THE RADON TRANSFORM ON EUCLIDEAN SPACES, COMPACT TWO-POINT HOMOGENEOUS SPACES AND GRASSMANN MANIFOLDS

BY

SIGURÐUR HELGASON

The Institute for Advanced Study, Princeton, N. J., U.S.A.(1)

§1. Introduction

As proved by Radon [16] and John [13], a differentiable function f of compact support on a Euclidean space \mathbb{R}^n can be determined explicitly by means of its integrals over the hyperplanes in the space. Let $J(\omega, p)$ denote the integral of f over the hyperplane $\langle x, \omega \rangle = p$ where ω is a unit vector and \langle , \rangle the inner product in \mathbb{R}^n . If Δ denotes the Laplacian on \mathbb{R}^n , $d\omega$ the area element on the unit sphere \mathbb{S}^{n-1} then (John [14], p. 13)

$$f(x) = \frac{1}{2} (2\pi i)^{1-n} (\Delta_x)^{\frac{1}{2}(n-1)} \int_{\mathbf{S}^{n-1}} J(\omega, \langle \omega, x \rangle) \, d\omega, \quad (n \text{ odd});$$
(1)

$$f(x) = (2\pi i)^{-n} (\Delta_x)^{\frac{1}{2}(n-2)} \int_{\mathbf{S}^{n-1}} d\omega \int_{-\infty}^{\infty} \frac{dJ(\omega, p)}{p - \langle \omega, x \rangle}, \quad (n \text{ even}),$$
(2)

where, in the last formula, the Cauchy principal value is taken.

Considering now the simpler formula (1) we observe that it contains two dual integrations: the first over the set of points in a given hyperplane, the second over the set of hyperplanes passing through a given point. Generalizing this situation we consider the following setup:

(i) Let X be a manifold and G a transitive Lie transformation group of X. Let Ξ be a family of subsets of X permuted transitively by the action of G on X, whence Ξ acquires a G-invariant differentiable structure. Here Ξ will be called the *dual* space of X.

(ii) Given $x \in X$, let \check{x} denote the set of $\xi \in \Xi$ passing through x. It is assumed that each ξ and each \check{x} carry measures μ and ν , respectively, such that the action of G on X and Ξ permutes the measures μ and permutes the measures ν .

⁽¹⁾ Work supported in part by the National Science Foundation, NSF GP 2600, U.S.A.

^{11-652923.} Acta mathematica. 113. Imprimé le 11 mai 1965.

(iii) If f and g are suitably restricted functions on X and Ξ , respectively, we can define functions f on Ξ , \check{g} on X by

$$f(\xi) = \int_{\xi} f(x) d\mu(x), \quad \check{g}(x) = \int_{\check{x}} g(\xi) d\nu(\xi).$$

These three assumptions have not been made completely specific because they are not intended as axioms for a general theory but rather as framework for special examples. In this spirit we shall consider the following problems.

A. Relate function spaces on X and Ξ by means of the transforms $f \rightarrow \hat{f}$ and $g \rightarrow \check{g}$.

B. Let $\mathbf{D}(X)$ and $\mathbf{D}(\Xi)$, respectively, denote the algebras of G-invariant differential operators on X and Ξ . Does there exist a map $D \rightarrow \hat{D}$ of $\mathbf{D}(X)$ into $\mathbf{D}(\Xi)$ and a map $E \rightarrow \check{E}$ of $\mathbf{D}(\Xi)$ into $\mathbf{D}(X)$ such that

$$(Df)^{} = \hat{D}f, \quad (Eg)^{} = \check{E}\check{g}$$

for all f and g above?

C. In case the transforms $f \rightarrow \hat{f}$ and $g \rightarrow \check{g}$ are one-to-one find explicit inversion formulas. In particular, find the relationships between f and $(\hat{f})^{\sim}$ and between g and $(\check{g})^{\sim}$.

In this article we consider three examples within this framework: (1) The already mentioned example of points and hyperplanes (§ 2-§ 4); (2) points and antipodal manifolds in compact two-point homogeneous spaces (§ 5-§ 6); *p*-planes and *q*-planes in \mathbb{R}^{p+q+1} (§7-§ 8). Other examples are discussed in [11] which also contains a bibliography on the Radon transform and its generalizations. See also [5].

The following notation will be used throughout. The set of integers, real and complex numbers, respectively, is denoted by Z, R and C. If $x \in \mathbb{R}^n$, |x| denotes the length of the vector x; Δ denotes the Laplacian on \mathbb{R}^n . If M is a manifold, $C^{\infty}(M)$ (respectively $\mathcal{D}(M)$) denotes the space of differentiable functions (respectively, differentiable functions with compact support) on M. If L(M) is a space of functions on M, D and endomorphism of L(M) and $p \in M$, $f \in L(M)$ then [Df](p) (and sometimes $D_p(f(p))$) denotes the value of Df at p. The tangent space to M at p is denoted M_p . If τ is a diffeomorphism of a manifold Monto a manifold N and if $f \in C^{\infty}(M)$ then f^{τ} stands for the function $f \circ \tau^{-1}$ in $C^{\infty}(N)$. If Dis a differential operator on M then the linear transformation of $C^{\infty}(N)$ given by D^{τ} : $f \rightarrow (Df^{\tau^{-1}})^{\tau}$ is a differential operator on N. For M = N, D is called *invariant* under τ if $D^{\tau} = D$.

The adjoint representation of a Lie group G (respectively, Lie algebra \mathfrak{G}) will be denoted Ad_{G} (respectively $\operatorname{ad}_{\mathfrak{G}}$). These subscripts are omitted when no confusion is likely.

§ 2. The Radon transform in Euclidean space

Let \mathbf{R}^n be a Euclidean space of arbitrary dimension n and let Ξ denote the manifold of hyperplanes in \mathbf{R}^n .

If f is a function on \mathbb{R}^n , integrable on each hyperplane in \mathbb{R}^n , the Radon transform of f is the function \hat{f} on Ξ given by

$$\hat{f}(\xi) = \int_{\xi} f(x) \, d\sigma(x), \quad \xi \in \Xi, \tag{1}$$

where $d\sigma$ is the Euclidean measure on the hyperplane ξ . In this section we shall prove the following result which shows, roughly speaking, that f has compact support if and only if \hat{f} does.

THEOREM 2.1. Let $f \in C^{\infty}(\mathbb{R}^n)$ satisfy the following conditions:

- (i) For each integer k > 0 $|x|^k f(x)$ is bounded.
- (ii) There exists a constant A > 0 such that $\hat{f}(\xi) = 0$ for $d(0,\xi) > A$, d denoting distance.

Then
$$f(x) = 0$$
 for $|x| > A$.

Proof. Suppose first that f is a radial function. Then there exists an even function $F \in C^{\infty}(\mathbf{R})$ such that f(x) = F(|x|) for $x \in \mathbf{R}^n$. Also there exists an even function $\hat{F} \in C^{\infty}(\mathbf{R})$ such that $\hat{F}(d(0,\xi)) = \hat{f}(\xi)$. Because of (1) we find easily

$$\hat{F}(p) = \int_{\mathbf{R}^{n-1}} F((p^2 + |y|^2)^{\frac{1}{2}}) \, dy = \Omega_{n-1} \int_0^\infty F((p^2 + t^2)^{\frac{1}{2}} t^{n-2} \, dt, \tag{2}$$

where Ω_{n-1} is the area of the unit sphere in \mathbb{R}^{n-1} . Here we substitute $s = (p^2 + t^2)^{-\frac{1}{2}}$ and then put $u = p^{-1}$. Formula (2) then becomes

$$u^{n-3}\hat{F}(u^{-1}) = \Omega_{n-1} \int_0^u \left(F(s^{-1})s^{-n}\right) \left(u^2 - s^2\right)^{\frac{1}{2}(n-3)} ds.$$
(3)

This formula can be inverted (see e.g. John [14], p. 83) and we obtain

$$F(s^{-1}) s^{-n} = c s \left(\frac{d}{d(s^2)}\right)^{n-1} \int_0^s (s^2 - u^2)^{\frac{1}{2}(n-3)} u^{n-2} \widehat{F}(u^{-1}) du,$$
(4)

where c is a constant. Now by (ii), $\hat{F}(u^{-1}) = 0$ for $0 < u \leq A^{-1}$ so by (4), $F(s^{-1}) = 0$ for $0 < s \leq A^{-1}$, proving the theorem for the case when f is radial.

Now suppose $f \in C^{\infty}(\mathbb{R}^n)$ arbitrary, satisfying (i) and (ii). Let K denote the orthogonal group $\mathbf{O}(n)$. For $x, y \in \mathbb{R}^n$ we consider the spherical average

$$f^*(x,y) = \int_K f(x+k\cdot y)\,dk,$$

where dk is the Haar measure on O(n), with total measure 1. Let $R_2/^*$ be the Radon transform of f^* in the second variable. Since $(f^{\tau})^{\hat{\tau}} = (f)^{\tau}$ for each rigid motion τ of \mathbb{R}^n it is clear that

$$[R_2 f^*](x,\xi) = \int_{\mathcal{K}} \hat{f}(x+k\cdot\xi) \, dk, \quad x \in \mathbf{R}^n, \ \xi \in \Xi,$$
(5)

where $x + k \cdot \xi$ is the translate of $k \cdot \xi$ by x. Now it is clear that the distance d satisfies the inequality

$$d(0, x+k\cdot\xi) \geq d(0, \xi) - |x|$$

for all $x \in \mathbb{R}^n$, $k \in K$. Hence we conclude from (5)

$$[R_2 f^*](x,\xi) = 0 \quad \text{if} \quad d(0,\xi) > A + |x|. \tag{6}$$

For a fixed x, the function $y \rightarrow f^*(x, y)$ is a radial function in $C^{\infty}(\mathbb{R}^n)$ satisfying (i). Since the theorem is proved for radial functions, (6) implies that

$$\int_{K} f(x+k\cdot y) \, dk = 0 \quad \text{if} \quad |y| > A + |x|.$$

The theorem is now a consequence of the following lemma.

LEMMA 2.2. Let f be a function in $C^{\infty}(\mathbf{R}^n)$ such that $|x|^k f(x)$ is bounded on \mathbf{R}^n for each integer k > 0. Suppose f has surface integral 0 over every sphere which encloses the unit sphere. Then $f(x) \equiv 0$ for |x| > 1.

Proof. The assumption about f means that

ſ

$$\int_{\mathbf{S}^{n-1}} f(x+L\omega) \, d\omega = 0 \quad \text{for} \quad L > |x|+1.$$
(7)

(8)

This implies that

that
$$\int_{|y| \ge L} f(x+y) \, dy = 0$$
 for $L > |x| + 1$.

Now fix L > 1. Then (8) shows that

$$\int_{|y|\leqslant L}f(x+y)\,dy$$

is constant for $0 \leq |x| < L - 1$. The identity

THE RADON TRANSFORM ON EUCLIDEAN SPACES

$$\int_{\mathbf{S}^{n-1}} f(x+L\omega) \left(x_i+L\omega_i\right) d\omega = x_i \int_{\mathbf{S}^{n-1}} f(x+L\omega) d\omega + L^{2-n} \frac{\partial}{\partial x_i} \int_{|y| < L} f(x+y) dy$$

then shows that the function $x_i f(x)$ has surface integral 0 over each sphere with radius L and center x ($0 \le |x| < L-1$). In other words, we can pass from f(x) to $x_i f(x)$ in the identity (7). By iteration, we find that on the sphere $|y| = \dot{L} (L > 1) f(y)$ is orthogonal to all polynomials, hence $f(y) \equiv 0$ for |y| = L. This concludes the proof.

Remark. The proof of this lemma was suggested by John's solution of the problem of determining a function on \mathbb{R}^n by means of its surface integrals over all spheres of radius 1 (John [14], p. 114).

§ 3. Rapidly decreasing functions on a complete Riemannian manifold

Let M be a connected, complete Riemannian manifold, \tilde{M} its universal covering manifold with the Riemannian structure induced by that of M, $\tilde{M} = \tilde{M}_1 \times ... \times \tilde{M}_i$ the de Rham decomposition of \tilde{M} into irreducible factors ([17]) and let $M_i = \pi(\tilde{M}_i)$ $(1 \leq i \leq l)$ where π is the covering mapping of \tilde{M} onto M. Let Δ , $\tilde{\Delta}$, Δ_i , $\tilde{\Delta}_i$ denote the Laplace-Beltrami operators on M, \tilde{M} , M_i , \tilde{M}_i , respectively. It is clear that $\tilde{\Delta}_i$ can be regarded as a differential operator on \tilde{M} . In order to consider Δ_i as a differential operator on M, let $f \in C^{\infty}(M)$, $\tilde{f} = f \circ \pi$. Any covering transformation τ of M is an isometry so $(\tilde{\Delta}_i(f \circ \pi))^{\tau} = \tilde{\Delta}_i(f \circ \pi)$; hence $\tilde{\Delta}_i(f \circ \pi) = F \circ \pi$, where $F \in C^{\infty}(M)$. We define $\Delta_i f = F$. Because of the decomposition of \tilde{M} each $m \in M$ has a coordinate neighborhood which is a product of coordinate neighborhoods in the spaces M_i . In terms of these coordinates, $\Delta = \sum_i \Delta_i$; in particular Δ_i is a differential operator on M, and the operators Δ_i $(1 \leq i \leq l)$ commute.

Now fix a point $o \in M$ and let r(p) = d(o, p). A function $f \in C^{\infty}(M)$ will be called *rapidly* decreasing if for each polynomial $P(\Delta_1, ..., \Delta_l)$ in the operators $\Delta_1, ..., \Delta_l$ and each integer $k \ge 0$

$$\sup_{i=1}^{k} \left| (1+r(p))^{k} [P(\Delta_{1}, ..., \Delta_{l} f](p)] < \infty.$$

$$(1)$$

It is clear that condition (1) is independent of the choice of o. Let S(M) denote the set of rapidly decreasing functions on M.

In the case of a Euclidean space a function $f \in C^{\infty}(\mathbb{R}^n)$ belongs to $\mathbf{S}(\mathbb{R}^n)$ if and only if for each polynomial P in n variables the function $P(D_1^2, ..., D_n^2)f$ (where $D_i = \partial/\partial x_i$) goes to zero for $|x| \to \infty$ faster than any power of |x|. Then the same holds for the function $P(D_1, ..., D_n)f$ (so $\mathbf{S}(\mathbb{R}^n)$ coincides with the space defined by Schwartz [18], II, p. 89) as a consequence of the following lemma which will be useful later.

LEMMA 3.1. Let f be a function in $C^{\infty}(\mathbf{R}^n)$, which for each pair of integers k, $l \ge 0$ satisfies

$$\sup_{x\in\mathbf{R}^n} |(1+|x|)^k [\Delta^l f](x)| < \infty.$$
⁽²⁾

Then the inequality is satisfied when Δ^{l} is replaced by an arbitrary differential operator with constant coefficients.

This lemma is easily proved by using Fourier transforms.

LEMMA 3.2. A function $F \in C^{\infty}(\mathbb{R} \times \mathbb{S}^{n-1})$ lies in $S(\mathbb{R} \times \mathbb{S}^{n-1})$ if and only if for arbitrary integers k, $l \ge 0$ and any differential operator D on \mathbb{S}^{n-1} ,

$$\sup_{\omega \in \mathbf{S}^{n-1}, r \in \mathbf{R}} \left| (1+|r|)^k \frac{d^l}{dr^l} (DF) (\omega, r) \right| < \infty.$$
(3)

Proof. It is obvious that (3) implies that F is rapidly decreasing. For the converse we must prove $(S^{n-1}$ being irreducible) that (3) holds provided it holds when $l \ge 0$ is even and D an arbitrary power $(\Delta_S)^m \ (m \ge 0)$ of the Laplacian Δ_S on S^{n-1} . Let $G(\omega, r) = d^l/dr^l(F(\omega, r))$. Of course it suffices to verify (3) as $\omega = (\omega_1, ..., \omega_n)$ varies in some coordinate neighborhood on S^{n-1} . Let $x_i = |x| \omega_i$ $(1 \le i \le n)$ and suppose G extended to a C^{∞} function \tilde{G} in the product of an annulus A_{ε} : $\{x \in \mathbb{R}^n \mid |x_1^2 + ... + x_n^2 - 1 \mid < \varepsilon < 1\}$ with \mathbb{R} . Regardless how this extension is made, (3) would follow (for even l) if we can prove an estimate of the form

$$\sup_{\omega \in \mathbf{S}^{n-1}, r \in \mathbf{R}} \left| (1+|r|)^k \left[D^{\gamma} \, \tilde{G} \right](\omega, r) \right| < \infty \tag{4}$$

for an arbitrary derivative $D^{\gamma} = \partial^{|\gamma|} / \partial x_1^{\gamma_1} \dots \partial x_n^{\gamma_n}$ $(|\gamma| = \gamma_1 + \dots + \gamma_n)$. Now, by Sobolev's lemma (see e.g. [3], Theorem 6', p. 243) $[D^{\gamma}\tilde{G}](\omega, r)$ can be estimated by means of L^2 norms over A_{ε} of finitely many derivatives $D_x^{\alpha} D_x^{\gamma}(\tilde{G}(x, r))$. But the L^2 norm over A_{ε} of $D_x^{\alpha} D_x^{\gamma}(\tilde{G}(x, r))$ is estimated by the L^2 norm over A_{ε} of $\Delta_x^m(\tilde{G}(x, r))$, m being a suitable integer (see [12], p. 178–188). Now suppose \tilde{G} was chosen such that for each r, the function $x \to \tilde{G}(x, r)$ is constant on each radius from 0. Then

and
$$\Delta_x(\tilde{G}(x,r)) = |x|^{-2} [\Delta_S G](\omega, r) \quad (x = |x|\omega)$$
$$\Delta_x^m(\tilde{G}(x,r)) = \sum_i f_i(|x|) [(\Delta_S)^i G](\omega, r),$$

where the sum is finite and each f_i is bounded for $||x|-1| < \varepsilon$. Hence the L^2 norm over A_{ε} of $(\Delta^m)_x(\tilde{G}(x,r))$ is estimated by a linear combination of the L^2 norms over \mathbb{S}^{n-1} of $[(\Delta_s)^i G](\omega, r)$. But these last derivatives satisfy (3), by assumption, so we have proved (4).

This proves (3) for l even. Let $H(\omega, s)$ be the Fourier transform (with respect to r) of the function $(DF)(\omega, r)$. Then one proves by induction on k that

$$\sup_{\omega\in\mathbf{S}^{n-1},\,s\in\mathbf{R}}\left|(1+\left|s\right|)^{l}\,\frac{d^{k}}{d\,s^{k}}\,H(\omega,s)\right|<\infty$$

for all k, $l \ge 0$ and now (3) follows for all k, $l \ge 0$ by use of the inverse Fourier transform.

§ 4. The Radon transforms of $S(\mathbb{R}^n)$ and $\mathcal{D}(\mathbb{R}^n)$

If $\omega \in \mathbb{S}^{n-1}$, $r \in \mathbb{R}$ let $\xi(\omega, r)$ denote the hyperplane $\langle x, \omega \rangle = r$ in \mathbb{R}^n . Then the mapping $(\omega, r) \to \xi(\omega, r)$ is a two-fold covering map of the manifold $\mathbb{S}^{n-1} \times \mathbb{R}$ onto the manifold Ξ of all hyperplanes in \mathbb{R}^n ; the (differentiable) functions on Ξ will be identified with the (differentiable) functions F on $\mathbb{S}^{n-1} \times \mathbb{R}$ which satisfy $F(\omega, r) = F(-\omega, -r)$. Thus $S(\Xi)$ is, by definition, a subspace of $S(\mathbb{S}^{n-1} \times \mathbb{R})$. We also need the linear space $S_H(\Xi)$ of functions $F \in S(\Xi)$ which have the property that for each integer $k \ge 0$ the integral $\int F(\omega, r)r^k dr$ can be written as a homogeneous kth degree polynomial in the components $\omega_1, ..., \omega_n$ of ω . Such a polynomial can, since $\omega_1^2 + ... + \omega_n^2 = 1$, also be written as a (k+2l)th degree polynomial in the ω_i .

We shall now consider the situation outlined in the introduction for $X = \mathbf{R}_n$, Ξ as above and G the group of rigid motions of X. If $x \in X, \xi \in \Xi$, the measure μ is the Euclidean measure $d\sigma$ on the hyperplane ξ , ν is the unique measure on \check{x} invariant under all rotations around x, normalized by $\nu(\check{x}) = 1$. We shall now consider problems A, B, C from § 1. If f is a function on X, integrable along each hyperplane in X then according to the conventions above

$$f(\omega, r) = \int_{\langle x, \omega \rangle = r} f(x) \, d\sigma(X), \quad \omega \in \mathbb{S}^{n-1}, \ r \in \mathbb{R}.$$
(1)

THEOREM 4.1. The Radon transform $f \rightarrow \hat{f}$ is a linear one-to-one mapping of S(X) onto $S_H(\Xi)$.

Proof. Let $f \in S(X)$ and let \tilde{f} denote the Fourier transform

$$\hat{f}(u) = \int f(x) e^{-i \langle x, u \rangle} dx, \quad u \in \mathbf{R}^n.$$

If $u \neq 0$ put $u = s\omega$, where $s \in \mathbb{R}$ and $\omega \in \mathbb{S}^{n-1}$. Then

$$\tilde{f}(s\omega) = \int_{-\infty}^{\infty} dr \int_{\langle x, \omega \rangle = r} f(x) e^{-i \langle x, \omega \rangle s} d\sigma(x)$$

so we obtain

$$\tilde{f}(s\omega) = \int_{-\infty}^{\infty} \tilde{f}(\omega, r) \, e^{-isr} dr, \qquad (2)$$

for $s \neq 0$ in **R**, $\omega \in S^{n-1}$. But (2) is obvious for s = 0 so it holds for all $s \in \mathbf{R}$. Now according to Schwartz [18], II, p. 105, the Fourier transform $f \rightarrow \tilde{f}$ maps $S(\mathbf{R}^n)$ onto itself. Since

$$\frac{d}{ds}(\tilde{f}(s\omega)) = \sum_{i=1}^{n} \omega_i \frac{\partial \tilde{f}}{\partial u_i} \quad (u = (u_1, \ldots, u_n))$$

it follows from (2) that for each fixed ω , the function $r \to f(\omega, r)$ lies in $S(\mathbf{R})$. For each $\omega_0 \in S^{n-1}$, a subset of $\{\omega_1, ..., \omega_n\}$ will serve as local coordinates on a neighborhood of ω_0 . To see that $f \in S(\Xi)$, it therefore suffices to verify (3) § 3 for F = f on an open subset N of S^{n-1} where ω_n is bounded away from 0 and $\omega_1, ..., \omega_{n-1}$ serve as coordinates, in terms of which D is expressed. Putting $\mathbf{R}^+ = \{s \in \mathbf{R} \mid s > 0\}$ we have on $N \times \mathbf{R}^+$

$$u_1 = s\omega_1, \dots, u_{n-1} = s\omega_{n-1}, \ u_n = s(1 - \omega_1^2 - \dots - \omega_{n-1}^2)^{\frac{1}{2}}, \tag{3}$$

so
$$\frac{\partial}{\partial \omega_i} \left(\hat{f}(s\omega) \right) = s \sum_{i=1}^{n-1} \frac{\partial \hat{f}}{\partial u_i} - s\omega_i (1 - \omega_1^2 - \ldots - \omega_{n-1}^2)^{\frac{1}{2}} \frac{\partial \hat{f}}{\partial u_n}.$$

It follows that if D is any differential operator on S^{n-1} and k, l integers ≥ 0 then

$$\sup_{\omega \in N, s \in \mathbf{R}} \left| (1+s^{2k}) \left[\frac{d^l}{ds^l} D_f^2 \right] (\omega, s) \right| < \infty.$$
(4)

We can therefore apply D under the integral sign in the inversion formula

$$f(\omega, r) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(s\omega) \, e^{isr} \, ds \tag{5}$$

and obtain

$$(1+r^{2k})\frac{d^{l}}{dr^{l}} (D_{\omega}(f(\omega,r))) = \frac{1}{2\pi} \int \left(1+(-1)^{k}\frac{d^{2k}}{ds^{2k}}\right) ((is)^{l}D_{\omega}(f(s\omega))) e^{isr} ds.$$

Now (4) shows that $f \in S(\Xi)$. Finally, if k is an integer ≥ 0 then

$$\int_{-\infty}^{\infty} \hat{f}(\omega,r) r^k dr = \int_{-\infty}^{\infty} r^k dr \int_{\langle x, \omega \rangle = r} f(x) d\sigma(x) = \int_{\mathbf{R}^n} f(x) \langle x, \omega \rangle^k dx$$
(6)

so $\hat{f} \in S_H(\Xi)$. The Fourier transform being one-to-one it remains to prove that each $g \in S_H(\Xi)$ has the form $g = \hat{f}$ for some $f \in S(\mathbb{R}^n)$. We put

$$G(s,\omega)=\int_{-\infty}^{\infty}g(\omega,r)\,e^{-irs}dr.$$

Then $G(-s, -\omega) = G(s, \omega)$ and $G(0, \omega)$ is a homogeneous polynomial of degree 0 in ω , hence independent of ω . Hence there exists a function F on \mathbb{R}^n such that

$$F(s\omega) = \int_{-\infty}^{\infty} g(\omega, r) e^{-irs} dr, \quad s \in \mathbf{R}, \, \omega \in \mathbf{S}^{n-1}.$$
 (7)

It is clear that F is C^{∞} in $\mathbb{R}^n - \{0\}$. To prove that F is C^{∞} in a neighborhood of 0 we consider the coordinate neighborhood N on S^{n-1} as before. Let $h(u_1, ..., u_n)$ be any function of class C^{∞} in $\mathbb{R}^n - \{0\}$ and let $h^*(\omega_1, ..., \omega_{n-1}, s)$ be the function on $N \times \mathbb{R}^+$ obtained by means of the substitution (3). Then

$$\frac{\partial h}{\partial u_i} = \sum_{j=1}^{n-1} \frac{\partial h^*}{\partial \omega_j} \cdot \frac{\partial \omega_j}{\partial u_i} + \frac{\partial h^*}{\partial s} \cdot \frac{\partial s}{\partial u_i} \quad (1 \le i \le n)$$

and

$$\frac{\partial \omega_j}{\partial u_i} = \frac{1}{s} \left(\delta_{ij} - \frac{u_i u_j}{s^2} \right) \quad (1 \le i \le n, \ 1 \le j \le n-1),$$

$$\frac{\partial s}{\partial u_i} = \omega_i \ (1 \leq i \leq n-1), \quad \frac{\partial s}{\partial u_n} = (1 - \omega_1^2 - \ldots - \omega_{n-1}^2)^{\frac{1}{2}}.$$

Hence

$$\frac{\partial h}{\partial u_i} = \frac{1}{s} \frac{\partial h^*}{\partial \omega_i} + \omega_i \left(\frac{\partial h^*}{\partial s} - \frac{1}{s} \sum_{j=1}^{n-1} \omega_j \frac{\partial h^*}{\partial \omega_j} \right) \quad (1 \le i \le n-1),$$
$$\frac{\partial h}{\partial u_n} = (1 - \omega_1^2 - \ldots - \omega_{n-1}^2)^{\frac{1}{2}} \left(\frac{\partial h^*}{\partial s} - \frac{1}{s} \sum_{j=1}^{n-1} \omega_j \frac{\partial h^*}{\partial \omega_j} \right).$$

In order to use these formulas for h = F we write

1/

am

$$F(s\omega) = \int_{-\infty}^{\infty} g(\omega, r) \, dr + \int_{-\infty}^{\infty} g(r, \omega) \, (e^{-trs} - 1) \, dr$$

and by assumption, the first integral is independent of ω . Thus, for a constant K > 0,

$$\left|\frac{1}{s}\frac{\partial}{\partial\omega_{t}}\left(F(s\omega)\right)\right| \leq K \int \left(1+r^{4}\right)^{-1} s^{-1} \left|e^{-isr}-1\right| dr \leq K \int \frac{|r|}{1+r^{4}} dr.$$

This shows that all the derivatives $\partial F/\partial u_i$ $(1 \le i \le n)$ are bounded in a punctured ball $0 < |u| < \varepsilon$ so F is continuous in a neighborhood of u = 0. More generally, let q be any integer > 0. Then we have for an arbitrary q th order derivative,

$$\frac{\partial^{q}h}{\partial u_{i_{1}}\dots\partial u_{i_{q}}} = \sum_{i+j\leqslant q} A_{i,j}(\omega,s) \frac{\partial^{i+j}h^{*}}{\partial \omega_{k_{1}}\dots\partial \omega_{k_{i}}\partial s^{j}},$$
(8)

where the coefficient $A_{i,j}(\omega, s) = O(s^{j-q})$ near s = 0. Also

$$F(s\omega) = \int_{-\infty}^{\infty} g(\omega, r) \sum_{k=0}^{q-1} \frac{(-isr)^k}{k!} dr + \int_{-\infty}^{\infty} g(\omega, r) e_q(-irs) dr, \qquad (9)$$
$$e_q(t) = \frac{t^q}{q!} + \frac{t^{q+1}}{(q+1)!} + \dots$$

where

162

Then it is clear that the first integral in (9) is a polynomial in $u_1, ..., u_n$ of degree $\leq q-1$ and is therefore annihilated by the differential operator (8). Now, if $0 \leq j \leq q$,

$$\left|s^{j-q} \frac{\partial^{j}}{\partial s^{j}} \left(e_{q}(-irs)\right)\right| = \left|(-ir)^{q}(-irs)^{j-q} e_{q-j}(-irs)\right| \leq K_{j} r^{q}, \tag{10}$$

where K_j is a constant, because the function $t \rightarrow (it)^{-p} e_p(it)$ is obviously bounded on **R** $(p \ge 0)$. Since $g \in S(\Xi)$ it follows from (8), (9), (10) that each *q*th order derivative of F with respect to $u_1, ..., u_n$ is bounded in a punctured ball $0 < |u| < \varepsilon$. Hence $F \in C^{\infty}(\mathbb{R}^n)$. That Fis rapidly decreasing is now clear from formula (7), Lemma 3.1 and the fact that ([8], p. 278)

$$\Delta h = \frac{\partial^2 h^*}{\partial s^2} + \frac{n-1}{s} \frac{\partial h^*}{\partial s} + \frac{1}{s^2} \Delta_s h^*,$$

where Δ_s is the Laplace-Beltrami operator on S^{n-1} . If f is the function in S(X) whose Fourier transform is F then f=g and the theorem is proved.

Let $S^*(X)$ denote the space of all functions $f \in S(X)$ which satisfy $\int f(x)P(x)dx=0$ for all polynomials P(x). Similarly, let $S^*(\Xi)$ denote the space of all functions $g \in S(\Xi)$ which satisfy $\int g(\omega, r)P(r)dr\equiv 0$ for all polynomials P(r). Note that under the Fourier transform, $S^*(X)$ corresponds to the space $S_0(\mathbb{R}^n)$ of functions in $S(\mathbb{R}^n)$ all of whose derivatives vanish at the origin.

COROLLARY 4.2. The transforms $f \to \hat{f}$ and $g \to \check{g}$, respectively, are one-to-one linear maps of $S^*(X)$ onto $S^*(\Xi)$ and of $S(\Xi)$ onto $S^*(X)$.

The first statement follows from (6) and the well-known fact that the polynomials $\langle x, \omega \rangle^k$ span the space of homogeneous polynomials of degree k. As for the second, we observe that for $f \in S(X)$ and ξ_0 a fixed plane through 0

$$(\hat{f})^{\sim} (x) = \int_{K} \hat{f}(x+k\cdot\xi_{0}) dk = \int_{K} \left(\int_{\xi_{0}} f(x+k\cdot y) dy \right) dk$$

$$= \int_{\xi_{0}} dy \int_{K} f(x+k\cdot y) dk = \Omega_{n-1} \int_{0}^{\infty} r^{n-2} \left(\frac{1}{\Omega_{n}} \int_{\mathbb{S}^{n-1}} f(x+r\omega) d\omega \right) dr,$$

$$(\hat{f})^{\sim} (x) = \frac{\Omega_{n-1}}{\Omega_{n}} \int_{X} |x-y|^{-1} f(y) dy.$$

$$(11)$$

 \mathbf{so}

This formula is also proved in [4]. Now the right-hand side is a tempered distribution, being the convolution of a tempered distribution and a member of S(X). By [18], II, p. 124, the Fourier transform is given by the product of the Fourier transforms so if $f \in S^*(X)$ we see that $(\hat{f})^{\check{}}$ has Fourier transform belonging to $S_0(X)$. Hence $(\hat{f})^{\check{}} \in S^*(X)$ and the second statement of Cor. 4.2 follows.

Remarks. A characterization of the Radon transform of S(X) similar to that of Theorem 3.1 is stated in Gelfand-Graev-Vilenkin [5], p. 35. Their proof, as outlined on p. 36-39, is based on the inversion formula (1) § 1 and therefore leaves out the even-dimensional case. Corollary 4.2 was stated by Semyanistyi [19].

Now let $\mathcal{D}(X)$ and $\mathcal{D}(\Xi)$ be as defined in § 1, and put $\mathcal{D}_{H}(\Xi) = \mathcal{S}_{H}(\Xi) \cap \mathcal{D}(\Xi)$. The following result is an immediate consequence of Theorem 2.1 and 4.1.

COBOLLARY 4.3. The Radon transform $f \rightarrow \hat{f}$ is a linear one-to-one mapping of $\mathcal{D}(X)$ onto $\mathcal{D}_{H}(\Xi)$.

Concerning problem B in §1 we have the following result which is a direct consequence of Lemmas 7.1 and 8.1, proved later.

PROPOSITION 4.4. The algebra $\mathbf{D}(X)$ is generated by the Laplacian Δ , the algebra $\mathbf{D}(\Xi)$ is generated by the differential operator $\Box: g(\omega, r) \rightarrow (d^2/dr^2)g(\omega, r)$ and

$$(\Delta f)^{\ } = \Box f, \qquad (\Box g)^{\ } = \Delta g$$

for $f \in S(X)$, $g \in C^{\infty}(\Xi)$.

The following reformulation of the inversion formulas (1), (2) § 1 gives an answer to problem C.

THEOREM 4.5. (i) If n is odd,

$$f = c\Delta^{\frac{1}{2}(n-1)}((\mathring{f})^{\check{}}), \quad f \in \mathcal{S}(X);$$

$$g = c\Box^{\frac{1}{2}(n-1)}((\check{g})^{\check{}}), \quad g \in \mathcal{S}^{*}(\Xi),$$

where c is a constant, independent of f and g.

(ii) If n is even,

$$f = c_1 J_1((\hat{f})^{\checkmark}), \quad f \in \mathcal{S}(X);$$
$$g = c_2 J_2((\check{g})^{\land}), \quad g \in \mathcal{S}^*(\Xi),$$

where the operators J_1 and J_2 are given by analytic continuation

$$J_1: f(x) \to \operatorname{anal. cont.}_{\alpha=1-2n} \int_{\mathbb{R}^n} f(y) |x-y|^{\alpha} dy,$$

$$J_2: g(\omega, p) \rightarrow \text{anal. cont.} \int_R g(\omega, q) |p-q|^{\beta} dq,$$

and c_1 , c_2 are constants, independent of f and g.

Proof. In (i) the first formula is just (1) §1 and the second follows by Prop. 4.4. We shall now indicate how (ii) follows from (2) § 1. Since the Cauchy principal value is the derivative of the distribution $\log |p|$ on **R** whose successive derivatives are the distributions $Pf \cdot (p^{-k})$ (see [18], I, p. 43) we have by (2) § 1

$$f(x) = (2\pi i)^{-n} (n-1)! \int_{\mathbf{S}^{n-1}} \left(Pf \cdot (p - \langle \omega, x \rangle^{-n}) \left(f(\omega, p) \right) d\omega.$$
(12)

On the other hand, if $\varphi \in C^{\infty}(X)$ is bounded we have by Schwartz [18], I, p. 45

$$[J_1\varphi](0) = \lim_{\varepsilon \to 0} \left[\int_{|x| \ge \varepsilon} |x|^{1-2n} \varphi(x) dx + \varepsilon(\varphi) \right],$$
(13)

where

$$\varepsilon(\varphi) = \sum_{k} H_{k}[\Delta^{k}\varphi](0) \frac{\varepsilon^{1-n+2k}}{1-n+2k}, \quad H_{k} = \frac{\pi^{\frac{1}{2}n}}{2^{2k-1}k! \Gamma(\frac{1}{2}n+k)}.$$

n+2k

In particular
$$[J_1((\hat{f}))](0) = \lim_{\varepsilon \to 0} \left[\Omega_n \int_{\varepsilon}^{\infty} r^{-n} F(r) dr + \varepsilon(\hat{f}) \right],$$
(14)

where F(r) is the average of $(\hat{f})^{\sim}$ on the sphere |x| = r. In order to express (14) in terms of \hat{f} we assume f is a radial function and write $\hat{f}(p)$ for $\hat{f}(\omega, p)$. Then

$$F(r) = C \int_0^{\frac{1}{2}n} \hat{f}(r \cos \theta) \sin^{n-2}\theta \, d\theta, \quad C^{-1} = \int_0^{\frac{1}{2}n} \sin^{n-2}\theta \, d\theta, \quad (15)$$

$$[\Delta^{k}(\hat{f})](0) = \left(\frac{d^{2k}}{dp^{2k}}\,\hat{f}\right)(0).$$
(16)

If $q_n(p)$ is the Taylor series of f(p) around 0 up to order n-2 we get upon substituting (15) and (16) into (14),

$$(J_1((\hat{f})^{\sim}))(0) = C\Omega_n \lim_{\epsilon \to 0} \int_0^{\frac{1}{2}\pi} \sin^{n-2}\theta \, \cos^{n-1}\theta \, d\theta \int_{\epsilon \cos\theta}^{\infty} p^{-n}(\hat{f}(p) - q_n(p)) \, dp,$$

which on comparison with (12) gives

$$f(0) = c_1 J_1((\hat{f})^{\sim})(0), \quad c_1 = \text{const.}$$
 (17)

Now put for $\varphi \in C^{\infty}(X)$, $x, y \in X$,

$$\varphi_x^*(y) = \int_K \varphi(x+ky) \, dk$$

and let us prove $[J_1 \varphi_x^*](0) = ((J_1 \varphi)_x^*)(0)$ if φ is bounded.

In view of (13) this is a consequence of the obvious formula

$$\int_{|y|\geq\varepsilon} |y|^{1-2n} \varphi_x^*(y) \, dy = \int_{|y|\geq\varepsilon} |y|^{1-2n} \varphi(x+y) \, dy$$

and the Darboux equation ([8], p. 279) $[\Delta^k \varphi_x^*](0) = [\Delta^k \varphi](x)$. Now, a direct computation shows that $((\hat{f})^*)_x^* = ((f_x^*)^*)$ for $f \in S(X)$ and since f_x^* is radial we get from (17), (18)

$$f(x) = f_x^*(0) = c_1[(J_1((\hat{f})^{\checkmark}))_x^*](0) = c_1[J_1(\hat{f})^{\checkmark}](x).$$

Finally the inversion formula for $g \in S^*(\Xi)$ would follow from the first one if we prove

$$(J_1 f)^{\hat{}} = c_0 J_2 f, \quad f \in S^*(X), \ c_0 \text{ constant.}$$
 (19)

To see this we take the one-dimensional Fourier transform on both sides. The function $J_1 f$ is the convolution of a tempered distribution with a rapidly decreasing function. Hence it is a tempered distribution (Schwartz [18], II, pp. 102, 124) whose Fourier transform is (since $f \in S^*(X)$) a function in S(X). Hence $J_1 f \in S(X)$. Similarly $(J_2 \hat{f})(\omega, p)$ is a rapidly decreasing function of p. Using the relation between the 1-dimensional and the *n*-dimensional Fourier transform ((2) § 4) and the formula for the Fourier transform of $Pf \cdot r^{\lambda}$ (Schwartz [18], II, p. 113) we find that both sides of (19) have the same Fourier transform, hence coincide. This concludes the proof.

Remark (added in proof). Alternative proofs of most of the results of \S 4 have been found subsequently by D. Ludwig.

§ 5. The geometry of compact symmetric spaces of rank one

In this section and the next one we shall study problems A, B and C for the duality between points and antipodal manifolds in compact two-point homogeneous spaces. In the present section we derive the necessary geometric facts for symmetric spaces of rank one, without use of classification.

Let X be a compact Riemannian globally symmetric space of rank one and dimension >1. Let I(X) denote the group of isometries of X in the compact open topology, $I_0(X)$ the identity component of I(X). Let o be a fixed point in X and s_o the geodesic symmetry of X with repsect to o. Let u denote the Lie algebra of I(X) and u = t + p the decomposition of u into eigenspaces of the involutive automorphism of a which corresponds to the automorphism $u \rightarrow s_o us_o$ of I(X). Here t is the Lie algebra of the subgroup K of I(X) which

165

(18)

leaves o fixed. Changing the distance function d on X by a constant factor we may, since u is semisimple, assume that the differential of the mapping $u \to u \cdot o$ of I(X) onto X gives an isometry of \mathfrak{p} (with the metric of the negative of the Killing form of u) onto X_o , the tangent space to X at o. Let L denote the diameter of X and if $x \in X$ let A_x denote the corresponding *antipodal manifold*, that is the set of points $y \in X$ at distance L from x; A_x is indeed a manifold, being an orbit of K. The geodesics in X are all closed and have length 2L and the Exponential mapping Exp at o is a diffeomorphism of the open ball in X_o of center 0 and radius L onto the complement $X - A_o$ (see [10], Ch. X, § 5).

PROPOSITION 5.1. For each $x \in X$, the antipodal manifold A_x , with the Riemannian structure induced by X, is a symmetric space of rank one, and a totally geodesic submanifold of X.

Proof. Let $y \in A_x$. Considering a geodesic in X through y and x we see that x is fixed under the geodesic symmetry s_y ; hence $s_y(A_x) = A_x$. If σ_y denotes the restriction of s_y to A_x , then σ_y is an involutive isometry of A_x with y as isolated fixed point. Thus A_x is globally symmetric and σ_y is the geodesic symmetry with respect to y. Let $t \to \gamma(t)$ ($t \in \mathbf{R}$) be a geodesic in the Riemannian manifold A_x . We shall prove that γ is a geodesic in X. Consider the isometry $s_{\gamma(t)} s_{\gamma(0)}$ and a vector T in the tangent space $X_{\gamma(0)}$. Let $\tau_r: X_{\gamma(0)} \to X_{\gamma(r)}$ denote the parallel translation in X along the curve $\gamma(\varrho)$ ($0 \leq \varrho \leq r$). Then the parallel field $\tau_r \cdot T$ ($0 \leq r \leq t$) along the curve $r \to \gamma(r)$ ($0 \leq r \leq t$) is mapped by $s_{\gamma(t)}$ onto a parallel field along the image curve $r \to s_{\gamma(t)} \gamma(r) = \sigma_{\gamma(t)} \gamma(r) = \gamma(2t-r)$ ($0 \leq r \leq t$). Since $s_{\gamma(t)}\tau_t T = -\tau_t T$ we deduce that $s_{\gamma(t)}s_{\gamma(0)} T = -s_{\gamma(t)} T = \tau_{2t} T$. In particular, the parallel transport in X along γ maps tangent vectors to γ into tangent vectors to γ . Hence γ is a geodesic in X. Consequently, A_x is a totally geodesic submanifold of X, and by the definition of rank, A_x has rank one.

Let $Z \to \operatorname{ad}(Z)$ denote the adjoint representation of \mathfrak{u} . Select a vector $H \in \mathfrak{p}$ of length L. The space $\mathfrak{a} = \mathbb{R}H$ is a Cartan subalgebra of the symmetric space X and we can select a positive restricted root α of X such that $\frac{1}{2}\alpha$ is the only other possible positive restricted roots (see [10], Exercise 8, p. 280 where Σ is by definition the set of positive restricted roots). This means that the eigenvalues of $\operatorname{ad}(H)^2$ are 0, $\alpha(H)^2$ and possibly $(\frac{1}{2}\alpha(H))^2$ ($\alpha(H)$ is purely imaginary). Let $\mathfrak{u} = \mathfrak{u}_0 + \mathfrak{u}_{\alpha} + \mathfrak{u}_{\frac{1}{2}\alpha}$ be the corresponding decomposition of \mathfrak{u} into eigenspaces and put $\mathfrak{k}_{\beta} = \mathfrak{u}_{\beta} \cap \mathfrak{k}$, $\mathfrak{p}_{\beta} = \mathfrak{u}_{\beta} \cap \mathfrak{p}$ for $\beta = 0$, α , $\frac{1}{2}\alpha$. Then $\mathfrak{p}_0 = \mathfrak{u}$ and $\mathfrak{k}_{\beta} = \operatorname{ad} H(\mathfrak{p}_{\beta})$ for $\beta \neq 0$.

PROPOSITION 5.2. Let S denote the subgroup of K leaving the point ExpH fixed, and let \hat{s} denote the Lie algebra of S. Then

- (i) $\mathfrak{S} = \mathfrak{f}_0 + \mathfrak{f}_\alpha$ if H is conjugate to 0;
- (ii) $\mathfrak{s} = \mathfrak{k}_0$ if H is not conjugate to 0;
- (iii) If $\frac{1}{2}\alpha$ is a restricted root then H is conjugate to 0.

Proof. If exp: $\mathfrak{u} \to I(X)$ is the usual exponential mapping then a vector T in \mathfrak{k} belongs to \mathfrak{k} if and only if $\exp(-H) \exp(tT) \exp(H) \in K$ for all $t \in \mathbf{R}$. This reduces to

 $T \in \mathfrak{F}$ if and only if ad $H(T) + \frac{1}{3!} (\operatorname{ad} H)^3(T) + ... = 0$.

In particular, \hat{s} is the sum of its intersections with \hat{t}_0 , \hat{t}_α and $\hat{t}_{\frac{1}{2}\alpha}$. If $T \neq 0$ in \hat{t}_β ($\beta = 0$, α , $\frac{1}{2}\alpha$) the condition above is equivalent to $\sinh(\beta(H)) = 0$. Thus (ii) is immediate ([10], Ch. VII, Prop. 3.1). To prove (i) suppose H is conjugate to 0. Whether or not $\frac{1}{2}\alpha$ is a restricted root we have by the cited result, $\alpha(H) \in \pi i \mathbb{Z}$ so $\hat{t}_\alpha \in \hat{s}$. We have also $\hat{s} \cap \hat{t}_{\frac{1}{2}\alpha} = \{0\}$ because otherwise $\frac{1}{2}\alpha(H) \in \pi i \mathbb{Z}$ which would imply that $\frac{1}{2}H$ is conjugate to 0. This proves (i). For (iii) suppose H were not conjugate to 0. The sphere in X_0 with radius 2L and center 0 is mapped by Exp onto o. It follows that the differential $d \exp_{2H}$ is 0 so using the formula for this differential ([10], page 251, formula (2)) it follows that $(\frac{1}{2}\alpha)(2H) \in \pi i \mathbb{Z}$ so $\alpha(H) \in \pi i \mathbb{Z}$ which is a contradiction.

PROPOSITION 5.3. Suppose H is conjugate to 0. Then all the geodesics in X with tangent vectors in $a + p_{\alpha}$ at o pass through the point ExpH. The manifold Exp $(a + p_{\alpha})$, with the Riemannian structure induced by that of X, is a sphere, totally geodesic in X.

Proof. Let \mathfrak{G} denote the complexification of \mathfrak{u} and B the Killing form of \mathfrak{G} . Since the various root subspaces \mathfrak{G}^{β} , \mathfrak{G}^{γ} $(\beta + \gamma \neq 0)$ are orthogonal with respect to B ([10], p. 141) it follows without difficulty (cf. [10], p. 224) that

$$B([\mathfrak{f}_0, \mathfrak{p}_{\alpha}], \mathfrak{p}_{\frac{1}{2}\alpha}) = B([\mathfrak{f}_{\alpha}, \mathfrak{p}_{\alpha}], \mathfrak{p}_{\frac{1}{2}\alpha}) = 0.$$

Also, if $Z \in \mathfrak{u}_0$ then $B([H, Z], [H, Z]) = -B(Z, (\operatorname{ad} H)^2 Z) = 0$ so \mathfrak{u}_0 equals the centralizer of H in \mathfrak{u} . Thus $[\mathfrak{k}_0, \mathfrak{a}] \approx 0$. Also $[\mathfrak{k}_{\alpha}, \mathfrak{a}] = \mathfrak{p}_{\alpha}$. Combining these relations we get

$$[\mathfrak{s},\mathfrak{a}+\mathfrak{p}_{\alpha}]\subset\mathfrak{a}+\mathfrak{p}_{\alpha}.$$

Let S_{σ} denote the identity component of S and Ad the adjoint representation of the group I(X). Then the tangent space to the orbit $Ad(S_0)H$ at the point H is $[\mathfrak{F}, \mathbb{R}H]$ which equals \mathfrak{p}_{α} , and by the relation above this orbit lies in the subspace $\mathfrak{a} + \mathfrak{p}_{\alpha}$. It follows that $Ad(S_0)H$ is the sphere in $\mathfrak{a} + \mathfrak{p}_{\alpha}$ of radius L and center 0. But if $s \in S$ the geodesic $t \to s \cdot \operatorname{Exp} tH = \operatorname{Exp}(\mathrm{Ad}(s)tH)$ passes through $\operatorname{Exp} H$ so the first statement of the proposition is proved.

By consideration of the root subspaces \mathfrak{G}^{β} as above, it is easy to see that the subspace $\mathfrak{a} + \mathfrak{p}_{\alpha}$ of \mathfrak{p} is a Lie triple system. Thus the Riemannian manifold $X_{\mathfrak{p}} = \operatorname{Exp}(\mathfrak{a} + \mathfrak{p}_{\alpha})$ is a totally geodesic submanifold of X ([10], p. 189). It is homogeneous and is mapped into itself by the geodesic symmetry s_0 of X, hence it is globally symmetric, and being totally geodesic, has rank one. If Z is a unit vector in \mathfrak{p}_{α} , the curvature of $X_{\mathfrak{p}}$ along the plane section spanned by H and Z, is (cf. [10], p. 206)

$$-L^{-2}B([H, Z), [H, Z]) = -L^{-2}\alpha(H)^2$$

But since $X_{\mathfrak{p}}$ has rank one, every plane section is congruent to one containing H; hence $X_{\mathfrak{p}}$ has constant curvature. Finally, $X_{\mathfrak{p}} - \{ \operatorname{Exp} H \}$ is the diffeomorphic image of an open ball, hence simply connected. Since dim $X_{\mathfrak{p}} > 1$ it follows that $X_{\mathfrak{p}}$ is also simply connected, hence a sphere.

PROPOSITION 5.4. The antipodal manifold A_{ExpH} is given by $A_{ExpH} = Exp(\mathfrak{p}_{\mathfrak{f}\mathfrak{a}})$ if H is conjugate to 0. $A_{ExpH} = Exp(\mathfrak{p}_{\mathfrak{a}})$ if H is not conjugate to 0.

Proof. The geodesics from $\operatorname{Exp} H$ to *o* intersect $A_{\operatorname{Exp} H}$ in *o* under a right angle (Gauss' lemma; see e.g. [1], p. 34 or [9], Theorem 3). By Propositions 5.2 and 5.3 we deduce that the tangent space $(A_{\operatorname{Exp} H})_o$ equals $\mathfrak{p}_{\frac{1}{2}\alpha}$ if *H* is conjugate to 0 and equals \mathfrak{p}_{α} if *H* is not conjugate to 0. Now use Prop. 5.1.

The next result shows that there is a kind of projective duality between points and antipodal manifolds.

PROPOSITION 5.5. Let $x, y \in X$. Then

- (i) $x \neq y$ implies $A_x \neq A_y$;
- (ii) $x \in A_y$ if and only if $y \in A_x$.

Proof. If $z \in A_x$ then the geodesics which meet A_x in z under a right angle all pass through a point z^* at distance L from z (Prop. 5.3 and Prop. 5.4); among these are the geodesics joining x and z. Hence $z^* = x$ and the result follows.

PROPOSITION 5.6. Let A(r) denote the surface area of a sphere in X of radius r (0 < r < L). Then

$$A(r) = \Omega_{p+q+1} \lambda^{-p} (2\lambda)^{-q} \sin^p(\lambda r) \sin^q(2\lambda r),$$

where $p = \dim \mathfrak{p}_{\frac{1}{2}\alpha}$, $q = \dim \mathfrak{p}_{\alpha}$, Ω_n is the area of the unit sphere in \mathbb{R}^n and

$$\lambda = \frac{1}{2L} \left| \alpha(H) \right|.$$

Proof. As proved in [8], p. 251, the area is given by

$$A(r) = \int_{||Z||=r} \det (A_Z) d\omega_r(Z), \qquad (1)$$

where $d\omega_r$ is the Euclidean surface element of the sphere ||Z|| = r in \mathfrak{p} , and

$$A_{Z} = \sum_{0}^{\infty} \frac{T_{Z}^{n}}{(2n+1)!},$$

where T_z is the restriction of $(ad Z)^2$ to p. The integrand in (1) is a radial function so

$$A(r) = \Omega_{p+q+1} \cdot r^{p+q} \cdot \det (A_{H_r}), \quad \left(H_r = \frac{r}{L} H\right).$$

Since the nonzero eigenvalues of T_{H_r} are $(\frac{1}{2}\alpha(H_r))^2$ with multiplicity p and $\alpha(H_r)^2$ with multiplicity q we obtain

$$A(r) = \Omega_{p+q+1} r^{p+q} \left(\frac{\sin \lambda r}{\lambda r}\right)^p \left(\frac{\sin 2\lambda r}{2\lambda r}\right)^q.$$

where $\lambda = \frac{1}{2} L^{-1} |\alpha(H)|$.

§ 6. Points and antipodal manifolds in two-point homogeneous spaces

Let X be a compact two-point homogeneous space, or, what is the same thing (Wang [21]) a compact Riemannian globally symmetric space of rank one. We preserve the notation of the last section and assume dim X > 1. Let G = I(X) and let Ξ be the set of all antipodal manifolds in X, with the differentiable structure induced by the transitive action of G. On Ξ we choose a Riemannian structure such that the diffeomorphism $\varphi: x \to A_x$ of X onto Ξ (see Prop. 5.5) is an isometry. Let Δ and $\hat{\Delta}$ denote the Laplace-Beltrami operators on X and Ξ , respectively. The measures μ and ν on the manifolds ξ and \check{x} (§ 1) are defined to be those induced by the Riemannian structures of X and Ξ . If $x \in X$, then by Prop. 5.5

$$\check{x} = \{\varphi(y) \mid y \in \varphi(x)\}.$$

Consequently, if g is a continuous function on Ξ ,

$$\check{g}(x) = \int_{\check{x}} g(\xi) d\nu(\xi) = \int_{y \in \varphi(x)} g(\varphi(y)) d\nu(\varphi(y)) = \int_{\varphi(x)} (g \circ \varphi) (y) d\mu(y),$$

12-652923. Acta mathematica. 113. Imprimé le 10 mai 1965.

$$\check{g} = (g \circ \varphi)^{\uparrow} \circ \varphi. \tag{1}$$

Because of this correspondence between the integral transforms $f \rightarrow \hat{f}$ and $g \rightarrow \check{g}$ it suffices to consider the first.

Problems A, B, and C now have the following answer.

- THEOREM 6.1.
- (i) The algebras $\mathbf{D}(X)$ and $\mathbf{D}(\Xi)$ are generated by Δ and $\hat{\Delta}$ respectively.
- (ii) The mapping $f \to \hat{f}$ is a linear one-to-one mapping of $C^{\infty}(X)$ onto $C^{\infty}(\Xi)$ and

 $(\Delta f)^{\hat{}} = \hat{\Delta} f.$

(iii) Except for the case when X is an even-dimensional real projective space,

$$f = P(\Delta)((f)^{\checkmark}), \quad f \in C^{\infty}(X),$$

where P is a polynomial, independent of f, explicitly given below.

Proof. Part (i) is proved in [8], p. 270. Let [M'f](x) be the average of f over a sphere in X of radius r and center x. Then

$$\hat{f}(\varphi(x)) = c[M^L f](x), \qquad (2)$$

where c is a constant. Since Δ commutes with the operator M^r ([8], Theorem 16, p. 276) we have

$$(\Delta f) \circ \varphi = \Delta (f \circ \varphi) = c M^L \Delta f = (\Delta f)^{\circ} \circ \varphi,$$

proving the formula in (ii). For (iii) we have to use the following complete list of compact Riemannian globally symmetric spaces of rank 1: The spheres S^n , (n=1, 2, ...), the real projective spaces $P^n(\mathbf{R})$, (n=2, 3, ...), the complex projective spaces $P^n(\mathbf{C})$, (n=4, 6, ...), the quaternion projective spaces $P^n(\mathbf{H})$, (n=8, 12, ...) and the Cayley projective plane $P^{16}(\text{Cay})$. The superscripts denote the real dimension. The corresponding antipodal manifolds are also known ([2], pp. 437-467, [15], pp. 35 and 52) and are in the respective cases: A point, $P^{n-1}(\mathbf{R})$, $P^{n-2}(\mathbf{C})$, $P^{n-4}(\mathbf{H})$, and S^8 . For the lowest dimensions, note that $P^1(\mathbf{R}) = S^1$, $P^2(\mathbf{C}) = S^2$, $P^4(\mathbf{H}) = S^4$. Let $A_1(r)$ denote the area of a sphere of radius r in an antipodal manifold in X. Then by Prop. 5.6,

$$A_1(r) = C_1 \sin^{p_1}(\lambda_1 r) \sin^{q_1}(2\lambda_1 r),$$

where C_1 is a constant and p_1, q_1, λ_1 are the numbers p, q, λ for the antipodal manifold.

170

so

The multiplicities p and q are determined in Cartan [2], and show that $\frac{1}{2}\alpha$ is a restricted root unless X is a sphere or a real projective space. Ignoring these exceptions we have by virtue of the results of § 5:

 $L = \text{diameter } X = \text{diameter } A_x$

=distance of 0 to the nearest conjugate point in X_0

= smallest number M > 0 such that $\lim_{r \to M} A(r) = 0$.

We can now derive the following list:

$$\begin{split} &X = \mathbf{S}^{n}: \ p = 0, \ q = n - 1, \ \lambda = \pi/2L, \ A(r) = C \sin^{n-1}(2\lambda r), \ A_{1}(r) \equiv 0. \\ &X = \mathbf{P}^{n}(\mathbf{R}): \ p = 0, \ q = n - 1, \ \lambda = \pi/4L, \ A(r) = C \sin^{n-1}(2\lambda r), \ A_{1}(r) = C_{1} \sin^{n-2}(2\lambda r). \\ &X = \mathbf{P}^{n}(\mathbf{C}): \ p = n - 2, \ q = 1, \ \lambda = \pi/2L, \ A(r) = C \sin^{n-2}(\lambda r) \sin((2\lambda r), \ A_{1}(r) = C_{1} \sin^{n-4}(\lambda r) \sin((2\lambda r)). \\ &X = \mathbf{P}^{n}(\mathbf{H}): \ p = n - 4, \ q = 3, \ \lambda = \pi/2L, \ A(r) = C \sin^{n-4}(\lambda r) \sin^{3}(2\lambda r), \\ &A_{1}(r) = C_{1} \sin^{n-8}(\lambda r) \sin^{3}(2\lambda r). \\ &X = \mathbf{P}^{16}(\mathbf{Cay}): \ p = 8, \ q = 7, \ \lambda = \pi/2L, \ A(r) = C \sin^{8}(\lambda r) \sin^{7}(2\lambda r), \ A_{1}(r) = C_{1} \sin^{7}(2\lambda r). \end{split}$$

In each case, C and C₁ are constants, not necessarily the same for all cases. Now if $x \in X$ and $f \in C^{\infty}(X)$ let [If](x) denote the average of the integrals of f over the antipodal manifolds which pass through x. Then $(\hat{f})^{\sim}$ is a constant multiple of If. Fix a point $o \in X$ and let K be the subgroup of G leaving o fixed. Let ξ_o be a fixed antipodal manifold through o and let $d\sigma$ be the volume element on ξ_o . Then

$$[If](g \cdot o) = \int_{\mathcal{K}} \left(\int_{\xi_o} f(gk \cdot y) \, d\sigma(y) \right) \, dk = \int_{\xi_o} [M^r f](g \cdot o) \, d\sigma(y),$$

where r is the distance d(o, y) in the space X between the points o and y. Now if d(o, y) < Lthere is a unique geodesic in X of length d(o, y) joining o to y and since ξ_o is totally geodesic, d(o, y) is also the distance between o and y in ξ_o . Hence, using geodesic polar coordinates in the last integral we find

$$[If](x) = \int_0^L A_1(r) [M^r f](x) dr.$$
(3)

In geodesic polar coordinates on X, the Laplace-Beltrami operator Δ equals $\Delta_r + \Delta'$ where Δ' is the Laplace-Beltrami operator on the sphere in X of radius r and ([10], p. 445)

$$\Delta_r = \frac{d^2}{dr^2} + \frac{1}{A(r)} \frac{dA}{dr} \frac{r}{dr} \quad (0 < r < L).$$

The function $(x, r) \rightarrow [M^r f](x)$ satisfies

$$\Delta M^r f = \Delta_r (M^r f) \tag{4}$$

([8], p, 279 or [6]). Using Prop. 5,6, we have

$$\Delta_r = \frac{\partial^2}{\partial r^2} + \lambda(p \cot(\lambda r) + 2q \cot(2\lambda r)) \frac{\partial}{\partial r} \quad (0 < r < L)$$
(5)

(compare also [7], p. 302). Now (iii) can be proved on the basis of (3) (4) (5) by the method in [8], p. 285, where the case $\mathbf{P}^n(\mathbf{R})$ (*n* odd) is settled. The case $X = \mathbf{S}^n$ being trivial we shall indicate the details for $X = \mathbf{P}^n(\mathbf{C})$, $\mathbf{P}^n(\mathbf{H})$ and $\mathbf{P}^{16}(\mathbf{Cay})$.

LEMMA 6.2. Let $X = \mathbf{P}^n(\mathbf{C})$, $f \in C^{\infty}(X)$. If m is an even integer, $0 \le m \le n-4$ then

$$(\Delta - \lambda^2 (n - m - 2) (m + 2)) \int_0^L \sin^m (\lambda r) \sin (2\lambda r) [M^r f] (x) dr$$
$$= -\lambda^2 (n - m - 2) m \int_0^L \sin^{m-2} (\lambda r) \sin (2\lambda r) [M^r f] (x) dr.$$

For m=0 the right-hand side should be replaced by

$$-2\lambda(n-2)f(x).$$

LEMMA 6.3. Let $X = \mathbf{P}^n(\mathbf{H})$, $f \in C^{\infty}(X)$. Let m be an even integer, $0 < m \le n-8$. Then

$$\begin{aligned} (\Delta - \lambda^2 (n - m - 4) \ (m + 6)) \ \int_0^L \sin^m (\lambda r) \ \sin^3 \ (2\lambda r) \ [M^r f] \ (x) \ dr \\ = - \lambda^2 (n - m - 4) \ (m + 2) \ \int_0^L \sin^{m - 2} (\lambda r) \ \sin^3 \ (2\lambda r) \ [M^r f] \ (x) \ dr. \end{aligned}$$

Also

$$(\Delta - 4\lambda^{2}(n-4))(\Delta - 4\lambda^{2}(n-2))\int_{0}^{L}\sin^{3}(2\lambda r)[M^{r}f](x)dr = 16\lambda^{3}(n-2)(n-4)f(x).$$

LEMMA 6.4. Let $X = \mathbf{P}^{16}(\mathbf{Cay}), f \in C^{\infty}(X)$. Let m > 1 be an integer. Then

$$\begin{aligned} (\Delta - 4\,\lambda^2 m\,(11 - m)) & \int_0^L \sin^m(2\lambda r)\,[M^r f]\,(x)\,dr \\ &= -32\,\lambda^2(m - 1)\,\int_0^L \sin^{m - 2}(2\lambda r)\,\cos^2\left(\lambda r\right)\,[M^r f]\,(x) \\ &+ 4\,\lambda^2(m - 1)\,(m - 7)\,\int_0^L \sin^{m - 2}(2\lambda r)\,[M^r f]\,(x)\,dr\,; \\ (\Delta - 4\,\lambda^2(m + 1)\,(10 - m))\,\int_0^L \sin^m\left(2\lambda r\right)\,\cos^2\left(\lambda r\right)\,[M^r f]\,(x)\,dr \\ &= 4\,\lambda^2(3\,m - 5)\,\int_0^L \sin^m\left(2\lambda r\right)\,[M^r f]\,(x)\,dr \\ &+ 4\,\lambda^2(m - 1)\,(m - 15)\,\int_0^L \sin^{m - 2}(2\lambda r)\,\cos^2\left(\lambda r\right)\,[M^r f]\,(x)\,dr. \end{aligned}$$

Iteration of these lemmas gives part (iii) of Theorem 6.1 where the polynomial $P(\Delta)$ has degree equal to one half the dimension of the antipodal manifold and is a constant multiple of

1 (the identity),	$X = \mathbf{S}^n$
$(\Delta -\varkappa (n-2)1)(\Delta -\varkappa (n-4)3)(\Delta -\varkappa 1(n-2)),$	$X = \mathbf{P}^n(\mathbf{R})$
$(\Delta -\varkappa (n-2)2)(\Delta -\varkappa (n-4)3)(\Delta -\varkappa 2(n-2)),$	$X = \mathbf{P}^n(\mathbf{C})$
$[(\Delta -\varkappa (n-2)4)(\Delta -\varkappa (n-4)6)\dots (\Delta -\varkappa 8(n-6))][(\Delta -\varkappa 4(n-4))(\Delta -\varkappa 4(n-2))],$	$X = \mathbf{P}^n(\mathbf{H})$
$(\Delta-112\varkappa)^2(\Delta-120\varkappa)^2,$	$X = \mathbf{P^{16}(Cay)}$

In each case $\varkappa = (\pi/2L)^2$.

Finally, we prove part (ii). From (1) and (2) we derive

$$M^L M^L f = c^{-2}(\hat{f})$$

so, if X is not an even-dimensional projective space, f is a constant multiple of $M^L P(\Delta) M^L f$ which shows that $f \rightarrow \hat{f}$ is one-to-one and onto. For the even-dimensional projective space a formula relating f and $(\hat{f})^{\checkmark}$ is given by Semyanistyi [20]. In particular, the mapping $f \rightarrow \hat{f}$ is one-to-one. To see that it is onto, let (φ_n) be the eigenfunctions of Δ . Then each φ_n is an eigenfunction of M^L ([10], Theorem 7.2, Ch. X). Since the eigenvalue is ± 0 by the above it is clear that no measure on X can annihilate all of $M^L(C^{\infty}(X))$. This finishes the proof of Theorem 6.1.

Added in proof. Theorem 6.1 shows that f = constant implies f = constant. For $\mathbf{P}^n(\mathbf{R})$ we thus obtain a (probably known) corollary.

Corollary. Let B be an open set in \mathbb{R}^{n+1} , symmetric and starshaped with respect to 0, bounded by a hypersurface. Assume area $(B \cap P) = \text{constant for all hyperplanes } P$ through 0. Then B is an open ball.

§ 7. Differential operators on the space of p-planes

Let p and n be two integers such that $0 \le p \le n$. A p-plane E_p in \mathbb{R}^n is by definition a translate of a p-dimensional vector subspace of \mathbb{R}^n . The 0-planes are just the points of \mathbb{R}^n . The p-planes in \mathbb{R}^n form a manifold G(p, n) on which the group $\mathbf{M}(n)$ of all isometries of \mathbb{R}^n acts transitively. Let $\mathbf{O}(k)$ denote the orthogonal group in \mathbb{R}^k and let $G_{p,n}$ denote the manifold $\mathbf{O}(n)/\mathbf{O}(p) \times \mathbf{O}(n-p)$ of p-dimensional subspaces of \mathbb{R}^n . The manifold $\mathbf{G}(p, n)$ is a fibre bundle with base space $\mathbf{G}_{p,n}$, the projection π of $\mathbf{G}(p, n)$ onto $\mathbf{G}_{p,n}$ being the mapping which to any p-plane $E_p \in \mathbf{G}(p, n)$ associates the parallel p-plane through the origin. Thus

the fibre of this bundle $(G(p, n), G_{p,n}, \pi)$ is \mathbb{R}^{n-p} . If F denotes an arbitrary fibre and $f \in C^{\infty}(G(p, n))$ then the restriction of f to F will be denoted $f \mid F$. Consider now the linear transformation \Box_p of $C^{\infty}(G(p, n))$ given by

$$(\Box_p f) \mid F = \Delta_F(f \mid F), \quad f \in C^{\infty}(\mathbf{G}(p, n)),$$

for each fibre F, Δ_F denoting the Laplacian on F. It is clear that \square_p is a differential operator on G(p, n). For simplicity we usually write \square instead of \square_p .

LEMMA 7.1.

(i) The operator \square_p is invariant under the action of $\mathbf{M}(n)$ on $\mathbf{G}(p, n)$.

(ii) Each differential operator on G(p, n) which is invariant under $\mathbf{M}(n)$ is a polynomial in \Box_p .

Proof. We recall that if φ is an isometry of a Riemannian manifold M_1 onto a Riemannian manifold M_2 and if Δ_1 , Δ_2 are the corresponding Laplace-Beltrami operators then (cf. [10], p. 387)

$$(\Delta_1 f^{\varphi^{-1}}) = \Delta_2 f, \quad f \in C^{\infty}(\mathcal{M}_2).$$

$$\tag{1}$$

Now each isometry $g \in \mathbf{M}(n)$ induces a fibre-preserving diffeomorphism of $\mathbf{G}(p, n)$, preserving the metric on the fibres. Let $f \in C^{\infty}(\mathbf{G}(p, n))$ and F any fibre. Writing for simplicity \Box instead of \Box_p we get from (1)

 $(\Box^{g}f) \left| F = (\Box^{f^{g^{-1}}})^{g} \right| F = ((\Box^{f^{g^{-1}}}) \left| g^{-1} \cdot F \right|)^{g} = (\Delta_{g^{-1}F} (f^{g^{-1}} \mid g^{-1}F))^{g} = \Delta_{F} (f \mid F) = (\Box^{f}) \left| F, \right|$

so $\square^{g} = \square$, proving (i).

Let E_p^o be a fixed p-plane in \mathbb{R}^n , say the one spanned by the p first unit coordinate vectors, $Z_1, ..., Z_p$. The subgroup of $\mathbb{M}(n)$ which leaves E_p^o invariant can be identified with the product group $\mathbb{M}(p) \times \mathbb{O}(n-p)$. For simplicity we put $G = \mathbb{M}(n)$, $H = \mathbb{M}(p) \times \mathbb{O}(n-p)$ and let \mathfrak{G} and \mathfrak{h} denote the corresponding Lie algebras. If \mathfrak{M} is any subspace of \mathfrak{G} such that $\mathfrak{G} = \mathfrak{M} + \mathfrak{h}$ (direct sum) and $\operatorname{Ad}_G(h) \mathfrak{M} \subset \mathfrak{M}$ for each $h \in H$ then we know from [8] Theorem 10 that the G-invariant differential operators on the space $G/H = \mathbb{G}(p, n)$ are directly given by the polynomials on \mathfrak{M} which are invariant under the group $\operatorname{Ad}_G(H)$. Let $\mathfrak{o}(k)$ denote the Lie algebra of $\mathbb{O}(k)$. Then \mathfrak{G} is the vector space direct sum of $\mathfrak{o}(n)$ and the abelian Lie algebra \mathbb{R}^n . Also if $T \in \mathfrak{o}(n), X \in \mathbb{R}^n$ then the bracket [T, X] in \mathfrak{G} is $[T, X] = T \cdot X$ (the image of Xunder the linear transformation T). The Lie algebra \mathfrak{h} is the vector space direct sum of $\mathfrak{o}(p), \mathfrak{o}(n-p)$ and $\mathbb{R}^p(=E_p^o)$; we write this in matrix-vector form

$$\mathfrak{H} = \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} + \begin{pmatrix} V \\ 0 \end{pmatrix} \middle| A \in \mathfrak{o}(p), B \in \mathfrak{o}(n-q), V \in E_p^o \right\}.$$

For \mathfrak{M} we choose the subspace

THE RADON TRANSFORM ON EUCLIDEAN SPACES

$$\mathfrak{M} = \left\{ \begin{pmatrix} 0 & X \\ -tX & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ Z \end{pmatrix} \middle| \begin{array}{c} X \text{ any } p \times (n-p) \text{ matrix, } {}^{t}X \\ \text{its transpose, } Z \in \mathbb{R}^{n-p} \end{array} \right\}$$

Then it is clear that $\mathfrak{G} = \mathfrak{h} + \mathfrak{M}$, Let $a \in \mathfrak{O}(p)$, $b \in \mathfrak{O}(n-p)$, $V \in E_p^{\circ}$. Then

$$\operatorname{Ad}_{G}\begin{pmatrix}a&0\\0&b\end{pmatrix}\cdot\left[\begin{pmatrix}0&X\\-{}^{t}X&0\end{pmatrix}+\begin{pmatrix}0\\Z\end{pmatrix}=\begin{pmatrix}a&0\\0&b\end{pmatrix}\begin{pmatrix}0&X\\-{}^{t}X&0\end{pmatrix}\begin{pmatrix}a^{-1}&0\\0&b^{-1}\end{pmatrix}+\begin{pmatrix}a&0\\0&b\end{pmatrix}\begin{pmatrix}0\\Z\end{pmatrix}\\=\begin{pmatrix}0&aXb^{-1}\\-b{}^{t}Xa&0\end{pmatrix}+\begin{pmatrix}0\\bZ\end{pmatrix}.$$
(2)

$$\operatorname{Ad}_{G}\begin{pmatrix}V\\0\end{pmatrix}\cdot\left[\begin{pmatrix}0&X\\-{}^{t}X&0\end{pmatrix}+\begin{pmatrix}0\\Z\end{pmatrix}\right]=\begin{pmatrix}0&X\\-{}^{t}X&0\end{pmatrix}+\begin{pmatrix}0\\Z+{}^{t}XV\end{pmatrix}.$$
(3)

It follows immediately that $\operatorname{Ad}_{G}(h)\mathfrak{M} \subset \mathfrak{M}$ for all $h \in H$. Now let as usual E_{ij} denote the matrix $(\delta_{ai}\delta_{bj})_{1\leq a,b\leq n}$, put $X_{ij} = E_{ip+j} - E_{p+ji}$ $(1\leq i\leq p, 1\leq j\leq n-p)$ and let $Z_{k}(p+1\leq k\leq n)$ denote the kth coordinate vector in \mathbb{R}^{n} . Then $\{X_{ij}, Z_{k}\}$ is a basis of \mathfrak{M} . Any element q in the symmetric algebra $S(\mathfrak{M})$ over \mathfrak{M} can be written as a finite sum

$$q(X_{11}, ..., X_{pn-p}, Z_{p+1}, ..., Z_n) = \sum_{i} r_i(Z_{p+1}, ..., Z_n) s_i(X_{11}, ..., X_{pn-p}),$$

where the r_i and s_i are polynomials. Suppose q is homogeneous of degree m (say) and invariant under $\operatorname{Ad}_G(H)$. From (2) and (3) for X=0 we see that a polynomial in Z_{p+1}, \ldots, Z_n is invariant under $\operatorname{Ad}_G(H)$ if and only if it is a polynomial in $|Z|^2 = Z_{p+1}^2 + \ldots + Z_n^2$. Hence the invariant polynomial q can be written

$$q = \sum_{r=0}^{\left[\frac{1}{2}m\right]} |Z|^{2r} q_r(X_{11}, \dots, X_{pn-p}),$$
(4)

where q_r is homogeneous of degree m-2r. Now, by (3), q is invariant under the substitution T(v): $X_{ij} \rightarrow X_{ij} + v_i Z_{p+j}$ $(v_1, ..., v_p$ being any real numbers, and $1 \leq i \leq p, 1 \leq j \leq n-p$. We can write

$$q_r(X_{11}+v_1Z_{p+1},\ldots,X_{pn-p}+v_pZ_n) = \sum_{(s)} a_{r,s_1},\ldots,s_p \otimes v_1^{s_1}\ldots v_p^{s_p},$$

where \otimes denotes the tensor product (over **R**) of the polynomial rings **R**[$X_{11}, ..., Z_n$] and **R**[$v_1, ..., v_p$]. Using (4) and the invariance of q we obtain

$$\sum_{r,(s)} |Z|^{2r} a_{r,s_1,\ldots,s_p} \otimes v_1^{s_1} \ldots v_p^{s_p} = \sum_r a_{r,0,\ldots,0}.$$

$$\sum_r |Z|^{2r} a_{r,s_1,\ldots,s_p} = 0 \quad \text{if} \ s_1 + \ldots + s_p > 0, \qquad (5)$$

It follows that

and since
$$a_{r, s_1, ..., s_p}$$
 has degree $s_1 + ... + s_p$ in the Z_i (5) implies $a_{r, s_1, ..., s_p} = 0$ for $s_1 + ... + s_p > 0$,
whence each q_r is invariant under the substitution $T(v)$ above. This implies easily that each

 q_r is a constant. Thus the elements $q \in S(\mathfrak{M})$ invariant under $\operatorname{Ad}_G(H)$ are the polynomials in $|Z|^2$. By [8], Theorem 10, the polynomial $|Z|^2$ induces a *G*-invariant differential operator D on G/H such that for each $f \in C^{\infty}(G/H)$,

$$[Df](E_{p}^{o}) = \left\{ \left(\frac{\partial^{2}}{\partial t_{p+1}^{2}} + \dots + \frac{\partial^{2}}{\partial t_{n}^{2}} \right) f((t_{p+1} Z_{p+1} + \dots + t_{n} Z_{n}) \cdot E_{p}^{o}) \right\}_{t=0}.$$
 (6)

Thus $[Df](E_p^o) = [\Box f](E_p^o)$ and since D and \Box are both G-invariant, $D = \Box$. Now (ii) follows from [8], Cor. p. 269.

§ 8. *p*-planes and *q*-planes in \mathbb{R}^{p+q+1}

The notation being as in the preceeding section put q=n-p-1. Let $G^*(p, n)$ and $G^*(q, n)$, respectively, denote the sets of *p*-planes and *q*-planes in \mathbb{R}^n not passing through the origin. The projective duality between points and hyperplanes in \mathbb{R}^n , realized by the polarity with respect to the unit sphere S^{n-1} generalizes to a duality between $G^*(p, n)$ and $G^*(q, n)$. In fact, if $a \pm 0$ in \mathbb{R}^n , let $E_{n-1}(a)$ denote the polar hyperplane. If a runs through a *p*-plane $E_p \in G^*(p, n)$ then the hyperplanes $E_{n-1}(a)$ intersect in a unique *q*-plane $E_q \in G^*(q, n)$ and the mapping $E_p \rightarrow E_q$ is the stated duality.

We have now an example of the framework in § 1. Let X = G(p, n), put $G = \mathbf{M}(n)$, acting on X. Given a q-plane E_q consider the family $\xi = \xi(E_q)$ of p-planes intersecting E_q . If $E'_q \neq E''_q$ then $\xi(E'_q) \neq \xi(E''_q)$; thus the set of all families ξ —the dual space Ξ —can be identified with G(q, n). In accordance with this identification, if $E_p = x \in X$ then $\check{x} = \check{x}(E_p)$ is the set of q-planes intersecting x. Because of convergence difficulties we do not define the measures μ and ν (§ 1) directly but if f is any function on G(p, n) we put

$$f(E_q) = \int_{E_q} \left(\int_{a \in E_p} f(E_p) \, d\sigma_p(E_p) \right) \, d\mu_q(a),$$

whenever these integrals exist. Here $d\sigma_p$ is the invariant measure on the Grassmann manifold of *p*-planes through *a* with total measure 1, $d\mu_q$ is the Euclidean measure on E_q . The transform $g \rightarrow \check{g}$ is defined by interchanging *p* and *q* in the definition of \mathring{f} . It is convenient to consider the operators M_p and L_q defined by

$$[M_p f](a) = \int_{a \in E_p} f(E_p) \, d\sigma_p(E_p), \quad f \in C^{\infty}(\mathbf{G}(p, n)) \tag{1}$$

$$[L_q F](E_q) = \int_{E_q} F(a) d\mu_q(a), \qquad F \in \mathcal{S}(\mathbb{R}^n).$$
⁽²⁾

Then we have, formally, $f = L_q M_p f$.

LEMMA 8.1.

- (i) M_p maps $C^{\infty}(\mathbf{G}(p, n))$ into $C^{\infty}(\mathbf{R}^n)$ and $M_p \square_p = \Delta M_p$.
- (ii) L_q maps $S(\mathbb{R}^n)$ into $C^{\infty}(G(q, n))$ and $L_q \Delta = \Box_q L_q$.

Proof. (i) Put $K = \mathbf{0}(n) \subset \mathbf{M}(n) = G$. For $f \in C^{\infty}(\mathbf{G}(p, n))$ let $f^* \in C^{\infty}(G)$ be determined by $f^*(g) = f(g \cdot E_p^{\alpha}), (g \in G)$. Then for a suitably normalized Haar measure dk on K we have

$$\int_{\mathcal{K}} f^*(gk) \, dk = [M_{\mathcal{P}} f] \, (g \cdot 0),$$

which shows that $M_p f \in C^{\infty}(\mathbf{R}^n)$.

For each $X \in \mathfrak{G}$, let \tilde{X} denote the left invariant vector field on G satisfying $\tilde{X}_e = X$. Since $\mathbb{R}^n \subset \mathfrak{G}$ we can consider the left invariant differential operator $\tilde{\Delta} = \sum_{i=1}^n \tilde{Z}_i^2$ on G. If $k \in K$, $\operatorname{Ad}_G(k)$ leaves the subspace $\mathbb{R}^n \subset \mathfrak{G}$ and the polynomial $\sum_{i=1}^n Z_i^2$ invariant. Hence, if R(k) denotes the right translation $g \to gk$ on G,

$$(\tilde{\Delta})^{R(k)} = \sum_{i=1}^{n} ((\tilde{Z_i})^{R(k)})^2 = \sum_{i=1}^{n} ((\operatorname{Ad}_G(k^{-1}) Z_i)^{\tilde{}})^2 = \sum_{i=1}^{n} \tilde{Z_i^2}$$

so $\tilde{\Delta}$ is invariant under R(k). If $F \in C^{\infty}(\mathbb{R}^n)$ let $\tilde{F} \in C^{\infty}(G)$ be determined by $\tilde{F}(g) = F(g \cdot 0)$ for $g \in G$. Then (cf. [10], p. 392, equation (16))

$$\begin{bmatrix} \tilde{\Delta} \ \tilde{F} \end{bmatrix} (g) = \left\{ \frac{\partial^2}{\partial t_1^2} + \dots + \frac{\partial^2}{\partial t_n^2} \ \tilde{F}(g \exp(t_1 Z_1 + \dots + t_n Z_n)) \right\}_{t=0}$$
$$= \left\{ \frac{\partial^2}{\partial t_1^2} + \dots + \frac{\partial^2}{\partial t_n^2} \ F(g \cdot (t_1 Z_1 + \dots + t_n Z_n)) \right\}_{t=0}$$
$$= [\Delta F^{g-1}] (0) = [\Delta F] (g \cdot 0)$$

by (1) § 7, that is

$$\tilde{\Delta} \tilde{F} = (\Delta F)^{\tilde{}}, \quad F \in C^{\infty}(\mathbb{R}^{n}).$$

$$(M_{p}f)^{\tilde{}} = \int_{R} (f^{*})^{R(k)} dk$$
(3)

Since

and $(\tilde{\Delta})^{R(k)} = \tilde{\Delta}$ it follows from (3) that

$$(\Delta M_p f)^{-} = \int_{K} (\tilde{\Delta} f^*)^{R(k)} dk$$
$$[\Delta M_p f] (g \cdot 0) = \int_{K} \left\{ \left(\frac{\partial^2}{\partial t_1^2} + \dots + \frac{\partial^2}{\partial t_n^2} \right) \left(f^* (gk \exp (t_1 Z_1 + \dots + t_n Z_n)) \right) \right\}_{t=0} dk$$
$$= \int_{K} \left\{ \left(\frac{\partial^2}{\partial t_{p+1}^2} + \dots + \frac{\partial^2}{\partial t_n^2} \right) f(gk \exp (t_{p+1} Z_{p+1} + \dots + t_n Z_n) \cdot E_p^o) \right\}_{t=0} dk.$$

This shows that

$$[\Delta M_p f] (g \cdot 0) = \int_{\mathcal{K}} [\Box_p f] (gk \cdot E_p^o) dk = \int_{\mathcal{K}} (\Box_p f)^* (gk) dk = [M_p \Box_p f] (g \cdot 0)$$

proving (i). For (ii) let V_q denote the q-plane through 0, parallel to E_q , and let X_1, \ldots, X_q , \ldots, X_n be an orthogonal basis of \mathbb{R}^n such that $X_i \in V_q$ $(1 \le i \le q)$. The orthogonal projection of 0 onto E_q has the form $s_{q+1}X_{q+1} + \ldots + s_nX_n$ and

$$[L_q F](E_q) = \int F(t_1 X_1 + \ldots + t_q X_q + \ldots + s_n X_n) dt_1 \ldots dt_q$$

so

$$\begin{bmatrix} \Box_q L_q F \end{bmatrix} (E_q) = \left\{ \frac{\partial^2}{\partial t_{q+1}^2} + \dots + \frac{\partial^2}{\partial t_n^2} \left(L_q F((t_{q+1} X_{q+1} + \dots + t_n X_n) \cdot E_q)) \right\}_{t=0} \\ \vdots \\ = \int \left(\frac{\partial^2}{\partial s_{q+1}^2} + \dots + \frac{\partial^2}{\partial s_n^2} \right) (F(t_1 X_1 + \dots + s_n X_n) dt_1 \dots dt_q) = \int_{E_q} [\Delta F] (x) d\mu_q(x)$$

since $\partial^2 F / \partial t_i^2$ ($1 \le i \le q$) gives no contribution. This proves (ii).

Let $S^*(\mathbb{R}^n)$ be as in § 4 and let $\mathcal{L}_{p,n}$ be the subspace $L_p(S^*(\mathbb{R}^n))$ of $C^{\infty}(\mathbb{G}(p,n))$.

THEOREM 8.2. Suppose n odd. The transform $f \rightarrow \hat{f}$ is a linear one-to-one mapping of $\mathcal{L}(G(p, n))$ onto $\mathcal{L}(G(q, n))$ such that

where c is a constant $\neq 0$, independent of f.

Proof. Let $r = (x_1^2 + ... + x_n^2)^{1/2}$ and λ a complex number whose real part Re λ is > -n. Then the function r^{λ} is a tempered distribution on \mathbb{R}^n and so is its Fourier transform, say R_{λ} . If $\varphi \in S(\mathbb{R}^n)$ the convolution $R_{\lambda} \times \varphi$ is a tempered distribution ([18], II, p. 102) whose Fourier transform is the product of the Fourier transforms of φ and R_{λ} . If $\varphi \in S^*(\mathbb{R}^n)$ then this product lies in $S_0(\mathbb{R}^n)$ so the operator $\Lambda_{\lambda}: \varphi \to R_{\lambda} \times \varphi$ maps the space $S^*(\mathbb{R}^n)$ into itself. Also if λ, μ are complex numbers such that Re λ , Re μ and Re $(\lambda + \mu)$ all are > -n then $\Lambda_{\lambda+\mu} = \Lambda_{\lambda}\Lambda_{\mu}$. In particular, $(\Lambda_2 \varphi)^{\tilde{}} = (2\pi)^n r^2 \tilde{\varphi} = -(2\pi)^n (\Delta \varphi)^{\tilde{}}$ so

We shall now verify that

 $\Lambda_2 = -(2\pi)^n \Delta, \quad \Lambda_0 = I.$

$$\boldsymbol{M}_{d} \boldsymbol{L}_{d} \boldsymbol{F} = \boldsymbol{\gamma}_{d} \boldsymbol{R}_{-d} \times \boldsymbol{F}, \quad \boldsymbol{F} \in \boldsymbol{S} \left(\mathbf{R}^{n} \right), \quad \boldsymbol{0} \leq d < n, \tag{4}$$

where d is an integer and γ_d is a constant ± 0 . For this let $d\omega_k$ be the surface element of the unit sphere in \mathbb{R}^k and put $\Omega_k = \int d\omega_k$. Let $g \in G$ and $x = g \cdot 0$. If d = 0, (4) is obvious so assume 0 < d < n. Then for a fixed d-plane E_d through 0

THE RADON TRANSFORM ON EUCLIDEAN SPACES

$$\begin{bmatrix} M_d L_d F \end{bmatrix}(x) = \int_{\mathcal{K}} dk \int_{\mathcal{E}_d} F(gk \cdot z) \, dz = \int_{\mathcal{E}_d} dz \int_{\mathcal{K}} F(gk \cdot z) \, dk$$
$$= \int_0^\infty \Omega_d \, r^{d-1} dr \left\{ \frac{1}{\Omega_n} \int_{|y|=1} F(x+ry) \, d\omega_{n-1}(y) \right\} = \frac{\Omega_d}{\Omega_n} \int F(y) \, |x-y|^{d-n} \, dy$$

and since R_{-d} is a constant multiple of r^{d-n} ([18], II, p. 113) (4) follows. As an immediate consequence of (4) we have

$$\Lambda_{d} M_{d} L_{d} \varphi = M_{d} L_{d} \Lambda_{d} \varphi = \gamma_{d} \varphi, \quad \varphi \in \mathbf{S}^{*} (\mathbf{R}^{n}), \quad (0 \leq d < n).$$
(5)

Now let $f \in \mathcal{L}_{p,n}$. Then $f = L_p \varphi$ for $\varphi \in S^*(\mathbb{R}^n)$ and $\hat{f} = L_q M_p f = L_q M_p L_p \varphi \in \mathcal{L}_{q,n}$ since $M_p L_p \varphi \in S^*(\mathbb{R}^n)$. If $\hat{f} = 0$ then $0 = M_q \hat{f} = M_q L_q M_p L_p \varphi = \Lambda_{-q-p} \varphi$ so f = 0. Similarly, if $F \in \mathcal{L}_{q,n}$ then $F = L_q \Phi$ for $\Phi \in S^*(\mathbb{R}^n)$ and by (5), $F = L_q M_p L_p \varphi$ for $\varphi \in S^*(\mathbb{R}^n)$ so $F = (L_p \varphi)^{\uparrow}$. This shows that $f \to \hat{f}$ is an isomorphism of $\mathcal{L}_{p,n}$ onto $\mathcal{L}_{q,n}$. Also, by Lemma 8.1,

$$(\Box_p f)^{\wedge} = L_q M_p \Box_p f = L_q \Delta M_p f = \Box_q L_q M_p f = \Box_q f.$$

Since p+q=n-1 is even we have

$$\Lambda_p \Lambda_q = (\Lambda_2)^{\frac{1}{2}(n-1)} = ((-2\pi)^n)^{\frac{1}{2}(n-1)} \Delta^{\frac{1}{2}(n-1)} = c_n \Delta^{\frac{1}{2}(n-1)}$$

the last equation defining c_n . Let $f \in \mathcal{L}_{p,n}$, $f = L_p \varphi$, $\varphi \in S^*(\mathbb{R}^n)$. Then, using Lemma 8.1, and (5)

$$(f)^{\checkmark} = L_p M_q f = L_p M_q L_q M_p L_p \varphi,$$
$$(\square_p)^{\frac{1}{2}(n-1)} (f)^{\checkmark} = L_p \Delta^{\frac{1}{2}(n-1)} M_q f = c_n^{-1} L_p \Lambda_p \Lambda_q M_q L_q M_p L_p \varphi$$
$$= c_n^{-1} \gamma_q L_p \Lambda_p M_p L_p \varphi = c_n^{-1} \gamma_q \gamma_p L_p \varphi = c_n^{-1} \gamma_p \gamma_q f.$$

References

- AMBROSE, W., The Cartan structure equations in classical Riemannian geometry. J. Indian Math. Soc., 24 (1960), 23-76.
- [2]. CARTAN, É., Sur certaines formes riemanniennes remarquables des géométries a groupe fondamental simple. Ann. Sci. École Norm. Sup., 44 (1927), 345–467.
- [3]. FRIEDMAN, A., Generalized functions and partial differential equations. Prentice Hall, N.J. 1963.
- [4]. FUGLEDE, B., An integral formula. Math. Scand., 6 (1958), 207-212.

...

- [5]. GELFAND, I. M., GRAEV, M. I. & VILENKIN, N., Integral Geometry and its relation to problems in the theory of Group Representations. Generalized Functions, Vol. 5, Moscow 1962.
- [6]. GÜNTHER, P., Über einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen 2. Ordnung. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 102 (1957), 1–50.
- [7]. HARISH-CHANDRA, Spherical functions on a semisimple Lie group I. Amer. J. Math., 80 (1958), 241-310.

- [8]. HELGASON, S., Differential operators on homogeneous spaces. Acta Math., 102 (1959), 239-299.
- [9]. —, Some remarks on the exponential mapping for an affine connection. Math. Scand., 9 (1961), 129-146.
- [10]. ----, Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962.
- [11]. —, A duality in integral geometry; some generalizations of the Radon transform. Bull. Amer. Math. Soc., 70 (1964), 435-446.
- [12]. HÖRMANDER, L., On the theory of general partial differential operators. Acta Math., 94 (1955), 161-248.
- [13]. JOHN, F., Bestimmung einer Funktion aus ihren Integralen über gewisse Mannigfaltigkeiten. Math. Ann., 100 (1934), 488-520.
- [14]. —, Plane waves and spherical means, applied to partial differential equations. Interscience, New York, 1955.
- [15]. NAGANO, T., Homogeneous sphere bundles and the isotropic Riemannian manifolds. Nagoya Math. J., 15 (1959), 29-55.
- [16]. RADON, J., Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl., 69 (1917), 262–277.
- [17]. DE RHAM, Sur la réductibilité d'un espace de Riemann. Comment. Math. Helv., 26 (1952), 328-344.
- [18]. SCHWARTZ, L., Théorie des Distributions, I, II. Hermann et Cie, 1950, 1951.
- [19]. SEMYANISTYI, V. I., On some integral transformations in Euclidean space. Dokl. Akad. Nauk SSSR, 134 (1960), 536-539; Soviet Math. Dokl., 1 (1960), 1114-1117.
- [20]. —, Homogeneous functions and some problems of integral geometry in spaces of constant curvature. Dokl. Akad. Nauk SSSR, 136 (1961), 288-291; Soviet Math. Dokl., 2 (1961), 59-62.
- [21]. WANG, H. C., Two-point homogeneous spaces. Ann. of Math., 55 (1952), 177-191.

Received April 11, 1964