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w O. Introduction 

(0.1) This paper had its origin in an effort to obtain pointwise inversion formulae for 

Fourier transforms on a locally compact Abelian group. Does there exist a process for 

recapturing almost everywhere a function from its Fourier transform? Mean convergence 

of summability processes for Fourier transforms is of course well known and almost obvious 

(see for example [12], (20.15)). The whole point of the present paper is to replace mean 

convergence by pointwise convergence almost everywhere. 

In  w 1 we present a general theorem on pointwise limits of sublinear operators. Sec- 

tion 2 is concerned with differentiation of indefinite integrals and measures on a class of 

locally compact groups. In  w 3, we obtain single convergence theorems and inversion for- 

mulae on the same class of groups. In  w 4 we give an analogue of the martingale conver- 

gence theorem for singular convolution operators. We combine the foregoing results in 

w 5 to give iterated limit processes for inverting Fourier and Fourier-Stieltjes transforms on 

an arbitrary locally compact Abelian group or compact group. 

(0.2) We follow the notation and terminology of [12] with the following additions. 

The term "neighbourhood of a point" means "a set whose interior contains that  point". 

Let X be a locally compact Hausdorff space. A positive Radon measure on X is a set func- 

tion t on all subsets of X as defined in [12], w 11. Measurability of a subset of X for t is as 

defined in [12], (11.28). For a measure ~ that  is in M(X) or is a positive Radon measure 

on X, and a locally ~-integrable function / on X, the symbol /~ denotes the measure 

A-->SA/d  ~. For a positive real number p and X and t as just described, ~v. loc(X,t) is 

the set of all functions / on X such tha t /~ r  E ~v(X,t) for all compact sets F c  X. 

(1) The research of the second-named author was supported by the National Science Foundation, 
U.S.A., and by a travel grant from The United States Educational Foundation in Australia. 
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All topological groups considered in this paper  are assumed to satisfy t tausdorff 's  

separation axiom. For a locally compact Abelian group G with character group X, and 

/E ~I(G), the Fourier t ransform f on X is defined by 

t(x) = fo/(x) x(x) a2(x) for g E X. 

Haar  measure on X will always be denoted by the symbol 0, and the factor of proportionality 

for 0 will be adjusted to 2 in such a way tha t  the Fourier inversion formula 

h(x) = f x  11(Z) Z(x) dO(Z) 

holds for every h E~I(G ) whose Fourier transform )~ is in ~I(X). In  (5.5) we construct a 

particular pair of such measures ), and 0. 

For  a locally compact group G, the expressions a.e. and 1.a.e. mean almost every- 

where for a left Haa r  measure on G and locally almost everywhere for a left Haa r  measure 

on G, respectively. Where measures other than Haa r  measures are meant,  they  will be 

specified. 

We are greatly indebted to Dr. Alee Robertson for conversations about  w 1 and to 

Prof. Lennart  Carleson and the referee for many  improvements throughout the paper. 

w 1, A theorem on lmintwlse l imits of  operators 

The main result of this section is Theorem (1.6). I t  and its immediate consequence 

(1.7) are essential for the results of w167 2, 3, and 5. We were led to Theorem (1.6) by examin- 

ing (5.6.1) and (5.6.2) of the classical monograph [15]. These theorems are in turn  based 

upon a theorem of S. Saks. (See [15], (1.5.8) and [19].) 

The notation and terminology of (1.1)-(1.3) will be used throughout the present 

section. 

(1.1) Let  (S, ~ ,  #) be a eountably additive measure space, i.e., S is a set, ~ is a 

a-algebra of subsets of S, and ft is a function on )~/into or onto [0, r162 such tha t  /x (~)=0  

~ M and ~u(U n=l M~) = ~=1 /x (  ~) whenever (Mn)n=l is a sequence of pairwise disjoint ele. 

ments of ~ .  

Since (S, 7/~,/x) need not be a-finite, we agree tha t  a subset N of S is null if N E  

and fl(N) =0, and tha t  N is locally null if NE)~/ and/~(N N F)=O for every FE  ~ such 

t h a t / x ( F ) <  cr Every  null set is locally null, and the converse is true if (S, ~ , /~ )  is a- 

finite. 

As usual, a property of points of S is said to hold/x-a.e. (or ~u-l.a.e.) if the set of points 

of S not possessing the given property is null (or locally null). 
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(1.2) Given (S, ~ , # )  as in (1.1), the symbol ~ = ~ ( S ,  ~ , l z )  will denote the set of 

all ~ -measu rab le  functions on S into or onto [0, oo]. With the usual conventions, the 

functions f +g  and ~ / a r e  defined f o r / ,  g E ~ and ~ any nonnegative real number. Also, 

with the usual order on [0, ~] ,  suprema of subsets of ~ are definable as elements of [0, oo] s. 

In  case the family in question is countable, the supremum belongs to ~. 

(1.3) The symbol E will denote a real, semimetrisable topological vector space, i.e., 

E has a countable neighbourhood base at  0. We will consider operators P from E into 

which are sublinear in the sense tha t  

P(~/)<Io~I.P / and P( f+g)<.Pf+Pg 

for f, g E E and ~ any real number. 

The operator P is said to be continuous in measure if the relation lira,_,+ fn =f  in E 

implies tha t  lim,-.ooP/n =1)/in measure, i.e., for every e >0,  

lim/~[{s e S: ]P/n(s) - P/(s)] > t}] = O. 

Since [Pf --P/n [ <"-P(/-/~), 

it is evident tha t  P is continuous in measure if and only if l im~_~P/n  = 0  in measure when- 

ever limn_,o~f~ =0  in E. 

Recall the well-known fact ([10], p. 93) tha t  if a sequence ( h , ) ~ l  converges in measure 

to 0 on a a-finite measure space, then some subsequenee of (h~),~l converges to 0/~-a.e. 

(1.4) LEMMA. Suppose that A is a countable set and that (P~)~GA is a family of operators 

from E into F. Suppose also that: 

(i) for each r162 the relation lim~-,o0f~=f in E entails the existence of a subsequence 

(fnk) of (f~) such that limk..ooP~f~ =P~f i~-a.e. Now define the operator P from E into ~ by 

P/(s) = sup P~/(s) (f E E, s E S). 
t E A  

_For positive real numbers p and q, write 

Sp(f) ={sES  :Pf(s) >p}  and E~.q={fEE:I~(Sp(f) ) <~q-1}. 

Then Ep. q is a closed subset of E. 

Remarks. In  (i), the subsequence may  depend upon ~. I t  is clear tha t  condition (i) 

is satisfied if each P~ is continuous in measure and (S, ~ , /~ )  is g-finite. 

Proof. Let (f~)~=l be a sequence of points in E~.q converging in the topology of E to 

f E E. I t  is trivial tha t  
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and 

sup Pjn(s)<.p for sfiSp(/.)', (1) 
t t G A  

/~[Sr(/.)] ~< q-1. (2) 

We may identify A with the set of positive integers. Then, using (i) and the diagonal 

process, we extract  from (/,) a subsequence (/,~), independent of ~, such that  for each 

~r E A, we have 
lim P~/n,(s)=Pj(s) /~-a.e. 

Consequently there exists a null set N such that  

limP~l,k(s)=P~/(s for ~ e A  and s e N ' .  (3) 
k - ~ o O  

Write Sr = lim S~([,~); (2) shows that  
k --~ oo 

~u(S~) ~ lira $z[Sv([%)] ~q - i .  
k- -~  oo 

If seS'~, then seS~(/,~)' for infinitely many values of k, say for k l < k 2 < k a <  ...; (1) 

yields 
P~/,k(s)<p for aEA and ? '=1 ,2 ,3  . . . . .  

So for s E (S~ U N)', (3) shows that  P~/(s) <~p for ~ CA, and thereforeP/(s) <~p for s e (S~ U N)'. 

The relations 

show that/~[S~(/)] <q-l, which shows t h a t / e  Ep.q. []  

(1.5) THEOrEm. Suppose that/~(S) < oo, that (P~)~E~ is as in (1.4), that (1.4.i) holds, 

and that E is o/the second category. Suppose also that 

(i) P/(s) is/inite [~-a.e. /or every/EE. 

Then /or every positive integer q, there is a neighbourhood Uq o/0 in E and a positive real 

number Cq such that 

(ii) t~[{sES:P/(s)>C~}] <~q-1/or /e  U a. 

In particular, P is continuous in measure. 

Proo/. The sets E~.q of (1.4) are closed in E. We will first show that  for every q, 

E= U{Ep.q:p=l, 2, 3, ...}. (1) 

F o r / E E ,  (i) asserts tha t  P/(s)< oo for sEN' ,  where N is null. Since/Y' is the union of the 

sets (St(l))' , for p=l ,  2, 3, ..., we see at once that  O=limr_~oo/~(S~([)), and so p can be 

chosen (depending on q) such that/~(Sp(/)) <~q-1. For any such p, / is in Ep.q, and (1) is 

established. 
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Since E is of the second category, it follows tha t  to each q there corresponds a positive 

integer pq, an element /qEE, and a symmetric neighbourhood Uq of 0 in E, such tha t  

/q+ Uqc Ev~.q. 

Consider any element / of Uq. We can write 

(2) 

/ = �89 + / )  - � 8 9  - 1)  = ! t ,  - ~ .  2/  2 /  

where / '  a n d / "  each belong to Ev~.r by  virtue of (2). Each P~ being sublinear, the same is 

true of P, so tha t  
p /  1 , . < ~ P /  +�89  . 

From this and from the definition of the sets Ep.q, it follows readily tha t  P/(s)<pq save 

on a set Tq(/)ETa/such tha t  ~u[Tq(/)] ~<2q -1. This yields the relation (ii), if we replace q by 

2q and take Cq = p  =P2q. 

Finally, suppose tha t  lim~_,~/= = 0  in E. I f  6 is a positive real number  and/eC~15Uq = 

Vq. ~, we can write ] = C~X~g for some g e Uq. Then (ii) shows tha t  P/(s) <~ ~ save on a set of 

measure at  most q-1. Since Vq.~ is a neighbourhood of 0 in E, /4 belongs to Vq.~ for all 

n>~n(q, ~). Thus it appears tha t  lim~_,~oP/n=0 in measure, so tha t  P is continuous in 

measure. []  

(1.6) THEOREM. Let E be o/the second category. Let (P~)~,~ be a countable net o/sublinear 

operators /rom E into ~ satis/ying (1.4.i) and (1.5.i). Let E o be the set o/ / in E / o r  which 

lim~A P~ /(s) = 0  #-l.a.e. Then E o is a closed vector subspace o/ E. 

Proo/. The set E 0 is a vector subspace of E because each P~ is sublinear. To prove tha t  

E 0 is closed in E, it is simple to see tha t  we may  suppose that/x(S) < ~ .  For, suppose t ha t  

the result has been established in this case. Take any F E ~  such tha t  # ( F ) <  ~ .  All of 

our hypotheses remain satisfied if (S, ~ , /~ )  is replaced by  (F, ?/1",#*), where : / / l * c ~  

consists of all sets of the form M n F with M E ~ ,  and #* is the restriction of # to DI*. 

Hence i f / E  E0 (the closure in E of Eo), it will follow tha t  

lim P ~ , / ( s )  = 0 
OtEA 

for each s E F except for the points of a null set N F c  F. So the set N of points s E S for which 

the relation lim~eA P~/(s) =0 does not hold is locally null, and / is therefore in E 0. In  view 

of this, we will suppose throughout the rest  of the proof that/x(S) < ~ .  

Consider a n y / E  ~0 and choose from E 0 a sequence (/4) converging in E t o / .  By  (1.5), 

the functions h ~ = P ( / - / n  ) converge to 0 in measure as n-->c~. Hence there exists a sub- 

13 -- 652923. Acta  mathematica.  113. I m p r i r a 6  le 10 m a i  1965. 
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sequence (h~k) and  a null  set  NET~/such  t h a t  limk_~ ~ h~(s) = 0  for  all sEN' .  For  all ~ and  

all s, we have  

P,](s) <~ P~ (l - I~,) (s) + P,]n,(s) <<. h~,(s) + P~l~k(s). 

Since/ ,~  is in Eo, there  is a null  set  N x such t h a t  l i m ~ A P j ~ ( s ) = 0  for all k and  all sEN~. 

I f  s E (N (J N1)' and  e > 0, f irst  choose and  fix k = k(e, 8) such t h a t  h~,(s)<~ �89 H a v i n g  f ixed 

this  k, select an  ~(k, t) = ~(s, e) such t h a t  P j , , ( s )  <<. le for  ~ >/a(s, e). Then  we have  P j ( s )  <e 

if s E (N (J N1)' and  ~ ~> a(s, e). Since N U N x is null, i t  is clear t h a t  / E E o. [ ]  

We close this section with a special case of (1.6) needed in w 3. 

(1.7) T~EOREM.  Let G be a locally compact group with a left Haar measure 2 and let 

p be a real number >11. Suppose that (K~)n~%_l is a sequence of/unctions such that A-1/V'K~ 

is in ~x(G) and having the/ollowinff two properties: 

(i) 

(ii) 

lim t~ K~(x)=l(z) /or each xEG and each le~0o(G); 
n - . ~  o o  

sup II K.( )I < ~ l .a.e./or each 
n~>l 

Then the relation 

(iii) h m / ~ - K n ( x )  =/(x) a.e. on G 

obtains/or each /E ~p( G). 

I] G is a.compact and each Kn has compact support, then one may replace ~ (G)  by 

~p.~oc(G) in (ii) and (iii). 

Proo/. For  the  first  p a r t  of the  theorem,  we app ly  (1.6) as follows: S = G , / t = 2 ,  A = 

posi t ive  integers, E = ~p(G), and  P,/(x)  = [/-)e Kn(x ) - / ( x ) l .  The space ~p(G) is semimetr i -  

sable and  complete,  hence of the  second category.  Since 

IIP./II, < ( 1 + IIA-'/"K II1)" II/ll,. 

i t  is clear t h a t  (1.4.i) is fulfilled. P rope r ty  (1.5.i) is immedia te  f rom (ii). On the  o ther  hand,  

(i) shows t h a t  the  subspace E a defined in (1.6) contains ~0o(G). Since ~0o(G) is dense in 

~r(G) for 1 ~<p< 0% the space E 0 mus t  exhaus t  ~p(G), since, by  (1.6), i t  is closed. (We can 

use a.e. r a the r  t han  1.a.e. in (iii) because t h e / ~ K n  collectively vanish  outside of some 

a-f ini te  subset  of G.) 

The  second p a r t  of the  theorem follows in much  the  same fashion, except  t h a t  now 

we t ake  E to be ~p.loo(G), which is semimetr isable  and  complete  for  the  topology of con- 

vergence in mean  wi th  index p on each compac t  subset  of G. [ ]  
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(1.8) Note. A number of classical theorems on pointwise convergence are immediate 

consequences of (1.7). For example, to show that  the (C, ~) means (~>0) of a Fourier 

series converge almost everywhere to the original function (see for example [25], Vol. I, 

Ch. III ,  Th. (5.1)), it suffices to note that: the result is trivial for trigonometric polynomials; 

trigonometric polynomials are dense in 21( -~z, ~z); and by a thebrem of Hardy and Little- 

wood (see [25], Vol. I, Ch. IV, Th. (7.8)), the (C, ~) means have a finite supremum almost 

everywhere. The same argmnent also proves convergence almost everywhere of Abel 

sums. The case of restricted (C, 1) sums of Fourier series in several variables is dealt with 

as above by using [25], Vol. II ,  Gh. XVII,  Lemma (3.11). For the Riesz means S~ for 

Fourier series in several variables, the inequalities (D) and (D*) in [211 show at once that  

pointwise convergence holds almost everywhere for the functions and ~'s under considera- 

tion. N. J .  Fine's theorem on poiutwise (C, ~) summability of Walsh-Rademacher series 

[8] is proved similarly from (1.7). 

For  [ E 2p(R) (1 ~<p < 2), Zygmund has proved that  the integrals 

(2zt)-t e-tX~dx = ~,~(y) 

converge to the Fourier transform ~(y) for almost all y E R, as a--> cr This too follows at 

once from (1.6) and the fact that  the integrals In(y) have finite supremum almost every- 

where. For  a discussion, see [25], Vol. II ,  Ch. XVI, Th. (3.14). A similar result holds also 

for Fourier integrals in several variables. 

w 2. Differentiation of  indefinite integrals 

Throughout this section, G will denote a locally compact group and ~ a left Haar  

measure on G. We seek differentiation processes on G of the type 

lim 1 fxv] d k ~  ~-]-u~) ~=/(x)  a.e., 

(Uk)~%l being a fixed sequence of k-measurable subsets of G, and / an absolutely integrable 

function on G. Sufficient but  perhaps not necessary conditions on the sequence (Uk)~-i 

in order for such a formula to hold lead to the following definition. 

(2.1) DEFINITION. By a D-sequence in G we mean a sequence (Un)n~l of X- 

measurable subsets of G of finite measure such that:  

(i) UI~ U2~ U ~  ...; 

(ii) there exists a positive real number C such that  
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O~(Un. Unl).~C~(Vn) for  n = 1 , 2 , 3  . . . . .  

U A D-sequence ( n),=l is said to be open, closed, compact, relatively compact, or Borel if each 

U~ has the  corresponding proper ty .  I f  a D-sequence (Uk)k~x is Borel  and  also has  the  

p rope r ty  t h a t  every  neighbourhood of e in G contains some Uk, then  (Uk)k%1 is called a 

D'-sequence. Let  (Uk)~=l be a D ' -sequence  such t h a t  for each k, there  is a ~-measurable  set  

Vk such t h a t  

(iii) Vk lJ (Vk V-kl) ~ Uk and 2(Uk)<V'2(Vk), 

where C' is a f ixed posi t ive number .  Then  (Uk)~=l is called a D".sequenee. 

(2.2) T ~ O R E ~ . ( 1 ) .  Let (U~)k~l be any D-sequence in G. Denote by $ the system o/al l  

sets xU k (xEG, k = l ,  2, 3 . . . .  ), and let S t be a subsystem o /$ .  Let E be a subset(S) o /G  such 

that 

(i) ~(EU1) < oo; 

(ii) /or each x E E there is at least one positive integer k (possibly depending on x) such 

that x U k E st. Then there exists a finite or infinite sequence o/pairwise disjoint sets x~ U~ E St 

( n= l ,  2, 3 .. . .  ) such that xnEE and 

(iii) ~ 2(U~,)/> C-12(E),  
n--1 

where C is as in (2.1.ii). 

Proo]. We define the  points  x ,  and  the  posit ive integers k ,  by  induction.  Le t  k 1 be 

the  least  posi t ive integer  /c for which there  is an x E E  such t h a t  xU~ESt. Then  choose 

a n y  x 1 in E such t h a t  x 1 Uk, E st. In  general,  suppose t h a t  p~> 1, and  t h a t  points  x 1 . . . . .  

xpEE and posit ive integers /c  1 . . . .  ,/cp have  been chosen so that :  

(a) xnUk e s t  ( n = l  . . . .  ,p ) ;  

(b) the sets x 1 Uk . . . . . .  xp U% are pairwise disjoint; 

(c) if p > 1 and  1 dr , .<p,  then  k~ is the  smallest  posi t ive integer  k such t h a t  there  is 

an  x E E  for which xUkE St and xU k is disjoint  f rom x I Uk, U ... 0 X~-lUk,_l. 

P 
I f  E c  ~J 28nUk " U -1 k n 

n=l 

t/hen the  process stops. Otherwise,  we choose xr+ I and/cp+ 1 as follows. Consider any  point  

(1) W e  were led to  th i s  t h e o r e m  a n d  i ts  proof  b y  B a n a c h ' s  proof  of  Vi ta l i ' s  cover ing  t heo rem,  as  
in  [20], Ch. IV,  w 3. See also [24]. These  a u t h o r s  use  metr ics ,  wh ich  we do not ,  a l t h o u g h  in some  of our  

app l i ca t ions  we need  t h e  f i rs t  coun tab i l i t y  a x i o m  (equ iva len t  to met r i sab i l i ty )  for  G. 

(2) T he  se t  E need  no t  be  ~ -measurab le .  
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xeE n (U 
n = l  

Then there is a positive integer /c~>/c 1 such t h a t  xUkE$ t. I f  xU~ intersects the set 

U~=lxnUk,,, and if r is the  least positive integer such t h a t  xUk intersects xrUk,, there are 

two possibilities. 

(~) I f  r = 1, then xUk intersects xiUkl and hence, because k >~ kl, we have 

e XlUk, V k  1 C XlUk, Uk:  , 
which is false. 

(•) I f  r >  1, then  xUk does no t  intersect r-1 U ,=1 x~Uk, and  the inductive hypothesis  

(c) implies t ha t  k >7 kr. Yet  xUk intersects x~Uk, and  so (since k >~ k:) we have 

x e x,U~U; 1 c x, UkU~I, 

which is again false. We have thus  proved t h a t  xUk is disjoint f rom U~:~xnU~. Now, 

amongst  all of the sets xUkeS t with x e E  t h a t  are disjoint f rom U ~ : l x ,  Ukn, there is a 

smallest corresponding value of /c. We take k~+l to be this smallest value of k, and we 

choose x~+l as any  element of E such t h a t  X~+lUk~+~ e $  t and x~+lUk~+~ is disjoint f rom 

U~:lxnU~. I f  the process terminates  at  any  stage, we get: 

xxUk . . . . . .  x~,UkpES t and xx . . . . .  z:eE; the sets xnUk,, are pairwise disjoint; 

P 
and E c U x,~U~,,U;~. 

n=l 

I f  the  process is defined for all positive integers,  we get: 

XlU k ..... , xnUk,~, ... e S  t and xl, ..., x . . . . .  EE;  and the sets xnUk," are pairwise disjoint. 

We will prove t h a t  in the second case, the inclusion 

E 1 =  s (1) 
~ I  

obtains. Le t  x be an arb i t rary  element of E.  Then  by  (ii) there is a k >~ k x such t h a t  xUk E $+. 

We show first t ha t  xU~ intersects the set U n : l  Xa U~. I f  xU~: does not  intersect U ~:1 x ,  Uk, , 

our construct ion shows tha t  k >~ k~ for all n. Since the  sets x~ Uk: are +~-measurable and pair- 

wise disjoint and are all contained in EU1, hypothesis  (i) implies t h a t  

n ~ l  n = l  

and so )t(Uk~) -+0 as n - +  co. Now, if/c, did not  go to  infinity with n, then  an  infinite number  
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of the kn would be equal, and the equality limn_~o02(Uk,)=0 could not occur. Hence we 
have liran_~oDk ~ co, and the relation k~>k~ for all n is impossible. This proves tha t  xU k 

intersects U ~=x xnUs,,. 

Let N be the smallest value of n such tha t  xUs intersects x,  Uk. I f  N = 1, then we have 

x E x I Us, U~ 1 c x 1 Us, U;~ c S, and {1) is established. I f  N > 1, then x Us is disjoint from the 

set U ~'-~ Us., so n=l x= tha t  we have k >~ k~. Since xUs intersects x~ UsN, it follows tha t  

x, exNU,, U;l~x~Us~,U;~S, 

and so (1) is established in all cases. 

The proof is now completed easily. From (1) and the left invariance of 2, we get 

2(E) < ~ 2(Us.. U;:) <~ C ~ 2(Us.), 
n = l  n - 1  

as asserted. [ ]  

I t  is widely known tha t  covering theorems like (2.2) imply the existence of derivatives 

in one form and another. Our Theorem (1.6) is the abstract  form of an argument  used in 

many  such existence proofs. In  the two following theorems we present consequences of 

(2.2) tha t  will enable us to apply (1.6). 

U ~ (2.3) THEORS~.  Let ( s)s=l be a Bord D-sequence in G, and let ia be a positive Radon 

measure on G. For x E G, let 

~,(xUs). } 
~,*(~) = sup t ~-i-6;~) " k = l, 2, 3 . . . . .  

Let E be a subset o /G such that 2(EUx) < co, and/or ~ > 0 ,  let M~={xEG:ia*(x)>a }. Then 

(i) 2(E n M.) < C~-~( (E n M.).  Y~), 

and equality holds i /and  only i / E  N M~ = O. I] 01 in compact, then F* is/ ini te l.a.e., and 

a.e. i] /z has a-compact support. 

Proof. The function F* is Borel measurable, as is shown in [12], (20.9). Let  $ consist 

of all sets xU s (xEG, I t = l ,  2, ...), and let b ~ consist of all sets xUk with x E E  and 

/~(xUs) 
2(us---)- > ~ (1) 

I f  x E E  N Ma, then (1) is true for some It, so tha t  xUsE 5 ~. We also have 2((E fl M~). U1) ~< 

2(EU1)< co. Applying (2.2) to the set E N M~, we find pairwise disjoint sets xnUsES* 

(n = 1, 2, 3 ... .  ) such that  ~ 1 2 ( U ~ , )  ~G-I2(E n M~). For  each n, we have 

~(U~.) < ~ -~ (z .  U~.). 



PO1NTWISE LIMITS FOR SEQUENCES OF CONVOLUTION OPERATORS 191 

Adding over n and noting the inclusions x~ U k c  (E N M~). U 1, we have 

~(E n M~) < c~=~ ~(V~,) < c~-'~( ~ ~ . )  ~< C~-'~((E n M~). Ux). 

The possible equality in (i), and the last sentence of the theorem, are easily checked. []  

(2.4) THEOREM. Let (Uk)~. 1 be a D'-sequence in G, let !~ be a positive Radon measure 

on G, and ]or x E G, let 

~mm ~(xU~) 
f'(~) ~-~. ,~( U~) 

For every compact subset F o/G and every r > O, we have 

(i) ;t( {x e F :fi(x) > q.}) < C0~-I~MCF). 

Proof. Apply (2.3) to the D-sequence (Uk)~r, where r is an arbitrary positive integer, 

with E = F. This gives us 

~(1 xEF:supl~(xUk) }1 k>r ~ > a <~Ca-1/~CF �9 Ur). (l) 

Since 

(1) implies that  

,a(z) < sup/~(zUk) 
k~, ~.(Uk) ' 

~({x e F :~(x) > ~}) < 6~-1/~(F. u,) ( r = l ,  2, 3 .. . .  ). (2) 

F ' U r = F ,  and so Since the Ur are ultimately very small sets, we have N ~ I  

l imr_~/~(F .  Ur)=~u(F). Hence (2) implies (i). [] 

We now apply (1.6) and (2.3) to prove our differentiation formula. 

(2.5) THEOREM. Let (Uk)k~ 1 be a D'-sequence. Then the equality 

(i) lira - -  /dZ = l(x) 

holds l.a.e. /or each/e~l.loo(G), and a.e. /or each/E~I(G ). 

Proo/. We may clearly suppose that  each U~ is relatively compact. Hence the values 

of all of the functions 
1 

Jx /d~ ( k = 1 , 2 , 3  . . . .  ) 
~(U,O v, 

at the points of any preassigned compact subset of G depend only on the values of / on 
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some compact subset of G. Let  (A,)~ 1 be a sequence of nonvoid open subsets of G each 

having finite X measure. Denote by ~ the subspace of s lot(G) consisting of those functions 

] E ~1. loo(G) that  vanish outside of L] ~=1 A,. I t  obviously suffices to prove the theorem for 

functions in @. With the topology defined by the seminorms/-+J'A, I/I dX (v = l ,  2, 3 . . . .  ), 

is a complete, semimetrisable, topological vector space. Plainly ~0o(G) is dense in @. 

Moreover, (i) holds for all x E G if ]E~oo{G), since U~ is ultimately very small. 

We now appeal to Theorem (1.6), taking 

By (2.3), we see that  P/(x)=supk>>.l Pk/(x) is finite a.e. for each IE~ .  Since the 

equality limk_,~r Pk/(x)=O holds for all x E G  if /E~0o(G), Theorem (1.6) implies tha t  

l im~_~ Pk / ( x )=0  a.e. for e a c h / E ~ ,  which is equivalent to (i). []  

:For the inversion theorems of w167 3 and 5, we need a fact about singular measures and 

D'-sequences, which is proved from (2.4). 

(2.6) THEOREM. Let (r be a measure in M(G) that is singular with respect to 2, i.e., 

there is a X-null set 2V such that I(rl (N') =0. Let (Uk)k~r be a D'.sequence in G. Then we have 

(i) lira a(xUk)_ ---= 0 a.e. on G. 
k-.~. X(U~) 

Proo]. We may suppose that  a >7 0, so that  ](rl = (r' Let  F be a compact subset of G, 

and let :r be a positive number. Theorem (2.4) implies tha t  

X({x e F :  5(z) > ~}) < C~-la(F). (1) 

Since a is singular with respect to 2, there is a a-compact X-null set N such that  N'  is 

(r-null. Applying (1) to a compact subset F of N', we infer that  X({xE F :~(x)> cr 

This equality being true for every ~>0 ,  we have 5(x)=0 a.e. on N'. Since N is X-null, 

(i) follows. []  

Theorems (2.5) and (2.6) are generalisations to locally compact groups of the celebrated 

theorems of Lebesgue concerning differentiation of functions of finite variation on R: an 

absolutely continuous function is the integral of its derivative, and a singular function of 

finite variation has derivative 0 almost everywhere. Similar facts about measures on R a 

and T a are also well known. For treatments of these cases and for various applications, see 

[20], Ch. IV, [25] passim, [24], and [5]. 
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For some of the convergence theorems of w 3, we need a generalisation of the Hardy- 

Littlewood maximal theorem, which holds for D-sequences. 

(2.7) THEOREM. Let (Uk)k%l be a relatively compact Borel D-sequence in G, let /be a 

/unction in + ~1. loc(G), and define 

/ * ( z ) = s u P l ;~--~k ,~ ) f ~ v / d ,'l : k = l , 2 , 3 . . . .  }.  

For or > O, let E~ = {x 6 G:/(x) > ~} and E* = {x 6 G:/*(x) > :r Let E be a ;{-measurable subset 

o /G such that EU 1 is 2-measurable and I (EU1)< oo. The ]ollowing inequalities hold: 

(i) ~t(E n E*) < 2 C~- l f  /d~; 
J (EU,)flE�89 

(ii) ( t* 'd) .  < 2vCp ( 
,]E" " . P - - l i E u ~  vd~" ( l < p < c ~ ) ;  

(iii) f/*dX < 21(E) + 2trEy/log +/d~; 

(iv) f /"  ,dX < 2, (1 ( O < p < l ) .  

In  particular, the/unction/*(x) is finite l.a.e, and is finite a.e. i / / vanishes  outside o/ a set 

that is a-finite/or ~. 

Proo/. Let g(x) =/(x) if/(x) > �89162 and g(x) = 0 if/(x) <~ �89 Clearly g s ~ .  lot(G) and/*(x) 

g*(x) +�89 Thus E * c  {xeG:g*(x)>�89 Applying (2.3) to the measure/~ =g;t, we find 

~(E n E*) <~(E n {xeG :g*(x) >�89 

<C(2o~)-lfEu ~d~=C(2o~)-I I /d~. 
J (E U,)fl E �89 

This is (i). 

Since A(E)<~A(EU1)< 0% we can apply Fubini's theorem to write 

= I~ptv-~R(E fl E*)dt, 
Jo 



194 R. E .  E D W A R D S  AND E.  H E W I ' I ' I '  

tha t  is, l*rd2 = pt~-~2(E N E~)dr. (1) 

Here p is any  positive number.  The inequalities (ii)-(iv) are obtained from (i) and (1) 

by using Fubini 's  theorem and making reasonably obvious estimates. The details are 

similar to those in the classical ease, and we omit them. (See for example [25], Vol. I ,  

Ch. I ,  Theorem (13.13).) [ ]  

(2.8) COROLLARY. Let (Uk)~-i be as in (2.7). For 1 < p <  ~ ,  we have: 

(i) i/ /E~p.loc(a), then/*E~p.loc(G); 

(if) i/ /E~r(G), then/*E~r(G); 

(iii) i / ]  is l.a.e, equal to a ]unction in ~p(G), then the same is true o] /*; 

(iv) i / / log+/E ~1. lot(G), then/* E ~ .  toe(G). 

For 0 < p < l ,  we have: 

(v) i/ /E~.loc(G), then/*E~p.]o~(G);/or compact G, i / /E~I(G),  then/*E~p(G). 

Proo/. All of these assertions save (if) follow at  once from (2.7). To prove (if), observe 

tha t  if ] vanishes outside of a set tha t  is a-finite for 2, then the same is true of ]*. In  this 

case, if SF / *rd]t is bounded for all compact sets F,  then /*  is in ~p(G). [ ]  

The class of locally compact groups admitt ing D'-sequenees has not been adequately 

identified. The referee has kindly pointed out to us tha t  an infinite-dimensional torus 

T m admits no such sequence. This follows easily from the Brunn-Minkowski theorem 

(see e.g. [9], p. 187). The possibility of differentiation theorems like (2.5) and (2.6) on 

T m remains open, however, so far as we know. For some groups, D'-  and even D~-se- 

quences (which are useful for the constructions of w 3) are easily found, as follows. 

(2.9) THEOREM. Let G be a locally compact, O-dimensional group with the first count- 

ability axiom. Then G admits a D'-sequence consisting o/compact open subgroups, which is 

also a complete ]amily o/neighbourhoods o/e. 

Proo/. The group G has an open basis (Uk)~l  at  e consisting of compact open subgroups; 

this is proved, for example, in [12] (7.7). We may  plainly suppose tha t  U 1D U 2 D .... I t  

is trivial tha t  Uk = Uk U;  1, so tha t  (Uk)~l  is a D'-sequence. In  the definition of D~-sequen- 

ces (2.1) we can take Vk = Uk. [ ]  

(2.10) TH~.OREM. Every Lie group G admits a D"-sequence. 

Proo]. I t  is sufficient to find a descending sequence (Wk)~l of compact neighbour- 

hoods of e such tha t  n ~= i wk = {e}, and 2(Wk W; 1 Wk W~ 2) ~< C2(Wk), where C > 0. Then 

we can take U k = W~ W; 1 and Vk = Wk, making (Uk)~= 1 a D~-sequence with V~ as in (2.1.iii). 
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Let m be the dimension of G. Take a local coordinate system (t 1 . . . .  , tin) with domain a 

relatively compact open neighbourhood N of e in G such tha t  tj(e) =0.  The coordinate map  

T : x - ~ ( t l ( x )  . . . . .  t a x ) )  

may be taken to be a homeomorphism of N onto all of R m. For/E~oo(G) such t h a t / ( N ' ) ~  

{0}, the Haa r  integral of / is equal to 

fJd~= fN/d2= fjoT-i(x)g(x)dx, 
where dx refers to m-dimensional Lebesgue measure and F is a strictly positive continuous 

function on R ~. 

Let  Cs . . . . .  x~)eR ~, [Xll ~<e, ..., Ix~[ ~<e}. A routine argument  using the dif- 

ferentiability of the coordinate functions shows tha t  we may  take Wk = T-I(Q, k) for a cer- 

tain sequence el > e2 > ... having limit 0. []  

(2.i 1) T H E O R E M. Every/inite-dimensional compact group G admits a D"-sequence. 

Proo/. I t  is known tha t  G is locally the product of a local Lie group and a 0-dimensional 

closed normal subgroup of G ([17], Th. 69). This allows us to combine (2.9) and (2.10) 

to produce a D~-sequence in G. []  

w 3. Single limits for operators f ~  K. 

Let G be a metrisable group tha t  admits an open D'-sequence and is either compact 

or locally compact Abelian. Then there is a pointwise summabil i ty method for Fourier 

transforms on G involving only a single limiting operation. The existence of such a method 

is equivalent to the convergence almost everywhere to / (x )  o f /~eK, (x ) ,  where (K,)n~l is 

a certain sequence of kernels (i.e. functions) on G. Similar results apply to Fourier-Stieltjes 

transforms. The kernels Kn can be constructed on a larger class of groups, as we now show. 

(3.1) THEOREM. Let G be a locally compact group admitting an open D'-sequence 

(U,)~I .  Then there is a sequence (Kn)~= 1 o//unctions on G with the/oUowing properties: 

(i) K n is continuous, nonnegative, and zero outside o/ U~I; 

(if) K ,  is a /inite linear combination o/ continuous positive-definite /unctions each 

o/which vanishes outside o / ( U , U ;  1) U U, U U~I; 

(iii) Sa Kn d~. = 1; 

(iv) l i m = _ . ~ / ~ K n ( x ) = / ( x )  a.e. on G/or each/fi~p(G) (1 ~<p< oo). 
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De/ins/r  {l/ ~ K=(x)l :~= 1, 2, 3 . . . .  )/o~ I E ~ .  ,or T ~ n :  

(v) j'a/*"d2~<const. S~[/["d2 i~ l < p < ~ .  

(vi) S~/* d~ < const. (~(E) + S~, I/I log+l/I d~) q E is compact. 
(vii) ~ / ~ V d 2  ~<const. ) ,(E)l-n(J 'sv  ̀  [/Id~) n q E is compact and 0 < p  < 1. 

Proo/. For  each posi t ive integer  n, choose a compac t  set  H n ~  U~ such t h a t  2(Hn) ~> 

�89 and  then  choose a compac t  symmet r i c  ne ighbourhood Wn of e such t h a t  H~ W ~  Un 

and W ~  U~ U~ 1. Consider the  funct ion 

Kn = ~(Un )-1~( y n  )- l  ~W n ..~ ~Wn (1) (1)  

Proper t ies  (i) and  (iii) are obvious,  and  (ii) follows f rom the polar  iden t i ty  

4 u  ~ v-  = (u + v) ~ (u + v)" - (u - v) ~ (u - v)-  + i(u + iv) ~ (u + iv)" - i(u - iv) ~ (u - i v ) ' ,  

af ter  a short  computa t ion .  (Note t h a t  Kn has the  form u ~e v- where u and v are bounded  

and  vanish  outside of compac t  sets.) 

Proper t ies  (i) and  (iii) show t h a t  limn-~oo/-)e K, (x )  =f ix)  for all x E G and all cont inuous 

functions / on G. Since ~0o(G) is dense in ~p(G) for 1 ~<p< ~ ,  (iv) will follow f rom (1.7) as 

soon as we show t h a t / r  is finite a.e. on G for e a c h / E ~ v ( G )  (1 ~<p<oo) .  This is an 

immedia te  corollary of (v) and  (vii), which we now prove.  

Le t  ~ = s u p { A ( y ) : y E U n } .  I t  is clear t h a t  a~-->l as n-->oo, and  so ~ = s u p { a n : n ~ > l }  

is finite. The definit ions of -)e and  ~ and  a rout ine calculat ion show t h a t  

2 a  . ,  
K~ <~ 2 - ~ , )  ~u,. 

So f o r / 6 ~ ,  loc(G), we obta in  

2~  ~ 1 .6~ 
/ ~e K , ( x )  <~ ~ ) ~ )  / ~e ~v , ( x )=  2o~ ~ _ v i d e "  (2) 

Thus  ]r and (2.7) implies (v), (vi), and (vii). [ ]  

(3.2) COI~OLLARY. Let G be a locally compact group admitting a D"-sequence as in 

(2.1). Then the sequence (Kn)~= 1 o/ /unc t ions  o/ (3.1) can be constructed with all o/ the prop- 

erties listed in (3.1), and with (3.1.ii) replaced by the stronger condition 

(i) each K n is positive-de/inite and vanishes outside o / U ~  1. 

V ~ or Proo/. Le t  ( n)n=l be a D"-sequence in G and let  (Vn)n=l be as in (2.1.iii). L e t K ~ =  

(X(Vn))-2$~-~v. .  Then  argue  as in (3.1). [ ]  

(:) For a complex function q on G, ~ is the function x-->A(x-1)~(x-1). See [12], p. 300 etseq. The 
function ~0 u is defined by ~ ( x )  = ~(x-l). 
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U ~ g (3.3) THEOREM. Let G, ( ~)~=1, and ( ~)~=1 be as in (3.1). Let ~ be any measure in 

M(G), with Lebesgue decomposition/]~ +a,  where/E ~1(G) and (~ is singular with respect to 4. 

Then 

(i) lira e-)e Kn(x)= /(x) a.e. on G. 
71-.->o0 

Proo/. Apply (3.1) to (/2)-)eKn together with (2.6) to a ~ K n .  [] 

The kernels K n of Theorems (3.1)-(3.3) can be chosen to be trigonometric polynomials 

if G is compact and to have Fourier transforms with compact supports if G is locally 

compact Abelian. This fact makes our final inversion theorems of w 5 more elegant than 

they would perhaps otherwise be and completes the analogy of our theory with the clas- 

sical theory of pointwise snmmability for Fourier series. I t  seems therefore worthwhile to 

carry out the construction. A preliminary fact is needed. 

(3.4) THEOREM. Let G be a metrisable group that is either compact or locally compact 

Abelian. There exists a sequence (Un)n~l o/ /unctions on G with the/ollowing properties: 

(i) u n is continuous, integrable, nonnegative, positive-de/inite, and central; 

(ii) J'a Un d2 = 1 lot all n; 

(iii) each u n has compact spectrum; (1) 

(iv) i/ U is any neighbourhood o/ e in G, then l im~ .~  ~v. u~d,~ =0;  

(v) i/ ~ denotes any one o/ the spaces ~p(G) (1 < p <  c~) or ~U(G) (the space o/ bounded 

uni/ormly continuous/unctions on G with the supremum norm), then limn-,oo/-)e un = / i n  

/or each / e ~ .  

Proo/. Assertion (v) follows readily from (i), (ii), and (iv). We treat  separately the 

cases (I) G is compact, and (II) G is locally compact Abelian. 

(I) Suppose that  G is compact. There exists a base (Un)n~ 1 at e formed of sets tha t  are 

symmetric and invariant under all inner automorphisms of G. (This is immediate from 

[12], (4.9).) Take any wn E~+(G), vanishing on U~, such that  ~a wnd2 = 1. Pu t  w~ =wn ~-w~. 

Then w~ is continuous, nonnegative, positive-definite, vanishes on (U~)', and has the prop- 

erty tha t  ~a w~ d~ = 1. For each a E G, the function x--> w'~(axa -1) is continuous, nonnegative, 
r 1 positive-definite, and vanishes on (U~)'. The function v n ( x ) = ~  wn(axa- )da is therefore 

continuous, nonnegative, positive-definite, vanishes outside of U~, has integral 1, and is 

in addition central. Since the sets U~ form a neighbourhood base at e, (iv) is evident for 

(Vn) ~--1- 

(1) By this we mean that u n is a trigonometric polynomial ff Gis compact and that un has compact 
support if (7 is locally compact Abelian. 
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We will modify the functions vn to obtain the functions u n. Consider a set ~)= {D} 

of continuous irreducible representations of G by unitary operators on (finite-dimensional) 

Hilbert spaces that  are pairwise inequivalent and also complete. Let  ZD be the character of 

D. I t  is well known that  vn(x) = ~DG~ c,(D) ZD(X), where cn(D) >~0 and ~ D ~  cn(D) ZD(e) < ~ .  

For each n, we can thus choose a finite partial sum, say v~,, of the series for vn such that  

I[ v~ - v~ II u ~< (2n) -1. If  we set v~" = �89 + v~) + (2n) -1, then v~" is clearly a continuous, n o n -  
, t  _<( - 1  negative, positive-definite, central trigonometric polynomial, and vn-vn  u-~n . This 

implies that  l im~_~ j'a v'~'d]t =lim=_~ j'c v,,d]t = 1. I t  therefore suffices to take 

[So u ~ ( x )  = v ; ' d ~  v~ ' (x )  

in order to satisfy conditions (i)-(iv). 

(II) Suppose now that  G is locally compact Abelian. The character group X of G 

is a-compact (see [12], (24.48)), and so there is an increasing sequence (H~)~%1 of relatively 

compact open subsets of X such that  

l i m O ( H n N ( Z H n ) ) - I  for all Z e X  
. ~ ~ 0 ( H n )  

(see [12], (18.13)). Define the function 9~ on X as 

90~ = ( 0 ( H n ) ) - l ~  ~ ~ (n=  1, 2, 3, ...). 

I t  is clear tha t  ~ is continuous, nonnegative, and positive-definite, and that  ~0~ vanishes 

outside of the relatively compact open set HnH~ 1. Cauchy's inequality shows that  Ho0~Hu ~ 1, 

and it is obvious that  ~0n(1 ) = 1. (We write the identity character in X as 1.) Furthermore 

we have 

O((z-~H~)NH") for all ZEX,  
~(Z)  0(H~) 

so that  lim=-,oo q,(g) =1 for all zEX.  

Finally, define u n on G as the inverse Fourier transform 

= = 1 ,  2 ,  3 ). 

I t  is then clear tha t  u~ is in ~ ( G )  N ~ ( G )  and that  u~ is positive-definite. Since Fourier 

inversion holds everywhere for ~,  and un, we have ~ = ~ everywhere onX and in particular 

J'a u ~ d ~ = ~ ( 1 ) = 1 .  Thus (i), (ii), and (iii) hold for un. To prove (iv), we need only show 

that  limn-~o J'v und2 = 1 for every neighbourhood U of e in G. Choose a positive-definite 

function h ~ 0 ( G )  vanishing on U' and such that  h(e)= 1. Parseval's identity implies that  
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Since h e  s and ~n converges boundedly  to  1 everywhere  on X,  we can take  limits in (1) 

to  write limn-,o0 ~ hundR = ~x ~dO =h(e) = 1. The  desired relat ion (iv) now follows easily. [ ]  

We  now modi fy  the  kernels  Kn. 

(3.5) THEOREM. Let G be metrisable and either compact or locally compact Abelian. 

Suppose that G admits an open D"-sequence. Then there is a sequence (Kn)~%1 o//unctions 

on G having all o/ the properties set down in (3.1) and (3.3) except/or (3.1.i) and (3.1.ii). 

These are replaced by: 

(i) each K n is continuous, nonnegative, positive-de/in#e, central, and has a compact 

spectrum; 

(ii) /or every neighbourhood U o/e, limn..,oo ~v" K~d2 =0. 

Proo/. Firs t  const ruct  a sequence 0 ~r 0 (Kn)n=x according to  Theorem (3.2), so t h a t  (Kn)n-1 

satisfies (3.2.i), (3.1.iii)-(3.1.vii), and  (3.3.i). Suppose t h a t  (uk)k•l is as in (3.4). B y  (3.4.v) 

we can for each n choose/c~ ~> n and  so large t h a t  

Kn = K~ * ukn 

satisfies II g ~  - g ~ II, ~< n-~" (1) 

The  proper t ies  of the  funct ions K ~ and  uk show t h a t  (3.5.i) and  (3.1.iii) hold for these 

kernels  K n. 

To  prove  (3.1.iii) for our present  K , ,  t ake  a n y / E  ~,(G). The  inequal i ty  (1) implies t h a t  

lit* K~ - / ~- K ~ II, < I1111," IIK~ - K~ ~-~ n-g[[/[]m 

so that ~ I I / *K~- I *K~I I ,<  oo, 
r , , ~ l  

and hence tim I I *K,(x)- I *K~(~) I  = 0  a.e. on a, 
n -~, oo 

and  now (3.1.iv) follows f rom (3.1. iv) for K~. 

To prove  (3.3.i) for  our  present  K~, it  suffices to show t h a t  l imn_,~ a ~ K ~ ( x ) = 0  

a.e. We  know t h a t  l i m n ~  (r~K~ a.e. On the  other  hand,  we also have  

I]a~-gn - ~ ~e g~ <~ fad 14"  [[g~ - g~ . 

Now repea t  the a rgumen t  of the  preceding paragraph .  The  proofs of (3.1.v)-(3.1.vii) for 

our present  K,  run  along similar lines, and  are omit ted.  
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I t  remains only to  prove (ii). We write 

~fu~tgO(Y){fu, Uk~*(Y-lx')dx}dY~(-~gOn(Y){fy-lu,Ukn(Z)dz) 
Choose the neighbourhood V of e so small t ha t  U~ V ~  U (which is possible since the U~ 

form a base at  e). Then  we have 

g 0 

The last integral  tends to zero as n--> o% since k~ >~n and (3.4.iv) holds. [ ]  

(3.6) COROLLARY. Let G be metrisable and locally compact Abelian and admit a D"- 

sequence. Let ~fiM(G) have the decomposition Q=/,~ +a, where /E~I(G ) and (~ is singular 

with respect to ~. Let (K~)~~ be the sequence constructed in (3.5) or (3.2). Then pointwise in- 

version o/the Fourier-Stielt~es trans/orm ~ obtains: 

(i) lim ~I~(Z)~(Z)Z(x)dO(Z)=[(x)  a.e. on G. 
j x  

Proo/. Since/~n is in ~i(X),  we have 

fx /~n(Z) ~(Z) Z(x) dO(x) e-)e Kn(x). 

Now apply (3.5) or (3.2). [ ]  

(3.7) COROLLARY..Let G be metrisable and compact and admit a D"-sequence. Let 

be as in (3.6) and (K~)~I  as in (3.5). Let ~) be as in (3.4.I), and ~ ( D) the operator ~a D(x)d~(x), 

where D is the representation eonjuqate to D; ]~n(D) is defined similarly. Then ]~n(D) is a 

nonuegative multiple ~ (D)  I o/ the identity operator, di[[erent /rom 0/or only finitely many D; 

and 

(i) lim ~ d(D) ot~(D) Wr(~(D) D(x ) )= / (x )  a.e. on G. 

Proo/. The sum in the left  side of (i) is K ~ Q ( x ) .  Now apply  (3.5). [ ]  

(3.8) Examples. (a) Corollary (3.6) m a y  have some interest  even in the classical 

cases G = T  a ( a = l ,  2 ,3  . . . .  ). Iden t i fy  T with ] - ~ , ~ ] ,  take Un=[-n-i,n-1], and Vn = 

[ - (2n) -1, (2n)-I]. Computing K n as in (3.2),  w e  find K~(x) = max {0, 2~n2(n -~ - Ix])}. The 
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Fourier coefficients/~n(Z) are (sin ( � 89  (~ = -}- l ,  _____ 2 . . . .  ) , / ~ n ( 0 )  = 1. Thus we 

have 

lira @ ~- Kn(x) = lira { ~. ~ (Z) (sill (�89 Tb-l~)) 2 (�89 Tb -1 ~)-2 etZx} 
n .-~ oo n --> oo  ~ = - - ~  

= the Lebesgue-Radon-Nikod3;m derivative of ~ a.e. on T. 

That  is, Fourier-Stieltjes transforms can be inverted pointwise by Riemann's  method. 

For G = T  a, we use analogous Un and V~ (hypereubes), and obtain K~a)(Xl . . . .  , xa)= 

1-]~=1 Kn(xl). Thus restricted Riemann summabil i ty obtains. 

(b) New results also appear  for G = R ~. First, the functions of (3.4.11) can be taken 

of class ~oD. I t  suffices to replace 9n by  q0,~e~0 where ~0E~ ~176 ~o is nonnegative, positive- 

definite, and of integral 1. Then each d~ is in ~Qo, and so 

0 ~ A o o .  /~ = ( K ~ .  uk.) = g o .  u~. e ~ , 

since K ~ has compact support,  its t ransform/~o is actually entire-analytic. 

Take now a n y / e  ~v(R~), where 1 ~<p< ~ .  I t  has a distribution-valued Fourier trans- 

form ] (which belongs t o  ~v,(R a) if 1 ~<p ~< 2, but  which is otherwise not necessarily a func- 

tion at  all). Since Kn E ~ l ( R  a) a n d / ~  E~ ~, there is no difficulty in showing tha t  (~ ~-K~) = 

~ . /~ ,  which is a distribution with compact support. By the uniqueness theorem for Fourier 

transforms, 
/ ~ K,~(x) = <e 2~'~, R~(Z) ](Z)>; 

the right side here is the restriction to R a of an entire-analytic function of a complex 

variable. Theorem (3.5) implies tha t  

/(x) = lim <e ~'az:~, R~(Z)/(Z)) a.e. on R:. 

Naturally,  i f /E~p(R  a) with 1 <~p<~2, t h e n / ~ ]  is a function in Yd~,(R a) with compact sup- 

port, and 

/(x) = l i m  [R'~l~,~(Z)](Z)eZ'~ZZdZ a.e. o n / P .  
/ 

w 4. Some limit theorems for singular convolution operators 

For the inversion theorems of w 5, we require a result on pointwise convergence of 

Lebesgue-Radon-Nikod~m derivatives. Our theorems generalise the results of Jerison and 

Rabson [14], and are adapted from a convergence theorem of Andersen and Jessen [1] 

and [2]. As Jerison and Rabson point out, these results are also related to the martingale 

convergence theorem (see [6], Chapter VII) .  There are a number  of important  differences, 

1 4 -  652923. Acta mathematica. 113. Imprim6 le 10 mai 1965. 
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however, since our process is not exactly a martingale, and since we also deal with singular 

measures. I t  is therefore necessary to give the proofs in full. The case of singular measures 

has been dealt with by Bocld [3], Chapter I, but  only for mean convergence and convergence 

in measure, with which we are not concerned. 

(4.1) Let  S be a set, ~ a ~-algebra of subsets of S, and/Z and ~2 countably additive, 

nonnegat ive ,  extended real-valued measures on ~ .  We will suppose tha t /Z  is g-finite 

and that  ~ is actually finite (this last condition can be relaxed, but  for our purposes finite- 

ness of ~2 is the weakest reasonable restriction). I t  is classical that  ~2 admits a unique de- 

composition 

(i) ~=h/z+,~, 

where ~ is nonnegative and singular with respect to/z,  h is an M-measurable, nonnegative 

function, and ~s hd/z is finite. The measures ~ and h/z are carried by complementary sets, 

say B and B', respectively. The set B has/z-measure 0, and we can define h(x) as + ~ on 

B without disturbing the validity of (i). A function h for which (i) holds and for which 

h(B)c { + oo} will be termed a Lebesgue.Radon-Nikod~)m derivative o/~? with respect to/Z 

(more briefly, an LRN derivative o/~ with respect to/Z). 

(4.2) THEOREM. Let S, ~ ,  /Z, and ~ be as in (4.1). An M-measurable, nonnegative, 

extended real.valued/unction h on S is an LRN derivative o/~ with respect to/Z i /and only 

i/the/ollowing conditions obtain. For every positive number ~, let 

D={xeS:h(x)<a} and E = { x f i S : h ( x ) ~ } .  

Then/or all A E ~ ,  the inequalities 

(i) ~ (D  fl A) ---< or fl A) 
and 

(ii) ~(E N A) i> ~/Z(E N A) 

ho/d. 

Pro@ Suppose that  h is an LRN derivative of ~ with respect to/Z. Then we have 

n A) =  d/z + n A)-< .A + 0 =   /Z(D a A) 

This is just (i); (ii) is proved similarly. 

To prove the converse,(1) suppose that  the decomposition (4.1.i) of ~ is ~ =ho/z +ao, 

where r and/~(Bo) =0. If  h and h o are not equal/z-almost everywhere, then there 

(1) Th i s  proof  of t h e  converse  was  k ind ly  sugges t ed  b y  t h e  referee.  
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are a subset F of B0 and  real numbers  ~' and  ~, 0 < ~ ' <  a, such tha t  0 < # ( F ) <  ~ and  

h(x) >1 or > ~' >t ho(x ) for all x E F,  or there  is an  F such t h a t  ho(x ) >~ or > r162 ~ h(x) for all x E F .  

I n  the  first case, condition (ii) implies t h a t  

> '  f v  
~(F) 1> ~ ( F )  ~ ~(F) >t hod~ = ~(F), 

a contradiction. The second case is likewise impossible in view of (i), and so h =h  o//-a.e. 

on S. For  ~ > 0 and D = {x E S:  h(x) <~ o:), (i) shows t h a t  

ao(D f~ Bo) = ~ ( D  fl Bo) ~< ~/x(D f~ Bo) =0 .  

Hence ao({xES:h(x )<  ~ } ) = 0 ,  and  the uniqueness of (4.1.i) shows t h a t  h(Bo)~  { + ~ }. [] 

(4.3) TItEOREI~I. Let G be a locally compact group. Let (Hn)n~%1 be a descendinq sequence 

of compact subgroups o/ G, with intersection H~. Le t / i n  be normalised Haar measure on 

Hn (n = 1, 2, 3 . . . .  , o~). Let ~ be any measure in M+(G), For n = 1, 2, 3 . . . . .  to, write 

(i) ~ ~#n =hn~ +a~, 

where hn is measurable/or the a-algebra ~ o /a l l  Borel sets o / t h e / o r m  A H  n and a n is de/ined 

on Bn and is singular with respect to ,~. Let 

(if) _h = lim hn, )~ = l i m h , .  
n --~ o o  n .-i* o o  

Then the equalities 

(iii) h(x) = ~(x) = h~,(x) 

hold/or almost all x E G. 

Proo]. Suppose t h a t  r, sE{1, 2, 3, ..., w) and tha t  r<~s. Let  A be a Borel set such t h a t  

A =AH~.  For  x E G  and yEHs ,  it is clear t h a t  x y E A H ~  if and  only if xEAH~.  Therefore 

we have 

I n  part icular,  for s >/r and s' >1 r, we have 

9 ~I~8(AH~) = e ~ lz'~(AH~) =e(AH~) �9 (1) 

Now let ~ be a positive real number,  and  let 

D={xeG:h_(x)<~}. 

Let  (~n)~=l be a str ict ly decreasing sequence of real numbers  with limit ~. For  every positive 

integer n, let 
Dn = {x E G:inf  {hn+x(x), hn+,(x) . . . .  } < ~r 
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Let Dn., = {z e a :  h,+,(x) < ~ }  

and let D,,.,,={xfiG:min{h,,+x(X ) ..... h~+p_~(x)}>~:r n and h~+~(x)<~n}, 

for p=2,  3, 4, . . . .  I t  is clear that  D = ~ n ~ l  Dn, tha t  Dn~Dn+l,  tha t  (J~%1 D,~.v=Dn, 

and that  the sets D~,v are pairwise disjoint. 

Now consider any Borel set of the form AHs, where s is a positive integer. Since the 

functions h~ are by their construction constant on each left coset of Hr, the set D~.~ N A 

is the union of left cosets of H~+v if n + 1 >~s, which we now suppose. From (1) we infer that  

p =1  p ~1  
(2) 

Since Dn.p N AEBn+p, and since hn+p is an LRN derivative of 0 ~-/~n+~ with respect to 2 on 

B~+r, (2) and (4.2) imply that  

q~ /~ (D~ N A) ~<~ ~,2(D~.v N A )=  a~2(D~ N A). (3) 
y = l  

Taking the limit as n-+c~ on both sides of (3), we obtain 

Q ~/~o(D N A) ~<x2(D N A). (4) 

Next let E = {x E G:)~(x)~> a}. The argument of the two preceding paragraphs can be 

repeated with obvious changes to show that  

q ~ ~ ( E  n A) ~> ~2(E n A ) (5) 

for  Borel sets A =AHs (s = 1, 2, 3 . . . .  ). 

If  A is a Borel set, if A =AHs ( s = l ,  2, 3, ...) and h(x)~>x for xEA,  then it is clear 

t h a t  A = E  N A and so (5) holds. Similarly, if ]~(x)~<~ for xEA,  then A = D  N A and (4) 

holds. To apply (4.2), consider any Borel set A =AHo.  Then we have 

~ ~o(D N (AH~)) = sup {Q ~-/~o(E) : F is compact and F c D N (AHo)} 

=sup  { ~ / ~ ( F H ~ ) : F  is compact and F H o , ~ D  N (AH~)}. (6) 

lit is easy to see that  

FHo= N {FHn: n = l ,  2, 3 . . . .  } (7) 

Jf F is compact. For an arbitrary e > 0, choose a compact F as in (6) such that  

Then  (4) implies that  

(8) 
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q~e /ao(FH~o) = q~e /a,o(D N (FHo))= lim ~ /a,~(D N (FH~)) 

<~ ~ lira R(D (1 (FHn)) = :r N (FH~)) <~ o~R(D N (AHoy)). (9) 

Relations (8) and (9) imply that  

e ~  /ao~(D n (AH.,)) <aR(D n (AHo,)). (10) 

In  the same way we apply (7) and (5) to show that  

e ~  /a~(E N (AH~))~ ~ ( E  N (AH~)). (11) 

From (10) and (11), the relations (4.2.i) and (4.2.ii) follow at once, for both of the functions 

h and h. Theorem (4.2) shows that  _h and h are LRN derivatives of Q ~-/a~ with respect to 

R, both of these measures being restricted to the a-algebra B~. (Note that  the finite measures 

~ - ju  n ( n = l ,  2, 3, ...) are carried by a single a-compact open and closed subset S of G. 

Thus for the purpose of applying (4.2) we can restrict our attention to the set S, on which 

R is a-finite.) 

Since the decomposition (4.1.i) is unique, we have therefore proved that  

for all sets A E ~ .  (We define h(x), ]~(x), and h~(x) as 0 on S'.) If  ~(x)4 h(x) on a set A 

not of R-measure 0, then (12) would fail for a set A in ~ ,  since h and ~ are ~-measurable .  

Similarly we see tha t  ]~(x) = h~,(x) for R-almost all x E G. [ ]  

Some consequences of (4.3) will be used in w 5. 

(4.4) THEOREM. Let G, H~, and/an be as in (4.3). Let f be a R-integrable, Bor el measurable 

/unction on G. Then 

(i) lim / ~/an(x) = ] ~-/a~(x) 
n - ->  o o  

]or R-almost all x E G. 

Proo/: Recall ([12], (20.9.ii)) tha t  the function /~-#n is defined by 

/ 2 f . f l x y  -1) = /(xy l)d/an(y), 

and is an LRN derivative of the R-absolutely continuous measure (/R)~r Then (4.3) 

shows tha t  the functions 

f(x)=lim/~e/a~(x) and ] (x )= l im  [~-/an(x) 

are equal R-a.e. to the function/~-~u~(x). []  
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(4.5) COROLLARY. Let G, Hn, and Pn be as in (4.3). Suppose that Ho,=(e). Then 

lim ] ~e /~n(x)= /(x) 2-a.e. in G. 
n - - ~  oo  

Proo/. This follows from (4.4) and the fact t h a t / ~  in the present case is the unit 

measure re, for which [~ere= [. [] 

(4.6) THEOREM. Let G, H~, and ~ be as in (4.5). Let 0 be a measure in M+(G) such 

that ~ has a 2-absolntely continuous part equal to zero. Let h,  be an L R N  derivative o[ Q ~e l~ ~ 

with respect to 2. Then 
lira hn(x)= 0 2-a.e. in G. 

n --~ o o  

Proo[. As in (4.5), we have 0 ~e/~ =0, and the function 0 on G is an L R N  derivative of 

Q with respect to 2. Now apply (4.3). [ ]  

(4.7) Note. All of (4.3)-(4.6) remain valid if the convolutions Q ~e/~ n are all replaced 

by ~un~-O and /~e#~  by /~- )e / .  The Borel sets AHn need only be replaced by  HnA in the 

proof of (4.3). 

(4.8) Example. Let G be a locally compact, 0-dimensional Abelian group. Let  X 

denote as usual the character group of G. Let  (H.)n~176 be any decreasing sequence of com- 

pact  open subgroups of G, and as above let H~;= D ~=1 Hn. Normalised Haa r  measure 

/~n on Hn is 2 ( H n ) - 1 ~ 2  for n<eo, and/2n is the characteristic function of the annihilator 

Yn of Hn in X. Define Haa r  measure 2 on G so tha t  2(H1)= 1 and H a a r  measure 0 on X 

so tha t  O('~gl)  = 1. 

Now let Q be any  measure in M(G). Then it is easy to see tha t  

1 

) for all x E G. The function Q ~- ~H~ (X) 

is an L R N  derivative of the 2-absolutely continuous measure ~ ~-/~n. Thus Theorem (4.3) 

and (i) show tha t  

f ~(x) x(x) dO(x) = h~(x) Oi) lim 

for 2-almost all xEG, where h~ is an L R N  derivative of 0 ~e/~ with respect to 2. 



POINTWISE LIMITS FOR SEQUENCES OF CONVOLUTION OPERATORS 207 

w 5. Pointwise summability methods for arbitrary locally compact AbeHan groups and 
compact groups 

The main results of this section are (5.7) and (5.11), which give iterated limit processes 

for recapturing ] e ~I(G) f rom/ .  We do not know if a single limit process exists for every 

locally compact Abelian group or compact group. 

We begin with some needed facts about measures on groups and quotient groups. 

(5.1) THEOREM. Let G be a locally compact group and H a compact normal subgroup 

o/G. Let 2 be a left Haar measure on G and ~ a left Haar measure on the group G/H. Let T 

be the natural mapping o/ G onto G]H: ~(x)=xH eG]H. I /  ~e~l(G]H),  the/unction ~pov 

is necessarily h-measurable. For given 2, the measure ~ can be chosen so that 

(i) JafJ ) (xH)d~(xH)  = .Iof ~~ /or all ~ e ~ICG/H). 

I] G is compact and 2(G) = 1, then v(G/H) = 1. 

Proo/. Consider first a function ~ E ~ ( G / H ) .  The function ~ vanishes outside of a 

compact subset { x H : x e F )  of G/H. By [12], (5.24.b), we may suppose that  F is compact 

in G. Thus ~ov  vanishes outside of the compact subset F H  of G and is in ~00(G). Since 

~ o ~ = 0  only if ~ =0,  the functional 

-+ f ~oTCx) d2(~) (1) 

is strictly positive on ~oo(G/H). For aEG, we have (a~)OV(X)==(~0ov)(x), and so the func- 

tional (1) is left invariant on ~oo(G/H). That  is, (1) is a left Haar  integral on ~ ( G / H ) ,  

which is to say that  we can choose u so that  (i) holds for ~ E~.o(G/H ). 

Now consider a compact subset B of G/H tha t  is the intersection of a countable 

number of open sets. I t  is easy to see that  there is a decreasing sequence (~,)~r of functions 

in ~oo(G]H) such that  lim,_.oo ~,  = ~ .  We then have 

,(B) = lim,~r f a , x  ~"d"=.~f~ ~'~ (2) 

Let  ~4 be the family of all Borel subsets A of G/H for which 

~(A) =2(~-1(A)). (3) 

The family • is obviously closed under the formation of countable unions of increasing 

sequences and of countable pairwise disjoint unions. Also, if A1, A 2 are in A, if A x c A 2 ,  
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and if v(A1) is finite, the set As N A~ is in A. Since G/H contains a a-compact  open subgroup, 

it follows readily from this and (2) tha t  M contains all Baire sets in G/H. (Baire sets are 

defined as in [12], (11.1).) 

Let  P be a a-bounded subset of G/H such tha t  v(P) = 0. The Kakutani-Kodaira  theorem 

(see [12], (19.30)) implies tha t  there is a Baire set Q such tha t  Q ~ P  and v(Q)=0. For 

this Q, we have 
0 =v(Q) =2(v-1(Q)) ~>2(~-1(p)). 

That  is, 
2(v-l(P)) =v(P) =0.  (4) 

The Kakutani-Kodaira  theorem also shows tha t  for every a-bounded v-measurable set A 

there is a Baire set B ~ A  such tha t  v(B N A')=0.  The relation (3) follows for the set A. 

In  particular, (3) holds for all compact sets, therefore for all open sets, all sets of v-measure 

0, and for all v-measurable sets of finite v-measure. From this (i) follows readily. []  

(5.2) The case of (5.1) in which ~(H) is positive deserves special comment.  In  this 

case (5.1.4) implies tha t  only the void set in G/H has v-measure zero. That  is, G/H is 

discrete, and so H is open. This fact also follows at  once from the identity ~-x-~g=~ H 

and the fact tha t  ~H-X- ~ x is continuous. In  fact, if a subgroup of G contains a 2-measurable 

subset of finite positive measure, then the subgroup is open. Let  Ra be the group R with 

the discrete topology. The subgroup {0} • R a in R • R a is an example of a closed, nonopen, 

locally 2-null, non 2-null subgroup. 

(5.3) TrIEOREM. Let G, H, 2, v, and v be as in (5.1). Let / be a Borel measurable/unction 

in ~I(G) that is constant on cosets o/H:/(ax) =/(ay) i /aEG and x, yEH. Let r be the/unction 

on G/H such that r(aH)=/(a) /or all aeG, so that r o v = / .  Then/t  is in ~x(G[H) and 

(i) fo,/dv= fo/da. 
This theorem is proved from (5.1) by routine arguments. We omit  the proof. The 

following result is also easy to establish and is presented without proof. 

(5.4) THEOREM. Let G, H, ,~, v, and v be as in (5.1). Let ~ be a measure in M(G). Con- 

sider the linear/unetional 

(i) fo{ o )dQ, 
de/ined /or cp E~oo(G/H ). This/unctional is a bounded linear/unctional on ~oo(O/H), and so 

there is a (unique) measure Qt in M(G/H) such that 

(ii) fo (q~ov)dQ= f olttq~t~' /or q~E~o(G/H ). 
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For every Borel measurable/unction g on G/H that is in ~I(G/H, ~), we have 

( i i i )  f o /de*= fo(gO )de 
Theorems (5.1), {5.3), and (5.4) appear in a modified, and more general, form in [4], 

p. 75, Thdor~me 1 and pp. 81-82, Exercice 1. See also [22] and [23]. 

To prove our theorems on pointwise summability for Fourier and Fourier-Stieltjes 

transforms, we also need some group-theoretic facts. 

(5.5) Consider an arbitrary locally compact Abelian group G. According to a well- 

known structure theorem (see, for example, [12], (24.30)), G is topologically isomorphic 
t 

with R a • Go, where a is a nonnegative integer and G o is a locally compact Abelian group 

containing a compact open subgroup Jo. 

L e t X  denote the character group of G. T h e n X  has the form R a • whereX o is the 

character group of G o. Let A0 be the annihilator in X 0 of the subgroup Jo of G 0. I t  is easy 

to see that  Ao is a compact open subgroup of X 0. 

For inverting Fourier transforms, it is convenient to make specific choices of Haar  

measure 2 on G and Haar measure 0 on X. There is one and only one Haar  measure 20 on 

Go for which 20(Jo)= 1, and we take this measure 2o on the factor G o. Let 21 denote the 

measure on R a that  is (2z) -�89 times ordinary a-dimensional Lebesgue measure, t taar  

measure 2 on G is then defined as the product measure 21 • 20. On X we construct the 

measure 0 as follows. Let 00 be the Haar  measure on X o for which A 0 has measure 1. Then 

0 is defined as 21 • 0o. I t  is known [11], and is easy to verify, that  this choice of 2 and 0 

produces equality in Plancherel's theorem, and so is appropriate for pointwise summability 

processes on G and X. In  the sequel, we will always take the above 2 and 0, the subgroup 

Jo being chosen once and for all. 

(5.6) THEOREM. The notation is as in (5.5). Suppose that there exists a compact sub- 

group {0} • H o/ {0} • G o in G = R a • G o such that Go/H is/ irst  countable. Then there is a 

decreasing sequence (gn)~= 1 o/ compact subgroups o/ {0} • G O such that [~ ~=, Hn = {0} • H 

and such that the group G/H n contains an open subgroup o/ the /orm R a • T bn • F~. Here 

(bn)n• 1 is a nondecreasing sequence o/nonnegative integers, and F~ is a/ ini te  Abelian group, 

/or n = 1, 2, 3, .... 

Proo/. Consider first the group G/H, which obviously is topologically isomorphic with 

R e • (Go/H). The subgroup {0} • (Go/H) of G/H contains the compact open subgroup 

{0} • (Jo/H), which is first countable because G/H is first countable. Le tY  be the character 

group of {0} • (Jo/H). Since {0} • (Jo/H) is first countable, Y is a countable discrete group, 
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Suppose first t h a t  Y is finitely generated.  Then Y has the form Z b • F,  where b is a 

nonnegat ive integer and F is a finite Abelian group. The group {0} • (Jo/H) thus  has the 

form T o • F ,  and so G/H has the  form R ~ • T o • F .  I n  this case we take  all of the  groups 

Hn equal to  {0} • H.  

Suppose next  t ha t  Y is not  finitely generated.  I n  this case, it is simple to verify t h a t  Y 

is the  union of an  increasing sequence (A~)n~_-i of f initely generated subgroups. Then An 

has the form Z ~ • F n for n = 1, 2, 3 . . . . .  I t  is clear t h a t  (bn)n~l is a nondecreasing sequence 

of nonnegat ive integers. Le t  {0} • Mn be the annihilator  of An in {0} • (Jo/H). The quo- 

t ient  group ({0} • (Jo/H))/({O} • Mn) is the character  group of An and so has the form 

T ~ • F n. We have thus  produced a continuous open homomorphism of G onto R ~ • T ~ • F~, 

which is indicated schematical ly as follows: 

G = R ~ • G o--> ( /P  • Go)/({0 } • H) = R a • (Go/H) ---> 1P • ((Go/H)/Mn). 

We denote this homomorphism by  ~n, and  we define H n as the kernel of the homomorphism 

~n. The group / P  • ((Go/H)/Mn) c o n t a i n s / P •  ((Jo/H)/Mn) as an open subgroup, and this 

last group has the form R ~ • T b~ • Fn. Since Mn is a compact  subgroup of Jo/H, it is easy 

to  see f rom [12], (5.24.b) t h a t  Hn is a compact  open subgroup of {0} • G 0. Our construct ion 

H ~ also makes it clear t h a t  ( n)n~l is a decreasing sequence of subgroups. I t  remains only to  

prove t h a t  N ~=IH~ = {0) • H.  This follows a t  once f rom the fact  t h a t  f3 ~ 1  {0} • M~ is the 

group ident i ty  in {0} • (J0/H), which in tu rn  is a consequence of the equal i ty  [J ~ l A n  =Y.  [ ]  

We can now state and prove our main  theorems on pointwise summabil i ty .  

(5.7) THEOI~EM. Let G be a locally compact Abelian group, with character group X. 

Let Y be any a-compact open subgroup o/X. There is a double sequence (Km.n)~=l. ~=1 o/]unc- 

tions on G with the ]ollowing properties. 

(i) Each K,n.n is nonnegative , uni/ormly continuous, positive-de/inite, and in ~I(G). 

(if) Each Fourier trans/orm I~m.n is nonnegative, vanishes outside o/Y,  and has compact 

support. 

(iii) For every/E~I(G ) such that f vanishes outside o/ Y,  we have 

/or almost all x E G. 

Proo/. We use the  nota t ion  of (5.5). I t  is a routine ma t t e r  to  verify tha t  Y is contained 

in a subgroup of X of the  form R a • ~-, where E is a subgroup of X 0 t h a t  is the  union of a 

countable number  of eosets of A 0. We m a y  thus  suppose t h a t  Y = R a • ~ .  Now consider 
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the annihilator in G of the subgroup Y. This subgroup of G has the form {0} • H, where 

H is a compact subgroup of J0- The quotient group (R a • G0)/({0 } • H)  is the character 

group of Y; since Y is a-compact,  (R a • G0)/({0 } • H) is first countable (see [12], (24.48)). 

Thus we can apply (5.6) to G and its subgroup {0} • H. We now write H~ for {0} • H. 

Let  Yn be the annihilator i n X  of H= (n = 1, 2, 3 . . . .  , o9). Then each Yn has the form R a • ~,, 
where ~'n is a countable union of cosets of A0. Also we have 

YI c y~ c . . .  c Yn c .... and (~ Yn = Y = Y~. 
nffil 

Note also the important  fact tha t  G/H,~ contains an open subgroup of the form R a • T b.. 

Let  fin be normalised t I aa r  measure on Ha, and regard fin as a measure in M(G) 

( n = l ,  2, 3 . . . .  , ~o). I t  is clear tha t  ftn=~y,,. Thus if /es and f vanishes on Y~, then 

l=teYo (t ^. 

The uniqueness theorem for Fourier transforms implies tha t  /=/~-/u~ in ~I(G), i.e.,/(x) = 

/-)e#o,(x) for almost all x E G. 

Consider next  the group G/Ha, for n = l ,  2, 3, .. . .  Let  v~ be the Haa r  measure on 

G/Hn defined in (5.1). Since G/Hn contains an open subgroup of the form R a • T b~, we can 

apply Theorem (3.5) to G/Hn and assert the existence of a sequence (Pm.n)~=l of functions 

on G/Hn with the following properties. 

(1) Each Pm.n is normegative, uniformly continuous, positive-definite, and in ~I(G/Hn). 
(2) E a c h  Fourier transform/bm.n (which is defined on the subgroup Yn of X) is non- 

negative and has compact support  in yn. 

(3) For  every g e ~I(G/Hn), we have 

, ~  f y  ~ " fa  p,~.,~(xy-lHn)g(yHn)dl, n(yHn)=g(xH,,) lira n Pmo n(X) ~(Z) z(xHn) dO(Z) --~2m INn 

for all xHn E G/Hn except perhaps those in a set A of vn-measure 0. 

With regard to (3), to the appeal to Theorem (3.5) should be added the remark tha t  

the equalities 

f y P m  n (Z) ~(Z) Z(xHn) dO(Z) = |  Pro. n (xy-lHn) g (yHn) d~,n (yHn) 
I" 

�9 J a i l , ,  

(4) 

for m,n=l ,  2, 3 . . . .  depend upon our choice of 2 and 0 and upon the definition of vn in 

(5.1). Let  vn be the natural  mapping of G onto G/Hn. Then 



212 R.  E.  E D W A R D S  .AND E.  H E W I T T  

f ynPm, n ()~) g(Z) Z(XItn) dO(z) 

= fy .  folHPm.,, 96 g(uH.) Z(uHn)dvn (uHn) Z(x)dO (Z) 

(5) 

The inner integral in the last expression of (5) is equal to (Pm,.-~g)~ (convolution 

in G/Hn) because ((Pm,n%g)oTn) ̂  =-#m,~g is absolutely integrable on Y., and 2 and 0 

have been chosen so tha t  pointwise inversion is valid for functions in ~I(G) whose Fourier 

transforms are absolutely integrable. Thus the left side of (4) is equal to 

f o(Pm,n 0+ g) O'~n(X) d2(x), 

and this integral is, in view of (5.1), equal to 

faro,, (Pro.,, ++ g) dr,,. 

This establishes (4). We define Kin. n as the function Pro.nO'On on G, and claim tha t  the 

functions Kin. n satisfy (i)-(iii). Assertion (i) follows at  once from (1). 

To prove (if), consider first any character Z eYn" Both Kin. ~ and Z are constant on 

the eosets of Hn, and we use (5.3) to write 

f a -Km.n(x) Z(x) d2(x) = f aPm.n ovn(x) Z(x) d2(x) 

= fcm, Pm.,~(xHn) Z(xH,Odvn(xHn) = -Pm.n(Z). 

Suppose next  tha t  z E X  N Yn, i.e., tha t  ;~(a)4= 1 for some aEH n. Then we have 

foKm.n(z)Z(x)d't(z)=feKm.n(az)Z(ax)d'~(x)=Z,(a)faKm.n(X)-Z(x)d2(x), 
and so I~m.n(Z)=0. That  is, :~m.n is equal to Pro. n on Yn and vanishes elsewhere on X. 

This proves  OiL in view of (2) and the fact tha t  Haar  measure on Y~ is the restriction to 

Y~ of Haar  measure on Y. 
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The last paragraph also shows that  l~m.n'fin =/s The uniqueness theorem for 

Fourier transforms shows that  Km.~ and K,~.n~/~n are equal almost everywhere on G. 

Since Km,~ is uniformly continuous, K m . ~ / ~  is continuous, and so we have Km.~ = 

Kin. ~ 9e~un everywhere on G. 

Next  let ] be any function in ~I(G) (] need not vanish onY') .  For an arbitrary xEG, 

we compute as follows: 

xt(Z) x( )dO(z) = f , j (z)  Pro.. (z) r,.(x) dO(z) 

J GflHn ([-Yv ~n) (xH"y-~H")Pm'" (yH,)d~,(yH,). (6) 

(Since the function ]-x-/~ is constant on cosets of Hn, the expression (]-)et~)(xH~y-lH~) 

has an obvious meaning.) Theorem (5.3) shows that  ]ge#n , regarded as a function on 

G/H~, is in ~I(G/H~). Accordingly we can combine (3) with (6) to write 

lira fx/CZ) Rm.n (Z) Z(x) dO(z) = ]-~ t*,~(xHn) (7) 

for all xH~ E G]Hn except for a set {xH~ :x E A } of vn-measure zero. 

On the other hand, Theorem (4.4) shows that  

lim ] %/zn(x) = ] %/zoo(x) (8) 

for all xEG except for a set B such that  2(B)=0.  Theorem (5.1) shows that  2(AHn)=0. 

For all xEG N B' N n ~%1 (AH~)', (7) and (8) show that  

nlim {lim fx](Z)Rm.n(Z)Z(x)dO(Z)}=]3el~,,,(x)" (9) 

As already noted, if f vanishes on Y', then ]~lJ~(x)=](x) almost everywhere on G, and 

so (9) proves (iii). []  

Theorem (5.7) can in a certain sense be extended to Fourier-Stieltjes transforms. 

(5.8) THEOREM. All the notation is as in (5.5)-(5.7). Let Q be a measure in M(G) such 

that ~ % l~, is singular with rezpect to ~ (~-~1~, need not be continuous). Then we have 

(i) lim lim [ ~(g) t~m,,~ (g) Z(x) dO(Z) 0 
J X  

]or almost all x E G. 
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Proo[. We may  obviously suppose tha t  ~ is nonnegative. First write 

~efn =hn2 +an, (1) 

as in {4.35), where a ,  is defined on the a-algebra ]~, of {4.3) and h, is a ]~,-measurable 

function. Thus h n is constant on cosets of Hn, and the function h t. exists, as in (5.3). Let  

(hn2) t be the measure on G/H defined as in (5.4). Then for ge~x(G/H, (h~2)), (5.4.iii) and 

(5.3) yield 

f~/Jd(hnio*= f (go~.)n.d~= f (gO~n)(h*.o~.)d~ 
= a h ' , d , . .  

That  is, 
(h .  ~)~ = h~. v . .  (2) 

We now define the measure a t  for Borel subsets A of G/H, such tha t  z~l(A) is a Borel 

set of the form BHn, i.e., for all Borel subsets of G/H n. For  these sets, we write 

a~(A) = an(v~'(A)). (3) 

(The measure an is not in general in M(G), since it is defined only on Bn, a a-algebra tha t  

m a y  be a proper subfamily of the family of all Borel sets. However, (3) is well defined 

for all Borel sets in G/H, and the identi ty 

fa(gov.)da.=fa/,,gdat. (4) 

for all Borel measurable functions g on G[H, is a trivial consequence of (3}.) 

Let  Bn be a set in ]~n of k-measure 0 tha t  carries the 2-singular measure an. By (5.3), 

the set ~n(B,) has vn-measure 0. The measure a~ being obviously carried by v,(B,),  we see 

tha t  a tn is v,-singular, and so we use (2) and (4) to decompose (~-)(-f,)r (which is defined 

exactly as in (5.4)) into 

(e  ~ f n )  t = ( h . ~ ) '  + a'. = h~. ~ .  + a~.. (5) 

As in the proof of (5.7), we have: 

f x  ~(X) n(X) X(x) dO(X) g.,,. 

~y, Pm. n(Z) ~(Z) I?Zn(X) X(xHn) dO(Z) = (Pro. n -~ (e -~ fin) t) (xHn) 

= fG]HPm.n(xy-lHn)h~(yHn)d'Pn(yHn)-~" fG/tinPm.n(X,-1Hn) datn(y~In). (6) 
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Since a~ is vn-singular, the last integral in (6) has limit 0 as m--> oQ (see Corollary (3.6)), 

except for xH,~ in a set of v~-measure 0, By (3.6), the second to last integral in (6) has 

limit h~(xH~) for ~n-almost all xH~ E G/H~. Thus we have 

f ~(Z) Rm.n (9~) g(x) dO(Z) = h~(xHn) (7) lim 
m - - > ~  L I x  

except for a set A n c  G[Hn such tha t  vn(An) =0.  Theorem (4.3) shows tha t  

lim ha(x) = 0 (8) 

except for a set _hr~G of 2-measure 0. Since h~o~=hn,  we combine (7) and (8) to find 

tha t  (i) holds for x not in N U (I.I ~ 1  Tnl(A~)). Since this set has 2-measure 0 (5.3), the 

present theorem is proved. []  

Theorems (5.7) and (5.8) can be combined as follows. 

(5.9) THEOREM. The notation is as in (5.5)-(5.7). Let e be any measure in M(G), and 

let h be an L R N  derivative o/~ ~e #~ with respect to 2. Then we have 

(i) l i m { ~ m f x O ( Z , l ~ m . , ( Z , Z ( z ,  dO(Z,)=h(z, 

/or almost all xEG. I / 0  vanishes on Y' ,  then p ~-tt~,=~ and h is an L R N  derivative o/p itsel/ 

with respect to 2. 

Proo/. All of this except for the last s ta tement  is immediate from (5.7) and (5.8). 

I f  ~ vanishes on Y',  then ~ = ~ / ~ ,  and so by the uniqueness theorem for Fourier-Stieltjes 

transforms, we have ~ =~ ~-/z~. []  

(5.10) Examples. (a) Let  m be an infinite cardinal number,  and consider the group 

T at, regarded as the group of all complex-valued functions of absolute value 1 defined on a 

set X of cardinal number  m. The group operation is pointwise multiplication, and a generic 

neighbourhood of 1 is the set 

(xeTm:lx( t j ) -11 <e  for i = 1 ,  2, ..., m}; 

here e is an arbi trary positive real number  and {tl, t2 ..... t~} is an arbi trary finite subset 

of X. The character group Z ra* of T m is identified with the group of all integer-valued func- 

tions y on X such tha t  y(t) =0  except on a (y-dependent) finite subset of X. The value of 

y at  x E T "t is l-[rEx x(t) u(t), the product  actually being finite. The a-compact  subgroups Y 

and Y~ appearing in Theorem (5.6) are constructed as follows. Let  Q = {tl, t2 ..... tn . . . .  } be 

a eountably infinite subset of X (we will take Q = X  if lrt=~0). Let  Qn={tl, t 2 .... , t~} for 
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n = l ,  2, 3, . . . .  Let  Y be the set of all y E Z  r"* such tha t  y(t)=0 for t~Q, and let Y~ be the 

set of all yEZ r"* such tha t  y(t)=0 for t~Q~. The annihilator H~ of Y~ in T m is the set of 

all x E T  m such tha t  x(t)=1 for all tEQ~, and the annihilator H of Y in T m is the set of all 

xE T m such tha t  x(t)= 1 for all tEQ. There are many  choices open to us for the functions 

K~.~ appearing in (5.7). For example, we can imitate the restricted (C, 1) kernels on the 

n-dimensional torus T ~. In  this case we define 

for yEY n and I~m,n(y ) = 0  for ytY~.  

For this choice of ~m. ~ (and Km.~), Theorems (5.7)-(5.9) hold. Other possible choices 

of K~. n will no doubt suggest themselves to the interested reader. 

(b) M: Mahowald in [16] has described an analogue of Abel summabil i ty for T ~0, 

using a single limit instead of an i terated limit. His theorems are not stronger than  ours, 

since they provide pointwise convergence only for functions in ~ at points of continuity. 

Note tha t  this can be obtained by using any approximate identity. Also Mahowald's 

computations (see for example [16], p. 355, lines 20-22) seem hard to follow, and his 

Theorem I I  conflicts with known properties of Sidon sets (see [18], Section 5.7, or [7], 

Theorem 1). An analogue of Abel summabil i ty for continuous functions on an arbi trary 

(finite dimensional) unitary group has been given by  Hua [13]. Hua ' s  t rea tment  is not 

remarkable for obtaining pointwise convergence, as this is possible for all functions in 

~I(G) for any Lie group G ((3.7} and (2.10)), but for the explicit construction of summabil i ty 

kernels resembling the Abel factors r n for the circle group. 

(5.11) Theorems (5.7)-(5.9) have complete analogues for arbi t rary compact infinite 

groups G. Suppose for simplicity tha t  G is metrisable. Then it is known tha t  the set ~) of 

(3.4.I) is countably infinite: let us write ~)=  (D1, D 2 ... . .  D . . . . .  } and dn for the degree of 

the representation D~. Define subsets of ~) by induction as follows. Let  Dz, = D1. Suppose 

tha t  Dz,, ..., Din have been chosen. Let  ~ be the smallest subset of ~ tha t  contains 

(Dl ..... , Dl,) and is closed under the formation of conjugate representations and of irre- 

ducible components of tensor products. I f  ~ = ~ ) ,  the construction stops. Otherwise, 

let Dt,+l be the first element of ~) tha t  is not in ~ .  Let  

An = (x E G:Dz,(x), ..., Dz,,(x) are all equal to the identity operator}. 

Then An is a closed normal subgroup of G, and it is simple to verify tha t  G/A,~ is topologically 

isomorphic with a closed subgroup of the product 1)~=1 lI(dlk), where lI(d) is the group of 

d •  unitary matrices. I f  ~ = ~ ) ,  then A,~=G, and G is a Lie group. In  this case, we can 

apply (3.7). Let  (Km)~= 1 be a sequence of functions on G as in (3.5). Then 



POINTWISE LIMITS ~OR SEQUENCES OF CONVOLUTION OPERATORS 217 

~m 

(i) q ~e K~Cx) = K m  ~e q(x) = ~ ~m.jdj Tr [O(Dj) Dj (x)] 

and  so 

(ii) l im ~ ~ . j d j  Tr  [0(Dj)Dj(x)]  = h(x) 
m - ~ o o  1 = 1  

exis ts  for a lmos t  a l l  x E G and  is an  L R N  de r iva t ive  of ~ wi th  respec t  to  2. 

I f  no ~ .  is equa l  to  ~), t hen  G is no t  a Lie  group,  and  so fa r  as we know an  i t e r a t e d  

l imi t  is needed.  I t  is essent ia l  to  no te  t h a t  fin(D) is the  i d e n t i t y  ope ra to r  for al l  D E ~ ,  

and  is 0 for  a l l  o the r  D , / ~ ,  being normal i sed  H a a r  measure  on An. W e  f ind  in th is  case a 

double  sequence (K,n.n)~_l~~162 I of s u m m a b i l i t y  kernels  on G. Le t  hn be an  L R N  de r iva t i ve  

of ~ ~e#~ wi th  respect  to  ~. Our  f ina l  resu l t  is: 

(iii) h(x) = Ylm h,(x) = lira { l im ~ ~e pn ~e Kin., (x)} 
n - ~ o o  n --~ oo m - ~ o o  

r m ,  n 

= l im { l im ~ ~m.njdj Tr  [~(Dj)Dj(x)]}. 
n--->oO m---~OO ] ~ I  
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