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w 1. Introduction 

Let  G be a connected semisimple Lie group with a compact  Cartan subgroup B, 
and B* the character  group of B. Le t  g and b denote the Lie algebras of G and B 

respectively. Then  every b* E B* defines a linear funct ion ~ = log b* on bc by  the relation 

(b*, exp H )  = e a(H) (H E b). 

Let  W be the Weyl  group of (g, b). We say tha t  b* is regular if s ~ : ~  for every  

s ~ : l  in W. Let  B*'  denote the set of all regular elements of B* and define ~ as in 

[2 (m), w 1]. Then corresponding to every b*EB*', we construct  in Theorem 3 an in- 

var ian t  eigendistribution Oh, of ~ on G (ef. [2 (h), Theorem 2]). We shall see later in 

another  paper  t ha t  those irreducible characters of G which correspond to the discrete 

series (see [2 (a), w 5]) are actual ly finite linear combinations of these distributions 

(cf. [2 (h), Theorems 3 and 4]). 

The second main result  of this paper  is contained in Theorem 4 which gives an 

alternative formula for the distr ibution 0~.. This will be needed for the determina- 

t ion of the contr ibut ion of the discrete series to the Plancherel  formula of G. 

Our method  consists in first proving analogous results on g and then lifting them 

to G, roughly  speaking, by  means of the exponential  mapping.  Theorem 1 is the 8- 

analogue of Theorem 4 and its proof depends very  much on Theorem 5 of [2 (k)]. 

Then in w 8 we introduce the  not ion of a tempered distribution on an open subset 

of a Euclidean space (see also [2 (c), p. 90]) and prove some elementary results which 

are then applied in w 14 to certain tempered and invariant  eigendistributions on a 

reductive subalgebra ~ of ~ containing ~). Lemma 28 asserts the uniqueness of such 

distributions and the existence is proved in Theorem 2 and Lemma 37. L e m m a  41 
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contains the key  result required for the reduction of the proof of Theorem 4 from 

the group to the Lie algebra. 

The rest of this paper is devoted to the proofs of Theorems 3 and 4. The uni- 

queness par t  of Theorem 3 is relatively easy and follows from Lemma 28. However 

the problem of existence is more delicate. Lemma 50 contains the main step required 

in its solution. Lemma 59 gives a rather explicit formula for ~)~, which will be useful 

in later work. The main burden of the proof of Theorem 4 rests on Lemma 66. 

Let  L' be the set of all linear functions ~ on 5 of the form ). = log  b* (b* E B*') 

and write O~=Ob,.  Define ~ES(5c)  as in [2 (k), w Then we show in w tha t  

for any / e C ~ ( G ) ,  the series 
Z ~(~) O~(l) 

ire. L"  

converges absolutely and its sum represents a distribution T on G. We shall see later 

that ,  apar t  from a constant factor, T is just the contribution of the discrete series 

to the Plancherel formula of G (cf. [2 (h), Theorem 4]). 

This work was partially supported by  a grant  from the National Science Foundation. 

Part I. Theory on the Lie algebra 

w 2. Reduction of Theorem 1 to the semisimple case 

We use the notat ion and terminology of [2 (1)]. Let ~ be a reductive Lie algebra 

over R, g2 a completely invariant open subset of ~, T a distribution on ~ satisfying 

the conditions of [2 (1), Theorem 1] and F the corresponding analytic function on 

~ ' =  ~ N 6'- Then we have seen in [2 (1), w 9] tha t  (I)= VgF extends to a continuous 

function on ~ .  

Let  ~) be a Cartan subalgebra of g. For any function r on ~ '  let r denote its 

restriction on ~ N fl ' .  

L E I ~ A  1. Let De~)(~c). Then the /unction D(~ is locally bounded(1) on ~ N~. 

Fix a point H 0 E ~ N ~ and select a positive-definite quadratic form Q on l). For 

any  e > 0, consider the set ~(e) of all H E~ such that  Q(H-Ho)< e 2. Then if e is suf- 

ficiently small, ~ ( e ) c f l .  Moreover the set ~ ' (e)= ~}(~)N f l '  has only a finite number  

of connected components. I t  follows from [2 (1), Lemma 2] that  D(F~ remains bounded 

on each connected component of ~'(e) and therefore also on t)'(e). Obviously this 

implies the statement of the lemma. 

(1) T h i s  m e a n s  t h a t  DO.~ r e m a i n s  b o u n d e d  on C N ~ '  for a n y  c o m p a c t  subse t  C of ~ N ~ .  
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COI~OLLAI~Y. For any DE~(gc), D~P is locally summable on ~. 

Fix fi as above. Then by [2 (j), Lemma 14], 

(D~p)~ = 5oil'(D) ~ = z-~(5~/o(D) o~) ~P~. 

:But ~g/~(D)o~E~)(~c) by [2 (j), Theorem 1] and therefore we conclude from the above 

lemma that  ~(Dq))~ is locally bounded on ~ N ~ .  

Let  m = ( n - l ) / 2  where n = d i m  ~, / = r a n k  9- Then m=d~ Let t be an indeter- 

minate and ~(X) the coefficient of t ~ in d e t ( t - a d X )  (XE6c). Then ~ is an invariant 

polynomial function on 6c and ~?(H}=(-1)mg(H) 2 (HE~c). Moreover it follows from 

the above result (see the proof of Lemma 3 of [2 (1)]) that  [y[ �89 [D(I) I is locally bounded 

on ~2. Therefore since lyl  - i  is locally summable on fi [2(k), Corollary 2 of Lemma 

30], our assertion is now obvious. 

Let  V~* denote the adjoiat of Vs. Then V~* is also an invariant and analytic 

differential operator on ~'. 

L ~ M A  2. Put [(x:H)=/(H ~) (xEG, HE~) /or fEC~(~). Then 

/(H~; V~*)= ( -  1F/(x://; :~-~(~)o~ ~) (xea, Het}') 

where m = �89 (dim 6 - rank 9)- 

Pu t  g~=(~,)G. Then fl~ is an open subset of g'. Fix gECc~(fl~). Then 

fV~ */�9 g dX = f /"  V~ g dX 

and therefore we conclude from Corollary 1 of Lemma 30 of [2 (k)] that  

f ~(H)*l(x* H; V~*)g(x*H)dx* dH = f ~(H?/(z* H)g(x* H; V~)dx* dH. 

Now define r162 (x*~G*, HEO) for r  or g. Then it follows from the 

definition of Vg [2 (1), Lemma 24] tha t  

g(z*H; V~)=g(x* :H; ~(~r)oz). 
Therefore 

f ze(H)~l(x * H) g(x* H; Va) dx* dH = ( - 1 )~ f ~(H)2/(x * : H; g-l~(v~) og 2) g(x*H) dx * dH 

since ~r is homogeneous of degree m. The differential operator zt-x~(~r)o7~ ~ being in- 
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variant under the Weyl group of (g, ~), there exists (see the proof of Lemma 24 of 

[2 (1)]) a unique iuvariant differential operator D on 6~ such that  

/(x'H; D)= ( -  1)'n/(x* :H; ~-l~(w)o~z 2) 

for x*EG*, HE~)' and /ECoo(6). Hence it is clear that  

fv~*/.gdX=fD/.gdX. 

This being true for every g E Ccoo(g~), we conclude that  An* =D on g~ and therefore 

/(HX*; V~*) = ( - 1)'n/(X* : H; :7~-l~('W')O~r/; 2) 

for x* E G*, H E~'. This is equivalent to the statement of the lemma. 

COROLT, A~Y. /(HX; V~*o~-I)=/(x:H; ~-J~(~)) (xeG, He~'). 

Since ~(H)= (-1)m~z(H) 2, this is obvious from Lemma 2. 

By Chevalley's theorem [2 (c), Lemma 9], there exists a unique element pEI(gc) 

such that  p~= (z~) 2 for every Cartan subalgebra ~ of 6- (Here we have used the 

notation of [2 (i), w 8] and [2 (1), Theorem 3].) Put  [] --~(p). 

LEMMA 3. Let / be a locally invariant C ~ on an open subset U o/6'. Then 

(V~*o~-loV~) / = •/. 

Fix a point H 0EU and let ~ be the centralizer of H 0 in 6. Then ~ i s a C a r t a n  

subalgebra of g and it follows from the corollary of Lemma 2 that  

/(H; Vg*o~-iovg)=/l(H; :rt:-l~(-m')) ( H E ~  n U) 

where /I=V~/. However 

/~(H)=/(H; ~(~)o~) (HEt) n U) 

from the definition of V~. Therefore 

/(H; V,.*o~]-1oV~) =/(H; :z-~(~)o~). 

On the other hand since / is locally invariant, we have 

/(H; [])=/(H; (~s/~'([]))=/(H; :~-J~(~2)o~) (H6~ N U) 

from [2 (c), Theorem 1] and the definition of ~ .  This shows that  
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/(Ho; Vo*o~-~oVo)=/(Ho; [ ] )  

and so the lemma is proved. 

COROLLARY. [ ] F  =(Vg*O~-IOvg) F=Vg*(~-I(I) ). 

This is obvious since F is invariant  and V~F = (I). 

For any e > 0  let g(e) denote the set of all X E 6  where ] ~ ( X ) [ > e  z. Let  u b e a  

measurable function on 6' which is integrable (with respect to the Euclidean measure 

dX) on g(e) for every ~ > 0 .  Then we define(1) 

provided this limit exists and is finite. 

TltV.OR~M 1. For any [ECc~176 we have 

f /DF dX = p.v. f ~-tVJ.  �9 dX. 

Since []  E ~(gc), i t  follows from [2 (1), Lemma 16] that  []  F is locally summable 

on ~ .  Hence the left side of the above equation is well defined. Now consider the 

right side. Let  V~ (0 < 8 ~< 80) be a family of invariant measurable functions on 6 with 

the following properties. 

1) There exists a number  a such tha t  ]V~(X)I< a for X E  6 and all 8. 

2) V~(X) = o if [ ~ ( x )  [ < 88 ( x  e g, o < 8 < 80). 

3) l imo_~oV~(X)=l for X E 6 ' .  

Fix a Cartan subalgebra ~ of g and put  6~= (~,)o as before. Then we can choose a 

real number  c=c(~)#O such tha t  

fg  dX = cJ~r(H) ~ g(x* dx* dH 
I" 

H) 

for gECc(60) in the notation of Corollary 1 of [2 (k), Lemma 30]. Since Vo~?-IVg[.r 
vanishes outside a compact subset of 6', it is obviously integrable on 6- Therefore 

fovon-lVg.r = (-1)mcf~ V~(H)r V~)dx* 
~ 6  . . (1) p.v. stands for principal value". 
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if we recall t h a t  ~ =  ( - 1 ) m ~  2 on ~. On the other  hand  it  follows f rom the definit ion 

of Vg t h a t  

fj(x*H; vg) ~R(//)~(H: ~(~)) (H dx* E 9') 

in the  no ta t ion  of [2 (k), w 5], Therefore  since ~ ( ~ ) * =  ( - 1 ) m ~ ( ~ ) ,  we get  

fgovo~l-lVJ. r dx= c fo V~.~Rr v/,dH 

where V~.~ denotes the  restr ict ion of V~ on 9. Since (I) is cont inuous on ~ ,  it is clear 

(see [2 (k), w 15]) t h a t  

f [r y~r]dH < oo. 

Therefore the following l emma is now obvious.  

LEM:~A 4. Let /eCc:r Then 

l im f Ve,-'Vd.r162 
~ 0  . 

Select a max ima l  set  ~ ( l < i ~ r )  of Car tan  subalgebras of fl no two of which 

are conjugate  under  G. P u t  ~ = (~,)c. Then  g' is the  disjoint  union of gi, g2 . . . . .  ~-  

F ix  a Eucl idean measure  d~H on ~t and  p u t  c~ = c(~), (I)t = (I)~ and  ~ i  = ~0~. Then  

we have  the  following result  in the  no ta t ion  of(1) [2 (k), w 16]. 

COROLLARY. For any /ECc~r 

limf~ V~-iV~/'~dX=~-*o ,<,<~Zc'f~'"r 
The first  equal i ty  is obvious f rom L e m m a  4 and  the  second follows by  tak ing  

V~ to be the characterist ic  funct ion of g((~). 

On the  other  hand  (see the proof  of L e m m a  3), 

F(H; ~ ) = F ( H ;  ~-~cO(~)2oz)=(I)(H; ~-lc~(~r)) (He~) '  f) C2). 

Therefore  f . dX = c f r 

and  so it  is obvious t ha t  Theorem 1 is equivalent  to the  following lemma.  

(1) ~/L~ denotes eR for ~=~ .  
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L ~ M ~  5. Let / E C ~ ( f ~ ) .  Then 

~. c~ | ea. ~ (Wr ~(~r~) (Ih - ~(~r~)* y)r ~. (I)0 d~ H = 0. 
l~<t~r Jl}i 

We shall now prove  Theorem 1 by  induct ion on d im ft. P u t  

d(l)= f /f%F dX-p.v.f ~-lvg* /.r dX 

l~<t~<r Jl)t 

for /ECc~(f~).  Then  it follows f rom [2 (k), w 15] t ha t  J is an invar ian t  distr ibution 

on O. We have  to prove  t h a t  J = 0 .  

Le t  c be  the  center  and  g, the derived algebra of g and first  assume tha t  c :~ {0}. 

Fix  a poin t  X oEf2. We have  to show tha t  J = 0  a r o u n d X  o. L e t X  0 = C  o + Z  0(COEc, 

Z 0 E ~) .  Select on open and  rela t ively compac t  neighborhood c o of C o in r such t h a t  

Z o + C1 (Co) c ~ .  Le t  f~1 be the set  of all points  Z E gl such t h a t  Z + C1 (co) ~ fL Then  

f21 is an open and  comple te ly  invar ian t  neighborhood of Z 0 in ~1 (see [2 (1), L e m m a  9]). 

I t  would be sufficient to prove  (see [2 (i), L e m m a  3]) t ha t  

J ( a x g ) = O  (~EC~(Co),  gECc~(~I)). 

Fix  ~EC~r and  consider the distr ibutions 

T~,(g)=T(o~• J~,(g)=J(a• (gECc~(f~l)) 

on f~l. Then  T~ and J~ are bo th  invar iant .  P u t  111=1I NI(~xc)where 1I has the 

same meaning as in [2 (1), Theorem 1]. Then  

d im I ( g l . ) / l l  l ~ dim I(gc)/lI < c~ 

and  ~(111) T~ = {0}. Hence  Theorem 1 of [2 (1)] is also applicable to (T~, gl, f~l) ins tead 

of (T, ~, f~). P u t  f~1 '=~1  N g' and  fix Eucl idean measures  dG and  dZ on C and ~1 

respect ively such t ha t  dX = dC dZ (X = C + Z, C E C, Z E ~1). Le t  F~ be the  analyt ic  

funct ion on ~1 '  such t ha t  

Then it is clear t ha t  

f,,(O)F(o § Z)dO (zefl,'). 
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Pu t  (P~ = V~,F~. I f  ~ is any  Cartan subalgebra of g, it is clear that  ~ = c + t h where 

~1=~ ~ 6~" Moreover ~r and ~(~r) are in ~ ) ( ~ )  and [ ]  q~(I(~lc)). Hence it  follows 

without difficulty tha t  

for g eC~(6~).  But  since dim g~ < d i m  6, we conclude from the induction hypothesis 

that  J~=O. This shows that  J ( ~ •  for :r and g e C ~ ( ~ )  and therefore 

J = 0 around X o. 

w 3. Second reduction 

Hence we may  now assume that  g is semisimple and identify g with its dual 

space by  means of the Killing form co of 6. For  any  p E I(cc), let p~ denote the re- 

striction of p on ~ and put  z~ = g~ (1 < i ~< r). We also identify ~ with its dual space 

(D ~ ~(gc)) in the notation of by  means of o)~. Then w~=z~. Pu t  ~(D)=~g/~(D) 

[2 (j), Theorem 1]. 

L~MMA 6. Let DE~(Cc), pEI(cc) and /ECcr162 Then 

ci I~.i  ~(o)~ p~) (~  ton4). ~(D) ~P, d~ H 
J 

: i<~r ct ~'l~.t 0(~0 , ) ( ' l  ~/.)f.,)" 0 , ( 0 ( o ) ) o . D ) + t d t H  

and ~ c~ lea. ~ ~(eoi) V~. t" (6~(D) o ~  o ~(p~)) ~P~ d~ H 
l<~t~r J 

We shall prove this in w 4. 

COROLLARY 1. For any k>~O, 

Since F0(~)r, ~ = ~(m~) YJr.~ and ~ (~ (o) z) o D) = ~(eo~ k) o ~(D), this follows immediately 

from the second statement  of Lemma 6 by  induction on k. 

1 7 -  652923. Acta mathematica. 113. Imprlm~ le 11 mai 1965. 
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COROLLARY 2. 

/or k>~O. 

This follows from the first statement of Lemma 6 by induction on k. 

COROLLARY 3. 

Z c, = 7. 

i ~ i, k>~O. 

Apply Corollary 2 to /k=0(~O)k/ with D = 1. Then since 

we obtain ~ c, re,.,  (~ (r H 

= z c, f V,., " *,  d, H. 

Now apply Corollary I with D = 1 and p = to j. This gives the required result. 

We shall now complete the proof of Lemma 5 and therefore also of Theorem 1. 

Let  Af denote the derivation of ~(~tc) given byQ) 

h , r189 r (r 

Then since 7t, is homogeneous of degree m, it is clear that  (see [2 (c), p. 99]) that  

A~ m u~ = m ! 0(n~). 

Therefore 8(7ti) = (m! 2~) -1 ~ Ckm(- 1)m-~8((ot~)o~o~(oh m-k) 
O<<.k~m 

where Ck m denotes the usual binomial coefficient. 

ately from Corollary 3 above. 

w 4. Third reduction 

Fix D E ~(gc) and put  

Hence Lemma 5 follows immedi- 

(1) As usual (D 1, De} =DlOD,-DsoD1 for two differential operators D1, D~. 
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J(/) = ~ c, fen., {8(w~) (~, ~7.,)" ~(D) (1), - ~, v2/., (~,(8 (w)oD) (1),} d, H 

J'(/) = ~ c, fen., {8(co,) ~'m" b,(D) (:~, (it),) - Y'm b,(O (eo)oD) (~, (1),)} d, a n d  H 

for /ECcoo(g2). Then J and J '  are invariant distributions on ~.  

LE~MA 7. No semiregular element o/ ~ o/ noncompact type lies in 

(Supp J) U (Supp J ') .  

Assuming this result, we shall now prove Lemma 6. For p EI (gc )and /E  Cc~(~), 

define 

J~,(/) = ~ c,fen., {9 (o~p,) (z, Y)n,)" (~,(n) (I), - O(p~) (Te~ V;.,)" (~,(3 (co)oD) (I),} d, H. 

Then J~ is an invariant distribution on ~.  We shall now show that  J~= J' =0.  

Fix a point X 0 E~  and, for any e >0,  define Ux. (e) as in [2 (1), Lemma 14] and 

put ~(e)=s  N Ux0(e). Then s is an open and completely invariant neighborhood 

of X 0 in g. Put  
~,(e)=~,H ~,(e), ~,(0)=0o~,(e) (1 <i<~r). 

Then we have seen during the proof of [2 (1), Lemma 13] t h a t  ~t(0) is a finite set. 

For every HE ~(0), select two open, convex neighborhoods UH, VH of H in ~i such 

that  C1 UHcV~c~,(1)  and VHN VH.=O for H:~H' (H,H'E~(O)). Put 

u~= U u., L= U V. 
H ~ ~(0) HE ~(0) 

and select O~HECcoo(VH) such that  c~n=l on UH (HE~t(0)). Define 

HEl)l(0) 

and put  g~=c~eR.,os g~'=e~en.~(~(D) (~(P~). 

Then it follows from [2 (j), Theorem 1], [2 (1), Theorem 2] and [2 (1), w 4] that  ~ and 

g~' are functions of class C ~ on the closure of each connected component of ~,' (R). 

Now choose e > 0  so small that  ~,(e)cUi ( l < i < r ) .  Then if /ECo~(~(e)), it is 

clear that  Supp ~0~., ~ U,. Since ~, = 1 on U,, it follows that  

J~ (/) = ~ ~'{8 (a),p,) ~.,. g, - a(p,) Y)n," r g,} d, H 
J 
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and 

for /ECe~176 Moreover ~(e) being completely invariant, we can choose an open 

neighborhood V of X o in g such that  C l ( V a ) ~ ( e ) .  Now J=J~ and therefore it 

follows from Lemma 7 and [2 (k), Theorem 5] that  J~ = 0 on V a for p E I(~e). Hence 

Xor J~. But  Xo was an arbitrary point of ~.  Therefore we conclude that  

J~ = 0. This proves the first statement of Lemma 6. 

Similarly by applying [2 (k), Theorem 4] we conclude that  J '= O. This gives the 

second statement of Lemma 6 in the special case p = l .  Now fix p~I(9v) and con- 

sider the distribution T o = O(p) T. Then T o also satisfies the conditions of [2 (1), Theo- 

rem 1] and therefore T o = F  o where F o = ~ ( p  ) F. Pu t  (I)0=V ~ F 0 and let (I)0~ denote 

the restriction of (I) o on ~ ~ ~ '  (1 <.i<~r). 

LEMMA 8. (I)ot=~(pt)(1)t ( l~<i<r) .  

Let  F~ and Fo~ respectively denote the restrictions of F and F o on ~t f~ ~ ' .  Since 

F is an invariant function, we know [2 (c), Theorem 1] that  

F0i = g t  1 O(p) (Tg| F | ) .  

Therefore (Pot = 8(~) (~  Fot) = 0(pt ~ )  (:~t F~) = a(p~) (P~. 

Now if we apply the result J '= 0 to the distribution T o (instead of T), we obtain 

ct feR.~ (O(eo~) ~:.t. ~(D) (~  (I)ot) - ~r.t 6~(0 (o)) oD) (~t (I)ot)) dt H = 0 

for f ECc~176 In  view of Lemma 8, this is equivalent to the second assertion of 

Lemma 6. 

w 5. New expressions for J and J' 

Define ~ as in w 2. Then ~ E I(gc) and ~7, = ( -  1)m~ 2 (1 ~ i ~ r). Moreover [71�89 and 

I ~ I- ~ are analytic functions on g'. 

L~M~IA 9. Define J and J '  as in w Then 

(I,7 I 1). D(I r/I-t 



and 

/or / E Oc ~~ (~). 
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J'([) = f{o(eo) / .  D(I) -/O(co) (D (I))} dX 
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Since ,j takes only real values on g, it is obvious that  I~/, [�89 =e ,g ,  on ~,' where 

Et is a locally constant function on ~ '  such that  e ~ = l .  Since (I) and I~?1-�89 are in- 

variant functions, it follows from [2 (j), Lemma 14] tha t  

D'(I ~ l- �89 r = e,- lxq-l,~, (D') 4p, 

on l~ N ~ '  for any D'  e~(gc). 

For any /eCc~162 let gr denote the function on fl' given by 

g,-= ~(~) (I ~ 1�89 �9 D(I rJl- �89 r  -171�89 ( . , )oDo I~l -J)  r 

Fix a ~unetion veV~cn) such that v(O=O if I t l < l  and vCt)=~ if It l>~ (tea).  For 
any e>O, put  v~(t)=v(e-2t) and 

vdx)=vo(~(i)) (zeg). 

Then V~ is an invariant C ~ function on fl and V~ = 1 on g(e) (in the notation of w 2). 

Put  ~ ' - -V~[  and ~=[~[�89 I t  is clear that  /~ and /~' are in C ~ ( ~ )  and / = ~ '  on 

g(e). Hence 

f ~(.) gr dX= f gc~) g, , dX 

where ~t(e)= 0~ N ~(e). However it is obvious that  

on ~(e). Therefore 

f g r d X = 2 c ,  f e,.R{O(eo,)(ze, y.r,,).e3,(D)~p,-~r, v2r.,t3,(eo(eo)oD)(I),} d,H. 
(8) ~ J ~l(e) 

Making e --> 0 we get p.v. fgr  dX = J(/) 

and this proves the first statement of the lemma. 
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is well defined. 

D'O =zh-16i(D ') (zhO d (D' E~(g~)) 

on ~ N ~ '  and therefore the above integral is equal to J'([). 
statement of the lemma. 

and 

/or leCf~ 

H A R I S H - C H A N D R A  

We know from the corollary of Lemma 1 that  the integral 

f{0(eo)/. /0(co) (D(I))} DO dX 

Moreover since (I) is an invariant flmction, 

This proves the second 

LEMMA 10. For any e > 0 ,  define the /unction V~ as above and put 

J~([) = fv~ {a(o)  (I ~71�89 "D(I r/[-�89 r - I t / l t [ ( O ( w ) o D o ] ~  ]-�89162 dX 

J~'([) = f V~ {0(w)/. D(1) -/a(eo) (DO)} dX 

Then 
J(f) = lim J~(f), J'([) = lim J,'([). 

e--~0 8...~. 0 

Put  f~=[~[~V~12f. Then [~6Cc~176 and J~(/)=J~(V~/2[). Hence it follows that  

Je(f) = ~ c, f V,., e,.R 81-1 {~ (g0t) Vfe, |" 8,(D) (I), - v2&., 8,(O(m)o D) (I),} d, H 

where V,.i is the restriction of V, on f)t. On the other hand, it is clear that  

~2&.*(H) = e,~,(H)~vr, i(H) 

if I:~,(H)l>~e/2 (He~,). Hence 

g,([) = ~ c,f V,., e,. n {0(w,) (#, ~#,. ,). St(D) (I), - =, ~f., 8, (O (o~) o D)  (I),} d, H .  

The two assertions of the lemma are now obvious. 

L~MMA 11. Put(l) 
�9 ~ = (171 ~ {0(~),V~)oDol Vl -~) r  

% '  = ({0(o) ,  v~} oD) �9 
/or ~ > 0. Then 

(1) See foo tno te  1, p. 250. 
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J~(/)=f/~dX, J/(/)=f/~V/dX 
/or / e Ccoo(~). 

Since S u p p V ~ f i ' ,  this follows from Lemma 10 if we observe that  

(v~(co)o l~  I~) * = I~ l~0(~)oV~, (v~(co))* = ~(co)o v~. 

Fix a Cartan subalgebra ~ of g and let us use the notation introduced at  the 

beginning of w 2. In  particular V~.~ and co~ denote the restrictions of V~ and co on ~. 

LEMMA 12. For any e > 0 ,  we have 

(~F~)~ = ({~(cog, V~.~}o~r r 

and (uF/)~ = (~-1 (a(co~), V~. ~} o eSr oze) r 

I~ 1�89 (I) and V, are invariant C ~ functions on ~ ' .  Moreover there exists a locally 

constant function a on ~' such that  a '=  1 and I~ 1�89 = a g  on ~'. The required rela- 

tions now follow easily by a repeated use of [2 (j), Lemma 14] and [2 (c), Theorem 1]. 

w 6. Proof of Lemma 7 

We now come to the proof of Lemma 7. Fix a semiregular element H 0 E ~ of 

noncompact type and let 3 denote the centralizer of H 0 in g. Define ~ and 3' as in 

[2 (j), w 2] and put  ~ = ~ N 3'. Then ~a is an open and completely invariant neigh- 

borhood of H 0 in 3- Fix a Euclidean measure dZ on 3 and define 

j = a ~ , j ' = a r , s  and • ' = % ,  (e>0)  

in the notation of [2 (j), Lemma 17] corresponding to Go=G and 3 0 = ~ .  Since Js=Xtz~ 

and J~'= q2"j (Lemma 11), it is obvious that  

i~(r) = fr(z)v.r J.'r 
for ~ E Cc~176 Moreover 

~(~)=lim ~'~(~), ~'(~)=lim j,'(~) (yECcoo(~8)) 
~-~0 e-~O 

from Lemma 10. 

Now we use the notation of [2 (k), w 7]. In particular ~ is the center of 3 and 

ct = R H ' +  (r, ~} = R ( X ' - Y ' ) - t - o  are two Cartan subalgebras of 3. Fix Euclidean meas- 

ures d~, da, db on o, a, b respectively such that  
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da = dt d~, db = d~ da 

where t=o~/2 and ~ =  ( -1)~f l /2  in the notation of [2 (k), Lemma 13]. Then da can 

be so normalized that  (see [2 (e), Lemma 3]) 

f rdz=l  f.+~Jv~ f6fiJv~db 
for y e Cc~ Here 

Jva(H)=Ja(y :H)  (H Ca), 

Jv~(H)=Jb(y:H)  (H eb")  

in the notation of [2 (k), Lemma 14], a + is the set of all points H in a where g(H) > 0 

and b" is the set of those H Eb where fl(H)~=0. Therefore since ~F~ is an invariant 

C ~ function on ~,  it is clear that  

1 1 

fo+ =++(v.). + f/++ 
for 7ECc:r Now apply Lemma 12 and observe that  SuppV~.~c h N g' and 

(0(coh)oV,.~)*= V,,r ( h = a  or b). 
Then it follows that  

i: (F) = ~ + Vs., {O (co,) (~Jua) �9 (I) o,a - aJva" O(coa) (I)o. ,} da 

+ <- 1), ~ f~v,.,(0(~,)(p+,,). r ~+,,. 0+,) r 

where q)o.~=0r ( h = a  or b). Hence it is obvious that  

1 
i(Y) = ~ J a + {~ (oa) (agva) " 0o, a - ~gvaO(O~a) ~o, a} da 

+ ( -  1) t ~ {O(cob) (flJv b) "0o~ -flJr~O(co~)Oo.b}db 

for y EC~r162 Now coa=co.+ H - z a  ~ where co. is the restriction of co on o. Similarly 

co~=co,+]fil-~fl 2. Hence (see [2 (k), Lemma 21]) it follows that  

1 
J(Y) = ~ J  a+ a(o:) (o (o0 (~ Jra) "Oo. a - o~ Jr a O(ot) O0. a} da 

( -  1)+ f 
~-zT~- .  o(~) {~(~) (fig b). r ~ _ fig .~(~) r ~} d~. 

"~lpl J~ 
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Now da = da dr, db = da de and 

~(~)=�89 ~(~)__i(_~)+l~l:a/a4, 

~ince H' =2 I~I-:H:, X ' -  r'-- - 2 ( -  1)+1~1-~: 

in the notat ion of [2 (k), w 7]. Therefore 

j(~,) = - �88 f {0(a) (:cJra) �9 r 

Here 

~ j a .  ~(~) (Po.a}+ d(~ 

fo {~ (~) (fl J:)" r - ~ J :  ~(:) r + + da. 

ua+(H) = lim ua(H +tH'), u~*(H)= lira u~(H + r  Y')) ( H e a ;  t, r  
t-~+O ~--~+0 
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for two functions Ua and u~ on a and b respectively and (u~)_+=u~+-u~ -. Since 

: r  on ~ and 1~[2=]fll 2 [2 (k), Lemma 13], it follows tha t  

i(r) = ~ I'fo {(Jr ~ (Do.b)- + -- (Jr" (Do.a) +} da. 

However Oo.a and O0.~ are continuous functions on a 0 ~ and ~ N ~ respectively 

and r on a N ~ [2 (1), Lemma 18]. Therefore 

?'(Y) = ~ [ ~ I~f, {(J~)-  + - Jr a} Oo. a da (~' e Cc ~ (~)).  

But  (J,6)_+=Jra on a [2 (k), w 19]. Hence ~'=0 on ~ .  

Now p u t 0 )  7c~=oC1= a, =~=fl-l=~ and 

0~' = (~s/o(D) (:~cl)O) 

for ~ = a  or 5. Then if y e C c ~ ( ~ ) ,  we have 

' 1 [  a a ' 6 a 

! 
fa V, a {~ (coa) (z~-l gra) �9 (I)a' - $~ , - iZ~ ,a~(oga)  (~)a'} da 

2 + " 

+ ~ ( - 1) �89 [ V~,~ {~ (eo~) (g~-lJrb) �9 Oh' - g~- l J r l i~ (ml~)  0 ~ ' }  d5 
3~ 

(1) W e  a s sume ,  as  we m a y ,  t h a t  (za)~= z~ in t h e  n o t a t i o n  of [2 (k). w 7]. 
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from Lemma 12. Hence 

1 ? 

( - 1 )  f 

= _ ~ fo{~(a)  (~ -1j  , ) .  r  _ ~-ij~o(a)~,}+ da 

+ ~ fo{O(~)(~-1j b). Cd-~-~J~O(~)~(}-* aa. 

Now g - ~ j a  is a C ~ funct ion on a which is invar iant  under  the  Weyl  reflexion s~. 

Hence  8 (a ) (g~- l Jva )=0  on a. Moreover, 0(fl)(g - 1 j  ~) is a continuous funct ion on 

by  [2 (k), Theorem 1] and O(:c) (I)a', O(fl) (I)v' are continuous functions on ct f~ ~ ,  b N ~ re- 

spectively and they  are equal on a N ~ [2 (1), Lemma 18]. Final ly (I)~' is an analytic  

funct ion on b N ~ [2 (1), Theorem 2]. Hence 

= �88 fo  {=~-~g," - ( ~ - ~ J ~ ) -  + } o(fl) r da. 

B u t (  i ) 7e~=g~ and Jra--(JrO)_ + on a. Therefore f = 0  on ~2~. In  view of [2 (j), 

Lemma  17] this completes the proof of Lemma 7. 

w 7. A consequence of Theorem 1 

We now re tu rn  to  the nota t ion  of w 2 so tha t  ~ is again reductive.  

pEI(gc) ,  let  Pi denote  the  project ion of p in I(~c) (see [2 (j), w 

LEMMA 13. F i x  p E I(gc). Then 

l:rc,<~,< d(eR" (~(~,p,)yJ,. ," (I) ,-  ~f, ,~(~,p,)* (I),} d , H  = 

For  any  

/or leCooo(~). 

We note  t ha t  8(~,)* = ( -1 )ma(~ t ) .  

of f, we get  

Therefore  applying Lemma 5 to ~(p)/,  instead 

(1) See footnote 1, p. 257. 
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But  it follows from the corollary of [2 (1), I ~ m m a  16] t h a t  

f O(p) l" E]FdX = f / .  E](O(p)* F) dX. 

Hence we conclude from Lemma 8 and [2 (j), L e m m a  13] t h a t  

( -1)m f lD(a(p)* F) dX= Y c, f ~,.,W,.,a(p, ~,)* r H. 

The s ta tement  of Lemma 13 is now obvious. 
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dX. 

w 8. Some elementary facts about tempered distributions 

Let  E be a vector  space over R of finite dimension. Define S(Ec), P(Ec) and  

5~(Ec) as usual (see [2 (j), w 3]). Let  U be an open subset of E and  T a distr ibution 

on U. We say tha t  T is tempered if we can choose D~e~)(E~) ( l < i < r )  such t h a t  

[ T ( / ) l < ~ s u p  ID,/I ( / ecc=(u) ) .  

I t  is clear t ha t  if T is tempered,  the same holds for DT for any  D G~)(Ec). 

Fix a Eucl idean measure dX on E and  let g be a locally summable funct ion 

on U. Then g will be said to be tempered (on U) if the distr ibution 

i f/g dX ([ECr 

on U is tempered.  

In t roduce  a Euclidean norm II II on E. 

LEMMA 14. Let g be a measurable /unction on U such that 

sup Ig(x)l (1 + l lx l l ) -~  < o~ 
X e U  

/or some m >.> O. Then g is tempered. 

We can choose r >~ 0 such tha t  

~ = f < l  + llXll)-:dX< oo. 
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P u t  c~=supz~vlg(X)l (1 + ]]Zil) -~.  Then 

I f g /dX  <~eXC~m+r(/) (]ECc~U)) 

where u~+~ (]) = sup ]/(X) I (1 + Hill)m +,. 
XeU 

Since X--> Ilxll ~ a quadrat ic  form on E, it is now clear t ha t  g is tempered.  

A subset V of E is called full if tX E V whenever  X E V and  t/> 1. 

L ~ M A  15. Let V be a non-empty, open and /ull subset o/ E. Put 

g(X) = ~ p~(X) e ~'(x) (X E E) 
l<~i<~r 

where ~1 . . . . .  ~r are distinct linear /unctions on Ec and p~EP(Ec) (p~+0).  Then g is 

tempered on V i/ and only if(i) 
~2~(X) < 0 

/or all X E V and l <~ i <~ r. 

We recall t ha t  S(Ec) is the algebra of polynomial  functions on the dual space 

Ec' of Ec. Fix pES(E~) and  2EE~'. Then 

0(p) o e ~ = e ~ 0(p~) 

where p~ is the polynomial  funct ion ju-->p(2+~u) (~uEEc'). Therefore if qEP(Ec)and 

O(p) (eaq)= 0, we conclude t h a t  ~(Pa)q= 0. Now assume tha t  q=~0 and let q0 be the  

homogeneous component  of q of the highest degree. Then it is clear t h a t  pa(O)qo=O 

and  therefore p ( ; t )=  0. We shall need this fact  presently�9 

Let  us now turn  to the proof of L e m m a  15. I f  ~2~(X)~0  for X E V  and l<~i<~r, 

it follows from Lemma 14 tha t  g is tempered on V. To prove the converse we use 

induct ion on r. 

So let us assume tha t  g is tempered on V. I t  would be enough to  show tha t  

~ x ( X ) ~ 0  for X E V .  First  suppose t h a t  r ~ 2 .  Then )114At and  therefore we can 

�9 choose q E S(E~) such t h a t  q(2~) = 0 while q(~i) ~ 0. P u t  p = q~ where d > d~ Then 

O(p) (e~p~) =p~' e ~' (1 ~< i < r) 

where P~'=~(Pa~)Pt. Since p(~l)=q(2Oa~=O, it follows from what  we have seen above, 

t ha t  p~':~ 0. On the other  hand  pa, = (q~,)d and  q ; , (0)=  q(2~)= 0. Therefore since d > d~ 

it is obvious tha t  p / =  O. Hence 

(x) ~c  denotes the real part of a complex number c. 
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~(p)g= 5 p,'ea. 
l~<t<r 

Now ~(p)g is also tempered on V and p t ' + 0 .  Therefore we conclude from the induc- 

tion hypothesis that  ~21(X ) ~< 0 for X ~V. 

Thus it remains to consider the case r =  1. Fix X 1 E V and write ~t and p instead 

of 21 and Pl respectively. Then we have to prove that  ~2(X1)< 0. If  X 1 = 0, this 

is obvious. So let us assume that  X 1~0.  Choose a linear subspaee F of E com- 

plementary to RX 1 and an open convex neighborhood U of zero in F such that  

X I + U C V .  Then 

tX  1 + U = t(X~ + t-lU) = t(X 1 + U) c V 

for t~>l. Let J denote the open interval (1, ~o) in R. Fix ~ 6 C ~ ( U )  and for any 

/~6Cc:r consider the function y~6Cc~(V) given by 

Put  

7~(tX~+X~)=~(t)~(X2) (teR, X2eF). 

a(~)= f , , d X =  f ~(~!~(x~),(~Xl + X2)d tdX  , 

where dX~ is the Euclidean measure on F normalized in such a way that  dX = d tdX  2 

for X = tX 1 + X2. Then 

~(~)=fectq(t)~(t)dt  (~ E Cc~176 

where c=,~(X1) and q(t) = f p( tX 1 + X2) at(X2) e ~r dX~. 

Since p 4 0, ~ can obviously be so selected that  q 4 0. Moreover since g is tempered 

on V, it is easy to see that  a is a tempered distribution on J .  Hence it would be 

sufficient to prove the following lemma. 

LE•MA 16. Fix cEC, toER and let q:#O be a (complex-valued) polynomial ]unc- 

tion on It. Then i] the ]unction q(t) e ct (tER) is tempered on the open interval J =  (to, ~ ) ,  

we can conclude that ~ c  <~ O. 

Put  

and D = d/dt. 

where d ~ d~ 

T(fl) = Jfl(t) q(t) eCt dt (fl E Cc~ 

Let T o = (D - c)dT 

Then T o is also a tempered distribution on J .  But  
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(D -- c) ~ (qe a) = e a D~ q = ae ~ 

where a is a nonzero constant .  Hence it would be enough t o  consider the case when 

q= 1. Then T being tempered,  we can choose a number  A >/0 and  an  integer r~>0 

such tha t  

for ~r Let  c = 2 c i + ( - 1 ) � 8 9  2 where c~6R ( i = 1 , 2 ) .  We have to show t h a t  

c 1<~0. So let us assume tha t  c1>0.  P u t  

~ ( t )  = t i ( t )  e -~' t  

where c' = c 1 + ( -  1)�89 and  ti 6 Cc~r Then 

[Dnar = e-C,tl( D - c')ntil. 

Therefore we can select a number  AI>~0 such tha t  

Ifti(t)e~'tdtl  <<'At : 

for all ti 6 C~r 

Now fix a funct ion /6C~162 such tha t  1) 0~</~<1, 2 ) / ( t ) = 0  if t ~ 0  and  3) 

/ ( t ) = l  if t>/1.  For  any  M > t  0 + 2 ,  define 

tiM(t) = / ( t - - t  o - - 1 ) l ( M  + l - - t )  ( t6R) .  

y Then tiM6Cc~(J) and  tiM(t)ee'tdt>l ee~tdt. 
to+2 

On the other  hand  sup le-C'ttmDntiMI ~ambn 

where a m = s u  p If'he ~'tl, b ~ = 2  ~ max  sup I/)k/[ 2. 
t~to O~k~n 

V This proves tha t  B>~ e~'tdt. 
o+2 

But  as M--> + ~ ,  the r ight  side tends to + ~ giving a contradict ion.  This completes 

the proof. 

Let  U be an  open subset of E and C(U) the space of all C ~r functions / on U 

such tha t  
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~.(/) = sup ID/I < 

for all DE~)(E~). The seminorms vD (DE~)(Ec)) define the structure of a locally con- 
vex space on C(U). 

I t  is well known (see [3, p. 93]) tha t  the inclusion mapping of Cr176162 into C(E) 

is continuous and the image is dense in C(E).  Hence tempered distributions on E 

are the same as continuous linear functions on C(E). 

w 9. Proof of Lemma 17 

We now return to the notation of w 2. Let  ~ be a Cartan subalgebra of g and 

define g as in [2 (1), Theorem 2]. 

L~.~MA 17. Suppose T is tempered on ~.  Then we can choose an integer q>~O 

such that ~qg 48 tempered on ~ N ~'. 

Let  A be the Cartan subgroup of G corresponding to ~ and x -~  x* the natural  

projection of G on G*=G/A .  The group Wa operates on G* on the right in the 

Fix an invariant  measure dx* on G* and a function 

f a0(x*) dx* = 1. 

Put ~(x*) = [Wa] -1 ~ ~o(X*S). 
s~WG 

Select a compact set C in G such tha t  Supp a c C* and C's---C* for s e Wa and, for 

any  /3 e Cc~(~'), define a function /8 e Cc~162 as follows. 

/~(x*H) = [W~]-la(~ *) ~ /3(s-'H) 
$E WU 

for x*6 C* and H 6Supp/3 and S u p p / ~ c  (Supp fl)c*. 

Now define /(x : X)  = / ( X  x) as usual (x 6 G, X 6 g) for any  / 6 C~(fl). Fix D 6 ~) (go). 

Then 

/(xH; D) = l(x :H;/~-~) (H c ~) 

and it is clear tha t  D z - l=  ~ a~(x)Di (xEG) 

where al, ..., ar are analytic functions on G and D1, ..., Dr are linearly independent 

elements in ~)(gc). Hence 

/(xH; D) = ~ at (x) /(x : H; D~). 
| 

usual way (see [2 (1), w 9]). 

~o E Cc~(G *) such tha t  
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On the other hand if q=[[),fl], we can choose (see [20),  w an integer m>~0 

and elements q,~e| ~ e ~ ( ~ )  (I~</~<N) such that  

/(x : H; D~) = re(H)- rn ~/(x;  qt~ : H; ~t~) (1 ~< i < r) 
t 

for IEC~176 xEG and H e ~ ' .  Pu t  ~(x)=~(x*) (xEG). Then if x E C and HE~ ' ,  we get 

1~ (xH; D)=  re(H)-" ~ a~ (x)~(x; qij)ri0(H; 8is) 

where ri0(H)=[Wa] -1 E ri(s-lH) �9 
S~ Wq 

Since C is compact, it is obvious that  

sup IDl~l<.BEsup I=-~,~ri01 (rieCo~(~')), 

where B is a constant which depends only on D. Thus we have obtained the follow- 

ing result. 

LEM~A 18. For any DE~b(ge), we can choose an integer m>lO and a/inite number 

o/ elements ~lE~)(~c) (I~<i~<N) such that 

sup IDI~I< ~ sup I= m~,ril 
tor all ri e C~~176 

Now we come to the proof of Lemma 17. Since T is tempered, there exist 

D~ E~) (go) (1 ~< i ~< r) such that  

Ir(l)l < Z sup ID, ll 

for all I EC~(~). Therefore by Lemma 18, we can choose an integer mo>~0 and ele- 

ments 8je~)(~c) (1 < i < N )  such that 

IT(l~)l< E sup ID, lal< E sup ]~-m08jril 

for riECcCr A ~'). On the other hand 

where c=c(~) in the notation of w 2. Moreover 

~pf~ (H) = eR (H) re(H) f /~ (x 'H) gx* = en (H) re (H) rio (H) 
. 1  

(He~'). 
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Hence T(/a)=c f :,floadH =e f ~flgdH 

if we take into account  the fact  t ha t  gS=e(s)g (seWG). Pu t  7=zm- l f l  (m~>l). Then  

for /~ E Cc~(f~ N ~'). I f  m is sufficiently large, it is clear t ha t  :~-m~ This 

shows t h a t  21:m~ is tempered on ~ N ~'. 

Fix a Eucl idean norm Ilxll (x  e g) on  g and for any  Cartan subalgebra l?define 

g~ as in [2 (1), Theorem 3]. 

LV.MMA 19. Suppose /or every Cartan subalgebra ~ o/ g we can choose numbers 

a >l O and m >~ O such that 
Ig (H)l <a(1 + IIHII) 

/or H E~  N ~'(R). Then T is tempered. 

We use the nota t ion  of Lemma 5 and  pu t  g~=g~ (l~<i~<r). Then  

T(/) = ~ ct feR,~ g~ v2I.~ d~ H (/E C~ ~ (~)). 

Therefore we can choose c>~0 and an integer M/> 0 such tha t  

I T(/)I < c ~ sup (1 § IIHH)~ ]W.~ (H) I 

for /E C ~ ( ~ ) .  Our assertion now follows immediately  f rom [2 (d), Theorem 3]. 

w 10. An auxiliary result 

Let  9 be a reductive Lie algebra over C, ~) a Car tan subalgebra of 9 and  W the  

Weyl  group of (9, ~). 

LEMMA 20. Let ~ be a linear /unction on ~ and a a root o/ (9, ~). Suppose 

s2=~-co:  /or some sEW and c~=O in C. Then(1) s 2 = s ~ .  

For  the proof we m a y  obviously assume tha t  9 is semisimple. Let  ~ be the real 

vector  space consisting of all linear functions ju on ~ such that(S)/z(H~) E R for every  

(1) As usual sa denotes the Weyl reflexiou corresponding to r162 
(2) H/~ has the same meaning as in [2 (k), w 4]. 

18-652923. Acta mathematlca. 113. Imprim6 lo 11 mai 1965. 
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root  ft. F ix  an  order in ~ and  first assume tha t  2 E~.  Then  a 2  E ~  for every  a E W. 

Select a0EW such tha t  ~02>~a2 for all a E W .  Then if we pu t  ~t '=~o2, s '=(~0Sao -1 and 

ot'= a0ot, we obviously get  s ' 2 ' =  2 ' -co t ' .  Moreover the relation 82 = s~2 is equivalent  

to  s '2 '  =8~,2'. Hence wi thout  loss of generali ty,  we m a y  assume tha t  2~> a2 for all 

a E W .  Since 2 and  s2 are bo th  in ~ ,  it is clear t h a t  c E R .  Replacing ot by  -o t ,  if 

necessary, we m a y  assume t h a t  ot > 0. Then  c > 0 since 2/> 82. Now consider 

s~ 82 = s~ 2 + cot = 2 - c' ot 

where c ' = 2 ( 2 ( H ~ ) / o t ( H ~ ) ) - c .  We claim c ' = 0 .  For  otherwise c ' > 0  since s~s2<,,2. 

Moreover 
s~2= 2 -  (c + c') ot= s 2 - c ' o t .  

Therefore 8-18a2=2--Vts-lot, 8-12 = 2 -~- cs-lot. 

Since c and c' are bo th  positive, it follows t h a t  a t  least one of the two elements 

8-18~2, 8-12 is higher than  2 in our  order. Bu t  this contradicts  the condit ion tha t  

2/> a2 for all a E W. Hence c' = 0. This shows tha t  s~ s2 = 2 and  therefore s2 = s~ 2. 

Now consider the general case. Then  2 = 2 4 +  ( - 1 ) ~ 2 1  and c = a +  ( - 1 ) � 8 9  where 

ha, 2~ E ~ and  a, b E R. The relation s2 = 2 - cot implies tha t  

s2 .  = 2R - aot, s2~= 2 z -  bot. 

Hence if ab # 0, we get  s2R = s~ 2R, s2z =8~ 2z f rom the above proof. Therefore s2 = s~ 2 

in this case. Now suppose a # 0 ,  b = 0. Then  s2R = s~2R and s2x = 2z again f rom the 

above proof. Le t  W 0 be the subgroup of all a E W such tha t  a2x = 2~. For  Pl,~U2 E ~,  

let QXl, P2> denote  the usual scalar p roduc t  defined by  means of the Killing form of 

g so t h a t  

where fl runs over all roots  of (g, ~). Then  <O*/~1, ~[~2>=<~{~1, O'--1/.~2> for a E W .  Hence 

<82R, 2~> = <2R, s -12~> = <2~, 2~). 

B u t  2R - 82R = aot and a # 0. Therefore <ot, 2z> = 0 and  this implies t ha t  s~ 2~ = 2z. Hence 

s2 = 8~ 2. The case a = 0, b # 0  can be reduced to  the one above by  replacing 2 by  

( - 1 ) � 8 9  

We  shall need the above result  for the  proof of Lemma 26. 
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w 11. Proof of Lemma 21' 

We return to the nota t ion of w 2. So g is a reductive Lie algebra over R and  

gt = [g, g]. Let  a be a Car tan subalgebra of g and  aR the set of all points  of a 1 = a N 91 

where every root  of (9, a) takes a real value. Similarly let az be the set of those 

points  of a where all roots  of (9, a) take pure imaginary  values. Define 0, ~, p and  

K as in [2 (m), w 16] corresponding to a. Then it is clear t ha t  aR = a N p, al = a N ~ and 

therefore a = a n +  al, where the sum is direct. 

Define a ' (R)  as usual (see [2 (k), w 4]) and fix a connected component  as + of 

a ' (R)  N an. Let  PR be the set  of all real roots of (g, a) which take only positive 

values on aR +. We can introduce compatible orders (see [2 (d), p. 195]) in the spaces 

of real-valued linear functions on as and oR+ ( -1 ) � 89  in such a way  tha t  all roots  

in PR are positive. Let  P be the set of all positive roots of (9, a) under  this order. 

Le t  nt be the centralizer of al in 9- Then  m is reductive in 9 (see [2 (m), Cor. 3 

of Lemma 26]) and it is obvious t h a t  PR is the  set of all positive roots of (m, a). 

L E M ~ A  21. Suppose 9 has a Caftan subalgebra ~ such that every root of (~, ~) is 

imaginary. Then an is a Cartan subalgebra o/ in 1 = ]m, m] and az is the center o / m .  

We can choose x E G  such t h a t  bzc t [  (see [2 (d), w 8]). Since D x is maximal  abelian 

in ~ and  az c 3, we can select k E K such tha t  bkx~ a~. Hence wi thout  loss of generali ty 

we m a y  suppose t h a t  a l c  ~ c ~. 

Le t  Q be the set of all positive roots  of (g, l)) and  Q0 the subset consisting of 

those fl E Q which vanish identically on al. Then it is clear t ha t  

= 0o + cx_ ) 

in the usual nota t ion  (see [(2 (k), w 4]). Since t ) c  ~, bo th  ~ and  p are stable under  

ad~ and therefore, for a ny  root  7, X~ lies ei ther  in ~ or in p~. Hence it is obvious t h a t  

TMs shows tha t  m 1 ~ m N p ~ an. 

On the other  hand  let Cra denote the center of m and pu t  1 = rank g. Since a ~ m ,  

it is clear t ha t  
l = rank  m = dim Cm + rank m~. 

Bu t  az ~ cm, an c m~ and dim az + dim an = dim a = 1. Therefore we conclude tha t  Cm = az 

and an is a Car tan  subalgebra of m~. 
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Select a fundamental  system (a I . . . . .  am) of positive ro4ts of (m, a) and let WR be 

the subgroup (1) of W(g/a) generated by  (2) s~ for a e Pn. Then s . . . . . . .  s ~  generate Wa 

and m = d i m  an from Lemma 21. 

LEMMA 22. Let la be a linear /unction on ac which takes only real values on 

a R + ( - 1 ) ~ a z  and suppose i ~ s ~ #  (l~<i~<m). Then i~>~slz /or sEWn and lz(H)>~O /or 

H e a  +. 

Define linear functions ~j (1 <~]<~m) on a as follows. 

S~,lZJ=lZj-(~,ja ~ (1 <~i~m) 

a n d / z j = 0  on az. Then I~j>~s/~j (seWa) and/z j (H)  >~0 for H e a r  + (see [2 (g), p. 280]). Let  

s~ t z= /u -c~a  ~ (1 ~<i~<m) 

where c~ E R. Then ci >~ 0. Put  tzo -- ~.j c s/zj. Then/z  =/z 0 on an. Therefore it is clear tha t  

# -  s# =/~0-s/~0>/0 (s~WR) 

and /z(H) =/z0 (H) ~> 0 for H E an +. 

w 12. Recapitulation of some elementary facts 

Fix a Cartan subalgebra t) of g and let j = ]9 denote the Chevalley isomorphism 

p-->p~ of l(gc) onto I(~c) [2(j), w 9]. Let  2 be a linear function on 3~ Since every 

element q of S(~o) is a polynomial function on the dual space of ~ ,  we can consider 

its value q(2) a t  2. Let  Z~=Z~ ~ denote the homomorphism p - ->p~(2 ) (pEI (~ r  I(flc) 

into C. 

Let  W = W(~/~). Then W operates on ~)(~). We say tha t  2 is regular ff s 2 = 2 s # 2  

for s #  1 in W. I t  is well known tha t  2 is singular or regular according as ~r(2)= 0 

or not. Moreover if 2' is another linear function on ~c, then Zz= Zx, if and only if 

2 ' = s 2  for some sEW. 

Conversely l e t  Z # 0  be a homomorphism of I (g~) in to  C. Then ~:q-->g(j- l (q))  

(qEI(~c)) is a homomorphism of I ( ~ )  into C. Since S(~) is a finite module over 

I(~c) (see [2 (c), Lemma 11]), ~ can be extended to a homomorphism of S(~o). Hence 

there exists a linear function 2 on ~c such that  ~(q)=q(2)for  all q E I(~c). This shows 

(1) W(g/a) denotes the Weyl group of (g, a). 
(2) See footnote 1, p. 265. 
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that  Z = Z~. Moreover, as we have seen above, ~t is unique up to an operation of W. 

We s ly  that  Z is regular if ~ is regular. Pu t  P0= ~-1 (w~). Then 

Z(po) = ~(~)~. 

Hence Z is regular if and only if Z(Po)~= O. We note that  P0 is actually independent 

of ~ and therefore the concept of the regularity of Z does not depend on the choice of ~. 

Let  a, b be two Cartan subalgebras of g and y an element of the connected 

complex adjoint group Go of gr such that  w = (a~) ~. Then y defines an isomorphism 

D-->D ~ of ~)(a~) onto ~)(5~). 

LEMMA 23. Let 2 be a linear [unction on a~. Then 

X~ a = Z~ ~. 

This follows from the obvious fact that  ]~(p)= (ja(p)) ~ for p q I(gc). 

LEMMA 24. Let U be a non-empty open connected subset o/ ~ and ~ a regular 

linear [unction on ~ .  Suppose g is an analytic [unction on U such that O(q)g = q(2)g 

/or all q E I (~ ) .  Then there exist unique complex numbers c~ (s fi W) such that 

g(H)=  ~ e(s)c~e ~(~-'H) (HE U). 
s e W  

For a proof see [2 (c), p. 102]. 

w 13. Proof  of Lemma 26 

Let  3 be a subalgebra of ~ such that  1) 3 is reductive in g and 2) rank ~ = 

rank 6. Let  ~ be an open and completely invariant subset of ~ and Z a regular 

homomorphism of I(gc) into C. Let  ~ denote the analytic subgroup of G corresponding 

to 3 and define the isomorphism p-->p~ of I(gc) into 1(3~ ) as in [2 (j), w 9]. Consider 

a distribution T~ on ~ such that  

1) T~ is invariant under E, 

2) ~(p~) T~ = Z(p) T~ for all p E l(g~). 

Fix a Euclidean measure dZ on 3 and let ~ '  denote the set of those points of 

~ which are regular in 3. Then by [2 (j), Lemma 19] and [2 (1), Theorem 1], T~ coin- 

cides with an analytic function on ~a'. We denote by T~ (Z) the  value of this func- 

tion at any point Z E ~ ' .  

Let  ~ be a Cartan subalgebra of ~, P the set of all positive roots of (g, ~)and 

Pa the subset consisting of all positive roots of (3, ~). Put  
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~ = 1-[ a, g~ (H) = ~ (H) T~ (H) (H 6 &"/j N ~). 

Le t  ~' (3:R) denote  the set  of those points  of ~ where  no real  root  in P~ takes  the  

value zero. Then  b y  [2 (1), Theorem 2], g~ extends  to  an  analyt ic  funct ion on ~ ~ ~'  (3: R). 

P u t  W =  W(g/~) and  select a l inear funct ion  ~t on ~ such t h a t  X=Z~ in the  no ta t ion  

of w 

LE~I 25. 

on ~ ~ I)' (3 :R). 

There exist locally constant/unction.~ cs (s E W) on ~ ~ ~' (3 : R) such that 

g~ = ~ e(s) c, e "~ 

Since (O (p~) - Za (p)) T = 0 (p E I(g~)), i t  follows (see the proof  of [2 (1), L e m m a  1]) t h a t  

(a (q) - q(~)) a~ = o (q ~ I(Oo)). 

Hence  our  assert ion is an  immedia te  consequence of L e m m a  24. 

P u t  ~(Z)=det(adZ)~/~ (ZGg)  and  fix an  e lement  HoE $ such t h a t  ~(H0)~:0. 

Then  the centralizers of H 0 in 3 and g are  the same. Hence  H 0 is semiregular  in 

if and  only if i t  is so in g. Now assume H o E ~ ,  ~ ( H 0 ) ~ 0  and  H o is semiregular  of 

noncompac t  type.  We shalI now use the no ta t ion  of [2 (k), w 7] wi thout  fu r ther  

comment .  Then  i t  is clear t h a t  a and  b are Car tan  subalgebras  of 3. P u t  W = W(g/a)  

and  choose a l inear funct ion 2 on ac such t h a t  X = Za a. Define Gc as hi w 12 and  let  

~c denote  i ts  complex-analy t ic  subgroup corresponding to ad$~. Then  i t  is clear 

t h a t  the e lement  v of [2 (k), w 7] lies in ~ .  We assume t h a t  the  orders of roots  are 

so chosen t h a t  (1) (~ra)~= ~ and  (Tr~a)" =~r~ ~. Then  it follows f rom L e m m a  24 t h a t  

on Y/~ N a'  (3 : R) and  

~(~~ g~" = ~~  (~) Y. c2 e ~ 
s ~ W  

e ( ~  ~) g~ = ~ ~  (2) Z c2 exp ((s2y) 
s E W  

on ~ (1 b' (3 : R). Here  cs ~ are locally cons tan t  funct ions on ~ ~ ~' (3 : R) (~ ~ a or b). P u t  

c~(Ho)  = lim c~a(Ho + tH') 
t...-~ +O 

and note  t h a t  H 0 E ~ n b'  (3 : R). 

LEMMA 26. For any(~) sEW, 

(1) Here the notation is obvious (of. [2 (1), Theorem 3]). 
(3) See footnote 1, p. 265. 
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c:(Ho) + cs~'(Ho) = c,-~(Ho) + c~,-~(Ho) = c?(Ho) + c~,~(Ho). 

Pu t  ~ = a f ~ b ,  ~ = x - l ~ a ,  ~ _ / ~ - i ~  and let U be an open and convex neigh- 

borhood of H 0 in ~, .  We assume tha t  U is so small tha t  ~ and ~ never take the 

value zero on U N tl and U f]b respectively. Since c~ ~ (s E W) is locally constant on 

fl,  f] ~i'($ :R), it is clear tha t  

csa(H)=c~+=(Ho) ( H e U  N a') 

according as ~(H) is positive or negative. Similarly c,~(H)=c,~(Ho) for H e  U ~ b .  

Moreover ~a(2)~=0 since 2 is regular. Therefore if we apply [2(1), Lemma 18] with 

D = ~(~a) and recall tha t  v leaves o pointwise fixed, we get 

c,~ (H0) exp (X(s-~H)) 

= ~ cs-~(Ho) exp( l ( s - lH))  = ~ cs~(Ho) exp(A(s- lH))  
s e w  s e W  

(H 6 U N 0). 

Let  p~ denote the restriction of s2 on o. 

LEMMA 27. Suppose s~, % are Swo distinct elements in W. Then ps, =p , ,  i] and 

only if  s~. = st s v 

Since st leaves o pointwise fixed, it is clear tha t  /~,, =/~s, if s~ =s~ s I. Conversely 

suppose /~,, =/~,,. Then it is obvious tha t  s 22 - s 12 = c~ for some c E C. Since ~ is regu- 

lar, c4=0. Therefore it follows from Lemma 20 tha t  s l - ls~]t=sr~ where 7 ~ s 1 - 1 ~ .  

But  then sr=Sl- lS~sl  and therefore sa]~=s~sl~. Since ~ is regular, this implies tha t  

8 2 ~ 8~ 81 . 

Now if we take into account the elementary fact  tha t  the exponentials of dis- 

t inct  linear functions on o are linearly independent, Lemma 26 follows immediately 

from the relations proved above. 

w 14. Tempered and invar iant  eigendistributions 

Let  c be the center and gl the derived algebra of g. Fix a number  c > 0  and 

put  go = % +  gl(C). Here c O is a nonempty,  open, connected subset of c and gl(c) is 

defined as in [2 (m), w 3]. Then go is a completely invariant  open set in g. 

Now take ~ s = 3  f] go and assume tha t  there exists a Cartan subalgebra ~ of 3 

and a linear function ~t on ~c such tha t  1) every root of (g, ~) is imaginary, 2) ~t 

takes only pure imaginary values on ~ and 3) :~ =X~ ~ in the notation of w 12. Since 
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(g, ~)) has no real roots and go N ~ is connected, we conclude from Lemma 25 tha t  

g~(H)= ~. e(s)cs exp(~t(s-lH)) (HEg 0 f3 ~) 
s~w(g/I)) 

where c~E@. Let  C denote the additive subgroup of @ generated by  c~ (sE W(g/~)). 

Fix a Cartan subalgebra a of 3 and a connected component a + of go (~ ~'(3:R) �9 Select 

a linear function 2a on a~ such tha t  X~Q"= Z. Then by  Lemma 25 there exist unique 

complex numbers c~(a +) such tha t  

o n  fl+. 

g,"= ~ e(s)cAa +) exp(sX,) 
s~W(g/a) 

LEM~A 28. Suppose T~ is tempered on 3o=3 N go. 

c~(a +) = 0 unless (1) 
9t,~,(s-~ H) < 0 

/or all H E a  +. Moreover Cs(CI+)EC. 

Then /or a given sEW(g/a),  

COROLLARY. Under the above conditions g~=O implies T~=O. 

This is obvious from the lemma since C =  {0} if fl~ =0 .  

Fix a real quadratic form Q on g such that  1) Q ( X ) = t r ( a d X )  2 f o r X E g l ,  2) Q 

is negative-definite on r and 3) ~1 and c are orthogonal under Q. Let  U be any 

subspace of g such tha t  the restriction of Q on U is nondegenerate. Then we denote 

by  iv(Q) the index of Q on U (see the proof of Lemma 12 of [2 (k)]). 

Since c c a, it is obvious that  the restriction of Q on a is nondegenerate. We 

shall prove Lemma 28 by  induction on i~(Q). Let l = r a n k g .  I t  is obvious tha t  

ia(Q)~ - l .  Now if ia(Q) = - l ,  it follows tha t  all roots of (g, a) (and therefore also 

of (3, a)) are imaginary. Hence (see [2 (d), p. 237]) a is conjugate to ~ under ~ and 

so our assertion is obvious in this case. Therefore we may  assume tha t  i , ( Q ) > -  1 

so tha t  aR#{0}. Since c o is connected, it is clear tha t  

a + = a~ 13 go + a~+(~) 

where %+(3) is a connected component of a ' ( 3 : R ) n a n .  

L~M~A 29. Let aa(3) be the set o/ points in a • [3, 3] where every root o] (3, a) 

takes real values. Similarly let az(3) be the set o/ those points o/ a where all roots o/ 

(3, a) take pure imaginary values. Then aa(3)=aR and ai(3)= al. 

(') See footnote I, p. 260. 
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I t  is obvious tha t  az(~)~az. Moreover we may  assume without loss of generality 

tha t  az(~)m~ (see the proof of Lemma 21). :Fix HEaz($). Since every root of (g,~) 

is imaginary, it is clear tha t  every eigenvalue of a d H  is pure imaginary. Hence 

HEaz. This proves tha t  az($)=a~. Let  11t be the centralizer of a~ in ~ and put  

l l la=m N ~. Then it follows from Lemma 21 tha t  

Since a=aa+az=aR($)+a~(5) and both sums are direct (see w we conclude tha t  

aR(3) = aR. 
Let  Pa  (~) be the set of all real roots of (~, a) which take only positive values 

on %+(~). Then PR (3) can be regarded as the set of all positive roots of (m s, a) and 

if r e = d i m  a~, we can choose a fundamental  system (:% ..., a~) of roots in PR(3)(see 

w Let  WR(3/a) be the subgroup of W(g/a) generated by s~ (~EPR(3))- Then 

WR(3/a) is also generated by  s~ (l~<i~<m) and aR+(3) is exactly the set of those 

HEaR where ~ ( H ) > 0  (l~<i~<m). 

Now fix i and choose H~ E an such tha t  ~ (Hn) = 0, r162 > 0 (j 4= i, 1 <~ j ~ m) and 

a(//a)4=0 for any  real root ~ *  +a~ of (6, a). Then HRECI(aa+(~)) and we can ob- 

viously choose a connected component fir + of a ' (R)N an such tha t  1 )e rR+c%*(3)and  

2) HRECI(an+). Define P and PR as in w 11 corresponding to an + and select HzEaz h ~0 

in such a way tha t  ~(Hz)4=0 for ~ E P unless ~ E Pn. This is obviously possible. Then 

it is clear that  Ito=Itz+H~ECl(a +) and the only root in P which vanishes a t  H o 

is ~ .  Therefore H 0 is semiregular in 3 and C(H0)4=0. Define v and b as in w 13. 

Then fi is a Caftan subalgebra of ~ and, as we have seen during the proof of [2 (k), 

Lemma 12], i~(Q) = ia(Q) - 2. Therefore the induction hypothesis is applicable to b and 

so it follows from Lemma 26 tha t  

cs(a +) + c%s(a +) E C (s ~ W(~/a)). 

Now fix sEW(~/a).  Then it follows from Lemma 23 tha t  we can choose yEGc 

such tha t  ac = (6c)~ and s~a=~ ~. Let  (/~1 ..... ~r) be a maximal  set of linearly inde- 

pendent roots of (g, f)). 

choose a jER such tha t  

on fh= ~ N91 .  Hence 

Since X takes only pure imaginary values on O, we can 

~ -  Z a,~,~o 

i 

on at = a (3 gl. Since fljY is a root of (g, a), it follows tha t  s ~  takes only real values 
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on a~. Moreover ~l=2 ~ on c and so ]t~(s-~H) is pure imaginary  for HEa~.  Fix  a non_ 

e m p t y  open subset U of a~ such tha t  1) U ~ a ~ N f l o  and 2) all the  roots of (B,a) 

which take  the value zero on U, are real. Also fix a connected component  an + of 

aa+($) N a '(R).  Then  it is clear t ha t  

U + aR + ~ a '  fl $o" 

Since T~ is tempered on 30, it follows f rom L e m m a  17 tha t  (z~a)qg~ a is tempered 

on a ' 0  30 for some q~>0. Fix a funct ion 7 E C c~ and  pu t  

gv(H) = [7(H~) (z~a(H + H~))qg~a(H + Hx) dHz (HEAR +) 
Jv 

where dHz is a Eucl idean measure on a~. Then it is obvious tha t  gr is tempered on 

aR +. Le t  /~s and v~ respectively denote the  restrictions of SiVa (sEW(g/a))on aa and ax. 

Then it is clear t h a t  

= ~ ~(s)c~(a+)e ~ ' (~7(H,)  g~(H) (ze~a(H + H,))qe~,(~z) dHz 
s~w(~/a) J 

for H E a R  +. Fix soEW(g/a ) and suppose / ~ ~  for some HEa~ +. Let  W 0 be the 

set of all sEW(g/r such tha t  tu~=lus0. Then  it follows from L e m m a  15 t h a t  

[. 
e(s) c~(a +) | 7 ( H , )  (Te~a(H + H,)) q e ~'(H1) dH, O. 

8EWe J 

This being t rue for every 7ECc~c(U), we conclude tha t  

~(s) cs (a +) e ~' = 0. 
86W0 

But  since l~=/~o (sEWo) , it follows t h a t  

~(s) c~ (a § e~=o. 
sGWo 

However  2a being regular, this implies t h a t  cs(a +) =0 (sEWo). Therefore in par t icular  

Cso(a+)=O. Since a~ + was an  arb i t rary  component  of aR+($)r/a '(R),  the first assertion 

of Lemma 28 is now obvious. 

I t  remains to show tha t  c~(a +) EC for all sEW(fl/a) .  Suppose this is false. Let  W 1 

be the  set of all seW(g/a) such tha t  c~(a+)~C. We have seen above t h a t  

c~(a+)+c%~(a+)EC (seW(g/a), l <i<m). 

Therefore s~s  E W 1 whenever  s e W  1. This shows t h a t  W 1 is a union of cosets of the 

form WR (S/a) s. 
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Introduce compatible orders on the spaces of real-valued linear functions on an 

and aR+ ( - 1) �89 corresponding to some connected component aR + of aR+(3) N a'(R) 

(see w 11). We have seen that  s~a (sEW(~//tl)) takes only real values on tlR+ ( -1) �89 

Choose ~EW 1 such that  ~u=~a>~s2a for all sqW 1. Then p>~s~u for all sqW~($/tl)and 

therefore we conclude from Lemma 22 (applied to ($, a)) tha t  p(H)>/0 for Hfia~+($). 

However ca(a +) :t=0 since ~ ~W~. Therefore it follows from the above proof that  ~u(H)~< 0 

for Hfitl~+($). This shows that  p = 0  on ~I~ and therefore s~,p=~u (l~<i~<m). But  

since 2a is regular and m = dim ~I~ >/1, this is impossible. The proof of Lemma 28 is 

now complete. 

w 15. Proof  of  Lemm~ 30 

We keep to the notation of w 14. Let  31, 32 be two subalgebras of g and ~) a 

Cartan subalgebra of g such that: 

1) 3i is reductive in fl (i='1, 2) and 31D32~).  

2) Every root of (g, ~) is imaginary. 

3) If a is any Cartan subalgebra of 3z, then every real root of (31, a) is also a 

root of (~2, a). 

Define Z as in w 14. 

Let  T~ be a tempered distribution on 34 N go such that  

~(p~) T, = Z(p) T~ (p e I(gc), i = 1, 2). 

Consider the set P of positive roots of (g, I)) and let P~ denote the subset of those 

/~eP which are roots of ($~, ~)) ( /=1 ,2 ) .  Then PDP1DP2. Put  ~ t t= l - I~ ,~ .  Then it 

is clear that  ~l/~r~ is a polynomial function on ~c which is invariant under the Weyl 

reflexions s~ for ~ e P2. Therefore by Chevalley's theorem [2(c), Lemma 9] there exists 

a unique invariant polynomial function ~/0 on 32 which coincides with ~l/z~ on l). 

Put  B0'= g0 N g' where g' denotes, as before, the set of all regular elements of g. 

LEMMA 30. Suppose T2=~oT 1 pointwise on ~ N go'. Then T2=~oT ~ pointwise 

on 33 N ~o'. 

Let a be a Cartan subalgebra of $2- I t  would be enough to show that  T~ = ~o T1 

pointwise on a N go'. We shall do this by  induction on Q(Q) as in w 14. Let  ~2 be 

the analytic subgroup of G corresponding to $3. If ia(Q)=-1, then a is conjugate to 

~) under '~2 and so our assertion is obvious. Hence we may assume that  i a ( Q ) > - l  

so that  m = dim eR >/1. 
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We use the notation of w 14 corresponding to h = $~, h~. In  particular ~ a  is de- 

fined corresponding to T~ and we put  g a=g~, z a = g ~  ( i=  1, 2). I t  follows from our 

assumptions on h~, $~ tha t  

a '  (hi : R )  = {~' (h2 : R). 

Fix a connected component aa+(h2) of a '(h~:R ) Nan and let PR(h2) be the set of all 

real roots of (h2, a) which take only positive values on aR+(h2). Select the fundamental  

system (~1 . . . . .  ~m) of roots in P~($2) as in w 14. 

Choose a linear function 2a on a~ such tha t  ~ =Z~".  Then by  Lemma 25 there 

exist complex numbers Cs(i) (s~W(~/a)) such tha t  

g a= ~ e(s)c~(i)eS~a ( i = 1 , 2 )  
sew(g/a) 

on a+=g0 N ai+aR+(h2). I t  is obvious tha t  

~0 = a a l a / a 2  a 

on a where a is a constant (a = • 1). Therefore it would be sufficient to show tha t  

g2a=ag~ a on a +. 

Fix ?" ( 1 E ~ 4  m). Then (see w 14) we can select an element HoECl(a +) such tha t  

1) a j (H0)=0  and 2) a(H0)~:0 for any root :r of (~, a). I t  is clear tha t  H o is 

semiregular in each of the three algebras hi, h2 and ~. Define v and w as in w 13. 

Then w  and i6(Q)=i,(Q)-2. Hence our induction hypothesis is applicable to b 

and so it follows from Lemma 26 tha t  

c~(2) + %/(2)  = a {c~(1) + %/(1)} 

for seW(g/a) .  

In  order to complete the proof we have to show tha t  c~ (2) -- ac~ (1) for all s eW(g/a). 

Suppose this is false. Let  W 1 be the set of all sEW(g/a) such tha t  c~(2)4=acs(1). 

Then it follows from the above result tha t  if sEW1, the same holds for s~s (1 ~<~<m). 

Define WR(3Ja) as in w 14. Then W 1 is a union of cosets of the form WR(h2/a) s. 

l~ix a connected component aR + of aR+(h2)N a'(R) and define an order in the space 

of real-valued linear functions on a R + ( - 1 ) � 8 9  corresponding to an + as in w 11. We 

have seen in w 14 tha t  s~aE~ for all sEW(g/a). Choose ( T ~ W  1 such tha t  ~=aAa>~s~a 

for all sEW r Then tu>~stu for sEWR(h2/a). Therefore by  Lemma 22, lu(H)~>0 for 

HEaR +. On the other hand since aEW1, it is clear tha t  c , ( 1 ) a n d  c, (2) cannot both 

be zero. Therefore it follows from Lemma 28 that  #(H)<~0 for HE an +. But this 
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implies that  # = 0  on an and therefore s ~ # = #  (1-<-j~m). Since m~>l and 2a is reg- 

ular, this is impossible and thus Lemma 30 is proved. 

We continue our assumption that  ~z = ~ and define 0 as in [2 (m), w 16] corre- 

sponding to ~. 

LE~MA 31. Let 31 be a subalgebra o/ ~ such that 0(31)=$1 and ~ 1 ~ .  Fix  an ele- 

ment H 1 E ~ and let 32 be the centralizer o[ H 1 in $1" Then ~1, $2 satis/y all the condi- 

tions required above. 

Since 0 = 1 on ~, it is clear tha t  0(3~ ) = 3~ ~ 1J and hence 3~ (i = 1, 2) is reductive in 9 

(see [2 (d), Lemma 10]). Let  tl be a Cartan subalgebra of 3~- Then we know from 

Lemma 29 that  aR($~)=an and ai($i)=ai  ( i=1 ,  2). Let  m be the centralizer of at in 

$~. Since H 1 E az, Iit is also the centralizer of az in 31. Therefore the real roots of (3~, a) 

are the same as the roots of (111, a)(see w 11). This proves the lemma. 

w 16. The distribution T~ 

Let  5 be a Cartan subalgebra of g and assume that  every root of (g, l)) is im- 

aginary. Consider the space ~ of all linear functions on bc which take only pure 

imaginary values on b. Define ~r, ~ and W =  W(~/f3) as usual (corresponding to w 

and let ~ '  be the set of all 2 E ~  where ~(~)@0. Consider the subgroup Wk= Wk(g/5) 

of W generated by s~ corresponding to the compact roots fl of (8, 1~) (see [2 (k), w 4]). 

Then W~ = Wa (see Cor. 2 of [2 (m), Lemma 6]) in the notation of [2 (k), w 4]. 

THEOREM 2. For any ,~E~', there exists a unique distribution Tz on g with the 

/ollowing properties: 

1) Ta is invariant and tempered. 

2) ~(p)T~=po(2)T~ (peI(9c)). 

3) Tz(H)=xe(H) -1 ~ e(s)e ~'(8-1H) (HeI)'). 
seWk 

The uniqueness is obvious from the corollary of Lemma 28. Hence only  the ex- 

istence requires proof. 

First assume that  g is semisimple. We identify gc and l~c with their respective 

duals by means of the Killing form of g (see [2 (j), w 6]). Fix a Euclidean measure 

dX on g and put  

/(r) = | / ( X )  exp ( ( - 1 ) � 8 9  ( Y E s )  
J 
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for /EC(g). (As usual B ( X , Y ) = t r ( a d X a d Y )  for X, YEg~.) Moreover for any 

H o E l~' define 

7.0 (/)-- wp (H0) = ~(Uo)jj(x*Ho) dx* (/e C(g)) 
/ $  

in the notation of [2 (k), w 5] (for ~ = b). Then we know from [2 (d), Theorem 3] tha t  

the integral is absolutely convergent and Tn, is an invariant and tempered distribu- 

tion on g which satisfies (see [2 (d), p. 226]) the differential equations 

~(p)rH.=p((-- 1)�89 T.. (p EI(g~)). 

Fix H o E b' and let ~H~ denote the space of all invariant and tempered distribu- 

t ions  T on g such that  

~(p) T = p ( ( -  1)�89 T (p e&~)) .  

For  any T E ~ o ,  let gT denote the analytic function on b (see [2 (1), Theorem 2]) 

given by 
gT (H) = ~(H) T(H) (H E b'). 

Then by Lemma 25, 

gT(H) = ~ ~(S)c~(T) exp ((-1)�89 B(sHo, H)) (HEIr) 
s E W  

where cs(T) are uniquely determined complex numbers. I t  is clear "that grt=e(t)gT 

and therefore ct8 (T)=cs  (T) for t E Wa = Wk and s E W.r~On the other hand the linear 

mapping T--> gT is injective from the corollary of Lemma 28. Hence it is obvious that  

dim ~no~< [W :Wk]. 

On the other hand it is clear that  Ts~oE~Ho(sEW). Pu t  r=[W:Wk] and select 

s~ E W (1 ~< i ~< r) such that  
W =  LJ Wk s~. 

Write Ti = vs~,. Then we claim that  T 1 . . . . .  ~r are linearly independent over C. Pu t  

a~ (/)= ~ r (8 ,H0) ( /~  C(0)). 

Since / -+  ~ is a topological mapping of C(g) onto itself, it would be enough to verify 

that  the tempered distributions a 1 . . . . .  ar are linearly independent. Since s~H o is semi- 

simple, the orbit (s~H0) G is closed in g (see [1, p. 523]). Therefore it follows from the 

definition of a~ that  

Supp at = (s~ H0) a. 
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Now we claim t h a t  (stHo) ~ N (sjH0) a =  O if i=~j. For  otherwise s~Ho= (sjHo) ~ for some 

x E G. Since H 0 is regular, this implies t h a t  s~ = ssj for some s fi Wa = Wk. Bu t  this is 

impossible f rom the  definition of (s~ . . . . .  s~). This shows t h a t  the  sets Supp a~ are 

disjoint and  non-empty  and therefore the distributions a~ (1 <~i<r) are linearly inde- 

pendent .  

So it is now obvious tha t  dim ~H0 = r and  v~ . . . . .  v, is a base for ~H.. Le t  a, 

(s E W) be given complex numbers  such tha t  at, = as (t E W~). Then it follows from the  

above result  t h a t  we can choose a unique element T E ~H. such tha t  a, = c, (T). Hence,  

in particular,  there exists a distr ibution T in ~H, such t h a t  

gT(H) = ~ *(S) exp ( ( -  1)JB(sH o, H)). 
8EWk 

This proves Theorem 2 when g is semisimple. 

Now we come to the  general ease. Define 61 and  c as before (see w pu t  

b I = b N 61 and let ~1 denote the  restriction of 2 on blc. Fix Euclidean measures dC 

and dZ on c and 61 respectively such tha t  d X = d C d Z  for X = C + Z  (CEr ZE61). 

Since gl is semisimple, there exists, f rom the  above proof, an  invar iant  and tempered 

distr ibution T 1 on gl such t h a t  ~(p) T l=pb(2 )T  1 (pEI(61c)) and  

~(H) T 1 (H) = ~ e(s) exp (21 (8-1H)) (H E [}1 N 6t). 
sEWk 

:Put T~ (1) = T 1 (/1) (/E Cc ~ (9)) 

where t.(z) = f l ( z  + c) e,(c, dO (g E gl)" 

Since 2 takes only  pure imaginary  values on c, it is clear t ha t  T~ satisfies all the  

conditions of Theorem 2. 

Fix  a Caf tan  subalgebra a of g and  an  element y EGc such t h a t  (be) ~ =ac.  For  

any  2 E ~ ' ,  define the  analyt ic  funct ion gaa on a' (R) corresponding to  T~ as usual 

so t h a t  

gaa(H)=~a(H)Ta(H) (H E a'). 

Fix a connected component  a + of a ' (R).  Then  by  Lemmas  25 and  28, 

on a + where c(s:2:a+)EZ. 

g~" = y.  ~(s) c (s :2  : a § e (s~)y 
s E W  
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L ~ M A  32. For /ixed sEW and Q+, the integer c(s:)~:a +) ( 2 E ~ ' ) d e p e n d s  only on 
the connected component o/ ~ in ~'. 

I n  view of the  last  p a r t  of the  proof  of Theorem 2, i t  is clear t h a t  it would be 

sufficient to consider the  case when ~ is semisimple.  Define ~H. as above  for H 0 E b'. 

Then  b y  [2 (1), Theorem 1] there  exists an  analyt ic  funct ion FH~ on ~' such t h a t  

~Ho (/) = ~07 (Ho) = f FHo (Z)/(X) dX (/E Cco* (~)). 

We know f rom L e m m a  25 t h a t  

:r a (H) FHo (H) = ~ e(s) a s (Ho) exp (( - 1) t B(sHo, y 1H)) 
sEW 

for H E a + ' =  a + (] ~'. Here  as(Ho) are uniquely de termined complex numbers .  Moreover  

we know f rom [2 (d), pp.  229-231] t h a t  a~, regarded as functions on IJ', are locally 

constant .  B y  considering, in part icular ,  the  case a = b, we get  

z (U)  FHo (H) = ~ s(s) bs (H 0) exp (( - 1) �89 B(sHo, H)) 
sEW 

for H,  H 0 E~'.  Here  bs are certain locally cons tant  functions on 5'. 

Now define s 1=  1, s 2 . . . . .  Sr as in the  proof  of Theorem 2 and  pu t  

b~(Ho)=bs~sj I(s~H0) (1-~i,]<r, HoEh' ). 

Fix  H o E b'. Since bts (Ho) = bs (H o) (t E W~) and  T~,~o (1 ~< i ~< r) are l inearly independent ,  

i t  follows f rom the proof of Theorem 2 t h a t  the  ma t r i x  (b~j(Ho))l<~.j<r is non-singular.  

Le t  (b~J(H0))l<~.j<~ denote its inverse. P u t  bJ=b jl and 

TH,= ~ bJ(H0) TsjH~ (HoEb') .  

Then it is obvious t ha t  THo E~Ho (in the  no ta t ion  of the  proof  of Theorem 2) and  

re(H) THo (H) = ~ e(s) exp ( ( -1)�89 B(sHo, H) ) (H E b') 
SeWk 

for H 0 E b'. Hence  it follows f rom Theorem 2 t h a t  THo = Ta where 2 is the  e lement  

of ~ '  given b y  ~ ( H ) =  ( -  1)tB(Ho, H)  (HEb) .  Therefore  

g~a(H)= ~ bJ(Ho)~a(H)F~jHo(H) (HE&) 
l<~3~r 

and  this shows t h a t  

c ( s :2 : a+)  = ~ e(sj) bJ(Ho)assj-l(sjHo) (sEW). 
l ~ 3 ~ r  
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Since b j and as are locally constant on b', the assertion of the lemma is now obvious. 

~+ being any connected component of ~ ' ,  we denote by c ( s : ~ + : a  +) the integer 

c(s : ) t :a  +) (~e~+) .  Pu t  
r = ~(~)-~ V~ F~ (~ e ~ ' )  

where 2'~ is the analytic function on g' corresponding to Ta and V~ is defined as 

before (see w 2). 

LEMMA 33. r ~. C(S:~ + :a+)e (s~)" 
sEW 

on a + /or ~e~+. 

This is obvious from the definition of Vg and the above formula for g~a. 

For any s e W define an element s ~ E W(g/a) as follows: 

(aHF = s~H ~ ( H  e be). 

Then s-->s ~ is an isomorphism of W(g/a) whose inverse 

(teW(g/a)). Define the subgroup Wo(g/a) of W(g/a) as usual (see [2 (k), w 4]). 

have seen above tha t  Wk= Wo = Wa(g/b). 

we denote by  t --> p-1 

We 

COROLLARY. Fix sEW, tEWG(g/a) and uEWk. Then 

c ( t Y - I 8 u - l : u ~  + : t  r C(8 : ~+ : {I+). 

Fix 2 E ~+. Then it is clear from Theorem 2 that  Tua = e(u) T, and therefore r = ~bz. 

Moreover ~ is invariant under G and therefore its restriction on a is invariant under 

Wa(g/a). Our assertion is an immediate consequence of these facts. 

w 17. Application of  Theorem 1 to Tx 

Now we use the notation of w and assume tha t  51 = b. Let mi (R) denote the 

number  of positive real roots of (g, ~)  (1 ~< i ~< r) and put  m = �89 (dim g - rank g). For 

any  ~tE~', let r denote the restriction of ~a on D~. 

Define numbers c~ > 0 by the relation 

fo / (X)dX= l~<,dr ~ c'(-1)m'(~ ~R''~'w''d'H ( l e e c h ( g ) )  

where m~ (I) is the number of positive imaginary roots of (g, ~,) (see [2 (k), Cor. 1 of 

Lemma 30]). Also put  dH=dlH. 
19 - 652923. Acta mathematica. 113. Imprim6 le 11 mai 1965. 
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LEMM). 34. For any /ECc~C(g) and ]r 

= w(t)  Ta (/) - ~ ( - 1)'~(a)c~f sR., a(wi) ~vr.," Ca.i d, g .  
2~t<~r J ~  

Since the number  of positive complex roots of (~, ~)  is even (see the proof of Lemma 

9 of [2 (k)]), it follows tha t  

m~ (R) + m, ( I ) - -  m mod 2. 

Hence (-1)'fg/(X)dX=l<,<rN c,(-1)m'(R)fs~.,:'r,V't.,d, t t  (/eC~C(g)). 

Moreover ~(~r)v2f is invariant  under Wk = Wa (see [2 (k), w 6]) and 

sEWk 

Therefore our assertion follows from Theorem 1 and the corollary of Lemma 4, if we 

take into account the fact  tha t  [:]F~=~(2)2F~. 

Fix a connected component ~+ of ~ ' .  Then for any /zeCl(~+), we define a 

distribution T~.~+ = T~ + as follows: 

T~+(/) = lim Ta(/) (/eC~C(fl)) 
t ..~/z 

where 2 e ~+. Put  ga.i = g~-  Then 

T~(/) = ( -  1)" ~ ( -  1)m'(n)C~(Sl~.~Ot, l ga.idtH 
l~<t~<r d 

and so it is obvious tha t  the above limit exists and 

T,+(/) = ( -  1) m ~ ( -  1)~,(~)c~f~R.,~o~.~g~.,+d~R 
l~<i~<r d 

where g~.~+ is defined as follows. Fix i and put  c t=~ .  Then 

g~.~+ = l ira gaa = ~ e(s) c (s : ~ +  : ct +) e (~)v 
~--~U s eW  

on any connected component n+ of a '  (R). We know from Lemma 28 tha t  c (s :~+:a  +) = 0 

( seW) unless ~(s2)~(H)<.0 for all H e n  + and 2 e ~  +. Therefore it is clear from the 

above formulas and Lemma 19 tha t  T ,  + is an invariant  and tempered distribution 



on g. 

on R +. 

LEMMX 35. 

o n  (I +. 

Fix H ~ a +. 
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Since ~(p)T~ =p~(2)Tx, it follows immediately by going over to the limit that  

a(p) T. + =p6(~) T. + (p el(go)). 

For any Cartan subalgebra a of g define the function (r on a' (R) by 

( ~ / h =  5 c(s :i~ + :a +) e ")~ 
s e w  

I(W)ol < ~ Ic(s:i~+ :.+)1 
s E W  

Then if 2 E ~  +, it follows from Lemma 28 that  

sEW 

Our assertion now follows by letting 2 tend to /,. 

For a = ~  we denote the function (~b~+)a by r 

Lv.MMA 36. For any [EC~(g ) ,  

2~t~<r 

Take a variable element 2 E ~  + which converges to /u. Then our assertion follows 

immediately from Lemma 34 by taking limits. 

w 18. P roof  of  Lemma 41 

As in w 14, let 3 be a subalgebra of g such that  1) 3Db and 2) 3 is reductive in g. 

Fix a Euclidean measure dZ on 3 and let Wk (3//b) be the subgroup of W(3/b ) generated 

by the Weyl reflexions corresponding to the compact roots of (3, b). Then W(3/b ) c W 

and Wk(3/b)=Wk. Define ~r~ and ~ as in w for ~=b .  

L~MMA 37. Let as (s6W~) be continuous [unctions(x) on ~ such that ats=as/or 

t e W~ N W(3/b). Then /or any 2 E ~', there exists a unique distribution T~,~ on 3 such that: 

1) T~.a is invariant and tempered. 

2) ~(p~) T~.~=p~(2) T~.~ (peI(g~)). 

3) 7e~ T~.~ = ~ e(s) as (2) e a pointwise on ~'. 
s E W k  

(I) For most applications as will be constants. 
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The uniqueness is obvious from the corollary of Lemma 28. The existence is 

proved as follows. Applying Theorem 2 to (3, ~) instead of (~, b), we conclude tha t  

there exists a unique invariant  and tempered distribution ~ on $ such tha t  O(p)v~= 
/% (2) ~ (p eI(3~)) and 

~ =  ~ ~(s) e ~ 
seW~(~/li) 

pointwise on b'. Pu t  

s e W k  se  wk(~/O)\ w~ 

where the second sum is over a complete system of representatives. Then it is obvious 

tha t  T~.~ fulfills all the conditions of the lemma. 

C O R O L L A R Y .  

T~.a=[Wk(3/]~)] -1 ~ e(s)as().)'csx = ~ e(s)as(2)vs~. 
s e w k  s e wa(5 /~) \  wa 

Fix a connected component ~+ of ~ '  and for any  ~u e C1 ~+ define T~., + and 
+ 

~, = ~,.~+ by  means of the limits 

T~.J( / )= l im T~.~(/), T,+(/) =l im ~( l )  (/eC~~176 
2-~p ~--~/~ 

where 2 e ~  +. We have seen in w 17 tha t  T~ + is a tempered distribution and there- 

fore it follows from the above corollary tha t  the same holds for T~., +. In  fact the 

following lemma is now obvious. 

LEMMA 38. T~.~ += ~. ~(s)as(/~)'~s~,.s~+. 
sG Wk(~/b) \  Wk 

Let P and Ps respectively be the sets of all positive roots of (~, b) and (3, b) 

and let P~/~ denote the complement of Pa in P.  Pu t  

G PIJI~ ~ e Pg l~  

I t  is clear tha t  z~ 2, ~/~ and "m-r are all invariant  under W(3/b ). Hence by  Chevalley's 

theorem [2 (c), Lemma 9], we can choose an invariant  polynomial function ~ on 3c 

and an element qol~=qEl(b) such tha t  ~ =  ( - 1 ) r ~  2 on b and q~=~/~ .  (Here r is 

the number of roots in P~.) Let  3' be the set of all ZE 3 where ~ s ( Z ) ~ 0  and define 

the invariant differential operator V~ on 3' as usual (see [2 (1), w Fix 2 E ~ ' .  Then 

we know [2 (1), Lemma 25] tha t  there exists a continuous function S~.a on 3 such tha t  
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pointwise on $'. 
S~.~ = ~(~)-~ V~ (~ (qcs) T~.,) 

LEMMA 39. Fix  16~'. Then(~) 

~r(2) T~,a (1) = p v dZ (16 C~ ~ (~)), 

in the notation o/ Theorem 1. 

P u t  V~=@(ql) where q~ is the unique element in I($c)such t ha t  (ql)~=~r~ z. Then  

(q~ q ~ ) ~ - - ~ .  Hence if Q is the unique element in I ( ~ )  such tha t  Q~ = ~ and  Qs is 

the project ion (see [2 (j), w of Q on $, it is obvious tha t  Qa=q,q~. Therefore 

([B~ o O(qe)) T~.a = ~(Q~) T~.a = Q~ (~) T~.~ = ~(~)~ T~.~. 

Hence if T =  (D,o~(q))T,.a, it follows from Theorem 1 tha t  

~(~)2T~.~(/)=T(~(q)*/)=~(~){p.v.f~-lS~.~(V~o~(q)*}/dZ} 

for /eCc~(3). Since w(~t)40,  this implies the assertion of the lemma. 

Le t  ~ be a Car tan  subalgebra of 3 and  Sa a the restriction of S,.x on a. Then  it 

follows f rom the definitions of V, and q and [2 (c), L e m m a  8] that(2) 

SA a = "aY(~) -10("~ffy) (T6, a TS.I) 
pointwise on {I'. 

On the other hand let ~' be the set of all A6~ where ~(i)~:0 and ~+ a 

connected component of ~'. Fix a connected component tl + of {i'(3 :R) (see w 13). 

Then corresponding to Lemma 32 and the corollary of Lemma 33 we have the fol- 

lowing result  for ~. 

LEMMA 40. There exist integers cs (s : ~+ : a +) (s 6 W(3/a)) such that 

~ " ~ =  ~ ~ ( s )%(s :~ / :a+)e  s~" 
seW(~/a) 

on a + N $ '  /or 2 e ~+.  Moreover 

% (st ~ :t  -1 ~ §  : a § ) = % (s : ~ §  : a +) 
/or t 6 Wk (3/b). 

(1) As usual, the star denotes the adjoint here. 
(3) Here y is an element in the complex analytic subgroup :~c of Gc corresponding to adSc 

such that (bc) y= ac. We also assume that P~Y is the set of positive roots of (~, a). 
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~ o w  write c~(s:~+:a+)=c~(s:~+:a+) for any  connected component ~+ of ~ '  

which is contained in ~ + .  Then it follows from the corollary of Lemma 37 tha t  

~aT~.a= ~ ~(t)a~().) ~ ~(s)c~(s:t~+:a+)e s(t,~)" 
t e w~(~/O)\  w~  s ~ W(3/a) 

on a + Q 3' for any  ). 15;ing in a connected component  ~+ of ~ ' .  Therefore it follows 

from the above formula for Sx a tha t  

Sx a= ~. at().) ~ cs(s:tq~+:a+)e s(t'~)y 
t, ~ wk (~ /~ ) \  Wk s e W(~/a) 

on a + N ~'. 

Now fix /~ECl(~+). Then as ). tends to # ().E~+), it is clear tha t  the func- 

tions Sa a converge uniformly on every compact  subset of ~. Hence we conclude (see 

Lemma 69 of w 30) tha t  the functions 5t~,a converge uniformly on every compact  

subset of 3- We denote the limit function by S~,, +. I t  is obviously continuous and 

invariant. 

LEMMA 41. 

on a + A 3'. Moreover 

S~.~ + =  ~. at(~) ~ c~(s:t~+:a+)e s(t~)~ 
t G Wk(~lb) \  Wk s e W(~la) 

~ ( # )  T v ,  + (/) = p.v._l 7~-1 S ~.~ V~ (~(qr dZ 
+ 

/or /ECc~(3). 

The first s ta tement  is obvious from the above formula for Sa a and the second 

follows from Lemma 39 if we take into account the corollary of Lemma 4. 

COROLLAI~u S~.~+=0 i/ at(lt)=O (teWk). 

Now suppose 31, 32 and 70 arc as in Lemma 30 (with ~ = b). Then since 

z~, T~,a = z ~  T~.~ = ~ e(s) e s~ 
s E W k  

pointwise on b' for ). E~ ' ,  it follows from Lemma 30 that  

T~.~ = 70 T~,. 

pointwise on fl' 0 32- Fix a Cartan subalgebra a of 32 and an element y in the complex 

analytic subgroup E~c of G~ corresponding to ad32c, such tha t  be y = a~. We may  as- 

sume tha t  Pv is the set of all positive roots of (fl, a). Then 
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~$i.~ = "Er(~)-lv~,  (@(qg/~i) T~.,I) = "Er(~)-I ~ ( ~  y) F). 

pointwise on a' where 

F~(H)=~,a(H)T~,.~(H)=~,~(H)T~,.~(H) (H s (I'). 

This shows tha t  S~,.~ = S~.~ on 32 and therefore we get  the following result  by  taking 

limits. 

LEMMA 42. Fix /~6C1(~+). 

pointwise on g' A 32 and 

on 32" 

Then 

T~,., § = ~o T~,., § 

We now re turn  to the no ta t ion  of L e m m a  41 and write T~.,.~+ = T~., + whenever  

it is convenient  to do so. Let  ~. be the analyt ic  subgroup of G corresponding to 3 

and 31, ~)2 . . . . .  ~r a maximal  set of Car tan  subalgebras of $ no two of which are con- 

jugate  under  E. Fix  a Euclidean measure d~H on {h and define ~#~.r.t (/6Cc~176 as 

in L e m m a  5 for (3, ~)  instead of (~, ~).  

LEMMA 43. Assume that the /unctions at (tEWk) remain bounded on ~. Then 

there exists a number C ~  0 with the/ollowing property. Let ~+ be a connected component 

of ~' and /~ a point in CI(~+). Then 

IT~.,.~+(I)I< c~ f lW.r.~Ld, U. 

Let  a be a Car tan subalgebra of 3. I t  follows from Lemmas  28 and  40 tha t  

I~~ 5 Iv~(s:IF:a+)l 
sEW(~/~ 

for H6a +N$' and 16~+. Put 

g~~ (H) = =~ (H) T~.~ (H) (H e a'). 

Then, in view of the corollary of L e m m a  37, we can choose a number  a >~0 such t h a t  

Ig~~ 

for H 6 a '  and  ; tE~ ' .  Now pu t  ga.~=ga% ( l ~ i ~ < r ) .  Then, as we have seen in w 

there exist real numbers  cl . . . .  , c~ such tha t  
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T~.a (/) = l<~<~rc, f v,)~.f.' ga., e~.R.' d,[-1 

for all / E C ~ ( 3 )  and 2E~ ' .  (Here e~.n.~ is a locally constant function on ~ '  whose 

values are + 1.) Therefore 

IT~.~(/)I~<C V flv,.r.,Id, H 
l<~t~<r 

where C = a max~ ]c~l. The statement of the lemma now follows by letting 2 tend to 

Part H. Theory on the group 

w 19. Statement of Theorem 3 

We keep to the notation of w 16 and assume, moreover, that  G is acceptable. 

Let  B be the Caftan subgroup of G corresponding to b. Then B is connected and 

therefore abelian (see [2 (m), Cor. 5 of Lemma 26]). Let  B* denote the character group 

of B. For any b* E B*, we denote by (b*, b~ the value of the character b* at  a point 

b E B. I t  is obvious that  there exists a unique element 2 E~  such that  

(b*, exp H )  = e ~(It) (H E b). 

We shall denote 2 by log b*. b* is called singular or regular according as ~r(2)= 0 or 

not. We have seen that  Wk= We. Now Wa operates on B as usual (see [2 (m), 

w 20]) and therefore, by duality, also on B*. Then 

((b*)~,b)=(b*,bS-l> (b*EB*, bEB) 

and log (b*) ~ = s (log b*) (s E Wa). 
Define ~ as in [2 (m), w 6] and let z--~pz (zE~) denote the canonical isomor- 

phism of ~ onto I(~c) (see [2 (m), w 12]). For  b* EB*, define 

Zb,(z) = Za~ (pz) ( z e ~ )  

(in the notation of w 12) for 2---log b*. Then Zb* is a homomorphism of ~ into C. 

Let  t be an indeterminate and 1 the rank of G. For any xEG, we denote by 

D(x) the coefficient of t t in det ( t+ 1 - A d  (x)), Then D is an analytic function on G. 

As usual let G' denote the set of all regular elements in G (see [2 (m), w 3]). Fix a 

Haar  measure dx on G and let O be a distribution on G. We say that  O is an in- 

variant eigendistribution of ~ if 1) 0 x= 0 (x E G) and 2) there exists a homomorphism 
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g of ~ into C such tha t  z O = g ( z )  O for all z E ~ .  In  view of [2 (m), Theorem 2], we 

can speak of the value O(x) of such a distribution a t  a point x E G'. 

Let  B*' denote the set of all regular elements in B* and put  A = A  o in the 

notation of [2 (m), w 19]. 

THEOREM 3. F i x  an element b*EB*' .  

eigendistribution 0 on G such that: 

1) zO=Zb.(z)O (ze3); 

2) sup ID(x)I~ IO(x)] < ~ ;  
~CGG* 

3) 

Then there exists exactly one invariant 

0 = A -1 ~. e(s) (b*) 8 pointwise on B '  = B N G'. 
sEWG 

w 20. Proof of the uniqueness 

In  order to obtain the uniqueness in Theorem 3, it is sufficient to prove the 

following result. 

LEMMA 44. F i x  b* EB*'  and let 0 be an invariant eigendistribution o/ ~ on G 

such that: 

1) 

2) 

3) 

Then ~ = O. 

zO=x~.(z)O (z e3); 

sup ID(x) lt I O (x) l < oo; 
XEG' 

0 = 0 pointwise on B' .  

Fix a semisimple element a E G. In  view of [2 (m), Lemma 7], it would be suf- 

ficient to prove tha t  a ~ Supp O. We now use the notat ion of [2 (m), w 4] and put  

= Iva[ �89 oo in the notation of [2 (m), Lemma 15]. Since zO = Zb* (z) O, we conclude 

from [2 (m), Lemma 22] tha t  

~r (z e3). 

Define O0= Co+ gl (c) as in w 14 where r is an open and convex neighborhood of 

zero in c. Then go is an open and completely invariant  neighborhood of zero in g 

and if c o and c are sufficiently small, the exponential mapping of g into G is uni- 

valent  and regular on go (see [2 (m), w 9]). Pu t  $0 = go f~ $. 

Now first assume tha t  a E B  and let Za denote the center of G. Then since 
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B/Zz is compact [2 (m), w 16], every eigenvalue of Ad(a )has  absolute value 1. Hence 

if c is sufficiently small, it is obvious tha t  no eigenvalue of (Ad(a exp Z))~/~ can be 

1 for Z E 30. This shows tha t  exp 3o ~ ~ ' .  Let  v denote the distribution on ~0 obtained 

from a by  applying the procedure of [2 (m), w 10] to ~ (in place of g). Since 

~/~(z) ~ = z~, (~) ~ (z e 3),  

it follows from the corollary of [2 (m), Lemma 24] and the definition of /~/s [2 (m), 

w 12] that  
~(p~)~ = Z(p) T (pEI(~)), 

where Z = Z~ ~ and t = log b*. :Now ~ c 3 since a 6B. Therefore T~ = T  satisfies all the 

conditions of w 13. Let  30' be the set of those elements of 3o which are regular in 3. 

Then we know from [2 (m), Lemma 32] that  

"r(Z)=$~(Z) [~'a (exp Z)1�89 exp Z) (ZE3o'). 

Let  a be a Cartan subalgebra of 3 and A the corresponding Cartan subgroup of G. 

I t  is easy to verify tha t  

I D (a exp H) I = ]z~ a (H) ~ (H)I ~ Ira (exp H) I 

for H 6 a and therefore 

I~,a(H) v(H)] = ID(a exp H)I~ IO (a exp H)] 

for H Ea 'N 30. Hence we conclude from Lemma 19 and condition 2 ) t h a t  v is a tem- 

pered distribution on 3o. Moreover if we take a = 5, it follows from condition 3 ) t h a t  

T = 0  pointwise on 3o N IJ'. Therefore (see the corollary of Lemma 29), z = 0  on 30. 

This, in turn, implies that  O = 0 pointwise on a exp 30' = G' N (a exp 30). But  V = (a exp 30) a 

is open in G [2(m),  Lemma 14]. Hence O = 0  on V. 

:Now we drop the assumption tha t  aEB. Define 0,~,p and K as in [2 (m), w 

corresponding to ~ = 5. Then B c K [2 (m), Cor. 5 of Lemma 26]. Let  a be any Cartan 

subalgebra of 3. We can choose x EG such tha t  O(a x) =a x and aXN ~ c b  (see Lemma 

45 below). Let  A be the Cartan subgroup of G corresponding to ~ = a x. Then aXE A. 

Let  a x = a  o e x p H  where a oEA N K  and H E ,  NO (see [2 (m), Cor. 4 o f L e m m a 2 6 ] ) .  

Since K is connected and K/Za is compact,  we can choose k E K such tha t  b = a0kE B. 

Then 
a kx= b exp Z o 

where Z0= H ~ E p c [ g , g ] .  Let  3~ denote the centralizer of b in g. I t  is obvious tha t  
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Z o E3b. Moreover since Z o E p, all the eigenvalues of ad  Z~ are real [2 (i), L e m m a  27]. 

Hence by  applying the result  obtained above to b, we conclude tha t  

a ~ = b exp Z 0 ~ Supp ~}. 

Therefore since ~} is invariant ,  it follows tha t  a ~Supp  ~}. This proves the lemma. 

w 21. Some elementary facts about Caftan subgroups 

Let  a be a Car tan  subalgcbra of g and  A the corresponding Car tan  subgroup 

of G. Define aR and az as in w 

LEMMA 45. Let AI  be the subgroup o[ all a E A  such that all eigenvalues of 

Ad(a) have absolute values 1. Then (a, H) --> a exp H (a E At, H E a~) is a topological mapping 

o] AI• onto A. Moreover [or any aEAz,  we can choose xEG such that 1) aXEB, 

2) O(a x)=~x and 3) (a l )xcb.  Finally, x may be selected to lie in K if O(a)=a. 

I t  follows from [2 (b), p. 100] t ha t  we can choose y E G such tha t  0(a ~) = a ~. Then  

(at) ~ is an  abelian subspace of ~. Since b is maximal  abelian in ~ and K/ZG is com- 

pact ,  we can choose k E K such t h a t  (ai) ky c b. Replacing a by  a k~, we can now ob- 

viously assume tha t  0 (a )=  a and a1~ ~. Then the first s ta tement  follows f rom the 

results of [2 (m), w 16]. Moreover it is clear tha t  -A1 = A fi K ~ K = B ~. Fix a E Ax and  

choose k E K  such tha t  b = a  ~EB. Let  3 be the centralizer of b in g and ~ t h e a n a -  

lytic subgroup of G corresponding to 3. Then a ~ and b are two Cartan subalgebras 

of 3 and  a ~ + b c ~ f 3 ~ .  Since ~ is maximal  abelian in 3N~, we can choose ~ E ~ N K  

such tha t  (a~) ~k ~ b. P u t  x = ~ k. Then a ~ = b ~ = b and  (a~) ~ c b. Moreover since x E K,  

it is clear t ha t  O(a ~) = a x. The last s ta tement  follows from the fact  t ha t  we can take  

y = l  if 0 ( a ) = a .  

COROLLARY. .An element a o] G lies in B a if and only if 1) a is semisimple 

and 2) all eigenvalues o] Ad(a) have absolute value 1. 

Since B ~ K ,  it is obvious tha t  any  a E B G fullfills these two conditions. Con- 

versely suppose these conditions hold. Then by  1), a is contained in some Car tan  

subgroup .A of G [2 (m), Cor. of Lemma 5]. Therefore by  2) aE.Az. But  then a E B  a 

by  L e m m a  45. 

We  write .AR= exp aR. B y  L e m m a  45, every h E A can be wri t ten uniquely in 

the form h = h  1 h 2 (h 1 E AI, h2EAR). We call h 1 and h 2 the components  of h in -Az and  

AR respectively. 
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w 22. Proof of  the existence 

We now come to the proof of the existence of O in Theorem 3. In view of later 

applications, we shall consider a somewhat more general situation. 

Fix a connected component ~+ of ~ '  and a point b* E B* such that  

2 = log b* e C1 (~+). 

Select an open convex neighborhood Co of zero in C and define 

~o = CO+ ill(c) (0< c <7~= 3.14 ...) 

as in w 14. We assume that  c o is so small that  the exponential mapping of g into G 

is univalent and regular on flo (see [2 (m), w 9]). 

Fix b E B  and let 3=30 denote the centralizer of b in fl- Define Tb+~-T,.~ + and 

So + = S~.a ~ in the notation of w 18 corresponding to the constants as = ((b*) s, b} (s e Wa). 

(Here we have to observe that  bt=b for t E W k N  W(3/b ) and therefore at~-~as.) 

Let  7~ = ~ (b) denote the analytic subgroup of G corresponding to 3. Pu t  30 = flo fl 3 

and go (b)= '~'0--exp 30. Then g0 is an open and completely invariant subset of 

[2 (m), Lemma 8]. As usual define the function ~ on 3 by 

~ (Z) = [det { (e ~d zt2_ e-ad zj2)/ad Z} 1�89 (Z e 3). 

Then ~ is analytic and nowhere zero on 30. Pu t  

O0 + (exp Z ) = ~ , ( Z ) - I T o  + (Z) (ZEg o N3') 

where 3' is the set of those elements of 3 which are regular in 3. 

locally summable function on '~0 (b). 

Define the homomorphism lao=l~g/3 as in [2(m), w 12]. 

Then Oo + is a 

LEMMA 46. ju0(z)(P0+=Zb.(z)Oo + ( ze~)  

as a distribution on "~o (b). 

This follows immediately from the corollary of [2 (m), Lemma 24] (applied to 3) 

and the fact (see w 18) that  ~(p~) Tb + =p~ (2) To + for p EI(flc). 

We have seen in [2 (m), w 22] that  there exists an invariant analytic function 

D0 on 3 such that  
A (b exp H) = z~ (H) Db (H) (H E b). 

Pu t  g0" (b)='~'o(b) N (b-lG ') and let 3" be the set of all points ZE3'  where Db(Z)4:0.  

Then it is clear that  '~0" (b)--exp (flo N 3"). Pu t  
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Oh + (exp Z)=Db(Z)-ITb +(Z) (ZEg o N 3"). 

Then E)b + is an analytic function on ~0" (b). Similarly define 

�9 "b + (exp Z) = S~ + (Z) (Z E 30)" 

Then ~ b  + is a continuous function on ~o (b). 

Define ~b (Y) = det(Ad(by) -1 - 1)Ca (y E.~.) 

as in [2 (m), w 14]. 

LE~MA 47. Let "3 be the set o[ all points ZE 3 where ub(exp Z ) 4 0 .  Then there 

exist8 a locally constant /unction ~b on "3 such that eb 4= 1 and 

~ (Z)[vb(exp Z)[�89 = ~ (Z) Db (Z) (Z E'~). 

I t  would be enough to verify tha t  

~ (Z) 4 ~(exp  Z) ~ -- Db (Z) 4 

for ZE 3. Since both sides are analytic functions on 3 which are invariant  under 7~, 

it would be enough to do this when Z varies in some 'non-empty open subset of l~. 

Hence our assertion follows from [2 (m), Lemma 33]. 

COROLLARY. I~a (exp Z)]�89 + (exp Z) = e~ (Z) Ob + (exp Z) 

/or ZEro  N 3". 

This is obvious. 

Pu t  3o"=flo fi 3" and let u be an element in G such tha t  b u = b .  

LEM~A 48. We have the relations 

E)b, + (exp Z ") = | + (exp Z), ~Fb~ + (exp Z ~) = ~Fu + (exp Z) 
/or Z E30". 

Since $~ is the centralizer of b ~ in g, it is clear tha t  O~+ (exp Z u) and LFb.+ (exp Z ~) 

are defined for ZE30". Let  t be an element in Wa such tha t  H u=tH for H E b .  I t  

is obvious that  7e~=~zs t where ~ = • 1. Therefore since 

A(b ~ exp H ~) = e(t) A(b exp H) (H E b), 

it follows tha t  Db, (H ~) = e(t)~D~ (H). But  the function 
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Z--+D~,(ZU)-e(t)rDb(Z) (Z63) 

is obviously analytic and invariant  under .~.. Hence we can conclude tha t  

D~(ZU)=e(t)yD~(Z) (Z 63). 

Now for any /z 6 ~+, let T~., be the distribution of Lemma 37 corresponding to the 

constants as=<(b*)  8, b> (sEWn). Similarly define T~,.~ on 3 u corresponding to the 

constants a s = ((b*) s, bU>. Then 

x~u (uH) T~,.~ (uH) = ~ e(s) ((b*) s, b ~> e s~<~H) 
se  Wq 

= ~(t) Z e(s) < (b*) s, b> e s'(n) = ~(t) zr~ (H) T~.~, (H) (H 6 b'). 
seWn. 

Hence T~.~ (uH) = e(t) y T~., (H) (H 6 b'). 

Now consider the distribution 

T, ' : / -+ f ](z) T~. ,  (uZ) dZ (/6 Cc :r (3)) 

on 3. I t  is obviously invariant  and tempered. Moreover it is clear tha t  p ~ =  (p~)U 

for p 61(~).  Let  dZ' denote the Euclidean measure on 3 u which corresponds to dZ 

under the mapping Z ' = Z  u (Z63). Then 

T,'(a(p,)*/) = f /(u-lZ'; (Z') dZ' 

f / ' (z ' ;  a(p~)*) T~.~ (Z') dZ' 

=p~(tz) f /' (Z') T~. ,  (Z') dZ' =p~ (lu) T,,' (/) 

for p 6 I ( ~ )  and /6C~~176 Here / '  denotes the function Z'--~/(u-XZ ') (Z'63 ~) in 

C~ 00 (3~). Hence it follows from the uniqueness assertion of Lemma 37 tha t  

T~' = ~(t) ~ T~.~. 

Therefore T~.~ ([') = s(t) y T~.~ (/) 

and by making /~ tend to 2, we conclude that  

T~ + (/') = E(t) r T~+(/) (/e C~ :r (3)). 
This proves that 
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TS (zu)= e(t)r T~+ (Z)(ze3'). 

The first assertion of the lemma is now obvious. 

Define V~, V~- and ~r~l~, ~g/~" as in w 18. I t  is clear tha t  

V~- I' = (V~ I)' 

for [6Cc~(3'). On the other hand ~ro/~.= e(t)?(~ro/~) t. Therefore it is clear that 

in the notation of w 18. Hence 

~(# )  S~.,. (Z ~) = T~.,~ (Z~; V~- o ~ (q~/~.)) = T~,. (Z; V~ o ~ (q~/~)) = ~r(/~) S~,. (Z) 

for Z 6 3' and # 6 ~+. This shows tha t  

~...  (z ~) = s~.. (z) 

and so by making /u tend to A, we deduce that 

S~. + (z) = Sb + (z) (z e 3)- 

Obviously this implies the second assertion of the lemma. 

COROLLARY. Let x be an element in G such that b~6B.  Then 

(gb~ + (exp Z ~) = (9~ + (exp Z), 

~Fb~ + (exp Z ~) = tFb+ (exp Z) (Z 6 30")- 

Since b~6B, it is clear tha t  B X - l c E .  Hence b and 5 ~-1 are two fundamental  

Cartan subalgebras of 3 and therefore we can choose y 6 E  such tha t  ~ - 1 =  b (see 

[2 (d), p. 237]). Pu t  u = xy -1. Then x = uy and b ~= b ~. Therefore 

| (exp Z x) = 19b, + (exp Z uy) = lgb + (exp Z ~) 

by  Lemma 48. Similarly 

~Fb~ + (exp Z ~) = ~F~ + (exp Z ~) (Z 6 30")- 

Since 19~ + and tF~+ are obviously invariant  under ~., we get the required assertion. 

Since b ~= b% we have obtained the following result during the above proof. 

LEMMA 49. 1/ two elements o/ B are conjugate under G, then they are also con]u- 

gate under the normalizer o/ B in G. 
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NOW fix a E B  a, define 3a and ~ ( a )  as usual (see [2 (m), w and put  ~ 0 ( a ) =  

exp(g o N ~a), ~o" ( a ) = ~ o  (a)N (a -J G'). Choose x EG such tha t  a:~EB and define 

Oa + (y) = Oa+ (yX) (y E Eo"(a)) 

and ~I2a+ (y)=~t~ax+ (y x) (yE~.o(a)). 

I t  follows from the corollary of Lemma 48 tha t  these definitions are independent of 

the choice of x. 

We now define two functions O + and ~F + on G' as follows. Fix h EG' and let 

a be the centralizer of h in g and A the corresponding Cartan subgroup of G. Define 

A1 and An as in w 21 and let h = h l h  2 (hlEAI, h2EAR). Since every eigenvalue of a d H  

is real for HEaR and since h is regular, it is clear tha t  h2E~o" (hi). We define 

O + (h) = Oh, + (h~), ~F + (h) = ~Fh, + (h~). 

(Observe tha t  A x c B  a from the corollary of Lemma 45.) I f  xEG, it is obvious tha t  

O + (h x) = Oh,z + (h~ ~) = Oh, + (h~) = O + (h). 

Similarly ~F+(h~)=~F+(h). This shows tha t  O + and ~ +  are invariant  under G. We 

intend to prove tha t  they are analytic on G'. 

LE~MA 50. Fix bEB. Then there exists a number cb>0  with the /ollowing pro- 

perry. Let 3b(%) be the set o/ all ZEro such that(l) I I m / ~ l < c o  /or every eigenvalue # 

of (ad Z)~/~ b. Then 

Ob + (exp Z) = O + (b exp Z), ~F~ + (exp Z) = ~ +  (b exp Z) 

/or all Z E go N 3b (%) such that b exp Z E G'. 

I t  is obvious that  if % is sufficiently small, ~b(expZ):~0 for ZE3~(cb). Let  3~'(%) 

be the set of those elements of 3~(cb) which are regular in $~. Then for any 

Z E g0 N 3~ (%), the two conditions b exp Z E G' and Z E ~0 N 3b' (c~) are obviously equi- 

valent. Hence, in particular, 
g0 n 3b' (cb) c ~0 ~ $~". 

:Fix Zo~oN$~'(c~) and let ~I be the centralizer of Z o in Sb. Then a is a Cartan 

subalgebra of ~. Since b = O(b), ~ is stable under 0 and therefore, by  Lemmas 29 and 

45, we can choose y E ~. (b) such tha t  ~ is stable under 0 and (a~)~ ~ b .  Pu t  H 0 =Z0 ~. 

(1) Im/~ denotes, as usual, the imaginary par t  of a complex nmnber  ~u. 
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Since | +, | ~Fo + and  ~F + are all invar ian t  under  ~ (b), i t  would be enough to 

ver i fy  t h a t  

Oo + (exp H0) = | (b exp He) , ~F0 + (exp H0) = ~ +  (b exp He). 

So we m a y  assume t h a t  Z o = H  o, y =  1, 0 ( a ) = a  and  a t =  a N ~ 5 .  

Le t  H 0 = H  I + H  2 where H 1Ea~, H 2EAR. Then  h = b e x p H  o = h  i h  3 where h 1=  

b exp  H I E Ax and h 2 = exp  H 2. (A is, as before, the  Caf tan  subgroup of G corresponding 

to  a.) I t  is clear t h a t  H 1 E $0 (co) and  therefore vb (exp H1)~= 0. Hence  3h, c 30. Now pu t  

31 =$b, 33 =Sa,. Then  32 is the  central izer  of H~ in ~i so t h a t  L e m m a  31 is appli-  

cable. 

For  /u E ~ ' ,  define the dis t r ibut ions T~., = Ts~.~ and  S~,, = S~,., on $~ (i = 1, 2) as in 

L e m m a  37 corresponding to the  cons tants  a~ = ((b*) ~, b) (s ~ We). For  any  / ~ Cc ~176 (~2), 

define / ~ ( Z ) = / ( Z - H ~ )  (Z~$3) and  p u t  

Then  

T S - -  /~ 
3.,, (I)-T~.,(/~.). S ~ . ~ ' ( / ) = S 3 .  (/.,). 

T ' zr~,(H) 3., ( H ) =  ~. ~(s)((b*) ' ,  b)e  ~'(~+H') (He5'). 
sEW@ 

Moreover  H 1 lies in the center  of 32 and  

((b*) ~, h i )  = ((b*) ~, b) e ' '(H') (s e Wa). 

Now suppose /z tends to 2 (/~E~+). Then  it  follows f rom L e m m a  38 t h a t  

lim T2. . '  (/) = Th, + (/) 

and  similar ly (see the  corollary of L e m m a  41) 

Define 

in the  no ta t ion  of w 18. 

lira $3, ~' (/) ----- Sal + (/) (/E Cc ~ (33)). 

+ + + T~ §  , S~ =S~.~ ( i = l , 2 )  

Then it is clear f rom the above  result  t h a t  

Th. + (1) = T3 + (/H.). Zh. + (/) = $2 § (/.,) (/e Cc ~ (~)). 

Moreover  To+=T1 +, S~+=S1 + b y  definition. Hence  

0 + (h) = 0~1 + (h2) = Dh, (H2) -1 Th, + (H 2) = Dh, (H2) -1 T2 + (H 1 -{- H3). 

On the o ther  hand  T2 +=~oT1 + pointwise on g 'N  32 b y  L e m m a  42 and  

2 0 -  652923.  Acta mathematica. 113. I rnp r im$  le 12 m a i  1965. 
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| + (exp Ho) = Do (Ho) -1 TI + (H0). 

Hence it would be enough to verify tha t  D o ( H ) ~ ? o ( H ) = D a , ( H - H 1 )  for H E a .  P u t  

v(g)  = Dh, (Z - H1) - Db (Z) ~0 (Z) (Z e ~2)" 

Then  v is an analyt ic  funct ion on 32 which is invar iant  under  ~ 2 = ~  (hi). So it would 

be enough to show tha t  v = 0 on b'. Bu t  it follows from the definition of Dh,, D0 

and  ~o tha t  

v(H)  = 7e~, (H  - H1)-I A(hi exp (H - Hi)  ) 

- ~ , ( H ) - I A ( b  exp H ) z t h ( H ) g ~ , ( H ) - t = o  (HE b'), 

since ~ r~ , (H-H1)=  ~ , ( H ) .  This proves the first s ta tement  of the lemma. 

On the other  hand,  

~F + (h) = ~Fh, + (h~) = Sn, + (H~) = S~ + (H 1 + H~) 

= $1 + (H I + H~) = So + (H0) = LFb+ (exp H0) 

since St  + =  $2 + on 32 from L e m m a  42. This proves the second statement .  

COROLLARY. 0 + and ~2 "+ are both analy t ic  on G'. Moreover  ~ +  can be extended 

to a cont inuous  /unct ion on (7. 

Let  ~ be the set of all points  x 0 E G with the following proper ty .  There exists 

an open neighborhood U of x 0 in G such tha t  O + and ~F + are bo th  analyt ic  on 

U N G' and ~F + extends to a continuous funct ion on U. We have to verify tha t  

= G. C l e a r l y  ~ is an  open and invar iant  subset of G. Therefore, in view of [2 (m), 

Lemma 7], i t  would be sufficient to verify tha t  every  semisimple element of G lies 

in ~ .  

Fix  a semisimple element a E G. Then  we can choose (see the corollary of [2 (m), 

L e m m a  5]) a Car tan  subgroup A of (7 containing a. Let  a = a 1 %  where a lEAz ,  

a 2 EAR. B y  Lemma 45 we can choose x E (7 such tha t  b = at x E B. Since ~ is invariant ,  

i t  would be enough to verify tha t  aXE~. Hence we m a y  assume tha t  x = l  and  

a = b a ~  where b = a  1 E A I N B .  Now pu t  V = e x p ( g  0N3b(cb))CZ(b)  in the nota t ion of 

L e m m a  50. Then  V is an open neighborhood of 1 in ~ (b) and 

| (by) = Ob + (y), ~2 "+ (by) = u,2"b+ (y) 

for y E V ' =  V N (b-1(7'). Moreover we note  t ha t  ~Fb + is continuous on V, a2EV and 

Vb (a~) # 0. 
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Now let x ->x*  denote the natura l  mapping  of G on G*= G/. ~. (b) and fix open 

neighborhoods V 0 and Go* of a~ and 1" in V and G* respectively. I f  V 0 and Go* are 

sufficiently small, we can choose an  analyt ic  mapping  r of Go* into G such that :  

1) (r (x*))* = x* (x* e Go*). 

2) The mapping yJ:(x*, y)--> (by) t(x*) of Go*• V o into G is univalent  and regular. 

This is evidently possible (see [2 (m), Lemma 14]). P u t  U = ~p(Go* • Vo)- Then U is an 

open neighborhood of a = ba 2 in G and y~ defines an analyt ic  diffeomorphism of Go* • V o 

onto U: P u t  V o' = V o I'l V' and U' = U fi G'. Then it is obvious tha t  yJ(Go* • Vo' ) -- U'. 

Since O + and u,2"+ are invariant  functions, it is clear t ha t  

O + (~ (x*, y)) = 0 + (by) = O0 + (y), ~T "+ (v2(x*, y)) = ~T "+ (by) = ~T'o + (y) 

for x*E Go* and y E Vo'. However  Ob + and  ~F~ + are bo th  analyt ic  on V'. Therefore 

it follows tha t  0 + and ~F + are analytic on U'.  Similarly since ~F~ + is continuous 

on V, we conclude tha t  ~F + can be extended to a continuous funct ion on U. This 

proves the corollary- 

Define the character  ~ of B as in [2 (m), w 18]. 

L E ~ M A  51. Let ZG be the center o/ G. Then 

O+(zx )=s~Q(z ) - l (b* , z }O+(x) ,  u ~ + ( z x ) = ( b * , z } ~ + ( x )  

/or z e Z a  and x e G ' .  

Fix h E G' and let a be the centralizer of h in g and A the corresponding Cartan 

subgroup of G. Then  h = h l h  2 (h lEAz ,  h~EAR) and we can choose y E G  such tha t  

hi y E B (Lemma 45). The required result  holds for x =  h if and only  if it holds for 

x = h  ~. Hence we m a y  assume tha t  y =  1 and therefore h 1EB. Then 

0 + (zh) = O~h, + (h2) = D~h, (H~) - I  T~h§ (H2), 

W § (zh) = W~h, § (h,)  = S~, + (//2) (z 6 Za) 

where (1) H2= log h 2 EaR. Now h I and zh 1 have the same centralizer $ in g and so it 

is obvious from the definitions of the various distributions tha t  

On the other  hand  

T ~ ,  + = ( b * , z }  Th~ +, S~h,+ = (b  *, z} Sh, § 

A(zb) =- ~Q (z) A(b) (b EB).  

(1) As usual log denotes the inverse of the exponential mapping of a n onto AR. 
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Therefore it is clear that  
Dzh, (Z) = ~ (z) Dh~ (Z) (Z e ~) 

and now our assertions follow immediately. 

LwM~A 52. Let A be a Caftan subgroup o[ G and put  A ' = A  ~G' .  Then 

sup [• (h) 0 + (h)[ < oo, 
h ~ A "  

in the notation o[ [2 (m), w 19]. 

Since Ax/ZG is compact, it would, in view of Lemma 51, be enough to prove 

the following result. 

L ~ M A  53. For any aEAx ,  we can choose an open neighborhood U o[ 1 in A 

such that U ~ AR and 
sup [AA(ah) 0 + (ah)] < c~. 

h e U "  

Here U ' = U  N a - I A  '. 

By Lemma 45 we can select x EG such tha t  a xEB. Hence, in view of the in- 

variance of 0 +, we may  assume, without loss of generality, tha t  a E B .  Then from 

Lemma 50, 
@+ (a exp Z) = Oa + (exp Z) = Da(Z) - ITa  + (Z) 

for all Z6g0N3a(Ca) such tha t  a e x p Z 6 G ' .  Let  a be the Lie algebra of A. Then 

aC3a. Put  % = a  N ~0 N ~(c~) and U = e x p  %. Then U ~ A R  and if a exp H 6 G '  (H6%) ,  

it is clear tha t  

[AA(a exp H)O + (a exp H)I = [A~(a exp H)0~ + (exp H) I = [a~o(H)T=+ (H)I 

from the corollary of Lemma 47 and [2 (m), Lemma 33]. Hence if we take into account 

Lemmas 28, 38 and 40, we get 

sup ]AA (ah) 0 + (ah) I < ~ .  
h E U '  

LEMMA 54. 0 + is locally summable on G and 

sup [D(x) l  ~ 10  + (x)[ < o~. 
XEG' 

Moreover z | + = Zb. (z) 0 + (z e ~)  

as a distribution on G. 

Since there are only a finite number  of non-conjugate Cartan subgroups of G, it 

follows from Lemma 52 tha t  
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sup [D(x)[*  ] |  < oo. 
X EG" 

Therefore | is locally summable on G from [2 (m), Lemma 53]. 

Now fix z E~ and consider the distribution 

T = z |  + -Zb,(z)  0+ 

on G. We have to show that  T = 0. In  view of [2 (m), Lemma 7], it would be enough 

to verify tha t  no semisimple element of G lies in Supp T. 

Fix a semisimple element h E G. Then h lies in some Cartan subgroup A of G 

[2 (m), Cor. of Lemma 5]. Let  h = h 1 h~ (h 1 E Az, h~ E AR). Then again by  Lemma 45, 

there exists x E G such that  hi ~ E B. T being invariant, it would be sufficient to prove 

that  h~r T. Hence replacing (h,A) by (h ~, A~), we may  assume tha t  a=h~EB. 

Let aT and as+ be the distributions on ~ ' ( a )  corresponding to T and | respectively 

under [2 (m), Lemma 15]. Then 

a~ = I , ' a l - %  (~) (l"a I ~ as+) -- Z~. (~) as§ 

by [2 (m), Lemma 22] where /~--/~r as in Lemma 46. Let  0 a denote the function 

y--~ | (ay) on .~.'(a). Then it follows from [2 (i), Cor. 2 of Theorem 1] tha t  0~ is locally 

summable and therefore as+ =Oa from the definition of as+. Hence it follows from 

Lemma 50 and the corollary of Lemma 47 tha t  the distribution [val�89 coincides 

on V = e x p  (fl0N3~(c~)) with the locally summable function sa(0)d)~ +. Therefore we 

conclude from Lemma 46 tha t  ar  = 0 on V. Since V is an open subset of ~ '  (a) con- 

taining h2, we conclude [2 (m), Lemma 15] tha t  T - - 0  around h=ah~. This proves 

Lemma 54. 

L~MMA 55. 

/or bEB'. 

@+ (b) = A(b) -1 ~ e(s) ((b*) ', b~ 
sEWG 

Fix bEB'. Then 3b=b and therefore Db(H)=A(b exp H) and 

To+(H) = ~. e(s)((b*)S,b~e ~('-IH) (HEb). 
seW(t 

Hence 0 + (b) = O0 + (1) = Do (0)-lTb+ (0) = A(b) -1 ~ ~(8) < (b*)', b>. 
sEWG 

This shows tha t  @+ satisfies all the conditions of Theorem 3. Therefore in view 

of Lemma 44, the proof of Theorem 3 is now complete. 



302 I~ARISH-CHANDRA 

w 23. Further properties of 0 

Let a be a Cartan subalgebra of ~ and A the corresponding Caftan subgroup 

of G. Pu t  (IR' = an N a' (R) and An' = An N A'  (R) in the notation of [2 (m), w 19]. Let  

A + be a connected component of A'(R).  Then it is obvious tha t  A + =Az+AR + where 

AI + is a connected component of Az and AR + =An.  

Let us assume that  0(a)= a. Then by  Lemma 45 we can choose ]c E K such tha t  

(AI+)~B.  Hence we may  suppose tha t  Az+=B. Let 3 denote the centralizer of A~ + 

in g. Then (I and ~ are both Cartan subalgebras of $. Consider the complex-analytic 

subgroup ~c of Gc corresponding to ad3c. We can choose y E~c such tha t  ~ = ~.  Pu t  

W(A+) = W(3//a). Since [I1 lies in the center of $, every root of ($, a) is real. Hence 

(see [2 (k), Lemma 6]) every element of W(A +) is induced on ~ by  some element of 

the analytic subgroup ~ of G corresponding to ~. Let  Wa be the subgroup of those 

elements of W($/b) which can be induced on ~ by  some element of .~.. Then W_= = 

W~(~/b) in the notation of w 18. 

Pu t  m(Az+) = Wv ~ W($/~) and write m=tv(Az +) for simplicity. 

LEMMA 56. Suppose tl, t 2 are two elements in Wa such that 

Then t~ 6 tv t~. 

Put t = t 1 t2 -1. 

tl ~ E W(A +) t2 ~. 

Then tG (W(A+)) ~-1 N Wa = W(3/b) N Wa = Iv. 

COROLLARY. Let r=[Wa:Po] and $1 . . . . .  tr a complete set o/ representatives in Wa 

/or ~\Wa. Then the elements stf ~ (s6W(A+), l <~i <,r) are all distinct. 

This is obvious from the above lemma. 

LwMMA 57. Fix an element b*6B*'  and de/ine E) as in Theorem 3. Then there 

exist unique complex numbers cb,(s:t:A +) ( seW(A+) , t eWa)  such that 

1) Cb,(su~:u-lt:A+)=cb,(s:t:A +) (uem), 

2) A~(hlh2)O(hlh2)= ~ e(t)<(b*)',hl> ~ ~(s)cb,(s:t:A +)exp(s(tl)y(H2)) 
tGrv\ Wo sEW(A+) 

/or h16A1 +, h26AR +. Here l = l o g  b* and(i) H~=log  h~. 

Let  H 16az and H 2 6aR. Then since s - I  and y-1 leave H1 fixed, it is clear tha t  

< (b*)', exp H 1> exp (s (tA) ~ (H~)) = exp (8 (tt) ~ (H I + H2) ) 

(1) See footnote 1, p. 299. 
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for sEW(A t) and t E Wa. Since ~ is regular, the uniqueness is obvious from the 

corollary of Lemma 56. On the other hand the existence is seen as follows. We use 

the notation of w 18. Put  a + = a ~ + l o g  An +. Then a + is a connected component of 

a'(3 :R) (see w 13). 

LE~MA 58. Put 
c(s:~+:A+) = ~ c~(st':t-l~+:a +) 

ter~lw= 

/or s E W(A +) and any connected component ~+ o~ ~'. Then 

cb.(s:t:A+)=c(s:t~+:A +) (sEW(A+),tEWG) 

where ~+ is the component o~ log b* in ~' (b* E B*'). 

In  view of Lemma 40, the definition of c(s:~+:A +) is legitimate and it is 

obvious tha t  
c(suY:u-l~+:A+)=c(s:~+:A +) (uEm). 

Therefore it would be sufficient to prove the following result. 

Lv.MMA 59. Fix b* E B* and a connected component ~+ o/~ '  such that 2 = log b* EC1 ~+ 

and define O +, ~ +  as in w 22 corresponding to b* and ~+. Then 

A~(hlh2) O+(hlh2) = ~ e(t)<(b*)',hl> ~ e(s)c(s:t~+:A+)exp(s(t2)~(H2)), 
tero \wa seW(A +) 

and ~If+(hlh2) = ~ <(b*)',hl> ~ c(s:t~+:A+)exp(s(t2)~(H2)) 
tetv\ W(~ seW(A +) 

/or h 1 EAt + and h~ EAR +. Here H2= log h~ as be/ore. 

Fix a point b 0 EAt +. Then we can choose H o E az arbitrari ly near zero such tha t  

1) v~.(exp H o ) # 0  and 2) every root of (30o, a) which vanishes a t  H o is real. Pu t  

b = b  0 e x p H  o. Then bEAt  + and it is obvious tha t  30=$. This shows tha t  the set F 

of those points bEAt  + for which 3b=3, is dense in At +. Fix a point bEV. Then 

from Lemma 50, 

~)+ (b exp Z) = O0 + (exp Z) = Do (Z) -1 Tb + (g), ~F + (b exp Z) = ~Fb + (exp Z) = S0 + (Z) 

for all ZEg0N30(c0) such tha t  b e x p Z E G ' .  Pu t  U = a  +NgoN3b(cb) and let U ' b e t h e  

set of all points H E U where AA (b exp H ) * 0 .  Recall tha t  P is the set of all posi- 

tive roots of (g, b). Then we may  assume, without loss of generality, tha t  P~ is the 
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set of all positive roots of (g, a). Then it is clear tha t  

Db (exp H) = AA (b exp H) ~ "  (H) -1 
and therefore 

AA(b exp H) O+(b exp H)=~a(H)T~+(H) (H e U'). 

On the other hand it follows from Lemmas 38 and 40 that  

~a(H) T~+(H)= ~ e(t)((b*)',b} ~ e(s)c~(s:t~+:a+)exp(s(t~)~(H)) 
teW~\ W~ seW(A +) 

for HEU'. Now suppose H = H  I + H  2 (H 1EctI,H 2EAR). Since s -1 and y-1 leave at 

pointwise fixed, it is clear tha t  

((b*)', b} exp (s (t~t) ~ (H)) = ( (b*)', hi} exp (s (t2) ~ (H2)) 

for sEW(A +) and tEWc. Here hx=b exp H x. Therefore since the function 

h--->Aa(h)O+(h) (heA + (~A') 

extends to an analytic function on A + (see [2 (m), Lemma 31]), i t  is obvious tha t  

AA(hlh2)O+(hxh2) = ~ e(t)((b*)',h,} ~ e(s)c~(s:t~+:a+) exp(s(ta)U(H~)) 
tewr~ \Wo seW(A +) 

for hlEA~ +, h2EAR +. Our first assertion now follows immediately if we take into 

account Lemma 40. 

Similarly we conclude from Lemmas 50 and 41 tha t  

W + ( b e x p H ) = S ~ + ( H ) =  ~ ((b*)',b} ~ c~(s:t~+:a +)exp(s(t~t)~(H)) 
teW~ \W~ se W(A § ) 

for H E U'. Since ~F + extends to a continuous function on G (see the corollary of 

Lemma 50), this relation holds for all H E  U. Now log AR+c  U and V is dense in 

Az +. Therefore the second assertion of the lemma is now obvious. 

L~MMA 60. c(s:~+:A+)=O unless ~ttu(s-aH)<~O /or every t t e~  + and H e a  +. 

This is obvious from Lemma 58 and Lemma 28. 

COROLLARY. There exists a number C (independent o] b* and ~+) such that 

ID(x)l lO+(x)l < v  (xea') 



, ' S C R ~ E  S ~ R ~ S  F O a  S~ .M,S~FL~.  L,E O a O ~ S ,  3 o 5  

and [~F+(x)l ~< C (xEG) 

in the above notation. 

Let  C(A +) denote the maximum of ]c3(s:~+:a+)] for all sEW(A +) and all ~+. 

Then it follows from Lemmas 58, 59 and 60 that  

I AA (h) | + (h)] < [m: W_=] [ Wa: ro] [ W(A +)] C(A +) <~ [ W] ~ C(A +) (h E A' N A +) 

where W= W(g/b) as usual. Similarly 

]T+(h)I<-<[W]~C(A +) (hEA+). 

I t  is clear that  C(zA+)=C(A +) for zEZa. Therefore since A/Zc and a ' ( R ) b o t h  have 

only a finite number of connected components, 

C(A) = [W] 2 Sup C(A +) < o~. 
~+ 

Here A + runs over all connected components of A'(R). This shows that  

IAA(h) O+(h)l <~C(A) (hEA') 

and ]~F+(h)I <-C(A) (hEA). 

But, then since G has only a finite number of non-conjugate Cartan subgroups, our 

assertion is obvious. 

w 24. The distribution Ca* 

Put  L = log B*. Then L is a closed additive subgroup of ~ which is, in fact, a 

lattice if B is compact. For any 2 EL, let ~ denote the corresponding element of 

B* so that  ~a(exp H ) = e  x(~) (HEb). Fix 2 E L  and a connected component ~+ of ~ '  

such that  2 E C l ~  +. Then we denote by @~.~+ and ~Fa.9+ respectively, the distribu- 

tions | and ~F + of w for b * = ~ .  In particular if 2EL'~-L N ~',  the component 

~+ is uniquely determined and so in this case we denote them simply by O~ and Wa. 

Now fix 2 EL'  and suppose that  s2 EL for every s E W = W(g/~). Then we intend 

to study the distribution 
O~*= ~ e(~)0~ 

sEW 

more closely. Let  us return to the notation of w 23 and define 

~t.~(h~h2)=~t~(h~) exp((t2)~(log h~)) (feW) 

21 - 652923.  Acta  mathemati~ca. 113. I m p r i m 6  le 12 m a i  1965. 
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for h~ ~ Az + and h2 E A~. 
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Let m be the centra~zer of an in g and put 

17170 = W(m/a) y-1. 

Since al lies in the center of 3 and OR in the center of m, it is clear that  W(ffa) 

and w(m/a) commute (as subgroups of W(fl/a)). Therefore W(~/b) and Wo also com- 

mute in W. 

LEM~a  61. For any connected component ~+ o/ ~', de/ine 

c*(t:~+:A+)=[WG:~] X e(sY:8-1t~ +:A+) (~eW). 
s e w(~lb) 

Then c* (u -1 t : ~+: A + ) = c* (t : ~+: A +) 

/or u E W o and t E W. Moreover, 

54| ~ ~(Oc*(t:~+:A§ 
f E W  

on A +. Here ~+ is the compcment o] ~' containing 2. 

Fix u E W o and t E W. Since u and W(3/b ) commute, it is clear that  

c*(u-~t:~+:A+)=[Wa:Vo] Y e(g:u-~s- ' t~+:A +) 
s e W(~lb) 

=[Wa:Wn] Y cs(d:u- ls - l t~+:a +) 
s e W(~/b) 

from Lcmma 5S Defin~ ~ '  ~s m w lS and ~or fixed ,eW(~/b) and teW, let ~ §  be 

the unique connected component of ~ '  containing s - l t ~  +. Since u -x leaves every 

root of (3, b) fixed, it is clear that  u - l ~  + = ~ + .  Hence 

~(.~: u-18 -~ t3§ a § = c~ (~: ~+:  a +) = ode  :~-1~ ~+: a+) 

in the notation of w 18. This implies the first assertion of the lemma. 

Now let ~+ be the component of ~ '  containing 2. Then it follows from Lemma 

59 that  
A~Oa *= E e(u) E e(O E e(s)e(~Y:tu~+:A+)~t,,.~ 

u c W  t e r o \ w ~  sew(~/b) 

on A +. From this the second assertion of the lemma follows immediately. 

Now assume that  Ge is an acceptable complexification (see [2 (m), w 18]) of G and 

G is the real analytic subgroup of Gc corresponding to ft. Let  Ae and B~ be the 

Cartan subgroups of Ge corresponding to ~ and be respectively. Then W operates on 
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Bc and therefore also on B. Hence L is invariant under W. Similarly W(m//a) operates 

on A c. Since it maps ar into itself and leaves aR pointwise fixed, it leaves every 

point in Az N exp (-1) �89 fixed and maps A ~  az into itself. Therefore (see 

[2 (m), Lemma 50]) W(m//a) operates on A and maps Az § into itself. Now if u E W 0 

then s = u u E W0n/a) and 

~ut.a (hi h2) = ~u~a (hi) exp ((t~t) u (log h2)) = ~t.a ((hi h2) s-x) (t E W) 

for hlEAI+,h2EAn.  Hence we obtain the following result from Lemma 61. 

LEMMA 62. Under the above conditions 

Aa(h)| ~ e(t)c*(t:~+:A +) Z e(s)~t.a(h') 
t E Wo \ w  s e W(m/tt) 

/or h E A  +. 

Let  P+ be the set of all positive roots of (O, a) which do not vanish identically 

on am. Put  a = � 8 9  and 

A+(h) =e~176 1-I ( 1 - ~ ( h - a ) )  (hEA)  
~ P +  

in the notation of [2 (m), w 18]. Here h~ is the component of h in An. 

COROLLARY. sup [A+(h) Oa* (h)[ < ~ .  
heA"  

In  view of Lemma 51, it is enough to show that  A+(h)Oa*(h) remains bounded 

for h E A  + N A'. In  order to do this we can obviously assume that  the set of positive 

roots of (g,a)  is chosen as in [2 (m) ,w  Define M, AM and ~e as in [2 (m), w 27]. 

Then 
Aa(h)=AM(h)A+(h) (hEA).  

Moreover, it follows from Lemma 60, that  

c(s~:s-l t~+:A+)=O (sEW(3/b), fEW)  

unless (t2)~(H2)< 0 for H 2 Elog An +. Therefore it is clear from Lemmas 61 and 62 that  

IA+(h)0;(h)l< ~ [e*(t:i~+:A+)llA~'(ho-l..w(~/.,e(s)~(hx")[ 
for hEA" NA  + where h I is the component of h in A t  + . Now choose 

aEAz  + n e x p ( -  1 ) ta r  
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such t h a t  Az + = a A ~ ,  Then  (see [2 (m), w 23]) 

AM(ah ) = ~q(a) AM(h) 

and ~. e(s)~t~((ah)S)=~t~(a) Z e(s)~t~(M) 
s ~ w(m/a)  s E w(m/a )  

for hEAz ~ and  tEW. Therefore  our  assert ion is obvious f rom [2 (b), Cor. 2, p. 139]. 

w 25. Statement of Theorem 4 

Fix  a H a a r  measure  dx on G and  consider the  dis t r ibut ion 

O+ (/)= f lO+clx ( / e  C : ( O ) )  

as in L e m m a  54. For  a n y  e > 0, get  G(e) denote  the set of all x E G where I D(x) [ > e 2. 

Suppose u is a measurable  funct ion on G' which is integrable (with respect  to dx)on 

G(e) for  every  e > 0 .  Then  we define(1) 

p.v.fud =limfo, ) dx 
provided  this l imit  exists and  is finite. 

T H e O R e M  4. De/ine 6) + and ~+ as in w and put 2 = l o g  b*. Then 

6)+ (1) = p . v . f D - '  ~F+va / dx 

where Va has the same meaning as in [2 (m), w 20]. 

Before proceeding with  the proof,  we need some formulas  on integrals  (cf. w 2). 

Le t  a 1 = b, a s . . . . .  a, be a max imal  set  of Car tan  subalgebras  of g no two of which 

are conjugate  under  G. Le t  A~ be the Car tan  subgroup of G corresponding to ai. 

P u t  G~* =G/A~o where At0 is the  center  of At and  fix a H a a r  measure  d~a on At and  

an invar ian t  measure  d~x* on Gi*. Also let 

At(a)=AA,(a ) (aeA,) 

in the  usual no ta t ion  (see [2 (m), w 19]). 

L~.MMA 63. There exist numbers c~>O (1 ~i<<.r) such that 

(x) See footnote 1, p. 246. 
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/or /eCc(G) in the notation o/ [2 (m), w 22]. 

Pu t  G~=A~afl G'. Then G' is the disjoint union of G~ . . . . .  G~ and our assertion 

is an immediate consequence of [2 (m), Lemma 41]. 

w 26. A simple property of  the function A 

Let  a be a Cartan subalgebra of g and A the corresponding Cartan subgroup 

of G. Suppose a is an element of A and g a root of (g,a). We say tha t  a and 

commute if ~ (a)=  1 in the notation of [2 (m), w 19]. 

Pu t  m = �89 (dim g - rank g) as in w 2. Then m is the number of positive roots of 

(6, a). For any aEA, define the integer m(R:a)>~O as follows. Let  a=axa 2 (alEAI, 

a2EAn). Then m(R:a) is the number  of positive real roots of (6, a) which commute 

with a r I f  ~ is a real root, a ( H ) = 0  for H E a l .  Hence it is clear tha t  m(R:a) de- 

pends only on the connected component  of a 1 in At. Therefore the function 

m (R) : a --> m (R: a) is locally constant on A. 

LEMMA 64. conj AA(a ) = (--  1)m+m(R:~)AA(a) (a EA). 

This result is obviously independent of the choice of posi t ive  roots. Hence we 

may  select compatible orders on the spaces of real linear functions on on and 

on+ ( -  1) �89 ax respectively and assume tha t  P is the set of positive roots of (6, a) in 

this order. Let  ~/ denote the conjugation of gc with respect to 6. Then it is clear 

that  if zr is a root, the same holds for ~a and 

~,~(a)=conj  ~ ( a )  (aEA). 

Let  PR, P1 and Pc respectively denote the sets of real, imaginary and complex roots 

in P (see [2 (k), w We now use the notation of [2 (m), w 19]. Then 

A (a) = ~Q (a) At' (a) A+' (a) 

where Az'(a)= 1-I ( 1 - ~ ( a ) - l ) ,  A+ ' ( a )=YI  ( 1 - ~ ( a )  -1) (aEA) 
~ePl ~eP+ 

and P+ =Pn U Pc. Since P+ is invariant  under 7, it is clear tha t  A+'(a) is real. On 

the other hand, ~ g = - o r  for aEP~. Therefore 

conj A t' (a) = ( - 1)m(') ~2q, (a) At' (a) 
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where m(I) is the  n u m b e r  of roots  in P I  and  ~z = ~  ~ e p l ~ .  Now suppose a = a  l a  2 

(a 1 E At, a S 6 AR). Then  conj ~ (a) = ~Q (a1-1 a2) and  ~2QI (as) = 1. Hence  

conj A(a)  = ( - 1)ma) ~q(al- l a2) ~ i  (al) A /  (a) A +' (a) 
i 

= ( - 1 )m(1) ~2Q (al)-1 ~201 (al) A (a) = ( - 1 )mr ~2Q+ (al)-1A(a) 

where ~+ = � 8 9  Now if a E P c  then  the  same holds for ~a  and  ~Fc#a.  Moreover,  

(al) (al) = I   (al)l = 1 .  

Hence  ~2r = ~ (al) 

where ~ R = � 8 9  Bu t  for  a n y  aEPR,  ~ ( a l )  is bo th  real and  unimodular .  There-  

fore it  is •  Hence  

~ 2 q R ( a l )  = 1-]  ~ ( ~ 1 )  = ( - 1) q 
oc~PR 

where q is the  n u m b e r  of roots  g 6 P R  such t h a t  ~ ( a l ) = - 1 .  B u t  then  q+m(R:a)  

is the  to ta l  n u m b e r  of roots  in Pa. We have  seen above  t h a t  the  roots  in Pc occur 

in pairs.  Hence  
q + m(R : a) + m(I) ~-- m rood 2. 

This shows t h a t  q + m(I) ---- m + m(R : a) rood 2 

and  therefore conj A(a) = ( - l ) m ( 1 ) + q A ( a )  = ( - 1 )m+m(IC:a )A(a ) .  

This proves  the  lemma.  

w 27. Reduc t ion  o f  T h e o r e m  4 t o  L e m m a  66 

We now come to Theorem 4. Suppose V~ (0 < ~ ~<e0) is a fami ly  of measurab le  

funct ions on G such t h a t  (el. w 2) 

1) 0 ~ < V ~ < I  and  lim V ~ ( x ) = l  for xEG', 
e - - ~ 0  

2) V is invar ian t  under  G. 

3) V~(x)=0 if ID(x)l<:  (xea). 

Fix  / E Cc ~ (G) and  define -~I,~, en,~ and  w~ on A~ (1 ~< i ~< r) as in [2 (m), w 22] and  let 

m~(R) be the locally cons tan t  funct ion on A~ in t roduced in w 26. Since 

D(a) = ( -  1)mA~(a) ~ (a~A~), 

i t  is obvious f rom L e m m a s  63 and  64 t h a t  
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f V~ D-1T+ Va / dx = ~ e, f V~., ( - l )"~(a) eR., u,i',+ ~,  F.f., d, a 

where V~.t and ~Fi + respectively denote the restrictions of V~ and ~F + on At. There- 

fore the following lemma is now obvious (el. Lemma 4) from [2 (f), Theorem 2]. 

LE~MA 65, Fix /EC,~176 Then 

Now put  

for / E C~ ~176 (G). 

l <~ t <~ r d 

v f D-' +Vo/dx 

I t  follows from [2 (f), Theorem 2] and the above lemma that  T is an 

invariant distribution on G. We have to show that  T =0.  Hence it is sufficient by  

[2 (m), Lemma 7] to verify tha t  no semisimple element of G lies in Supp T. 

Fix a function v E e r ( R )  such that  0 <v ~< l ,  v( t )=0 if Iris<�89 and v ( t ) = l  if [t]~>l 

(tER). For  any e > 0 ,  put  

V, (x) = v(2 -1 e-~D(x)) 

Then it  follows from Lemma 65 that  

(x E G). 

l imofD-1V~F+Va/dx=p.v.fD-l~F+V~]dx. 

P u t  T . ( / )  = O + ( f )  - f D-' V, vo] dx e c :  (G)) 

for e > 0 .  As usual let Vo* denote the adjoint of V~ on O'. Since D -1 V~F + is a 

C ~ function on G whose support is contained in G', if follows that  the distribution 

T~ is, in fact, a locally summable function given by  the formula 

T~ = ~(~t) 0 + - V~* (D-1 V, ~F§ 

Moreover, T(/) -- lira T, (]) (f E C, ~ (G)). 
e-~0 

Fix a semisimple element a E G. Then a is contained in some Cartan subgroup 

A of G and a=ala  ~ where alEAI, azEAe. Let  a be the :Lie algebra of A. By  

Lemma 45, we can choose x EG such that  0(a x) = a ~, (ol)xcb and al xEB. Since T is 

invariant under G, it would be enough to verify that  aX~ Supp T. Hence replacing 
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(a, A) by  (a x, A~), we m a y  assume tha t  0(a) = a, al ~ 1~ and a I E B. Then a = b exp H o 

where b=a 1EAz N B and H o= log  a~Ean. Define So(c0) as in Lemma 50. Then So-- 

So(c0) N ~o is an open and completely invariant  neighborhood of zero in S=So and 

H o E So. Pu t  ~ = ~. (b) and ~o = exp So. Then ~o is an open and completely invariant  

neighborhood of 1 in ~. (see [2 (m), Lemma 8]) and exp H o E ~o. Let  g and q~ be the 

distributions on ~o corresponding to T and T~ respectively under [2 (m), Lemma 15]. 

I t  would be sufficient to verify tha t  a =0 .  I t  is obvious (see [2 (i), Cor. 2 of Theo- 

rem 1]) that  ~ is the locally summable function 

y-~, T~(by) (ye~o) 
on ~'o and therefore 

q(g) = ~-~01im a~ (g) = ~ (]t) f g(y) ~) + (by) dy - ~olim f g(y) ~+ (by; Va* o D -1V~) dy 

for g ECc~r (Here dy is the Haa r  measure on E.) Let  ~' be the distribution on 

So which corresponds to ~ under the process described in [2 (m), w 10]. Then by  

Lemma 50, 

7'(/) =vy(~)~(Z)[ (Z)Oo + (exp Z ) d Z -  lim ~ s  (Z)tF + (b exp Z; Va*oD-1V,)dZ 
d e--~0 3 

for /ECc~~ and it would be sufficient to verify that  ~ ' = 0 .  

Pu t  
S~+(Z) = V~(b exp Z)tF+(b exp Z ) =  V~(b exp Z) So+(Z) (Ze30) 

in the notation of w 22. 

LEMMA 66. We have (1) 

tF+(b exp Z; Va*oD-1V~) = D0 (Z) -1S~+(Z; ~ (qr -1) 

/or Z E 3o in the notation o/ w 22 and Lemma 41. 

Assuming this for a moment,  we shall first finish the proof of Theorem 4. Put  

~=~-IDoT'  and recall tha t  

O0 + (exp Z) = Do (Z)-ITo + (Z) 

by definition (see w 22). Hence if we write q=qg/~, we get 

= ~r(2) T0 + (/) - lim ~/(Z) St + (Z; a (q) o V~*o ~h -1) dZ (/) 
e--~0 J 

(1) See f o o t n o t e  1, p .  285.  
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for ]ECc ~(3o). Bu t  since S~ § is a C ~ function on 3o and ~ is nowhere zero on its 

support,  it is clear tha t  

f/(z) (z; ~(q)ov~*o~v ~) j',T; ~(v~o~(q)*) f" dZ= dZ. 

Now as e - §  the right side obviously tends (see Lemma 4) to the limit 

p o ) / .  Sb § dZ. 

Hence T(f) = ~(X) To§ - p.v.fnVl(V~o ~(q) *)/" Sd dZ = 0 

by Lemma 41. This proves Theorem 4. 

w 28. Proof of Lemma 66 

We have still to prove Lemma 66. This requires some preparation. Fix a Cartan 

subgroup A of G and define ~A, /kA as in [2 {m), w 20]. Also put  A ' =  A f l  G' as usual. 

LEMMA 67. The di]]eren$ial operator Va* on G' is invariant under G and 

/(h; VG*) = ( --  1 )m hA (h) - I  [(h'~ "~'AO AA 2) (h 6 A') 

for teo~(o'). 

Since Va is invariant, it is obvious tha t  the same holds for Vo*- Fix hoEA' 

and an open and relatively compact neighborhood U of h o in A' .  Then V = U a is an 

open neighborhood of h 0 in G. Pu t  A = A  a and let us use the notation of [2 (m), 

Lemma 41]. Then if gECc~(V), it is clear tha t  

fgVZfdx= f v~g'/dx=cfA[A(h)12dhfs(h~*;W)/(h~*)dx* 
= c fAn ~fx(h)}2dh fa ,9(x*:h; ~ a o A )  /(x*:h)dx* 

where g(x*:h)=g(M*) ~nd /(x*:h)=/(h z*) (heAn V,z* EG*). On the other hand 

] A [~ = ( - 1 ) ~  § ~ ( ~ ) A  ~ 

from Lemma 64 and it is obvious tha t  

A f) V= U U ~ 
sf. WA 
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in the notation of [2 (m), w 20]. Hence A N V is relatively compact in A'. Therefore 

(see [2 (f), Theorem 1]) there exists a compact set ~* in G* such that  h ~* ~ Supp g for 

h E A (I V and x*E G* unless x*E ~*. Hence it is obvious that  

On the other hand, there exists (see [2 (m), w 20]) a unique differential operator V' on 

G,~= (A') a such that  

fl(h ; V') = fl(x: h; 

for xEG and hEA'. 

f gvc* dx = / 

Here fl is any Coo function on G~ and f l (x :h)=  fl(h~). Therefore 

c( -1)'~ f lA (h)12 dh f ~.,(h~') / (h~*; V') dx* = (-1)m f g V' / dx. 

This shows that  Va*=(  - 1)mV ' on V and therefore 

/ (ho; Va*) = ( - 1)m/(ho; A-1 ~AoA2)- 

Thus the lemma is proved. 

Now in Lemma 66, both sides are C ~ functions on 30 which are invariant under 

E. Therefore it would be enough to show that  they are equal on a0'= a'N 30 for any 

Cartan subalgebra a of ~. Fix a and let A denote the corresponding Cartan sub- 

group of G. Since 
V~ (b exp Z) U~+ (b exp Z) = S~+ (Z) (Ze30) 

and D(a)=(-1)mAA(a) 2 (aEA), it follows from Lemma 67 that  

~t~+ (b exp H; Va*oD-1V~)=A4(b exp H)- I  S~+(H; a(~rA) ) (HEao'). 

Let Gc denote, as before, the (connected) adjoint group of gc and ~c the complex- 

analytic subgroup corresponding to ad3c. Select y E.~c such that  b~=ac. P being 

the set of positive roots of (g, b), we may assume that  PY is the set of all positive 

roots of (g, a). Then it is clear that  

A~(b exp H)=:~a(H)Db(H) (Hea). 

Hence Db(H)~F+(b exp H; Va*oD-1V~)=S~+(H; (g~a)-lo(~ra)) (Hea0') .  

Pu t  q=q~[~ and let qa denote the projection of q in S(ac) (see [2 (j), w 8]). Then 

..~-~ = , ~  = (,,:o-o/~ ,'m-~) ~ = q,, " ~ '  
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in the notation of w 18. Therefore since S~ + is invariant under ~, it follows from 

the corollary of Lemma 2 and [2 (c), Theorem 1] that  

S~ § (1t; a(q)oV~*o~V ~) = S~ § (H; (~0)-la(~A)) (H E %'). 

This proves Lemma 60. 

w 29. Some convergence questions 

We use the notation introduced at the beginning of w 24. Pu t  

gh=gb, for ) .=log b* (b* EB*). 

LE~MA 68. Let p be a (complex-valued) polynomial /unction on ~. Then we can 

choose an element z E ~  with the /ollowing property. I[ ~+ is a connected component o/ 

~" and ,1. E L N C1 ~+, then 

Ip(4)oh.~+(/)l< Z c,~ If~r.,[d,a ([ECc~C(G)). 
l<t~<r J At 

Here the notation is the same as in Lemma 65. 

Define c and gl as in w 14 and let eo 1 be the Casimir operator corresponding to 

gl (see [2 (b), p. 140]). Then cole ~. Pu t  O)o=~Ox-(Hl~+ . . .+HE 2) where H 1 . . . . .  H s 

is a base for c over R. Then a simple calculation shows that  Z~ (w 0) = [[ 4 [[2-c (4 eL) ,  

where c is a real number (independent of 4 ) a n d / ~ - >  [[p[[ (ju E ~ ) i s  a Euclidean norm 

on ~. Pu t  e o = l + c + o J  o. Then g~(oJ)=l+[[4[] ~ (4E~) and r is a self-adjoint dif- 

ferential operator in ~.  Now fix ~+ and write Oa+=O~.~+ ( 4 E L + = L  N Cl~+). Then 

oh  + (co'l) = zh(o~q) o F  (1) = (~ + II 4 I1~)" o F  (I) 

for any integer q>~0 (4EL +, /ECc:r Define C as in the corollary of Lemma 60. 

Then it follows from Lemma 63 that  

f .  P 
[E)a + (/)[ ~< ~ c~JmlAt(a ) ~)h + (a)Era(a)[ dta <~ C ~c,JA [FI.~ [ d~a 

Replacing / by o~q/, we get 

( x + l l ~ l l ~ ) ' l o ; ( / ) l  < Z c,~lF~,.,Id, a 

where z = Co l .  The assertion of the lemma is now obvious. 

( / e  co ~ (a)).  
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Now L is a closed additive subgroup of ~. Let  d~ denote the Haa r  measure 

of L. I t  is clear from Lemmas 57 and 58 tha t  for a fixed /ECc+(G), Oh+(!) ( 2 e L  +) 

is a measurable function of +l EL +. 

COROT, LARY 1. _For any peS(bc) ,  we can choose z E ~  such that 

/or all l E Cc ~ (G). 

f:+lp(~)O~+<l)ld~ <iZ<e,f~ lF:r.,I alia 

We can obviously choose an integer q >~ 0 such tha t  

= ( ( 1  + I I~l l)-qd~ < oo. 3L 

On the other hand, by the a b o v e  lemma, we can select z 0 6 ~  such tha t  

+ II  ll)q Ip( )ok +</)1 < Z c, flF:+.,I (1 dta 

for ~ E L  + and /ECc~(G). Hence we can take z=o~z+. 
Define ~ for ~ e L '  as in w 24 and let us agree to the convention that  ~(+~)0h = 0 

i f  ~(2)  = 0 (4 e L). 

COROLLARY 2. Put 

= fLw(~) 0~ (/) d~ ( /e  Co ~ T(f) (a)). 

Then T is an invariant distribution on G and, in fact, we can choose z E~ such that 

IT(/)I< 7. e, 

/or a~l ! eoo ~ (G). 

The second s ta tement  follows from Corollary 1 above and the rest is obvious 

from [2 (f), Theorem 2]. 

Now assume B is compact.  Then L is discrete and therefore 

T(/) = ~L'~(~) e)~ (/). 

Put  q = �89 dim (G/K). Then q is an integer (see [2 (k), Lemma 18]) and we shall see 

in another paper  tha t  there exists a number  c > 0  such tha t  ( - 1 ) a c t  is precisely the 

contribution of the discrete series (see [2 (a), w 5]) to the Plancherel formula of G 

(see [2 (h), Theorem 4]). The proof of this fact depends on Theorem 4. 
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w 30. Appendix  

Let g be a reductive Lie algebra over R and ~ a completely invariant open 

subset of g. 

LE~MA 69. Let Fk (k>~l) be a sequence o/ continuous and invariant /unctions on 

~.  Then the /ollowing two conditions are equivalent. 

1) For any Cartan subalgebra a o/ g, Fk converges uni/ormly on every compact 

subset o/ a N ~ .  

2) Fk converges uni/ormly on every compact subset o] ~ .  

Obviously 2) implies 1). So let us assume that 1) holds. Let ~0 be the set of 

all elements X 0 E ~  with the following property. There exists an open neighborhood 

U of X 0 in ~ such that $'k converges uniformly on U. I t  would be sufficient to 

show that  ~0 = ~.  Clearly ~0 is open and invariant. Therefore in view of [2 (1), 

Cor. 2 of Lemma 8], we have only to verify that  every semisimple point of ~ lies in ~0. 

Fix a semisimple element H 0 E ~ and an open and relatively compact neighbor- 

hood U of H 0 in ~.  I t  would obviously be enough to show that  F~ converges uni- 

formly on U'= U A g' 

Let a 1 . . . . .  ar be a complete set of Cartan subalgebras of g no two of which are 

conjugate under G. Then Vt = Cl(a, N U a) is a compact subset of at N ~ (see [2 (k), 

Lemma 23]). Now fix X E U'. Then X = H ~ where x E G and H E V, for some i. Hence 

F j ( X ) - F k ( X ) = F j ( H ) - F k ( H )  (i, /c>~l). 

However, the sequence Fk converges uniformly on U l<f<r V( by 1) and so the required 

result follows immediately. 
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