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w 1. Introduction 

As proved by  Radon [16] and John [13], a differentiable function / of compact support  

on a Euclidean space R n can be determined explicitly by  means of its integrals over the 

hyperplanes in the space. Let  J(~o, p) denote the integral of / over the hyperplane 

<x, co> = p  where r is a unit vector and <,> the inner product in R n. I f  A denotes the La- 

placian on R n, do) the area element on the unit sphere S n-1 then (John [14], p. 13) 

J(x) = 1 ( 2 ~ i ) i - n  (Ax)~(n-1)fs. J(~, <eo, x))dw, (n odd); (1) 

/(x)=(2:~i)-n(Ax)�89 I do~ f ~  dJ(~'p) (neven), (2) 
j sn-, p - <co, x>' 

where, in the last formula, the Cauchy principal value is taken. 

Considering now the simpler formula (1) we observe tha t  it contains two dual integra- 

tions: the first over the set of points in a given hyperplane, the second over the set of 

hyperplanes passing through a given point. Generalizing this situation we consider the 

following setup: 

(i) Let  X be a manifold and G a transitive Lie transformation group of X. Let  ~ be 

a family of subsets of X permuted transitively by the action of G on X, whence ~ acquires 

a G-invariant differentiable structure. Here ~ will be called the dual space of X. 

(ii) Given x E X, let ~ denote the set of ~ e 7~ passing through x. I t  is assumed tha t  each 

and each ~ carry measures ju and v, respectively, such tha t  the action of G on X and 

permutes the measures # and permutes the measures v. 
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(iii) If / and g are suitably restricted functions on X and ~, respectively, we can 

define functions ] on ~, ~ on X by 

](~)= f~/(x)d/~(x), ~(x)= f i  g(~)d~,(~). 

These three assumptions have not been made completely specific because they are not 

intended as axioms for a general theory but rather as framework for special examples. 

In  this spirit we shall consider the following problems. 

A. Relate/unction spaces on X and ~ by means o/the trans/orms /--->] and g-->~. 

B. Let D(X) and D(~), respectively, denote the algebras o/ G-invariant di//erential 

operators on X and ~. Does there exist a map D --->b o/D(X) into D(~) and a map E -->/~ o/ 

D(. ~.) into D(X) such that 

(Dl)^=bt, (Eg)"=l~ 
/or all / and g above ? 

C. In case the transforms [--> [ and g --~ ~ are one.to-one find explicit inversion/ormulas. 

In  particular, find the relationships between f and (f)v and between q and (~)". 

In this article we consider three examples within this framework: (1) The already 

mentioned example of points and hyperplanes (w 2-w 4); (2) points and antipodal manifolds 

in compact two-point homogeneous spaces (w 5-w 6); p-planes and q-planes in R "+q+l (w 

w 8). Other examples are discussed in [11] which also contains a bibliography on the Radon 

transform and its generalizations. See also [5]. 

The following notation will be used throughout. The set of integers, real and complex 

numbers, respectively, is denoted by Z, t t  and C. If  xER n, Ixl denotes the length of the 

vector x; A denotes the Laplacian on R n. If M is a manifold, C~(M) (respectively O(M)) 

denotes the space of differentiable functions (respectively, differentiable functions with 

compact support) on M. If  L(M) is a space of functions on M, D and endomorphism of 

L(M) and p e M, ] eL(M) then [1)/] (p) (and sometimes D~(/(p))) denotes the value of D / a t  

p. The tangent space to M at p is denoted My. If v is a diffeomorphism of a manifold M 

onto a manifold N and if ]EC~176 then F stands for the f u n c t i o n / o r  -1 in C~r If D 

is a differential operator  on M then the linear transformation of C~(N) given by Dr: 
J 

f--> (DF-1) ~ is a differential operator on N. For M = N ,  D is called invariant under ~ if 

D ~ = D. 

The adjoint representation of a Lie group G (respectively, Lie algebra (~) will be denoted 

Ada (respectively ad~). These subscripts are omitted when no confusion is likely. 
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w 2. The Radon transform in Euclidean space 

Let R ~ be a Euclidean space of arbitrary dimension n and let E denote the manifold 

of hyperplanes in R ". 

I f  ] is a funct ion on R ~, integrable on each hyperp lane  in R ~, the  Radon trans]orm of ] 

is the  funct ion f on ~ given b y  

f~ / (x)da(x) ,  ~e~ ,  (1) 

where da is the  Eucl idean measure  on the  hyperp lane  ~. I n  this section we shall prove  the  

following result  which shows, roughly  speaking, t h a t  / has compac t  suppor t  if and only if 

] does. 

THE o R~ • 2.1. Let /E C~(R n) satis/y the ]ollowing conditions: 

(i) For each integer k > 0  {x{kl(x) is bounded. 

(if) There exists a constant A > 0  such that ~(~) =0 /or  d(O,~) > A ,  d denoting distance. 

Then /(x)=O /or {x[ > A .  

Proo/. Suppose first  t h a t  / is a radial  function. Then there  exists an even funct ion 

E E C ~ (R) such t h a t / ( x )  = E( I x { ) for x E R n. Also there  exists an even funct ion _~ E C ~ (R) 

such t h a t  P(d(0,~))=](~).  Because of (1) we find easily 

~(p)= fR._lF((p~ +{y{~)+)dy=~_l j~ F((p~ +t~)'tn-2dt, (2) 

where ~n-1 is the area  of the  uni t  sphere in R ~-1. Here  we subst i tu te  s = (p~ +t2) -�89 and then  

pu t  u = p - L  Formula  (2) then  becomes 

f u n-3 -~'(u -1 ) = ~n--1 (F(s -1 ) s -n) (u 2 - sS) �89 ds. (3) 

This formula  can be inver ted  (see e.g. J o h n  [14], p. 83) and  we obta in  

~(S--1) S-n=CS~)] X (S2--U2)�89 (4) 

where c is a constant .  :Now by  (if), /~(u -1) = 0 for 0 < u 4 A -1 so b y  (4), F(s -1) = 0 for  

0 < s  ~< A -1, proving the  theorem for t h e  case when / is radial.  

:Now suppose /E Cr n) arbi t rary ,  satisfying (i) and (if). Le t  K denote the  or thogonal  

group O(n). For  x ,y  E R ~ we consider the  spherical  average  
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= f /(x+k.y) dk, Y) 

where dk is the  H a a r  measure  on O(n), wi th  to ta l  measure  1. Le t  Rj*  be the  R a d o n  t rans-  

fo rm of /*  in the  second variable.  Since ( f )  ^ = (f)~ for each rigid mot ion  v of R n it  is clear t h a t  

/*] (x, 2) = f~  [(x + k. 2) dk, x E R n, ~ E ~, [R~ (5) 

where x +/r ~ is the  t rans la te  of k. ~ by  x. Now it  is clear t h a t  the  distance d satisfies the  

inequal i ty  
d(O, x+ k.~) >~d(O, 2) -  Ix[ 

for all x E I t  n, k E K .  Hence  we conclude f rom (5) 

[R2/*J(x, 2) =0 if d(0, 2) > A  + Ix].  (6) 

For  a f ixed x, the  funct ion y-->/*(x, y) is a radial  funct ion in C~176 ~) sat isfying (i). Since the 

theorem is p roved  for radia l  functions,  (6) implies t h a t  

K/(x+k.y)dk=O if ly[>A+ix].  

The theorem is now a consequence of the  following lemma.  

L E ~  2.2. Let / be a/unction in C~176 n) such that [xik/(x) is bounded on R n/or each 
integer lc > O. Suppose / has sur/ace integral 0 over every sphere which encloses the unit sphere. 

Then/(x)--O/or Ix] >1 .  

Proo]. The assumpt ion  abou t  / means  t h a t  

This implies t h a t  

Now fix L > I .  

is cons tan t  for 0 ~< I x I < L -  1. 

f s  /(x+Lw)deo=O for 
n- - i  

f l /(x + y) dy = 0 for 
yI>~L 

Then  (8) shows t h a t  

l~i<L ](x + y) dy 

The  ident i ty  

L>lx l+ l .  (7) 

L > i x [ + l .  (8) 
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fs~_ /(x+ Lw) (x~ + Lo~)do~=X~ fs~_ /(x+ Lw)dw + Le-~ s fl~l<L/(x+y)dy 

then shows that  the function xJ(x) has surface integral 0 over each sphere with radius L 

and center x (0 <~ Ix I < L - 1 ) .  In other words, we can pass from/(x) to xJ(x) in the identity 

(7). By iteration, we find that  on the sphere l Yl =/~ (L > 1)/(y) is orthogonal to all poly- 

nomials, hence/(y) =-0 for l Yl =L.  This concludes the proof. 

Remark. The proof of this lemma was suggested by John's solution of the problem 

of determining a function on R n by means of its surface integrals over all spheres of radius 

1 (John [14], p. 114). 

w 3. Rapidly decreasing functions on a complete Riemnnnian manifold 

Let M be a connected, complete Riemannian manifold, M its universal covering 

manifold with the Riemannian structure induced by that  of M, / ] l= l l l  I • ... • the 

de Rham decomposition of M into irreducible factors ([17]) and let Mi =~t(M~) (1 <~i ~<l) 

where ~ is the covering mapping of M onto M. Let  A, A, A~, A~ denote the Laplaee-Beltrami 

operators on M, M, Mi, ~ri, respectively. I t  is clear that  A~ can be regarded as a differ- 

ential operator on 21~/. In  order to consider A~ as a differential operator on M, let /E C~(M), 

T=/o~.  Any covering transformation T of M is an isometry so (A~(/ou))'=A~(/o~r); hence 

A~(/o~)=Fo~,  where FEC~(M).  We define A J = F .  Because of the decomposition of 

each m E M has a coordinate neighborhood which is a product of coordinate neighbor- 

hoods in the spaces M~. In  terms of these coordinates, A = ~A~; in particular At is a dif- 

ferential operator on M, and the operators A~ (1 ~<i ~<l) commute. 

Now fix a point o E M and let r(p) = d(o, p). A function / E C~(M) will be called rapidly 
decreasing if for each polynomial P(A~, ..., A,) in the operators A~ ..... A, and each integer 

k~>0 
sup I(1 +r(p))~[P(A1, ..., A,I] (p) l < ~-  (1) 

la 

I t  is clear that  condition (1) is independent of the choice of o. Let  S(M) denote the set of 

rapidly decreasing functions on M. 

In the ease of a Euclidean space a function /E C~176 ~) belongs to S(R n) if and only if 

for each polynomial P in n variables the function P(D~ ..... D~)/ (where D~ = ~/~xt)goes 
to zero for Ix I-->oo faster than any power of Ix I" Then the same holds for the function 

P(D 1 ..... Dr) ] (so S(R ~) coincides with the space defined by Schwartz [18], II ,  p. 89) as a 

consequence of the following lemma which will be useful later. 
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LEMMA 3.1. Let / be a/unction in C~176 which/or each pair o/integers k, l ~ 0 satisfies 

sup I(l + I < (2) 
xER tl 

Then the inequality is satisfied when A ~ is replaced by an arbitrary differential operator with 

constant coe]/icients. 

This l emma  is easily p roved  by  using Fourier  t ransforms.  

LEMMA 3.2. A /unction $'E C~~ x S "-1) lies in S(R x S ~-1) i /and  only i[/or arbitrary 

integers k, l>~O and any differential operator D on S "-1, 

sup (1 + I r l )  ~ d~ I ,~ES,-.~,R ~r  l (DF) (r r) < oo .  (3) 

Proo[. I t  is obvious t h a t  (3) implies t h a t  F is rap id ly  decreasing. For  the  converse we 

mus t  prove  (8 "-1 being irreducible) t h a t  (3) holds provided it  holds when l >/0 is even and  

D an a rb i t r a ry  power  (As) m (m ~> 0) of the Laplacian As on S n-1. Le t  G(w, r) = dZ/dr~(F(w, r)). 

Of course it suffices to  ver i fy  (3) as eo = (co I . . . . .  ran) varies in some coordinate neighborhood 

on S"- l .  Le t  x t = I x I e~ (1 ~< i ~< n) and suppose G extended to a C ~0 funct ion ~ in the  p roduc t  

of an annulus A~: {xeRnl ]  2 xl + ... + x , -  l l < e  < 1 } wi th  R. Regardless  how this extension 

is made,  (3) would follow (for even l) if we can prove  an es t imate  of the  form 

sup I ( l + l r l ) ~ [ D ~ G ] ( ~ , r ) l <  oo 
r r eR  

(4) 

for an a rb i t r a ry  der iva t ive  Dr=~l~l/~x~'...~x~ n (lYl = ~ 1 + ' " + ~ - )  �9 Now, b y  Sobolev 's  

l e m m a  (see e.g. [3], Theorem 6', p. 243) [Dr~](~o, r) can be es t imated  by  means  of L 2 

norms  over  A~ of f ini tely m a n y  der ivat ives  DxDx (O(x, r)). Bu t  the  L* norm over  A,  of 

D~ Dr  (~(x, r)) is es t imated  by  the  L * norm over  A, of A~(~(x, r)), m being a suitable integer  

(see [12], p. 178-188). Now suppose ~ was chosen such t h a t  for  each r, the  funct ion x-->~(x,r) 

is constant  on each radius f rom 0. Then 

Ax(G(:, r))= r) 

and  A ~ ( 0  (x, r)) = ~ / , ( I  x I) [(As)'G] (w, r), 
t 

where the  sum is finite and  each It is bounded for I I x l - 1 1 < *  Hence  the  L z no rm over  

A~ of (Am)x((~(x, r)) is es t imated  by  a l inear  combinat ion  of the L 2 norms  over  S "-1 of 

[(As)tG] (co, r). Bu t  these last  der ivat ives  sat isfy (3), by  assumpt ion,  so we have  p roved  (4). 
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This proves (3) for 1 even. Let  H(eo, s) be the Fourier transform (with respect to r) of the 

function (DF)(~o, r). Then one proves by  induction on/r tha t  

sup (l+Isl)  z ~ H ( ~ , s )  < ~  
eoeS n-~, seR 

for all k, l >i 0 and now (3) follows for all k, 1 >~ 0 by  use of the inverse Fourier transform. 

w 4. The Radon transforms of $ (R n) and D (R n) 

I f  o9 E S n-l, r E R let ~(o), r) denote the hyperplane <x, o9} = r in R ' .  Then the mapping 

(o9, r) --> ~(eo, r) is a two-fold covering map of the manifold S n-x • R onto the manifold ~, of 

all hyperplanes in R~; the (differentiable) functions on 7~ will be identified with the (dif- 

ferentiable) functions F on S n-1 •  which satisfy F(w, r )=F(-~o,  - r ) .  Thus S(.~.) is, by  

definition, a subspaee of S(Sn-1 • R). We also need the linear space S=(~,) of functions 

F E $(~.) which have the property tha t  for each integer k/>0 the integral SF(eo, r)rkdr can 

be writ ten as a homogeneous ]cth degree polynomial in the components ~o~ .. . .  , o)~ of w. 

Such a polynomial can, since o)21 + ... +eo~n = 1, also be written as a (]c +2/) th  degree poly- 

nomial in the eo~. 

We shall now consider the situation outlined in the introduction for X = R ~ ,  ~. as 

above and G the group of rigid motions of X. I f  x E X, ~ E .~, the measure/~ is the Euclidean 

measure d~ on the hyperplane ~, v is the unique measure on ~ invariant under all rotations 

around x, normalized by  ~(~)= 1. We shall now consider problems A, B, C from w 1. I f  ] 

is a function on X, integrable along each hyperplane in X then according to the conventions 

above 

f(eo, r) = t" /(x) da(X), o e S  n-l,  r E R .  (1) 
J< 

The Radon trans/orm /--> ~ is a linear one-to-one mapping of S(X) THEOREM 4.1. 
onto $~(.~). 

Proo/. Let / E $(X) and let T denote the Fourier t ransform 

](u)= fl(x)e-'<"u>dx, uee'. 

I f  u={=O put  u = s ~ ,  where s E R  and r n-1. Then 
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so we obtain ](sw) = t(r r) e-t'rdr, (2) 

for s 4 0  in R, ~o E S n-1. But  (2) is obvious for s =0  so it holds for all sER. Now according to 

Schwartz [18], I I ,  p. 105, the Fourier t r ans fo rm/ - -> f  maps S(R n) onto itself. Since 

a! (u = ( u .  ., u.)) 

it follows from (2) tha t  for each fixed w, the function r--->[(w, r) lies in S(R). For  each 

w0ES n-l, a subset of {wl ... . .  wn} will serve as local coordinates on a neighborhood of 

eo 0. To see tha t  [E $(~), it therefore suffices to verify (3) w 3 for F =[ on an open subset N 

of S n-1 where wn is bounded away from 0 and 091 ..... eo~_ 1 serve as coordinates, in terms of 

which D is expressed. Putt ing R +=  {8 E RIs  >0} we have on N x R + 

u x  = so~ x . . . . .  u n - x  = s o o n - a ,  u ,  = s ( 1  - eo~ - - . . .  - -  ( . o2 - 1 )  �89 ( 3 )  

" '  at # _L (/(8~)) =s E Uu,- s~,(1 - ~ - . . . -  ~._1) ~ au.  
S O  0 ( D  t t = 1 

I t  follows tha t  if D is any differential operator on S "-1 and k, 1 integers ~> 0 then 

sup ( l+s2k)[~D]] (o,,)1< (4) 
m~N, sell{ 

We can therefore apply D under the integral sign in the inversion formula 

1 ILl(sw ) efSrds I(o~, r) = (5) 

and obtain 

d' l f (  1 ~ d  2k ' ( l+r2k)~dr ~ (D,o(f(co, r ) ) )=~ + ( - 1 )  d ~  ((is)~D'(f(se~ 

Now (4) shows tha t  ]E S(~). Finally, if k is an integer >~0 then 

f~h,o,r)r~dr=f~r~drf(,,o>ffir/(~)ao(~)=fi,/(~)<~,~,>~d~ (6, 

so [E Sn(~.). The Fourier transform being one-to-one it remains to prove tha t  each g E Sn(~) 

has the form g = ]  for s o m e / E  S(R~). We put  

G(s, co) = f~176 g(eo, r) e-lrSdr. 
3-o0 
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Then  G(-s, - r  co) and  G(0, ~o) is a homogeneous  po lynomia l  of degree  0 in co, 

hence independen t  of co. Hence  there  exists  a funct ion  F on I t  ~ such t h a t  

F(so)=ffg(co, r) e-'r~dr, sER, o~ES "-1. (7) 

I t  is clear t h a t  F is C ~ in R" - {0}. To prove  t h a t  F is C ~162 in a ne ighborhood  of 0 we con- 

s ider  the  coordinate  ne ighborhood  N on S n-1 as before. Le t  h(u 1 .... , u=) be a n y  funct ion  of 

class C ~r in R = -  {0} and  le t  h*(w I . . . . .  o~-1,  s) be the  funct ion  on N • R + ob ta ined  b y  

means  of the  subs t i tu t ion  (3). Then  

Oh .-x Oh* Oo~j Oh* Os (l<<.i<~n) 
~u,=~ Oo~j Ou~ ~- as Ou, 

a n d  Oo~j 1 ~j (l<~i<.n, l ~ < n - 1 ) ,  
Ou~ s s ~ ] 

as 
- -  = c o ~  (1 ~ < i ~ < n -  1 ) ,  
Ou~ 

~s 
7 - =  (1 - - o ~ - - . . . -  (D2-1) �89 
OUn 

Hence  
Oh 1 Oh* (Oh" 1 n~l Oh*~ 

�9 - - e o j ~  l (1 < i ~ < n -  1), 
OU t 8 0(Di ~- O')t \ ~8 8 j= 1 

oh (oh* 1 "-1 dh*l 

I n  o rder  to  use these  formulas  for h = F we wri te  

F(so~)= f ~  g(o, r)dr + f ~  g(r,o) (e-tr~- l)dr 

and  b y  assumpt ion ,  the  f i rs t  in tegra l  is i ndependen t  of co. Thus,  for a cons tan t  K > 0, 

la-~(F(s~ f (l+r4)-ls-lle-t~r-lldr<<'Kf~dr'j l+r  

This shows t h a t  al l  the  der iva t ives  OF/aug (l~<i~<n) are  bounded  in a p u n c t u r e d  ba l l  

0 <  ]u I < e  so F is cont inuous  in a ne ighborhood  of u = 0 .  More general ly ,  le t  q be a n y  

in teger  > 0. Then we have  for an  a r b i t r a r y  q t h  order  der iva t ive ,  

OCh Oi+Jh * 
- ~ A~,s (o , s )  (8) 

0u~, . . .  0u~q ~+j<q 0eok, . . .  0ok~ 0s j '  

where  the  coefficient Ai.j(w,s)=O(s j-q) near  s=O. Also 
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q-1 f~_ F(so~) = g(eo, r) ~ ( -- isr)~ dr + g(eo, r) eq( - irs) dr, (9) 
k=o k! 

tq tq +1 
where eq (t) = ~.y + (q + 1)~ + . . . .  

Then it is clear tha t  the first integral in (9) is a polynomial in u 1 ... . .  u~ of degree H q - 1 

and is therefore annihilated by  the differential operator (8). Now, if 0 H~ Hq, 

d -~ ~ (e.(  - i t s ) )  = I( - ir)q( - irs)  j - "  e ,_ j  ( - irs)  l H  K s  r", (10) 

where K s is a constant, because the function t--~(it)-~'e~,(it) is obviously bounded on R 

(p~>0). Since gES(E) it follows from (8), (9), (10) tha t  each qth order derivative of F with 

respect to u I . . . . .  un is bounded in a punctured ball 0 < l u l  <e- Hence FEC~(Rn). Tha t  F 

is rapidly decreasing is now clear from formula (7), I.,emma 3.1 and the fact tha t  ([8], 

p. 278) 
(O~h * n - 1 egh* 1 h* Ah= ~ + As , 

s ~s  + ~  

where A s is the Laplaee-Beltrami operator on S ~-1. I f  [ is the function in $(X) whose 

Fourier transform is F then [=g and the theorem is proved. 

Let  $*(X) denote the space of all functions / e S ( X )  which satisfy ~/(x)P(x)dx=O 

for all polynomials P(x). Similarly, let $*(.~) denote the space of all functions g e $(E) 

which satisfy ~g(eo, r)P(r)dr--O for all polynomials P(r). Note tha t  under the Fourier 

transform, $*(X) corresponds to the space $o(R ~) of functions in $(R ~) all of whose deriva- 

tives vanish at  the origin. 

COROLLARY 4.2. The translorms 1--->~ and g--->~, respectively, are one-to-one linear 

m a ~  o/  S * ( X )  onto S*(g) and ol S(E) onto S * ( X ) .  

The first s tatement  follows from (6) and the well-known fact tha t  the polynomials 

(x, co> k span the space of homogeneous polynomials of degree k. As for the second, we 

observe tha t  for [E S(X) and ~o a fixed plane through 0 
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This formula is also proved in [4]. Now the right-hand side is a tempered distribution, being 

the convolution of a tempered distribution and a member  of $(X). By [18], I I ,  p. 124, the 

Fourier transform is given by the product of the Fourier transforms so i f / E  $*(X) we see 

tha t  (D v has Fourier transform belonging to So(X). Hence (D v e $*(x) and the second state- 

ment  of Cor. 4.2 follows. 

Remarks. A characterization of the Radon transform of S(X) similar to tha t  of Theorem 

3.1 is stated in Gelfand-Graev-Vilenkin [5], p. 35. Their proof, as outlined on p. 36-39, is 

based on the inversion formula (1) w 1 and therefore leaves out the even-dimensional case. 

Corollary 4.2 was stated by Semyanistyi [19]. 

Now let D(X) and 0(. ~.) be as defined in w 1, and put  ~0H(. ~,) = SH(~) fl ~(~) .  The fol- 

lowing result is an immediate consequence of Theorem 2.1 and 4.1. 

COROLLARY 4.3. The Radon trans/orm /---> f is a linear one-to-one mapping o / ~ ( X )  

onto OH(.~). 

Concerning problem B in w 1 we have the following result which is a direct conse- 

quence of Lemmas 7.1 and 8.1, proved later. 

PROPOSITIO~ 4.4. The algebra D(X) is generated by the Laplacian A, the algebra 

D ( ~ )  is generated by the di//erential operator E]: g(eo, r)--> (d2/dr2)g(o), r) and 

(At) ̂  = []L ([]g) V = A~ 

/or ] E $(X), g E C~176 

The following reformulation of the inversion formulas (1), (2) w 1 gives an answer to 

problem C. 

THEORE~ 4.5. (i) I] n is odd, 

/= eAt(~-l)((t)v), /eS(X); 
g = C[]�89 g ~ S* (.~.), 

where c is a constant, independent o] / and g. 

(ii) I] n is even, 
/=cxJ~((f)"), /e$(X); 

g=e,  J2((~)"), gES*(.~), 

where the operators J1 and J~ are given by analytic continuation 

J1 : ](x) ---> anal. cont. f /(y) Ix - y I'dy, 
~=l-2n JRn 
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J~ : g(to, p) --> anal. cont. ~g(w,  q) IP - q 18 dq, 
JR 

and Cl, c~ are constants, independent o / /and g. 

Proo/. In (i) the first formula is just (1) w 1 and the second follows by Prop. 4.4. We 

shall now indicate how (if) follows from (2) w 1. Since the Cauchy principal value is the 

derivative of the distribution log [Pl on R whose successive derivatives are the distribu- 

tions p/.(p-k) (see [18], I, p. 43) we have by (2) w 1 

/(x) = (2~zi)-n(n- 1) ! f s ,_  ' ( P / . ( p -  (o~, x~ -~) (f(eo, p))da~. (12) 

On the other hand, if q~EC~176 is bounded we have by Schwartz [18], I, p. 45 

[Jz~0] (0) = l im [ f Ixl 1-~" q~(x)dx+e(q~)], (13) 
e~O LJ Ixl>~ 

~:l-n+Zk ff~�89 
where e(~0) = ~  Hk[Ak(p] (0) 1 - n +  2l:' Hk = 2~k_lk ! F(�89 -b k)" 

In particular [Jl((f)"](O)=lim[~nI~r (14) 
e--~0 L J~ J 

where F(r) is the average of (f)v on the sphere Ix I =r. In order to express (14) in terms of 

] we assume / is a radial function and write ](p) for ](co, p). Then 

F(r) = C' f(r cos O) sin"-20 dO, C -1 = sin~-20 dO, (15) 

/ d2k I) j (0 )  (16) 

If q~(p) is the Taylor series of ](p) around 0 up to order n - 2  we get upon substituting 

(15) and (16) into (14), 

(Jl((f)~)) (O)=C~, lim ~�89 f ~  sin"-20 cos"-10 dO P-" (f(P) - qn(P)) dp, 
~--~0 J 0 cosO 

which on comparison with (12) gives 

/(0) = c 1 g,((/)~) (0), c, = const. (17) 

Now put  for ~oEC~(X), x, y e X ,  



T H E  RADON TRANSFORM ON EUCLIDEAI~ SPACES 165 

f 
~*(Y) = JK ~(x + Icy) dk 

and let us prove [Jl~0*] (0) = ((JiQ))*x) (0) if ~ is bounded. (18) 

In view of (13) this is a consequence of the obvious formula 

fl~l>~ lY 1-2n *, "d = cfxiy) y f~,>~ lyll-2n~(x+y)dy 
and the Darboux equation ([8], p. 279) fake0*](0)=[Ak~](x). Now, a direct computation 

shows that  ((])v), = ((/,)^)v for / e $(X) and since/* is radial we get from (17), (18) 

/ ( x )  = ]*x(O) = c 1 [ ( J 1 ( ( t )  ~ ))x*] (0 )  = el[J1(/) v ] (x). 

Finally the inversion formula for g E $*(~) would follow from the first one if we prove 

(J1/) ̂  =coJ2], ]E $* (X), c o constant. (19) 

To see this we take the one-dimensional Fourier transform on both sides. The function 

J1/ is the convolution of a tempered distribution with a rapidly decreasing function. 

Hence it is a tempered distribution (Schwartz [18], II ,  pp. 102, 124) whose Fourier trans- 

form is (since /ES*(X)) a function in S(X). Hence J I /ES(X) .  Similarly (JJ)(to, p) is a 

rapidly decreasing function of p. Using the relation between the I-dimensional and the 

n-dimensional Fourier transform ((2) w 4) and the formula for the Fourier transform of 

P/.r  ~ (Schwartz [18], II ,  p. 113) we find that  both sides of (19) have the same Fourier 

transform, hence coincide. This concludes the proof. 

Remark (added in proo]). Alternative proofs of most of the results of w 4 have been 

found subsequently by D. Ludwig. 

w 5. The geometry of compact symmetric spaces of rank one 

In  this section and the next  one we shall study problems A, B and C for the duality 

between points and antipodal manifolds in compact two-point homogeneous spaces. In  

the present section we derive the necessary geometric facts for symmetric spaces of rank 

one, without use of classification. 

Let  X be a compact Riemannian globally symmetric space of rank one and dimension 

> 1. Let  I(X) denote the group of isometrics of X in the compact open topology, Io(X ) the 

identity component of I(X). Let o be a fixed point in X and so the geodesic symmetry of 

X with repsect to o. Let  u denote the Lie algebra of I(X) and u = ~ + p the decomposition 

of u into eigenspaces of the involutive automorphism of a which corresponds to the auto- 

morphism u---~SoUSo of I(X). Here ~ is the Lie algebra of the subgroup K of I(X) which 
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leaves o fixed. Changing the distance function d on X by a constant factor we may,  since 

u is semisimple, assume tha t  the differential of the mapping u --> u. o of I(X) onto X gives 

an isometry of p (with the metric of the negative of the Killing form of u) onto Xo, the 

tangent space to X at o. Let  L denote the diameter  of X and if x E X  let A~ denote the cor- 

responding antipodal manifold, tha t  is the set of points yEX at  distance L from x; A~ is 

indeed a manifold, being an orbit  of K. The geodesics in X are all closed and have length 

2L and the Exponential  mapping Exp at o is a diffeomorphism of the open ball in Xo of 

center 0 and radius L onto the complement X - A o  (see [10], Ch. X, w 5). 

I)ROPOSITIOI~ 5.1. For each xEX, the antipodal manifold A~, with the Riemannian 

structure induced by X, is a symmetric space of rank one, a~d a totally geodesic submani- 

fold o/X. 

Proof. Let yEAx. Considering a geodesic in X through y and x we see tha t  x is fixed 

under the geodesic symmetry  su; hence s~(Ax)=A~. If  (~ denotes the restriction of s~ to 

Ax, then ay is an involutive isometry of Ax with y as isolated fixed point. Thus Ax is globally 

symmetric and ay is the geodesic symmetry  with respect to y. Let t-+$(t) (t E R) be a geodesic 

in the Riemannian manifold Az. ~ ' e  shall prove that  ~ is a geodesic in X. Consider the 

isometry st(t)8~(0) and a vector T in the tangent space Xy(0). Let  Tr: Xr(o)-->Xr(r) denote 

the parallel translation in X along the curve ~(r (0 ~<~ ~<r). Then the parallel field Tr" T 

(0 <<.r~t) along the curve r-->~,(r) (0 <~r~t) is mapped by  st(t) onto a parallel field along 

the image curve r --> sra ) y(r) = ~r(t) y(r) =~(2t - r) (0 ~< r ~< t). Since s~(t)vt T = - v t  T we deduce 

tha t  sra)sr(o)T=-sr(t) T=v2tT. In  particular, the parallel t ransport  in X along ~ maps 

tangent vectors to y into tangent  vectors to y. Hence ~, is a geodesic in X. Consequently, 

Ax is a totally geodesic submanifold of X, and by the definition of rank, A~ has rank one. 

Let  Z --> ad (Z) denote the adjoint representation of u. Select a vector H E p of length L. 

The space a = R H  is a Caftan subalgebra of the symmetric space X and we can select a 

positive restricted root r162 of X such tha t  �89 is the only other possible positive restricted 

root (see [10], Exercise 8, p. 280 where Z is by  definition the set of positive restricted roots). 

This means that  the eigenvalues of ad(H) 2 are 0, g(H) 2 and possibly (�89 z (a(H) is 

purely imaginary). Let  l l= l l0§  be the corresponding decomposition of 1I into 

eigenspaces and put  t~ =ltg N [, p~ =11~/3 p for/~ =0,  ~r �89 Then P0 = u  and t[~ =adH(p~)  

for fi ~:0. 

PROPOSITION 5.2. Let S denote the subgroup of K leaving the Toint E x p H  fixed, 

and let ~ denote the Lie algebra o/S. Then 
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(i) ~ = f0 + ~ if H is coniugate to O; 

(if) ~ =~0 if H is not conjugate to O; 

(iii) I] �89162 is a restricted root then H is conjugate to O. 

Proof. If exp: it--> I(X) i s the usual exponential mapping then a vector T in ~ belongs 

to ~ if and only if exp ( - H) exp (tT) exp (H) E K for all t E It. This reduces to 

TE~ if and on ly i f  ad H(T)+ .~ (ad  H)a(T)+ . . .=0 .  

In particular, ~ is the sum of its intersections with ~o, t~ and f�89 If T # 0 in ~[~ (fl =0, ~r ~r162 

the condition above is equivalent to sinh(fl(H))=0. Thus (if) is immediate ([10], Ch. VII,  

Prop. 3.1). To prove (i) suppose H is conjugate to O. Whether or not �89 is a restricted root 

we have by the cited result, ~r E ~iZ so t~ E 3. We have also ~ N t~�89 = {0) because otherwise 

�89 E ~iZ which would imply that  �89 is conjugate to 0. This proves (i). For (iii) suppose 

H were Rot conjugate to 0. The sphere in X o with radius 2L and center 0 is mapped by 

Exp onto o. I t  follows that  the differential dExp~ H is 0 so using the formula for this dif- 

ferential ([10], page 251, formula (2)) it follows that  (�89162162 (2H) E 7tiZ so ~r E ~iZ which is a 

contradiction. 

PROPOSITION 5.3. Suppose H is conjugate to O. Then all the geodesics in X with tangent 

vectors in a + p~ at o pass through the point Ex p H .  The manifold Exp (Q + p~), with the Rie- 

mannian structure induced by that of X,  is a sphere, totally geodesic in X.  

Proof. Let (~ denote the complexification of u and B the Killing form of (~. Since the 

various root subspaces {~, (~' (fl + y  #0)  are orthogonal with respect to B ([10], p. 141) it 

follows without difficulty (cf. [10], p. 224) tha t  

B([t 0, ~0~], p ~ ) =  B([~, ~] ,  ~,~)--0. 

Also, if ZEuz then B([H, Z], [/4, Z] )=  - B ( Z ,  (adH)ZZ)=0 so u o equals the centralizer of 

H in u. Thus [~0, a] = 0. Also [t~, a] = p~. Combining these relations we get 

Let  So denote the identity component of S and Ad the adjoint representation of the group 

I(X).  Then the tangent space to the orbit Ad (So)H at the point H is [3, RH] which equals 

~ ,  a~d by  the relation above this orbit lies in the subspace a + p~. I t  follows that  Ad (So)H 

is the sphere in r + p= of radius L and center 0. But  if s E S the geodesic t --> s. Exp tH = 

Exp (Ad(s)tH) passes through Exp H so the first statement of the proposition is proved. 
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By consideration of the root subspaees ~ as above, it is easy to see that  the subspace 

a+p~ of p is a Lie triple system. Thus the Riemannian manifold X , = E x p ( a + p ~ )  is a 

totally geodesic submanifold of X ([10], p. 189). I t  is homogeneous and is mapped into 

itself by the geodesic symmetry s o of X, hence it is globally symmetric, and being totally 

geodesic, has rank one. If  Z is a unit vector in p~, the curvature of X~ along the plane section 

spanned by H and Z, is (cf. [10], p. 206) 

-L-~B([H, Z), [H, Z]) = -L-2~(H) 2. 

But since X~ has rank one, every plane section is congruent to one containing H; hence 

X~ has constant curvature. Finally, Xp - (Exp H} is the diffeomorphic image of an open 

ball, hence simply connected. Since dim X~ > 1 it follows that  X~ is also simply connected, 

hence a sphere. 

PROPOSITIO~ 5.4. The antipodal mani/old AEw~ is given by 

AExpH = Exp (Pt~) i[ H is conjuqate to O. 

A~.~n = Exp (p~) i[ H is not conjugate to O. 

Proo/. The geodesics from E x p H  to o intersect A~wn in o under a right angle (Gauss' 

lemma; see e.g. [1], p. 34 or [9], Theorem 3). By Propositions 5.2 and 5.3 we deduce that  

the tangent space (A~.,~H)o equals p�89 if H is conjugate to 0 and equals p~ if H is not conjugate 

to 0. :Now use Prop. 5.1. 

The next result shows that  there is a kind of projective duality between points and 

antipodal manifolds. 

PROPOSITIOn 5.5. Let x, y 6 X .  Then 

(i) x g=y implies Ax :~A~; 

(if) xEA~ i /and only i] yeAx.  

Proo/. If  zEAx then the geodesics which meet Ax in z under a right angle all pass 

through a point z* at distance L from z (Prop. 5.3 and Prop. 5.4); among these are the geode- 

sics joining x and z. Hence z* =x  and the result follows. 

PRO~'OSITIO~ 5.6. 

(0 < r  <L). Then 

Let A(r) denote the sur/ace area o] a sphere in X o/ radius r 

A(r) = ~+q+l ~- ~ (2~t) -q sin p (~tr) sin q (2~r), 

where p =dimp�89 q =dimp~, ~n is the area o/the unit sphere in R ~ and 
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= ~ I ~(H) I. 

Proo/. As proved in [8], p. 251, the area is given by 

A(r) = f ltz,~r det (Az) do~(Z), (1) 

where dot  is the Euclidean surface element of the sphere HZ[[ =r in p, and 

oO n 

Az = ~ Tz 
(2n+1)!' 

where T z is the restriction of (ad Z) 2 to p. The integrand in (1) is a radial function so 

A(r)=f~,+~§ p+~ .de t  (AH,), I t~=~ H . 

Since the nonzero eigenvalues of TH, are (~(Itr)) ~ with multiplicity p and ~.(H~) ~ with 

multiplicity g we obtain 

(sin ~r~" (sin 2 ~r~q 
A(r)=n~+.+~r "+" ~ ~r / ~--~V-r / " 

where 2 = �89 L -11 ~(H) ]. 

w 6. Points and antipodal manifolds in two-point homogeneous spaces 

Let X be a compact two-point homogeneous space, or, what is the same thing (Wang 

[21]) a compact l%iemannian globally symmetric space of rank one. We preserve the nota- 

tion of the last section and assume dim X > 1. Let  G = I(X) and let ~, be the set of all anti- 

podal manifolds in X, with the differentiable structure induced by the transitive action of 

G. On .~ we choose a Riemannian structure such that  the diffcomorphism ~ : x - + A ,  of X 

onto 7~ (see Prop. 5.5) is an isometry. Let  A and A denote the Laplace-Beltrami operators on 

X and ~, respectively. The measures ,u and v on the manifolds ~ and ~ (w 1) are defined 

to be those induced by the Riemannian structures of X and ~.. If xf iX,  then by Prop. 5.5 

~=  {~(y)lye ~(x)}. 

Consequently, if g is a continuous function on E, 

12 - 652923. Acta  mathematica.  113. I m p r i m 6  le 10 m a i  1965. 
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so #= (go~)^o~. (1) 

Because of this correspondence between the integral t r a n s f o r m s / - ~ f  and g-->~ it suffices 

to consider the first. 

Problems A, B, and C now have the following answer. 

THEOREM 6.1. 

(i) The algebras D(X) and D(.~.) are generated by A and ~ respectively. 

(ii) The mapping f ---> f is a linear ons-to-one mapping of C~(X) onto C~176 and 

(A/) ^ =hr .  

(iii) Except/or the case when X is an even-dimensional real projective space, 

I=P(A)((D"), /ev~(x), 

where P is a polynomial, independent o / f ,  explicitly given below. 

Proof. Part  (i) is proved in [8], p. 270. Let  [Mr/] (x) be the average of / over a sphere 

in X of radius r and center x. Then 

/ ( ~ ( x ) )  = c[MLf] (x), (2) 

where c is a constant. Since A commutes with the operator M r ([8], Theorem 16, p. 276) 

we have 
(Af) o~ = A(fo~) = cMLAI = (A/) ̂  or 

proving the formula in (ii). For (iii) we have to use the following complete list of compact 

Riemannian globally symmetric spaces of rank 1: The spheres S n, ( n = l ,  2 .. . .  ), the real 

projective spaces Pn(R), (n=2,  3 . . . .  ), "the complex projective spaces Pn(C), (n=4,  6, ...), 

the quaternion projective spaces Pn(H), (n=8, 12, ...) and the Cayley projective plane 

P16(Cay). The superscripts denote the real dimension. The corresponding antipodal mani- 

folds are also known {[2], pp. 437-467, [15], pp. 35 and 52) and are in the respective cases: 

A point, pn-l(R), pn-~(C), p~-4(H), and S s. For the lowest dimensions, note tha t  PI(R) = S ~, 

p2(C)=S2, P4(H)=S4. Let  Al(r ) denote the area of a sphere of radius r in an antipodal 

manifold in X. Then by Prop. 5.6, 

Al(r) = C1 sin p' (21 r) sin q' (221 r), 

where C 1 is a constant and P1, ql, 21 are the numbers p, q, 2 for the antipodal manifold. 
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The  multiplicit ies p and  q are de te rmined  in Caf tan  [2], and  show t h a t  �89 is a restr ic ted 

root  unless X is a sphere or a real project ive space. Ignor ing these except ions we have  b y  

vi r tue  of the  results of w 5: 

L = d iamete r  X = d iamete r  A ,  

=d i s t ance  of 0 to the  neares t  conjugate  poin t  in X 0 

=sma l l e s t  n u m b e r  M > 0  such t h a t  limr--,MA(r) =0. 

We can now derive the  following list: 

X = S ~ :  p = 0 ,  q = n - 1 ,  ~=~12L, A(r)=Csinn-l(2~r), Al(r)=-0.  

X =Pn(R) :  p = 0 ,  q = n - 1, 2 =~14L, A ( r )  = Csin  n-1 (2~r), Al(r  ) = Cls in  n-s (2~r). 

X = P~(C): p = n - 2, q = 1, ~t = 7e/'2L, A (r) = C sin n - s (2r) sin (22r), A l(r) = C 1 sin n- 4 (St) sin (2~r). 

X = P n ( H ) :  p = n - 4 ,  q = 3 ,  2=~/2L,  A(r)=Csinn-4(2r)sin3(22r), 
Al(r ) = Clsin ~-s (2r) sin 8 (25r). 

X=P16(Cay):  p = 8 ,  q = 7 ,  2=Te/2L, A(r)=CsinS(~r)sinT (22r), Al(r)=C1sinT (22r). 

I n  each ease, C and  C 1 are constants,  not  necessari ly the  same for all cases. Now if x E X  

and ]eC~(X)  let  [I]] (x) denote  the  average  of the  integrals  of ] over  the  an t ipodal  mani-  

folds which pass th rough  x. Then  (f)* is a constant  mul t ip le  of 1/. F ix  a point  o e X  and 

let  K be the  subgroup of G leaving o fixed. Le t  ~o be a f ixed ant ipodal  manifold th rough  

o and let  da be the  volume e lement  on ~o. Then  

where r is the  distance d(o, y) in the  space X be tween the  points  o and  y. Now if d(o, y) < L  

there  is a unique geodesic in X of length d(o, y) joining o to  y and  since ~o is to ta l ly  geodesic, 

d(o, y) is also the  dis tance between o and  y in ~0. Hence,  using geodesic polar  coordinates in 

the  last  in tegral  we find 

[II] (x) = j :  Al(r  ) [Mr/] (x) dr.  (3) 

I n  geodesic polar  coordinates on X,  the  Lap lace -Be l t r ami  opera tor  A equals A, + A' where 

A' is the  Laplace-Bel t rami  opera tor  on the  sphere in X of radius  r and  ([10], p. 445) 

d 2 1 dA r ( 0 < r < L ) .  
A ' = d r P q  A(r) dr dr 

The funct ion (x, r) -+ [Mr/] (x) satisfies 

AM, l = A , ( M V )  

([8], p, 279 or [6]). Using Prop.  5,6, we have  

(4) 
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~* 0 ( 0 < r < L )  (5) Ar = ~ + )l(p cot (2r) + 2q cot (2 ~r)) ~rr 

(compare also [7], p. 302). Now (iii) can be proved on the basis of (3) (4) (5) by  the method  

in [8], p. 285, where the case Pn(R) (n odd) is settled. The case X = S n being tr ivial  we shall 

indicate the details for X =P~(C), P ' (H)  and P18(Cay). 

L EMMA 6.2. Let X =P~(C), /E C~176 I / m  is an even integer, 0 <~ m <~ n -  4 then 

(A - 22(n - m - 2) (m + 2)) f :  sinm(~r) sin (2~r) [Mr[] (x) dr 

= - ~2(n - m - 2) m f :  sin m-2(2r) sin (22r) [Mr/] (x) dr. 

For m =0 the right.hand side should be replaced by 

- 2 ~ ( n - 2 ) / ( x ) .  

LEI~MA 6.3. Let X=Pn(H) ,  /EC~(X).  Let m be an even integer, O<m<~n-8 .  Then 

(A - ~2(n - m - 4) (m + 6)) f :  sin~(~r) sin ~ (2~r) [Mr/] (x) dr 

-- - $2(n - m - 4) (m + 2) f :  sinm-2(2r) sin 3 (22r) [Mr/] (x) dr. 

Also 

(A - 4 2~(n - 4)) (A - 4 22 (n - 2)) f :  sin 3 (22r) [Mr/] (x) dr = 16 2a(n - 2) (n - 4)/(x).  

L~MMA 6.4. Let X =P16(Cay),/EC~c(X). Let m > l  be an integer. Then 

f, (A--  4 ~ m ( l l  - m ) )  sinm (2~r) [Mr/] (x)dr 

= - 322~(m - 1) f :  sin~-2 (22r)cos ~ (~r) [Mr/] (x) 

+ 4)~(m - 1) (m - 7) f : s inm-2(22r)  [Mr/] (x) dr; 

(A - 4 ~2(m + 1) (10 - m) ) f :  sin m (2~r) cos ~ (~r) [Mr[] (x) dr 

-- 4 ~2(3 m - 5) f :  sin m (22r) [Mr]] (x) dr 

+ 4 ~2(m-  1) ( m -  15) f :  sin m-2 (22r) cos ~ (2r) [Mr/] (x)dr.  
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Iteration of these lemmas gives part  (iii) of Theorem 6.1 where the polynomial P(A) 

has degree equal to one half the dimension of the antipodal manifold and is a constant 

multiple of 

1 (the identity), X = S ~ 

( h - ~ ( n -  2) 1) (A-~(n-4)  3)... (h-~l(n- 2)), X =Pn(R) 
(A - ~ ( n  - 2) 2) (A --r(n --4)3)... (A - r 2 ( n  - 2)), X = Pn(C) 

[(A - u ( n -  2) 4) (A - u ( n -  4) 6) .... (A - u 8 ( n -  6))] [(a - u 4 ( n -  4)) ( A - u 4 ( n -  2))], X =P'~(It) 

(A - 112u)2(A - 120u) ~, X =P16(Cay). 

In each case u = (:~]2L) 2. 

Finally, we prove part  (if). From (1) and (2) we derive 

MLML/=C-2(f) v 

so, if X is not an even-dimensional projective space, / is a constant multiple of MLp(A)M L/ 

which shows that  ] - + f  is one-to-one and onto. For the even-dimensional projective space 

a formula relating / and (f)v is given by Semyanistyi [20]. In  particular, the mapping 

/-->~ is one-to-one. To see that  it is onto, let (~n) be the eigeniunctions of A. Then each 

~0 n is an eigenfunction of M L ([10], Theorem 7.2, Ch. X). Since the eigenvalue is 4= 0 by the 

above it is clear that  no measure on X can annihilate all of ML(C~176 This finishes the 

proof of Theorem 6.1. 

Added in proo/. Theorem 6.1 shows that  f = constant implies [ = constant. For Pn(R) 

we thus obtain a (probably known) corollary. 

Corollary. Let  B be an open set in R ~+1, symmetric and starshaped with respect to 0, 

bounded by a hypersurface. Assume area (B n P) = constant for all hyperplanes P through 

0. Then B is an open ball. 

w 7. Differential operators on the space of p-planes 

Let p and n be two integers such that  0 ~< p < n. A p.plane E r in R n is by definition a 

translate of a p-dimensional vector subspaee of R n. The 0-planes are just the points of 

R n. The p-planes in R n form a manifold G(p, n) on which the group M(n) of all isometries 

of R ~ acts transitively. Let  0 (k) denote the orthogonal group in R ~ and let Gr, ~ denote the 

manifold 0(n)/0(p)•  0 ( n - p )  of p-dimensional subspaces of R ~. The manifold G(p, n) is 

a fibre bundle with base space Gp. ~, the projection ~ of G(p, n) onto Gr, ~ being the mapping 

which to any p-plane E~ e G(p, n) associates the parallel p-plane through the origin. Thus 
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the fibre of this bundle (G(p, n), Gp.,, g) is R "-~. If F denotes an arbitrary fibre and 

[EC~(G(p, n)) then the restriction of [ to F will be denoted [] F. Consider now the linear 

transformation [~p of C~(G(p, n)) given by 

( [ 2 j ) J ~ = A ~ ( I J F ) ,  ]EC~(G(p, n)), 

for each fibre F,  Ay denoting the Laplacian on F. I t  is clear that  ~p  is a differential opera- 

tor on G(p, n). For  simplicity we usually write [ ]  instead of [~ .  

LEI~A 7.1. 

(i) The operator E], is invariant under the action o/M(n) on G(p, n). 

(ii) Each di]]erential operator on G(p, n) which is invariant under M(n) is a polynomial 

in [:]~. 

Proo]. We recall that  if ~ is an isometry of a Riemannian manifold M 1 onto a Rie- 

mannian manifold M 2 and if At, A 2 are the corresponding Laplaee-Beltrami operators 

then (cf. [10], p. 387) 
(At F-')= A2t, /EC~(M~). (1) 

hTow each isometry gEM(n) induces a fibre-preserving diffeomorphism of G(p, n), pre- 

serving the metric on the fibres. Let  /E C~(G(p, n)) and F any fibre. Writing for simplicity 

[]  instead of ~ we get from (1) 

( [ ]g l )  IF = (E] 1~ g I ~ = ( ( [ ]  1~-') [ g -1 .  F)a = ( A - l ,  (lg-' [ g - 1 F ) )  ~ = A~ (11 F)  = ( [ ]1)  [ ~, 

so [:Jg= [~, proving (i). 

Let  E~ be a fixed p-plane in R n, say the one spanned by the p first unit coordinate 

vectors, Z 1 ..... Zp. The subgroup of M(n) which leaves E~ invariant can be identified with 

the product group M(p)x O(n-p) .  For simplicity we put  G=M(n), H = M ( p ) x  O(n-p)  

and let (~ and [} denote the corresponding Lie algebras. If ~J~ is any subspaee of (~ such that  

(~ = ~ + ~ (direct sum) and AdG(h)~J~ c ~)~ for each h E H then we know from [8] Theorem 10 

that  the G-invariant differential operators on the space G[H = G(p, n) are directly given by 

the polynomials on ~J~ which are invariant under the group Ado(H). Let  o(]c) denote the Lie 

algebra of 0(k). Then (~ is the vector space direct sum of o(n) and the abelian Lie algebra 

RL Also if TEo(n), X E R  n then the bracket [T, X] in (~ is [T, X J = T . X  (the image of X 

under the linear transformation T). The Lie algebra ~ is the vector space direct sum of 

o(p), o(n-p)  and R~( = E~); we write this in matrix-vector form 

For ~ we choose the subspace 



T H E  R A D O N  T R A N S F O R M  O N  E U C L I D E A N  S P A C E S  175 

0 = { ( - ! X  X O ) + ( O ~ ] X a n y p •  
\ Z ]  [its transpose, Z E R "-n *X}. 

Then it is clear tha t  {~ = ~ + ~ ,  Let  a E 0 (LO), b E 0 (n - p), V E E~. Then 

o) (o  :,)+(o o)(o) 
: ( o  a y) 

[( . ~ 
I t  follows immediately tha t  Ada(h)~J~c~J~ for all h E H .  Now let as usual Etj denote the 

matr ix  ((~al(~bj)l<~a, b<~n, p u t  X it = E i p + t  - Ep+tt (1 < i < p, 1 ~< i < n - p) and let Zk (p + 1 ~< k ~< n) 

denote the kth coordinate vector in R ". Then {X,j, Z~} is a basis of ~0R. Any element q in 

the symmetric algebra S ( ~ )  over ~ can be written as a finite sum 

i 

where the r~ and s~ are polynomials. Suppose q is homogeneous of degree m (say) and in- 

variant  under Ado (H). From (2) and (3) for X = 0  we see tha t  a polynomial in Z ~ t  . . . .  , Zn 

is invariant  under Ado (H)i f  and only if it is a polynomial in ]ZI~ =Zg+t + ... +Z~. Hence 

the invariant  polynomial q can be written 

[�89 m3 
q =  ~ {z [~%(xt~  . . . . .  xn~_~) ,  (4) 

r = 0  

where q~ is homogeneous of degree m - 2 r .  Now, by  (3), g is invariant  under the substitu- 

t ion T(v): X o .--->X~j+v~Zn+.j (v 1 . . . .  , vp being any real numbers, and 1 ~<i <~p, 1 ~<j <~n-p) .  

We can write 

qT( X n + vt Z~,+ ~ . . . . .  X~,~_p + % Z , )  = ~ a~.8 ...... s~, | v~l .. .  v ~,", 
(s) 

where | denotes the tensor product (over R) of the polynomial rings R[X n ... . .  Z~] and 

R[v t . . . . .  vp]. Using (4) and the invarianee of q we obtain 

~: I z [ ~ , ~  ...... + |  . . .  + -  vp - -  ~ a r ,  o . . . . .  o .  
r ,  (s) r 

I t  follows tha t  ~]ZI2rar.s  ...... sp=O if s l + . . . + s p > 0  , (5) 
r 

and since at, s ....... p has degree s t +. . .  + % in the Z, (5) implies aT. s ...... sp = 0 for sl +. . .  + s~ > 0, 

whence each qr is invariant under the substitution T(v)  above. This implies easily tha t  each 
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qr is a constant. Thus the elements qES(~)~) invariant under Ada(H ) are the polynomials 

in IZI ~. By [8], Theorem 10, the polynomial IZI ~ induces a G-invariant differential operator 

D on G/H such that  for each/EC'~(G/H), 

0,) } 
[Vt] (~;)= Ot~--~+ + ... + ~  l((tr+~Zr§ +t~Z~).E;) ~-o" (6) 

Thus [D/J(E~) = [E]f](E~) and since D and []  are both G-invariant, D = [].  Now (ii) follows 

from [8], Cor. p. 269. 

w 8. p-planes and q-planes ha p~+q+l 

The notation being as in the preceeding section put  q = n - p - 1 .  Let  G*(p, n) and 

G*(q, n), respectively, denote the sets of p-planes and q-planes in R" not passing through 

the origin. The projective duality between points and hyperplanes in R n, realized by the 

polarity with respect to the unit sphere S n-1 generalizes to a duality between G*(p, n) 

and G*(q, n). In fact, if a =~0 in R n, let E,,_l(a ) denote the polar hyperplane. If  a runs 

through a p-plane E r E G*(p, n) then the hyperplanes E,~_l(a ) intersect in a unique q-plane 

EqEG*(q, n) and the mapping Er-->E q is the stated duality. 

We have now an example of the framework in w 1. Let  X=G(p, n), put  G-=M(n), 
acting on X. Given a q-plane Eq consider the family ~ =~(Eq) Of p-planes intersecting Eq. 

t t  f t t  

I f  E~ 4=Eq then ~(Eq):~=~(Eq ); thus the set of all families ~-- the dual space ~ - - e a n  be 

identified with G(q, n). In accordance with this identification, if Er =xEX then :~=~(Er) 
is the set of q-planes intersecting x. Because of convergence difficulties we do not define 

the measures Ft and ~ (w 1) directly but if / is any function on G(p, n) we put  

f(E,)=f~,(fa,~/(Er)d(rr(Er))dluq(a), 

whenever these integrals exist. Here d~ r is the invariant measure on the Grassmann mani- 

fold of p-planes through a with total measure 1, d, aq is the Euclidean measure on Eq. 

The transform g-->~ is defined by interchanging p and q in the definition of t. I t  is con- 

venient to consider the operators M r and Lq defined by  

[Mr/] (a) = ( /(Er)dar(Er), /EC~(G(p,n)) (1) ja EEp 

[Lq.F] (Eq) =rE F(a) dlxq(a)' F E S  (R"). (2) 
q 

Then we have, formally, ]=LqMr/. 
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for g6G. Then (cf. [10], p. 392, equation (16)) 

[A _P] (g)= ~ +  ... +~-~ _~(g exp (tl Z~+ ... +t~ z~)) ~-o 

= N +  , . . + ~  f ( g . ( t l Z i +  ... +t~ z~)) ,-o 

= [AF o-'] (o) = [AF] (~,. o) 
by (1) w 7, that  is 

h~=(AF), Fe C~ 

Since 

and (A)~(~> = z~ it follows from (3) that  

SO 

(3) 

(A My t)" = L (At*)R(k)dk 

= + ~ (l*(glc exp (t 1Z 1 + . . .  + t~ Zn))) ,_odk [A Myl] (g" O) ~+"" ~t~ 

= f K { ( ~ - ~  ~176176 ~n) '(']r exp (~p+l Zp+l'JJ- """~'nZn)" E~ }t_od]~" 

LEM~A 8.1. 

(i) 3/y maps C~176 n)) into C~176 n) and My[:]y=AMy. 
(ii) Lq maps S(RD into C~~ n)) and LqA = D~L~. 

Proo[. (i) Put  K = 0 ( n ) c M ( n ) = G .  For/6C~176 n)) let/*6C~176 be determined by 

/*(g) =/(g. E~), (g 6 G). Then for a suitably normalized Haar measure dk on K we have 

f/*(gk) [My/] (g. 0), d~ 

which shows that  My/6C~(R~). 

:For each X EH, let X denote the left invariant vector field on G satisfying Xe=X.  

Since Rn= H we can consider the left invariant differential operator/~ = ~=IZ~ on G. 

If k EK, Ada(k) leaves the subspace R n c H  and the polynomial ~=IZ~ invariant. Hence, 

if R(k) denotes the right translation g--->elr on G, 

~ = I  I = I  I - I  

so/~ is invariant under R(k). If  FfiC~176 ~) let PfiC~~ be determined by _P(g) =F(g.0)  
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This shows tha t  

[A M, / ]  (g. 0 ) =  ~K [[~"/] (gk" E~) dk= J'K ([~'/)* (gIc) dk=[M,  [],/] (g" O) 

proving (i). For (ii) let Vq denote the q-plane through 0, parallel to Eq, and let X 1 . . . .  , Xq, 

.., X~ be an orthogonal basis of R ~ such tha t  Xt E Vq (1 ~<i ~<q). The orthogonal projection 

of 0 onto Eq has the form sq+lXq+ 1 +... +snX . and 

[Lq ~] (Eq) = ~.~(t 1X 1 + . . .  + tq Xq +. . .  + 8 n Xn) dt~ ... dtq 

SO 
{0, 0, } 

[E]qLqF](E~)= ~q+~---~--+ ... + ~ (L,F((tq+IX~+~ + ... +t~X,) .E,))  t~o 

since ~2F/~t~ (1 <,i<q) gives no contribution. This proves (ii). 

Let  $*(R') be as in w 4 and let i v . ,  be the subspace L,($*(R')) of C~(G(p, n)). 

THV.OB~.M 8.2. Suppose n odd. The trans/orm /--> ] is a linear one-to-one mapping o/ 

s n)) onto s n)) such that 

([:]~)~(~-~)(1)~ = c/, l t s  

where c is a constant 40,  independent o// .  

Proof. Let r= (x~+ . . .  +x~) 1/~ and 2 a complex number  whose real part  Re 2 is > - n .  

Then the function r ~ is a tempered distribution on R n and so is its Fourier transform, say 

Ra. I f  ~ E $(R n) the convolution Ra ~-~ is a tempered distribution ([18], I I ,  p. 102) whose 

Fourier transform is the product of the Fourier transforms of ~ and Ra. I f  ~ E $*(R n) then 

this product lies in $o(R n) so the operator Aa: q-->Ra ~-~0 maps the space $*(R n) into itself. 

Also if 2, F are complex numbers such tha t  Re ),  Re ~u and Re(2+F)  all are > - n  then 

Aa+, =AaA~. In  particular, (A2q)" =(2~)"r2~ = -(2~)"(A~)" so 

As = - (2~)"A, A o = I .  
We shall now verify tha t  

MaLaF=~aR-a~eF, FfiS(Rn),  O<~d<n, (4) 

where d is an integer and 7a is a constant ~= 0. For this let dwk be the surface element of the 

unit sphere in R k and put  ~k =~doJk. Let gEG and x =g.O. I f  d = 0 ,  (4) is obvious so assume 

0 <d<n. Then for a fixed d-plane Ea through 0 
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=f:~r~-ldr{~-f,,,=lF(x+ry)dc~ 
and since R_~ is a cons tant  mult iple  of r ~-~ ([18], I I ,  p.  113) (4) follows. As an 

immed ia t e  consequence of (4) we have  

A~M~L~q~=MdL~A~=r~  ~, tFeS*(R ' ) ,  ( 0 ~ < d < n ) .  (5) 

Now let  / es  Then  / = L ~  for ~ e $ * ( R  ~) and  ]=LqM~/=LqM~L~q~es since 

M,L~q~ e S*(R~). I f  ] = 0  then  0 = M J = M ~ L q M ,  Lp~ = A _ q _ ~  so / = 0 .  Similarly,  if F e s 

then  F=Lqdp for ~Pe$*(R n) and  by  (5), F=LqM~L~q~ for ~ e S * ( R  ~) so F = ( L ~ )  ^. This  

shows t h a t  / - > ]  is an  isomorphism of s onto s Also, b y  L e m m a  8.1, 

( [Z] f l )"  = LqM~,D,,/ = LqA M f l  = [5]qLqM f l  = ~ J .  

Since p +q = n - 1  is even we have  

AvAq = (A2) �89 = (( -- 2 ~7~)n) �89 A �89 = c n A �89 

the last  equat ion defining cn. Le t  / E F-v. ~, / =L~o,  ~o ~ $*(Rn). Then,  using L e m m a  8.1, and (5) 

(])" =L~Mq]=L,,MqLqM,,L,,cp, 

(~,)�89 ~ = L~, A i(n-~)iq t = c;XL~, A,, A ,  i ,  L,  M,, L,, c~ 

= C n  1 ~qL~ApM~Lpq~ = c~ ~ ~ q ~ , L ~  = c n l ~ p ~ / q f .  
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