=\mathbf{P}^{n}(\mathbf{H})$
$(\Delta-112 x)^{2}(\Delta-120 x)^{2}, \quad X=\mathbf{P}^{16}($ Cay $)$.
In each case $x=(\pi / 2 L)^{2}$.
Finally, we prove part (ii). From (1) and (2) we derive

$$
M^{L} M^{L} f=c^{-2}(\hat{f})^{乙}
$$

so, if X is not an even-dimensional projective space, f is a constant multiple of $M^{L} P(\Delta) M^{L} f$ which shows that $f \rightarrow f$ is one-to-one and onto. For the even-dimensional projective space a formula relating f and $(\hat{f})^{\vee}$ is given by Semyanistyi [20]. In particular, the mapping $f \rightarrow f$ is one-to-one. To see that it is onto, let $\left(\varphi_{n}\right)$ be the eigenfunctions of Δ. Then each φ_{n} is an eigenfunction of $M^{L}([10]$, Theorem $7.2, \mathrm{Ch} . \mathrm{X})$. Since the eigenvalue is $\neq 0$ by the above it is clear that no measure on X can annihilate all of $M^{L}\left(C^{\infty}(X)\right)$. This finishes the proof of Theorem 6.1.

Added in proof. Theorem 6.1 shows that $\hat{f}=$ constant implies $f=$ constant. For $\mathbf{P}^{n}(\mathbf{R})$ we thus obtain a (probably known) corollary.

Corollary. Let B be an open set in \mathbf{R}^{n+1}, symmetric and starshaped with respect to 0 , bounded by a hypersurface. Assume area $(B \cap P)=$ constant for all hyperplanes P through 0 . Then B is an open ball.

§ 7. Differential operators on the space of \boldsymbol{p}-planes

Let p and n be two integers such that $0 \leqslant p<n$. A p-plane E_{p} in \mathbf{R}^{n} is by definition a translate of a p-dimensional vector subspace of \mathbf{R}^{n}. The 0 -planes are just the points of \mathbf{R}^{n}. The p-planes in \mathbf{R}^{n} form a manifold $\mathbf{G}(p, n)$ on which the group $\mathbf{M}(n)$ of all isometries of \mathbf{R}^{n} acts transitively. Let $\mathbf{O}(k)$ denote the orthogonal group in \mathbf{R}^{k} and let $\mathbf{G}_{p, n}$ denote the manifold $\mathbf{O}(n) / \mathbf{O}(p) \times \mathbf{O}(n-p)$ of p-dimensional subspaces of \mathbf{R}^{n}. The manifold $\mathbf{G}(p, n)$ is a fibre bundle with base space $\boldsymbol{G}_{p, n}$, the projection π of $\mathbf{G}(p, n)$ onto $\boldsymbol{G}_{p, n}$ being the mapping which to any p-plane $E_{p} \in \mathbf{G}(p, n)$ associates the parallel p-plane through the origin. Thus
the fibre of this bundle $\left(\mathbf{G}(p, n), \mathbf{G}_{p, n}, \pi\right)$ is \mathbf{R}^{n-p}. If F denotes an arbitrary fibre and $f \in C^{\infty}(G(p, n))$ then the restriction of f to F will be denoted $f \mid F$. Consider now the linear transformation \square_{p} of $C^{\infty}(G(p, n))$ given by

$$
\left(\square_{p} f\right) \mid F=\Delta_{F}(f \mid F), \quad f \in C^{\infty}(\mathbf{G}(p, n)),
$$

for each fibre F, Δ_{F} denoting the Laplacian on F. It is clear that \square_{p} is a differential operator on $\mathbf{G}(p, n)$. For simplicity we usually write \square instead of \square_{p}.

Lemma 7.1.

(i) The operator $\square_{\boldsymbol{p}}$ is invariant under the action of $\mathbf{M}(n)$ on $\mathbf{G}(p, n)$.
(ii) Each differential operator on $\mathbf{G}(p, n)$ which is invariant under $\mathbf{M}(n)$ is a polynomial in \square_{p}

Proof. We recall that if φ is an isometry of a Riemannian manifold M_{1} onto a Riemannian manifold M_{2} and if Δ_{1}, Δ_{2} are the corresponding Laplace-Beltrami operators then (cf. [10], p. 387)

$$
\begin{equation*}
\left(\Delta_{1} f^{q^{-1}}\right)=\Delta_{2} f, \quad f \in C^{\infty}\left(M_{2}\right) \tag{1}
\end{equation*}
$$

Now each isometry $g \in \mathbf{M}(n)$ induces a fibre-preserving diffeomorphism of $\mathbf{G}(p, n)$, preserving the metric on the fibres. Let $f \in C^{\infty}(G(p, n))$ and F any fibre. Writing for simplicity\square_{p} we get from (l)
$\left(\square^{g} f\right)\left|F=\left(\square f^{\sigma^{-1}}\right)^{g}\right| F=\left(\left(\square f^{g^{-1}}\right) \mid g^{-1} \cdot F\right)^{g}=\left(\Delta_{g}-1_{F}\left(f^{\sigma^{-1}} \mid g^{-1} F\right)\right)^{g}=\Delta_{F}(f \mid F)=(\square f) \mid F$, so $\square^{a}=\square$, proving (i).

Let E_{p}^{o} be a fixed p-plane in \mathbf{R}^{n}, say the one spanned by the p first unit coordinate vectors, Z_{1}, \ldots, Z_{p}. The subgroup of $\mathbf{M}(n)$ which leaves E_{p}^{o} invariant can be identified with the product group $\mathbf{M}(p) \times \mathbf{0}(n-p)$. For simplicity we put $G=\mathbf{M}(n), H=\mathbf{M}(p) \times \mathbf{0}(n-p)$ and let \mathfrak{G} and \mathfrak{y} denote the corresponding Lie algebras. If \mathfrak{M} is any subspace of \mathfrak{G} such that $\mathfrak{G}=\mathfrak{M}+\mathfrak{h}$ (direct sum) and $\mathrm{Ad}_{G}(h) \mathfrak{M} \subset \mathfrak{M}$ for each $h \in H$ then we know from [8] Theorem 10 that the G-invariant differential operators on the space $G / H=\mathbf{G}(p, n)$ are directly given by the polynomials on \mathfrak{M} which are invariant under the group $\operatorname{Ad}_{G}(H)$. Let $\mathfrak{d}(k)$ denote the Lie algebra of $\mathbf{0}(k)$. Then ${ }^{5}$ is the vector space direct sum of $\mathfrak{p}(n)$ and the abelian Lie algebra \mathbf{R}^{n}. Also if $T \in_{\mathfrak{o}}(n), X \in \mathbf{R}^{n}$ then the bracket [T, X] in (\mathcal{F} is $[T, X]=\boldsymbol{T} \cdot X$ (the image of X under the linear transformation T). The Lie algebra \mathfrak{h} is the vector space direct sum of $\mathfrak{o}(p), \mathfrak{D}(n-p)$ and $\mathbf{R}^{p}\left(=E_{p}^{o}\right)$; we write this in matrix-vector form

$$
\mathfrak{h}=\left\{\left.\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)+\binom{V}{0} \right\rvert\, A \in \mathfrak{o}(p), B \in \mathcal{D}(n-q), V \in E_{p}^{\mathrm{o}}\right\} .
$$

For \mathfrak{M} we choose the subspace

$$
\mathfrak{M}=\left\{\left(\begin{array}{cc}
0 & X \\
-{ }^{t} X & 0
\end{array}\right)+\binom{0}{Z} \left\lvert\, \begin{array}{l}
X \text { any } p \times(n-p) \text { matrix, }{ }^{t} X \\
\text { its transpose, } Z \in \mathbf{R}^{n-p}
\end{array}\right.\right\}
$$

Then it is clear that $\mathfrak{G}=\mathfrak{h}+\mathfrak{M}$, Let $a \in \mathbb{O}(p), b \in \mathbf{O}(n-p), V \in E_{p}^{o}$. Then

$$
\begin{align*}
& \operatorname{Ad}_{G}\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \cdot\left[\left(\begin{array}{rr}
0 & X \\
-{ }^{t} X & 0
\end{array}\right)+\binom{0}{Z}\right.=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
0 & X \\
-{ }^{t} X & 0
\end{array}\right)\left(\begin{array}{ll}
a^{-1} & 0 \\
0 & b^{-1}
\end{array}\right)+\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\binom{0}{Z} \\
&=\left(\begin{array}{cc}
0 & a X b^{-1} \\
-b^{t} X a & 0
\end{array}\right)+\binom{0}{b Z} . \tag{2}\\
& \operatorname{Ad}_{G}\binom{V}{0} \cdot\left[\left(\begin{array}{rr}
0 & X \\
-{ }^{t} X & 0
\end{array}\right)+\binom{0}{Z}\right]=\left(\begin{array}{cc}
0 & X \\
-{ }^{t} X & 0
\end{array}\right)+\binom{0}{Z+{ }^{t} X V} . \tag{3}
\end{align*}
$$

It follows immediately that $\operatorname{Ad}_{G}(h) \mathbb{M} \subset \mathfrak{M}$ for all $h \in H$. Now let as usual $E_{i j}$ denote the matrix $\left(\delta_{a i} \delta_{b j}\right)_{1 \leqslant a, b \leqslant n}$, put $X_{i j}=E_{i p+j}-E_{p+j i}(1 \leqslant i \leqslant p, 1 \leqslant j \leqslant n-p)$ and let $Z_{k}(p+1 \leqslant k \leqslant n)$ denote the k th coordinate vector in \mathbf{R}^{n}. Then $\left\{X_{i j}, Z_{k}\right\}$ is a basis of \mathfrak{M}. Any element q in the symmetric algebra $\dot{S}(\mathfrak{M})$ over \mathfrak{M} can be written as a finite sum

$$
q\left(X_{11}, \ldots, X_{p n-p}, Z_{p+1}, \ldots, Z_{n}\right)=\sum_{i} r_{i}\left(Z_{p+1}, \ldots, Z_{n}\right) s_{i}\left(X_{11}, \ldots, X_{p n-p}\right)
$$

where the r_{i} and s_{i} are polynomials. Suppose q is homogeneous of degree m (say) and invariant under $\operatorname{Ad}_{G}(H)$. From (2) and (3) for $X=0$ we see that a polynomial in Z_{p+1}, \ldots, Z_{n} is invariant under $\operatorname{Ad}_{G}(H)$ if and only if it is a polynomial in $|Z|^{2}=Z_{p+1}^{2}+\ldots+Z_{n}^{2}$. Hence the invariant polynomial q can be written

$$
\begin{equation*}
q=\sum_{r=0}^{[z] m]}|Z|^{2 r} q_{r}\left(X_{11}, \ldots, X_{p n-p}\right), \tag{4}
\end{equation*}
$$

where q_{r} is homogeneous of degree $m-2 r$. Now, by (3), q is invariant under the substitution $T(v): X_{i j} \rightarrow X_{i j}+v_{i} Z_{p+j}\left(v_{1}, \ldots, v_{p}\right.$ being any real numbers, and $\left.1 \leqslant i \leqslant p, 1 \leqslant j \leqslant n-p\right)$. We can write

$$
q_{r}\left(X_{11}+v_{1} Z_{p+1}, \ldots, X_{p n-p}+v_{p} Z_{n}\right)=\sum_{(s)} a_{r, s_{1}, \ldots, s_{p}} \otimes v_{1}^{s_{1}} \ldots v_{p}^{s_{p}}
$$

where \otimes denotes the tensor product (over \mathbf{R}) of the polynomial rings $\mathbf{R}\left[X_{11}, \ldots, Z_{n}\right]$ and $\mathbf{R}\left[v_{1}, \ldots, v_{p}\right]$. Using (4) and the invariance of q we obtain

It follows that

$$
\begin{equation*}
\sum_{r}|Z|^{2 r} a_{r, s_{1}, \ldots, s_{p}}=0 \quad \text { if } s_{1}+\ldots+s_{p}>0 \tag{5}
\end{equation*}
$$

and since $a_{r, s_{1}, \ldots, s_{p}}$ has degree $s_{1}+\ldots+s_{p}$ in the $Z_{i}(5)$ implies $a_{r, s_{1}, \ldots, s_{p}}=0$ for $s_{1}+\ldots+s_{p}>0$, whence each q_{r} is invariant under the substitution $T(v)$ above. This implies easily that each
q_{r} is a constant. Thus the elements $q \in S(\mathfrak{M})$ invariant under $\operatorname{Ad}_{G}(H)$ are the polynomials in $|Z|^{2}$. By [8], Theorem 10, the polynomial $|Z|^{2}$ induces a G-invariant differential operator D on G / H such that for each $f \in C^{\infty}(G / H)$,

$$
\begin{equation*}
[D f]\left(E_{p}^{o}\right)=\left\{\left(\frac{\partial^{2}}{\partial t_{p+1}^{2}}+\ldots+\frac{\partial^{2}}{\partial t_{n}^{2}}\right) f\left(\left(t_{p+1} Z_{p+1}+\ldots+t_{n} Z_{n}\right) \cdot E_{p}^{o}\right)\right\}_{t-0} \tag{6}
\end{equation*}
$$

Thus $[D f]\left(E_{p}^{o}\right)=[\square f]\left(E_{p}^{o}\right)$ and since D and \square are both G-invariant, $D=\square$. Now (ii) follows from [8], Cor. p. 269.

§ 8. \boldsymbol{p}-planes and \boldsymbol{q}-planes in $\mathbf{R}^{\boldsymbol{p + q + 1}}$

The notation being as in the preceeding section put $q=n-p-1$. Let $\mathbf{G}^{*}(p, n)$ and $\mathbf{G}^{*}(q, n)$, respectively, denote the sets of p-planes and q-planes in \mathbf{R}^{n} not passing through the origin. The projective duality between points and hyperplanes in \mathbf{R}^{n}, realized by the polarity with respect to the unit sphere \mathbf{S}^{n-1} generalizes to a duality between $\mathbf{G}^{*}(p, n)$ and $\mathbf{G}^{*}(q, n)$. In fact, if $a \neq 0$ in \mathbf{R}^{n}, let $E_{n-1}(a)$ denote the polar hyperplane. If a runs through a p-plane $E_{p} \in \mathbb{G}^{*}(p, n)$ then the hyperplanes $E_{n-1}(a)$ intersect in a unique q-plane $E_{q} \in \mathbf{G}^{*}(q, n)$ and the mapping $E_{p} \rightarrow E_{q}$ is the stated duality.

We have now an example of the framework in § l. Let $X=\mathbf{G}(p, n)$, put $G=\mathbf{M}(n)$, acting on X. Given a q-plane E_{q} consider the family $\xi=\xi\left(E_{q}\right)$ of p-planes intersecting E_{a}. If $E_{q}^{\prime} \neq E_{q}^{\prime \prime}$ then $\xi\left(E_{q}^{\prime}\right) \neq \xi\left(E_{q}^{\prime \prime}\right)$; thus the set of all families ξ-the dual space Ξ-can be identified with $\mathbf{G}(q, n)$. In accordance with this identification, if $E_{p}=x \in X$ then $\check{x}=\check{x}\left(E_{p}\right)$ is the set of q-planes intersecting x. Because of convergence difficulties we do not define the measures μ and ν (§ 1) directly but if f is any function on $\mathbf{G}(p, n)$ we put

$$
\hat{f}\left(E_{q}\right)=\int_{E_{q}}\left(\int_{a \in E_{p}} f\left(E_{p}\right) d \sigma_{p}\left(E_{p}\right)\right) d \mu_{q}(a)
$$

whenever these integrals exist. Here $d \sigma_{p}$ is the invariant measure on the Grassmann manifold of p-planes through a with total measure $1, d \mu_{q}$ is the Euclidean measure on E_{a}. The transform $g \rightarrow \check{g}$ is defined by interchanging p and q in the definition of f. It is convenient to consider the operators M_{p} and L_{q} defined by

$$
\begin{align*}
{\left[M_{\mathcal{p}} f\right](a) } & =\int_{a \in E_{p}} f\left(E_{p}\right) d \sigma_{p}\left(E_{p}\right), \tag{I}\\
{\left[L_{q} F\right]\left(E_{q}^{\infty}\right) } & =\int_{E_{q}} F(a) d \mu_{q}(a), \tag{2}\\
& F \in S\left(\mathbf{R}^{n}\right)
\end{align*}
$$

Then we have, formally, $f=L_{q} M_{p} f$.

Lemma 8.1.

(i) M_{p} maps $C^{\infty}(\mathbf{G}(p, n))$ into $C^{\infty}\left(\mathbf{R}^{n}\right)$ and $M_{p} \square_{p}=\Delta M_{p}$.
(ii) L_{q} maps $S\left(\mathbf{R}^{n}\right)$ into $C^{\infty}(\mathbf{G}(q, n))$ and $L_{q} \Delta=\square_{q} L_{q}$.

Proof. (i) Put $K=\mathbf{0}(n) \subset \mathbf{M}(n)=G$. For $f \in C^{\infty}(G(p, n))$ let $f^{*} \in C^{\infty}(G)$ be determined by $f^{*}(g)=f\left(g \cdot E_{p}^{o}\right),(g \in G)$. Then for a suitably normalized Haar measure $d k$ on K we have

$$
\int_{K} f^{*}(g k) d k=\left[M_{p} f\right](g \cdot 0)
$$

which shows that $M_{p} f \in C^{\infty}\left(\mathbf{R}^{n}\right)$.
For each $X \in \mathscr{G}$, let \tilde{X} denote the left invariant vector field on G satisfying $\tilde{X}_{e}=X$. Since $\mathbf{R}^{n} \subset\left(\mathscr{F}\right.$ we can consider the left invariant differential operator $\tilde{\Delta}=\sum_{i=1}^{n} \tilde{Z}_{i}^{2}$ on \boldsymbol{G}. If $k \in K, \operatorname{Ad}_{G}(k)$ leaves the subspace $\mathbf{R}^{n} \subset \mathscr{G}$ and the polynomial $\sum_{i=1}^{n} Z_{i}^{2}$ invariant. Hence, if $R(k)$ denotes the right translation $g \rightarrow g k$ on G,

$$
(\tilde{\Delta})^{R(k)}=\sum_{i=1}^{n}\left(\left(\tilde{Z}_{i}\right)^{R(k)}\right)^{2}=\sum_{i=1}^{n}\left(\left(\operatorname{Ad}_{G}\left(k^{-1}\right) Z_{i}\right)^{\tilde{}}\right)^{2}=\sum_{i=1}^{n} \tilde{Z}_{i}^{2}
$$

so $\tilde{\Delta}$ is invariant under $R(k)$. If $F \in C^{\infty}\left(\mathbf{R}^{n}\right)$ let $\widetilde{F} \in C^{\infty}(G)$ be determined by $\tilde{F}(g)=F(g \cdot 0)$ for $g \in G$. Then (cf. [10], p. 392, equation (16))

$$
\begin{aligned}
{[\tilde{\Delta} \widetilde{F}](g) } & =\left\{\frac{\partial^{2}}{\partial t_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial t_{n}^{2}} \tilde{F}\left(g \exp \left(t_{1} Z_{1}+\ldots+t_{n} Z_{n}\right)\right)\right\}_{t-0} \\
& =\left\{\frac{\partial^{2}}{\partial t_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial t_{n}^{2}} F\left(g \cdot\left(t_{1} Z_{1}+\ldots+t_{n} Z_{n}\right)\right)\right\}_{t-0} \\
& =\left[\Delta F^{v^{-1}}\right](0)=\left[\Delta F^{\prime}\right](g \cdot 0)
\end{aligned}
$$

by (1) § 7, that is

$$
\begin{equation*}
\tilde{\Delta} \widetilde{F}=(\Delta F)^{\sim}, \quad F \in C^{\infty}\left(\mathbf{R}^{n}\right) \tag{3}
\end{equation*}
$$

Since

$$
\left(M_{\mathfrak{p}} f\right)^{-}=\int_{K}\left(f^{*}\right)^{R(k)} d k
$$

and $(\tilde{\Delta})^{R(k)}=\bar{\Delta}$ it follows from (3) that
so

$$
\begin{gathered}
\left(\Delta M_{p} f\right)^{\sim}=\int_{K}\left(\tilde{\Delta} f^{*}\right)^{R(k)} d k \\
{\left[\Delta M_{p} f\right](g \cdot 0)=\int_{K}\left\{\left(\frac{\partial^{2}}{\partial t_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial t_{n}^{2}}\right)\left(f^{*}\left(g k \exp \left(t_{1} Z_{1}+\ldots+t_{n} Z_{n}\right)\right)\right)\right\}_{t-0} d k} \\
=\int_{K}\left\{\left(\frac{\partial^{2}}{\partial t_{p+1}^{2}}+\ldots+\frac{\partial^{2}}{\partial t_{n}^{2}}\right) f\left(g k \exp \left(t_{p+1} Z_{p+1}+\ldots+t_{n} Z_{n}\right) \cdot E_{p}^{0}\right)\right\}_{t-0} d k
\end{gathered}
$$

This shows that

$$
\left[\Delta M_{p} f\right](g \cdot 0)=\int_{K}\left[\square_{p} f\right]\left(g k \cdot E_{p}^{o}\right) d k=\int_{E}\left(\square_{p} f\right)^{*}(g k) d k=\left[M_{p} \square_{p} f\right](g \cdot 0)
$$

proving (i). For (ii) let V_{q} denote the q-plane through 0 , parallel to E_{q}, and let X_{1}, \ldots, X_{q}, .., X_{n} be an orthogonal basis of \mathbf{R}^{n} such that $X_{i} \in V_{q}(1 \leqslant i \leqslant q)$. The orthogonal projection of 0 onto E_{q} has the form $s_{q+1} X_{q+1}+\ldots+s_{n} X_{n}$ and

$$
\left[L_{q} F\right]\left(E_{q}\right)=\int F\left(t_{1} X_{1}+\ldots+t_{q} X_{q}+\ldots+s_{n} X_{n}\right) d t_{1} \ldots d t_{q}
$$

so

$$
\begin{aligned}
{\left[\square_{q} L_{q} F\right]\left(E_{q}\right) } & =\left\{\frac{\partial^{2}}{\partial t_{q+1}^{2}}+\ldots+\frac{\partial^{2}}{\partial t_{n}^{2}}\left(L_{q} F\left(\left(t_{q+1} X_{q+1}+\ldots+t_{n} X_{n}\right) \cdot E_{q}\right)\right)\right\}_{t=0} \\
& =\int\left(\frac{\partial^{2}}{\partial s_{q+1}^{2}}+\ldots+\frac{\partial^{2}}{\partial s_{n}^{2}}\right)\left(F\left(t_{1} X_{1}+\ldots+s_{n} X_{n}\right) d t_{1} \ldots d t_{q}=\int_{E_{q}}[\Delta F](x) d \mu_{q}(x)\right.
\end{aligned}
$$

since $\partial^{2} \boldsymbol{F} / \partial t_{i}^{2}(1 \leqslant i \leqslant q)$ gives no contribution. This proves (ii).
Let $S^{*}\left(\mathbf{R}^{n}\right)$ be as in $\S 4$ and let $\mathcal{L}_{p, n}$ be the subspace $L_{p}\left(\mathcal{S}^{*}\left(\mathbf{R}^{n}\right)\right)$ of $C^{\infty}(\boldsymbol{G}(p, n))$.
Theorem 8.2. Suppose n odd. The transform $f \rightarrow f$ is a linear one-to-one mapping of $\mathcal{L}(\mathbf{G}(p, n))$ onto $\mathcal{L}(\mathbf{G}(q, n))$ such that

$$
\begin{aligned}
& \left(\square_{p} f\right)^{\wedge}=\square_{q} f \\
& \left(\square_{p}\right)^{\frac{7}{2}(n-1)}(\hat{f})^{2}=c f, \quad f \in \mathcal{L}(G(p, n))
\end{aligned}
$$

where c is a constant $\neq 0$, independent of f.
Proof. Let $r=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$ and λ a complex number whose real part $\operatorname{Re} \lambda$ is $>-n$. Then the function r^{λ} is a tempered distribution on \mathbf{R}^{n} and so is its Fourier transform, say R_{λ}. If $\varphi \in S\left(\mathbf{R}^{n}\right)$ the convolution $R_{\lambda} * \varphi$ is a tempered distribution ([18], II, p. 102) whose Fourier transform is the product of the Fourier transforms of φ and R_{λ}. If $\varphi \in \mathcal{S}^{*}\left(\mathbf{R}^{n}\right)$ then this product lies in $S_{0}\left(\mathbf{R}^{n}\right)$ so the operator $\Lambda_{\lambda}: \varphi \rightarrow R_{\lambda} * \varphi$ maps the space $\boldsymbol{S}^{*}\left(\mathbf{R}^{n}\right)$ into itself. Also if λ, μ are complex numbers such that $\operatorname{Re} \lambda, \operatorname{Re} \mu$ and $\operatorname{Re}(\lambda+\mu)$ all are $>-n$ then $\Lambda_{\lambda+\mu}=\Lambda_{\lambda} \Lambda_{\mu}$. In particular, $\left(\Lambda_{2} \varphi\right)^{\sim}=(2 \pi)^{n} r^{2} \tilde{\varphi}=-(2 \pi)^{n}(\Delta \varphi)^{-}$so

We shall now verify that

$$
\Lambda_{2}=-(2 \pi)^{n} \Delta, \quad \Lambda_{0}=I
$$

$$
\begin{equation*}
M_{d} L_{d} F=\gamma_{d} R_{-d} * F, \quad F \in S\left(\mathbf{R}^{n}\right), 0 \leqslant d<n \tag{4}
\end{equation*}
$$

where d is an integer and γ_{d} is a constant $\neq 0$. For this let $d \omega_{k}$ be the surface element of the unit sphere in \mathbf{R}^{k} and put $\Omega_{k}=\int d \omega_{k}$. Let $g \in G$ and $x=g \cdot 0$. If $d=0$, (4) is obvious so assume $0<d<n$. Then for a fixed d-plane E_{d} through 0

$$
\begin{aligned}
{\left[M_{d} L_{d} F\right](x) } & =\int_{K} d k \int_{E_{d}} F(g k \cdot z) d z=\int_{E_{d}} d z \int_{K} F(g k \cdot z) d k \\
& =\int_{0}^{\infty} \Omega_{d} r^{d-1} d r\left\{\frac{1}{\Omega_{n}} \int_{|y|=1} F(x+r y) d \omega_{n-1}(y)\right\}=\frac{\Omega_{d}}{\Omega_{n}} \int F(y)|x-y|^{d-n} d y
\end{aligned}
$$

and since R_{-d} is a constant multiple of r^{d-n} ([18], II, p. 113) (4) follows. As an immediate consequence of (4) we have

$$
\begin{equation*}
\Lambda_{d} M_{d} L_{d} \varphi=M_{d} L_{d} \Lambda_{d} \varphi=\gamma_{d} \varphi, \quad \varphi \in S^{*}\left(\mathbf{R}^{n}\right), \quad(0 \leqslant d<n) \tag{5}
\end{equation*}
$$

Now let $f \in \mathcal{L}_{\text {p,n }}$. Then $f=L_{p} \varphi$ for $\varphi \in S^{*}\left(\mathbf{R}^{n}\right)$ and $f=L_{q} M_{p} f=L_{q} M_{p} L_{p} \varphi \in \mathcal{L}_{q, n}$ since $M_{p} L_{p} \varphi \in \mathbb{S}^{*}\left(\mathbf{R}^{n}\right)$. If $\hat{f}=0$ then $0=M_{q} \hat{f}=M_{q} L_{q} M_{p} L_{p} \varphi=\Lambda_{-q-p} \varphi$ so $f=0$. Similarly, if $F \in \mathcal{L}_{q, n}$ then $F=L_{q} \Phi$ for $\Phi \in \mathbb{S}^{*}\left(\mathbf{R}^{n}\right)$ and by (5), $F=L_{q} M_{p} L_{p} \varphi$ for $\varphi \in \mathbb{S}^{*}\left(\mathbf{R}^{n}\right)$ so $F=\left(L_{p} \varphi\right)^{\wedge}$. This shows that $f \rightarrow \hat{f}$ is an isomorphism of $\mathcal{L}_{p, n}$ onto $\mathcal{L}_{q, n}$. Also, by Lemma 8.1,

$$
\left(\square_{p} f\right)^{\wedge}=L_{q} M_{p} \square_{p} f=L_{q} \Delta M_{p} f=\square_{q} L_{q} M_{p} f=\square_{q} f
$$

Since $p+q=n-1$ is even we have

$$
\Lambda_{p} \Lambda_{q}=\left(\Lambda_{2}\right)^{\frac{1}{2}(n-1)}=\left((-2 \pi)^{n}\right)^{\frac{1}{2}(n-1)} \Delta^{\frac{1}{2}(n-1)}=c_{n} \Delta^{\frac{1}{2}(n-1)}
$$

the last equation defining c_{n}. Let $f \in \mathcal{L}_{p, n}, f=L_{p} \varphi, \varphi \in S^{*}\left(\mathbf{R}^{n}\right)$. Then, using Lemma 8.1, and (5)

$$
\begin{aligned}
& (f)^{\smile}=L_{p} M_{q} f=L_{p} M_{q} L_{q} M_{p} L_{p} \varphi, \\
& \left(\square_{p}\right)^{\frac{1}{2}(n-1)}(\hat{f})^{2}=L_{p} \Delta^{\frac{1}{2}(n-1)} M_{q} \hat{f}=c_{n}^{-1} L_{p} \Lambda_{p} \Lambda_{q} M_{q} L_{q} M_{p} L_{p} \varphi \\
& =c_{n}^{-1} \gamma_{q} L_{p} \Lambda_{p} M_{p} L_{p} \varphi=c_{n}^{\sim 1} \gamma_{q} \gamma_{p} L_{p} \varphi=c_{n}^{-1} \gamma_{p} \gamma_{q} f .
\end{aligned}
$$

References

[I]. Ambrose, W., The Cartan structure equations in classical Riemannian geometry. J. Indian Math. Soc., 24 (1960), 23-76.
[2]. Cartan, É., Sur certaines formes riemanniennes remarquables des géométries a groupe fondamental simple. Ann. Sci. École Norm. Sup., 44 (1927), 345-467.
[3]. Friedman, A., Generalized functions and partial differential equations. Prentice Hall, N.J. 1963.
[4]. Fuglede, B., An integral formula. Math. Scand., 6 (1958), 207-212.
[5]. Gelfand, I. M., Graev, M. I. \& Vilenkin, N., Integral Geometry and its relation to problems in the theory of Group Representations. Generalized Functions, Vol. 5, Moscow 1962.
[6]. Günther, P., Über einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen 2. Ordnung. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.Nat. Kl., 102 (1957), 1-50.
[7]. Harish-Chandra, Spherical functions on a semisimple Lie group I. Amer. J. Math., 80 (1958), 241-310.
[8]. Helgason, S., Differential operators on homogeneous spaces. Acta Math., 102 (1959), 239-299.
[9]. -, Some remarks on the exponential mapping for an affine connection. Math. Scand., 9 (1961), 129-146.
[10]. --, Differential Geometry and Symmetric Spaces. Acadernic Press, New York, 1962.
[11]. ——, A duality in integral geometry; some generalizations of the Radon transform. Bull. Amer. Math. Soc., 70 (1964), 435-446.
[12]. Hörmander, L., On the theory of general partial differential operators. Acta Math., 94 (1955), 161-248.
[13]. John, F., Bestimmung einer Funktion aus ihren Integralen über gewisse Mannigfaltigkeiten. Math. Ann., 100 (1934), 488-520.
[14]. -, Plane waves and spherical means, applied to partial differential equations. Interscience, New York, 1955.
[15]. Nagano, T.,Homogeneous sphere bundles and the isotropic Riemannian manifolds. Nagoya Math. J., 15 (1959), 29-55.
[16]. Radon, J., Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 69 (1917), 262-277.
[17]. de Rham, Sur la réductibilité d'un espace de Riemann. Comment. Math. Helv., 26 (1952), 328-344.
[18]. Schwartz, L., Théorie des Distributions, I, II. Hermann et Cie, 1950, 1951.
[19]. Semyanistyi, V. I., On some integral transformations in Euclidean space. Dokl. Akad. Nauk SSSR, 134 (1960), 536-539; Soviet Math. Dokl., 1 (1960), 1114-1117.
[20]. -, Homogeneous functions and some problems of integral geometry in spaces of constant curvature. Dokl. Akad. Nauk SSSR, 136 (1961), 288-291; Soviet Math. Dokl., 2 (1961), 59-62.
[21]. Wang, H. C., Two-point homogeneous spaces. Ann. of Math., 55 (1952), 177-191.
Received April 11, 1964

[^0]: ${ }^{(1)}$ Work supported in part by the National Science Foundation, NSF GP 2600, U.S.A.
 11 - 652923. Acta mathematica. 113. Imprimé le 11 mai 1965.

