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§ 1. Introduction

As proved by Radon [16] and John [13], a differentiable function f of compact support
on a Euclidean space R* can be determined explicitly by means of its integrals over the
hyperplanes in the space. Let J(w,p) denote the integral of f over the hyperplane
{x, w)=p where ® is a unit vector and {,> the inner product in R*. If A denotes the La-
placian on R”, dw the area element on the unit sphere 8* ' then (John [14], p. 13)

f(x) =% (2mi)t " (Az)*("—”J‘ J(o, {0, 2))dw, (n odd); (1)
gn—t
N A n— *  dJ(w,p)
f(x) = (27i) " (A 2 fsn_‘de‘—w p_—~_ (0,25 (n even), (2)

where, in the last formula, the Cauchy principal value is taken.

Considering now the simpler formula (1) we observe that it contains two dual integra-
tions: the first over the set of points in a given hyperplane, the second over the set of
hyperplanes passing through a given point. Generalizing this situation we consider the

following setup:

(i) Let X be a manifold and G a transitive Lie transformation group of X. Let E be
a family of subsets of X permuted transitively by the action of ¢ on X, whence E acquires
a (-invariant differentiable structure. Here E will be called the dual space of X.

(ii) Given z€X, let & denote the set of £ € £ passing through z. It is assumed that each
& and each & carry measures 4 and », respectively, such that the action of ¢ on X and &

permutes the measures u and permutes the measures v.

(1) Work supported in part by the National Science Foundation, NSF GP 2600, U.S.A.
11 — 652923. Acta mathematica. 113. Imprimé le 11 mai 1965.



154 S. HELGASON

(iiiy If f and g are suitably restricted functions on X and Z, respectively, we can

define functions f on E, § on X by
ftey = f J@du@, @)= f L 9(E) dr ).

These three assumptions have not been made completely specific because they are not
intended as axioms for a general theory but rather as framework for special examples.

In this spirit we shall consider the following problems.

A. Relate function spaces on X and = by means of the transforms f—f and g—§.

B. Let D(X) and D(E), respectively, denote the algebras of G-invariant differential
operators on X and Z. Does there exist a map D—D of D(X) into D(E) and a map E —E of
D(ZE) into D(X) such that

(Df)~=Df, (Bg)” =E§
for all f and g above?

C. In case the transforms f—>f and g— § are one-to-one find explicit inversion formulas.
In particular, ﬂnd the relationships between f and (f)” and between g and (§)".

In this article we consider three examples within this framework: (1) The already
mentioned example of points and hyperplanes (§ 2-§ 4); (2) points and antipodal manifolds
in compact two-point homogeneous spaces (§ 5§ 6); p-planes and g-planes in R?*9*! (§7-
§ 8). Other examples are discussed in [11] which also contains a bibliography on the Radon
transform and its generalizations. See also [5].

The following notation will be used throughout. The set of integers, real and complex
numbers, respectively, is denoted by Z, R and C. If z€R", |z| denotes the length of the
vector z; A denotes the Laplacian on R". If M is a manifold, C*(M) (respectively D(M))
denotes the space of differentiable functions (respectively, differentiable functions with
compact support) on M. If L(M) is a space of functions on M, D and endomorphism of
L(M) and p€ M, fEL(M) then [ Df](p) (and sometimes D,(f(p))) denotes the value of Df at
p. The tangent space to M at p is denoted M,. If T is a diffeomorphism of a manifold M
onto a manifold N and if f€C®(M) then f* stands for the function for-! in C®(N). If D
is a differential operator on M then the linear transformation of C®(N) given by D"
f—>(Df'_l)’ is a differential operator on N. For M=N , D is called invariant under 7 if
D*=D.

The adjoint representation of a Lie group @ (respectively, Lie algebra &) will be denoted

Ady, (respectively adg). These subscripts are omitted when no confusion is likely.
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§ 2. The Radon transform in Euclidean space

Let R” be a Euclidean space of arbitrary dimension » and let E denote the manifold
of hyperplanes in R”.
If f is a function on R", integrable on each hyperplane in R”, the Radon transform of f

is the function f on Z given by
fo= | fodow), ez, | m

where do is the Euclidean measure on the hyperplane &, In this section we shall prove the
following result which shows, roughly speaking, that f has compact support if and only if
f does.

TEEOREM 2.1. Let f€C(R") satisfy the following conditions:

(i) For each integer k>0 |x|*f(x) is bounded.
(ii) There exists a constant A >0 such that f(&)=0 for d(0,&)> A, d denoting distance.

Then fle)=0 for |x|>A.

Proof. Suppose first that f is a radial function. Then there exists an even function
FeC>(R) such that f(x)=F(|z|) for xER". Also there exists an even function F€C*(R)
such that F(d(0,£)) =f(&). Because of (1) we find easily

~

P(p)= fRn_lF«p”Iylz)*)dy=9n_1 |, Fewr+eye-ca @)

where Q,_, is the area of the unit sphere in R"-1. Here we substitute s = (p? +2)-* and then
put w=p~'. Formula (2) then becomes
U

urBPu N =Q, | (F(s7Y) s ") (u?— s Vs, (3)

0

This formula can be inverted (see e.g. John [14], p. 83) and we obtain

where ¢ is a constant. Now by (ii), F(u1) =0 for 0 <u < 4-! so by (4), F(s~1) =0 for
0<s<A-1, proving the theorem for the case when f is radial.
Now suppose fEC”(R") arbitrary, satisfying (i) and (ii). Let K denote the orthogonal

group O(n). For «,y €ER" we consider the spherical average
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Fley) = Lf(x+ k-y)dk,

where dk is the Haar measure on 0(n), with total measure 1. Let R,f* be the Radon trans-
form of f*in the second variable. Since (f)” = (f)* for each rigid motion 7 of R" it is clear that

[sz*](x,§)=f f@+k-&dk, z€R" E€E, (5)
K
where x +k-& is the translate of k-& by x. Now it is clear that the distance d satisfies the
inequality

d(0, z+k-£)>d(0, &) — |z|
for all z€R", k€K. Hence we conclude from (5)

[B,f*](x, £)=0 if d(0,&)>A+|x]|. (6)

For a fixed «, the function y —f*(x, y) is a radial function in C®(R") satisfying (i). Since the

theorem is proved for radial functions, (6) implies that
J fw+k-g)dk=0 if |y|>A4+|a].
K

The theorem is now a consequence of the following lemma.

LemMa 2.2. Let f be a function in C(R") such that |x|*f(x) is bounded on R™ for each
integer k> 0. Suppose | has surface integral O over every sphere which encloses the unit sphere.
Then f(x)=0 for |x|>1.

Proof. The assumption about f means that

f fx+Lw)do=0 for L>|z|+1. (7)
$n—t

This implies that f fe+ty)dy=0 for L>|z|+1. (8)
lyi>L
Now fix L>1. Then (8) shows that

f flx+y)dy
lvi<L

is constant for 0<|z|<L—1. The identity
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fs f(z+ Lo) (z;+ Lw,;) dw = z; f f(x+ Lo)dw + L>™ 2 f flx+y)dy
n—t lyl<L

§n—1 ox;

then shows that the function x;f(x) has surface integral 0 over each sphere with radius L
and center z (0< |¢| <L—1). In other words, we can pass from f(x) to z,f(z) in the identity
(7). By iteration, we find that on the sphere |y| =L(L>1) f(y) is orthogonal to all poly-
nomials, hence f(y) =0 for |y| =L. This concludes the proof.

Remark. The proof of this lemma was suggested by John’s solution of the problem
of determining a function on R" by means of its surface integrals over all spheres of radius
1 (John [14], p. 114).

§ 3. Rapidly decreasing functions on a complete Riemannian manifold

Let M be a connected, complete Riemannian manifold, M its universal covering
manifold with the Riemannian structure induced by that of M, M =M, %.. x M, the
de Rham decomposition of M into irreducible factors ([17]) and let M i=n(M ) (A<i<))
where 7 is the covering mapping of M onto M. Let A, A, A;, A, denote the Laplace-Beltrami
operators on M, M, M i M i, respectively. It is clear that A; can be regarded as a differ-
ential operator on M. In order to consider A, as a differential operator on M, let f € (M),
f=fom. Any covering transformation 7 of M is an isometry so (A,-(fon))’=[k,-(fon); hence
Aform)=Fom, where F€C®(M). We define A,f=F. Because of the decomposition of
M each m€M has a coordinate neighborhood which is a product of coordinate neighbor-
hoods in the spaces M,. In terms of these coordinates, A=>,A;; in particular A, is a dif-
ferential operator on M, and the operators A, (1 < <l) commute.

Now fix a point 0 €M and let 7(p) =d(0, p). A function f€C®(M) will be called rapidly
decreasing if for each polynomial P(A,, ..., A)) in the operators A,, ..., A; and each integer

k=0
sgp | (X + (@) TP(A,, ..., Afl(p)] < oo (1)

It is clear that condition (1) is independent of the choice of 0. Let S(M) denote the set of
rapidly decreasing functions on M.

In the case of a Euclidean space a function f€C0=(R") belongs to S(R™) if and only if
for each polynomial P in n variables the function P(D%, ..., D2)f (where D,=0[ox,) goes
to zero for |x|->oco faster than any power of |x|. Then the same holds for the function
P(D,, ..., D,)f (so $(R") coincides with the space defined by Schwartz [18], II, p. 89) as a
consequence of the following lemma which will be useful later.
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Lemua 3.1, Let f be a function in C2(R™), which for each pair of integers k, 1220 satisfies

sup | (1+| =) [A'f] (=)] < eo. @)

Then the inequality is satisfied when A is replaced by an arbitrary differential operator with
constant coefficients.

This lemma is easily proved by using Fourier transforms.

LemMA 3.2. 4 function FEC®R X 8" 1) lies in SR x8"7Y) if and only if for arbitrary
integers k, 1 >0 and any differential operator D on S"7%,

sup (l+]r|)"iii, (DF) (w,7)| < oo. (3)
weSn—1, reR dr

Proof. It is obvious that (3) implies that F is rapidly decreasing. For the converse we
must prove (S"! being irreducible) that (3) holds provided it holds when {>0 is even and
D an arbitrary power (Ag)™ (m >0) of the Laplacian Agon 8" 1. Let Q(w, r)=d'[dr'(F(w,r)).
Of course it suffices to verify (3) as w = (w, ..., ®,) varies in some coordinate neighborhood
on 8", Let z;= |x|w, (1 <¢<n) and suppose @ extended to a C* function @ in the product
of an annulus 4,: {x€R"| |2} +...+2% —1| <e<1} with R. Regardless how this extension

is made, (3) would follow (for even l) if we can prove an estimate of the form

sup |1 +][r|)[D" Gl (w, )| < o0 (4)

weSn—1, reR
for an arbitrary derivative D¥=0o"joa} .02 (|y|=yy+...+¥.). Now, by Sobolev’s
lemma (see e.g. [3], Theorem 6’, p. 243) [D?”G](w, r) can be estimated by means of L?
norms over A4, of finitely many derivatives D3 D% (G(z, r)). But the L2 norm over 4, of
Dz DY (G(z, r)) is estimated by the L? norm over 4, of A™(G(x, 1)), m being a suitable integer
(see[12], p. 178-188). Now suppose G was chosen such that for each r, the function z—G(z,r)

is constant on each radius from 0. Then
MG, )= |z|2[AsGl (@, ) (z=|z]w)

and AT G (x, 1) = SHlle 1) [(As)@ (@, 1),

where the sum is finite and each £, is bounded for ||| —1| <e. Hence the L? norm over
A, of (A™),(G(z,r)) is estimated by a linear combination of the L? norms over 8"t of

[(As)'G](w, r). But these last derivatives satisfy (3), by assumption, so we have proved (4).
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This proves (3) for I even. Let H(w, s) be the Fourier transform (with respect to r) of the
function (DF)(w, r). Then one proves by induction on £ that

k
aup |1+ s))! L Hiw,8)| < oo

weSn—1, seR

for all &, 1>0 and now (3) follows for all &, 1>0 by use of the inverse Fourier transform.

§ 4. The Radon transforms of § (R") and D (R")

If w€S" !, rER let &(w, 7) denote the hyperplane (x, w) =r in R". Then the mapping
(w, r) = E(w, 1) is a two-fold covering map of the manifold 8§ ! x R onto the manifold E of
all hyperplanes in R"; the (differentiable) functions on E will be identified with the (dif-
ferentiable) functions F on 8"°! x R which satisfy F(w, r)=F(—w, —r). Thus $(E) is, by
definition, a subspace of $(8"7!xR). We also need the linear space Sy(E) of functions
F € §(E) which have the property that for each integer k>0 the integral | F(w, r)r*dr can
be written as a homogeneous kth degree polynomial in the components w, ..., w, of w.
Such a polynomial can, since w?+...+w%=1, also be written as a (k-+2l)th degree poly-
nomial in the w;.

We shall now consider the situation outlined in the introduction for X =R,, E as
above and @ the group of rigid motions of X. If x€ X, £€ E, the measure x is the Euclidean
measure do on the hyperplane &, » is the unique measure on £ invariant under all rotations
around x, normalized by »(£) =1. We shall now consider problems 4, B, C from §1. If {
is a function on X, integrable along each hyperplane in X then according to the conventions
above '

f(w,r)=f flx)do(X), w€S8"', reR. - ()
{z,w)=T

TaeorEM 4.1. The Radon transform f—>f is a linear one-to-one mapping of $(X)
onto Sy(E).

Proof. Let f€ §(X) and let f denote the Fourier transform
f(u)= ff(x) e Wdy ueR".

If u+0 put u=sw, where s€ER and w€8"'. Then

f(sw) = JW drf fx) e 1522 do(x)
—o00 {z,w>=r
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so we obtain f(sw) =f f(w, r) e ' dr, (2)

for s+0 in R, w €8" 1. But (2) is obvious for s =0 so it holds for all s€R. Now according to
Schwartz [18], II, p. 105, the Fourier transform f — f maps S(R") onto itself. Since

d n
7s (fsw)) =Zl o; :—L (= (uy, ..., %))

it follows from (2) that for each fixed w, the function r — f(w, r) lies in S(R). For each
0o €8"7Y, a subset of {w,, ..., w,} will serve as local coordinates on a neighborhood of
w,. To see that f€ §(2), it therefore suffices to verify (3) § 3 for F=f on an open subset N
of 8""! where w, is bounded away from 0 and w,, ..., w,_, serve as coordinates, in terms of
which D is expressed. Putting R* = {s€R|s>0} we have on N xR*

Uy =8y, +vny Up—1=8Wn-1, Un=8(1—w}—...—wi_,)}, 3)
0 19 0
s0 S0, (flsw))=s igl 5@%—- sw(l —wi—...— 0l )} a—ufn

It follows that if D is any differential operator on 8"~ and k, ! integers > 0 then

(1+ %) [;; Df] (@,8) | < oo. (4)

sup
weN,seR

We can therefore apply D under the integral sign in the inversion formula

f(w,r)=§%; f_m f(sw) e ds (5)

and obtain
2k

d d )
(L+7) = (Dulf(@, 7)) = % f(l +(- 1 d?k) ((48)!Da(f(s))) €7 ds.
Now (4) shows that f€ §(Z). Finally, if & is an integer >0 then
foo fw, r)dr = fm r*dr f f(x) do(z) =J;{ f(x) (z, wd*dx (6)
- — (T, w)=r "

$0 f€ $;(E). The Fourier transform being one-to-one it remains to prove that each g€ $4(E)
has the form g =f for some f€ §(R*). We put

G(s, w) =f g(w, r) e dr.

— 00
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Then G(—s, —w)=G(s, ) and G(0, w) is a homogeneous polynomial of degree 0 in w,

hence independent of w. Hence there exists a function ¥ on R” such that

F(sw) = f glw,r) e "dr, sER,w€S™ L. (7
1t is clear that F is C* in R"—{0}. To prove that F is C* in a neighborhood of 0 we con-
sider the coordinate neighborhood N on 8" ! as before. Let A(u;, ..., 4,) be any function of
class C* in R*—{0} and let h*(w,, ..., wn_1, ) be the function on N xR+ obtained by

means of the substitution (3). Then

ah " o, OB as

T2 a<i<
aui j=1 aa)] 3u,— 38 au,- ( ¢ n)
0 1 ; . ,
and E%:;(aﬁ_usgh) (1<i<n, 1<j<n—-1),
os 08
Z e (1<i<n—1), —=(1—w?—...—wi )L
s O (1<i<n-—1) pos (1-owi @Wn-1)

oh 1on* or* 1! on*
Hence .—-“————+w, (a—s—;jzzl wja—wj

oh oh* 17 dap*
O l—wim . —whg)t (== ).
oy, ( “1 @n-1) (as s,gl @ aw,)

) (1<i<n—1),

In order to use these formulas for A=F we write
F(sw) =f g(w, r)dr + f g(r, w) (e ~1)dr
and by assumption, the first integral is independent of w. Thus, for a constant K >0,

1 o 11 ,- 7]
< 4H—1,-1 isr < .
35 i(F(sw))l Kf(l-i—r) s e 1|dr Kfl r4dr

This shows that all the derivatives 0F/ou; (1 <i<n) are bounded in a punctured ball
0<]|u|<e so F is continuous in a neighborhood of #=0. More generally, let ¢ be any

integer >0. Then we have for an arbitrary ¢qth order derivative,

&h &n*
S A,
6uil ves 3uiq i+§<q b (w 8) 8wkl ves 3wk‘ aSj

(8)

where the coefficient A4; ;(w,s)=0(s'"%) near s=0. Also
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Fsw) = f g S (_”’)kd + f " gl ) ey —irs) dr, )
- k=0 o0
q q+1
where _ e () = (q+ 1)'

Then it is clear that the first integral in (9) is a polynomial in u,, ..., u, of degree <g—1
and is therefore annihilated by the differential operator (8). Now, if 0<j<gq,

o 6%’ (oo —irs)) [ = [ (= ir)%(—irs) = eqs (—irs) | < K; 1%, (10)

where K; is a constant, because the function ¢—>(it)~"e,(it) is obviously bounded on R
(p>0). Since g€ §(E) it follows from (8), (9), (10) that each gth order derivative of ¥ with
respect t0 uy, ..., 4, is bounded in a punctured ball 0< |u| <e. Hence F€C*(R"). That F
is rapidly decreasing is now clear from formula (7), Lemma 3.1 and the fact that ([8],

p. 278)
21 % _ ht 1
i +2 1 a_+ 5 Ash®,

Ah= os® s o8 &

where Ay is the Laplace—Beltrami operator on §"°!. If f is the function in §(X) whose
Fourier transform is F then f=g and the theorem is proved.

Let $*(X) denote the space of all functions f€ §(X) which satisfy [f(z)P(x)dx=0
for all polynomials P(x). Similarly, let $*E) denote the space of all functions g€ §(Z)
which satisfy {g(w, 7)P(r)dr=0 for all polynomials P(r). Note that under the Fourier
transform, $*(X) corresponds to the space $,(R") of functions in §(R”) all of whose deriva-

tives vanish at the origin.

COROLLARY 4.2. The transforms f—>f and g—¢, respectively, are one-to-one linear
maps of $*(X) onto $S*(E) and of S(E) onto $*X).

The first statement follows from (6) and the well-known fact that the polynomials
{z, w)* span the space of homogeneous polynomials of degree k. As for the second, we
observe that for f€ §(X) and &, a fixed plane through 0

th~ (x>=fxf<x+k-£o)dk=fx(f§.f(x+k-y)dy) ak

f dyf flx+k-y)dk=Q,1 r” 2(1 f f(x—i—rw)dw) dr,
o 0 Qy Jsn

s0 (=)= 1 f(y) dy. (11)
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This formula is also proved in [4]. Now the right-hand side is a tempered distribution, being
the convolution of a tempered distribution and a member of §(X). By [18], I, p. 124, the
Fourier transform is given by the product of the Fourier transforms so if f€ §*(X) we see
that (f)” has Fourier transform belonging to $,(X). Hence (f)~ € $*(X) and the second state-
ment of Cor. 4.2 follows.

Remarks. A characterization of the Radon transform of $(X) similar to that of Theorem
3.1 is stated in Gelfand-Graev-Vilenkin [5], p. 35. Their proof, as outlined on p. 36-39, is
based on the inversion formula (1) § 1 and therefore leaves out the even-dimensional case.

Corollary 4.2 was stated by Semyanistyi [19].

Now let D(X) and D(E) be as defined in § 1, and put Dy(E) = $x(E) N D(E). The fol-
lowing result is an immediate consequence of Theorem 2.1 and 4.1.

COROLLARY 4.3. The Radon transform f—>f is a linear one-to-one mapping of D(X)
onto Dy(E).

Concerning problem B in §1 we have the following result which is a direct conse-

quence of Lemmas 7.1 and 8.1, proved later.
ProrositioN 4.4. The algebra D(X) is generated by the Laplacian A, the algebra
D(E) is generated by the differential operator [: g(w, r) ~> (d2/dr?*)g(w, r) and
@an~=0of. (O~ =5
for € S(X), gEC=(E).

The following reformulation of the inversion formulas (1), (2) § 1 gives an answer to
problem C.

THEOREM 4.5. (i) If n is odd,
f=cA¥"((f)7), feS(X);
g=c[T¥ ("), ge€S*(E),

where ¢ is a constant, independent of f and g.
(i1) If n is even,

f=adi((h), feS(X);
gzchz((gy)A), gES*(E),

where the operators J, and J, are given by analytic continuation

J,:f(x) > anal. cont. f Hy) |z —y|dy,
a=1-2n Rn
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gy g9(w, p) > ana}. cont. f g(w, q) IP _q|ﬂ dg,
- n R

and ¢y, ¢, are constants, independent of f and g.

Proof. In (i) the first formula is just (1) § 1 and the second follows by Prop. 4.4. We
shall now indicate how (ii) follows from (2) § 1. Since the Cauchy principal value is the
derivative of the distribution log [p| on R whose successive derivatives are the distribu-
tions Pf- (p~¥) (see [18], I, p. 43) we have by (2) § 1

f(x) = (2ni)""(n~ 1)! fs"_l (Pf+ (p— <o, 27" (f(w, p)) dov. (12)

On the other hand, if ¢ €C°(X) is bounded we have by Schwartz [18], I, p. 45

[/, ¢l (0)=1in‘1) [JI N [z 2" g(a) dx+s(<p)] , (13)
el—n+2k n*n
where ) =2 BiNe) O 7y B peirgarn
In particular ,((H71(0)=Lm [anw r " F(r)dr+e(f)”) ] (14)
e—>0 I3

where F(r) is the average of ()~ on the sphere |z] =r. In order to express (14) in terms of

f we assume f is a radial function and write f(p) for f(w, p). Then

in in
F(r)=C f f(r cos 0) sin®"20d0, C'= f sin® 20 d6, (15)
0 0

o d2k
[a /) ](O)Z(W f) (0). (16) -

If g,(p) is the Taylor series of f(p) around O up to order n—2 we get upon substituting
(15) and (16) into (14),

in %
(J2((H™) (0)=0Qs lin(l) sin” %6 cos™ 0 df 7 (f(p) — ulp)) dp,

(1] ecos
which on comparison with (12) gives
10) =, Ji((£)7) (0), ¢, =const. (17)

Now put for p€C*(X), z,y€X,
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Pily) = L @+ ky) dk

and let us prove 19310y = ((J,9)7) (0) if @ is bounded. (18)

In view of (13) this is a consequence of the obvious formula

f |y " "pi(y) dy =f Iy "2 gz + y) dy
lyI>e ly|>e

and the Darboux equation ([8], p. 279) [Afp;](0) =[A¥p](x). Now, a direct computation
shows that (/™) =((f5)")" for f € $(X) and since f* is radial we get from (17), (18)

f@) = 12(0) = ¢, (T (H N1 (0) = ¢, [,(f) "] (=)-
Finally the inversion formula for g€ $*(E) would follow from the first one if we prove
(J,H" =c,J,f, f€S*(X), c, constant. (19)

To see this we take the one-dimensional Fourier transform on both sides. The function
J,f is the convolution of a tempered distribution with a rapidly decreasing function.
Hence it is a tempered distribution (Schwartz [18], 11, pp. 102, 124) whose Fourier trans-
form is (since f€ $*(X)) a function in $(X). Hence J,/€ $(X). Similarly (J,f)(w, p) is a
rapidly decreasing function of p. Using the relation between the 1-dimensional and the
n-dimensional Fourier transform ((2) § 4) and the formula for the Fourier transform of
Pf-r* (Schwartz [18], II, p. 118) we find that both sides of (19) have the same Fourier
transform, hence coincide. This concludes the proof.

Remark (added in proof). Alternative proofs of most of the results of § 4 have been
found subsequently by D. Ludwig.

§ 5. The geometry of compact symmetric spaces of rank one

In this section and the next one we shall study problems A, B and C for the duality
between points and antipodal manifolds in compact two-point homogeneous spaces. In
the present section we derive the necessary geometric facts for symmetric spaces of rank
one, without use of classification.

Let X be a compact Riemannian globally symmetric space of rank one and dimension
>1. Let I(X) denote the group of isometries of X in the compact open topology, I4(X) the
identity component of I(X). Let o be a fixed point in X and s, the geodesic symmetry of
X with repsect to 0. Let u denote the Lie algebra of I(X) and u=£f+jp the decomposition
of 1 into eigenspaces of the involutive automorphism of a which corresponds to the auto-
morphism u—>s,us, of I(X). Here f is the Lie algebra of the subgroup K of I{X) which



166 S. HELGASON

leaves o fixed. Changing the distance function & on X by a constant factor we may, since
1 is semisimple, assume that the differential of the mapping u —u-o0 of I(X) onto X gives
an isometry of p (with the metric of the negative of the Killing form of 1) onto X, the
tangent space to X at o. Let L denote the diameter of X and if x€X let 4, denote the cor-
responding antipodal manifold, that is the set of points y€X at distance L from z; A4, is
indeed a manifold, being an orbit of K. The geodesics in X are all closed and have length
2L and the Exponential mapping Exp at o is a diffeomorphism of the open ball in X, of
center 0 and radius L onto the complement X — A4, (see [10], Ch. X, § 5).

ProrosiTiON 5.1. For each x€X, the antipodal manifold A,, with the Riemannian

structure induced by X, is a symmelric space of rank one, and a totally geodesic submani-
fold of X.

Proof. Let y€4,. Considering a geodesic in X through y and x we see that x is fixed
under the geodesic symmetry s,; hence s,(4,)=4,. If ¢, denotes the restriction of s, to
A,, then ¢, is an involutive isometry of 4, with y as isolated fixed point. Thus 4 is globally
symmetric and o, is the geodesic symmetry with respect to y. Let t —>y(t) (¢ ER) be a geodesic
in the Riemannian manifold 4,. We shall prove that y is a geodesic in X. Consider the
isometry s, 8,0y and a vector T in the tangent space X,q,. Let 7,: X, > X, denote
the parallel translation in X along the curve y(g) (0<p <r). Then the parallel field 7,- T
(0<r<t) along the curve r—>y(r) (0<r<t)is mapped by s, onto a parallel field along
the image curve r — 8, Y(r) =0, p(r) =y (2t —r) (0<r<t). Since s,4,1, T = —7, T we deduce
that 8,48, T'= —8,¢, T =7,,T. In particular, the parallel transport in X along y maps
tangent vectors to y into tangent vectors to y. Hence y is a geodesic in X. Consequently,
A, is a totally geodesic submanifold of X, and by the definition of rank, 4, has rank one.

Let Z —ad (Z) denote the adjoint representation of u. Select a vector H €} of length L.
The space a=RH is a Cartan subalgebra of the symmetric space X and we can select a
positive restricted root « of X such that }a is the only other possible positive restricted
root (see [10], Exercise 8, p. 280 where X is by definition the set of positive restricted roots).
This means that the eigenvalues of ad(H)? are 0, «(H)? and possibly ((o{H))? (x(H) is
purely imaginary). Let u=u,+1u,+u, be the corresponding decomposition of u into
eigenspaces and put f;=usN¥, ps=uzNyp for =0, «, a. Then p,=u and fz=ad H(ps)
for f+0. "

PROPOSITION 5.2. Let S denote the subgroup of K leaving the point ExpH fixed,
and let 3 denote the Lie algebra of S. Then
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(i) =%, +¥, if H is conjugate to 0,
(ii) 3=%, if H is not conjugate to 0;

(iii) If Yo is a restricted root then H is conjugate to 0.

Proof. If exp: u—I(X) is the usual exponential mapping then a vector 7 in f belongs
to 3 if and only if exp(— H) exp (tT') exp (H) €K for all t €R. This reduces to

T€3 if and only if ad H(T)+%,(ad H)XT)+...=0.

In particular, § is the sum of its intersections with f,, f, and ¥,,. If 7+ 0in ¥; (=0, «, }«)
the condition above is equivalent to sinh (8(H))=0. Thus (ii) is immediate ([10], Ch. VII,
Prop. 3.1). To prove (i) suppose H is conjugate to 0. Whether or not }« is a restricted root
we have by the cited result, «(H) € 7% so f,€3. We have also 3N ;.= {0} because otherwise
Lo(H) € 7iZ which would imply that LH is conjugate to 0. This proves (i). For (iii) suppose
H were not conjugate to 0. The sphere in X with radius 2L and center 0 is mapped by
Exp onto o. It follows that the differential d Exp,y is 0 so using the formula for this dif-
ferential ([10], page 251, formula (2)) it follows that () (2H) € niZ so a(H)€ ntZ which is a

contradiction.

ProrosiTion 5.3. Suppose H is conjugate to 0. Then all the geodesics in X with tangent
vectors in a -+, at o pass through the point Exp H. The manifold Exp (a+y,), with the Rie-
mannian structure induced by that of X, is a sphere, totally geodesic in X. '

Proof. Let & denote the complexification of 1 and B the Killing form of ®. Since the
various root subspaces &7, 8" (8-+y +0) are orthogonal with respect to B ([10], p. 141) it
follows without difficulty (cf. [10], p. 224) that

B([fo’ Yo, pﬁa) = B([f,x, ba], pba) =0.

Also, if Z€u, then B([H, Z], (H, Z]) = — B(Z, (ad H)?2Z)=0 so u, equals the centralizer of
H in u. Thus [f;, a]=0. Also [f,, a] =p,. Combining these relations we get

[3, a+ bl <a+ b,

Let S, denote the identity component of S and Ad the adjoint representation of the group
I(X). Then the tangent space to the orbit Ad{S,)H at the point H is [3, RH] which equals
Y, and by the relation above this orbit lies in the subspace a +1,. It follows that Ad{(Sy) H
is the sphere in a+p, of radius L and center 0. But if s€§ the geodesic t~>s-Exp tH =
Exp(Ad(s)tH) passes through Exp H so the first statement of the proposition is proved.
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By consideration of the root subspaces &” as above, it is easy to see that the subspace
a+p, of p is a Lie triple system. Thus the Riemannian manifold X,=Exp(a+}p,) is a
totally geodesic submanifold of X ([10], p. 189). It is homogeneous and is mapped into
itself by the geodesic symmetry s, of X, hence it is globally symmetric, and being totally
geodesic, has rank one. If Z is a unit vector in p,, the curvature of X, along the plane section
spanned by H and Z, is (cf. [10], p. 206)

—L2B([H, Z), [H, Z]) = —L2a(H)2.

But since X, has rank one, every plane section is congruent to one containing H; hence
X, has constant curvature. Finally, X, {Exp H} is the diffeomorphic image of an open-
ball, hence simply connected. Since dim X,>1 it follows that X, is also simply connected,

hence a sphere.
ProrosiTION 5.4. The antipodal manifold Ag,y,y ts given by

Arwr=Exp (b;,) ¢f H is conjugate to 0.

Agou=Exp (po) tf H is not conjugate to 0.

Proof. The geodesics from ExpH to o intersect Agy,y in 0 under a right angle (Gauss’
lemma; see e.g. [1], p. 34 or [9], Theorem 3). By Propositions 5.2 and 5.3 we deduce that
the tangent space (A gy 1), €quals Py, if H is conjugate to 0 and equals p,, if H is not conjugate
to 0. Now use Prop. 5.1.

The next result shows that there is a kind of projective duality between points and
antipodal manifolds.

ProrosITIiON 5.5. Let z,y€X. Then

(i) =y implies A,+A4,;
(ii) x€A, if and only if y€A,.

Proof. If z€4, then the geodesics which meet A4, in z under a right angle all pass
through a point 2* at distance L from z (Prop. 5.3 and Prop. 5.4); among these are the geode-

sics joining x and z. Hence 2* =2 and the result follows.

ProProsiTioN 5.6. Let A(r) denote the surface area of a sphere in X of radius r

0<r<ZL). Then
A(ry =8y 411 A7 P(2A) " Isin? (Ar)sin? (24r),

where p=dim p,,, ¢g=dimyp,, Q, is the area of the unit sphere in R™ and
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1
A= _2_—L ‘OE(H ) l
Proof. As proved in [8], p. 251, the area is given by
A(r) = det (4z) dw,(Z), (1)
naj=r

where daw, is the Euclidean surface element of the sphere ||Z|| =7 in p, and

_~_ Tz
AZ—% 2n+1)0

where 7', is the restriction of (ad Z)? to p. The integrand in (1) is a radial function so
A(/")=Qp+q+1-7‘17+q .det (AH'), (Hf=% H)_

Since the nonzero eigenvalues of T'm, are (Ja(H,))? with multiplicity p and «(H,)? with
multiplicity ¢ we obtain

in Ar\? (sin 2 A
A("‘)=Qp+a+17'p+q (Lr; 7‘) (Sln T)q.

r 2Ar
where A=1L'|«(H)|.

§ 6. Points and antipodal manifolds in two-point homogeneous spaces

Let X be a compact two-point homogeneous space, or, what is the same thing (Wang
[21]) a compact Riemannian globally symmetric space of rank one. We preserve the nota-
tion of the last section and assume dim X >1. Let = I(X) and let E be the set of all anti-
podal manifolds in X, with the differentiable structure induced by the transitive action of

G. On E we choose a Riemannian structure such that the diffeomorphism @:z—4, of X

onto E (see Prop. 5.5) is an isometry. Let A and A denote the Laplace-Beltrami operators on
X and E, respectively. The measures 4 and » on the manifolds £ and & (§ 1) are defined
to be those induced by the Riemannian structures of X and E. If € X, then by Prop. 5.6

£={p(y) |y € p(=)}.

Consequently, if g is a continuous function on E,

vep@) (26}
12 — 652923. Acta mathematica. 113. Imprimé le 10 mai 1965.

Jlx) = f g(&)dv(&) = f gl ) dv(p(y)) = f (9 09) (y) duly),
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$0 F=(gop) op. (1)

Because of this correspondence between the integral transforms f— f and g — ¢ it suffices
to consider the first.
Problems A, B, and C now have the following answer.

THEOREM 6.1.

(i) The algebras D(X) and D(E) are generated by A and A respectively.
(ii) The mapping f—f is a linear one-to-one mapping of C*(X) onto C°(E) and

(Af)~ =Af.
(iii) Except for the case when X is an even-dimensional real projective space,
f=PB)Y(H), fE0X),
where P 1s a polynomial, independent of f, explicitly given below.

Proof. Part (i) is proved in [8], p. 270. Let [M'f] (x) be the average of f over a sphere

in X of radius r and center z. Then
Hp(@)) =c[M*](x), (2)

where ¢ is a constant. Since A commutes with the operator M" ([8], Theorem 16, p. 276)

we have

(Afyop=A(fop)=cM*Af=(AH)"op,

proving the formula in (ii). For (iii) we have to use the following complete list of compact
Riemannian globally symmetric spaces of rank 1: The spheres 8§87, (n=1, 2, ...), the real
projective spaces P*(R), (n=2, 3, ...), the complex projective spaces P*(C), (n=4, 6, ...},
the quaternion projective spaces P*(H), (=8, 12, ...) and the Cayley projective plane
P'%(Cay). The superscripts denote the real dimension. The corresponding antipodal mani-
folds are also known ([2], pp. 437467, [15], pp. 35 and 52) and are in the respective cases:
A point, P*"(R), P*~%(C), P"~*(H), and S®. For the lowest dimensions, note that P1(R) =82,
P2(C) =82, PY(H)=S8*. Let A,(r) denote the area of a sphere of radius r in an antipodal
manifold in X. Then by Prop. 5.6,

A, (r)=C,sin™ (A, 7r)sin® (24, 1),

where C| is a constant and p,, ¢;, 4, are the numbers p, g, A for the antipodal manifold.
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The multiplicities p and ¢ are determined in Cartan [2], and show that la is a restricted
root unless X is a sphere or a real projective space. Ignoring these exceptions we have by
virtue of the results of § 5:

L=diameter X =diameter 4,
=distance of 0 to the nearest conjugate point in X,
=smallest number M >0 such that lim, _, ,,A(r)=0.

We can now derive the following list:
X=8" p=0, g=n—1, A=n/2L, A(r)=Csin""1(247), 4,(r)=0.
X=P"R): p=0, g=n—1, A=n/4L, A(r)=Csin""1(24r), A,(r)=0,sin" 2(24r).
X =P*C): p=n—2, q=1, A=n/2L, A(r)=Csin""%(r)sin(24r), 4,(r)=C,sin®*(Ar)sin (24r).
X=PYH): p=n-—4, ¢=3, A=n/2L, A(r)=Csin" *(ir)sin®(24r),
A, (ry=C,sin" "8 (Ar) sin® (247).
X =P"%Cay): p=8, ¢=T7, A=m/2L, A(r)=Csin®(Ar)sin’ (2Ar), A4,(r)=0,sin’ (24r).

In each case, C and C, are constants, not necessarily the same for all cases. Now if z€X
and feC®(X) let [If](x) denote the average of the integrals of f over the antipodal mani-
folds which pass through x. Then (f)” is a constant multiple of If. Fix a point 0€ X and
let K be the subgroup of G leaving o fixed. Let &, be a fixed antipodal manifold through
o and let do be the volume element on &,. Then

Ufl(g- o) = f ) (L fgk-y) da(y)) de= f U1 (g-0)do(y),

where 7 is the distance d(o, ) in the space X between the points o and y. Now if d(o, y) <L
there is a unique geodesic in X of length d(o, y) joining o to y and since &, is totally geodesie,
d(o, y) is also the distance between o and y in £,. Hence, using geodesic polar coordinates in

the last integral we find
L

1] (x)= f A,y(r) [Mf] () dr. 3)

0

In geodesic polar coordinates on X, the Laplace-Beltrami operator A equals A,+ A’ where
A’ is the Laplace-Beltrami operator on the sphere in X of radius r and ([10], p. 445)

d? 1 ddr
Ar_o?r_z-l_z(_r) '55 (0<T<L).
The function (z,r)—[M'f] () satisfies
AM'f=A(M"f) (4)

({81, p, 279 or [6]). Using Prop. 5,6, we have
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2

4 )
Ar'_‘a“72+ A(p cot (Ar) + 2q cot (2 Ar)) o (O<r<Z) (5)
(compare also [7], p. 302). Now (iii) can be proved on the basis of (3) (4) (5) by the method

in [8], p. 285, where the case P*(R) (n odd) is settled. The case X =8" being trivial we shall
indicate the details for X =P*(C), P*(H) and P'*(Cay).

LemMa 6.2. Let X =P*(C), f€C™(X). If m is an even integer, 0 <m <n —4 then
L
(A—2(n—m—2) (m+2)) J sin™(Ar) sin (24r) [M'f] (z) dr
)

=—-2n-m—2)m JL sin™~%(Ar) sin (24r) [M'f] (x) dr.
0

For m =0 the right-hand side should be replaced by
—2A(n —2)f(z).
LeMMmaA 6.3. Let X=P*"H), feC°(X). Let m be an even integer, 0<m<n—=8. Then

(A—22(n—m—4) (m -+ 6)) fL sin™(Ar) sin® (2r) [M'f] () dr
0

= -2 n—m—4)(m+2) fLsin”“2(Ar) sin® (2Ar) [M7f] (x) dr.
0
Also
L
(A—42Xn—4))(A-412(n—2)) f sin® (24r) [M'f] () dr = 16 A3(n — 2) (n — 4) f().
0

LemMMA 6.4. Let X =PCay), f€C®(X). Let m>1 be an integer. Then
(A—41*m (11 —m)) f: sin™ (247) [M'f] (z) dr
= —321%m—1) f : sin™~2(24r) cos® (Ar) [M'f] (x)
+42%m—1) (m—1) f OL sin™ 2 (24r) [M'f] (z) dr;
(A—47%m+1) (10 —m)) f : sin™ (24r) cos? (Ar) [M'f] (z) dr

=4)%3m—5) f ‘ sin™ (24r) [M'f] () dr
0

+42%m—1) (m—15) J‘Lsin”'"2 (2Ar) cos? (Ar) [M'f] (x) dr.
0
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Iteration of these lemmas gives part (iii) of Theorem 6.1 where the polynomial P(A)
has degree equal to one half the dimension of the antipodal manifold and is a constant

multiple of

1 (the identity), X=5"
(A—x(n—2)1) (A —x(n—4)3)...(A —x1(n—2)), X =P"(R)
(A—n{n—2)2)(A —x(n—4)3)... (A —x2(n—2)), X =P*C)
A —x(n —2)4) (A —x(n—4)6)..... (A —x8(n — 6))][(A ~2d(n —4)) (A —x4(n —2))], X =P(H)
(A~ 112x)2(A —120%)2, X =P'%(Cay).

In each case »=(s/2L)2.
Finally, we prove part (ii). From (1) and (2) we derive

MM =75

so, if X is not an even-dimensional projective space, f is a constant multiple of M-P(A) M*f
which shows that f—f is one-to-one and onto. For the even-dimensional projective space
a formula relating f and (f)” is given by Semyanistyi [20]. In particular, the mapping
f—1 is one-to-one. To see that it is onto, let (@) be the eigenfunctions of A. Then each
@, is an eigenfunction of M* ({10], Theorem 7.2, Ch. X). Since the eigenvalue is =& 0 by the
above it is clear that no measure on X can annihilate all of M*(C*(X)). This finishes the

proof of Theorem 6.1.

Added in proof. Theorem 6.1 shows that f= constant implies f= constant. For P*(R)
we thus obtain a (probably known) corollary.

Corollary. Let B be an open set in R"*!, symmetric and starshaped with respect to 0,
bounded by a hypersurface. Assume area (B  P) = constant for all hyperplanes P through
0. Then B is an open ball.

§ 7. Differential operators on the space of p-planes
Let p and » be two integers such that 0<p<n. A p-plane E, in R" is by definition a

transiate of a p-dimensional vector subspace of R*. The O-planes are just the points of
R*. The p-planes in R” form a manifold G(p, n) on which the group M(=n) of all isometries
of R" acts transitively. Let 0 (k) denote the orthogonal group in R and let &, , denote the
manifold O(n)/0(p) X O(n—p) of p-dimensional subspaces of R*. The manifold G(p, ) is
a fibre bundle with base space &, ,, the projection 7 of G(p, n) onto @, , being the mapping
which to any p-plane E,€ G(p, n) associates the parallel p-plane through the origin. Thus
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the fibre of this bundle (G(p, n), &, ,, %) is R*"?. If F denotes an arbitrary fibre and
f€C=(G(p, n)) then the restriction of f to F will be denoted f| F. Consider now the linear
transformation [, of C°(G(p, n)) given by

(0| F=Ax(f| F), [€C=(G(p, n)),

for each fibre F, Ar denoting the Laplacian on F. It is clear that [, is a differential opera-
tor on G{p, n). For simplicity we usually write [] instead of [J,,.

LeMMma 7.1,

(i) The operator [, is invariant under the action of M(n) on G(p, n).

(i) Each differential operator on G(p, n) which is invariant under M(n) is a polynomial
[,

Proof. We recall that if ¢ is an isometry of a Riemannian manifold M, onto a Rie-
mannian manifold M, and if A;, A, are the corresponding Laplace-Beltrami operators
then (cf. [10], p. 387)

(A, frl)=A2f, f€C°'°(M2). (1)
Now each isometry g€M(n) induces a fibre-preserving diffeomorphism of G(p, n), pre-
serving the metric on the fibres. Let f € C°(G(p, n)) and F any fibre. Writing for simplicity
(] instead of [], we get from 1)

(ONF=@fFVIF=(f ) g™ P =1, (|97 F)Y = Ae (| F)= (TN F,

so []7=[1, proving (i).

Let Ej be a fixed p-plane in R", say the one spanned by the p first unit coordinate
vectors, Zy, ..., Z,. The subgroup of M(n) which leaves E? invariant can be identified with
the product group M(p) X O(n—p). For simplicity we put G=M(n), H=M(p) X O(n —p)
and let & and fj denote the corresponding Lie algebras. If IR is any subspace of & such that
& =M +} (direct sum) and Adg(h)IN <IN for each € H then we know from [8] Theorem 10
that the G-invariant differential operators on the space G/H = G(p, n) are directly given by
the polynomials on IR which are invariant under the group Adq(H). Let o(k) denote the Lie
algebra of O(k). Then & is the vector space direct sum of p(n) and the abelian Lie algebra
R". Also if T€o(n), X €R" then the bracket [T, X]in & is [T, X]=T"+X (the image of X
under the linear transformation T). The Lie algebra [j is the vector space direct sum of

o(p), o(n—p) and RP(= E?); we write this in matrix-vector form

ﬁ={(;)4 g)+(g)|A €0(p), BEo(n—g), VeE;}.

For It we choose the subspace
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0 X 0
WE*{(—,‘X 0)+(Z)
Then it is clear that =05+ IR, Let a€0(p), bEO(n—p), VEE,. Then
a O 0 X 0 a O 0 X\ /a1 O a 0\ /0
Ad g b)'[(—tx 0)+(Z)=(0 b)(—‘x 0)(0 b_1)+(0 b) (Z)
0 aXb? 0
=(~b‘Xa 0 )+(bZ)' @)

w2 DO Db o

It follows immediately that Adg (R)Y <M for all hEH. Now let as usual E,; denote the
matrix (0,:005)1<q, o<y PUb Xy=Ep;— B, 1<i<p,1<j<n—p)andlet Z, (p+1<k<n)
denote the kth coordinate vector in R™. Then {X;, Z,}is a basis of M. Any element ¢ in
the symmetric aléebra s (M) over M can be written as a finite sum

X any p x (n— p) matrix, (X
its transpose, ZER"?

X1y ooy Xpneps Zipags ooes Zy) =; T Zipyys oos Zn)8i(Xyq, ooy Xpnp)s

where the r, and s; are polynomials. Suppose ¢ is homogeneous of degree m (say) and in-
variant under Ad,;(H). From (2) and (3) for X =0 we see that a polynomial in Z,,, ..., Z,
is invariant under Adg (H) if and only if it is a polynomialin |Z|2=Z},, +...+Z3. Hence
the invariant polynomial ¢ can be written

[3m)
= 2:0 IZFrqr(Xus veos Xpn-p) 4)

where ¢, is homogeneous of degree m —2r. Now, by (3), ¢ is invariant under the substitu-
tion T(w): X;;—>X;+v,Z,,; (v,, ..., v, being any real numbers, and 1 <i<p, 1 <j<n—7p).
We can write

Qr(Xu + U1Zp+1y ceey Xpn—p +v, Z,) = Z Ar.s1, o5, D v ... ’U;P,
(s)
where ® denotes the tensor product (over R) of the polynomial rings R[X,, ..., Z,] and
Riv,, ..., v,). Using (4) and the invariance of ¢ we obtain

z |Z[2’ar. $10 e 5, QU L WP = Za,_ol o 0-
7.(8) r

It follows that 21z ar s, 5, =0 i 8+ ... +5,>0, (5)

and since ay,s,, ..., 5, has degree s, +... +5,in the Z, (5) implies a, ,, ..., s, —0fors; +...+5,>0,

whence each ¢, is invariant under the substitution 7'(v) above. This implies easily that each
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¢r is a constant. Thus the elements ¢g€S(MM) invariant under Ad;(H) are the polynomials
in |Z]2. By [8], Theorem 10, the polynomial |Z|? induces a G-invariant differential operator
D on G/H such that for each f€C®(G[H),
& &
[Df] (B)= (—r T +7) HEpsr Zpir+ ...+t Zy) - Ep)p . (6)
Oty11 o) t-0

Thus [ DfJ(E;) =[[f)(E;) and since D and [] are both G-invariant, D =[7]. Now (ii) follows
from [8), Cor. p. 269.

§ 8. p-planes and g-planes in RP+7+1

The notation being as in the preceeding section put g=n—p—1. Let G*(p, n) and
G*(q, n), respectively, denote the sets of p-planes and g-planes in R" not passing through
the origin. The projective duality between points and hyperplanes in R”, realized by the
polarity with respect to the unit sphere S"-! generalizes to a duality between G*(p, n)
and G*(g, n). In fact, if a+0 in R", let E,_;(a) denote the polar hyperplane. If a runs
through a p-plane E,€G*(p, n) then the hyperplanes E, ,(a) intersect in a unique g-plane
E,e6G*(g, n) and the mapping E,—~E, is the stated duality.

We have now an example of the framework in §1. Let X =G(p, n), put G=M(n),
acting on X. Given a g-plane B, consider the family §=&(E,) of p-planes intersecting E.
If E,+E; then &(E;)=+&(E,); thus the set of all families &—the dual space E—can be
identified with G(g, »). In accordance with this identification, if E,=x€X then &£=#(k,)
is the set of g-planes intersecting x. Because of convergence difficulties we do not define

the measures ¢ and » (§ 1) directly but if f is any function on G(p, n) we put
f(Eq) =f (f f(£)) dap(En)) dug(a),
Eo \JacEp

whenever these integrals exist. Here dg, is the invariant measure on the Grassmann mani-
fold of p-planes through e with total measure 1, du, is the Euclidean measure on E,.
The transform g—>¢ is defined by interchanging p and ¢ in the definition of f. It is con-

venient to consider the operators M, and L, defined by

[, f] (@) = f HE,)doy(B,), 1€C™ (6 (pm)) 0

eEp
(L F1(E)= L F(a)dug(a), FeS (RY). (2)

Then we have, formally, f =L, M,f.
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Lemma 8.1.
(i) M, maps C®(G(p, n)) tnto C*R") and M,[1,=AM,,.
(ii) L, maps S(R") into C=(G(q, n)) and L,A=[],L,.
Proof. (i) Put K=0(n) =M(n)=@G. For fEC®(G(p, n)) let f*€C®(G) be determined by
f*(@)=f(g- E3), (g€G3). Then for a suitably normalized Haar measure dk on K we have

Li*(gk) dk=[M,11(¢-0),

which shows that M, f€C®(R").

For each X €®, let X denote the left invariant vector field on @ satisfying X,=X.
Since R"<® we can consider the left invariant differential operator [&=Z{‘=1Z-,2 on G.
If k€K, Adg(k) leaves the subspace R* —® and the polynomial >} ;Z7 invariant. Hence,
if R(k) denotes the right translation g =gk on G,

n

B0 = 3 (F)7F = 3 (Adotk™ 2) V= 35

i=1

80 A is invariant under R(k). Tf FEC®R") let FeC°(Q) be determined by F(g)=F(g-0)
for g€G. Then (cf. [10], p. 392, equation (16))

[A (g)={§—ﬁ+...+£% F(g exp (t1Z1+...+thn))}

t=0

& &
={aT%+ "'+5I% F(g-(t, Z,+ ...+, Z"))}t-o

=[AFT](0)=[AF](g-0)

by (1) § 7, that is

AF=(AF)", FeC*R". (3)
Since (M, H" = f (f )Rk
K
and (A)®™®=A it follows from (3) that

DM, ) = f By
K

2 2
s0 [AM,f] (g-0)=f {(a%JFJFa%) (*(gk exp (t1Z1+...+th,,)))} ik
K 1 n t=0

o i
=f {( + +"“‘) gk exp (ty+1Zp+1+---+thn)'E; } dk.
K

at2 44 at? t-0
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This shows that
[AM,fl1(g-0)= fK[Dpf] (gk - Ey) dk= L (O H* (gk) dbe=[M, (1, 1 (g - 0)

proving (i). For (ii) let ¥, denote the g-plane through 0, parallel to E,, and let X, ..., X,
.., X, be an orthogonal basis of R" such that X,€V, (1 <i<gq). The orthogonal projection
of 0 onto E, has the form s,,,X,,; +...+s,X, and

[LqIf'](Eq)=fF(t1X1+...+thq+...+s,,Xn)dt1...dtq
80

‘ & &
[, Ly F] (B = {EﬂT + ...+ 8? (Lg F{(tgse1 Xgat ... T 1y X,)- Ea))}
R g+1 n t=0

& &
=f(——+...+*) (F(t1X1+...+s,,X,,)dt1...dtq=f [A F] (z) duy(x)
Eq

08541 os2

since 02F [0t} (1<i<g) gives no contribution. This proves (ii).
Let $*(R") be as in § 4 and let L, , be the subspace L,($*(R")) of C®(G(p, »)).

THEOREM 8.2. Suppose n odd. The transform f—>} is a linear one-to-one mapping of
L(G(p, n)) onto L(G(q, n)) such that

(O H"=0ef

(O ()" =cf, [ELC(G(p,n)),
where ¢ is a constant +0, independent of f.

Proof. Let r=(22+...+x%)12 and 4 a complex number whose real part Re 4 is > —n.
Then the function #* is a tempered distribution on R" and so is its Fourier transform, say
R,. If p € S(R™) the convolution R; % ¢ is a tempered distribution ([18], II, p. 102) whose
Fourier transform is the product of the Fourier transforms of ¢ and R;. If p € $*(R") then
this product lies in §,(R") so the operator A;: p—>R; % ¢ maps the space $*(R") into itself.
Also if 4, u are complex numbers such that Re 4, Re u and Re(2+y) all are > —n then
Asip=MA, In particular, (A,p)” =(27)"%¢ = — (27)"(Ap)~ so

: Ay=—(127)"A, A,=1I
We shall now verify that

MdeF=yd.R_d*F, FES(R"), O<d<n, (4)

where d is an integer and y, is a constant == 0. For this let dw, be the surface element of the
unit sphere in R* and put Q) = fdw,. Let g€G and z=g¢-0. If d=0, (4) is obvious so assume
0<d<n. Then for a fixed d-plane E, through 0
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[M,L; F] (x)=f dkf F(gk~z)dz=f dzj F(gk-z)dk
K Eq Eq K

n

oo 1 Q
- fo Qu r4-2dr {g—z— fM:l Fla+ry) dony (y)}= o f Fy) |z—y|¢ " dy

and since R_; is a constant multiple of r*™" ([18], II, p. 118) (4) follows. As an
immediate consequence of (4) we have

AdeLd(P=MdeAd¢=yd(p7 (pGS*(R"), (0<d<n). (5)

Now let f€L,, Then f=L,p for p€S*R") and =L, M,f=L M,L,p€L, , since
M,L,p€S*R"). ¥ {=0 then 0=M ,f=M L, M,L,p=A_, ,p so {=0. Similarly, if FEL, ,
then F=L,® for ® € $*R") and by (5), F=L,M,L,p for p€ $*R") so F=(L,p)". This
shows that f — f is an isomorphism of £, , onto L, ,. Also, by Lemma 8.1,

(O =LeM,O,f =L AM,f = oL M, f = Clof-
Since p+g=n—1 is even we have
ApAg= (A D = ((— 2 @)D AYA=D o AF=D
the last equation defining ¢,. Let f€ C, ,,, f=L,¢, p € $*(R"). Then, using Lemma 8.1, and (5)
(N” =L, M,f=L, M L M, L,gp,
(O )7 =L, AP M f= 7' Ly Ay Ag M Lo M, Ly

= Yol Ap My Lyp =3 yoyp Ly =63 YpVal-
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