DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

Construction of invariant eigendistributions

BY

HARISH-CHANDRA
The Institute for Advanced Study, Princeton, N.J., U.S.A.

Table of contents

§ 1. Introduction 242
Part I. Theory on the Lie algebra
§ 2. Reduction of Theorem 1 to the semisimple case 243
§3. Second reduction 249
§4. Third reduction 250
\$5. New expressions for J and J^{\prime} 252
§6. Proof of Lemma 7 255
§ 7. A consequence of Theorem 1 258
§8. Some elementary facts about tempered distributions 259
§ 9. Proof of Lemma 17 263
§ 10. An auxiliary result 265
§ 11. Proof of Lemma 21 267
§ 12. Recapitulation of some elementary facts 268
§ 13. Proof of Lemma 26 269
§ 14. Tempered and invariant eigendistributions 271
§ 15. Proof of Lemma 30 275
$\S 16$. The distribution T_{λ} 277
§ 17. Application of Theorem 1 to T_{λ} 281
§ 18. Proof of Lemma 41 283
Part II. Theory on the group
§ 19. Statement of Theorem 3 288
§ 20. Proof of the uniqueness 289
§ 21. Some elementary facts about Cartan subgroups 291
§ 22. Proof of the existence. 292
§ 23. Further properties of Θ. 302

§ 25. Statement of Theorem 4 . 308
§26. A simple property of the function $\Delta . ~ 309$
§ 27. Reduction of Theorem 4 to Lemma 66 . 310
§ 28. Proof of Lemma 66 . 313
§ 29. Some convergence questions. 315
§ 30. Appendix . 317

§ 1. Introduction

Let G be a connected semisimple Lie group with a compact Cartan subgroup B, and B^{*} the character group of B. Let \mathfrak{g} and \mathfrak{b} denote the Lie algebras of G and B respectively. Then every $b^{*} \in B^{*}$ defines a linear function $\lambda=\log b^{*}$ on \mathfrak{b}_{c} by the relation

$$
\left\langle b^{*}, \exp H\right\rangle=e^{\lambda_{(}(H)} \quad(H \in \mathfrak{b})
$$

Let W be the Weyl group of ($\mathfrak{g}, \mathfrak{b}$). We say that b^{*} is regular if $s \lambda \neq \lambda$ for every $s \neq 1$ in W. Let $B^{* \prime}$ denote the set of all regular elements of B^{*} and define 3 as in $[2(\mathrm{~m}), \S 1]$. Then corresponding to every $b^{*} \in B^{* \prime}$, we construct in Theorem 3 an invariant eigendistribution $\Theta_{b^{*}}$ of 8 on G (cf. [$2(\mathrm{~h})$, Theorem 2]). We shall see later in another paper that those irreducible characters of G which correspond to the discrete series (see [2(a), §5]) are actually finite linear combinations of these distributions (cf. [2 (h), Theorems 3 and 4]).

The second main result of this paper is contained in Theorem 4 which gives an alternative formula for the distribution $\Theta_{b^{*}}$. This will be needed for the determination of the contribution of the discrete series to the Plancherel formula of G.

Our method consists in first proving analogous results on \mathfrak{g} and then lifting them to G, roughly speaking, by means of the exponential mapping. Theorem 1 is the g analogue of Theorem 4 and its proof depends very much on Theorem 5 of [2(k)]. Then in § 8 we introduce the notion of a tempered distribution on an open subset of a Euclidean space (see also [2 (c), p. 90]) and prove some elementary results which are then applied in $\S 14$ to certain tempered and invariant eigendistributions on a reductive subalgebra \mathfrak{z} of \mathfrak{g} containing \mathfrak{b}. Lemma 28 asserts the uniqueness of such distributions and the existence is proved in Theorem 2 and Lemma 37. Lemma 41
contains the key result required for the reduction of the proof of Theorem 4 from the group to the Lie algebra.

The rest of this paper is devoted to the proofs of Theorems 3 and 4. The uniqueness part of Theorem 3 is relatively easy and follows from Lemma 28. However the problem of existence is more delicate. Lemma 50 contains the main step required in its solution. Lemma 59 gives a rather explicit formula for $\Theta_{b^{*}}$ which will be useful in later work. The main burden of the proof of Theorem 4 rests on Lemma 66.

Let L^{\prime} be the set of all linear functions λ on \mathfrak{b} of the form $\lambda=\log b^{*}\left(b^{*} \in B^{* \prime}\right)$ and write $\Theta_{\lambda}=\Theta_{b^{*}}$. Define $w \in S\left(\mathfrak{b}_{c}\right)$ as in $[2(\mathrm{k}), \S 11]$. Then we show in $\S 29$ that for any $f \in C_{c}^{\infty}(G)$, the series

$$
\sum_{\lambda \in L^{\prime}} \varpi(\lambda) \Theta_{\lambda}(f)
$$

converges absolutely and its sum represents a distribution T on G. We shall see later that, apart from a constant factor, T is just the contribution of the discrete series to the Plancherel formula of G (cf. [2 (h), Theorem 4]).

This work was partially supported by a grant from the National Science Foundation.

Part I. Theory on the Lie algebra

§ 2. Reduction of Theorem 1 to the semisimple case

We use the notation and terminology of [2(1)]. Let g be a reductive Lie algebra over \mathbf{R}, Ω a completely invariant open subset of \mathfrak{g}, T a distribution on Ω satisfying the conditions of $[2(1)$, Theorem 1] and F the corresponding analytic function on $\Omega^{\prime}=\Omega \cap \mathfrak{g}^{\prime}$. Then we have seen in $[2(1), \S 9]$ that $\Phi=\nabla_{\mathfrak{g}} F$ extends to a continuous function on Ω.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. For any function ϕ on Ω^{\prime} let $\phi_{\mathfrak{h}}$ denote its restriction on $\mathfrak{h} \cap \Omega^{\prime}$.

Lemma 1. Let $D \in \mathscr{D}\left(\mathfrak{h}_{c}\right)$. Then the function $D \Phi_{\mathfrak{G}}$ is locally bounded $\left.{ }^{1}\right)$ on $\mathfrak{h} \cap \Omega$.
Fix a point $H_{0} \in \mathfrak{h} \cap \Omega$ and select a positive-definite quadratic form Q on \mathfrak{h}. For any $\varepsilon>0$, consider the set $\mathfrak{h}(\varepsilon)$ of all $H \in \mathfrak{h}$ such that $Q\left(H-H_{0}\right)<\varepsilon^{2}$. Then if ε is sufficiently small, $\mathfrak{h}(\varepsilon) \subset \Omega$. Moreover the set $\mathfrak{h}^{\prime}(\varepsilon)=\mathfrak{h}(\varepsilon) \cap \Omega^{\prime}$ has only a finite number of connected components. It follows from [2(1), Lemma 2] that $D \Phi_{\mathfrak{G}}$ remains bounded on each connected component of $\mathfrak{h}^{\prime}(\varepsilon)$ and therefore also on $\mathfrak{h}^{\prime}(\varepsilon)$. Obviously this implies the statement of the lemma.
${ }^{(1)}$ This means that $D \Phi_{\mathfrak{g}}$ remains bounded on $C \cap \Omega^{\prime}$ for any compact subset C of $\mathfrak{h} \cap \Omega$.

Corollary. For any $D \in \mathfrak{J}\left(\mathfrak{g}_{c}\right), D \Phi$ is locally summable on Ω.
Fix \mathfrak{h} as above. Then by [2 (j), Lemma 14],

$$
(D \Phi)_{\mathfrak{h}}=\delta_{\mathrm{g} / \mathfrak{h}}^{\prime}(D) \Phi_{\mathfrak{h}}=\pi^{-1}\left(\delta_{\mathrm{g} / \mathfrak{h}}(D) \circ \pi\right) \Phi_{\mathfrak{h}} .
$$

But $\delta_{g / G}(D) \circ \pi \in \mathfrak{D}\left(\mathfrak{h}_{c}\right)$ by [2(j), Theorem 1] and therefore we conclude from the above lemma that $\pi(D \Phi)_{g}$ is locally bounded on $\mathfrak{h} \cap \Omega$.

Let $m=(n-l) / 2$ where $n=\operatorname{dim} \mathfrak{g}, l=\operatorname{rank} \mathfrak{g}$. Then $m=d^{0} \pi$. Let t be an indeterminate and $\eta(X)$ the coefficient of t^{l} in $\operatorname{det}(t-a d X) \quad\left(X \in \mathfrak{g}_{c}\right)$. Then η is an invariant polynomial function on $\mathfrak{g}_{\mathrm{c}}$ and $\eta(H)=(-1)^{m} \pi(H)^{2}\left(H \in \mathfrak{l}_{\mathfrak{c}}\right)$. Moreover it follows from the above result (see the proof of Lemma 3 of [2(1)]) that $|\eta|^{\frac{1}{2}}|D \Phi|$ is locally bounded on Ω. Therefore since $|\eta|^{-\frac{1}{2}}$ is locally summable on g [$2(\mathrm{k})$, Corollary 2 of Lemma 30], our assertion is now obvious.

Let $\nabla_{\mathfrak{g}}{ }^{*}$ denote the adjoint of $\nabla_{\mathfrak{g}}$. Then $\nabla_{\mathfrak{g}}{ }^{*}$ is also an invariant and analytic differential operator on \boldsymbol{g}^{\prime}.

Lemma 2. Put $f(x: H)=f\left(H^{x}\right)(x \in G, H \in \mathfrak{h})$ for $f \in C^{\infty}(\mathfrak{g})$. Then

$$
f\left(H^{x} ; \nabla_{\mathrm{g}}^{*}\right)=(-1)^{m} f\left(x: H ; \pi^{-1} \partial(\varpi) \circ \pi^{2}\right) \quad\left(x \in G, H \in \mathfrak{h}^{\prime}\right)
$$

where $m=\frac{1}{2}(\operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{g})$.
Put $\mathfrak{g}_{\mathfrak{g}}=\left(\mathfrak{h}^{\prime}\right)^{G}$. Then $\mathfrak{g}_{\mathfrak{g}}$ is an open subset of g^{\prime}. Fix $g \in C_{c}^{\infty}\left(\mathfrak{g}_{\mathfrak{G}}\right)$. Then

$$
\int \nabla_{\mathfrak{g}}^{*} f \cdot g d X=\int t \cdot \nabla_{\mathfrak{g}} g d X
$$

and therefore we conclude from Corollary 1 of Lemma 30 of [2(k)] that

$$
\int \pi(H)^{2} f\left(x^{*} H ; \nabla_{\mathfrak{g}}^{*}\right) g\left(x^{*} H\right) d x^{*} d H=\int \pi(H)^{2} f\left(x^{*} H\right) g\left(x^{*} H ; \nabla_{\mathfrak{g}}\right) d x^{*} d H
$$

Now define $\phi\left(x^{*}: H\right)=\phi\left(x^{*} H\right)\left(x^{*} \in G^{*}, H \in \mathfrak{h}\right)$ for $\phi=f$ or g. Then it follows from the definition of $\nabla_{g}[2(1)$, Lemma 24] that

Therefore

$$
g\left(x^{*} H ; \nabla_{\mathrm{g}}\right)=g\left(x^{*}: H ; \partial(\varpi) \circ \pi\right)
$$

$$
\int \pi(H)^{2} f\left(x^{*} H\right) g\left(x^{*} H ; \nabla_{\mathfrak{g}}\right) d x^{*} d H=(-1)^{m} \int \pi(H)^{2} f\left(x^{*}: H ; \pi^{-1} \partial(\varpi) \circ \pi^{2}\right) g\left(x^{*} H\right) d x^{*} d H
$$

since w is homogeneous of degree m. The differential operator $\pi^{-1} \partial(w) \circ \pi^{2}$ being in-
variant under the Weyl group of (\mathfrak{g}, \mathfrak{h}), there exists (see the proof of Lemma 24 of [2(1)]) a unique invariant differential operator D on $\mathfrak{g}_{\mathfrak{y}}$ such that

$$
f\left(x^{*} H ; D\right)=(-1)^{m} f\left(x^{*}: H ; \pi^{-1} \partial(w) \circ \pi^{2}\right)
$$

for $x^{*} \in G^{*}, H \in \mathfrak{h}^{\prime}$ and $f \in C^{\infty}(\mathfrak{g})$. Hence it is clear that

$$
\int \nabla_{\mathfrak{g}}^{*} f \cdot g d X=\int D f \cdot g d X .
$$

This being true for every $g \in C_{c}{ }^{\infty}\left(\mathfrak{g}_{\mathfrak{g}}\right)$, we conclude that $\Delta_{\mathfrak{g}}{ }^{*}=D$ on $\mathfrak{g}_{\mathfrak{g}}$ and therefore

$$
f\left(H^{x^{*}} ; \nabla_{\mathfrak{g}}^{*}\right)=(-1)^{m} f\left(x^{*}: H ; \pi^{-1} \partial(\varpi) \circ \pi^{2}\right)
$$

for $x^{*} \in G^{*}, H \in \mathfrak{h}^{\prime}$. This is equivalent to the statement of the lemma.
Corollary. $\quad\left(\left(H^{x} ; \nabla_{\mathfrak{g}}{ }^{*} \circ \eta^{-1}\right)=f\left(x: H ; \pi^{-1} \partial(\varpi)\right) \quad\left(x \in G, H \in \mathfrak{G}^{\prime}\right)\right.$.
Since $\eta(H)=(-1)^{m} \pi(H)^{2}$, this is obvious from Lemma 2.
By Chevalley's theorem [2(c), Lemma 9], there exists a unique element $p \in I\left(\mathfrak{g}_{c}\right)$ such that $p_{\mathfrak{y}}=\left(\varpi^{\mathfrak{h}}\right)^{2}$ for every Cartan subalgebra \mathfrak{h} of \mathfrak{g}. (Here we have used the notation of $[2$ (i), §8] and [2 (1), Theorem 3].) Put $\square=\partial(p)$.

Lemma 3. Let f be a locally invariant C^{∞} function on an open subset U of \mathfrak{g}^{\prime}. Then

$$
\left(\nabla_{\mathfrak{g}}^{*} \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}\right) f=\square f
$$

Fix a point $H_{0} \in U$ and let \mathfrak{y} be the centralizer of H_{0} in g. Then \mathfrak{h} is a Cartan subalgebra of g and it follows from the corollary of Lemma 2 that

$$
f\left(H ; \nabla_{\mathfrak{g}}^{*} \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}\right)=f_{1}\left(H ; \pi^{-1} \partial(\varpi)\right) \quad(H \in \mathfrak{h} \cap U)
$$

where $f_{1}=\nabla_{\mathfrak{g}} f$. However

$$
f_{1}(H)=f(H ; \partial(\varpi) \circ \pi) \quad(H \in \mathfrak{h} \cap U)
$$

from the definition of ∇_{g}. Therefore

$$
f\left(H ; \nabla_{\mathfrak{g}}^{*} \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}\right)=f\left(H ; \pi^{-1} \partial\left(\varpi^{2}\right) \circ \pi\right) .
$$

On the other hand since f is locally invariant, we have

$$
f(H ; \square)=f\left(H ; \delta_{\mathfrak{g} / \mathfrak{h}}{ }^{\prime}(\square)\right)=f\left(H ; \pi^{-1} \partial\left(\varpi^{2}\right) \circ \pi\right) \quad(H \in \mathfrak{h} \cap U)
$$

from [2 (c), Theorem 1] and the definition ofThis shows that

$$
f\left(H_{0} ; \nabla_{\mathfrak{g}}^{*} \circ \eta^{-1} \circ \nabla_{\mathfrak{8}}\right)=f\left(H_{0} ; \square\right)
$$

and so the lemma is proved.
Corollary.$F=\left(\nabla_{\mathfrak{g}}^{*} \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}\right) F=\nabla_{\mathfrak{g}}^{*}\left(\eta^{-1} \Phi\right)$.

This is obvious since F is invariant and $\nabla_{\mathfrak{g}} F=\Phi$.
For any $\varepsilon>0$ let $\mathfrak{g}(\varepsilon)$ denote the set of all $X \in \mathfrak{g}$ where $|\eta(X)|>\varepsilon^{2}$. Let u be a measurable function on \mathfrak{g}^{\prime} which is integrable (with respect to the Euclidean measure $d X$) on $\mathfrak{g}(\varepsilon)$ for every $\varepsilon>0$. Then we define (1)

$$
\text { p.v. } \int u d X=\lim _{\varepsilon \rightarrow 0} \int_{g^{(\varepsilon)}} u d X
$$

provided this limit exists and is finite.
Theorem 1. For any $f \in C_{c}^{\infty}(\Omega)$ we have

$$
\int f \square F d X=\text { p.v. } \int \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi d X
$$

Since $\square \in \mathfrak{F}\left(\mathrm{g}_{\mathrm{c}}\right)$, it follows from [2(1), Lemma 16] that $\square F$ is locally summable on Ω. Hence the left side of the above equation is well defined. Now consider the right side. Let $V_{\delta}\left(0<\delta \leqslant \delta_{0}\right)$ be a family of invariant measurable functions on \mathfrak{g} with the following properties.

1) There exists a number a such that $\left|V_{\delta}(X)\right| \leqslant a$ for $X \in \mathfrak{g}$ and all δ.
2) $V_{\delta}(X)=0$ if $|\eta(X)|<\delta^{2} \quad\left(X \in \mathrm{~g}, 0<\delta \leqslant \delta_{0}\right)$.
3) $\lim _{\delta \rightarrow 0} V_{\delta}(X)=1$ for $X \in \mathfrak{g}^{\prime}$.

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and put $\mathfrak{g}_{\mathfrak{h}}=\left(\mathfrak{h}^{\prime}\right)^{G}$ as before. Then we can choose a real number $c=c(\mathfrak{h}) \neq 0$ such that

$$
\int g d X=c \int \pi(H)^{2} g\left(x^{*} H\right) d x^{*} d H
$$

for $g \in C_{c}\left(\mathfrak{g}_{\mathfrak{h}}\right)$ in the notation of Corollary 1 of [2(k), Lemma 30]. Since $V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi$ vanishes outside a compact subset of \mathfrak{g}^{\prime}, it is obviously integrable on \mathfrak{g}. Therefore

$$
\int_{\mathfrak{\theta}_{\mathfrak{G}}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi d X=(-1)^{m} c \int_{\mathfrak{G}} V_{\delta}(H) \Phi(H) d H \int_{G^{*}} f\left(x^{*} H ; \nabla_{\mathfrak{g}}\right) d x^{*}
$$

${ }^{(1)}$ p.v. stands for "principal value".
if we recall that $\eta=(-1)^{m} \pi^{2}$ on \mathfrak{h}. On the other hand it follows from the definition of $\nabla_{\mathfrak{g}}$ that

$$
\int_{G^{*}} f\left(x^{*} H ; \nabla_{\mathfrak{g}}\right) d x^{*}=\varepsilon_{R}(H) \psi_{f}(H: \partial(\varpi)) \quad\left(H \in \mathfrak{h}^{\prime}\right)
$$

in the notation of $[2(\mathrm{k}), \S 5]$, Therefore since $\partial(\varpi)^{*}=(-1)^{m} \partial(\varpi)$, we get

$$
\int_{\mathfrak{g}_{\mathfrak{h}}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi d x=c \int_{\mathfrak{G}} V_{\delta, \mathfrak{\mathfrak { h }}} \varepsilon_{R} \Phi_{\mathfrak{h}} \partial(\varpi)^{*} \psi_{f} d H
$$

where $V_{\delta, \mathfrak{h}}$ denotes the restriction of V_{δ} on \mathfrak{h}. Since Φ is continuous on Ω, it is clear (see [2 (k), § 15]) that

$$
\int\left|\Phi_{\mathfrak{\xi}} \partial(\varpi)^{*} \psi_{f}\right| d H<\infty
$$

Therefore the following lemma is now obvious.
Lemma 4. Let $f \in C_{c}{ }^{\infty}(\Omega)$. Then

$$
\lim _{\delta \rightarrow 0} \int_{\mathfrak{Q}_{\mathfrak{h}}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi d X=c \int_{\mathfrak{h}} \varepsilon_{R} \Phi_{\mathfrak{h}} \partial(\varpi)^{*} \psi_{f} d H
$$

Select a maximal set $\mathfrak{h}_{i}(1 \leqslant i \leqslant r)$ of Cartan subalgebras of \mathfrak{g} no two of which are conjugate under G. Put $\mathfrak{g}_{i}=\left(\mathfrak{h}_{i}{ }^{\prime}\right)^{G}$. Then \mathfrak{g}^{\prime} is the disjoint union of $\mathfrak{g}_{1}, \mathfrak{g}_{2}, \ldots, \mathfrak{g}_{r}$. Fix a Euclidean measure $d_{i} H$ on \mathfrak{h}_{i} and put $c_{i}=c\left(\mathfrak{h}_{i}\right), \Phi_{i}=\Phi_{\mathfrak{h}_{i}}$ and $\boldsymbol{w}_{i}=w^{\mathfrak{b}_{i}}$. Then we have the following result in the notation of ${ }^{(1)}$ [2(k), §16].

Corollary. For any $f \in C_{c}^{\infty}(\Omega)$,

$$
\lim _{\delta \rightarrow 0} \int_{\mathfrak{g}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi d X=\sum_{1 \leqslant i \leqslant r} c_{i} \int \varepsilon_{R, i} \Phi_{i} \partial\left(\varpi_{i}\right)^{*} \psi_{f, i} d_{i} H=\text { p.v. } \int \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi d X
$$

The first equality is obvious from Lemma 4 and the second follows by taking V_{δ} to be the characteristic function of $\mathfrak{g}(\delta)$.

On the other hand (see the proof of Lemma 3),

$$
F(H ; \square)=F\left(H ; \pi^{-1} \partial(\varpi)^{2} \circ \pi\right)=\Phi\left(H ; \pi^{-1} \partial(\varpi)\right) \quad\left(H \in \mathfrak{h}^{\prime} \cap \Omega\right)
$$

Therefore

$$
\int_{\mathbb{\theta}_{\mathfrak{G}}} f \cdot \square F d X=c \int \varepsilon_{R} \psi_{f} \partial(\varpi) \Phi_{\mathfrak{g}} d H
$$

and so it is obvious that Theorem 1 is equivalent to the following lemma.
$\left.{ }^{(}{ }^{\mathbf{1}}\right) \varepsilon_{R, i}$ denotes ε_{R} for $\mathfrak{h}=\mathfrak{H}_{i}$.

Lemma 5. Let $f \in C_{c}{ }^{\infty}(\Omega)$. Then

$$
\sum_{1 \leqslant i \leqslant r} c_{i} \int_{\mathfrak{U}_{i}} \varepsilon_{R, i}\left(\psi_{f, i} \partial\left(\sigma_{i}\right) \Phi_{i}-\partial\left(\sigma_{i}\right)^{*} \psi_{f, i} \cdot \Phi_{i}\right) d_{i} H=0
$$

We shall now prove Theorem 1 by induction on $\operatorname{dim} \mathfrak{g}$. Put

$$
\begin{aligned}
J(f) & =\int f \square F d X-\text { p.v. } \int \eta^{-1} \nabla_{\mathfrak{g}}^{*} f \cdot \Phi d X \\
& =\sum_{1 \leqslant i \leqslant r} c_{i} \int_{\mathfrak{h}_{i}} \varepsilon_{R, i}\left(\psi_{f, i} \partial\left(\varpi_{i}\right) \Phi_{i}-\partial\left(\varpi_{i}\right)^{*} \psi_{f, i} \cdot \Phi_{i}\right) d_{i} H
\end{aligned}
$$

for $f \in C_{c}^{\infty}(\Omega)$. Then it follows from [2(k), §15] that J is an invariant distribution on Ω. We have to prove that $J=0$.

Let \mathfrak{c} be the center and g_{1} the derived algebra of g and first assume that $\mathfrak{c} \neq\{0\}$. Fix a point $X_{0} \in \Omega$. We have to show that $J=0$ around X_{0}. Let $X_{0}=C_{0}+Z_{0}\left(C_{0} \in \mathfrak{c}\right.$, $Z_{0} \in \mathfrak{g}_{1}$). Select on open and relatively compact neighborhood \mathfrak{c}_{0} of C_{0} in \mathfrak{c} such that $Z_{0}+\mathrm{Cl}\left(\mathrm{c}_{0}\right) \subset \Omega$. Let Ω_{1} be the set of all points $Z \in \mathfrak{g}_{1}$ such that $Z+\mathrm{Cl}\left(\mathrm{c}_{0}\right) \subset \Omega$. Then Ω_{1} is an open and completely invariant neighborhood of Z_{0} in g_{1} (see [2 (I), Lemma 9]). It would be sufficient to prove (see [2 (i), Lemma 3]) that

$$
J(\alpha \times g)=0 \quad\left(\alpha \in C_{c}^{\infty}\left(c_{0}\right), g \in C_{c}^{\infty}\left(\Omega_{1}\right)\right) .
$$

Fix $\alpha \in C_{c}^{\infty}\left(c_{0}\right)$ and consider the distributions

$$
T_{\alpha}(g)=T(\alpha \times g), \quad J_{\alpha}(g)=J(\alpha \times g) \quad\left(g \in C_{c}^{\infty}\left(\Omega_{1}\right)\right)
$$

on Ω_{1}. Then T_{α} and J_{α} are both invariant. Put $\mathfrak{U}_{1}=\mathfrak{U} \cap I\left(\mathfrak{g}_{1 c}\right)$ where \mathfrak{U} has the same meaning as in [2(1), Theorem 1]. Then

$$
\operatorname{dim} I\left(\mathfrak{g}_{1 c}\right) / \mathfrak{l}_{1} \leqslant \operatorname{dim} I\left(\mathfrak{g}_{c}\right) / \mathfrak{u}<\infty
$$

and $\partial\left(\mathfrak{H}_{1}\right) T_{\alpha}=\{0\}$. Hence Theorem 1 of $[2(\mathrm{l})]$ is also applicable to $\left(T_{\alpha}, \mathfrak{g}_{1}, \Omega_{1}\right)$ instead of (T, \mathfrak{g}, Ω). Put $\Omega_{1}^{\prime}=\Omega_{1} \cap \mathfrak{g}^{\prime}$ and fix Euclidean measures $d O$ and $d Z$ on \mathfrak{c} and \mathfrak{g}_{1} respectively such that $d X=d C d Z \quad\left(X=C+Z, C \in \mathfrak{c}, Z \in g_{1}\right)$. Let F_{α} be the analytic function on $\Omega_{1}{ }^{\prime}$ such that

$$
T_{\alpha}(g)=\int F_{\alpha} g d Z \quad\left(g \in C_{c}^{\infty}\left(\Omega_{1}\right)\right)
$$

Then it is clear that

$$
F_{\alpha}(Z)=\int \alpha(C) F(C+Z) d C \quad\left(Z \in \Omega_{1}^{\prime}\right)
$$

Put $\Phi_{\alpha}=\nabla_{\mathfrak{g}_{1}} F_{\alpha}$. If \mathfrak{h} is any Cartan subalgebra of \mathfrak{g}, it is clear that $\mathfrak{h}=\mathfrak{c}+\mathfrak{h}_{1}$ where $\mathfrak{h}_{1}=\mathfrak{Y} \cap \mathfrak{g}_{1}$. Moreover π and $\partial(\varpi)$ are in $\mathfrak{D}\left(\mathfrak{h}_{1 c}\right)$ and $\square \in \partial\left(I\left(\mathfrak{g}_{1 c}\right)\right)$. Hence it follows without difficulty that

$$
J_{\alpha}(g)=\int_{\theta_{1}} g \square F_{\alpha} d Z-\text { p.v. } \int_{\mathcal{O}_{1}} \eta^{-1} \nabla_{\mathfrak{g}_{1}} g \cdot \Phi_{\alpha} d Z
$$

for $g \in C_{c}^{\infty}\left(\mathfrak{g}_{1}\right)$. But since $\operatorname{dim} \mathfrak{g}_{1}<\operatorname{dim} \mathfrak{g}$, we conclude from the induction hypothesis that $J_{\alpha}=0$. This shows that $J(\alpha \times g)=0$ for $\alpha \in C_{c}^{\infty}\left(c_{0}\right)$ and $g \in C_{c}^{\infty}\left(\Omega_{1}\right)$ and therefore $J=0$ around X_{0}.

§ 3. Second reduction

Hence we may now assume that \mathfrak{g} is semisimple and identify \mathfrak{g} with its dual space by means of the Killing form ω of \mathfrak{g}. For any $p \in I\left(\mathfrak{g}_{c}\right)$, let p_{i} denote the restriction of p on \mathfrak{h}_{i} and put $\pi_{i}=\pi^{\mathfrak{h}_{i}}(\mathrm{l} \leqslant i \leqslant r)$. We also identify \mathfrak{h}_{i} with its dual space by means of ω_{i}. Then $\sigma_{i}=\pi_{i}$. Put $\delta_{i}(D)=\delta_{g / \mathfrak{g}_{i}}(D)\left(D \in \mathfrak{F}\left(\mathfrak{g}_{c}\right)\right)$ in the notation of [2 (j), Theorem 1].

Lemma 6. Let $D \in \mathfrak{J}\left(\mathfrak{g}_{c}\right), p \in I\left(\mathfrak{g}_{c}\right)$ and $f \in C_{c}^{\infty}(\Omega)$. Then

$$
\begin{aligned}
& \sum_{1 \leqslant i \leqslant r} c_{i} \int \varepsilon_{R, i} \partial\left(\omega_{i} p_{i}\right)\left(\pi_{i} \psi_{r, i}\right) \cdot \delta_{i}(D) \Phi_{i} d_{i} H \\
& \quad=\sum_{1 \leqslant i \leqslant r} c_{i} \int \varepsilon_{R, i} \partial\left(p_{i}\right)\left(\pi_{i} \psi_{f, i}\right) \cdot \delta_{i}(\partial(\omega) \circ D) \Phi_{i} d_{i} H
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{1 \leqslant i \leqslant r} c_{i} & \int \varepsilon_{R, i} \partial\left(\omega_{i}\right) \psi_{f, i} \cdot\left(\delta_{i}(D) \circ \pi_{i} \circ \partial\left(p_{i}\right)\right) \Phi_{i} d_{i} H \\
& =\sum_{1 \leqslant i \leqslant r} c_{i} \int \varepsilon_{R, i} \psi_{f, i}\left(\delta_{i}(\partial(\omega) \circ D) \circ \pi_{i} \circ \partial\left(p_{i}\right)\right) \Phi_{i} d_{i} H
\end{aligned}
$$

We shall prove this in $\S 4$.
Corollary 1. For any $k \geqslant 0$,

$$
\begin{aligned}
& \sum_{1 \leqslant l \leqslant r} c_{i} \int \varepsilon_{R, i} \partial\left(\omega_{i}^{k}\right) \psi_{f, i} \cdot\left(\delta_{i}(D) \circ \pi_{i} \circ \partial\left(p_{i}\right)\right) \Phi_{i} d_{i} H \\
&=\sum_{1 \leqslant t \leqslant r} c_{i} \int \varepsilon_{R, i} \psi_{f, i}\left(\partial\left(\omega_{i}^{k}\right) \circ \delta_{i}(D) \circ \pi_{i} \circ \partial\left(p_{i}\right)\right) \Phi_{i} d_{i} H
\end{aligned}
$$

Since $\psi_{\partial(\omega) f, i}=\partial\left(\omega_{i}\right) \psi_{f, i}$ and $\delta_{i}\left(\partial\left(\omega^{k}\right) \circ D\right)=\partial\left(\omega_{i}^{k}\right) \circ \delta_{t}(D)$, this follows immediately from the second statement of Lemma 6 by induction on k. 17-652923. Acta mathematica. 113. Imprimé le 11 mai 1965.

Corollary 2.

$$
\sum_{i} c_{i} \int \varepsilon_{R, i} \partial\left(\omega_{i}^{k}\right)\left(\pi_{i} \psi_{f, i}\right) \cdot \delta_{i}(D) \Phi_{i} d_{i} H=\sum_{i} c_{i} \int \varepsilon_{R, i} \pi_{i} \psi_{f, i} \cdot \delta_{i}\left(\partial\left(\omega^{k}\right) \circ D\right) \Phi_{i} d_{i} H
$$

for $k \geqslant 0$.
This follows from the first statement of Lemma 6 by induction on k.
Corollary 3.

$$
\sum_{i} c_{i} \int \varepsilon_{R . i}\left(\partial\left(\omega_{i}^{j}\right) \circ \pi_{i} \circ \partial\left(\omega_{i}^{k}\right)\right) \psi_{f, i} \cdot \Phi_{i} d_{i} H=\sum_{i} \int \varepsilon_{R, i} \psi_{f, i}\left(\partial\left(\omega_{i}^{k}\right) \circ \pi_{i} \circ \partial\left(\omega_{i}^{j}\right)\right) \Phi_{i} d_{i} H
$$

for $;, k \geqslant 0$.
Apply Corollary 2 to $f_{k}=\partial(\omega)^{k} f$ with $D=1$. Then since

$$
\psi_{f_{k}, i}=\partial\left(\omega_{k}^{k}\right) \psi_{f, i}
$$

we obtain

$$
\begin{aligned}
& \sum_{i} c_{i} \int \varepsilon_{R, i}\left(\partial\left(\omega_{i}^{j}\right) \circ \pi_{i} \circ \partial\left(\omega_{i}^{k}\right)\right) \psi_{f, i} \cdot \Phi_{i} d_{i} H \\
& \quad=\sum_{i} c_{i} \int \varepsilon_{R, i} \partial\left(\omega_{i}^{k}\right) \psi_{f, i} \cdot \pi_{i} \partial\left(\omega_{i}^{j}\right) \Phi_{i} d_{i} H
\end{aligned}
$$

Now apply Corollary 1 with $D=1$ and $p=\omega^{\prime}$. This gives the required result.
We shall now complete the proof of Lemma 5 and therefore also of Theorem 1. Let Λ_{i} denote the derivation of $\mathfrak{D}\left(\mathfrak{h}_{i c}\right)$ given by $\left({ }^{1}\right)$

$$
\Lambda_{i} \xi=\frac{1}{2}\left\{\partial\left(\omega_{i}\right), \xi\right\} \quad\left(\xi \in \mathfrak{D}\left(\mathfrak{h}_{i c}\right)\right) .
$$

Then since π_{i} is homogeneous of degree m, it is clear that (see [2 (c), p. 99]) that

$$
\begin{gathered}
\Lambda_{i}^{m} \pi_{i}=m!\partial\left(\pi_{i}\right) . \\
\text { Therefore } \quad \partial\left(\pi_{i}\right)=\left(m!2^{m}\right)^{-1} \sum_{0 \leqslant k \leqslant m} C_{k}^{m}(-1)^{m-k} \partial\left(\omega_{i}^{k}\right) \circ \pi_{i} \circ \partial\left(\omega_{i}^{m-k}\right)
\end{gathered}
$$

where $C_{k}{ }^{m}$ denotes the usual binomial coefficient. Hence Lemma 5 follows immediately from Corollary 3 above.

§ 4. Third reduction

Fix $D \in \mathfrak{J}\left(\mathfrak{g}_{c}\right)$ and put.
(1) $^{(}$As usual $\left\{D_{1}, D_{2}\right\}=D_{1} \circ D_{2}-D_{2} \circ D_{1}$ for two differential operators D_{1}, D_{2}.

$$
\begin{gathered}
J(f)=\sum_{i} c_{i} \int \varepsilon_{R, i}\left\{\partial\left(\omega_{i}\right)\left(\pi_{i} \psi_{f, i}\right) \cdot \delta_{i}(D) \Phi_{i}-\pi_{i} \psi_{f, i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i}\right\} d_{i} H \\
J^{\prime}(f)=\sum_{i} c_{i} \int \varepsilon_{R, i}\left\{\partial\left(\omega_{i}\right) \psi_{f, i} \cdot \delta_{i}(D)\left(\pi_{i} \Phi_{i}\right)-\psi_{f, i} \delta_{i}(\partial(\omega) \circ D)\left(\pi_{i} \Phi_{i}\right)\right\} d_{i} H
\end{gathered}
$$

for $f \in C_{c}^{\infty}(\Omega)$. Then J and J^{\prime} are invariant distributions on Ω.
Lemma 7. No semiregular element of Ω of noncompact type lies in
$(\operatorname{Supp} J) \cup\left(\operatorname{Supp} J^{\prime}\right)$.
Assuming this result, we shall now prove Lemma 6. For $p \in I\left(\mathfrak{g}_{c}\right)$ and $f \in C_{c}^{\infty}(\Omega)$, define

$$
J_{p}(f)=\sum_{i} c_{i} \int \varepsilon_{R, i}\left\{\partial\left(\omega_{i} p_{i}\right)\left(\pi_{i} \psi_{f, i}\right) \cdot \delta_{i}(D) \Phi_{i}-\partial\left(p_{i}\right)\left(\pi_{i} \psi_{t, i}\right) \cdot \delta_{i}(\partial(\omega) \circ D) \Phi_{i}\right\} d_{i} H
$$

Then J_{p} is an invariant distribution on Ω. We shall now show that $J_{p}=J^{\prime}=0$.
Fix a point $X_{0} \in \Omega$ and, for any $\varepsilon>0$, define $U_{X_{0}}(\varepsilon)$ as in [2 (1), Lemma 14] and put $\Omega(\varepsilon)=\Omega \cap U_{X_{0}}(\varepsilon)$. Then $\Omega(\varepsilon)$ is an open and completely invariant neighborhood of X_{0} in g. Put

$$
\mathfrak{h}_{i}(\varepsilon)=\mathfrak{h}_{i} \cap \Omega_{i}(\varepsilon), \quad \mathfrak{h}_{i}(0)=\bigcap_{\varepsilon>0} \mathfrak{h}_{i}(\varepsilon) \quad(1 \leqslant i \leqslant r) .
$$

Then we have seen during the proof of [2(1), Lemma 13] that $\mathfrak{h}_{i}(0)$ is a finite set. For every $H \in \mathfrak{h}_{i}(0)$, select two open, convex neighborhoods U_{H}, V_{H} of H in \mathfrak{l}_{i} such that $\mathrm{Cl} U_{H} \subset V_{H} \subset \mathfrak{h}_{i}(1)$ and $V_{H} \cap V_{H^{\prime}}=\emptyset$ for $H \neq H^{\prime}\left(H, H^{\prime} \in \mathfrak{h}_{i}(0)\right)$. Put

$$
U_{i}=\bigcup_{H \in \mathfrak{h}_{i}(0)} U_{H}, \quad V_{i}=\bigcup_{H \in \mathfrak{H}_{i}(0)} V_{H}
$$

and select $\alpha_{H} \in C_{c}^{\infty}\left(V_{H}\right)$ such that $\alpha_{H}=1$ on $U_{H}\left(H \in \mathfrak{h}_{i}(0)\right)$. Define

$$
\alpha_{i}=\sum_{H \in \eta_{i}(0)} \alpha_{H}
$$

and put

$$
g_{i}=c_{i} \varepsilon_{R, i} \alpha_{i} \delta_{i}(D) \Phi_{i}, \quad g_{i}^{\prime}=c_{i} \varepsilon_{R, i} \alpha_{i} \delta_{i}(D)\left(\pi_{i} \Phi_{i}\right)
$$

Then it follows from [2 (j), Theorem 1], [2 (1), Theorem 2] and [2 (1), §4] that g_{i} and $g_{i}{ }^{\prime}$ are functions of class C^{∞} on the closure of each connected component of $\mathfrak{h}_{i}{ }^{\prime}(R)$.

Now choose $\varepsilon>0$ so small that $\mathfrak{h}_{i}(\varepsilon) \subset U_{i}(\mathrm{l} \leqslant i \leqslant r)$. Then if $f \in C_{c}^{\infty}(\Omega(\varepsilon))$, it is clear that Supp $\psi_{f, i} \subset U_{i}$. Since $\alpha_{i}=1$ on U_{i}, it follows that

$$
J_{p}(f)=\sum_{i} \int\left\{\partial\left(\omega_{i} p_{i}\right) \psi_{f, i} \cdot g_{i}-\partial\left(p_{i}\right) \psi_{f, i} \cdot \partial\left(\omega_{i}\right) g_{i}\right\} d_{i} H
$$

and

$$
J^{\prime}(f)=\sum_{i} \int\left\{\partial\left(\omega_{i}\right) \psi_{f, i} \cdot g_{i}^{\prime}-\psi_{f, i} \cdot \partial\left(\omega_{i}\right) g_{i}^{\prime}\right\} d_{i} H
$$

for $f \in C_{c}^{\infty}(\Omega(\varepsilon))$. Moreover $\Omega(\varepsilon)$ being completely invariant, we can choose an open neighborhood V of X_{0} in g such that $\mathrm{Cl}\left(V^{G}\right) \subset \Omega(\varepsilon)$. Now $J=J_{1}$ and therefore it follows from Lemma 7 and [2(k), Theorem 5] that $J_{p}=0$ on V^{G} for $p \in I\left(\mathfrak{g}_{c}\right)$. Hence $X_{0} \notin \operatorname{Supp} J_{p}$. But X_{0} was an arbitrary point of Ω. Therefore we conclude that $J_{p}=0$. This proves the first statement of Lemma 6.

Similarly by applying [$2(\mathrm{k})$, Theorem 4] we conclude that $J^{\prime}=0$. This gives the second statement of Lemma 6 in the special case $p=1$. Now fix $p \in I\left(g_{c}\right)$ and consider the distribution $T_{0}=\partial(p) T$. Then T_{0} also satisfies the conditions of [2 (1), Theorem 1] and therefore $T_{0}=F_{0}$ where $F_{0}=\partial(p) F$. Put $\Phi_{0}=\nabla_{g} F_{0}$ and let $\Phi_{0 i}$ denote the restriction of Φ_{0} on $\mathfrak{h}_{i} \cap \Omega^{\prime}(\mathbf{l} \leqslant i \leqslant r)$.

Lemma 8.

$$
\Phi_{0 i}=\partial\left(p_{i}\right) \Phi_{i} \quad(1 \leqslant i \leqslant r) .
$$

Let F_{i} and $F_{0 i}$ respectively denote the restrictions of F and F_{0} on $\mathfrak{h}_{i} \cap \Omega^{\prime}$. Since F is an invariant function, we know [2(c), Theorem l] that

$$
F_{0 i}=\pi_{i}^{-1} \partial(p)\left(\pi_{i} F_{i}\right)
$$

Therefore

$$
\Phi_{0_{i}}=\partial\left(\pi_{i}\right)\left(\pi_{i} F_{0 i}\right)=\partial\left(p_{i} \pi_{i}\right)\left(\pi_{i} F_{i}\right)=\partial\left(p_{i}\right) \Phi_{i} .
$$

Now if we apply the result $J^{\prime}=0$ to the distribution $T_{0}($ instead of $T)$, we obtain

$$
\sum_{i} c_{i} \int \varepsilon_{R, i}\left\{\partial\left(\omega_{i}\right) \psi_{f, i} \cdot \delta_{i}(D)\left(\pi_{i} \Phi_{0 i}\right)-\psi_{f, i} \delta_{i}(\partial(\omega) \circ D)\left(\pi_{i} \Phi_{0 t}\right)\right\} d_{i} H=0
$$

for $f \in C_{c}{ }^{\infty}(\Omega)$. In view of Lemma 8, this is equivalent to the second assertion of Lemma 6.

§ 5. New expressions for \boldsymbol{J} and \boldsymbol{J}^{\prime}

Define η as in $\S 2$. Then $\eta \in I\left(\mathfrak{g}_{c}\right)$ and $\eta_{i}=(-1)^{m} \pi_{i}{ }^{2}(1 \leqslant i \leqslant r)$. Moreover $|\eta|^{\frac{1}{2}}$ and $|\eta|^{-\frac{1}{2}}$ are analytic functions on \mathfrak{g}^{\prime}.

Lemma 9. Define J and J^{\prime} as in $\S 4$. Then

$$
J(f)=\text { p. } \cdot \int\left\{\partial(\omega)\left(|\eta|^{\frac{1}{2}} f\right) \cdot D\left(|\eta|^{-\frac{1}{2}} \Phi\right)-|\eta|^{\frac{1}{\xi}} f\left(\partial(\omega) \circ D \circ|\eta|^{-\frac{1}{3}}\right) \Phi\right\} d X
$$

and

$$
J^{\prime}(f)=\int\{\partial(\omega) f \cdot D \Phi-f \partial(\omega)(D \Phi)\} d X
$$

for $f \in C_{c}^{\infty}(\Omega)$.
Since η takes only real values on \mathfrak{g}, it is obvious that $\left|\eta_{i}\right|^{\frac{1}{2}}=\varepsilon_{i} \pi_{i}$ on $\mathfrak{h}_{i}^{\prime}$ where ε_{i} is a locally constant function on $\mathfrak{h}_{i}^{\prime}$ such that $\varepsilon_{i}^{4}=1$. Since Φ and $|\eta|^{-\frac{1}{2}}$ are invariant functions, it follows from [2 (j), Lemma 14] that

$$
D^{\prime}\left(|\eta|^{-\frac{1}{2}} \Phi\right)=\varepsilon_{i}^{-1} \pi_{i}^{-1} \delta_{i}\left(D^{\prime}\right) \Phi_{i}
$$

on $\mathfrak{h}_{i} \cap \Omega^{\prime}$ for any $D^{\prime} \in \mathfrak{F}\left(\mathfrak{g}_{c}\right)$.
For any $f \in C_{c}{ }^{\infty}(\Omega)$, let g_{f} denote the function on g^{\prime} given by

$$
g_{f}=\partial(\omega)\left(|\eta|^{\frac{1}{2}} f\right) \cdot D\left(|\eta|^{-\frac{1}{2}} \Phi\right)-|\eta|^{\frac{1}{2}} f\left(\partial(\omega) \circ D \circ|\eta|^{-\frac{1}{2}}\right) \Phi .
$$

Fix a function $v \in C^{\infty}(\mathbf{R})$ such that $v(t)=0$ if $|t| \leqslant \frac{1}{2}$ and $v(t)=1$ if $|t| \geqslant 1(t \in \mathbf{R})$. For any $\varepsilon>0$, put $v_{\varepsilon}(t)=v\left(\varepsilon^{-2} t\right)$ and

$$
V_{\varepsilon}(X)=v_{\varepsilon}(\eta(X)) \quad(X \in \mathfrak{g})
$$

Then V_{ε} is an invariant C^{∞} function on g and $V_{\varepsilon}=1$ on $g(\varepsilon)$ (in the notation of \S 2). Put $f_{\varepsilon}^{\prime}=V_{\varepsilon} f$ and $f_{\varepsilon}=|\eta|^{\frac{1}{2}} f_{\varepsilon}{ }^{\prime}$. It is clear that f_{ε} and f_{ε}^{\prime} are in $C_{c}{ }^{\infty}(\Omega)$ and $f=f_{\varepsilon}^{\prime}$ on $\mathrm{g}(\varepsilon)$. Hence

$$
\begin{aligned}
\int_{\mathfrak{g}(\varepsilon)} g_{f} d X & =\int_{\mathfrak{g}(\varepsilon)} g_{f_{\varepsilon^{\prime}}} d X \\
& =\sum_{i} c_{i} \int_{\mathfrak{b}_{i}(\varepsilon)} \varepsilon_{i, R} \varepsilon_{i}^{-1}\left\{\partial\left(\omega_{i}\right) \psi_{f_{\varepsilon}, i} \cdot \delta_{i}(D) \Phi_{i}-\psi_{f_{\varepsilon}, i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i}\right\} d_{i} H
\end{aligned}
$$

where $\mathfrak{h}_{i}(\varepsilon)=\mathfrak{h}_{i} \cap \mathfrak{g}(\varepsilon)$. However it is obvious that
on $\mathfrak{h}_{i}(\varepsilon)$. Therefore

$$
\int_{\mathfrak{g}(\varepsilon)} g_{f} d X=\sum_{i} c_{i} \int_{\mathfrak{h}_{i}(\varepsilon)} \varepsilon_{i, R}\left\{\partial\left(\omega_{i}\right)\left(\pi_{i} \psi_{f, i}\right) \cdot \delta_{i}(D) \Phi_{i}-\pi_{i} \psi_{f, i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i}\right\} d_{i} H
$$

Making $\varepsilon \rightarrow 0$ we get

$$
\text { p.v. } \int g_{f} d X=J(f)
$$

and this proves the first statement of the lemma.

We know from the corollary of Lemma 1 that the integral

$$
\int\{\partial(\omega) f \cdot D \Phi-f \partial(\omega)(D \Phi)\} d X
$$

is well defined. Moreover since Φ is an invariant function,

$$
D^{\prime} \Phi=\pi_{i}^{-1} \delta_{i}\left(D^{\prime}\right)\left(\pi_{i} \Phi_{i}\right) \quad\left(D^{\prime} \in \mathfrak{F}\left(\mathfrak{g}_{c}\right)\right)
$$

on $\mathfrak{h}_{i} \cap \Omega^{\prime}$ and therefore the above integral is equal to $J^{\prime}(f)$. This proves the second statement of the lemma.

Lemma 10. For any $\varepsilon>0$, define the function V_{ε} as above and put

$$
J_{\varepsilon}(f)=\int V_{\varepsilon}\left\{\partial(\omega)\left(|\eta|^{\frac{1}{t}} f\right) \cdot D\left(|\eta|^{-\frac{1}{2}} \Phi\right)-|\eta|^{\frac{1}{t}} f\left(\partial(\omega) \circ D \circ|\eta|^{-\frac{1}{2}}\right) \Phi\right\} d X
$$

and

$$
J_{\varepsilon}^{\prime}(f)=\int V_{\varepsilon}\{\partial(\omega) f \cdot D \Phi-f \partial(\omega)(D \Phi)\} d X
$$

for $f \in C_{c}^{\infty}(\Omega)$. Then

$$
J(f)=\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}(f), \quad J^{\prime}(f)=\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}^{\prime}(f)
$$

Put $f_{\varepsilon}=|\eta|^{\frac{1}{\varepsilon}} V_{\varepsilon / 2} f$. Then $f_{\varepsilon} \in C_{c}^{\infty}(\Omega)$ and $J_{\varepsilon}(f)=J_{\varepsilon}\left(V_{\varepsilon / 2} f\right)$. Hence it follows that

$$
J_{\varepsilon}(f)=\sum_{i} c_{i} \int V_{\varepsilon, i} \varepsilon_{i, R} \varepsilon_{i}^{-1}\left\{\partial\left(\omega_{i}\right) \psi_{f_{\varepsilon}, i} \cdot \delta_{i}(D) \Phi_{i}-\psi_{f_{\varepsilon}, i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i}\right\} d_{i} H
$$

where $V_{\varepsilon, i}$ is the restriction of V_{ε} on \mathfrak{G}_{i}. On the other hand, it is clear that

$$
\psi_{f_{e}, i}(H)=\varepsilon_{i} \pi_{i}(H) \psi_{f, i}(H)
$$

if $\left|\pi_{i}(H)\right| \geqslant \varepsilon / 2\left(H \in \mathfrak{h}_{i}\right)$. Hence

$$
J_{\varepsilon}(f)=\sum_{i} c_{i} \int V_{\varepsilon, i} \varepsilon_{i, R}\left\{\partial\left(\omega_{i}\right)\left(\pi_{i} \psi_{f, i}\right) \cdot \delta_{i}(D) \Phi_{i}-\pi_{i} \psi_{f, i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i}\right\} d_{i} H
$$

The two assertions of the lemma are now obvious.
Lemma 11. Put ${ }^{(1)}$

$$
\begin{aligned}
& \Psi_{\varepsilon}=\left(|\eta|^{\frac{1}{2}}\left\{\partial(\omega), V_{e}\right\} \circ D \circ|\eta|^{-\frac{1}{2}}\right) \Phi \\
& \Psi_{\varepsilon}^{\prime}=\left(\left\{\partial(\omega), V_{\varepsilon}\right\} \circ D\right) \Phi
\end{aligned}
$$

for $\varepsilon>0$. Then
(1) See footnote 1, p. 250.
for $f \in C_{c}^{\infty}(\Omega)$.

$$
J_{\varepsilon}(f)=\int f \Psi_{\varepsilon} d X, \quad J_{\varepsilon}^{\prime}(f)=\int f \Psi_{\varepsilon}^{\prime} d X
$$

Since $\operatorname{Supp} V_{\varepsilon} \subset g^{\prime}$, this follows from Lemma 10 if we observe that

$$
\left(V_{\varepsilon} \partial(\omega) \circ|\eta|^{\frac{1}{*}}\right)^{*}=|\eta|^{\frac{1}{2}} \partial(\omega) \circ V_{\varepsilon}, \quad\left(V_{\varepsilon} \partial(\omega)\right)^{*}=\partial(\omega) \circ V_{\varepsilon} .
$$

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and let us use the notation introduced at the beginning of $\S 2$. In particular $V_{\varepsilon, \mathfrak{h}}$ and $\omega_{\mathfrak{h}}$ denote the restrictions of V_{ε} and ω on \mathfrak{h}.

Lemma 12. For any $\varepsilon>0$, we have
and

$$
\left(\Psi_{\varepsilon}\right)_{\mathfrak{h}}=\left(\left\{\partial\left(\omega_{\mathfrak{h}}\right), V_{\varepsilon, \mathfrak{G}}\right\} \circ \delta_{\mathfrak{g} / \mathfrak{G}}(D)\right) \Phi_{\mathfrak{h}}
$$

$$
\left(\Psi_{\varepsilon}^{\prime}\right)_{\mathfrak{h}}=\left(\pi^{-1}\left\{\partial\left(\omega_{\mathfrak{h}}\right), V_{\varepsilon, \mathfrak{h}}\right\} \circ \delta_{\mathfrak{g} / \mathfrak{h}}(D) \circ \pi\right) \Phi_{\mathfrak{h}}
$$

$|\eta|^{\frac{1}{2}}, \Phi$ and V_{ε} are invariant C^{∞} functions on Ω^{\prime}. Moreover there exists a locally constant function a on \mathfrak{h}^{\prime} such that $a^{4}=1$ and $|\eta|^{\mathfrak{1}}=a \pi$ on \mathfrak{h}^{\prime}. The required relations now follow easily by a repeated use of [2 (j), Lemma 14] and [2 (c), Theorem 1].

§ 6. Proof of Lemma 7

We now come to the proof of Lemma 7. Fix a semiregular element $H_{0} \in \Omega$ of noncompact type and let z denote the centralizer of H_{0} in \mathfrak{g}. Define ζ and \mathfrak{z}^{\prime} as in [2(j), §2] and put $\Omega_{z}=\Omega \cap z^{\prime}$. Then Ω_{z} is an open and completely invariant neighborhood of H_{0} in z. Fix a Euclidean measure $d Z$ on z and define

$$
j=\sigma_{J}, j^{\prime}=\sigma_{J^{\prime}}, j_{\varepsilon}=\sigma_{J_{\varepsilon}} \text { and } j_{\varepsilon}^{\prime}=\sigma_{J_{\varepsilon}^{\prime}} \quad(\varepsilon>0)
$$

in the notation of [2(j), Lemma 17] corresponding to $G_{0}=G$ and $z_{0}=\Omega_{z}$. Since $J_{\varepsilon}=\Psi_{\varepsilon}$ and $J_{\varepsilon}^{\prime}=\Psi_{\varepsilon}^{\prime}$ (Lemma 11), it is obvious that

$$
j_{\varepsilon}(\gamma)=\int \gamma(Z) \Psi_{\varepsilon}^{\prime}(Z) d Z, \quad j_{\varepsilon}^{\prime}(\gamma)=\int \gamma(Z) \Psi_{\varepsilon}^{\prime}(Z) d Z
$$

for $\gamma \in C_{c}{ }^{\infty}\left(\Omega_{z}\right)$. Moreover
from Lemma 10.

$$
j(\gamma)=\lim _{\varepsilon \rightarrow 0} j_{\varepsilon}(\gamma), \quad j^{\prime}(\gamma)=\lim _{\varepsilon \rightarrow 0} j_{\varepsilon}^{\prime}(\gamma) \quad\left(\gamma \in C_{c}^{\infty}\left(\Omega_{\mathfrak{z}}\right)\right)
$$

Now we use the notation of [2(k), §7]. In particular σ is the center of z and $\mathfrak{a}=\mathbf{R} H^{\prime}+\sigma, \mathfrak{b}=\mathbf{R}\left(X^{\prime}-Y^{\prime}\right)+\sigma$ are two Cartan subalgebras of \mathfrak{z}. Fix Euclidean measures $d \sigma, d \mathfrak{a}, d \mathfrak{b}$ on $\sigma, \mathfrak{a}, \mathfrak{b}$ respectively such that

$$
d \mathfrak{a}=d t d \sigma, \quad d \mathfrak{b}=d \phi d \sigma
$$

where $t=\alpha / 2$ and $\phi=(-1)^{\frac{1}{2}} \beta / 2$ in the notation of [2(k), Lemma 13]. Then $d \sigma$ can be so normalized that (see [2 (e), Lemma 3])

$$
\int \gamma d Z=\frac{1}{2} \int_{\mathfrak{a}^{+}} \alpha J_{\gamma}{ }^{\mathfrak{a}} d \mathfrak{a}+(-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} \beta J_{\gamma}^{\mathfrak{b}} d \mathfrak{b}
$$

for $\gamma \in C_{c}{ }^{\infty}(z)$. Here

$$
\begin{array}{ll}
J_{\gamma}{ }^{\mathfrak{a}}(H)=J_{\mathfrak{a}}(\gamma: H) & (H \in \mathfrak{a}), \\
J_{\gamma}{ }^{\mathfrak{b}}(H)=J_{\mathfrak{b}}(\gamma: H) & \left(H \in \mathfrak{b}^{\prime \prime}\right)
\end{array}
$$

in the notation of [2(k), Lemma 14], \mathfrak{a}^{+}is the set of all points H in \mathfrak{a} where $\alpha(H)>0$ and $\mathfrak{b}^{\prime \prime}$ is the set of those $H \in \mathfrak{b}$ where $\beta(H) \neq 0$. Therefore since Ψ_{e} is an invariant C^{∞} function on Ω, it is clear that

$$
j_{\varepsilon}(\gamma)=\frac{1}{2} \int_{\mathfrak{a}^{+}} \alpha J_{\gamma}{ }^{a}\left(\Psi_{\varepsilon}\right)_{\mathfrak{a}} d \mathfrak{a}+(-1)^{\frac{1}{t}} \frac{1}{2} \int_{\mathfrak{b}} \beta J_{\gamma}{ }^{\mathfrak{b}}\left(\Psi_{\varepsilon}\right)_{\mathfrak{b}} d \mathfrak{b}
$$

for $\gamma \in C_{c}^{\infty}\left(\Omega_{\mathfrak{z}}\right)$. Now apply Lemma 12 and observe that $\operatorname{Supp} V_{\varepsilon, \mathfrak{G}} \subset \mathfrak{h} \cap \mathfrak{g}^{\prime}$ and

$$
\left(\partial\left(\omega_{\mathfrak{F}}\right) \circ V_{\varepsilon, \mathfrak{F}}\right)^{*}=V_{\varepsilon, \mathfrak{h}} \partial\left(\omega_{\mathfrak{k}}\right) \quad(\mathfrak{h}=\mathfrak{a} \text { or } \mathfrak{b}) .
$$

Then it follows that

$$
\begin{aligned}
j_{\varepsilon}(\gamma)= & \frac{1}{2} \int_{\mathfrak{a}^{+}} V_{\varepsilon, \mathfrak{a}}\left\{\partial\left(\omega_{\mathfrak{a}}\right)\left(\alpha J_{\gamma}{ }^{\mathfrak{a}}\right) \cdot \Phi_{0, \mathfrak{a}}-\alpha J_{\gamma}{ }^{\mathfrak{a}} \cdot \partial\left(\omega_{\mathfrak{a}}\right) \Phi_{0, \mathfrak{a}}\right\} d \mathfrak{a} \\
& +(-1)^{\frac{1}{1}} \frac{1}{2} \int_{\mathfrak{b}} V_{\varepsilon, \mathfrak{b}}\left\{\partial\left(\omega_{\mathfrak{b}}\right)\left(\beta J_{\gamma}^{\mathfrak{b}}\right) \cdot \Phi_{0, \mathfrak{b}}-\beta J_{\gamma}{ }^{\mathfrak{b}} \cdot \partial\left(\omega_{\mathfrak{b}}\right) \Phi_{0, \mathfrak{b}}\right\} d \mathfrak{b}
\end{aligned}
$$

where $\Phi_{0, \mathfrak{h}}=\delta_{\mathfrak{g} / \mathfrak{h}}(D) \Phi_{\mathfrak{h}}(\mathfrak{h}=\mathfrak{a}$ or $\mathfrak{b})$. Hence it is obvious that

$$
\begin{aligned}
j(\gamma)= & \frac{1}{2} \int_{\mathfrak{a}^{+}}\left\{\partial\left(\omega_{\mathfrak{a}}\right)\left(\alpha J_{\gamma}{ }^{\mathfrak{a}}\right) \cdot \Phi_{0, \mathfrak{a}}-\alpha J_{\gamma}{ }^{\mathrm{a}} \partial\left(\omega_{\mathfrak{a}}\right) \Phi_{0, \mathfrak{a}}\right\} d \mathfrak{a} \\
& +(-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}}\left\{\partial\left(\omega_{\mathfrak{b}}\right)\left(\beta J_{\gamma}^{\mathfrak{b}}\right) \cdot \Phi_{0, \mathfrak{b}}-\beta J_{\gamma}^{\mathfrak{b}} \partial\left(\omega_{\mathfrak{b}}\right) \Phi_{0, \mathfrak{b}}\right\} d \mathfrak{b}
\end{aligned}
$$

for $\gamma \in C_{c}^{\infty}\left(\Omega_{\mathfrak{z}}\right)$. Now $\omega_{a}=\omega_{\sigma}+|\alpha|^{-2} \alpha^{2}$ where ω_{σ} is the restriction of ω on σ. Similarly $\omega_{\mathfrak{b}}=\omega_{\sigma}+|\beta|^{-2} \beta^{2}$. Hence (see [2(k), Lemma 21]) it follows that

$$
\begin{aligned}
& j(\gamma)=\frac{1}{2|\alpha|^{2}} \int_{\mathfrak{a}^{+}} \partial(\alpha)\left\{\partial(\alpha)\left(\alpha J_{\gamma}{ }^{a}\right) \cdot \Phi_{0, \mathfrak{a}}-\alpha J_{\gamma}{ }^{a} \partial(\alpha) \Phi_{0, \mathfrak{a}}\right\} d \mathfrak{a} \\
& \quad+\frac{(-1)^{\frac{1}{2}}}{2|\beta|^{2}} \int_{\mathfrak{b}} \partial(\beta)\left\{\partial(\beta)\left(\beta J_{\gamma}^{\mathfrak{b}}\right) \cdot \Phi_{0, \mathfrak{b}}-\beta J_{\gamma}{ }^{\mathfrak{b}} \partial(\beta) \Phi_{0, b}\right\} d \mathfrak{b} .
\end{aligned}
$$

Now $d \mathfrak{a}=d \sigma d t, d \mathfrak{b}=d \sigma d \phi$ and

$$
\partial(\alpha)=\frac{1}{2}|\alpha|^{2} \partial / \partial t, \quad \partial(\beta)=\frac{1}{2}(-1)^{\frac{1}{2}}|\beta|^{2} \partial / \partial \phi
$$

since

$$
H^{\prime}=2|\alpha|^{-2} H_{\alpha}, \quad X^{\prime}-Y^{\prime}=-2(-1)^{\frac{1}{2}}|\beta|^{-2} H_{\beta}
$$

in the notation of [2(k), §7]. Therefore

$$
\begin{aligned}
j(\gamma)= & -\frac{1}{4} \int_{\sigma}\left\{\partial(\alpha)\left(\alpha J_{\gamma}{ }^{\mathfrak{a}}\right) \cdot \Phi_{0, \mathrm{a}}-\alpha J_{\gamma}{ }^{\mathrm{a}} \cdot \partial(\alpha) \Phi_{0, \mathrm{a}}\right\}^{+} d \sigma \\
& +\frac{1}{4} \int_{\sigma}\left\{\partial(\beta)\left(\beta J_{\gamma}{ }^{\mathfrak{b}}\right) \cdot \Phi_{0, \mathfrak{b}}-\beta J_{\gamma}{ }^{\mathfrak{b}} \partial(\beta) \Phi_{0, \mathfrak{b}}\right\}_{-}{ }^{+} d \sigma
\end{aligned}
$$

Here

$$
u_{\mathfrak{a}}^{+}(H)=\lim _{t \rightarrow+0} u_{\mathfrak{a}}\left(H+t H^{\prime}\right), \quad u_{\mathfrak{b}}^{ \pm}(H)=\lim _{\phi \rightarrow+0} u_{\mathfrak{b}}\left(H \pm \phi\left(X^{\prime}-Y^{\prime}\right)\right) \quad(H \in \sigma ; t, \phi \in \mathbf{R})
$$

for two functions $u_{\mathfrak{a}}$ and $u_{\mathfrak{b}}$ on \mathfrak{a} and \mathfrak{b} respectively and $\left(u_{\mathfrak{b}}\right)_{-}^{+}=u_{\mathfrak{b}}{ }^{+}-u_{\mathfrak{b}}{ }^{-}$. Since $\alpha=\beta=0$ on σ and $|\alpha|^{2}=|\beta|^{2}[2(\mathrm{k})$, Lemma 13], it follows that

$$
j(\gamma)=\frac{1}{4}|\alpha|^{2} \int_{\sigma}\left\{\left(J_{\gamma}^{\mathfrak{b}} \Phi_{0, \mathfrak{b}}\right)_{-}^{+}-\left(J_{\gamma}{ }^{\mathrm{a}} \Phi_{0, \mathrm{a}}\right)^{+}\right\} d \sigma
$$

However $\Phi_{0, \mathfrak{a}}$ and $\Phi_{0, \mathfrak{b}}$ are continuous functions on $\mathfrak{a} \cap \Omega_{\mathfrak{z}}$ and $\mathfrak{b} \cap \Omega_{\mathfrak{z}}$ respectively and $\Phi_{0, \mathrm{a}}=\Phi_{0, \mathfrak{b}}$ on $\sigma \cap \Omega_{z}$ [2(1), Lemma 18]. Therefore

$$
j(\gamma)=\frac{1}{4}|\alpha|^{2} \int_{\sigma}\left\{\left(J_{\gamma}{ }^{\mathfrak{b}}\right)_{-}^{+}-J_{\gamma}^{\mathrm{a}}\right\} \Phi_{0, \mathrm{a}} d \sigma \quad\left(\gamma \in C_{c}^{\infty}\left(\Omega_{\mathrm{z}}\right)\right)
$$

But $\left(J_{\gamma}{ }^{6}\right)_{-}{ }^{+}=J_{\gamma}{ }^{a}$ on $\sigma[2(\mathrm{k}), \S 19]$. Hence $j=0$ on Ω_{z}.
Now put ${ }^{1}$) $\pi_{\alpha}=\alpha^{-1} \pi^{\mathrm{a}}, \pi_{\beta}=\beta^{-1} \pi^{6}$ and

$$
\Phi_{\mathfrak{h}}{ }^{\prime}=\delta_{\mathfrak{g} / \mathfrak{h}}(D)\left(\pi^{\mathfrak{h}} \Phi_{\mathfrak{h}}\right)
$$

for $\mathfrak{h}=\mathfrak{a}$ or \mathfrak{b}. Then if $\gamma \in C_{c}^{\infty}\left(\Omega_{\mathfrak{z}}\right)$, we have

$$
\begin{aligned}
j_{\varepsilon}^{\prime}(\gamma)= & \frac{1}{2} \int_{\mathfrak{a}^{+}} \alpha J_{\gamma}{ }^{\mathfrak{a}}\left(\Psi_{\varepsilon}^{\prime}\right)_{\mathfrak{a}} d \mathfrak{a}+(-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} \beta J_{\gamma}{ }^{\mathfrak{b}}\left(\Psi_{\varepsilon}^{\prime}\right)_{\mathfrak{b}} d \mathfrak{b} \\
= & \frac{1}{2} \int_{\mathfrak{a}^{+}} V_{\varepsilon, \mathfrak{a}}\left\{\partial\left(\omega_{\mathfrak{a}}\right)\left(\pi_{\alpha}^{-1} J_{\gamma}{ }^{\mathfrak{a}}\right) \cdot \Phi_{\mathfrak{a}}{ }^{\prime}-\pi_{\mathfrak{a}}{ }^{-1} J_{\gamma}{ }^{\mathfrak{a}} \partial\left(\omega_{\mathfrak{a}}\right) \Phi_{\mathfrak{a}^{\prime}}\right\} d \mathfrak{a} \\
& +\frac{1}{2}(-1)^{\frac{1}{2}} \int_{\mathfrak{b}} V_{\varepsilon, \mathfrak{b}}\left\{\partial\left(\omega_{\mathfrak{b}}\right)\left(\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}}\right) \cdot \Phi_{\mathfrak{b}}{ }^{\prime}-\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}} \partial\left(\omega_{\mathfrak{b}}\right) \Phi_{\mathfrak{b}}{ }^{\prime}\right\} d \mathfrak{b}
\end{aligned}
$$

(1) We assume, as we may, that $\left(\pi^{\mathfrak{a}}\right)^{y}=\pi^{\mathfrak{b}}$ in the notation of [2 (k).§7].
from Lemma 12. Hence

$$
\begin{aligned}
& j^{\prime}(\gamma)=\frac{1}{2|\alpha|^{2}} \int_{\mathfrak{a}^{+}} \partial(\alpha)\left\{\partial(\alpha)\left(\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{a}\right) \cdot \Phi_{\mathfrak{a}}{ }^{\prime}-\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{a} \partial(\alpha) \Phi_{\mathfrak{a}}{ }^{\prime}\right\} d \mathfrak{a} \\
&+\frac{(-1)^{\frac{1}{2}}}{2|\beta|^{2}} \int_{\mathfrak{b}} \partial(\beta)\left\{\partial(\beta)\left(\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}}\right) \cdot \Phi_{\mathfrak{b}}{ }^{\prime}-\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}} \partial(\beta) \Phi_{\mathfrak{b}}{ }^{\prime}\right\} d \mathfrak{b} \\
&=-\frac{1}{4} \int_{\sigma}\left\{\partial(\alpha)\left(\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{\mathfrak{a}}\right) \cdot \Phi_{\mathfrak{a}}{ }^{\prime}-\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{a} \partial(\alpha) \Phi_{\mathfrak{a}}{ }^{\prime}\right\}^{+} d \sigma \\
&+\frac{1}{4} \int_{\sigma}\left\{\partial(\beta)\left(\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}}\right) \cdot \Phi_{\mathfrak{b}}{ }^{\prime}-\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}} \partial(\beta) \Phi_{\mathfrak{b}}{ }^{\prime}\right\}-{ }^{+} d \sigma
\end{aligned}
$$

Now $\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{a}$ is a C^{∞} function on \mathfrak{a} which is invariant under the Weyl reflexion s_{α}. Hence $\partial(\alpha)\left(\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{\text {a }}\right)=0$ on σ. Moreover, $\partial(\beta)\left(\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}}\right)$ is a continuous function on \mathfrak{b} by [2 (k), Theorem 1] and $\partial(\alpha) \Phi_{\mathfrak{a}}{ }^{\prime}, \partial(\beta) \Phi_{\mathfrak{b}}{ }^{\prime}$ are continuous functions on $\mathfrak{a} \cap \Omega_{\mathfrak{z}}, \mathfrak{b} \cap \Omega_{\mathfrak{z}}$ respectively and they are equal on $\sigma \cap \Omega_{3}$ [2(1), Lemma 18]. Finally Φ_{b}^{\prime} is an analytic function on $\mathfrak{b} \cap \Omega_{z}$ [2 (1), Theorem 2]. Hence

$$
\begin{aligned}
j^{\prime}(\gamma) & \left.=\frac{1}{4} \int_{\sigma} \pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{a} \partial(\alpha) \Phi_{a}{ }^{\prime} d \sigma-\frac{1}{4} \int_{\sigma}\left(\pi_{\beta}{ }^{-1} J_{\gamma}\right)_{-}\right)^{+} \partial(\beta) \Phi_{\mathfrak{b}}{ }^{\prime} d \sigma \\
& =\frac{1}{4} \int_{\sigma}\left\{\pi_{\alpha}{ }^{-1} J_{\gamma}{ }^{a}-\left(\pi_{\beta}{ }^{-1} J_{\gamma}{ }^{\mathfrak{b}}\right)_{-}^{+}\right\} \partial(\beta) \Phi_{\mathfrak{b}}{ }^{\prime} d \sigma
\end{aligned}
$$

$\left.\operatorname{But}{ }^{1}\right) \pi_{\alpha}=\pi_{\beta}$ and $J_{\gamma}{ }^{a}=\left(J_{\gamma}{ }^{{ }^{5}}\right)_{-}{ }^{+}$on σ. Therefore $j^{\prime}=0$ on Ω_{3}. In view of [2 (j), Lemma 17] this completes the proof of Lemma 7.

§ 7. A consequence of Theorem 1

We now return to the notation of $\S 2$ so that \mathfrak{g} is again reductive. For any $p \in I\left(\mathfrak{g}_{c}\right)$, let p_{i} denote the projection of p in $I\left(\mathfrak{h}_{i c}\right)$ (see $[2(\mathrm{j}), \S 8]$).

Lemma 13. Fix $p \in I\left(\mathfrak{g}_{c}\right)$. Then

$$
\sum_{1 \leqslant l \leqslant r} c_{i} \int \varepsilon_{R, i}\left\{\partial\left(\varpi_{i} p_{i}\right) \psi_{f, i} \cdot \Phi_{i}-\psi_{f, i} \partial\left(\varpi_{i} p_{i}\right)^{*} \Phi_{i}\right\} d_{i} H=0
$$

for $f \in C_{c}^{\infty}(\Omega)$.
We note that $\partial\left(\varpi_{i}\right)^{*}=(-1)^{m} \partial\left(\sigma_{i}\right)$. Therefore applying Lemma 5 to $\partial(p) f$, instead of f, we get
(1) See footnote 1, p. 257.

$$
\sum_{i} c_{i} \int \varepsilon_{i, R} \partial\left(\varpi_{i} p_{i}\right) \psi_{f, i} \cdot \Phi_{i} d_{i} H=\sum_{i} c_{i} \int \varepsilon_{i, R} \partial\left(p_{i}\right) \psi_{f, i} \partial\left(\varpi_{i}\right)^{*} \Phi_{i} d_{i} H=(-1)^{m} \int \partial(p) f \cdot \square F d X
$$

But it follows from the corollary of [2(1), Lemma 16] that

$$
\int \partial(p) f \cdot \square F d X=\int f \cdot \square\left(\partial(p)^{*} F\right) d X
$$

Hence we conclude from Lemma 8 and [2(j), Lemma 13] that

$$
(-1)^{m} \int f \square\left(\partial(p)^{*} F\right) d X=\sum_{i} c_{i} \int \varepsilon_{i, R} \psi_{f, i} \partial\left(p_{i} \omega_{i}\right)^{*} \Phi_{i} d_{i} H
$$

The statement of Lemma 13 is now obvious.

§ 8. Some elementary facts about tempered distributions

Let E be a vector space over \mathbf{R} of finite dimension. Define $S\left(E_{c}\right), P\left(E_{c}\right)$ and $\mathfrak{D}\left(E_{c}\right)$ as usual (see [2 (j), §3]). Let U be an open subset of E and T a distribution on U. We say that T is tempered if we can choose $D_{i} \in \mathscr{D}\left(E_{c}\right)(1 \leqslant i \leqslant r)$ such that

$$
|T(f)| \leqslant \sum_{i} \sup \left|D_{i} f\right| \quad\left(f \in C_{c}^{\infty}(U)\right)
$$

It is clear that if T is tempered, the same holds for $D T$ for any $D \in \mathscr{D}\left(E_{c}\right)$.
Fix a Euclidean measure $d X$ on E and let g be a locally summable function on U. Then g will be said to be tempered (on U) if the distribution

$$
f \rightarrow \int t g d X \quad\left(f \in C_{c}^{\infty}(U)\right)
$$

on U is tempered.
Introduce a Euclidean norm \|\| on E.

Lemma 14. Let g be a measurable function on U such that

$$
\sup _{X \in U}|g(X)|(1+\|X\|)^{-m}<\infty
$$

for some $m \geqslant 0$. Then g is tempered.
We can choose $r \geqslant 0$ such that

$$
c_{1}=\int_{E}(1+\|X\|)^{-r} d X<\infty
$$

Put $c_{2}=\sup _{X \in U}|g(X)|(1+\|X\|)^{-m}$. Then

$$
\left.\left|\int g f d X\right| \leqslant c_{1} c_{2} v_{m+r}(f) \quad\left(f \in C_{c}^{\infty} U\right)\right)
$$

where

$$
\boldsymbol{v}_{m+r}(f)=\sup _{X \in U}|f(X)|(1+\|X\|)^{m+r}
$$

Since $X \rightarrow\|X\|^{2}$ is a quadratic form on E, it is now clear that g is tempered.
A subset V of E is called full if $t X \in V$ whenever $X \in V$ and $t \geqslant 1$.
Lemma 15. Let V be a non-empty, open and full subset of E. Put

$$
g(X)=\sum_{1 \leqslant i \leqslant r} p_{i}(X) e^{\lambda_{i}(X)} \quad(X \in E)
$$

where $\lambda_{1}, \ldots, \lambda_{r}$ are distinct linear functions on E_{c} and $p_{i} \in P\left(E_{c}\right)\left(p_{i} \neq 0\right)$. Then g is tempered on V if and only if(1)
for all $X \in V$ and $1 \leqslant i \leqslant r$.
We recall that $S\left(E_{c}\right)$ is the algebra of polynomial functions on the dual space $E_{c}{ }^{\prime}$ of E_{c}. Fix $p \in S\left(E_{c}\right)$ and $\lambda \in E_{c}{ }^{\prime}$. Then

$$
\partial(p) O e^{\lambda}=e^{\lambda} \partial\left(p_{\lambda}\right)
$$

where p_{λ} is the polynomial function $\mu \rightarrow p(\lambda+\mu)\left(\mu \in E_{c}{ }^{\prime}\right)$. Therefore if $q \in P\left(E_{c}\right)$ and $\partial(p)\left(e^{\lambda} q\right)=0$, we conclude that $\partial\left(p_{\lambda}\right) q=0$. Now assume that $q \neq 0$ and let q_{0} be the homogeneous component of q of the highest degree. Then it is clear that $p_{\lambda}(0) q_{0}=0$ and therefore $p(\lambda)=0$. We shall need this fact presently.

Let us now turn to the proof of Lemma 15. If $\mathfrak{\Re} \lambda_{i}(X) \leqslant 0$ for $X \in V$ and $1 \leqslant i \leqslant r$, it follows from Lemma 14 that g is tempered on V. To prove the converse we use induction on r.

So let us assume that g is tempered on V. It would be enough to show that $\Re \lambda_{1}(X) \leqslant 0$ for $X \in V$. First suppose that $r \geqslant 2$. Then $\lambda_{1} \neq \lambda_{r}$ and therefore we can choose $q \in S\left(E_{c}\right)$ such that $q\left(\lambda_{r}\right)=0$ while $q\left(\lambda_{1}\right) \neq 0$. Put $p=q^{d}$ where $d>d^{0} p_{r}$. Then

$$
\partial(p)\left(e^{\lambda_{i}} p_{i}\right)=p_{i}{ }^{\prime} e^{\lambda_{i}} \quad(1 \leqslant i \leqslant r)
$$

where $p_{i}{ }^{\prime}=\partial\left(p_{\lambda_{i}}\right) p_{i}$. Since $p\left(\lambda_{1}\right)=q\left(\lambda_{1}\right)^{d} \neq 0$, it follows from what we have seen above, that $p_{1}{ }^{\prime} \neq 0$. On the other hand $p_{\lambda_{r}}=\left(q_{\lambda_{r}}\right)^{d}$ and $q_{\lambda_{r}}(0)=q\left(\lambda_{r}\right)=0$. Therefore since $d>d^{0} p_{r}$, it is obvious that $p_{r}{ }^{\prime}=0$. Hence
${ }^{(1)} \Re c$ denotes the real part of a complex number c.

$$
\partial(p) g=\sum_{1 \leqslant i<r} p_{i}^{\prime} e^{\lambda_{i}}
$$

Now $\partial(p) g$ is also tempered on V and $p_{1}{ }^{\prime} \neq 0$. Therefore we conclude from the induction hypothesis that $\Re \lambda_{1}(X) \leqslant 0$ for $X \in V$.

Thus it remains to consider the case $r=1$. Fix $X_{1} \in V$ and write λ and p instead of λ_{1} and p_{1} respectively. Then we have to prove that $\Re \lambda\left(X_{1}\right) \leqslant 0$. If $X_{1}=0$, this is obvious. So let us assume that $X_{1} \neq 0$. Choose a linear subspace F of E complementary to $\mathbf{R} X_{1}$ and an open convex neighborhood U of zero in F such that $X_{1}+U \subset V$. Then

$$
t X_{1}+U=t\left(X_{1}+t^{-1} U\right) \subset t\left(X_{1}+U\right) \subset V
$$

for $t \geqslant 1$. Let J denote the open interval ($1, \infty$) in R. Fix $\alpha \in C_{c}^{\infty}(U)$ and for any $\beta \in C_{c}^{\infty}(J)$, consider the function $\gamma_{\beta} \in C_{c}^{\infty}(V)$ given by

Put

$$
\begin{gathered}
\gamma_{\beta}\left(t X_{1}+X_{2}\right)=\beta(t) \alpha\left(X_{2}\right) \quad\left(t \in \mathbf{R}, X_{2} \in F\right) \\
\sigma(\beta)=\int \gamma_{\beta} g d X=\int \beta(t) \alpha\left(X_{2}\right) g\left(t X_{1}+X_{2}\right) d t d X_{2}
\end{gathered}
$$

where $d X_{2}$ is the Euclidean measure on F normalized in such a way that $d X=d t d X_{2}$ for $X=t X_{1}+X_{2}$. Then

$$
\sigma(\beta)=\int e^{c t} q(t) \beta(t) d t \quad\left(\beta \in C_{c}^{\infty}(J)\right)
$$

where $c=\lambda\left(X_{1}\right)$ and $\quad q(t)=\int p\left(t X_{1}+X_{2}\right) \alpha\left(X_{2}\right) e^{\lambda\left(X_{2}\right)} d X_{2}$.
Since $p \neq 0, \alpha$ can obviously be so selected that $q \neq 0$. Moreover since g is tempered on V, it is easy to see that σ is a tempered distribution on J. Hence it would be sufficient to prove the following lemma.

Lemma 16. Fix $c \in \mathbf{C}, t_{0} \in \mathbf{R}$ and let $q \neq 0$ be a (complex-valued) polynomial function on \mathbf{R}. Then if the function $q(t) e^{c t}(t \in \mathbf{R})$ is tempered on the open interval $J=\left(t_{0}, \infty\right)$, we can conclude that $\mathfrak{R c} \leqslant 0$.

Put

$$
T(\beta)=\int \beta(t) q(t) e^{c t} d t \quad\left(\beta \in C_{c}^{\infty}(J)\right)
$$

and $D=d / d t$. Let

$$
T_{0}=(D-c)^{d} T
$$

where $d=d^{0} q$. Then T_{0} is also a tempered distribution on J. But

$$
(D-c)^{d}\left(q e^{c t}\right)=e^{c t} D^{d} q=a e^{c t}
$$

where a is a nonzero constant. Hence it would be enough to consider the case when $q=1$. Then T being tempered, we can choose a number $A \geqslant 0$ and an integer $r \geqslant 0$ such that

$$
\left|\int \alpha(t) e^{c t} d t\right| \leqslant A \sum_{0 \leqslant m, n \leqslant r} \sup \left|t^{m} D^{n} \alpha\right|
$$

for $\alpha \in C_{c}^{\infty}(J)$. Let $c=2 c_{1}+(-1)^{\frac{1}{2}} c_{2}$ where $c_{i} \in \mathbf{R}(i=1,2)$. We have to show that $c_{1} \leqslant 0$. So let us assume that $c_{1}>0$. Put

$$
\alpha(t)=\beta(t) e^{-c^{\prime} t}
$$

where $c^{\prime}=c_{1}+(-1)^{\frac{1}{2}} c_{2}$ and $\beta \in C_{c}^{\infty}(J)$. Then

$$
\left|D^{n} \alpha\right|=e^{-c_{1} t}\left|\left(D-c^{\prime}\right)^{n} \beta\right| .
$$

Therefore we can select a number $A_{1} \geqslant 0$ such that

$$
\left|\int \beta(t) e^{c_{1} t} d t\right| \leqslant A_{1} \sum_{0 \leqslant m, n \leqslant r} \sup e^{-c_{1} t}\left|t^{m} D^{n} \beta\right|
$$

for all $\beta \in C_{c}^{\infty}(J)$.
Now fix a function $f \in C^{\infty}(\mathbf{R})$ such that 1) $0 \leqslant f \leqslant 1$, 2) $f(t)=0$ if $t \leqslant 0$ and 3) $f(t)=1$ if $t \geqslant 1$. For any $M>t_{0}+2$, define

$$
\beta_{M}(t)=f\left(t-t_{0}-1\right) f(M+1-t) \quad(t \in \mathbf{R}) .
$$

Then $\beta_{M} \in C_{c}^{\infty}(J)$ and

$$
\int \beta_{M}(t) e^{c_{1} t} d t \geqslant \int_{t_{0}+2}^{M} e^{c_{1} t} d t
$$

On the other hand

$$
\sup \left|e^{-c_{1} t} t^{m} D^{n} \beta_{M}\right| \leqslant a_{m} b_{n}
$$

where

$$
a_{m}=\sup _{t \geqslant t_{0}}\left|t^{m} e^{-c_{1} t}\right|, \quad b_{n}=2^{n} \max _{0 \leqslant k \leqslant n} \sup \left|D^{k} f\right|^{2}
$$

Therefore

$$
\left|\int \beta_{M}(t) e^{c_{1} t} d t\right| \leqslant A^{\prime} \sum_{0 \leqslant m \leqslant r} a_{m} \sum_{0 \leqslant n \leqslant r} b_{n}=B \quad \text { (say). }
$$

This proves that

$$
B \geqslant \int_{t_{0}+2}^{M} e^{c_{1} t} d t
$$

But as $M \rightarrow+\infty$, the right side tends to $+\infty$ giving a contradiction. This completes the proof.

Let U be an open subset of E and $\mathcal{C}(U)$ the space of all C^{∞} functions f on U such that

$$
v_{D}(f)=\sup |D f|<\infty
$$

for all $D \in \mathfrak{D}\left(E_{c}\right)$. The seminorms $\nu_{D}\left(D \in \mathscr{D}\left(E_{c}\right)\right)$ define the structure of a locally convex space on $\mathcal{C}(U)$.

It is well known (see [3, p. 93]) that the inclusion mapping of $C_{c}{ }^{\infty}(E)$ into $\mathcal{C}(E)$ is continuous and the image is dense in $\mathcal{C}(E)$. Hence tempered distributions on E are the same as continuous linear functions on $C(E)$.

§ 9. Proof of Lemma 17

We now return to the notation of $\S 2$. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and define g as in [2 (1), Theorem 2].

Lemma 17. Suppose T is tempered on Ω. Then we can choose an integer $q \geqslant 0$ such that $\pi^{\boldsymbol{a}} g$ is tempered on $\Omega \cap \mathfrak{G}^{\prime}$.

Let A be the Cartan subgroup of G corresponding to \mathfrak{h} and $x \rightarrow x^{*}$ the natural projection of G on $G^{*}=G / A$. The group W_{G} operates on G^{*} on the right in the usual way (see [2 (1), §9]). Fix an invariant measure $d x^{*}$ on G^{*} and a function $\alpha_{0} \in C_{c}^{\infty}\left(G^{*}\right)$ such that

Put

$$
\int \alpha_{0}\left(x^{*}\right) d x^{*}=1
$$

$\alpha\left(x^{*}\right)=\left[W_{G}\right]_{s \in W_{G}} \alpha_{0}\left(x^{*} s\right)$
Select a compact set C in G such that $\operatorname{Supp} \alpha \subset C^{*}$ and $C^{*} s=C^{*}$ for $s \in W_{G}$ and, for any $\beta \in C_{c}^{\infty}\left(\mathfrak{h}^{\prime}\right)$, define a function $f_{\beta} \in C_{c}^{\infty}(\mathfrak{g})$ as follows.

$$
f_{\beta}\left(x^{*} H\right)=\left[W_{G}\right]^{-1} \alpha\left(x^{*}\right) \sum_{s \in W_{G}} \beta\left(s^{-1} H\right)
$$

for $x^{*} \in C^{*}$ and $H \in \operatorname{Supp} \beta$ and $\operatorname{Supp} f_{\beta} \subset(\operatorname{Supp} \beta)^{C^{*}}$.
Now define $f(x: X)=f\left(X^{x}\right)$ as usual $(x \in G, X \in \mathfrak{g})$ for any $f \in C^{\infty}(\mathfrak{g})$. Fix $D \in \mathfrak{D}\left(g_{c}\right)$. Then

$$
f(x H ; D)=f\left(x: H ; D^{x^{-1}}\right) \quad(H \in \mathfrak{h})
$$

and it is clear that

$$
D^{x^{-1}}=\sum_{1 \leqslant i \leqslant r} a_{i}(x) D_{i} \quad(x \in G)
$$

where a_{1}, \ldots, a_{r} are analytic functions on G and D_{1}, \ldots, D_{r} are linearly independent elements in $\mathfrak{D}\left(\mathfrak{g}_{c}\right)$. Hence

$$
f(x H ; D)=\sum_{i} a_{i}(x) f\left(x: H ; D_{i}\right)
$$

On the other hand if $\mathfrak{q}=[\mathfrak{h}, \mathfrak{g}]$, we can choose (see [2(j), § 2]) an integer $m \geqslant 0$ and elements $q_{i j} \in \mathbb{S}_{+}\left(\mathfrak{q}_{c}\right), \xi_{i j} \in \mathfrak{D}\left(\mathfrak{h}_{c}\right)(1 \leqslant j \leqslant N)$ such that

$$
f\left(x: H ; D_{i}\right)=\pi(H)^{-m} \sum_{j} f\left(x ; q_{i j}: H ; \xi_{i j}\right) \quad(1 \leqslant i \leqslant r)
$$

for $f \in C^{\infty}(\mathfrak{g}), x \in G$ and $H \in \mathfrak{h}^{\prime}$. Put $\alpha(x)=\alpha\left(x^{*}\right)(x \in G)$. Then if $x \in C$ and $H \in \mathfrak{h}^{\prime}$, we get

$$
f_{\beta}(x H ; D)=\pi(H)^{-m} \sum_{i, j} a_{i}(x) \alpha\left(x ; q_{i j}\right) \beta_{0}\left(H ; \xi_{i j}\right)
$$

where

$$
\beta_{0}(H)=\left[W_{G}\right]^{-1} \sum_{s \in W_{G}} \beta\left(s^{-1} H\right) .
$$

Since C is compact, it is obvious that

$$
\sup \left|D f_{\beta}\right| \leqslant B \sum_{i, j} \sup \left|\pi^{-m} \xi_{i j} \beta_{0}\right| \quad\left(\beta \in C_{c}^{\infty}\left(\mathfrak{h}^{\prime}\right)\right)
$$

where B is a constant which depends only on D. Thus we have obtained the following result.

Lemma 18. For any $D \in \mathfrak{D}\left(\mathfrak{g}_{\mathrm{c}}\right)$, we can choose an integer $m \geqslant 0$ and a finite number of elements $\xi_{i} \in \mathfrak{D}\left(\mathfrak{h}_{c}\right)(1 \leqslant i \leqslant N)$ such that
for all $\beta \in C_{c}^{\infty}\left(\mathfrak{h}^{\prime}\right)$.

$$
\sup \left|D f_{\beta}\right| \leqslant \sum_{1 \leqslant i \leqslant N} \sup \left|\pi^{-m} \xi_{i} \beta\right|
$$

Now we come to the proof of Lemma 17. Since T is tempered, there exist $D_{i} \in \mathfrak{D}\left(\mathfrak{g}_{c}\right)(\mathbf{l} \leqslant i \leqslant r)$ such that

$$
|T(f)| \leqslant \sum_{i} \sup \left|D_{i} f\right|
$$

for all $f \in C_{c}^{\infty}(\Omega)$. Therefore by Lemma 18 , we can choose an integer $m_{0} \geqslant 0$ and elements $\xi_{j} \in \mathfrak{D}\left(\mathfrak{h}_{c}\right)(l \leqslant j \leqslant N)$ such that

$$
\left|T\left(f_{\beta}\right)\right| \leqslant \sum_{1 \leqslant i \leqslant r} \sup \left|D_{i} f_{\beta}\right| \leqslant \sum_{1 \leqslant i \leqslant N} \sup \left|\pi^{-m_{0}} \xi_{j} \beta\right|
$$

for $\beta \in C_{c}^{\infty}\left(\Omega \cap \mathfrak{h}^{\prime}\right)$. On the other hand

$$
T\left(f_{\beta}\right)=\int f_{\beta} F d x=c \int \varepsilon_{R} \psi_{f_{\beta}} g d H
$$

where $c=c(\mathfrak{h})$ in the notation of § 2. Moreover

$$
\psi_{f_{\beta}}(H)=\varepsilon_{R}(H) \pi(H) \int f_{\beta}\left(x^{*} H\right) d x^{*}=\varepsilon_{R}(H) \pi(H) \beta_{0}(H) \quad\left(H \in \mathfrak{h}^{\prime}\right)
$$

Hence

$$
T\left(f_{\beta}\right)=c \int \pi \beta_{0} g d H=c \int \pi \beta g d H
$$

if we take into account the fact that $g^{s}=\varepsilon(s) g\left(s \in W_{G}\right)$. Put $\gamma=\pi^{m-1} \beta(m \geqslant 1)$. Then

$$
\left|\int \beta \pi^{m} g d H\right|=\left|c^{-1} T\left(f_{\gamma}\right)\right| \leqslant|c|^{-1} \sum_{j} \sup \left|\pi^{-m_{0}} \xi_{j}\left(\pi^{m-1} \beta\right)\right|
$$

for $\beta \in C_{c}^{\infty}\left(\Omega \cap \mathfrak{h}^{\prime}\right)$. If m is sufficiently large, it is clear that $\pi^{-m_{0}} \xi_{j} \circ \pi^{m-1} \in \mathfrak{D}\left(\mathfrak{h}_{c}\right)$. This shows that $\pi^{m} g$ is tempered on $\Omega \cap \mathfrak{h}^{\prime}$.

Fix a Euclidean norm $\|X\|(X \in \mathfrak{g})$ on \mathfrak{g} and for any Cartan subalgebra \mathfrak{h} define $g^{\mathfrak{h}}$ as in [2 (1), Theorem 3].

Lemma 19. Suppose for every Cartan subalgebra \mathfrak{h} of \mathfrak{g} we can choose numbers $a \geqslant 0$ and $m \geqslant 0$ such that

$$
\left|g^{\mathfrak{h}}(H)\right| \leqslant a(1+\|H\|)^{m}
$$

for $H \in \Omega \cap \mathfrak{h}^{\prime}(R)$. Then T is tempered.
We use the notation of Lemma 5 and put $g_{i}=g^{\mathfrak{h i}_{i}}(1 \leqslant i \leqslant r)$. Then

$$
T(f)=\sum_{i} c_{i} \int \varepsilon_{R, i} g_{i} \psi_{f, i} d_{i} H \quad\left(f \in C_{c}^{\infty}(\Omega)\right)
$$

Therefore we can choose $c \geqslant 0$ and an integer $M \geqslant 0$ such that

$$
|T(f)| \leqslant c \sum_{i} \sup _{\mathfrak{h} i}(1+\|H\|)^{M}\left|\psi_{f, i}(H)\right|
$$

for $f \in C_{c}^{\infty}(\Omega)$. Our assertion now follows immediately from [2 (d), Theorem 3].

§ 10. An auxiliary result

Let \mathfrak{g} be a reductive Lie algebra over \mathbf{C}, \mathfrak{h} a Cartan subalgebra of \mathfrak{g} and W the Weyl group of ($\mathfrak{g}, \mathfrak{h}$).

Lemma 20. Let λ be a linear function on \mathfrak{h} and α a root of $(\mathfrak{g}, \mathfrak{h})$. Suppose $s \lambda=\lambda-c \alpha$ for some $s \in W$ and $c \neq \mathbf{0}$ in \mathbf{C}. Then ${ }^{(1)} s \lambda=s_{\alpha} \lambda$.

For the proof we may obviously assume that \mathfrak{g} is semisimple. Let \mathfrak{F} be the real vector space consisting of all linear functions μ on \mathfrak{h} such that $\left.{ }^{(2}\right) \mu\left(H_{\beta}\right) \in \mathbf{R}$ for every
${ }^{(1)}$ As usual s_{α} denotes the Weyl reflexion corresponding to α.
$\left.{ }^{(2}\right) H_{\beta}$ has the same meaning as in [2(k), §4].
18-652923. Acta mathematica. 113. Imprimé le 11 mai 1965.
root β. Fix an order in \mathfrak{F} and first assume that $\lambda \in \mathfrak{F}$. Then $\sigma \lambda \in \mathfrak{F}$ for every $\sigma \in W$. Select $\sigma_{0} \in W$ such that $\sigma_{0} \lambda \geqslant \sigma \lambda$ for all $\sigma \in W$. Then if we put $\lambda^{\prime}=\sigma_{0} \lambda, s^{\prime}=\sigma_{0} s \sigma_{0}{ }^{-1}$ and $\alpha^{\prime}=\sigma_{0} \alpha$, we obviously get $s^{\prime} \lambda^{\prime}=\lambda^{\prime}-c \alpha^{\prime}$. Moreover the relation $s \lambda=s_{\alpha} \lambda$ is equivalent to $s^{\prime} \lambda^{\prime}=s_{\alpha^{\prime}} \lambda^{\prime}$. Hence without loss of generality, we may assume that $\lambda \geqslant \sigma \lambda$ for all $\sigma \in W$. Since λ and $s \lambda$ are both in \mathfrak{F}, it is clear that $c \in \mathbf{R}$. Replacing α by $-\alpha$, if necessary, we may assume that $\alpha>0$. Then $c>0$ since $\lambda \geqslant s \lambda$. Now consider

$$
s_{\alpha} s \lambda=s_{\alpha} \lambda+c \alpha=\lambda-c^{\prime} \alpha
$$

where $c^{\prime}=2\left(\lambda\left(H_{\alpha}\right) / \alpha\left(H_{\alpha}\right)\right)-c$. We claim $c^{\prime}=0$. For otherwise $c^{\prime}>0$ since $s_{\alpha} s \lambda \leqslant \lambda$. Moreover

$$
s_{\alpha} \lambda=\lambda-\left(c+c^{\prime}\right) \alpha=s \lambda-c^{\prime} \alpha
$$

Therefore

$$
s^{-1} s_{\alpha} \lambda=\lambda-c^{\prime} s^{-1} \alpha, \quad s^{-1} \lambda=\lambda+c s^{-1} \alpha
$$

Since c and c^{\prime} are both positive, it follows that at least one of the two elements $s^{-1} s_{\alpha} \lambda, s^{-1} \lambda$ is higher than λ in our order. But this contradicts the condition that $\lambda \geqslant \sigma \lambda$ for all $\sigma \in W$. Hence $c^{\prime}=0$. This shows that $s_{\alpha} s \lambda=\lambda$ and therefore $s \lambda=s_{\alpha} \lambda$.

Now consider the general case. Then $\lambda=\lambda_{R}+(-1)^{\frac{1}{2}} \lambda_{I}$ and $c=a+(-1)^{\frac{1}{2}} b$ where $\lambda_{R}, \lambda_{I} \in \mathfrak{F}$ and $a, b \in \mathbf{R}$. The relation $s \lambda=\lambda-c \alpha$ implies that

$$
s \lambda_{R}=\lambda_{R}-a \alpha, \quad s \lambda_{I}=\lambda_{I}-b \alpha .
$$

Hence if $a b \neq 0$, we get $s \lambda_{R}=s_{\alpha} \lambda_{R}, s \lambda_{I}=s_{\alpha} \lambda_{I}$ from the above proof. Therefore $s \lambda=s_{\alpha} \lambda$ in this case. Now suppose $a \neq 0, b=0$. Then $s \lambda_{R}=s_{\alpha} \lambda_{R}$ and $s \lambda_{I}=\lambda_{I}$ again from the above proof. Let W_{0} be the subgroup of all $\sigma \in W$ such that $\sigma \lambda_{I}=\lambda_{I}$. For $\mu_{1}, \mu_{2} \in \mathfrak{F}$, let $\left\langle\mu_{1}, \mu_{2}\right\rangle$ denote the usual scalar product defined by means of the Killing form of g so that

$$
\left\langle\mu_{1}, \mu_{2}\right\rangle=\sum_{\beta} \mu_{1}\left(H_{\beta}\right) \mu_{2}\left(H_{\beta}\right)
$$

where β runs over all roots of $(\mathfrak{g}, \mathfrak{h})$. Then $\left\langle\sigma \mu_{1}, \mu_{2}\right\rangle=\left\langle\mu_{1}, \sigma^{-1} \mu_{2}\right\rangle$ for $\sigma \in W$. Hence

$$
\left\langle s \lambda_{R}, \lambda_{I}\right\rangle=\left\langle\lambda_{R}, s^{-1} \lambda_{I}\right\rangle=\left\langle\lambda_{R}, \lambda_{I}\right\rangle
$$

But $\lambda_{R}-s \lambda_{R}=a \alpha$ and $a \neq 0$. Therefore $\left\langle\alpha, \lambda_{I}\right\rangle=0$ and this implies that $s_{\alpha} \lambda_{I}=\lambda_{I}$. Hence $s \lambda=s_{\alpha} \lambda$. The case $a=0, b \neq 0$ can be reduced to the one above by replacing λ by $(-1)^{\frac{1}{2}} \lambda$.

We shall need the above result for the proof of Lemma 26.

§ 11. Proof of Lemma 21'

We return to the notation of $\S 2$. So \mathfrak{g} is a reductive Lie algebra over \mathbf{R} and $\mathfrak{g}_{1}=[\mathfrak{g}, \mathfrak{g}]$. Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g} and \mathfrak{a}_{R} the set of all points of $\mathfrak{a}_{1}=\mathfrak{a} \cap \mathfrak{g}_{1}$ where every root of ($\mathfrak{g}, \mathfrak{a}$) takes a real value. Similarly let \mathfrak{a}_{I} be the set of those points of \mathfrak{a} where all roots of $(\mathfrak{g}, \mathfrak{a})$ take pure imaginary values. Define $\theta, \mathfrak{f}, \mathfrak{p}$ and K as in [2(m),§16] corresponding to \mathfrak{a}. Then it is clear that $\mathfrak{a}_{R}=\mathfrak{a} \cap \mathfrak{p}, \mathfrak{a}_{I}=\mathfrak{a} \cap \mathcal{F}$ and therefore $\mathfrak{a}=\mathfrak{a}_{R}+\mathfrak{a}_{I}$, where the sum is direct.

Define $\mathfrak{a}^{\prime}(R)$ as usual (see [2(k), §4]) and fix a connected component $\mathfrak{a}_{R}{ }^{+}$of $\mathfrak{a}^{\prime}(R) \cap \mathfrak{a}_{R}$. Let P_{R} be the set of all real roots of $(\mathfrak{g}, \mathfrak{a})$ which take only positive values on $\mathfrak{a}_{R}{ }^{+}$. We can introduce compatible orders (see [2 (d), p. 195]) in the spaces of real-valued linear functions on \mathfrak{a}_{R} and $\mathfrak{a}_{R}+(-1)^{\frac{1}{2}} \mathfrak{a}_{I}$ in such a way that all roots in P_{R} are positive. Let P be the set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$ under this order.

Let \mathfrak{m} be the centralizer of a_{I} in \mathfrak{g}. Then \mathfrak{m} is reductive in \mathfrak{g} (see [2(m), Cor. 3 of Lemma 26]) and it is obvious that P_{R} is the set of all positive roots of (m, a).

Lemma 21. Suppose \mathfrak{g} has a Cartan subalgebra \mathfrak{h} such that every root of $(\mathfrak{g}, \mathfrak{h})$ is imaginary. Then \mathfrak{a}_{R} is a Cartan subalgebra of $\mathfrak{m}_{1}=[\mathfrak{m}, \mathfrak{m}]$ and \mathfrak{a}_{I} is the center of \mathfrak{m}.

We can choose $x \in G$ such that $\mathfrak{h}^{x} \subset \neq$ (see [2 (d), §8]). Since \mathfrak{h}^{x} is maximal abelian in \mathcal{L} and $\mathfrak{a}_{I} \subset \mathfrak{l}$, we can select $k \in K$ such that $\mathfrak{h}^{k x} \supset \mathfrak{a}_{I}$. Hence without loss of generality we may suppose that $\mathfrak{a}_{T} \subset \mathfrak{h} \subset \mathfrak{f}$.

Let Q be the set of all positive roots of $(\mathfrak{g}, \mathfrak{h})$ and Q_{0} the subset consisting of those $\beta \in Q$ which vanish identically on \mathfrak{a}_{g}. Then it is clear that

$$
\mathfrak{m}_{c}=\mathfrak{h}_{c}+\sum_{\beta \in Q_{0}}\left(\mathbf{C} X_{\beta}+\mathbf{C} X_{-\beta}\right)
$$

in the usual notation (see $[(2(k), \S 4])$. Since $\mathfrak{G} \subset \mathfrak{f}$, both \mathfrak{f} and \mathfrak{p} are stable under ad \mathfrak{h} and therefore, for any root γ, X_{γ} lies either in \mathfrak{f}_{c} or in \mathfrak{p}_{c}. Hence it is obvious that

This shows that

$$
\left[\mathfrak{m}_{c}, \mathfrak{m}_{c}\right] \supset\left[\mathfrak{h}_{c}, \mathfrak{m}_{c}\right]=\sum_{\beta \in Q_{0}}\left(\mathbf{C} X_{\beta}+\mathbf{C} X_{-\beta}\right) \supset \mathfrak{m}_{c} \cap \mathfrak{p}_{c} .
$$

This
On the other hand let $\mathfrak{c}_{\mathfrak{m}}$ denote the center of \mathfrak{m} and put $l=$ rank g. Since $\mathfrak{a} \subset \mathfrak{m}$, it is clear that

$$
l=\operatorname{rank} \mathfrak{m}=\operatorname{dim} \mathfrak{c}_{\mathfrak{m}}+\operatorname{rank} \mathfrak{m}_{\mathbf{1}}
$$

But $\mathfrak{a}_{I} \subset \mathfrak{c}_{\mathfrak{m}}, \mathfrak{a}_{R} \subset \mathfrak{m}_{1}$ and $\operatorname{dim} \mathfrak{a}_{I}+\operatorname{dim} \mathfrak{a}_{R}=\operatorname{dim} \mathfrak{a}=l$. Therefore we conclude that $\mathfrak{c}_{\mathfrak{m}}=\mathfrak{a}_{I}$ and \mathfrak{a}_{R} is a Cartan subalgebra of \mathfrak{m}_{1}.

Select a fundamental system $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of positive roóts of ($\left.\mathfrak{n t}, \mathfrak{a}\right)$ and let W_{R} be the subgroup ${ }^{(1)}$) of $W(\mathfrak{g} / \mathfrak{a})$ generated by $\left(^{2}\right) s_{\alpha}$ for $\alpha \in P_{R}$. Then $s_{\alpha_{1}}, \ldots, s_{\alpha_{m}}$ generate W_{R} and $m=\operatorname{dim} \mathfrak{a}_{R}$ from Lemma 21.

Lemma 22. Let μ be a linear function on \mathfrak{a}_{c} which takes only real values on $\mathfrak{a}_{R}+(-1)^{\frac{1}{2}} \mathfrak{a}_{I}$ and suppose $\mu \geqslant s_{\alpha_{i}} \mu(1 \leqslant i \leqslant m)$. Then $\mu \geqslant s \mu$ for $s \in W_{R}$ and $\mu(H) \geqslant 0$ for $H \in \mathfrak{a}_{R}^{+}$.

Define linear functions $\mu_{j}(1 \leqslant j \leqslant m)$ on \mathfrak{a} as follows.

$$
s_{\alpha_{i}} \mu_{j}=\mu_{j}-\delta_{i j} \alpha_{j} \quad(1 \leqslant i \leqslant m)
$$

and $\mu_{j}=0$ on \mathfrak{a}_{T}. Then $\mu_{j} \geqslant s \mu_{j}\left(s \in W_{R}\right)$ and $\mu_{j}(H) \geqslant 0$ for $H \in \mathfrak{a}_{R}{ }^{+}$(see [2 (g), p. 280]). Let

$$
s_{\alpha_{i}} \mu=\mu-c_{i} \alpha_{i} \quad(1 \leqslant i \leqslant m)
$$

where $c_{i} \in \mathbf{R}$. Then $c_{i} \geqslant 0$. Put $\mu_{0}=\sum_{j} c_{j} \mu_{j}$. Then $\mu=\mu_{0}$ on \mathfrak{a}_{R}. Therefore it is clear that

$$
\mu-s \mu=\mu_{0}-s \mu_{0} \geqslant 0 \quad\left(s \in W_{R}\right)
$$

and $\mu(H)=\mu_{0}(H) \geqslant 0$ for $H \in \mathfrak{a}_{R}{ }^{+}$.

§ 12. Recapitulation of some elementary facts

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and let $j=j_{\mathfrak{h}}$ denote the Chevalley isomorphism $p \rightarrow p_{\mathfrak{H}}$ of $I\left(\mathfrak{g}_{c}\right)$ onto $I\left(\mathfrak{h}_{c}\right)$ [2(j), §9]. Let λ be a linear function on \mathfrak{h}_{c}. Since every element q of $S\left(\mathfrak{h}_{c}\right)$ is a polynomial function on the dual space of \mathfrak{h}_{c}, we can consider its value $q(\lambda)$ at λ. Let $\chi_{\lambda}=\chi_{\lambda}{ }^{\mathfrak{h}}$ denote the homomorphism $p \rightarrow p_{\mathfrak{g}}(\lambda)\left(p \in I\left(\mathfrak{g}_{c}\right)\right)$ of $I\left(\mathfrak{g}_{c}\right)$ into \mathbf{C}.

Let $W=W(\mathfrak{g} / \mathfrak{h})$. Then W operates on $\mathfrak{D}\left(\mathfrak{h}_{c}\right)$. We say that λ is regular if $s \lambda=\lambda^{s} \neq \lambda$ for $s \neq 1$ in W. It is well known that λ is singular or regular according as $\varpi(\lambda)=0$ or not. Moreover if λ^{\prime} is another linear function on \mathfrak{h}_{c}, then $\chi_{\lambda}=\chi_{\lambda^{\prime}}$ if and only if $\lambda^{\prime}=s \lambda$ for some $s \in W$.

Conversely let $\chi \neq 0$ be a homomorphism of $I\left(\mathfrak{g}_{c}\right)$ into C. Then $\xi: q \rightarrow \chi\left(j^{-1}(q)\right)$ $\left(q \in I\left(\mathfrak{h}_{c}\right)\right)$ is a homomorphism of $I\left(\mathfrak{h}_{c}\right)$ into \mathbf{C}. Since $S\left(\mathfrak{h}_{c}\right)$ is a finite module over $I\left(\mathfrak{h}_{c}\right)$ (see [2 (c), Lemma 11]), $\boldsymbol{\xi}$ can be extended to a homomorphism of $S\left(\mathfrak{h}_{c}\right)$. Hence there exists a linear function λ on \mathfrak{h}_{c} such that $\xi(q)=q(\lambda)$ for all $q \in I\left(\mathfrak{h}_{c}\right)$. This shows
(1) $W(\mathfrak{g} / \mathfrak{a})$ denotes the Weyl group of $(\mathfrak{g}, \mathfrak{a})$.
$\left(^{2}\right)$ See footnote 1, p. 265.
that $\chi=\chi_{\lambda}$. Moreover, as we have seen above, λ is unique up to an operation of W. We say that χ is regular if λ is regular. Put $p_{0}=j^{-1}\left(\sigma^{2}\right)$. Then

$$
\chi\left(p_{0}\right)=\varpi(\lambda)^{2} .
$$

Hence χ is regular if and only if $\chi\left(p_{0}\right) \neq 0$. We note that p_{0} is actually independent of \mathfrak{h} and therefore the concept of the regularity of χ does not depend on the choice of \mathfrak{h}.

Let $\mathfrak{a}, \mathfrak{b}$ be two Cartan subalgebras of \mathfrak{g} and y an element of the connected complex adjoint group G_{c} of \mathfrak{g}_{c} such that $\mathfrak{b}_{c}=\left(\mathfrak{a}_{c}\right)^{y}$. Then y defines an isomorphism $D \rightarrow D^{y}$ of $\mathfrak{D}\left(\mathfrak{a}_{c}\right)$ onto $\mathfrak{D}\left(\mathfrak{b}_{c}\right)$.

Lemma 23. Let λ be a linear function on \mathfrak{a}_{c}. Then

$$
\chi_{\lambda}{ }^{\mathrm{a}}=\chi_{\lambda y^{\mathrm{b}}} .
$$

This follows from the obvious fact that $j_{6}(p)=\left(j_{a}(p)\right)^{y}$ for $p \in I\left(g_{c}\right)$.
Lemma 24. Let U be a non-empty open connected subset of \mathfrak{h} and λ a regular linear function on \mathfrak{h}_{c}. Suppose g is an analytic function on U such that $\partial(q) g=q(\lambda) g$ for all $q \in I\left(\mathfrak{h}_{c}\right)$. Then there exist unique complex numbers $c_{s}(s \in W)$ such that

$$
g(H)=\sum_{s \in W} \varepsilon(s) c_{s} e^{\lambda\left(s s^{-1} H\right)} \quad(H \in U)
$$

For a proof see [2 (c), p. 102].

§ 13. Proof of Lemma 26

Let z be a subalgebra of g such that 1) z is reductive in g and 2) rank $z=$ rank \mathfrak{g}. Let Ω_{z} be an open and completely invariant subset of \mathfrak{z} and χ a regular homomorphism of $I\left(\mathfrak{g}_{c}\right)$ into C. Let Ξ denote the analytic subgroup of G corresponding to z and define the isomorphism $p \rightarrow p_{\mathfrak{z}}$ of $I\left(g_{c}\right)$ into $I\left(z_{c}\right)$ as in $[2(\mathrm{j}), \S 9]$. Consider a distribution T_{z} on Ω_{z} such that

1) $T_{\mathfrak{z}}$ is invariant under Ξ,
2) $\partial\left(p_{z}\right) T_{\mathfrak{z}}=\chi(p) T_{z}$ for all $p \in I\left(\mathfrak{g}_{c}\right)$.

Fix a Euclidean measure $d Z$ on z and let $\Omega_{\mathrm{j}}^{\prime}$ denote the set of those points of $\Omega_{\mathfrak{z}}$ which are regular in \mathfrak{z}. Then by [2 (j), Lemma 19] and [2 (1), Theorem 1], $T_{\mathfrak{z}}$ coincides with an analytic function on Ω_{3}^{\prime}. We denote by $T_{z}(Z)$ the value of this function at any point $Z \in \Omega_{3}{ }^{\prime}$.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{z}, P the set of all positive roots of $(\mathfrak{g}, \mathfrak{h})$ and $P_{\mathfrak{z}}$ the subset consisting of all positive roots of $(\mathfrak{z}, \mathfrak{h})$. Put

$$
\pi_{\mathfrak{z}}=\prod_{\alpha \in P_{\mathfrak{z}}} \alpha, \quad g_{\mathfrak{b}}(H)=\pi_{\mathfrak{z}}(H) T_{\mathfrak{z}}(H) \quad\left(H \in \Omega_{\mathfrak{z}}^{\prime} \cap \mathfrak{G}\right)
$$

Let $\mathfrak{h}^{\prime}(\mathfrak{z}: R)$ denote the set of those points of \mathfrak{h} where no real root in P_{z} takes the value zero. Then by [2 (l), Theorem 2], g_{z} extends to an analytic function on $\Omega_{z} \cap \mathfrak{b}^{\prime}(z: R)$. Put $W=W(\mathfrak{g} / \mathfrak{h})$ and select a linear function λ on \mathfrak{h}_{c} such that $\chi=\chi_{\lambda}$ in the notation of § 12 .

LEMMA 25. There exist locally constant functions $c_{s}(s \in W)$ on $\Omega_{\mathfrak{z}} \cap \mathfrak{h}^{\prime}(\mathfrak{z}: R)$ such that
on $\Omega_{\mathfrak{z}} \cap \mathfrak{h}^{\prime}(\mathfrak{z}: R)$.

$$
g_{z}=\sum_{s \in W} \varepsilon(s) c_{s} e^{s \lambda}
$$

Since $\left(\partial\left(p_{3}\right)-\chi_{\lambda}(p)\right) T=0\left(p \in I\left(g_{c}\right)\right)$, it follows (see the proof of [2(1), Lemma 1]) that

$$
(\partial(q)-q(\lambda)) g_{\partial}=0 \quad\left(q \in I\left(\mathfrak{h}_{c}\right)\right) .
$$

Hence our assertion is an immediate consequence of Lemma 24.
Put $\zeta(Z)=\operatorname{det}(\operatorname{ad} Z)_{8 / 3}(Z \in \mathfrak{g})$ and fix an element $H_{0} \in 子$ such that $\zeta\left(H_{0}\right) \neq 0$. Then the centralizers of H_{0} in z and g are the same. Hence H_{0} is semiregular in z if and only if it is so in \mathfrak{g}. Now assume $H_{0} \in \Omega_{z}, \zeta\left(H_{0}\right) \neq 0$ and H_{0} is semiregular of noncompact type. We shall now use the notation of [2(k), §7] without further comment. Then it is clear that \mathfrak{a} and \mathfrak{b} are Cartan subalgebras of \mathfrak{z}. Put $W=W(\mathfrak{g} / \mathfrak{a})$ and choose a linear function λ on \mathfrak{a}_{c} such that $\chi=\chi_{\lambda}{ }^{a}$. Define G_{c} as in $\S 12$ and let Ξ_{c} denote its complex-analytic subgroup corresponding to ad z_{c}. Then it is clear that the element ν of [$2(\mathrm{k}), \S 7]$ lies in Ξ_{c}. We assume that the orders of roots are so chosen that $\left.{ }^{1}\right)\left(\sigma^{\mathfrak{a}}\right)^{v}=w^{\mathfrak{b}}$ and $\left(\pi_{z^{a}}\right)^{v}=\pi_{3}{ }^{\mathfrak{b}}$. Then it follows from Lemma 24 that

$$
\partial\left(\varpi^{a}\right) g_{3}^{a}=\varpi^{\mathfrak{a}}(\lambda) \sum_{s \in W} c_{s}^{a} e^{s \lambda}
$$

on $\Omega_{\mathfrak{z}} \cap \mathfrak{a}^{\prime}(\mathfrak{z}: R)$ and $\quad \partial\left(\varpi^{\mathfrak{b}}\right) g_{\mathfrak{z}}^{\mathfrak{b}}=\sigma^{\mathfrak{a}}(\lambda) \sum_{s \in W} c_{s}^{\mathfrak{b}} \exp \left((s \lambda)^{v}\right)$
on $\Omega_{\mathfrak{z}} \cap \mathfrak{b}^{\prime}(\mathfrak{z}: R)$. Here $c_{s}^{\mathfrak{b}}$ are locally constant functions on $\Omega_{\mathfrak{z}} \cap \mathfrak{b}^{\prime}(\mathfrak{z}: R)(\mathfrak{h}=\mathfrak{a}$ or $\mathfrak{b})$. Put

$$
c_{s}^{ \pm \alpha}\left(H_{0}\right)=\lim _{t \rightarrow+0} c_{s}^{a}\left(H_{0} \pm t H^{\prime}\right)
$$

and note that $H_{0} \in \Omega_{\mathfrak{z}} \cap \mathfrak{b}^{\prime}(\mathfrak{z}: R)$.
Lemma 26. For any ${ }^{(2)} s \in W$,

[^0]$$
c_{s}^{\alpha}\left(H_{0}\right)+c_{s_{\alpha}}{ }^{\alpha}\left(H_{0}\right)=c_{s}{ }^{-\alpha}\left(H_{0}\right)+c_{s_{\alpha^{s}}}{ }^{-\alpha}\left(H_{0}\right)=c_{s}^{b}\left(H_{0}\right)+c_{s_{\alpha}}{ }^{b}\left(H_{0}\right) .
$$

Put $\sigma=\mathfrak{a} \cap \mathfrak{b}, \pi_{\alpha}=\alpha^{-1} \pi^{\mathfrak{a}}, \pi_{\beta}=\beta^{-1} \pi^{\mathfrak{b}}$ and let U be an open and convex neighborhood of H_{0} in Ω_{3}. We assume that U is so small that π_{α} and π_{β} never take the value zero on $U \cap \mathfrak{a}$ and $U \cap \mathfrak{b}$ respectively. Since $c_{s}{ }^{\mathfrak{a}}(s \in W)$ is locally constant on $\Omega_{\mathrm{z}} \cap \mathfrak{a}^{\prime}\left({ }_{\mathrm{z}}: R\right)$, it is clear that

$$
c_{s}{ }^{a}(H)=c_{s}^{ \pm \alpha}\left(H_{0}\right) \quad\left(H \in U \cap \mathfrak{a}^{\prime}\right)
$$

according as $\alpha(H)$ is positive or negative. Similarly $c_{s}^{\mathfrak{b}}(H)=c_{s}^{\mathfrak{b}}\left(H_{0}\right)$ for $H \in U \cap \mathfrak{b}$. Moreover $\boldsymbol{w}^{a}(\lambda) \neq 0$ since λ is regular. Therefore if we apply [2(1), Lemma 18] with $D=\partial\left(\sigma^{a}\right)$ and recall that ν leaves σ pointwise fixed, we get

$$
\begin{aligned}
& \sum_{s \in W} c_{s}^{\alpha}\left(H_{0}\right) \exp \left(\lambda\left(s^{-1} H\right)\right) \\
& \quad=\sum_{s \in W} c_{s}^{-\alpha}\left(H_{0}\right) \exp \left(\lambda\left(s^{-1} H\right)\right)=\sum_{s \in W} c_{s}^{\mathfrak{b}}\left(H_{0}\right) \exp \left(\lambda\left(s^{-1} H\right)\right) \quad(H \in U \cap \sigma)
\end{aligned}
$$

Jet μ_{s} denote the restriction of $s \lambda$ on σ.
Lemma 27. Suppose s_{1}, s_{2} are two distinct elements in W. Then $\mu_{s_{1}}=\mu_{s_{1}}$ if and only if $s_{2}=s_{\alpha} s_{1}$.

Since s_{α} leaves σ pointwise fixed, it is clear that $\mu_{s_{1}}=\mu_{s_{2}}$ if $s_{2}=s_{\alpha} s_{1}$. Conversely suppose $\mu_{s_{1}}=\mu_{s_{2}}$. Then it is obvious that $s_{2} \lambda-s_{1} \lambda=c \alpha$ for some $c \in \mathbf{C}$. Since λ is regular, $c \neq 0$. Therefore it follows from Lemma 20 that $s_{1}{ }^{-1} s_{2} \lambda=s_{\gamma} \lambda$ where $\gamma=s_{1}{ }^{-1} \alpha_{\text {. }}$. But then $s_{\gamma}=s_{1}^{-1} s_{\alpha} s_{1}$ and therefore $s_{2} \lambda=s_{\alpha} s_{1} \lambda$. Since λ is regular, this implies that $s_{2}=s_{\alpha} s_{1}$.

Now if we take into account the elementary fact that the exponentials of distinct linear functions on σ are linearly independent, Lemma 26 follows immediately from the relations proved above.

§ 14. Tempered and invariant eigendistributions

Let c be the center and g_{1} the derived algebra of g. Fix a number $c>0$ and put $g_{0}=\mathfrak{c}_{0}+\mathfrak{g}_{1}(c)$. Here \mathfrak{c}_{0} is a nonempty, open, connected subset of \mathfrak{c} and $g_{1}(c)$ is defined as in $\left[2(\mathrm{~m})\right.$, §3]. Then g_{0} is a completely invariant open set in \mathfrak{g}.

Now take $\Omega_{\mathfrak{d}}=\mathfrak{z} \cap g_{0}$ and assume that there exists a Cartan subalgebra \mathfrak{h} of \mathfrak{z} and a linear function λ on \mathfrak{h}_{c} such that 1) every root of ($\mathfrak{g}, \mathfrak{h}$) is imaginary, 2) λ takes only pure imaginary values on \mathfrak{h} and 3) $\chi=\chi_{\lambda}{ }^{\mathfrak{G}}$ in the notation of $\S 12$. Since
$(\mathfrak{g}, \mathfrak{h})$ has no real roots and $\mathfrak{g}_{0} \cap \mathfrak{h}$ is connected, we conclude from Lemma 25 that

$$
g_{\mathfrak{b}^{\mathfrak{h}}}(H)=\sum_{s \in W(\mathrm{G} / \mathfrak{h})} \varepsilon(s) c_{s} \exp \left(\lambda\left(s^{-1} H\right)\right) \quad\left(H \in \mathfrak{g}_{0} \cap \mathfrak{h}\right)
$$

where $c_{s} \in \mathbf{C}$. Let C denote the additive subgroup of \mathbf{C} generated by $c_{s}(s \in W(\mathfrak{g} / \mathfrak{h}))$. Fix a Cartan subalgebra \mathfrak{a} of z and a connected component \mathfrak{a}^{+}of $\mathfrak{g}_{0} \cap \mathfrak{a}^{\prime}(z: R)$. Select a linear function $\lambda_{\mathfrak{a}}$ on \mathfrak{a}_{c} such that $\chi_{\lambda_{\mathfrak{a}}}{ }^{\mathfrak{a}}=\chi$. Then by Lemma 25 there exist unique complex numbers $c_{s}\left(\mathfrak{a}^{+}\right)$such that

$$
g_{\mathfrak{b}}{ }^{\mathfrak{a}}=\sum_{s \in W(\mathfrak{q} / \mathfrak{a})} \varepsilon(s) c_{s}\left(\mathfrak{a}^{+}\right) \exp \left(s \lambda_{\mathfrak{a}}\right)
$$

on \mathfrak{a}^{+}.
Lemma 28. Suppose T_{z} is tempered on $\mathfrak{z}_{0}=\mathfrak{z} \cap \mathfrak{g}_{0}$. Then for a given $s \in W(\mathfrak{g} / \mathfrak{a})$, $c_{s}\left(\mathfrak{a}^{+}\right)=0$ unless $\left({ }^{1}\right)$

$$
\mathfrak{R} \lambda_{\mathfrak{a}}\left(s^{-1} H\right) \leqslant 0
$$

for all $H \in \mathfrak{a}^{+}$. Moreover $c_{s}\left(\mathfrak{a}^{+}\right) \in C$.
Corollary. Under the above conditions $g_{\mathfrak{z}}{ }^{\mathfrak{h}}=0$ implies $T_{3}=0$.
This is obvious from the lemma since $C=\{0\}$ if $\mathfrak{g}_{\mathfrak{b}}^{\mathfrak{h}}=0$.
Fix a real quadratic form Q on \mathfrak{g} such that 1) $Q(X)=\operatorname{tr}(\operatorname{ad} X)^{2}$ for $\left.X \in \mathfrak{g}_{1}, 2\right) Q$ is negative-definite on \mathfrak{c} and 3) \mathfrak{g}_{1} and \mathfrak{c} are orthogonal under Q. Let U be any subspace of \mathfrak{g} such that the restriction of Q on U is nondegenerate. Then we denote by $i_{U}(Q)$ the index of Q on U (see the proof of Lemma 12 of [2 (k)]).

Since $\mathfrak{c} \subset \mathfrak{a}$, it is obvious that the restriction of Q on \mathfrak{a} is nondegenerate. We shall prove Lemma 28 by induction on $i_{\mathfrak{a}}(Q)$. Let $l=$ rank g. It is obvious that $i_{\mathfrak{a}}(Q) \geqslant-l$. Now if $i_{\mathfrak{a}}(Q)=-l$, it follows that all roots of $(\mathfrak{g}, \mathfrak{a})$ (and therefore also of (z, a)) are imaginary. Hence (see [2(d), p. 237]) \mathfrak{a} is conjugate to \mathfrak{h} under Ξ and so our assertion is obvious in this case. Therefore we may assume that $i_{\mathrm{a}}(Q)>-l$ so that $\mathfrak{a}_{R} \neq\{0\}$. Since \mathfrak{c}_{0} is connected, it is clear that

$$
\mathfrak{a}^{+}=\mathfrak{a}_{I} \cap \mathfrak{g}_{0}+\mathfrak{a}_{R}^{+}(\mathfrak{z})
$$

where $\mathfrak{a}_{R}{ }^{+}(\mathfrak{z})$ is a connected component of $\mathfrak{a}^{\prime}(\mathfrak{z}: R) \cap \mathfrak{a}_{R}$.
Lemma 29. Let $\mathfrak{a}_{R}(\mathfrak{z})$ be the set of points in $\mathfrak{a} \cap[\mathfrak{z}, \mathfrak{z}]$ where every root of $(\mathfrak{z}, \mathfrak{a})$ takes real values. Similarly let $\mathfrak{a}_{I}(\mathfrak{z})$ be the set of those points of \mathfrak{a} where all roots of $(\mathfrak{z}, \mathfrak{a})$ take pure imaginary values. Then $\mathfrak{a}_{R}(\mathfrak{z})=\mathfrak{a}_{R}$ and $\mathfrak{a}_{I}(\mathfrak{z})=\mathfrak{a}_{I}$.
(1) See footnote I, p. 260.

It is obvious that $\mathfrak{a}_{I}(z) \supset a_{I}$. Moreover we may assume without loss of generality that $\mathfrak{a}_{I}(\mathfrak{z}) \subset \mathfrak{h}$ (see the proof of Lemma 21). Fix $H \in \mathfrak{a}_{I}(\mathfrak{z})$. Since every root of ($\mathfrak{g}, \mathfrak{h}$) is imaginary, it is clear that every eigenvalue of $\operatorname{ad} H$ is pure imaginary. Hence $H \in \mathfrak{a}_{I}$. This proves that $\mathfrak{a}_{I}(z)=\mathfrak{a}_{I}$. Let \mathfrak{m} be the centralizer of \mathfrak{a}_{I} in \mathfrak{g} and put $\mathfrak{m}_{\mathfrak{z}}=\mathfrak{m} \cap \mathfrak{z}$. Then it follows from Lemma 21 that

$$
\mathfrak{a}_{R}(\mathfrak{z})=\mathfrak{a} \cap\left[\mathfrak{m}_{\mathfrak{z}}, \mathfrak{m}_{\mathfrak{z}}\right] \subset \mathfrak{a} \cap[\mathfrak{m}, \mathfrak{m}]=\mathfrak{a}_{R}
$$

Since $\mathfrak{a}=\mathfrak{a}_{R}+\mathfrak{a}_{I}=\mathfrak{a}_{R}(\mathfrak{z})+\mathfrak{a}_{I}(\mathfrak{z})$ and both sums are direct (see $\S 11$), we conclude that $\mathfrak{a}_{R}(z)=\mathfrak{a}_{R}$.

Let $P_{R}(z)$ be the set of all real roots of (z, a) which take only positive values on $\mathfrak{a}_{R}{ }^{+}(\mathfrak{z})$. Then $P_{R}(\mathfrak{z})$ can be regarded as the set of all positive roots of $\left(\mathrm{m}_{3}, \mathfrak{a}\right)$ and if $m=\operatorname{dim} \mathfrak{a}_{R}$, we can choose a fundamental system $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of roots in $P_{R}(z)$ (see §11). Let $W_{R}(z / a)$ be the subgroup of $W(\mathfrak{g} / \mathfrak{a})$ generated by $s_{\alpha}\left(\alpha \in P_{R}(\mathfrak{z})\right)$. Then $W_{R}(z / a)$ is also generated by $s_{\alpha_{i}}(l \leqslant i \leqslant m)$ and $\mathfrak{a}_{R}{ }^{+}(z)$ is exactly the set of those $H \in \mathfrak{a}_{R}$ where $\alpha_{i}(H)>0(1 \leqslant i \leqslant m)$.

Now fix i and choose $H_{R} \in \mathfrak{a}_{R}$ such that $\alpha_{i}\left(H_{R}\right)=0, \alpha_{j}\left(H_{R}\right)>0(j \neq i, 1 \leqslant j \leqslant m)$ and $\alpha\left(H_{R}\right) \neq 0$ for any real root $\alpha \neq \pm \alpha_{i}$ of ($\mathfrak{g}, \mathfrak{a}$). Then $H_{R} \in \mathrm{Cl}\left(\mathfrak{a}_{R}{ }^{+}(\mathfrak{z})\right)$ and we can obviously choose a connected component $\mathfrak{a}_{R}{ }^{+}$of $a^{\prime}(R) \cap \mathfrak{a}_{R}$ such that 1) $\mathfrak{a}_{R}{ }^{+} \subset \mathfrak{a}_{R}{ }^{+}(\underset{z}{(z)}$) and 2) $H_{R} \in \mathrm{Cl}\left(\mathfrak{a}_{R}{ }^{+}\right)$. Define P and P_{R} as in $\S 11$ corresponding to $\mathfrak{a}_{R}{ }^{+}$and select $H_{I} \in \mathfrak{a}_{I} \cap \mathfrak{g}_{0}$ in such a way that $\alpha\left(H_{I}\right) \neq 0$ for $\alpha \in P$ unless $\alpha \in P_{R}$. This is obviously possible. Then it is clear that $H_{0}=H_{I}+H_{R} \in \mathrm{Cl}\left(\mathfrak{a}^{+}\right)$and the only root in P which vanishes at H_{0} is α_{i}. Therefore H_{0} is semiregular in z and $\zeta\left(H_{0}\right) \neq 0$. Define v and \mathfrak{b} as in $\S 13$. Then \mathfrak{b} is a Cartan subalgebra of z and, as we have seen during the proof of $[2(k)$, Lemma 12], $i_{\mathfrak{b}}(Q)=i_{\mathfrak{a}}(Q)-2$. Therefore the induction hypothesis is applicable to \mathfrak{b} and so it follows from Lemma 26 that

$$
c_{s}\left(\mathfrak{a}^{+}\right)+c_{s_{\alpha_{i}}}\left(\mathfrak{a}^{+}\right) \in C \quad(s \in W(\mathfrak{g} / \mathfrak{a}))
$$

Now fix $s \in W(\mathfrak{g} / \mathfrak{a})$. Then it follows from Lemma 23 that we can choose $y \in G_{c}$ such that $\mathfrak{a}_{c}=\left(\mathfrak{h}_{c}\right)^{y}$ and $s \lambda_{a}=\lambda^{y}$. Let $\left(\beta_{1}, \ldots, \beta_{r}\right)$ be a maximal set of linearly independent roots of $(\mathfrak{g}, \mathfrak{h})$. Since λ takes only pure imaginary values on \mathfrak{h}, we can choose $a_{j} \in \mathbf{R}$ such that

$$
\begin{aligned}
& \lambda-\sum_{1 \leqslant j \leqslant r} a_{j} \beta_{j}=0 \\
& s \lambda_{\mathfrak{a}}=\lambda^{y}=\sum_{j} a_{j} \beta_{j}^{y}
\end{aligned}
$$

on $\mathfrak{h}_{1}=\mathfrak{h} \cap \mathfrak{g}_{1}$. Hence
on $\mathfrak{a}_{1}=\mathfrak{a} \cap \mathfrak{g}_{1}$. Since β_{j}^{y} is a root of $(\mathfrak{g}, \mathfrak{a})$, it follows that $s \lambda_{\mathfrak{a}}$ takes only real values
on \mathfrak{a}_{R}. Moreover $\lambda=\lambda^{y}$ on \mathfrak{c} and so $\lambda_{\mathfrak{a}}\left(s^{-1} H\right)$ is pure imaginary for $H \in \mathfrak{a}_{1}$. Fix a non. empty open subset U of \mathfrak{a}_{t} such that 1) $U \subset \mathfrak{a}_{I} \cap \mathfrak{g}_{0}$ and 2) all the roots of ($\mathfrak{g}, \mathfrak{a}$) which take the value zero on U, are real. Also fix a connected component $\mathfrak{a}_{R}{ }^{+}$of $\mathfrak{a}_{R}{ }^{+}(z) \cap \mathfrak{a}^{\prime}(R)$. Then it is clear that

$$
U+\mathfrak{a}_{R}^{+} \subset \mathfrak{a}^{\prime} \cap \mathfrak{z}_{0}
$$

Since T_{z} is tempered on z_{0}, it follows from Lemma 17 that $\left(\pi_{b}{ }^{a}\right)^{q} g_{z}{ }^{a}$ is tempered on $\mathfrak{a}^{\prime} \cap \gamma_{0}$ for some $q \geqslant 0$. Fix a function $\gamma \in C_{c}^{\infty}(U)$ and put

$$
g_{\gamma}(H)=\int_{V} \gamma\left(H_{I}\right)\left(\pi_{z}^{\mathfrak{a}}\left(H+H_{I}\right)\right)^{a} g_{z}{ }^{\mathfrak{a}}\left(H+H_{I}\right) d H_{I} \quad\left(H \in \mathfrak{a}_{R}{ }^{+}\right)
$$

where $d H_{I}$ is a Euclidean measure on \mathfrak{a}_{I}. Then it is obvious that g_{γ} is tempered on $\mathfrak{a}_{R}{ }^{+}$. Let μ_{s} and ν_{s} respectively denote the restrictions of $s \lambda_{\mathfrak{a}}(s \in W(\mathfrak{g} / \mathfrak{a}))$ on \mathfrak{a}_{R} and \mathfrak{a}_{r}. Then it is clear that

$$
g_{\gamma}(H)=\sum_{s \in W(\mathbb{B} / a)} \varepsilon(s) c_{s}\left(\mathfrak{a}^{+}\right) e^{\mu_{s}(H)} \int \gamma\left(H_{I}\right)\left(\pi_{z}{ }^{\mathfrak{a}}\left(H+H_{I}\right)\right)^{q} e^{v_{s}\left(H_{I}\right)} d H_{I}
$$

for $H \in \mathfrak{a}_{R}{ }^{+}$. Fix $s_{0} \in W(\mathfrak{g} / \mathfrak{a})$ and suppose $\mu_{\mathrm{s}_{\mathrm{a}}}(H)>0$ for some $H \in \mathfrak{a}_{R}{ }^{+}$. Let W_{0} be the set of all $s \in W(\mathfrak{g} / \mathfrak{a})$ such that $\mu_{s}=\mu_{s_{0}}$. Then it follows from Lemma 15 that

$$
\sum_{s \in W_{0}} \varepsilon(s) c_{s}\left(\mathfrak{a}^{+}\right) \int \gamma\left(H_{I}\right)\left(\pi_{z}{ }^{\mathfrak{a}}\left(H+H_{I}\right)\right)^{q} e^{v_{s}\left(H_{I}\right)} d H_{I}=0 .
$$

This being true for every $\gamma \in C_{c}^{\infty}(U)$, we conclude that

$$
\sum_{s \in W_{0}} \varepsilon(s) c_{s}\left(\mathfrak{a}^{+}\right) e^{v_{s}}=0
$$

But since $\mu_{s}=\mu_{s_{0}}\left(s \in W_{0}\right)$, it follows that

$$
\sum_{s \in W_{0}} \varepsilon(s) c_{s}\left(\mathfrak{a}^{+}\right) e^{s \lambda_{a}}=0 .
$$

However $\lambda_{\mathfrak{a}}$ being regular, this implies that $c_{s}\left(\mathfrak{a}^{+}\right)=0\left(s \in W_{0}\right)$. Therefore in particular $c_{s_{0}}\left(\mathfrak{a}^{+}\right)=0$. Since $\mathfrak{a}_{R}{ }^{+}$was an arbitrary component of $\mathfrak{a}_{R}{ }^{+}(\mathfrak{z}) \cap \mathfrak{a}^{\prime}(R)$, the first assertion of Lemma 28 is now obvious.

It remains to show that $c_{s}\left(\mathfrak{a}^{+}\right) \in C$ for all $s \in W(\mathrm{~g} / \mathrm{a})$. Suppose this is false. Let W_{1} be the set of all $s \in W(\mathfrak{a} / \mathfrak{a})$ such that $c_{s}\left(\mathfrak{a}^{+}\right) \notin C$. We have seen above that

$$
c_{s}\left(\mathfrak{a}^{+}\right)+c_{s_{\alpha_{i}}}\left(\mathfrak{a}^{+}\right) \in C \quad(s \in W(\mathrm{~g} / \mathfrak{a}), \quad \mathbf{l} \leqslant i \leqslant m)
$$

Therefore $s_{\alpha_{i}} s \in W_{1}$ whenever $s \in W_{1}$. This shows that W_{1} is a union of cosets of the form $W_{R}(z / a) s$.

Introduce compatible orders on the spaces of real-valued linear functions on \mathfrak{a}_{R} and $\mathfrak{a}_{R}+(-1)^{\frac{1}{2}} \mathfrak{a}_{I}$ corresponding to some connected component $\mathfrak{a}_{R}{ }^{+}$of $\mathfrak{a}_{R}{ }^{+}(\mathfrak{z}) \cap \mathfrak{a}^{\prime}(R)$ (see § 11). We have seen that $s \lambda_{\mathfrak{a}}(s \in W(\mathfrak{g} / a))$ takes only real values on $\mathfrak{a}_{R}+(-1)^{\frac{1}{2}} \mathfrak{a}_{I}$. Choose $\sigma \in W_{1}$ such that $\mu=\sigma \lambda_{a} \geqslant s \lambda_{a}$ for all $s \in W_{1}$. Then $\mu \geqslant s \mu$ for all $s \in W_{R}(z / a)$ and therefore we conclude from Lemma 22 (applied to ($\mathfrak{z}, \mathfrak{a})$) that $\mu(H) \geqslant 0$ for $H \in \mathfrak{a}_{R}{ }^{+}(\mathfrak{z})$. However $c_{\sigma}\left(\mathfrak{a}^{+}\right) \neq 0$ since $\sigma \in W_{r}$. Therefore it follows from the above proof that $\mu(H) \leqslant 0$ for $H \in \mathfrak{a}_{R}{ }^{+}(z)$. This shows that $\mu=0$ on \mathfrak{a}_{R} and therefore $s_{x_{i}} \mu=\mu(1 \leqslant i \leqslant m)$. But since λ_{a} is regular and $m=\operatorname{dim} \mathfrak{a}_{R} \geqslant 1$, this is impossible. The proof of Lemma 28 is now complete.

§ 15. Proof of Lemma 30

We keep to the notation of $\S 14$. Let $\mathfrak{z}_{1}, \mathfrak{z}_{2}$ be two subalgebras of \mathfrak{g} and \mathfrak{h} a Cartan subalgebra of \mathfrak{g} such that:

1) z_{i} is reductive in $g(i=1,2)$ and $z_{1} \supset z_{2} \supset \mathfrak{h}$.
2) Every root of ($\mathfrak{g}, \mathfrak{h}$) is imaginary.
3) If \mathfrak{a} is any Cartan subalgebra of z_{2}, then every real root of $\left(z_{1}, \mathfrak{a}\right)$ is also a root of $\left(z_{2}, \mathfrak{a}\right)$.

Define χ as in § 14 .
Let T_{i} be a tempered distribution on $\mathfrak{z}_{i} \cap \mathfrak{g}_{0}$ such that

$$
\partial\left(p_{z_{i}}\right) T_{i}=\chi(p) T_{i} \quad\left(p \in I\left(g_{c}\right), i=1,2\right)
$$

Consider the set P of positive roots of $(\mathfrak{g}, \mathfrak{h})$ and let P_{i} denote the subset of those $\beta \in P$ which are roots of $\left(\mathcal{z}_{i}, \mathfrak{h}\right)(i=1,2)$. Then $P \supset P_{1} \supset P_{2}$. Put $\pi_{i}=\prod_{\alpha \in P_{i}} \alpha$. Then it is clear that π_{1} / π_{2} is a polynomial function on \mathfrak{h}_{c} which is invariant under the Weyl reflexions s_{α} for $\alpha \in P_{2}$. Therefore by Chevalley's theorem [2(c), Lemma 9] there exists a unique invariant polynomial function η_{0} on $子_{2}$ which coincides with π_{1} / π_{2} on \mathfrak{h}.

Put $g_{0}{ }^{\prime}=g_{0} \cap g^{\prime}$ where g^{\prime} denotes, as before, the set of all regular elements of g.
Lemma 30. Suppose $T_{2}=\eta_{0} T_{1}$ pointwise on $\mathfrak{h} \cap \mathfrak{g}_{0}{ }^{\prime}$. Then $T_{2}=\eta_{0} T_{1}$ pointwise on $z_{2} \cap \mathrm{~g}_{0}{ }^{\prime}$.

Let \mathfrak{a} be a Cartan subalgebra of z_{2}. It would be enough to show that $T_{2}=\eta_{0} T_{1}$ pointwise on $\mathfrak{a} \cap g_{0}{ }^{\prime}$. We shall do this by induction on $i_{a}(Q)$ as in § 14. Let Ξ_{2} be the analytic subgroup of G corresponding to z_{2}. If $i_{a}(Q)=-l$, then \mathfrak{a} is conjugate to \mathfrak{h} under Ξ_{2} and so our assertion is obvious. Hence we may assume that $i_{\mathfrak{a}}(Q)>-l$ so that $m=\operatorname{dim} \mathfrak{a}_{R} \geqslant 1$.

We use the notation of $\S 14$ corresponding to $z=z_{1}, z_{2}$. In particular $\mathfrak{g}_{z_{i}}{ }^{a}$ is defined corresponding to T_{i} and we put $g_{i}{ }^{a}=g_{z_{i}}{ }^{a}, \pi_{i}{ }^{a}=\pi_{z_{i}}{ }^{a}(i=1,2)$. It follows from our assumptions on z_{1}, z_{2} that

$$
\mathfrak{a}^{\prime}\left(\mathfrak{z}_{1}: R\right)=\mathfrak{a}^{\prime}\left(\mathfrak{z}_{2}: R\right)
$$

Fix a connected component $\mathfrak{a}_{R}{ }^{+}\left(\mathfrak{z}_{2}\right)$ of $\mathfrak{a}^{\prime}\left(\mathfrak{z}_{2}: R\right) \cap \mathfrak{a}_{R}$ and let $P_{R}\left(\gamma_{2}\right)$ be the set of all real roots of $\left(\mathfrak{z}_{2}, \mathfrak{a}\right)$ which take only positive values on $\mathfrak{a}_{R}{ }^{+}\left(\mathfrak{z}_{2}\right)$. Select the fundamental system $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of roots in $P_{R}\left(\gamma_{2}\right)$ as in $\S 14$.

Choose a linear function λ_{a} on \mathfrak{a}_{c} such that $\chi=\chi_{i}{ }_{a}$. Then by Lemma 25 there exist complex numbers $c_{s}(i)(s \in W(\mathfrak{g} / \mathfrak{a}))$ such that

$$
g_{i}^{\mathrm{a}}=\sum_{s \in W(\mathrm{~g} / \mathrm{a})} \varepsilon(s) c_{s}(i) e^{s \hat{\lambda}_{\mathfrak{a}}} \quad(i=1,2)
$$

on $\mathfrak{a}^{+}=\mathfrak{g}_{0} \cap \mathfrak{a}_{I}+\mathfrak{a}_{R}^{+}\left(\mathfrak{z}_{2}\right)$. It is obvious that

$$
\eta_{\mathbf{0}}=a \pi_{\mathbf{1}}{ }^{a} / \pi_{\mathbf{2}}{ }^{a}
$$

on \mathfrak{a} where a is a constant $(a= \pm 1)$. Therefore it would be sufficient to show that $g_{2}{ }^{\text {a }}=a g_{1}{ }^{\mathfrak{a}}$ on \mathfrak{a}^{+}.

Fix $j(1 \leqslant j \leqslant m)$. Then (see § 14) we can select an element $H_{0} \in \mathrm{Cl}\left(\mathfrak{a}^{+}\right)$such that 1) $\alpha_{j}\left(H_{0}\right)=0$ and 2) $\alpha\left(H_{0}\right) \neq 0$ for any root $\alpha \neq \pm \alpha_{j}$ of $(\mathfrak{g}, \mathfrak{a})$. It is clear that H_{0} is semiregular in each of the three algebras z_{1}, z_{2} and \mathfrak{g}. Define ν and \mathfrak{b} as in $\S 13$. Then $\mathfrak{b} \subset \mathfrak{z}_{2}$ and $i_{\mathfrak{6}}(Q)=i_{\mathfrak{a}}(Q)-2$. Hence our induction hypothesis is applicable to \mathfrak{b} and so it follows from Lemma 26 that

$$
c_{s}(2)+c_{s_{\alpha_{j}} s}(2)=a\left\{c_{s}(1)+c_{s_{\alpha_{j}} s}(1)\right\}
$$

for $s \in W(\mathfrak{g} / \mathfrak{a})$.
In order to complete the proof we have to show that $c_{s}(2)=a c_{s}(1)$ for all $s \in W(\mathfrak{g} / \mathfrak{a})$. Suppose this is false. Let W_{1} be the set of all $s \in W(\mathfrak{g} / \mathfrak{a})$ such that $c_{s}(2) \neq a c_{s}(1)$. Then it follows from the above result that if $s \in W_{1}$, the same holds for $s_{\alpha_{j}} s(1 \leqslant j \leqslant m)$. Define $W_{R}\left(\gamma_{2} / \mathfrak{a}\right)$ as in $\S 14$. Then W_{1} is a union of cosets of the form $W_{R}\left(\gamma_{2} / \mathfrak{a}\right) s$. Fix a connected component $\mathfrak{a}_{R}{ }^{+}$of $\mathfrak{a}_{R}{ }^{+}\left(\mathfrak{z}_{2}\right) \cap \mathfrak{a}^{\prime}(R)$ and define an order in the space \mathfrak{F} of real-valued linear functions on $\mathfrak{a}_{R}+(-1)^{\frac{1}{2}} \mathfrak{a}_{I}$ corresponding to $\mathfrak{a}_{R}{ }^{+}$as in §11. We have seen in $\S 14$ that $s \lambda_{a} \in \mathfrak{F}$ for all $s \in W(\mathrm{~g} / \mathrm{a})$. Choose $\sigma \in W_{1}$ such that $\mu=\sigma \lambda_{\mathrm{a}} \geqslant s \lambda_{a}$ for all $s \in W_{1}$. Then $\mu \geqslant s \mu$ for $s \in W_{R}\left(z_{2} / \mathfrak{a}\right)$. Therefore by Lemma $22, \mu(H) \geqslant 0$ for $H \in \mathfrak{a}_{R}{ }^{+}$. On the other hand since $\sigma \in W_{1}$, it is clear that $c_{\sigma}(1)$ and $c_{\sigma}(2)$ cannot both be zero. Therefore it follows from Lemma 28 that $\mu(H) \leqslant 0$ for $H \in \mathfrak{a}_{R}{ }^{+}$. But this
implies that $\mu=0$ on $\mathfrak{\pi}_{R}$ and therefore $s_{\alpha_{j}} \mu=\mu(1 \leqslant j \leqslant m)$. Since $m \geqslant 1$ and λ_{a} is regular, this is impossible and thus Lemma 30 is proved.

We continue our assumption that $\mathfrak{h}_{I}=\mathfrak{h}$ and define θ as in $[2(\mathrm{~m}), \S 16]$ corresponding to \mathfrak{h}.

Lemma 31. Let z_{1} be a subalgebra of \mathfrak{g} such that $\theta\left(z_{1}\right)=z_{1}$ and $z_{1} \supset \mathfrak{h}$. Fix an element $H_{1} \in \mathfrak{h}$ and let \mathfrak{z}_{2} be the centralizer of H_{1} in \mathfrak{z}_{1}. Then \mathfrak{z}_{1}, z_{2} satisty all the conditions required above.

Since $\theta=1$ on \mathfrak{h}, it is clear that $\theta\left(\mathfrak{z}_{i}\right)=\mathfrak{z}_{i} \supset \mathfrak{h}$ and hence $\mathfrak{z}_{i}(i=1,2)$ is reductive in \mathfrak{g} (see [2(d), Lemma 10]). Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{z}_{2}. Then we know from Lemma 29 that $\mathfrak{a}_{R}\left(\mathfrak{z}_{i}\right)=\mathfrak{a}_{R}$ and $\mathfrak{a}_{I}\left(\mathfrak{z}_{i}\right)=\mathfrak{a}_{I}(i=1,2)$. Let m be the centralizer of \mathfrak{a}_{I} in z_{2}. Since $H_{1} \in \mathfrak{a}_{I}, \mathfrak{m}$ is also the centralizer of \mathfrak{a}_{I} in z_{1}. Therefore the real roots of $\left(z_{i}, a\right)$ are the same as the roots of $(\mathfrak{m}, \mathfrak{a})$ (see § 11). This proves the lemma.

§ 16. The distribution \boldsymbol{T}_{λ}

Let \mathfrak{b} be a Cartan subalgebra of \mathfrak{g} and assume that every root of ($\mathfrak{g}, \mathfrak{b}$) is imaginary. Consider the space \mathfrak{F} of all linear functions on \mathfrak{b}_{c} which take only pure imaginary values on \mathfrak{b}. Define π, \boldsymbol{w} and $W=W(\mathfrak{g} / \mathfrak{b})$ as usual (corresponding to \mathfrak{b}) and let \mathfrak{F}^{\prime} be the set of all $\lambda \in \mathfrak{F}$ where $\varpi(\lambda) \neq 0$. Consider the subgroup $W_{k}=W_{k}(\mathfrak{g} / \mathfrak{b})$ of W generated by s_{β} corresponding to the compact roots β of ($\mathfrak{g}, \mathfrak{b}$) (see [2(k), §4]). Then $W_{k}=W_{G}$ (see Cor. 2 of [2(m), Lemma 6]) in the notation of [2(k), §4].

Theorem 2. For any $\lambda \in \mathfrak{F}^{\prime}$, there exists a unique distribution T_{λ} on \mathfrak{g} with the following properties:

1) T_{λ} is invariant and tempered.
2) $\partial(p) T_{\lambda}=p_{6}(\lambda) T_{\lambda} \quad\left(p \in I\left(g_{\mathrm{c}}\right)\right)$.
3) $T_{\lambda}(H)=\pi(H)^{-1} \sum_{s \in W_{k}} \varepsilon(s) e^{\lambda\left(s^{-1} H\right)} \quad\left(H \in \mathfrak{b}^{\prime}\right)$.

The uniqueness is obvious from the corollary of Lemma 28. Hence only the existence requires proof.

First assume that \mathfrak{g} is semisimple. We identify \mathfrak{g}_{c} and \mathfrak{b}_{c} with their respective duals by means of the Killing form of g (see [2(j), §6]). Fix a Euclidean measure $d X$ on \mathfrak{g} and put

$$
\hat{f}(Y)=\int f(X) \exp \left((-1)^{\frac{1}{2}} B(X, Y)\right) d X \quad(Y \in \mathfrak{g})
$$

for $f \in \mathrm{C}(\mathrm{g})$. (As usual $B(X, Y)=\operatorname{tr}\left(\operatorname{ad} X\right.$ ad Y) for $X, Y \in \mathfrak{g}_{c}$.) Moreover for any $H_{0} \in \mathfrak{b}^{\prime}$ define

$$
\tau_{H_{0}}(f)=\psi_{\hat{f}}\left(H_{0}\right)=\pi\left(H_{0}\right) \int_{G^{*}} \hat{f}\left(x^{*} H_{0}\right) d x^{*} \quad(f \in \mathcal{C}(\mathfrak{g}))
$$

in the notation of [2(k),§5] (for $\mathfrak{G}=\mathfrak{b}$). Then we know from [2 (d), Theorem 3] that the integral is absolutely convergent and $\tau_{H_{0}}$ is an invariant and tempered distribution on \mathfrak{g} which satisfies (see [2(d), p. 226]) the differential equations

$$
\partial(p) \tau_{H_{0}}=p\left((-1)^{\frac{1}{2}} H_{0}\right) \tau_{H_{0}} \quad\left(p \in I\left(\mathfrak{g}_{c}\right)\right)
$$

Fix $H_{0} \in \mathfrak{b}^{\prime}$ and let $\mathfrak{T}_{H_{0}}$ denote the space of all invariant and tempered distributions T on \mathfrak{g} such that

$$
\partial(p) T=p\left((-1)^{\frac{1}{2}} H_{0}\right) T \quad\left(p \in I\left(g_{c}\right)\right)
$$

For any $T \in \mathfrak{I}_{H_{0}}$, let g_{T} denote the analytic function on \mathfrak{b} (see [2 (1), Theorem 2]) given by

$$
g_{T}(H)=\pi(H) T(H) \quad\left(H \in \mathfrak{b}^{\prime}\right)
$$

Then by Lemma 25,

$$
g_{T}(H)=\sum_{s \in W} \varepsilon(s) c_{s}(T) \exp \left((-1)^{\frac{1}{2}} B\left(s H_{0}, H\right)\right) \quad(H \in \mathfrak{b})
$$

where $c_{s}(T)$ are uniquely determined complex numbers. It is clear that $g_{T}{ }^{t}=\varepsilon(t) g_{T}$ and therefore $c_{t s}(T)=c_{s}(T)$ for $t \in W_{G}=W_{k}$ and $s \in W^{\circ}$. On the other hand the linear mapping $T \rightarrow g_{T}$ is injective from the corollary of Lemma 28. Hence it is obvious that

$$
\operatorname{dim} \mathfrak{T}_{H_{0}} \leqslant\left[W: W_{k}\right]
$$

On the other hand it is clear that $\tau_{s H_{0}} \in \mathfrak{T}_{H_{0}}(s \in W)$. Put $r=\left[W: W_{k}\right]$ and select $s_{i} \in W \quad(1 \leqslant i \leqslant r)$ such that

$$
W=\bigcup_{1 \leqslant i \leqslant r} W_{k} s_{i}
$$

Write $\tau_{i}=\tau_{s_{i} H_{0}}$. Then we claim that $\tau_{1}, \ldots, \tau_{r}$ are linearly independent over \mathbf{c}. Put

$$
\sigma_{i}(f)=\psi_{f}\left(s_{i} H_{0}\right) \quad(f \in \mathbb{C}(\mathrm{~g}))
$$

Since $f \rightarrow \hat{f}$ is a topological mapping of $\mathcal{C}(g)$ onto itself, it would be enough to verify that the tempered distributions $\sigma_{1}, \ldots, \sigma_{r}$ are linearly independent. Since $s_{i} H_{0}$ is semisimple, the orbit $\left(s_{i} H_{0}\right)^{G}$ is closed in g (see [1, p. 523]). Therefore it follows from the definition of σ_{i} that

$$
\text { Supp } \sigma_{i}=\left(s_{i} H_{0}\right)^{c} .
$$

Now we claim that $\left(s_{i} H_{0}\right)^{G} \cap\left(s_{j} H_{0}\right)^{G}=\emptyset$ if $i \neq j$. For otherwise $s_{i} H_{0}=\left(s_{j} H_{0}\right)^{x}$ for some $x \in G$. Since H_{0} is regular, this implies that $s_{i}=s s_{j}$ for some $s \in W_{G}=W_{k}$. But this is impossible from the definition of $\left(s_{1}, \ldots, s_{r}\right)$. This shows that the sets Supp σ_{i} are disjoint and non-empty and therefore the distributions $\sigma_{i}(1 \leqslant i \leqslant r)$ are linearly independent.

So it is now obvious that $\operatorname{dim} \mathfrak{T}_{H_{0}}=r$ and $\tau_{1}, \ldots, \tau_{r}$ is a base for $\mathfrak{I}_{H_{0}}$. Let a_{s} $(s \in W)$ be given complex numbers such that $a_{t s}=a_{s}\left(t \in W_{k}\right)$. Then it follows from the above result that we can choose a unique element $T \in \mathscr{T}_{H_{0}}$ such that $a_{s}=c_{s}(T)$. Hence, in particular, there exists a distribution T in $\mathfrak{T}_{H_{0}}$ such that

$$
g_{T}(H)=\sum_{s \in W_{k}} \varepsilon(s) \exp \left((-1)^{\frac{1}{2}} B\left(s H_{0}, H\right)\right)
$$

This proves Theorem 2 when \mathfrak{g} is semisimple.
Now we come to the general case. Define \mathfrak{g}_{1} and \mathfrak{c} as before (see §2), put $\mathfrak{b}_{1}=\mathfrak{b} \cap \mathfrak{g}_{1}$ and let λ_{1} denote the restriction of λ on $\mathfrak{b}_{1 c}$. Fix Euclidean measures $d C$ and $d Z$ on c and \mathfrak{g}_{1} respectively such that $d X=d C d Z$ for $X=C+Z\left(C \in \mathfrak{c}, Z \in \mathfrak{g}_{1}\right)$. Since \mathfrak{g}_{1} is semisimple, there exists, from the above proof, an invariant and tempered distribution T_{1} on g_{1} such that $\partial(p) T_{1}=p_{6}(\lambda) T_{1}\left(p \in I\left(\mathrm{~g}_{1 c}\right)\right)$ and

Put

$$
\pi(H) T_{1}(H)=\sum_{s \in W_{k}} \varepsilon(s) \exp \left(\lambda_{1}\left(s^{-1} H\right)\right) \quad\left(H \in \mathfrak{b}_{1} \cap \mathfrak{g}^{\prime}\right)
$$

$$
T_{\lambda}(f)=T_{1}\left(f_{1}\right) \quad\left(f \in C_{c}^{\infty}(\mathfrak{g})\right)
$$

where

$$
f_{1}(Z)=\int f(Z+C) e^{\lambda_{(C)}} d C \quad\left(Z \in \mathfrak{g}_{1}\right)
$$

Since λ takes only pure imaginary values on c, it is clear that T_{λ} satisfies all the conditions of Theorem 2.

Fix a Cartan subalgebra \mathfrak{a} of \mathfrak{g} and an element $y \in G_{c}$ such that $\left(\mathfrak{b}_{c}\right)^{y}=\mathfrak{a}_{c}$. For any $\lambda \in \mathfrak{F}^{\prime}$, define the analytic function $g_{\lambda^{a}}$ on $\mathfrak{a}^{\prime}(R)$ corresponding to T_{λ} as usual so that

$$
g_{\lambda}{ }^{a}(H)=\pi^{\mathfrak{a}}(H) T_{\lambda}(H) \quad\left(H \in \mathfrak{a}^{\prime}\right)
$$

Fix a connected component \mathfrak{a}^{+}of $\mathfrak{a}^{\prime}(R)$. Then by Lemmas 25 and 28,

$$
g_{\lambda}{ }^{a}=\sum_{s \in W} \varepsilon(s) c\left(s: \lambda: \mathfrak{a}^{+}\right) e^{\left(s \lambda^{y}\right.}
$$

on \mathfrak{a}^{+}where $c\left(s: \lambda: \mathfrak{a}^{+}\right) \in \mathbf{Z}$.

Lemma 32. For fixed $s \in W$ and \mathfrak{a}^{+}, the integer $c\left(s: \lambda: \mathfrak{a}^{+}\right)\left(\lambda \in \mathfrak{F}^{\prime}\right)$ depends only on the connected component of λ in \mathfrak{F}.

In view of the last part of the proof of Theorem 2, it is clear that it would be sufficient to consider the case when \mathfrak{g} is semisimple. Define $\tau_{H_{0}}$ as above for $H_{0} \in \mathfrak{b}^{\prime}$. Then by [2(1), Theorem 1] there exists an analytic function $F_{H_{0}}$ on \mathfrak{g}^{\prime} such that

$$
\tau_{H_{0}}(f)=\psi_{\hat{f}}\left(H_{0}\right)=\int F_{H_{0}}(X) f(X) d X \quad\left(f \in C_{c}^{\infty}(g)\right)
$$

We know from Lemma 25 that

$$
\pi^{a}(H) F_{H_{0}}(H)=\sum_{s \in W} \varepsilon(s) a_{s}\left(H_{0}\right) \exp \left((-1)^{\frac{1}{2}} B\left(s H_{0}, y^{-1} H\right)\right)
$$

for $H \in \mathfrak{a}^{+^{\prime}}=\mathfrak{a}^{+} \cap \mathfrak{g}^{\prime}$. Here $a_{s}\left(H_{0}\right)$ are uniquely determined complex numbers. Moreover we know from [2 (d), pp. 229-231] that a_{s}, regarded as functions on \mathfrak{b}^{\prime}, are locally constant. By considering, in particular, the case $\mathfrak{a}=\mathfrak{b}$, we get

$$
\pi(H) F_{H_{0}}(H)=\sum_{s \in W} \varepsilon(s) b_{s}\left(H_{0}\right) \exp \left((-1)^{\frac{1}{2}} B\left(s H_{0}, H\right)\right)
$$

for $H, H_{0} \in \mathfrak{b}^{\prime}$. Here b_{s} are certain locally constant functions on \mathfrak{b}^{\prime}.
Now define $s_{1}=1, s_{2}, \ldots, s_{\tau}$ as in the proof of Theorem 2 and put

$$
b_{i j}\left(H_{0}\right)=b_{s_{i} s_{j}}-1\left(s_{j} H_{0}\right) \quad\left(1 \leqslant i, j \leqslant r, H_{0} \in \mathfrak{b}^{\prime}\right) .
$$

Fix $H_{0} \in \mathfrak{b}^{\prime}$. Since $b_{t s}\left(H_{0}\right)=b_{s}\left(H_{0}\right)\left(t \in W_{k}\right)$ and $\tau_{s_{i} H_{0}}(1 \leqslant i \leqslant r)$ are linearly independent, it follows from the proof of Theorem 2 that the matrix $\left(b_{i j}\left(H_{0}\right)\right)_{1 \leqslant i, j \leqslant r}$ is non-singular. Let $\left(b^{i j}\left(H_{0}\right)\right)_{1 \leqslant i, j \leqslant r}$ denote its inverse. Put $b^{j}=b^{i 1}$ and

$$
T_{H_{0}}=\sum_{1 \leqslant j \leqslant r} b^{j}\left(H_{0}\right) \tau_{s_{j} H_{0}} \quad\left(H_{0} \in \mathfrak{b}^{\prime}\right) .
$$

Then it is obvious that $T_{H_{0}} \in \mathfrak{T}_{H_{0}}$ (in the notation of the proof of Theorem 2) and

$$
\pi(H) T_{H_{0}}(H)=\sum_{s \in W_{k}} \varepsilon(s) \exp \left((-1)^{\frac{1}{2}} B\left(s H_{0}, H\right)\right) \quad\left(H \in \mathfrak{b}^{\prime}\right)
$$

for $H_{0} \in \mathfrak{b}^{\prime}$. Hence it follows from Theorem 2 that $T_{H_{0}}=T_{\lambda}$ where λ is the element of \mathfrak{F}^{\prime} given by $\lambda(H)=(-1)^{\frac{1}{2}} B\left(H_{0}, H\right)(H \in \mathfrak{b})$. Therefore

$$
g_{\lambda}^{a}(H)=\sum_{1 \leqslant j \leqslant \tau} b^{j}\left(H_{0}\right) \pi^{\mathfrak{a}}(H) F_{s_{j} H_{0}}(H) \quad\left(H \in \mathfrak{a}^{\prime}\right)
$$

and this shows that

$$
c\left(s: \lambda: \mathfrak{a}^{+}\right)=\sum_{1 \leqslant j \leqslant r} \varepsilon\left(s_{j}\right) b^{j}\left(H_{0}\right) a_{s s_{j}}-1\left(s_{j} H_{0}\right) \quad(s \in W) .
$$

Since b^{j} and a_{s} are locally constant on \mathfrak{b}^{\prime}, the assertion of the lemma is now obvious.
\mathfrak{F}^{+}being any connected component of \mathfrak{F}^{\prime}, we denote by $c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)$the integer $c\left(s: \lambda: \mathfrak{a}^{+}\right)\left(\lambda \in \mathfrak{F}^{+}\right)$. Put

$$
\phi_{\lambda}=\varpi(\lambda)^{-1} \nabla_{\mathfrak{g}} F_{\lambda} \quad\left(\lambda \in \mathfrak{F}^{\prime}\right)
$$

where F_{λ} is the analytic function on g^{\prime} corresponding to T_{λ} and $\nabla_{\mathfrak{g}}$ is defined as before (see § 2).

Lemma 33. $\quad \phi_{\lambda}=\sum_{s \in W} c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) e^{(s \mathfrak{s}) y}$
on \mathfrak{a}^{+}for $\lambda \in \mathfrak{F}^{+}$.
This is obvious from the definition of ∇_{g} and the above formula for $g_{\lambda}{ }^{a}$.
For any $s \in W$ define an element $s^{y} \in W(\mathfrak{g} / \mathfrak{a})$ as follows:

$$
(s H)^{y}=s^{y} H^{y} \quad\left(H \in \mathfrak{V}_{c}\right)
$$

Then $s \rightarrow s^{y}$ is an isomorphism of $W(\mathrm{~g} / \mathfrak{a})$ whose inverse we denote by $t \rightarrow t^{y^{-1}}$ $(t \in W(\mathfrak{g} / \mathfrak{a}))$. Define the subgroup $W_{G}(\mathfrak{g} / \mathfrak{a})$ of $W(\mathfrak{g} / \mathfrak{a})$ as usual (see $\left.[2(\mathrm{k}), \S 4]\right)$. We have seen above that $W_{k}=W_{G}=W_{G}(\mathfrak{g} / \mathfrak{b})$.

Corollary. Fix $s \in W, t \in W_{G}(\mathrm{~g} / \mathrm{a})$ and $u \in W_{k}$. Then

$$
c\left(t^{y^{-1}} s u^{-1}: u \mathfrak{F}^{+}: t \mathfrak{a}^{+}\right)=c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)
$$

Fix $\lambda \in \mathfrak{F}^{+}$. Then it is clear from Theorem 2 that $T_{u \lambda}=\varepsilon(u) T_{\lambda}$ and therefore $\phi_{u \lambda}=\phi_{\lambda}$. Moreover ϕ_{λ} is invariant under G and therefore its restriction on \mathfrak{a} is invariant under $W_{G}(\mathrm{~g} / \mathfrak{a})$. Our assertion is an immediate consequence of these facts.

§ 17. Application of Theorem 1 to \boldsymbol{T}_{λ}

Now we use the notation of $\S 2$ and assume that $\mathfrak{h}_{1}=\mathfrak{b}$. Let $m_{i}(R)$ denote the number of positive real roots of $\left(\mathfrak{g}, \mathfrak{h}_{i}\right)(1 \leqslant i \leqslant r)$ and put $m=\frac{1}{2}(\operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{g})$. For any $\lambda \in \mathfrak{F}^{\prime}$, let $\phi_{\lambda, i}$ denote the restriction of ϕ_{λ} on \mathfrak{h}_{i}.

Define numbers $c_{i}>0$ by the relation

$$
\int_{\mathfrak{g}} f(X) d X=\sum_{1 \leqslant i \leqslant r} c_{i}(-1)^{m_{i}(I)} \int \varepsilon_{R, i} \pi_{i} \psi_{f, i} d_{i} H \quad\left(f \in C_{c}^{\infty}(\mathrm{g})\right)
$$

where $m_{i}(I)$ is the number of positive imaginary roots of $\left(\mathrm{g}, \mathfrak{h}_{i}\right)$ (see [2(k), Cor. 1 of Lemma 30]). Also put $d H=d_{1} H$.

Lemma 34. For any $f \in C_{c}^{\infty}(\mathfrak{g})$ and $\lambda \in \mathfrak{F}^{\prime}$,

$$
\begin{aligned}
c_{1}\left[W_{k}\right] \int_{\mathfrak{b}} \partial(\varpi) \psi_{f} e^{\lambda} d H & =c_{1} \int_{\mathfrak{b}} \partial(\varpi) \psi_{f} \sum_{s \in W_{k}} e^{s \lambda} d H \\
& =\varpi(\lambda) T_{\lambda}(f)-\sum_{2 \leqslant i \leqslant r}(-1)^{m_{\mathcal{L}}(R)} c_{i} \int_{\mathfrak{q}_{i}} \varepsilon_{R, i} \partial\left(\varpi_{i}\right) \psi_{f, i} \cdot \phi_{\lambda, i} d_{i} H
\end{aligned}
$$

Since the number of positive complex roots of $\left(\mathfrak{g}, \mathfrak{h}_{i}\right)$ is even (see the proof of Lemma 9 of [2(k)]), it follows that

$$
m_{i}(R)+m_{i}(I) \equiv m \bmod 2
$$

Hence

$$
(-1)^{m} \int_{\mathfrak{g}} f(X) d X=\sum_{1 \leqslant i \leqslant r} c_{i}(-1)^{m_{i}(R)} \int \varepsilon_{R, i} \pi_{i} \psi_{f, i} d_{i} H \quad\left(f \in C_{c}^{\infty}(\mathfrak{g})\right) .
$$

Moreover $\partial(\boldsymbol{w}) \psi_{f}$ is invariant under $W_{k}=W_{G}$ (see [2(k), §6]) and

$$
\phi_{\lambda, 1}=\sum_{s \in W_{k}} e^{s \lambda} .
$$

Therefore our assertion follows from Theorem 1 and the corollary of Lemma 4, if we take into account the fact that $\square F_{\lambda}=\pi(\lambda)^{2} F_{\lambda}$.

Fix a connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime}. Then for any $\mu \in \mathrm{Cl}\left(\mathfrak{F}^{+}\right)$, we define a distribution $T_{\mu . \tilde{\mathcal{F}}^{+}}=T_{\mu}{ }^{+}$as follows:

$$
T_{\mu}^{+}(f)=\lim _{\lambda \rightarrow \mu} T_{\lambda}(f) \quad\left(f \in C_{c}^{\infty}(\mathfrak{g})\right)
$$

where $\lambda \in \mathfrak{F}^{+}$. Put $g_{\lambda, i}=g_{\lambda}{ }^{\boldsymbol{h}_{i}}$. Then

$$
T_{\lambda}(f)=(-1)^{m} \sum_{1 \leqslant i \leqslant r}(-1)^{m_{i}(R)} c_{i} \int \varepsilon_{R, i} \psi_{f, i} g_{\lambda, i} d_{i} H
$$

and so it is obvious that the above limit exists and

$$
T_{\mu}^{+}(f)=(-1)^{m} \sum_{1 \leqslant i \leqslant r}(-1)^{m_{i}(R)} c_{i} \int \varepsilon_{R, i} \psi_{f, i} g_{\mu, i}^{+} d_{i} H
$$

where $g_{\mu, i}{ }^{+}$is defined as follows. Fix i and put $\mathfrak{a}=\mathfrak{h}_{i}$. Then

$$
g_{\mu, i^{+}}=\lim _{\lambda \rightarrow \mu} g_{\lambda}{ }^{\mathfrak{a}}=\sum_{s \in W} \varepsilon(s) c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) e^{(s \mu \mu}
$$

on any connected component \mathfrak{a}^{+}of $\mathfrak{a}^{\prime}(R)$. We know from Lemma 28 that $c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)=0$ $(s \in W)$ unless $\Re(s \lambda)^{y}(H) \leqslant 0$ for all $H \in \mathfrak{a}^{+}$and $\lambda \in \mathfrak{F}^{+}$. Therefore it is clear from the above formulas and Lemma 19 that $T_{\mu}{ }^{+}$is an invariant and tempered distribution
on \mathfrak{g}. Since $\partial(p) T_{\lambda}=p_{\mathfrak{V}}(\lambda) T_{\lambda}$, it follows immediately by going over to the limit that

$$
\partial(p) T_{\mu}^{+}=p_{6}(\mu) T_{\mu}^{+} \quad\left(p \in I\left(\mathfrak{g}_{c}\right)\right)
$$

For any Cartan subalgebra \mathfrak{a} of g define the function $\left(\phi_{\mu}{ }^{+}\right)_{a}$ on $\mathfrak{a}^{\prime}(R)$ by

$$
\left(\phi_{\mu}{ }^{+}\right)_{\mathfrak{a}}=\sum_{s \in \mathbb{W}} c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) e^{(s \mu) y}
$$

on \mathfrak{a}^{+}.
Lemma 35. $\quad\left|\left(\phi_{\mu}{ }^{+}\right)_{\mathfrak{a}}\right| \leqslant \sum_{s \in W}\left|c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)\right|$
on \mathfrak{a}^{+}.
Fix $H \in \mathfrak{a}^{+}$. Then if $\lambda \in \mathfrak{F}^{+}$, it follows from Lemma 28 that

$$
\left|\phi_{\lambda}(H)\right| \leqslant \sum_{s \in W}\left|c\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)\right| .
$$

Our assertion now follows by letting λ tend to μ.
For $\mathfrak{a}=\mathfrak{h}_{i}$ we denote the function $\left(\phi_{\mu}{ }^{+}\right)_{\mathfrak{a}}$ by $\phi_{\mu, i}{ }^{+}$.
Lemma 36. For any $f \in C_{c}^{\infty}(\mathfrak{g})$,

$$
c_{1}\left[W_{k}\right] \int_{\mathfrak{b}} \partial(\varpi) \psi_{f} e^{\mu} d H=\varpi(\mu) T_{\mu}^{+}(f)-\sum_{2 \leqslant i \leqslant r}(-1)^{m_{f}(R)} c_{i} \int \varepsilon_{R, i} \partial\left(\varpi_{i}\right) \psi_{f, i} \cdot \phi_{\mu, i}{ }^{+} d_{i} H
$$

Take a variable element $\lambda \in \mathfrak{F}^{+}$which converges to μ. Then our assertion follows immediately from Lemma 34 by taking limits.

§ 18. Proof of Lemma 41

As in $\S 14$, let \mathfrak{z} be a subalgebra of \mathfrak{g} such that 1$) \mathfrak{z} \supset \mathfrak{b}$ and 2) \mathfrak{z} is reductive in \mathfrak{g}. Fix a Euclidean measure $d Z$ on \mathfrak{z} and let $W_{k}(\mathfrak{z} / \mathfrak{b})$ be the subgroup of $W(\mathfrak{z} / \mathfrak{b})$ generated by the Weyl reflexions corresponding to the compact roots of $(\mathfrak{z}, \mathfrak{b})$. Then $W(\mathfrak{z} / \mathfrak{b}) \subset W$ and $W_{k}(\mathfrak{z} / \mathfrak{b}) \subset W_{k}$. Define ϖ_{z} and $\pi_{\mathfrak{z}}$ as in $\S 13$ for $\mathfrak{h}=\mathfrak{b}$.

Lemma 37. Let $a_{s}\left(s \in W_{k}\right)$ be continuous functions $\left(^{(1)}\right.$ on \mathfrak{F} such that $a_{t s}=a_{s}$ for $t \in W_{k} \cap W(\mathfrak{z} / \mathfrak{b})$. Then for any $\lambda \in \mathfrak{F}^{\prime}$, there exists a unique distribution $T_{z, \lambda}$ on z such that:

1) $T_{z_{3} \lambda}$ is invariant and tempered.
2) $\partial\left(p_{\mathfrak{z}}\right) T_{3, \lambda}=p_{6}(\lambda) T_{3, \lambda} \quad\left(p \in I\left(\mathfrak{g}_{c}\right)\right)$.
3) $\pi_{\mathrm{z}} T_{\mathfrak{z} . \lambda}=\sum_{s \in W_{k}} \varepsilon(s) a_{s}(\lambda) e^{s \lambda} \quad$ pointwise on \mathfrak{b}^{\prime}.
[^1]The uniqueness is obvious from the corollary of Lemma 28. The existence is proved as follows. Applying Theorem 2 to $(\mathfrak{z}, \mathfrak{b})$ instead of $(\mathfrak{g}, \mathfrak{b})$, we conclude that there exists a unique invariant and tempered distribution τ_{λ} on $z^{\text {such that }} \partial(p) \tau_{\lambda}=$ $p_{\mathfrak{b}}(\lambda) \tau_{\lambda}\left(p \in I\left(\partial_{c}\right)\right)$ and

$$
\pi_{\bar{z}} \tau_{\lambda}=\sum_{s \in W_{k}(z / \mathfrak{b})} \varepsilon(s) e^{s \lambda}
$$

pointwise on \mathfrak{b}^{\prime}. Put

$$
T_{3, \lambda}=\left[W_{k}(z / \mathfrak{b})\right]^{-1} \sum_{s \in W_{k}} \varepsilon(s) a_{s}(\lambda) \tau_{s \lambda}=\sum_{s \in W_{k}(3 / 6) \mid\left(W_{k}\right.} \varepsilon(s) a_{s}(\lambda) \tau_{s \lambda}
$$

where the second sum is over a complete system of representatives. Then it is obvious that $T_{3.2}$ fulfills all the conditions of the lemma.

Corollary.

$$
T_{b, \lambda}=\left[W_{k}(\delta / \mathfrak{b})\right]^{-1} \sum_{s \in W_{k}} \varepsilon(s) a_{s}(\lambda) \tau_{s \lambda}=\sum_{s \in W_{k}\left(\hat{3} / \mathfrak{h} \backslash W_{k}\right.} \varepsilon(s) a_{s}(\lambda) \tau_{s \lambda} .
$$

Fix a connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime} and for any $\mu \in \mathrm{Cl} \mathfrak{F}^{+}$define $T_{b, \mu}^{+}$and $\tau_{\mu}{ }^{+}=\tau_{\mu, \mathfrak{F}^{+}}$by means of the limits

$$
T_{z^{\prime}, \mu}^{+}(f)=\lim _{\lambda \rightarrow \mu} T_{z_{3}, \lambda}(f), \quad \tau_{\mu}^{+}(f)=\lim _{\lambda \rightarrow \mu} \tau_{\lambda}(f) \quad\left(f \in C_{c}^{\infty}(\mathfrak{z})\right)
$$

where $\lambda \in \mathfrak{F}^{+}$. We have seen in $\S 17$ that $\tau_{\mu}{ }^{+}$is a tempered distribution and therefore it follows from the above corollary that the same holds for $T_{b, \mu}{ }^{+}$. In fact the following lemma is now obvious.

Lemma 38.

$$
T_{z \cdot \mu}^{+}=\sum_{s \in W_{k}(z / b) \backslash W_{k}} \varepsilon(s) a_{s}(\mu) \tau_{s \mu, s \tilde{W}^{+}}
$$

Let P and P_{z} respectively be the sets of all positive roots of $(\mathfrak{g}, \mathfrak{b})$ and (z, $\left.\mathfrak{b}\right)$ and let $P_{\mathrm{g} / \mathrm{z}}$ denote the complement of P_{z} in P. Put

$$
\pi_{\mathfrak{g} / \mathfrak{z}}=\prod_{\alpha \in P_{\mathfrak{g}} / \mathfrak{b}} \alpha, \quad w_{\mathfrak{g} / \mathfrak{z}}=\prod_{\alpha \in P_{\mathfrak{G}} / \mathfrak{3}} H_{\alpha} .
$$

It is clear that $\pi_{\mathfrak{z}}{ }^{2}, \pi_{\mathfrak{g} / \mathfrak{z}}$ and $w_{\mathfrak{g} / \mathfrak{z}}$ are all invariant under $W(\mathfrak{z} / \mathfrak{b})$. Hence by Chevalley's theorem [2 (c), Lemma 9], we can choose an invariant polynomial function $\eta_{\mathfrak{z}}$ on \boldsymbol{z}_{c} and an element $q_{\mathrm{g} / 3}=q \in I\left(z_{c}\right)$ such that $\eta_{z}=(-1)^{r} \pi_{z}{ }^{2}$ on \mathfrak{b} and $q_{6}=w_{\mathrm{g} / z}$. (Here r is the number of roots in $P_{\mathfrak{z}}$.) Let \mathfrak{z}^{\prime} be the set of all $Z \in_{\mathfrak{z}}$ where $\eta_{3}(Z) \neq 0$ and define the invariant differential operator ∇_{δ} on \mathfrak{z}^{\prime} as usual (see [2 (1), § 9]). Fix $\lambda \in \mathfrak{F}^{\prime}$. Then we know [2 (1), Lemma 25] that there exists a continuous function $S_{3, \lambda}$ on \mathfrak{z} such that
pointwise on z^{\prime}.

$$
S_{b, \lambda}=w(\lambda)^{-1} \nabla_{z}\left(\partial\left(q_{6 / 3}\right) T_{b, \lambda}\right)
$$

Lemma 39. Fix $\lambda \in \mathfrak{F}^{\prime}$. Then ${ }^{(1)}$

$$
w(\lambda) T_{\mathfrak{z} \cdot \lambda}(f)=\text { p.v. } \int \eta_{j}^{-1} S_{\mathfrak{z} \cdot \lambda} \nabla_{\mathfrak{z}}\left(\partial\left(q_{\mathrm{g} / \mathfrak{z}}\right)^{*} f\right) d Z \quad\left(f \in C_{c}^{\infty}(\mathfrak{z})\right),
$$

in the notation of Theorem 1.
Put $\square_{\mathfrak{z}}=\partial\left(q_{1}\right)$ where q_{1} is the unique element in $I\left(z_{c}\right)$ such that $\left(q_{1}\right)_{b}=w_{z}{ }^{2}$. Then $\left(q_{1} q^{2}\right)_{\mathfrak{b}}=w^{2}$. Hence if Q is the unique element in $I\left(g_{c}\right)$ such that $Q_{b}=w^{2}$ and Q_{3} is the projection (see [2 $(\mathrm{j}), \S 8]$) of Q on z, it is obvious that $Q_{3}=q_{1} q^{2}$. Therefore

$$
\left(\square_{z} \circ \partial\left(q^{2}\right)\right) T_{3, \lambda}=\partial\left(Q_{3}\right) T_{3, \lambda}=Q_{6}(\lambda) T_{3, \lambda}=\sigma(\lambda)^{2} T_{3, \lambda} .
$$

Hence if $T=\left(\square_{\mathfrak{z}} \circ \partial(q)\right) T_{z . \lambda}$, it follows from Theorem 1 that

$$
\varpi(\lambda)^{2} T_{3, \lambda}(f)=T\left(\partial(q)^{*} f\right)=\varpi(\lambda)\left\{\text { p.v. } \int \eta_{3}{ }^{-1} S_{3 . \lambda}\left(\nabla_{z} \circ \partial(q)^{*}\right) f d Z\right\}
$$

for $f \in C_{c}^{\infty}(z)$. Since $\varpi(\lambda) \neq 0$, this implies the assertion of the lemma.
Let \mathfrak{a} be a Cartan subalgebra of z and $S_{\lambda}{ }^{a}$ the restriction of $S_{z, \lambda}$ on \mathfrak{a}. Then it follows from the definitions of ∇_{z} and q and [2(c), Lemma 8] that (${ }^{2}$)
pointwise on \mathfrak{a}^{\prime}.

$$
S_{\lambda}{ }^{a}=\varpi(\lambda)^{-1} \partial\left(\varpi^{y}\right)\left(\pi_{z}^{a} T_{z, \lambda}\right)
$$

On the other hand let $\mathfrak{F}_{z}{ }^{\prime}$ be the set of all $\lambda \in \mathfrak{F}$ where $\varpi_{z}(\lambda) \neq 0$ and $\mathfrak{F}_{z}{ }^{+}$a connected component of $\mathfrak{F}_{\mathfrak{z}}^{\prime}$. Fix a connected component \mathfrak{a}^{+}of $\mathfrak{a}^{\prime}(z: R)$ (see § 13). Then corresponding to Lemma 32 and the corollary of Lemma 33 we have the following result for \mathfrak{z}.

Lemma 40. There exist integers $c_{3}\left(s: \mathfrak{F}_{z}^{+}: \mathfrak{a}^{+}\right)(s \in W(\mathfrak{z} / \mathfrak{a}))$ such that

$$
\pi_{3}{ }^{a} \tau_{\lambda}=\sum_{s \in W(3 / a)} \varepsilon(s) c_{z}\left(s: \mathfrak{F}_{z}^{+}: \mathfrak{a}^{+}\right) e^{s \lambda^{y}}
$$

on $\mathfrak{a}^{+} \cap \mathfrak{z}^{\prime}$ for $\lambda \in \mathfrak{F}_{\mathfrak{z}}^{+}$. Moreover

$$
c_{\mathfrak{z}}\left(s t^{y}: t^{-1} \mathfrak{F}_{\mathfrak{b}}^{+}: \mathfrak{a}^{+}\right)=c_{\mathfrak{z}}\left(s: \mathfrak{F}_{\mathfrak{z}}^{+}: \mathfrak{a}^{+}\right)
$$

for $t \in W_{k}(\mathfrak{z} / \mathfrak{b})$.
(1) As usual, the star denotes the adjoint here
$\left({ }^{2}\right)$ Here y is an element in the complex analytic subgroup Ξ_{c} of G_{c} corresponding to ad $\boldsymbol{\delta}_{c}$ such that $\left(\mathfrak{b}_{c}\right)^{y}=\mathfrak{a}_{c}$. We also assume that $P_{\mathfrak{z}}{ }^{y}$ is the set of positive roots of $(\mathfrak{z}, \mathfrak{a})$.

Now write $c_{\mathfrak{z}}\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)=c_{\mathfrak{z}}\left(s: \mathfrak{F}_{\mathfrak{z}}^{+}: \mathfrak{a}^{+}\right)$for any connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime} which is contained in $\mathfrak{F}_{3}{ }^{+}$. Then it follows from the corollary of Lemma 37 that

$$
\pi_{\mathfrak{z}}{ }^{a} T_{\mathfrak{z}, \lambda}=\sum_{t \in W_{k}(\mathfrak{z} / \mathfrak{b}) \backslash W_{k}} \varepsilon(t) a_{t}(\lambda) \sum_{s \in W(z / a)} \varepsilon(s) c_{\tilde{z}}\left(s: t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) e^{s(t \lambda)^{y}}
$$

on $\mathfrak{a}^{+} \cap \mathfrak{z}^{\prime}$ for any λ lying in a connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime}. Therefore it follows from the above formula for $S_{\lambda}{ }^{a}$ that

$$
S_{\lambda^{a}}^{a}=\sum_{t \in W_{k}\left(\mathfrak{z} /(\hat{)}) \backslash W_{k}\right.} a_{t}(\lambda) \sum_{s \in W(z) / a)} c_{z}\left(s: t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) e^{s(t \lambda)^{y}}
$$

on $\mathfrak{a}^{+} \cap \mathfrak{z}^{\prime}$.
Now fix $\mu \in \mathrm{Cl}\left(\mathfrak{F}^{+}\right)$. Then as λ tends to $\mu\left(\lambda \in \mathfrak{F}^{+}\right)$, it is clear that the functions $S_{\lambda}{ }^{a}$ converge uniformly on every compact subset of \mathfrak{a}. Hence we conclude (see Lemma 69 of $\S 30$) that the functions $S_{z, \pi}$ converge uniformly on every compact subset of \mathfrak{z}. We denote the limit function by $S_{\mathfrak{z} \cdot \mu}{ }^{+}$. It is obviously continuous and invariant.

Lemma 41. $\quad S_{\mathfrak{z}, \mu}{ }^{+}=\sum_{t \in W_{k}(\mathfrak{z} / b) \backslash} W_{k} a_{t}(\mu) \sum_{s \in W(3 / a)} c_{\mathfrak{z}}\left(s: t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) e^{s\left(t_{\mu}\right)^{y}}$
on $\mathfrak{a}^{+} \cap z^{\prime}$. Moreover

$$
\varpi(\mu) T_{3 \cdot \mu}^{+}(f)=\text { p.v. } \int \eta_{z}^{-1} S_{z \cdot \mu}^{+} \nabla_{z}\left(\partial\left(q_{9 / 3}\right)^{*} f\right) d Z
$$

for $f \in C_{c}^{\infty}{ }^{(z)}$.
The first statement is obvious from the above formula for $S_{\lambda}{ }^{a}$ and the second follows from Lemma 39 if we take into account the corollary of Lemma 4.

Corollary. $\quad S_{z_{2}, \mu}{ }^{+}=0 \quad$ if $\quad a_{t}(\mu)=0 \quad\left(t \in W_{k}\right)$.
Now suppose z_{1}, z_{2} and η_{0} are as in Lemma 30 (with $\mathfrak{G}=\mathfrak{b}$). Then since

$$
\pi_{3_{1}} T_{3_{1}, \lambda}=\pi_{\tilde{3}_{2}} T_{z_{2}, \lambda}=\sum_{s \in W_{k}} \varepsilon(s) e^{s \lambda}
$$

pointwise on \mathfrak{b}^{\prime} for $\lambda \in \mathfrak{F}^{\prime}$, it follows from Lemma 30 that

$$
T_{z_{2}, \lambda}=\eta_{0} T_{z_{2}, \lambda}
$$

pointwise on $g^{\prime} \cap z_{2}$. Fix a Cartan subalgebra \mathfrak{a} of z_{2} and an element y in the complex analytic subgroup $\Xi_{2 c}$ of G_{c} corresponding to ad $\mathfrak{z}_{2 c}$, such that $\mathfrak{b}_{c}{ }^{y}=\mathfrak{a}_{c}$. We may assume that P^{y} is the set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$. Then

$$
S_{\delta_{i}, \lambda}=\varpi(\lambda)^{-1} \nabla_{\tilde{j}_{i}}\left(\partial\left(q_{9} / \partial_{i}\right) T_{b_{i}, \lambda}\right)=\varpi(\lambda)^{-1} \partial\left(w^{y}\right) F_{\lambda}
$$

pointwise on \mathfrak{a}^{\prime} where

$$
F_{\lambda}(H)=\pi_{z_{2}}{ }^{a}(H) T_{b_{1}, \lambda}(H)=\pi_{z_{2}}{ }^{a}(H) T_{z_{2}, \lambda}(H) \quad\left(H \in \mathfrak{a}^{\prime}\right)
$$

This shows that $S_{z_{1}, 2}=S_{z_{2}, \lambda}$ on z_{2} and therefore we get the following result by taking limits.

Lemma 42. Fix $\mu \in \mathrm{Cl}\left(\mathfrak{F}^{+}\right)$. Then
pointwise on $g^{\prime} \cap \gamma_{2}$ and

$$
\begin{aligned}
& T_{z_{2}, \mu}{ }^{+}=\eta_{0} T_{z_{1}, \mu}{ }^{+} \\
& S_{z_{1}, \mu}{ }^{+}=S_{3_{2} \mu}{ }^{+}
\end{aligned}
$$

on z_{2}.
We now return to the notation of Lemma 41 and write $T_{\mathfrak{z}, \mu, \mathfrak{F}^{+}}=T_{z, \mu}{ }^{+}$whenever it is convenient to do so. Let Ξ be the analytic subgroup of G corresponding to z and $\mathfrak{h}_{1}, \mathfrak{h}_{2}, \ldots, \mathfrak{h}_{r}$ a maximal set of Cartan subalgebras of z no two of which are conjugate under Ξ. Fix a Euclidean measure $d_{i} H$ on \mathfrak{Y}_{i} and define $\psi_{3, f, i}\left(f \in C_{c}^{\infty}(z)\right)$ as in Lemma 5 for ($\left(\mathfrak{z}, \mathfrak{h}_{i}\right)$ instead of $\left(\mathfrak{g}, \mathfrak{h}_{i}\right)$.

Lemma 43. Assume that the functions $a_{t}\left(t \in W_{k}\right)$ remain bounded on \mathfrak{F}. Then there exists a number $C \geqslant 0$ with the following property. Let \mathfrak{F}^{+}be a connected component of \mathfrak{F}^{\prime} and μ a point in $\mathrm{Cl}\left(\mathfrak{F}^{+}\right)$. Then

$$
\left|T_{3, \mu, \mathfrak{F}^{+}}(f)\right| \leqslant C \sum_{1 \leqslant i \leqslant r} \int_{\mathfrak{h}_{i}}\left|\psi_{3, f, i}\right| d_{i} H
$$

Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{z}. It follows from Lemmas 28 and 40 that

$$
\left|\pi_{\mathfrak{3}}{ }^{a}(H) \tau_{\lambda}(H)\right| \leqslant \sum_{s \in W\left(z^{\prime} / a\right)}\left|c_{\mathfrak{z}}\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)\right|
$$

for $H \in \mathfrak{a}^{+} \cap \mathfrak{z}^{\prime}$ and $\lambda \in \mathfrak{F}^{+}$. Put

$$
g_{\lambda}{ }^{a}(H)=\pi_{3}{ }^{a}(H) T_{z, \lambda}(H) \quad\left(H \in \mathfrak{a}^{\prime}\right)
$$

Then, in view of the corollary of Lemma 37 , we can choose a number $a \geqslant 0$ such that

$$
\left|g_{\lambda^{a}}(H)\right| \leqslant a
$$

for $H \in \mathfrak{a}^{\prime}$ and $\lambda \in \mathfrak{F}^{\prime}$. Now put $g_{\lambda_{i}=}=g_{\lambda}{ }^{\boldsymbol{h}_{i}}(1 \leqslant i \leqslant r)$. Then, as we have seen in $\S 2$, there exist real numbers c_{1}, \ldots, c_{r} such that

$$
T_{z, \lambda}(f)=\sum_{1 \leqslant i \leqslant r} c_{i} \int \psi_{3, f, i} g_{\lambda, i} \varepsilon_{z, R, i} d_{i} H
$$

for all $f \in C_{c}^{\infty}(z)$ and $\lambda \in \mathcal{F}^{\prime}$. (Here $\varepsilon_{3, R, i}$ is a locally constant function on $\mathfrak{h}_{i}^{\prime}$ whose values are ± 1.) Therefore

$$
\left|T_{z_{3}, \lambda}(f)\right| \leqslant C \sum_{1 \leqslant i \leqslant r} \int\left|\psi_{z, f, i}\right| d_{i} H
$$

where $C=a \max _{i}\left|c_{i}\right|$. The statement of the lemma now follows by letting λ tend to $\mu\left(\lambda \in \mathfrak{F}^{+}\right)$.

Part II. Theory on the group

§ 19. Statement of Theorem 3

We keep to the notation of $\S 16$ and assume, moreover, that G is acceptable. Let B be the Cartan subgroup of G corresponding to \mathfrak{b}. Then B is connected and therefore abelian (see [2(m), Cor. 5 of Lemma 26]). Let B^{*} denote the character group of B. For any $b^{*} \in B^{*}$, we denote by $\left\langle b^{*}, b\right\rangle$ the value of the character b^{*} at a point $b \in B$. It is obvious that there exists a unique element $\lambda \in \mathfrak{F}$ such that

$$
\left\langle b^{*}, \exp H\right\rangle=e^{\lambda_{(}(H)} \quad(H \in \mathfrak{b}) .
$$

We shall denote λ by $\log b^{*} . b^{*}$ is called singular or regular according as $\varpi(\lambda)=0$ or not. We have seen that $W_{k}=W_{G}$. Now W_{G} operates on B as usual (see [2 (m), $\S 20]$) and therefore, by duality, also on B^{*}. Then

$$
\left\langle\left(b^{*}\right)^{s}, b\right\rangle=\left\langle b^{*}, b^{s^{-1}}\right\rangle \quad\left(b^{*} \in B^{*}, b \in B\right)
$$

and $\log \left(b^{*}\right)^{s}=s\left(\log b^{*}\right) \quad\left(s \in W_{G}\right)$.
Define 3 as in $[2(\mathrm{~m}), \S 6]$ and let $z \rightarrow p_{z}(z \in 马)$ denote the canonical isomorphism of $\left\{\right.$ onto $I\left(\mathfrak{g}_{c}\right)$ (see [2(m), §12]). For $b^{*} \in B^{*}$, define

$$
\chi_{b^{*}}(z)=\chi_{\lambda^{\mathfrak{G}}}\left(p_{z}\right) \quad(z \in \mathcal{B})
$$

(in the notation of $\S 12$) for $\lambda=\log b^{*}$. Then $\chi_{b^{*}}$ is a homomorphism of 3 into \mathbf{C}.
Let t be an indeterminate and l the rank of G. For any $x \in G$, we denote by $D(x)$ the coefficient of t^{l} in $\operatorname{det}(t+1-\operatorname{Ad}(x))$. Then D is an analytic function on G. As usual let G^{\prime} denote the set of all regular elements in G (see [2 (m), §3]). Fix a Haar measure $d x$ on G and let Θ be a distribution on G. We say that Θ is an invariant eigendistribution of 8 if 1) $\Theta^{x}=\Theta(x \in G)$ and 2) there exists a homomorphism
χ of \wp into \mathbf{C} such that $z \Theta=\chi(z) \Theta$ for all $z \in 马$ ．In view of［2（m），Theorem 2］，we can speak of the value $\Theta(x)$ of such a distribution at a point $x \in G^{\prime}$ ．

Let $B^{* \prime}$ denote the set of all regular elements in B^{*} and put $\Delta=\Delta_{B}$ in the notation of［2（m），§ 19］．

Theorem 3．Fix an element $b^{*} \in B^{* \prime}$ ．Then there exists exactly one invariant eigendistribution Θ on G such that：

1）

$$
z \Theta=\chi_{b^{*}}(z) \Theta \quad(z \in 马) ;
$$

2）$\quad \sup _{x \in G^{\prime}}|D(x)|^{\frac{1}{2}}|\Theta(x)|<\infty$ ；
3）

$$
\Theta=\Delta^{-1} \sum_{s \in W_{G}} \varepsilon(s)\left(b^{*}\right)^{s} \text { pointwise on } B^{\prime}=B \cap G^{\prime}
$$

§ 20．Proof of the uniqueness

In order to obtain the uniqueness in Theorem 3，it is sufficient to prove the following result．

Lemma 44．Fix $b^{*} \in B^{* \prime}$ and let Θ be an invariant eigendistribution of 3 on G such that：

1）

$$
\begin{aligned}
& z \Theta=\chi_{b^{*}}(z) \Theta \quad(z \in 马) \\
& \sup _{x \in G^{\prime}}|D(x)|^{\frac{z}{2}}|\Theta(x)|<\infty ;
\end{aligned}
$$

3）

$$
\Theta=0 \text { pointwise on } B^{\prime}
$$

Then $\Theta=0$ ．
Fix a semisimple element $a \in G$ ．In view of［ $2(\mathrm{~m})$ ，Lemma 7］，it would be suf－ ficient to prove that $a \notin \operatorname{Supp} \Theta$ ．We now use the notation of［ $2(\mathrm{~m}), \S 4]$ and put $\sigma=\left|v_{a}\right|^{\frac{1}{2}} \sigma_{\Theta}$ in the notation of［2（m），Lemma 15］．Since $z \Theta=\chi_{b^{*}}(z) \Theta$ ，we conclude from［2（m），Lemma 22］that

$$
\mu_{g_{3} / 3}(z) \sigma=\chi_{b^{*}}(z) \sigma \quad(z \in 马)
$$

Define $\mathfrak{g}_{0}=\mathfrak{c}_{0}+\mathfrak{g}_{1}(c)$ as in $\S 14$ where \mathfrak{c}_{0} is an open and convex neighborhood of zero in \mathfrak{c} ．Then \mathfrak{g}_{0} is an open and completely invariant neighborhood of zero in \mathfrak{g} and if \mathfrak{c}_{0} and c are sufficiently small，the exponential mapping of g into G is uni－ valent and regular on g_{0}（see［2（m），§9］）．Put $\mathfrak{z}_{0}=g_{0} \cap \mathfrak{z}$ ．

Now first assume that $a \in B$ and let Z_{G} denote the center of G ．Then since
B / Z_{G} is compact [$2(\mathrm{~m}), \S 16$], every eigenvalue of $\operatorname{Ad}(a)$ has absolute value 1. Hence if c is sufficiently small, it is obvious that no eigenvalue of $(\operatorname{Ad}(a \exp Z))_{\mathrm{g} / \mathrm{s}}$ can be 1 for $Z \in \mathcal{z}_{0}$. This shows that $\exp {z_{0}}_{\gamma_{0}} \subset \Xi^{\prime}$. Let τ denote the distribution on z_{0} obtained from σ by applying the procedure of $[2(\mathrm{~m}), \S 10]$ to z (in place of \mathfrak{g}). Since

$$
\mu_{9 / 3}(z) \sigma=\chi_{b^{*}}(z) \sigma \quad(z \in B),
$$

it follows from the corollary of [2 (m), Lemma 24] and the definition of $\mu_{\mathrm{g} / 3}$ [2(m), § 12] that

$$
\partial\left(p_{\mathfrak{z}}\right) \tau=\chi(p) \tau \quad\left(p \in I\left(\mathfrak{g}_{c}\right)\right)
$$

where $\chi=\chi_{\lambda}{ }^{\mathfrak{b}}$ and $\lambda=\log b^{*}$. Now $b \subset z$ since $a \in B$. Therefore $T_{z}=\tau$ satisfies all the conditions of § 13. Let $子_{0}^{\prime}$ be the set of those elements of z_{0} which are regular in \mathfrak{z}. Then we know from [2 (m), Lemma 32] that

$$
\tau(Z)=\xi_{z}(Z)\left|v_{a}(\exp Z)\right|^{\frac{1}{2}} \Theta(a \exp Z) \quad\left(Z \in_{30}^{\prime}\right)
$$

Let \mathfrak{a} be a Cartan subalgebra of z and A the corresponding Cartan subgroup of G. It is easy to verify that

$$
|D(a \exp H)|=\left|\pi_{z}{ }^{a}(H) \xi_{b}(H)\right|^{2}\left|\nu_{a}(\exp H)\right|
$$

for $H \in \mathfrak{a}$ and therefore

$$
\left|\pi_{z}{ }^{a}(H) \tau(H)\right|=|D(a \exp H)|^{\frac{1}{2}}|\Theta(a \exp H)|
$$

for $H \in \mathfrak{a}^{\prime} \cap \mathfrak{z}_{0}$. Hence we conclude from Lemma 19 and condition 2) that τ is a tempered distribution on \mathfrak{z}_{0}. Moreover if we take $\mathfrak{a}=\mathfrak{b}$, it follows from condition 3) that $\tau=0$ pointwise on $z_{0} \cap \mathfrak{b}^{\prime}$. Therefore (see the corollary of Lemma 29), $\tau=0$ on z_{0}. This, in turn, implies that $\Theta=0$ pointwise on $a \exp \boldsymbol{z}_{0}{ }^{\prime}=G^{\prime} \cap\left(a \exp \boldsymbol{z}_{0}\right)$. But $V=\left(a \exp z_{0}\right)^{G}$ is open in G [2(m), Lemma 14]. Hence $\Theta=0$ on V.

Now we drop the assumption that $a \in B$. Define $\theta, \not, \mathfrak{f}, \mathfrak{p}$ and K as in [2 (m), § 16] corresponding to $\mathfrak{H}=\mathfrak{b}$. Then $B \subset K$ [2(m), Cor. 5 of Lemma 26]. Let \mathfrak{a} be any Cartan subalgebra of \mathfrak{z}. We can choose $x \in G$ such that $\theta\left(\mathfrak{a}^{x}\right)=\mathfrak{a}^{x}$ and $\mathfrak{a}^{x} \cap \mathfrak{f} \subset \mathfrak{b}$ (see Lemma 45 below). Let A be the Cartan subgroup of G corresponding to $\mathfrak{h}=\mathfrak{a}^{x}$. Then $a^{x} \in A$. Let $a^{x}=a_{0} \exp H$ where $a_{0} \in A \cap K$ and $H \in \mathfrak{G} \cap \mathfrak{p}$ (see [2(m), Cor. 4 of Lemma 26]). Since K is connected and K / Z_{G} is compact, we can choose $k \in K$ such that $b=a_{0}{ }^{k} \in B$. Then

$$
a^{k x}=b \exp Z_{0}
$$

where $Z_{0}=H^{k} \in \mathfrak{p} \subset[\mathfrak{g}, \mathfrak{g}]$. Let z_{b} denote the centralizer of b in \mathfrak{g}. It is obvious that
$Z_{0} \in_{z_{b}}$. Moreover since $Z_{0} \in \mathfrak{p}$, all the eigenvalues of ad Z_{0} are real [2 (i), Lemma 27]. Hence by applying the result obtained above to b, we conclude that

$$
a^{k x}=b \exp Z_{0} \ddagger \operatorname{Supp} \Theta
$$

Therefore since Θ is invariant, it follows that $a \ddagger \operatorname{Supp} \Theta$. This proves the lemma.

§ 21. Some elementary facts about Cartan subgroups

Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g} and A the corresponding Cartan subgroup of G. Define \mathfrak{a}_{R} and \mathfrak{a}_{T} as in $\S 11$.

Lemma 45. Let A_{I} be the subgroup of all $a \in A$ such that all eigenvalues of $\operatorname{Ad}(a)$ have absolute values 1. Then $(a, H) \rightarrow a \exp H\left(a \in A_{I}, H \in \mathfrak{a}_{R}\right)$ is a topological mapping of $A_{I} \times \mathfrak{a}_{R}$ onto A. Moreover for any $a \in A_{I}$, we can choose $x \in G$ such that 1) $a^{x} \in B$, 2) $\theta\left(\mathfrak{a}^{x}\right)=\mathfrak{a}^{x}$ and 3) $\left(\mathfrak{a}_{I}\right)^{x} \subset \mathfrak{b}$. Finally, x may be selected to lie in K if $\theta(\mathfrak{a})=\mathfrak{a}$.

It follows from [2(b), p. 100] that we can choose $y \in G$ such that $\theta\left(\mathfrak{a}^{y}\right)=\mathfrak{a}^{y}$. Then $\left(\mathfrak{a}_{I}\right)^{y}$ is an abelian subspace of \mathfrak{f}. Since \mathfrak{b} is maximal abelian in ${ }^{f}$ and K / Z_{G} is compact, we can choose $k \in K$ such that $\left(\mathfrak{a}_{I}\right)^{k y} \subset \mathfrak{b}$. Replacing \mathfrak{a} by $\mathfrak{a}^{k y}$, we can now obviously assume that $\theta(\mathfrak{a})=\mathfrak{a}$ and $\mathfrak{a}_{I} \subset \mathfrak{b}$. Then the first statement follows from the results of [2(m), § 16]. Moreover it is clear that $A_{I}=A \cap K \subset K=B^{K}$. Fix $a \in A_{I}$ and choose $k \in K$ such that $b=a^{k} \in B$. Let z be the centralizer of b in g and Ξ the analytic subgroup of G corresponding to \mathfrak{z}. Then \mathfrak{a}^{k} and \mathfrak{b} are two Cartan subalgebras of \mathfrak{z} and $\mathfrak{a}_{I}^{k}+\mathfrak{b} \subset \mathfrak{z} \cap \mathfrak{l}$. Since \mathfrak{b} is maximal abelian in $\mathfrak{z} \cap \mathfrak{f}$, we can choose $\xi \in \Xi \cap K$ such that $\left(\mathfrak{a}_{I}\right)^{\xi k} \subset \mathfrak{b}$. Put $x=\xi k$. Then $a^{x}=b^{\xi}=b$ and $\left(\mathfrak{a}_{1}\right)^{x} \subset \mathfrak{b}$. Moreover since $x \in K$, it is clear that $\theta\left(\mathfrak{a}^{x}\right)=\mathfrak{a}^{x}$. The last statement follows from the fact that we can take $y=1$ if $\theta(\mathfrak{a})=\mathfrak{a}$.

Corollary. An element a of G lies in B^{G} if and only if 1) a is semisimple and 2) all eigenvalues of $\operatorname{Ad}(a)$ have absolute value 1 .

Since $B \subset K$, it is obvious that any $a \in B^{G}$ fullfills these two conditions. Conversely suppose these conditions hold. Then by 1), a is contained in some Cartan subgroup A of $G\left[2(\mathrm{~m})\right.$, Cor. of Lemma 5]. Therefore by 2) $a \in A_{I}$. But then $a \in B^{G}$ by Lemma 45.

We write $A_{R}=\exp \mathfrak{a}_{R}$. By Lemma 45, every $h \in A$ can be written uniquely in the form $h=h_{1} h_{2}\left(h_{1} \in A_{I}, h_{2} \in A_{R}\right)$. We call h_{1} and h_{2} the components of h in A_{I} and A_{R} respectively.

§ 22. Proof of the existence

We now come to the proof of the existence of Θ in Theorem 3. In view of later applications, we shall consider a somewhat more general situation.

Fix a connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime} and a point $b^{*} \in B^{*}$ such that

$$
\lambda=\log b^{*} \in \mathrm{Cl}\left(\mathfrak{F}^{+}\right) .
$$

Select an open convex neighborhood $\mathfrak{c}_{\boldsymbol{0}}$ of zero in \mathfrak{c} and define

$$
\mathfrak{g}_{0}=\mathfrak{c}_{0}+\mathfrak{g}_{1}(c)(0<c \leqslant \pi=3.14 \ldots)
$$

as in $\S 14$. We assume that \mathfrak{c}_{0} is so small that the exponential mapping of \mathfrak{g} into G is univalent and regular on g_{0} (see [2(m), §9]).

Fix $b \in B$ and let $z=z_{b}$ denote the centralizer of b in \mathfrak{g}. Define $T_{b}{ }^{+}=T_{z .2}{ }^{+}$and $S_{b}{ }^{+}=S_{3,2}{ }^{+}$in the notation of $\S 18$ corresponding to the constants $a_{s}=\left\langle\left(b^{*}\right)^{s}, b\right\rangle\left(s \in W_{G}\right)$. (Here we have to observe that $b^{t}=b$ for $t \in W_{k} \cap W(\mathfrak{z} / \mathfrak{b})$ and therefore $a_{t s}=a_{s}$.)

Let $\boldsymbol{\Xi}=\boldsymbol{\Xi}(b)$ denote the analytic subgroup of G corresponding to \mathfrak{z}. Put $\mathfrak{z}_{0}=\mathfrak{g}_{\mathbf{0}} \cap \mathfrak{z}$ and $\Xi_{0}(b)=\Xi_{0}=\exp z_{0}$. Then Ξ_{0} is an open and completely invariant subset of Ξ [2(m), Lemma 8]. As usual define the function ξ_{z} on z by

$$
\xi_{z}(Z)=\left|\operatorname{det}\left\{\left(e^{\mathrm{ad} Z / 2}-e^{-\mathrm{ad} Z / 2}\right) / \operatorname{ad} Z\right\}\right|^{\frac{1}{2}} \quad\left(Z \in_{z}\right) .
$$

Then ξ_{z} is analytic and nowhere zero on z_{0}. Put

$$
\Phi_{b}^{+}(\exp Z)=\xi_{\mathfrak{z}}(Z)^{-1} T_{b}^{+}(Z) \quad\left(Z \in \mathfrak{g}_{0} \cap z^{\prime}\right)
$$

where z^{\prime} is the set of those elements of z which are regular in z. Then $\Phi_{b}{ }^{+}$is a locally summable function on $\Xi_{0}(b)$.

Define the homomorphism $\mu_{b}=\mu_{\mathrm{g} / 3}$ as in [2(m), §12].
Lemma 46.

$$
\mu_{b}(z) \Phi_{b}^{+}=\chi_{b^{*}}(z) \Phi_{b}^{+} \quad(z \in Z)
$$

as a distribution on $\Xi_{0}(b)$.
This follows immediately from the corollary of [2(m), Lemma 24] (applied to z) and the fact (see § 18) that $\partial\left(p_{\mathfrak{z}}\right) T_{b}{ }^{+}=p_{5}(\lambda) T_{b}{ }^{+}$for $p \in I\left(g_{c}\right)$.

We have seen in [2(m),§22] that there exists an invariant analytic function D_{b} on z such that

$$
\Delta(b \exp H)=\pi_{\mathfrak{z}}(H) D_{b}(H) \quad(H \in \mathfrak{b})
$$

Put $\Xi_{0}{ }^{\prime \prime}(b)=\Xi_{0}(b) \cap\left(b^{-1} G^{\prime}\right)$ and let $z^{\prime \prime}$ be the set of all points $Z \in \mathfrak{z}^{\prime}$ where $D_{b}(Z) \neq 0$. Then it is clear that $\Xi_{0}{ }^{\prime \prime}(b)=\exp \left(g_{0} \cap z^{\prime \prime}\right)$. Put

$$
\Theta_{b}^{+}(\exp Z)=D_{b}(Z)^{-1} T_{b}^{+}(Z) \quad\left(Z \in g_{0} \cap z^{\prime \prime}\right)
$$

Then $\Theta_{b}{ }^{+}$is an analytic function on $\Xi_{0}{ }^{\prime \prime}(b)$. Similarly define

$$
\Psi_{b}^{+}(\exp Z)=S_{b}^{+}(Z) \quad\left(Z €_{z_{0}}\right) .
$$

Then $\Psi_{b}{ }^{+}$is a continuous function on $\Xi_{0}(b)$.
Define $\quad v_{b}(y)=\operatorname{det}\left(\operatorname{Ad}(b y)^{-1}-1\right)_{8 / 3} \quad(y \in \Xi)$
as in [2 (m), § 14].
Lemma 47. Let \mathfrak{z} be the set of all points $Z \in \mathfrak{z}$ where $\nu_{b}(\exp Z) \neq 0$. Then there exists a locally constant function ε_{b} on ' z such that $\varepsilon_{b}{ }^{4}=1$ and

$$
\left.\xi_{z}(Z)\left|v_{b}(\exp Z)\right|^{\frac{1}{2}}=\varepsilon_{b}(Z) D_{b}(Z) \quad\left(Z \in^{\prime}\right\}\right) .
$$

It would be enough to verify that

$$
\xi_{z}(Z)^{4} v_{b}(\exp Z)^{2}=D_{b}(Z)^{4}
$$

for $Z \in \mathcal{z}$. Since both sides are analytic functions on \mathfrak{z} which are invariant under Ξ, it would be enough to do this when Z varies in some non-empty open subset of \mathfrak{b}. Hence our assertion follows from [2 (m), Lemma 33].

Corollary. $\quad\left|v_{a}(\exp Z)\right|^{\frac{1}{2}} \Theta_{b}{ }^{+}(\exp Z)=\varepsilon_{b}(Z) \Phi_{b}{ }^{+}(\exp Z)$
for $Z \in \mathfrak{g}_{0} \cap \mathfrak{z}^{\prime \prime}$.
This is obvious.
Put $\mathfrak{z}_{0}^{\prime \prime}=\mathfrak{g}_{0} \cap \mathfrak{z}^{\prime \prime}$ and let u be an element in G such that $\mathfrak{b}^{u}=\mathfrak{b}$.
Lemma 48. We have the relations

$$
\Theta_{b^{u}}{ }^{+}\left(\exp Z^{u}\right)=\Theta_{b}^{+}(\exp Z), \quad \Psi_{b^{u}}^{+}\left(\exp Z^{u}\right)=\Psi_{b}^{+}(\exp Z)
$$

for $Z \in \in_{z_{0}}{ }^{\prime \prime}$.
Since z^{u} is the centralizer of b^{u} in g, it is clear that $\Theta_{b^{u}}{ }^{+}\left(\exp Z^{u}\right)$ and $\Psi_{b^{u}}{ }^{+}\left(\exp Z^{u}\right)$ are defined for $Z \in_{\mathfrak{z}_{0}{ }^{\prime \prime}}$. Let t be an element in W_{G} such that $H^{u}=t H$ for $H \in \mathfrak{b}$. It is obvious that $\pi_{3^{u}}=\gamma \pi_{3}{ }^{t}$ where $\gamma= \pm 1$. Therefore since

$$
\Delta\left(b^{u} \exp H^{u}\right)=\varepsilon(t) \Delta(b \exp H) \quad(H \in \mathfrak{b})
$$

it follows that $D_{b^{u}}\left(H^{u}\right)=\varepsilon(t) \gamma D_{b}(H)$. But the function

$$
Z \rightarrow D_{b^{u}}\left(Z^{u}\right)-\varepsilon(t) \gamma D_{b}(Z) \quad\left(Z \in_{z}\right)
$$

is obviously analytic and invariant under E. Hence we can conclude that

$$
D_{b^{u}}\left(Z^{u}\right)=\varepsilon(t) \gamma D_{b}(Z) \quad\left(Z \in_{\mathcal{z}}\right) .
$$

Now for any $\mu \in \mathfrak{F}^{+}$, let $T_{z^{\prime} \mu}$ be the distribution of Lemma 37 corresponding to the constants $a_{s}=\left\langle\left(b^{*}\right)^{s}, b\right\rangle\left(s \in W_{G}\right)$. Similarly define $T_{\mathfrak{z}^{u}, \mu}$ on z^{u} corresponding to the constants $a_{s}=\left\langle\left(b^{*}\right)^{s}, b^{u}\right\rangle$. Then

$$
\begin{aligned}
\pi_{z^{u}}(u H) T_{z^{u}, \mu}(u H) & =\sum_{s \in W_{G}} \varepsilon(s)\left\langle\left(b^{*}\right)^{s}, b^{u}\right\rangle e^{s \mu(u H)} \\
& =\varepsilon(t) \sum_{s \in W_{G}} \varepsilon(s)\left\langle\left(b^{*}\right)^{s}, b\right\rangle e^{s \mu(H)}=\varepsilon(t) \pi_{z}(H) T_{z^{\prime}, \mu}(H) \quad\left(H \in \mathfrak{b}^{\prime}\right) .
\end{aligned}
$$

Hence

$$
T_{z^{u}, \mu}(u H)=\varepsilon(t) \gamma T_{z^{\prime}, \mu}(H) \quad\left(H \in \mathfrak{b}^{\prime}\right) .
$$

Now consider the distribution

$$
T_{\mu^{\prime}}: f \rightarrow \int f(Z) T_{\mathfrak{z}^{u}, \mu}(u Z) d Z \quad\left(f \in C_{c}^{\infty}(\mathfrak{z})\right)
$$

on 子. It is obviously invariant and tempered. Moreover it is clear that $p_{\mathfrak{z}^{u}}=\left(p_{3}\right)^{u}$ for $p \in I\left(\mathfrak{g}_{c}\right)$. Let $d Z^{\prime}$ denote the Euclidean measure on z^{u} which corresponds to $d Z$ under the mapping $Z^{\prime}=Z^{u}\left(Z \in_{\mathfrak{z}}\right)$. Then

$$
\begin{aligned}
T_{\mu}^{\prime}\left(\partial\left(p_{3}\right)^{*} f\right) & =\int f\left(u^{-1} Z^{\prime} ; \partial\left(p_{3}\right)^{*}\right) T_{z^{u}, \mu}\left(Z^{\prime}\right) d Z^{\prime} \\
& =\int f^{\prime}\left(Z^{\prime} ; \partial\left(p_{z^{u}}\right)^{*}\right) T_{z^{u}, \mu}\left(Z^{\prime}\right) d Z^{\prime} \\
& =p_{6}(\mu) \int f^{\prime}\left(Z^{\prime}\right) T_{z^{u}, \mu}\left(Z^{\prime}\right) d Z^{\prime}=p_{6}(\mu) T_{\mu^{\prime}}(f)
\end{aligned}
$$

for $p \in I\left(\mathfrak{g}_{c}\right)$ and $f \in C_{c}^{\infty}(z)$. Here f^{\prime} denotes the function $Z^{\prime} \rightarrow f\left(u^{-1} Z^{\prime}\right)\left(Z^{\prime} \in \mathcal{z}^{u}\right)$ in $C_{c}{ }^{\infty}\left(z^{u}\right)$. Hence it follows from the uniqueness assertion of Lemma 37 that

$$
T_{\mu}^{\prime}=\varepsilon(t) \gamma T_{z, \mu}
$$

Therefore

$$
T_{z^{u}, \mu}\left(f^{\prime}\right)=\varepsilon(t) \gamma T_{3, \mu}(f)
$$

and by making μ tend to λ, we conclude that

This proves that

$$
T_{b^{u}}^{+}\left(f^{\prime}\right)=\varepsilon(t) \gamma T_{b}^{+}(f) \quad\left(f \in C_{c}^{\infty}(z)\right)
$$

$$
T_{b^{u}}{ }^{+}\left(Z^{u}\right)=\varepsilon(t) \gamma T_{b}^{+}(Z) \quad\left(Z \in \mathcal{z}^{\prime}\right)
$$

The first assertion of the lemma is now obvious.
Define $\nabla_{\bar{z}}, \nabla_{\dot{b}^{u}}$ and $\varpi_{9 / 3}, \varpi_{g / /^{u}}$ as in $\S 18$. It is clear that

$$
\nabla_{z^{u}} f^{\prime}=\left(\nabla_{\mathfrak{z}} f\right)^{\prime}
$$

for $f \in C_{c}^{\infty}\left(z^{\prime}\right)$. On the other hand $\sigma_{g / z^{u}}=\varepsilon(t) \gamma\left(\varpi_{g / 3}\right)^{t}$. Therefore it is clear that

$$
q_{\mathfrak{g} / 3^{u}}=\varepsilon(t) \gamma\left(q_{\mathrm{g} / 3}\right)^{u}
$$

in the notation of $\S 18$. Hence

$$
\varpi(\mu) S_{3^{u}, \mu}\left(Z^{u}\right)=T_{3^{u}, \mu}\left(Z^{u} ; \nabla_{8^{u}} \circ \partial\left(q_{9 / /^{u}}\right)\right)=T_{3, \mu}\left(Z ; \nabla_{\mathfrak{z}} \circ \partial\left(q_{9 / 3}\right)\right)=\varpi(\mu) S_{3, \mu}(Z)
$$

for $Z \in \mathfrak{z}^{\prime}$ and $\mu \in \mathfrak{F}^{+}$. This shows that

$$
S_{z^{u}, \mu}\left(Z^{u}\right)=S_{z, \mu}(Z)
$$

and so by making μ tend to λ, we deduce that

$$
S_{b^{u}}{ }^{+}(Z)=S_{b}^{+}(Z) \quad\left(Z \in_{z}\right) .
$$

Obviously this implies the second assertion of the lemma.
Corollary. Let x be an element in G such that $b^{x} \in B$. Then

$$
\begin{gathered}
\Theta_{b^{x}}^{+}\left(\exp Z^{x}\right)=\Theta_{b}^{+}(\exp Z), \\
\Psi_{b^{x}}^{+}\left(\exp Z^{x}\right)=\Psi_{b}^{+}(\exp Z) \quad\left(Z \in_{\}_{0}}^{\prime \prime}\right) .
\end{gathered}
$$

Since $b^{x} \in B$, it is clear that $B^{x^{-1}} \subset \Xi$. Hence \mathfrak{b} and $\mathfrak{b}^{x^{-1}}$ are two fundamental Cartan subalgebras of \mathfrak{z} and therefore we can choose $y \in \Xi$ such that $\mathfrak{b}^{y x^{-1}}=\mathfrak{b}$ (see [2 (d), p. 237]). Put $u=x y^{-1}$. Then $x=u y$ and $b^{x}=b^{u}$. Therefore

$$
\Theta_{b^{x}}{ }^{+}\left(\exp Z^{x}\right)=\Theta_{b^{u}}^{+}\left(\exp Z^{u y}\right)=\Theta_{b}^{+}\left(\exp Z^{y}\right)
$$

by Lemma 48. Similarly

$$
\Psi_{b x^{+}}\left(\exp Z^{x}\right)=\Psi_{b}^{+}\left(\exp Z^{y}\right) \quad\left(Z \in_{z_{0}^{\prime \prime}}^{\prime \prime}\right)
$$

Since $\Theta_{b}{ }^{+}$and $\Psi_{b}{ }^{+}$are obviously invariant under Ξ, we get the required assertion.
Since $b^{x}=b^{u}$, we have obtained the following result during the above proof.
Lemma 49. If two elements of B are conjugate under G, then they are also conjugate under the normalizer of B in G.

Now fix $a \in B^{G}$, define z_{a} and $\Xi(a)$ as usual (see $[2(\mathrm{~m}), \S 4]$) and put $\Xi_{0}(a)=$ $\exp \left(g_{0} \cap Z_{a}\right), \Xi_{0}{ }^{\prime \prime}(a)=\Xi_{0}(a) \cap\left(a^{-1} G^{\prime}\right)$. Choose $x \in G$ such that $a^{x} \in B$ and define

$$
\Theta_{a}^{+}(y)=\Theta_{a^{x}}{ }^{+}\left(y^{x}\right) \quad\left(y \in \Xi_{0}^{\prime \prime}(a)\right)
$$

and

$$
\Psi_{a}^{+}(y)=\Psi_{a^{x}}^{\cdot}\left(y^{x}\right) \quad\left(y \in \Xi_{0}(a)\right) .
$$

It follows from the corollary of Lemma 48 that these definitions are independent of the choice of x.

We now define two functions Θ^{+}and Ψ^{+}on G^{\prime} as follows. Fix $h \in G^{\prime}$ and let \mathfrak{a} be the centralizer of h in \mathfrak{g} and A the corresponding Cartan subgroup of G. Define A_{I} and A_{R} as in $\S 21$ and let $h=h_{1} h_{2}\left(h_{1} \in A_{I}, h_{2} \in A_{R}\right)$. Since every eigenvalue of ad H is real for $H \in \mathfrak{a}_{R}$ and since h is regular, it is clear that $h_{2} \in \Xi_{0}{ }^{\prime \prime}\left(h_{1}\right)$. We define

$$
\Theta^{+}(h)=\Theta_{h_{1}}^{+}\left(h_{2}\right), \quad \Psi^{+}(h)=\Psi_{h_{1}}^{+}\left(h_{2}\right)
$$

(Observe that $A_{I} \subset B^{G}$ from the corollary of Lemma 45.) If $x \in G$, it is obvious that

$$
\Theta^{+}\left(h^{x}\right)=\Theta_{h_{1} x^{+}}\left(h_{2}^{x}\right)=\Theta_{h_{1}}^{+}\left(h_{2}\right)=\Theta^{+}(h) .
$$

Similarly $\Psi^{++}\left(h^{x}\right)=\Psi^{+}(h)$. This shows that Θ^{+}and Ψ^{+}are invariant under G. We intend to prove that they are analytic on G^{\prime}.

Lemma 50. Fix $b \in B$. Then there exists a number $c_{b}>0$ with the following property. Let $z_{b}\left(c_{b}\right)$ be the set of all $Z \in_{z_{b}}$ such that ${ }^{(1)}|\operatorname{Im} \mu|<c_{b}$ for every eigenvalue μ of $(\operatorname{ad} Z)_{\mathrm{g} / /_{b}}$. Then

$$
\Theta_{b}^{+}(\exp Z)=\Theta^{+}(b \exp Z), \quad \Psi_{b}^{+}(\exp Z)=\Psi^{+}(b \exp Z)
$$

for all $Z \in \mathfrak{g}_{0} \cap{ }_{z_{b}}\left(c_{b}\right)$ such that $b \exp Z \in G^{\prime}$.
It is obvious that if c_{b} is sufficiently small, $\nu_{b}(\exp Z) \neq 0$ for $Z \in_{z_{b}}\left(c_{b}\right)$. Let $\boldsymbol{z}_{b}{ }^{\prime}\left(c_{b}\right)$ be the set of those elements of $z_{b}\left(c_{b}\right)$ which are regular in z_{b}. Then for any $Z \in g_{0} \cap \jmath_{b}\left(c_{b}\right)$, the two conditions $b \exp Z \in G^{\prime}$ and $Z \in \mathfrak{g}_{0} \cap z_{b}^{\prime}\left(c_{b}\right)$ are obviously equivalent. Hence, in particular,

$$
\mathfrak{g}_{0} \cap \mathfrak{z o b}^{\prime}\left(c_{b}\right) \subset \mathfrak{g}_{0} \cap z_{b}^{\prime \prime} .
$$

Fix $Z_{0} \in \mathfrak{g}_{0} \cap \mathfrak{z}_{b}{ }^{\prime}\left(c_{b}\right)$ and let \mathfrak{a} be the centralizer of Z_{0} in z_{b}. Then \mathfrak{a} is a Cartan subalgebra of \mathfrak{g}. Since $b=\theta(b)$, z_{b} is stable under θ and therefore, by Lemmas 29 and 45, we can choose $y \in \Xi(b)$ such that \mathfrak{a}^{y} is stable under θ and $\left(\mathfrak{a}_{1}\right)^{y} \subset \mathfrak{b}$. Put $H_{0}=Z_{0}{ }^{y}$.
${ }^{(1)} \operatorname{Im} \mu$ denotes, as usual, the imaginary part of a complex number μ.

Since $\Theta_{b}^{+}, \Theta^{+}, \Psi_{b}^{+}$and Ψ^{+}are all invariant under $\Xi(b)$, it would be enough to verify that

$$
\Theta_{b}^{+}\left(\exp H_{0}\right)=\Theta^{+}\left(b \exp H_{0}\right), \quad \Psi_{b}^{+}\left(\exp H_{0}\right)=\Psi^{+}\left(b \exp H_{0}\right) .
$$

So we may assume that $Z_{0}=H_{0}, y=1, \theta(\mathfrak{a})=\mathfrak{a}$ and $\mathfrak{a}_{I}=\mathfrak{a} \cap \mathfrak{f} \subset \mathfrak{b}$.
Let $H_{0}=H_{1}+H_{2}$ where $H_{1} \in \mathfrak{a}_{I}, H_{2} \in \mathfrak{a}_{R}$. Then $h=b \exp H_{0}=h_{1} h_{2}$ where $h_{1}=$ $b \exp H_{1} \in A_{1}$ and $h_{2}=\exp H_{2}$. (A is, as before, the Cartan subgroup of G corresponding to a.) It is clear that $H_{1} \in \xi_{b}\left(c_{b}\right)$ and therefore $v_{b}\left(\exp H_{1}\right) \neq 0$. Hence $z_{z_{1}} \subset z_{b}$. Now put $z_{1}=z_{b}, z_{2}=z_{h_{1}}$. Then z_{2} is the centralizer of H_{1} in z_{1} so that Lemma 31 is applicable.

For $\mu \in \mathfrak{F}^{\prime}$, define the distributions $T_{i, \mu}=T_{z_{i}, \mu}$ and $S_{i, \mu}=S_{\delta_{i}, \mu}$ on $z_{i}(i=1,2)$ as in Lemma 37 corresponding to the constants $a_{s}=\left\langle\left(b^{*}\right)^{s}, b\right\rangle\left(s \in W_{G}\right)$. For any $f \in C_{c}^{\infty}\left(\xi_{2}\right)$, define $f_{H_{1}}(Z)=f\left(Z-H_{1}\right)\left(Z \epsilon_{\gamma_{2}}\right)$ and put

$$
T_{2, \mu^{\prime}}(f)=T_{2, \mu}\left(f_{H_{1}}\right), \quad S_{2, \mu}{ }^{\prime}(f)=S_{2, \mu}\left(f_{H_{2}}\right)
$$

Then

$$
\pi_{3_{2}}(H) T_{2, \mu^{\prime}}(H)=\sum_{s \in W_{G}} \varepsilon(s)\left\langle\left(b^{*}\right)^{s}, b\right\rangle e^{s \mu\left(H+H_{1}\right)} \quad\left(H \in \mathfrak{b}^{\prime}\right) .
$$

Moreover H_{1} lies in the center of z_{2} and

$$
\left\langle\left(b^{*}\right)^{s}, h_{1}\right\rangle=\left\langle\left(b^{*}\right)^{s}, b\right\rangle e^{s \lambda\left(H_{1}\right)} \quad\left(s \in W_{G}\right) .
$$

Now suppose μ tends to $\lambda\left(\mu \in \mathfrak{F}^{+}\right)$. Then it follows from Lemma 38 that

$$
\lim _{\mu \rightarrow \lambda} T_{2 . \mu^{\prime}}(f)=T_{h_{1}}^{+}(f)
$$

and similarly (see the corollary of Lemma 41)

Define

$$
\lim _{\mu \rightarrow \lambda} S_{2, \mu^{\prime}}(f)=S_{h_{1}}^{+}(f) \quad\left(f \in C_{c}^{\infty}\left(\xi_{2}\right)\right) .
$$

$$
T_{i}^{+}=T_{3_{i},}, 2^{+}, \quad S_{i}^{+}=S_{3_{i}} \cdot 2^{+} \quad(i=1,2)
$$

in the notation of $\S 18$. Then it is clear from the above result that

$$
T_{h_{1}}^{+}(f)=T_{2}^{+}\left(f_{H_{1}}\right), \quad S_{h_{1}}^{+}(f)=S_{2}^{+}\left(f_{H_{1}}\right) \quad\left(f \in C_{c}^{\infty}\left(z_{2}\right)\right)
$$

Moreover $T_{b}{ }^{+}=T_{1}{ }^{+}, S_{b}{ }^{+}=S_{1}{ }^{+}$by definition. Hence

$$
\Theta^{+}(h)=\Theta_{h_{1}}^{+}\left(h_{2}\right)=D_{h_{1}}\left(H_{2}\right)^{-1} T_{h_{1}}^{+}\left(H_{2}\right)=D_{h_{1}}\left(H_{2}\right)^{-1} T_{2}^{+}\left(H_{1}+H_{2}\right) .
$$

On the other hand $T_{2}^{+}=\eta_{0} T_{1}^{+}$pointwise on $g^{\prime} \cap z_{2}$ by Lemma 42 and 20-652923. Acta mathematica. 113. Imprimé le 12 mai 1965.

$$
\Theta_{b}^{+}\left(\exp H_{0}\right)=D_{b}\left(H_{0}\right)^{-1} T_{1}^{+}\left(H_{0}\right)
$$

Hence it would be enough to verify that $D_{b}(H) \eta_{0}(H)=D_{h_{1}}\left(H-H_{1}\right)$ for $H \in \mathfrak{a}$. Put

$$
v(Z)=D_{h_{1}}\left(Z-H_{1}\right)-D_{b}(Z) \eta_{0}(Z) \quad\left(Z \in_{\gamma_{2}}\right) .
$$

Then v is an analytic function on z_{2} which is invariant under $\Xi_{2}=\Xi\left(h_{1}\right)$. So it would be enough to show that $v=0$ on \mathfrak{b}^{\prime}. But it follows from the definition of $D_{h_{1}}, D_{b}$ and η_{0} that

$$
\begin{aligned}
v(H)= & \pi_{z_{\mathrm{s}}}\left(H-H_{1}\right)^{-1} \Delta\left(h_{1} \exp \left(H-H_{1}\right)\right) \\
& -\pi_{z_{1}}(H)^{-1} \Delta(b \exp H) \pi_{\delta_{1}}(H) \pi_{z_{2}}(H)^{-1}=0 \quad\left(H \in \mathfrak{b}^{\prime}\right),
\end{aligned}
$$

since $\pi_{\gamma_{2}}\left(H-H_{1}\right)=\pi_{z_{2}}(H)$. This proves the first statement of the lemma.
On the other hand,

$$
\begin{aligned}
\Psi^{+}(h) & =\Psi_{h_{1}}^{+}\left(h_{2}\right)=S_{h_{1}}^{+}\left(H_{2}\right)=S_{2}^{+}\left(H_{1}+H_{2}\right) \\
& =S_{1}^{+}\left(H_{1}+H_{2}\right)=S_{b}^{+}\left(H_{0}\right)=\Psi_{b}^{+}\left(\exp H_{0}\right)
\end{aligned}
$$

since $S_{1}^{+}=S_{2}^{+}$on \mathfrak{z}_{2} from Lemma 42. This proves the second statement.
Corollary. Θ^{+}and Ψ^{+}are both analytic on G^{\prime}. Moreover Ψ^{+}can be extended to a continuous function on G.

Let Ω be the set of all points $x_{0} \in G$ with the following property. There exists an open neighborhood U of x_{0} in G such that Θ^{+}and Ψ^{+}are both analytic on $U \cap G^{\prime}$ and Ψ^{+}extends to a continuous function on U. We have to verify that $\Omega=G$. Clearly Ω is an open and invariant subset of G. Therefore, in view of [2 (m), Lemma 7], it would be sufficient to verify that every semisimple element of G lies in Ω.

Fix a semisimple element $a \in G$. Then we can choose (see the corollary of [2(m), Lemma 5]) a Cartan subgroup A of G containing a. Let $a=a_{1} a_{2}$ where $a_{1} \in A_{I}$, $a_{2} \in A_{R}$. By Lemma 45 we can choose $x \in G$ such that $b=a_{1}{ }^{x} \in B$. Since Ω is invariant, it would be enough to verify that $a^{x} \in \Omega$. Hence we may assume that $x=1$ and $a=b a_{2}$ where $b=a_{1} \in A_{I} \cap B$. Now put $V=\exp \left(\mathfrak{g}_{0} \cap \mathfrak{z}_{b}\left(c_{b}\right)\right) \subset \Xi(b)$ in the notation of Lemma 50. Then V is an open neighborhood of 1 in $\Xi(b)$ and

$$
\Theta^{+}(b y)=\Theta_{b}^{+}(y), \quad \Psi^{+}(b y)=\Psi_{b}^{+}(y)
$$

for $y \in V^{\prime}=V \cap\left(b^{-1} G^{\prime}\right)$. Moreover we note that Ψ_{b}^{+}is continuous on $V, a_{2} \in V$ and $\nu_{b}\left(a_{2}\right) \neq 0$.

Now let $x \rightarrow x^{*}$ denote the natural mapping of G on $G^{*}=G / \Xi(b)$ and fix open neighborhoods V_{0} and $G_{0}{ }^{*}$ of a_{2} and 1^{*} in V and G^{*} respectively. If V_{0} and G_{0}^{*} are sufficiently small, we can choose an analytic mapping ϕ of $G_{0}{ }^{*}$ into G such that:

1) $\left(\phi\left(x^{*}\right)\right)^{*}=x^{*} \quad\left(x^{*} \in G_{0}{ }^{*}\right)$.
2) The mapping $\psi:\left(x^{*}, y\right) \rightarrow(b y)^{\phi\left(x^{*}\right)}$ of $G_{0}{ }^{*} \times V_{0}$ into G is univalent and regular. This is evidently possible (see [2(m), Lemma 14]). Put $U=\psi\left(G_{0}^{*} \times V_{0}\right)$. Then U is an open neighborhood of $a=b a_{2}$ in G and ψ defines an analytic diffeomorphism of $G_{0}{ }^{*} \times V_{0}$ onto U. Put $V_{0}{ }^{\prime}=V_{0} \cap V^{\prime}$ and $U^{\prime}=U \cap G^{\prime}$. Then it is obvious that $\psi\left(G_{0}{ }^{*} \times V_{0}{ }^{\prime}\right)=U^{\prime}$. Since Θ^{+}and Ψ^{+}are invariant functions, it is clear that

$$
\Theta^{+}\left(\psi\left(x^{*}, y\right)\right)=\Theta^{+}(b y)=\Theta_{b}^{+}(y), \quad \Psi^{+}\left(\psi\left(x^{*}, y\right)\right)=\Psi^{+}(b y)=\Psi_{b}^{+}(y)
$$

for $x^{*} \in G_{0}{ }^{*}$ and $y \in V_{0}{ }^{\prime}$. However $\Theta_{b}{ }^{+}$and $\Psi_{b}{ }^{+}$are both analytic on V^{\prime}. Therefore it follows that Θ^{+}and Ψ^{+}are analytic on U^{\prime}. Similarly since $\Psi_{b}{ }^{+}$is continuous on V, we conclude that Ψ^{+}can be extended to a continuous function on U. This proves the corollary-

Define the character ξ_{g} of B as in [2(m), § 18].
Lemma 51. Let Z_{G} be the center of G. Then

$$
\Theta^{+}(z x)=\xi_{Q}(z)^{-1}\left\langle b^{*}, z\right\rangle \Theta^{+}(x), \quad \Psi^{+}(z x)=\left\langle b^{*}, z\right\rangle \Psi^{+}(x)
$$

for $z \in Z_{G}$ and $x \in G^{\prime}$.
Fix $h \in G^{\prime}$ and let \mathfrak{a} be the centralizer of h in \mathfrak{g} and A the corresponding Cartan subgroup of G. Then $h=h_{1} h_{2}\left(h_{1} \in A_{I}, h_{2} \in A_{R}\right)$ and we can choose $y \in G$ such that $h_{1}{ }^{y} \in B$ (Lemma 45). The required result holds for $x=h$ if and only if it holds for $x=h^{y}$. Hence we may assume that $y=1$ and therefore $h_{1} \in B$. Then

$$
\begin{aligned}
& \Theta^{+}(z h)=\Theta_{z h_{1}}^{+}\left(h_{2}\right)=D_{z h_{1}}\left(H_{2}\right)^{-1} T_{z h_{1}}^{+}\left(H_{2}\right), \\
& \Psi^{+}(z h)=\Psi_{z h_{1}}{ }^{+}\left(h_{2}\right)=S_{z h_{1}}^{+}\left(H_{2}\right) \quad\left(z \in Z_{G}\right)
\end{aligned}
$$

where (${ }^{1}$) $H_{2}=\log h_{2} \in \mathfrak{a}_{R}$. Now h_{1} and $z h_{1}$ have the same centralizer z in g and so it is obvious from the definitions of the various distributions that

$$
T_{z h_{1}}^{+}=\left\langle b^{*}, z\right\rangle T_{h_{1}}^{+}, \quad S_{z h_{1}}^{+}=\left\langle b^{*}, z\right\rangle S_{h_{1}}^{+} .
$$

On the other hand

$$
\Delta(z b)=\xi_{q}(z) \Delta(b) \quad(b \in B)
$$

${ }^{(1)}$ As usual \log denotes the inverse of the exponential mapping of \mathfrak{a}_{R} onto A_{R}.

Therefore it is clear that

$$
D_{z h_{1}}(Z)=\xi_{Q}(z) D_{h_{1}}(Z) \quad\left(Z \in_{\mathcal{Z}}\right)
$$

and now our assertions follow immediately.
Lemma 52. Let A be a Cartan subgroup of G and put $A^{\prime}=A \cap G^{\prime}$. Then

$$
\sup _{h \in A^{\prime}}\left|\Delta_{A}(h) \Theta^{+}(h)\right|<\infty,
$$

in the notation of [2(m), § 19].
Since A_{I} / Z_{G} is compact, it would, in view of Lemma 51 , be enough to prove the following result.

Lemma 53. For any $a \in A_{I}$, we can choose an open neighborhood U of 1 in A such that $U \supset A_{R}$ and

$$
\sup _{h \in U^{\prime}}\left|\Delta_{A}(a h) \Theta^{+}(a h)\right|<\infty
$$

Here $U^{\prime}=U \cap a^{-1} A^{\prime}$.
By Lemma 45 we can select $x \in G$ such that $a^{x} \in B$. Hence, in view of the invariance of Θ^{+}, we may assume, without loss of generality, that $a \in B$. Then from Lemma 50,

$$
\Theta^{+}(a \exp Z)=\Theta_{a}^{+}(\exp Z)=D_{a}(Z)^{-1} T_{a}^{+}(Z)
$$

for all $Z \in \mathfrak{g}_{0} \cap \gamma_{a}\left(c_{a}\right)$ such that $a \exp Z \in G^{\prime}$. Let \mathfrak{a} be the Lie algebra of A. Then $\mathfrak{a} \subset \mathfrak{z}_{a}$. Put $\mathfrak{a}_{\mathbf{0}}=\mathfrak{a} \cap \mathfrak{g}_{\mathbf{0}} \cap \mathfrak{z}_{a}\left(c_{a}\right)$ and $U=\exp \mathfrak{a}_{\mathbf{0}}$. Then $U \supset A_{R}$ and if $a \exp H \in G^{\prime}\left(H \in \mathfrak{a}_{\mathbf{0}}\right)$, it is clear that

$$
\left|\Delta_{A}(a \exp H) \Theta^{+}(a \exp H)\right|=\left|\Delta_{A}(a \exp H) \Theta_{a}^{+}(\exp H)\right|=\left|\tau_{z_{a}}(H) T_{a}^{+}(H)\right|
$$

from the corollary of Lemma 47 and [2(m), Lemma 33]. Hence if we take into account Lemmas 28, 38 and 40 , we get

$$
\sup _{h \in U^{\prime}}\left|\Delta_{A}(a h) \Theta^{+}(a h)\right|<\infty .
$$

Lemma 54. Θ^{+}is locally summable on G and

Moreover

$$
\begin{gathered}
\sup _{x \in \Theta^{+}}|D(x)|^{\frac{1}{2}}\left|\Theta^{+}(x)\right|<\infty . \\
z \Theta^{+}=\chi_{b^{*}}(z) \Theta^{+} \quad(z \in 马)
\end{gathered}
$$

as a distribution on G.
Since there are only a finite number of non-conjugate Cartan subgroups of G, it follows from Lemma 52 that

$$
\sup _{x \in G^{+}}|D(x)|^{\sharp}\left|\Theta^{+}(x)\right|<\infty
$$

Therefore Θ^{+}is locally summable on G from [2(m), Lemma 53].
Now fix $z \in 马$ and consider the distribution

$$
T=z \Theta^{+}-\chi_{b^{*}}(z) \Theta^{+}
$$

on G. We have to show that $T=0$. In view of [$2(\mathrm{~m})$, Lemma 7], it would be enough to verify that no semisimple element of G lies in Supp T.

Fix a semisimple element $h \in G$. Then h lies in some Cartan subgroup A of G [2(m), Cor. of Lemma 5]. Let $h=h_{1} h_{2}\left(h_{1} \in A_{I}, h_{2} \in A_{R}\right)$. Then again by Lemma 45, there exists $x \in G$ such that ${h_{1}}^{x} \in B . T$ being invariant, it would be sufficient to prove that $h^{x} \ddagger \operatorname{Supp} T$. Hence replacing (h, A) by (h^{x}, A^{x}), we may assume that $a=h_{1} \in B$. Let σ_{T} and $\sigma_{\Theta+}$ be the distributions on $\Xi^{\prime}(a)$ corresponding to T and Θ^{+}respectively under [2 (m), Lemma 15]. Then

$$
\sigma_{T}=\left|v_{a}\right|^{-\frac{1}{2}} \mu_{a}(z)\left(\left|v_{a}\right|^{\frac{1}{2}} \sigma_{\Theta^{+}}\right)-\chi_{b^{*}}(z) \sigma_{\Theta^{+}}
$$

by [2(m), Lemma 22] where $\mu_{a}=\mu_{\mathrm{g} / 3 a}$ as in Lemma 46. Let θ_{a} denote the function $y \rightarrow \Theta^{+}(a y)$ on $\Xi^{\prime}(a)$. Then it follows from [2 (i), Cor. 2 of Theorem 1] that θ_{a} is locally summable and therefore $\sigma_{\Theta^{+}}=\theta_{a}$ from the definition of $\sigma_{\Theta^{+}}$. Hence it follows from Lemma 50 and the corollary of Lemma 47 that the distribution $\left|\nu_{a}\right|^{\frac{1}{2}} \sigma_{\theta^{+}}$coincides on $V=\exp \left(g_{0} \cap z_{a}\left(c_{a}\right)\right)$ with the locally summable function $\varepsilon_{a}(0) \Phi_{a}{ }^{+}$. Therefore we conclude from Lemma 46 that $\sigma_{T}=0$ on V. Since V is an open subset of $\Xi^{\prime}(a)$ containing h_{2}, we conclude [2(m), Lemma 15] that $T=0$ around $h=a h_{2}$. This proves Lemma 54.

Lemma 55.

$$
\Theta^{+}(b)=\Delta(b)^{-1} \sum_{s \in W_{G}} \varepsilon(s)\left\langle\left(b^{*}\right)^{s}, b\right\rangle
$$

for $b \in B^{\prime}$.
Fix $b \in B^{\prime}$. Then $z_{b}=\mathfrak{b}$ and therefore $D_{b}(H)=\Delta(b \exp H)$ and

Hence

$$
\begin{gathered}
T_{b}^{+}(H)=\sum_{s \in W_{G}} \varepsilon(s)\left\langle\left(b^{*}\right)^{s}, b\right\rangle e^{\lambda\left(s^{-1} H\right)} \quad(H \in \mathfrak{G}) . \\
\Theta^{+}(b)=\Theta_{b}^{+}(1)=D_{b}(0)^{-1} T_{b}^{+}(0)=\Delta(b)^{-1} \sum_{s \in W_{G}} \varepsilon(s)\left\langle\left(b^{*}\right)^{s}, b\right\rangle .
\end{gathered}
$$

This shows that Θ^{+}satisfies all the conditions of Theorem 3. Therefore in view of Lemma 44, the proof of Theorem 3 is now complete.

§ 23. Further properties of $\boldsymbol{\Theta}$

Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g} and A the corresponding Cartan subgroup of G. Put $\mathfrak{a}_{R}{ }^{\prime}=\mathfrak{a}_{R} \cap \mathfrak{a}^{\prime}(R)$ and $A_{R}{ }^{\prime}=A_{R} \cap A^{\prime}(R)$ in the notation of [2(m), § 19]. Let A^{+}be a connected component of $A^{\prime}(R)$. Then it is obvious that $A^{+}=A_{I}^{+} A_{R}{ }^{+}$where $A_{I}{ }^{+}$is a connected component of A_{I} and $A_{R}{ }^{+} \subset A_{R}$.

Let us assume that $\theta(\mathfrak{a})=\mathfrak{a}$. Then by Lemma 45 we can choose $k \in K$ such that $\left(A_{I}^{+}\right)^{k} \subset B$. Hence we may suppose that $A_{I}{ }^{+} \subset B$. Let z denote the centralizer of $A_{I}{ }^{+}$ in \mathfrak{g}. Then \mathfrak{a} and \mathfrak{b} are both Cartan subalgebras of \mathfrak{z}. Consider the complex-analytic subgroup Ξ_{c} of G_{c} corresponding to ad \mathcal{z}_{c}. We can choose $y \in \Xi_{c}$ such that $\mathfrak{b}_{c}{ }^{y}=\mathfrak{a}_{c}$. Put $W\left(A^{+}\right)=W(\mathfrak{z} / \mathfrak{a})$. Since \mathfrak{a}_{I} lies in the center of \mathfrak{z}, every root of $(\mathfrak{z}, \mathfrak{a})$ is real. Hence (see [2(k), Lemma 6]) every element of $W\left(A^{+}\right)$is induced on \mathfrak{a} by some element of the analytic subgroup Ξ of G corresponding to z. Let W_{Ξ} be the subgroup of those elements of $W(\mathfrak{z} / \mathfrak{b})$ which can be induced on \mathfrak{b} by some element of Ξ. Then $W_{\Xi}=$ $W_{k}(z / \mathfrak{b})$ in the notation of $\S 18$.

Put $\mathfrak{w}\left(A_{I}{ }^{+}\right)=W_{G} \cap W(\mathfrak{z} / \mathfrak{b})$ and write $\mathfrak{w}=\mathfrak{w}\left(A_{I}{ }^{+}\right)$for simplicity.
Lemma 56. Suppose t_{1}, t_{2} are two elements in W_{G} such that

Then $t_{1} \in \mathfrak{w} t_{2}$.

$$
t_{1}{ }^{y} \in W\left(A^{+}\right) t_{2}^{y}
$$

Put $t=t_{1} t_{2}{ }^{-1}$. Then $t \in\left(W\left(A^{+}\right)\right)^{y^{-1}} \cap W_{G}=W(\mathfrak{z} / \mathfrak{b}) \cap W_{G}=\mathfrak{w}$.
Corollary. Let $r=\left[W_{G}: \mathfrak{w}\right]$ and t_{1}, \ldots, t_{r} a complete set of representatives in W_{G} for $\mathfrak{w} \backslash W_{G}$. Then the elements $s t_{i}{ }^{y}\left(s \in W\left(A^{+}\right), \mathrm{l} \leqslant i \leqslant r\right)$ are all distinct.

This is obvious from the above lemma.
Lemma 57. Fix an element $b^{*} \in B^{* \prime}$ and define Θ as in Theorem 3. Then there exist unique complex numbers $c_{b^{*}}\left(s: t: A^{+}\right)\left(s \in W\left(A^{+}\right), t \in W_{G}\right)$ such that

1) $c_{b^{*}}\left(s u^{y}: u^{-1} t: A^{+}\right)=c_{b^{*}}\left(s: t: A^{+}\right) \quad(u \in \mathfrak{F})$,
2) $\Delta_{A}\left(h_{1} h_{2}\right) \Theta\left(h_{1} h_{2}\right)=\sum_{t \in \mathfrak{w} \backslash W_{G}} \varepsilon(t)\left\langle\left(b^{*}\right)^{t}, h_{1}\right\rangle \sum_{s \in W(A+)} \varepsilon(s) c_{b^{*}}\left(s: t: A^{+}\right) \exp \left(s(t \lambda)^{y}\left(H_{2}\right)\right)$
for $h_{1} \in A_{I}{ }^{+}, h_{2} \in A_{R}{ }^{+}$. Here $\lambda=\log b^{*}$ and (${ }^{1}$) $H_{2}=\log h_{2}$.
Let $H_{1} \in \mathfrak{a}_{I}$ and $H_{2} \in \mathfrak{a}_{R}$. Then since s^{-1} and y^{-1} leave H_{1} fixed, it is clear that

$$
\left\langle\left(b^{*}\right)^{t}, \exp H_{1}\right\rangle \exp \left(s(t \lambda)^{y}\left(H_{2}\right)\right)=\exp \left(s(t \lambda)^{y}\left(H_{1}+H_{2}\right)\right)
$$

(${ }^{1}$) See footnote 1, p. 299.
for $s \in W\left(A^{+}\right)$and $t \in W_{G}$. Since λ is regular, the uniqueness is obvious from the corollary of Lemma 56. On the other hand the existence is seen as follows. We use the notation of $\S 18$. Put $\mathfrak{a}^{+}=\mathfrak{a}_{I}+\log A_{R}{ }^{+}$. Then \mathfrak{a}^{+}is a connected component of $\mathfrak{a}^{\prime}(\mathfrak{z}: R)($ see $\S 13)$.

Lemma 58. Put

$$
c\left(s: \mathfrak{F}^{+}: A^{+}\right)=\sum_{t \in \mathfrak{w} / W_{\Xi}} c_{\mathfrak{z}}\left(s t^{y}: t^{-1} \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)
$$

for $s \in W\left(A^{+}\right)$and any connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime}. Then

$$
c_{b^{*}}\left(s: t: A^{+}\right)=c\left(s: t \mathfrak{F}^{+}: A^{+}\right) \quad\left(s \in W\left(A^{+}\right), t \in W_{G}\right)
$$

where \mathfrak{F}^{+}is the component of $\log b^{*}$ in $\mathfrak{F}^{\prime}\left(b^{*} \in B^{* \prime}\right)$.
In view of Lemma 40 , the definition of $c\left(s: \mathfrak{F}^{+}: A^{+}\right)$is legitimate and it is obvious that

$$
c\left(s u^{y}: u^{-1} \mathfrak{F}^{+}: A^{+}\right)=c\left(s: \mathfrak{F}^{+}: A^{+}\right) \quad(u \in \mathfrak{w})
$$

Therefore it would be sufficient to prove the following result.
Lemma 59. Fix $b^{*} \in B^{*}$ and a connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime} such that $\lambda=\log b^{*} \in \mathrm{Cl} \mathfrak{F}^{+}$ and define Θ^{+}, Ψ^{+}as in § 22 corresponding to b^{*} and \mathfrak{F}^{+}. Then

$$
\Delta_{A}\left(h_{1} h_{2}\right) \Theta^{+}\left(h_{1} h_{2}\right)=\sum_{t \in \mathfrak{w} \backslash w_{\theta}} \varepsilon(t)\left\langle\left(b^{*}\right)^{2}, h_{1}\right\rangle \sum_{\left.s \in W_{(} A^{+}\right)} \varepsilon(s) c\left(s: t \mathfrak{F}^{+}: A^{+}\right) \exp \left(s(t \lambda)^{y}\left(H_{2}\right)\right),
$$

and

$$
\Psi^{+}\left(h_{1} h_{2}\right)=\sum_{t \in\{\backslash \backslash \backslash\}}\left\langle\left(b^{*}\right)^{t}, h_{1}\right\rangle \sum_{s \in W\left(A^{+}\right)} c\left(s: t \mathfrak{F}^{+}: A^{+}\right) \exp \left(s(t \lambda)^{y}\left(H_{2}\right)\right)
$$

for $h_{1} \in A_{I}^{+}$and $h_{2} \in A_{R}{ }^{+}$. Here $H_{2}=\log h_{2}$ as before.
Fix a point $b_{0} \in A_{I}{ }^{+}$. Then we can choose $H_{0} \in \mathfrak{a}_{I}$ arbitrarily near zero such that 1) $v_{b_{0}}\left(\exp H_{0}\right) \neq 0$ and 2) every root of $\left(b_{b_{0}}, a\right)$ which vanishes at H_{0} is real. Put $b=b_{0} \exp H_{0}$. Then $b \in A_{i}^{+}$and it is obvious that $z_{b}=z_{b}$. This shows that the set V of those points $b \in A_{I}^{+}$for which $z_{b}=z$, is dense in $A_{I}{ }^{+}$. Fix a point $b \in V$. Then from Lemma 50,

$$
\Theta^{+}(b \exp Z)=\Theta_{b}^{+}(\exp Z)=D_{b}(Z)^{-1} T_{b}^{+}(Z), \quad \Psi^{+}(b \exp Z)=\Psi_{b}^{+}(\exp Z)=S_{b}^{+}(Z)
$$

for all $Z \in \mathfrak{g}_{0} \cap \mathfrak{z}_{b}\left(c_{b}\right)$ such that $b \exp Z \in G^{\prime}$. Put $U=\mathfrak{a}^{+} \cap \mathfrak{g}_{0} \cap z_{b}\left(c_{b}\right)$ and let U^{\prime} be the set of all points $H \in U$ where $\Delta_{A}(b \exp H) \neq 0$. Recall that P is the set of all positive roots of $(\mathfrak{g}, \mathfrak{G})$. Then we may assume, without loss of generality, that P^{y} is the
set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$. Then it is clear that
and therefore

$$
D_{b}(\exp H)=\Delta_{A}(b \exp H) \pi_{z}{ }^{a}(H)^{-1}
$$

$$
\Delta_{A}(b \exp H) \Theta^{+}(b \exp H)=\pi_{b}{ }^{a}(H) T_{b}{ }^{+}(H) \quad\left(H \in U^{\prime}\right)
$$

On the other hand it follows from Lemmas 38 and 40 that

$$
\pi_{\mathfrak{z}}{ }^{a}(H) T_{b}{ }^{+}(H)=\sum_{t \in W_{\Xi} \backslash W_{G}} \varepsilon(t)\left\langle\left(b^{*}\right)^{t}, b\right\rangle \sum_{s \in W\left(A^{+}\right)} \varepsilon(s) c_{\mathfrak{z}}\left(s: t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) \exp \left(s(t \lambda)^{y}(H)\right)
$$

for $H \in U^{\prime}$. Now suppose $H=H_{1}+H_{2} \quad\left(H_{1} \in \mathfrak{a}_{I}, H_{2} \in \mathfrak{a}_{R}\right)$. Since s^{-1} and y^{-1} leave \mathfrak{a}_{I} pointwise fixed, it is clear that

$$
\left\langle\left(b^{*}\right)^{t}, b\right\rangle \exp \left(s(t \lambda)^{y}(H)\right)=\left\langle\left(b^{*}\right)^{t}, h_{1}\right\rangle \exp \left(s(t \lambda)^{y}\left(H_{2}\right)\right)
$$

for $s \in W\left(A^{+}\right)$and $t \in W_{G}$. Here $h_{1}=b \exp H_{1}$. Therefore since the function

$$
h \rightarrow \Delta_{A}(h) \Theta^{+}(h) \quad\left(h \in A^{+} \cap A^{\prime}\right)
$$

extends to an analytic function on A^{+}(see [2 (m), Lemma 31]), it is obvious that

$$
\Delta_{A}\left(h_{1} h_{2}\right) \Theta^{+}\left(h_{1} h_{2}\right)=\sum_{t \in W_{\Xi} \backslash W_{G}} \varepsilon(t)\left\langle\left(b^{*}\right)^{2}, h_{1}\right\rangle \sum_{s \in W\left(A^{+}\right)} \varepsilon(s) c_{3}\left(s: t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) \exp \left(s(t \lambda)^{y}\left(H_{2}\right)\right)
$$

for $h_{1} \in A_{I}{ }^{+}, h_{2} \in A_{R}{ }^{+}$. Our first assertion now follows immediately if we take into account Lemma 40.

Similarly we conclude from Lemmas 50 and 41 that

$$
\Psi^{+}(b \exp H)=S_{b}^{+}(H)=\sum_{t \in W_{\Xi} \backslash W_{a}}\left\langle\left(b^{*}\right)^{z}, b\right\rangle \sum_{s \in W\left(A^{+}\right)} c_{3}\left(s: t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right) \exp \left(s(t \lambda)^{y}(H)\right)
$$

for $H \in U^{\prime}$. Since Ψ^{+}extends to a continuous function on G (see the corollary of
 $A_{I}{ }^{+}$. Therefore the second assertion of the lemma is now obvious.

Lemma 60. $c\left(s: \mathfrak{F}^{+}: A^{+}\right)=0$ unless $\mathfrak{\Re} \mu^{y}\left(s^{-1} H\right) \leqslant 0$ for every $\mu \in \mathfrak{F}^{+}$and $H \in \mathfrak{a}^{+}$.
This is obvious from Lemma 58 and Lemma 28.
Corollary. There exists a number C (independent of b^{*} and \mathfrak{F}^{+}) such that

$$
|D(x)|^{\frac{1}{2}}\left|\Theta^{+}(x)\right| \leqslant C \quad\left(x \in G^{\prime}\right)
$$

and

$$
\left|\Psi^{++}(x)\right| \leqslant C \quad(x \in G)
$$

in the above notation.
Let $C\left(A^{+}\right)$denote the maximum of $\left|c_{3}\left(s: \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)\right|$for all $s \in W\left(A^{+}\right)$and all \mathfrak{F}^{+}. Then it follows from Lemmas 58,59 and 60 that

$$
\left|\Delta_{A}(h) \Theta^{+}(h)\right| \leqslant\left[\mathfrak{w}: W_{\Xi}\right]\left[W_{G}: \mathfrak{w}\right]\left[W\left(A^{+}\right)\right] C\left(A^{+}\right) \leqslant[W]^{2} C\left(A^{+}\right) \quad\left(h \in A^{\prime} \cap A^{+}\right)
$$

where $W=W(\mathfrak{g} / \mathfrak{b})$ as usual. Similarly

$$
\left|\Psi^{+}(h)\right| \leqslant[W]^{2} C\left(A^{+}\right) \quad\left(h \in A^{+}\right)
$$

It is clear that $C\left(z A^{+}\right)=C\left(A^{+}\right)$for $z \in Z_{G}$. Therefore since A / Z_{G} and $\mathfrak{a}^{\prime}(R)$ both have only a finite number of connected components,

$$
C(A)=[W]^{2} \operatorname{Sup}_{A^{+}} C\left(A^{+}\right)<\infty .
$$

Here A^{+}runs over all connected components of $A^{\prime}(R)$. This shows that

$$
\left|\Delta_{A}(h) \Theta^{+}(h)\right| \leqslant C(A) \quad\left(h \in A^{\prime}\right)
$$

and

$$
\left|\Psi^{+}(h)\right| \leqslant C(A) \quad(h \in A)
$$

But then since G has only a finite number of non-conjugate Cartan subgroups, our assertion is obvious.

§ 24. The distribution $\boldsymbol{\theta}_{\lambda}{ }^{*}$

Put $L=\log B^{*}$. Then L is a closed additive subgroup of \mathfrak{F} which is, in fact, a lattice if B is compact. For any $\lambda \in L$, let ξ_{λ} denote the corresponding element of B^{*} so that $\xi_{\lambda}(\exp H)=e^{\lambda(H)}(H \in \mathfrak{G})$. Fix $\lambda \in L$ and a connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime} such that $\lambda \in \mathrm{Cl} \mathfrak{F}^{+}$. Then we denote by $\Theta_{\lambda . \mathfrak{F}^{+}}$and $\Psi_{\lambda, \mathfrak{F}^{+}}$respectively, the distributions Θ^{+}and Ψ^{+}of $\S 22$ for $b^{*}=\xi_{\lambda}$. In particular if $\lambda \in L^{\prime}=L \cap \mathfrak{F}^{\prime}$, the component \mathfrak{F}^{+}is uniquely determined and so in this case we denote them simply by Θ_{λ} and Ψ_{λ}.

Now fix $\lambda \in L^{\prime}$ and suppose that $s \lambda \in L$ for every $s \in W=W(\mathfrak{g} / \mathfrak{b})$. Then we intend to study the distribution

$$
\Theta_{\lambda}^{*}=\sum_{s \in W} \varepsilon(s) \Theta_{s \lambda}
$$

more closely. Let us return to the notation of $\S 23$ and define

$$
\xi_{t, \lambda}\left(h_{1} h_{2}\right)=\xi_{t \lambda}\left(h_{1}\right) \exp \left((t \lambda)^{y}\left(\log h_{2}\right)\right) \quad(t \in W)
$$

21-652923. Acta mathematica. 113. Imprimé le 12 mai 1965.
for $h_{1} \in A_{I}^{+}$and $h_{2} \in A_{R}$. Let \mathfrak{m} be the centralizer of \mathfrak{a}_{R} in \mathfrak{g} and put

$$
W_{0}=W(\mathfrak{m} / \mathfrak{a})^{y^{-1}}
$$

Since \mathfrak{a}_{I} lies in the center of \mathfrak{z} and \mathfrak{a}_{R} in the center of \mathfrak{m}, it is clear that $W(z / a)$ and $W(\mathrm{~m} / \mathfrak{a})$ commute (as subgroups of $W(\mathfrak{g} / \mathfrak{a})$). Therefore $W(\mathrm{z} / \mathfrak{b})$ and W_{0} also commute in W.

Lemma 61. For any connected component \mathfrak{F}^{+}of \mathfrak{F}^{\prime}, define

Then

$$
\begin{gathered}
c^{*}\left(t: \mathfrak{F}^{+}: A^{+}\right)=\left[W_{G}: \mathfrak{W}\right] \sum_{s \in W(\mathcal{Z} / 6)} c\left(s^{y}: s^{-1} t \mathfrak{F}^{+}: A^{+}\right) \quad(t \in W) . \\
c^{*}\left(u^{-1} t: \mathfrak{F}^{+}: A^{+}\right)=c^{*}\left(t: \mathfrak{F}^{+}: A^{+}\right)
\end{gathered}
$$

for $u \in W_{0}$ and $t \in W$. Moreover,

$$
\Delta_{A} \Theta_{\lambda}^{*}=\sum_{t \in W} \varepsilon(t) c^{*}\left(t: \mathfrak{F}^{+}: A^{+}\right) \xi_{t, \lambda}
$$

on A^{+}. Here \mathfrak{F}^{+}is the component of \mathfrak{F}^{\prime} containing λ.
Fix $u \in W_{0}$ and $t \in W$. Since u and $W(z / \mathfrak{b})$ commute, it is clear that

$$
\begin{aligned}
c^{*}\left(u^{-1} t: \mathfrak{F}^{+}: A^{+}\right) & =\left[W_{G}: \mathfrak{W}\right] \sum_{s \in W(3 / b)} c\left(s^{y}: u^{-1} s^{-1} t \mathfrak{F}^{+}: A^{+}\right) \\
& =\left[W_{G}: W_{\Xi}\right] \sum_{s \in W(\sqrt{3} / 6)} c_{z}\left(s^{y}: u^{-1} s^{-1} t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)
\end{aligned}
$$

from Lemma 58. Define $\mathfrak{F}_{\mathfrak{z}}{ }^{\prime}$ as in $\S 18$ and for fixed $s \in W(z / \mathfrak{b})$ and $t \in W$, let $\mathfrak{F}_{3}{ }^{+}$be the unique connected component of $\mathfrak{F}_{3}^{\prime}$ containing $s^{-1} t \mathfrak{F}^{+}$. Since u^{-1} leaves every root of (z, \mathfrak{b}) fixed, it is clear that $u^{-1} \mathfrak{F}_{3}^{+}=\mathfrak{F}_{3}^{+}$. Hence

$$
c_{\mathfrak{z}}\left(s^{y}: u^{-1} s^{-1} t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)=c_{\mathfrak{z}}\left(s^{y}: \mathfrak{F}_{3}^{+}: \mathfrak{a}^{+}\right)=c_{\mathfrak{b}}\left(s^{y}: s^{-1} t \mathfrak{F}^{+}: \mathfrak{a}^{+}\right)
$$

in the notation of § 18. This implies the first assertion of the lemma.
Now let \mathfrak{F}^{+}be the component of \mathfrak{F}^{\prime} containing λ. Then it follows from Lemma 59 that

$$
\Delta_{A} \Theta_{\lambda}^{*}=\sum_{u \in W} \varepsilon(u) \sum_{t \in \mathfrak{w} \backslash W_{G}} \varepsilon(t) \sum_{s \in W(/ z / b)} \varepsilon(s) c\left(s^{y}: t u \mathfrak{F}^{+}: A^{+}\right) \xi_{s t u, \lambda}
$$

on A^{+}. From this the second assertion of the lemma follows immediately.
Now assume that G_{c} is an acceptable complexification (see [2(m), §18]) of G and G is the real analytic subgroup of G_{c} corresponding to g. Let A_{c} and B_{c} be the Cartan subgroups of G_{c} corresponding to \mathfrak{a}_{c} and \mathfrak{b}_{c} respectively. Then W operates on
B_{c} and therefore also on B. Hence L is invariant under W. Similarly $W(\mathfrak{m} / a)$ operates on A_{c}. Since it maps \mathfrak{a}_{I} into itself and leaves \mathfrak{a}_{R} pointwise fixed, it leaves every point in $A_{I} \cap \exp (-1)^{\frac{1}{2}} \mathfrak{a}_{R}$ fixed and maps $A_{I}^{0}=\exp \mathfrak{a}_{I}$ into itself. Therefore (see [2(m), Lemma 50]) $W(\mathfrak{m} / \mathfrak{a})$ operates on A and maps A_{I}^{+}into itself. Now if $u \in W_{0}$ then $s=u^{y} \in W(\mathrm{~m} / \mathfrak{a})$ and

$$
\xi_{u t, \lambda}\left(h_{1} h_{2}\right)=\xi_{u t \lambda}\left(h_{1}\right) \exp \left((t \lambda)^{y}\left(\log h_{2}\right)\right)=\xi_{t, \lambda}\left(\left(h_{1} h_{2}\right)^{s^{-1}}\right) \quad(t \in W)
$$

for $h_{1} \in A_{I}^{+}, h_{2} \in A_{R}$. Hence we obtain the following result from Lemma 61 .
Lemma 62. Under the above conditions
for $h \in A^{+}$.

$$
\Delta_{A}(h) \Theta_{\lambda}^{*}(h)=\sum_{t \in W_{0} \backslash W} \varepsilon(t) c^{*}\left(t: \mathfrak{F}^{+}: A^{+}\right) \sum_{s \in W(\mathfrak{m} / \mathfrak{a})} \varepsilon(s) \xi_{t, \lambda}\left(h^{s}\right)
$$

Let P_{+}be the set of all positive roots of (g, a) which do not vanish identically on \mathfrak{a}_{R}. Put $\sigma=\frac{1}{2} \sum_{\alpha \in P_{+}} \alpha$ and

$$
\Delta_{+}(h)=e^{\sigma\left(\log h_{\nu}\right)} \prod_{\alpha \in P_{+}}\left(1-\xi_{\alpha}\left(h^{-1}\right)\right) \quad(h \in A)
$$

in the notation of [2(m), §18]. Here h_{2} is the component of h in A_{R}.
Corollary.

$$
\sup _{h \in A^{+}}\left|\Delta_{+}(h) \Theta_{\lambda}^{*}(h)\right|<\infty
$$

In view of Lemma 51, it is enough to show that $\Delta_{+}(h) \Theta_{\lambda}{ }^{*}(h)$ remains bounded for $h \in A^{+} \cap A^{\prime}$. In order to do this we can obviously assume that the set of positive roots of ($\mathfrak{g}, \mathfrak{a}$) is chosen as in [2(m), §27]. Define M, Δ_{M} and ξ_{e} as in [2(m), §27]. Then

$$
\Delta_{A}(h)=\Delta_{M}(h) \Delta_{+}(h) \quad(h \in A) .
$$

Moreover, it follows from Lemma 60, that

$$
c\left(s^{y}: s^{-1} t \mathfrak{F}^{+}: A^{+}\right)=0 \quad(s \in W(\mathfrak{z} / \mathfrak{b}), t \in W)
$$

unless $(t \lambda)^{y}\left(H_{2}\right) \leqslant 0$ for $H_{2} \in \log A_{R}{ }^{+}$. Therefore it is clear from Lemmas 61 and 62 that

$$
\left|\Delta_{+}(h) \Theta_{\lambda}^{*}(h)\right| \leqslant \sum_{t \in W_{0} \backslash W}\left|c^{*}\left(t: \mathfrak{F}^{+}: A^{+}\right)\right|\left|\Delta_{M}\left(h_{1}\right)^{-1} \sum_{s \in W(\mathrm{~m} / \mathrm{a})} \varepsilon(s) \xi_{t \lambda}\left(h_{\mathbf{1}}{ }^{s}\right)\right|
$$

for $h \in A^{\prime} \cap A^{+}$where h_{1} is the component of h in $A_{I}{ }^{+}$. Now choose

$$
a \in A_{I}^{+} \cap \exp (-1)^{\frac{1}{2}} a_{R}
$$

such that $A_{I}{ }^{+}=a A_{I}{ }^{0}$, Then (see [2(m), §23])
and

$$
\sum_{s \in W(\mathbb{m} / \mathfrak{a})} \varepsilon(s) \xi_{t \lambda}\left((a h)^{s}\right)=\xi_{t \lambda}(a) \sum_{s \in W(\mathbb{m} / \mathfrak{a})} \varepsilon(s) \xi_{t \lambda}\left(h^{s}\right)
$$

for $h \in A_{I}{ }^{0}$ and $t \in W$. Therefore our assertion is obvious from [2 (b), Cor. 2, p. 139].

§ 25. Statement of Theorem 4

Fix a Haar measure $d x$ on G and consider the distribution

$$
\Theta^{+}(f)=\int f \Theta^{+} d x \quad\left(f \in C_{c}^{\infty}(G)\right)
$$

as in Lemma 54. For any $\varepsilon>0$, get $G(\varepsilon)$ denote the set of all $x \in G$ where $|D(x)|>\varepsilon^{2}$. Suppose u is a measurable function on G^{\prime} which is integrable (with respect to $d x$) on $G(\varepsilon)$ for every $\varepsilon>0$. Then we define ${ }^{(1)}$

$$
\text { p.v. } \int u d x=\lim _{\varepsilon \rightarrow 0} \int_{G(\varepsilon)} u d x
$$

provided this limit exists and is finite.
Theorem 4. Define Θ^{+}and Ψ^{+}as in § 22 and put $\lambda=\log b^{*}$. Then

$$
\varpi(\lambda) \Theta^{+}(f)=\text { p.v. } \int D^{-1} \Psi^{+} \nabla_{G} f d x
$$

where ∇_{G} has the same meaning as in [2(m), §20].
Before proceeding with the proof, we need some formulas on integrals (cf. § 2). Let $\mathfrak{a}_{1}=\mathfrak{b}, \mathfrak{a}_{2}, \ldots, \mathfrak{a}_{r}$ be a maximal set of Cartan subalgebras of \mathfrak{g} no two of which are conjugate under G. Let A_{i} be the Cartan subgroup of G corresponding to \mathfrak{a}_{i}. Put $G_{i}{ }^{*}=G / A_{i 0}$ where $A_{i 0}$ is the center of A_{i} and fix a Haar measure $d_{i} a$ on A_{i} and an invariant measure $d_{i} x^{*}$ on G_{i}^{*}. Also let

$$
\Delta_{i}(a)=\Delta_{A_{i}}(a) \quad\left(a \in A_{i}\right)
$$

in the usual notation (see [2(m), § 19]).
Lemma 63. There exist numbers $c_{i}>0 \quad(1 \leqslant i \leqslant r)$ such that
${ }^{(1)}$ See footnote 1, p. 246.

$$
\int f(x) d x=\sum_{1 \leqslant t \leqslant r} c_{i} \int_{G_{i}^{*} \times A_{i}}\left|\Delta_{l}(a)\right|^{2} f\left(a^{x^{*}}\right) d_{i} x^{*} d_{i} a
$$

for $f \in C_{c}(G)$ in the notation of $[2(\mathrm{~m}), \S 22]$.
Put $G_{i}=A_{i}{ }^{G} \cap G^{\prime}$. Then G^{\prime} is the disjoint union of G_{1}, \ldots, G_{r} and our assertion is an immediate consequence of [2(m), Lemma 41].

§ 26. A simple property of the function Δ

Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g} and A the corresponding Cartan subgroup of G. Suppose a is an element of A and α a root of ($\mathfrak{g}, \mathfrak{a}$). We say that a and α commute if $\xi_{\alpha}(a)=1$ in the notation of [$\left.2(\mathrm{~m}), \S 19\right]$.

Put $m=\frac{1}{2}(\operatorname{dim} g-\operatorname{rank} \mathfrak{g})$ as in $\S 2$. Then m is the number of positive roots of $(\mathrm{g}, \mathfrak{a})$. For any $a \in A$, define the integer $m(R: a) \geqslant 0$ as follows. Let $a=a_{1} a_{2}\left(a_{1} \in A_{I}\right.$, $\left.a_{2} \in A_{R}\right)$. Then $m(R: a)$ is the number of positive real roots of $(\mathfrak{g}, \mathfrak{a})$ which commute with a_{1}. If α is a real root, $\alpha(H)=0$ for $H \in \mathfrak{a}_{1}$. Hence it is clear that $m(R: a)$ depends only on the connected component of a_{1} in A_{I}. Therefore the function $m(R): a \rightarrow m(R: a)$ is locally constant on A.

Lemma 64. $\quad \operatorname{conj} \Delta_{A}(a)=(-1)^{m+m(R: a)} \Delta_{A}(a) \quad(a \in A)$.
This result is obviously independent of the choice of positive roots. Hence we may select compatible orders on the spaces of real linear functions on \mathfrak{a}_{R} and $\mathfrak{a}_{R}+(-1)^{\frac{1}{2}} \mathfrak{a}_{I}$ respectively and assume that P is the set of positive roots of $(\mathfrak{g}, \mathfrak{a})$ in this order. Let η denote the conjugation of g_{c} with respect to g. Then it is clear that if α is a root, the same holds for $\eta \alpha$ and

$$
\xi_{\eta \alpha}(a)=\operatorname{conj} \xi_{\alpha}(a) \quad(a \in A) .
$$

Let P_{R}, P_{I} and P_{c} respectively denote the sets of real, imaginary and complex roots in P (see [2 (k), §4]). We now use the notation of [2(m), § 19]. Then
where

$$
\Delta(a)=\xi_{e}(a) \Delta_{I}^{\prime}(a) \Delta_{+}^{\prime}(a)
$$

and $P_{+}=P_{R} \cup P_{c}$. Since P_{+}is invariant under η, it is clear that $\Delta_{+}^{\prime}(a)$ is real. On the other hand, $\eta \alpha=-\alpha$ for $\alpha \in P_{I}$. Therefore

$$
\operatorname{conj} \Delta_{I}^{\prime}(a)=(-1)^{m(I)} \xi_{2 \varrho_{I}}(a) \Delta_{I}^{\prime}(a)
$$

where $m(I)$ is the number of roots in P_{I} and $\varrho_{I}=\frac{1}{2} \sum_{\alpha \in P_{I}} \alpha$. Now suppose $a=a_{1} a_{2}$ $\left(a_{1} \in A_{I}, a_{2} \in A_{R}\right)$. Then conj $\xi_{\varrho}(a)=\xi_{\varrho}\left(a_{1}^{-1} a_{2}\right)$ and $\xi_{2_{Q_{1}}}\left(a_{2}\right)=1$. Hence

$$
\begin{aligned}
\operatorname{conj} \Delta(a) & =(-1)^{m(I)} \xi_{Q}\left(a_{1}^{-1} a_{2}\right) \xi_{2 \varrho_{I}}\left(a_{1}\right) \Delta_{I}^{\prime}(a) \Delta_{+}^{\prime}(a) \\
& =(-1)^{m(I)} \xi_{2 \varrho}\left(a_{1}\right)^{-1} \xi_{2 \varrho_{I}}\left(a_{1}\right) \Delta(a)=(-1)^{m(I)} \xi_{2 \varrho_{+}}\left(a_{1}\right)^{-1} \Delta(a)
\end{aligned}
$$

where $\varrho_{+}=\frac{1}{2} \sum_{\alpha \in P_{+}} \alpha$. Now if $\alpha \in P_{c}$ then the same holds for $\eta \alpha$ and $\eta \alpha \neq \alpha$. Moreover,

Hence

$$
\xi_{\alpha}\left(a_{1}\right) \xi_{\eta \alpha}\left(a_{1}\right)=\left|\xi_{\alpha}\left(a_{1}\right)\right|^{2}=1
$$

$$
\xi_{2{e_{+}}_{+}}\left(a_{1}\right)=\xi_{2 e_{R}}\left(a_{1}\right)
$$

where $\varrho_{R}=\frac{1}{2} \sum_{\alpha \in P_{R}} \alpha$. But for any $\alpha \in P_{R}, \xi_{\alpha}\left(a_{1}\right)$ is both real and unimodular. Therefore it is ± 1. Hence

$$
\xi_{2 e_{R}}\left(a_{1}\right)=\prod_{\alpha \in P_{R}} \xi_{\alpha}\left(\alpha_{1}\right)=(-1)^{q}
$$

where q is the number of roots $\alpha \in P_{R}$ such that $\xi_{\alpha}\left(a_{1}\right)=-1$. But then $q+m(R: a)$ is the total number of roots in P_{R}. We have seen above that the roots in P_{c} occur in pairs. Hence

$$
q+m(R: a)+m(I) \equiv m \bmod 2
$$

This shows that

$$
q+m(I) \equiv m+m(R: a) \bmod 2
$$

and therefore \quad conj $\Delta(a)=(-1)^{m(I)+a} \Delta(a)=(-1)^{m+m(R: a)} \Delta(a)$.
This proves the lemma.

§ 27. Reduction of Theorem 4 to Lemma 66

We now come to Theorem 4. Suppose $V_{\varepsilon}\left(0<\varepsilon \leqslant \varepsilon_{0}\right)$ is a family of measurable functions on G such that (cf. § 2)
1)

$$
0 \leqslant V_{\varepsilon} \leqslant 1 \text { and } \lim _{\varepsilon \rightarrow 0} V_{\varepsilon}(x)=1 \text { for } x \in G^{\prime},
$$

2) $\quad V$ is invariant under G.
3) $\quad V_{\varepsilon}(x)=0$ if $|D(x)|<\varepsilon^{2} \quad(x \in G)$.

Fix $f \in C_{c}^{\infty}(G)$ and define $F_{f, i}, \varepsilon_{R, i}$ and ϖ_{i} on $A_{i}(1 \leqslant i \leqslant r)$ as in [2(m), §22] and let $m_{i}(R)$ be the locally constant function on A_{i} introduced in $\S 26$. Since

$$
D(a)=(-1)^{m} \Delta_{i}(a)^{2} \quad\left(a \in A_{i}\right),
$$

it is obvious from Lemmas 63 and 64 that

$$
\int V_{\varepsilon} D^{-1} \Psi^{+} \nabla_{G} f d x=\sum_{i} c_{i} \int V_{\varepsilon, i}(-1)^{m_{i}(R)} \varepsilon_{R, i} \Psi_{i}^{+} w_{i} F_{f, i} d_{i} a
$$

where $V_{\varepsilon, i}$ and Ψ_{i}^{+}respectively denote the restrictions of V_{ε} and Ψ^{+}on A_{i}. Therefore the following lemma is now obvious (cf. Lemma 4) from [2 (f), Theorem 2].

Lemma 65. Fix $f \in C_{c}^{\infty}(G)$. Then

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int V_{\varepsilon} D^{-1} \Psi^{+} \nabla_{G} f d x=\text { p.v. } \int D^{-1} \Psi^{+} \nabla_{G} f d x=\sum_{1 \leqslant i \leqslant r} c_{i} \int(-1)^{m_{M}(R)} \varepsilon_{R, i} \Psi_{i}^{+} w_{i} F_{f, i} d_{i} a . \\
& \text { Now put } \quad T(f)=\varpi(\lambda) \Theta^{+}(f)-\text { p.v. } \int D^{-1} \Psi^{+} \nabla_{G} f d x
\end{aligned}
$$

for $f \in C_{c}{ }^{\infty}(G)$. It follows from [2(f), Theorem 2] and the above lemma that T is an invariant distribution on G. We have to show that $T=0$. Hence it is sufficient by [2 (m), Lemma 7] to verify that no semisimple element of G lies in Supp T.

Fix a function $v \in C^{\infty}(\mathbf{R})$ such that $0 \leqslant v \leqslant 1, v(t)=0$ if $|t| \leqslant \frac{1}{2}$ and $v(t)=1$ if $|t| \geqslant 1$ $(t \in \mathbf{R})$. For any $\varepsilon>0$, put

$$
V_{\varepsilon}(x)=v\left(2^{-1} \varepsilon^{-2} D(x)\right) \quad(x \in G)
$$

Then it follows from Lemma 65 that

Put

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \int D^{-1} V_{\varepsilon} \Psi^{+} \nabla_{G} f d x=\text { p.v. } \int D^{-1} \Psi^{+} \nabla_{G} f d x . \\
T_{\varepsilon}(f)=\varpi(\lambda) \Theta^{+}(f)-\int D^{-1} V_{\varepsilon} \Psi^{+} \nabla_{G} f d x \quad\left(f \in C_{c}^{\infty}(G)\right)
\end{gathered}
$$

for $\varepsilon>0$. As usual let $\nabla_{G}{ }^{*}$ denote the adjoint of ∇_{G} on G^{\prime}. Since $D^{-1} V_{\varepsilon} \Psi^{+}$is a C^{∞} function on G whose support is contained in G^{\prime}, if follows that the distribution T_{ε} is, in fact, a locally summable function given by the formula

Moreover,

$$
T_{\varepsilon}=\varpi \tau(\lambda) \Theta^{+}-\nabla_{G}^{*}\left(D^{-1} V_{\varepsilon} \Psi^{+}\right)
$$

$$
T(f)=\lim _{\varepsilon \rightarrow 0} T_{\varepsilon}(f) \quad\left(f \in C_{c}^{\infty}(G)\right)
$$

Fix a semisimple element $a \in G$. Then a is contained in some Cartan subgroup A of G and $a=a_{1} a_{2}$ where $a_{1} \in A_{I}, a_{2} \in A_{R}$. Let a be the Lie algebra of A. By Lemma 45, we can choose $x \in G$ such that $\theta\left(\mathfrak{a}^{x}\right)=\mathfrak{a}^{x},\left(\mathfrak{a}_{I}\right)^{x} \subset \mathfrak{b}$ and $a_{1}^{x} \in B$. Since T is invariant under G, it would be enough to verify that $a^{x} \ddagger \operatorname{Supp} T$. Hence replacing
(a, A) by (a^{x}, A^{x}), we may assume that $\theta(\mathfrak{a})=\mathfrak{a}, \mathfrak{a}_{I} \subset \mathfrak{b}$ and $a_{1} \in B$. Then $a=b \exp H_{0}$ where $b=a_{1} \in A_{I} \cap B$ and $H_{0}=\log a_{2} \in \mathfrak{a}_{R}$. Define $z_{b}\left(c_{b}\right)$ as in Lemma 50. Then $\gamma_{0}=$ $z_{b}\left(c_{b}\right) \cap g_{0}$ is an open and completely invariant neighborhood of zero in $z_{b}=z_{b}$ and $H_{0} \in z_{0}$. Put $\Xi=\Xi(b)$ and $\Xi_{0}=\exp z_{0}$. Then Ξ_{0} is an open and completely invariant neighborhood of 1 in Ξ (see [$2(\mathrm{~m})$, Lemma 8]) and $\exp H_{0} \in \Xi_{0}$. Let σ and σ_{ε} be the distributions on Ξ_{0} corresponding to T and T_{ε} respectively under [2 (m), Lemma 15]. It would be sufficient to verify that $\sigma=0$. It is obvious (see [2 (i), Cor. 2 of Theorem 1]) that σ_{ε} is the locally summable function
on Ξ_{0} and therefore

$$
y \rightarrow T_{\varepsilon}(b y) \quad\left(y \in \Xi_{0}\right)
$$

$$
\sigma(g)=\lim _{\varepsilon \rightarrow 0} \sigma_{\varepsilon}(g)=\varpi(\lambda) \int g(y) \Theta^{+}(b y) d y-\lim _{\varepsilon \rightarrow 0} \int g(y) \Psi^{+}\left(b y ; \nabla_{G}^{*} \circ D^{-1} V_{\varepsilon}\right) d y
$$

for $g \in C_{c}^{\infty}\left(\Xi_{0}\right)$. (Here $d y$ is the Haar measure on Ξ.) Let τ^{\prime} be the distribution on z_{0} which corresponds to σ under the process described in [2(m), §10]. Then by Lemma 50,

$$
\tau^{\prime}(f)=\varpi(\lambda) \int \xi_{z}(Z) f(Z) \Theta_{b}^{+}(\exp Z) d Z-\lim _{\varepsilon \rightarrow 0} \int \xi_{z}(Z) \Psi^{+}\left(b \exp Z ; \nabla_{G}^{*} \circ D^{-1} V_{\varepsilon}\right) d Z
$$

for $f \in C_{c}^{\infty}\left(z_{0}\right)$ and it would be sufficient to verify that $\tau^{\prime}=0$.
Put

$$
S_{\varepsilon}^{+}(Z)=V_{\varepsilon}(b \exp Z) \Psi^{+}(b \exp Z)=V_{\varepsilon}(b \exp Z) S_{b}^{+}(Z) \quad\left(Z \in_{z_{0}}\right)
$$

in the notation of $\S 22$.
Lemma 66. We have ${ }^{(1)}$

$$
\Psi^{+}\left(b \exp Z ; \nabla_{G}^{*} \circ D^{-1} V_{\varepsilon}\right)=D_{b}(Z)^{-1}{S_{\varepsilon}}^{+}\left(Z ; \partial\left(q_{\mathrm{g} / 2}\right) \circ \nabla_{z}^{*} \circ \eta_{z}^{-1}\right)
$$

for $Z \in_{z_{0}}$ in the notation of $\S 22$ and Lemma 41.
Assuming this for a moment, we shall first finish the proof of Theorem 4. Put $\tau=\xi_{z}^{-1} D_{b} \tau^{\prime}$ and recall that

$$
\Theta_{b}^{+}(\exp Z)=D_{b}(Z)^{-1} T_{b}^{+}(Z)
$$

by definition (see §22). Hence if we write $q=q_{\mathrm{g} / 2}$, we get

$$
\tau(f)=\varpi(\lambda) T_{b}{ }^{+}(f)-\lim _{\varepsilon \rightarrow 0} \int f(Z) S_{\varepsilon}^{+}\left(Z ; \partial(q) \circ \nabla_{z}^{*} \circ \eta_{\partial}{ }^{-1}\right) d Z
$$

[^2]for $f \in C_{c}^{\infty}\left(z_{0}\right)$. But since S_{ε}^{+}is a C^{∞} function on z_{0} and η_{z} is nowhere zero on its support, it is clear that
$$
\int f(Z) S_{\varepsilon}^{+}\left(Z ; \partial(q) \circ \nabla_{z}^{*} \circ \eta_{3}^{-1}\right) d Z=\int \eta_{3}^{-1}\left(\nabla_{3} \circ \partial(q)^{*}\right) f \cdot S_{\varepsilon}^{+} d Z
$$

Now as $\varepsilon \rightarrow 0$ the right side obviously tends (see Lemma 4) to the limit

$$
\begin{gathered}
\text { p.v. } \int \eta_{3}^{-1}\left(\nabla_{3} \circ \partial(q)^{*}\right) f \cdot S_{b}^{+} d Z . \\
\tau(f)=\sigma(\lambda) T_{b}^{+}(f)-\text { p.v. } \int \eta_{3}^{-1}\left(\nabla_{8} \circ \partial(q)^{*}\right) f \cdot S_{b}^{+} d Z=0
\end{gathered}
$$

Hence
by Lemma 41. This proves Theorem 4.

§ 28. Proof of Lemma 66

We have still to prove Lemma 66. This requires some preparation. Fix a Cartan subgroup A of G and define w_{A}, Δ_{A} as in $[2(\mathrm{~m}), \S 20]$. Also put $A^{\prime}=A \cap G^{\prime}$ as usual.

Lemma 67. The differential operator $\nabla_{G}{ }^{*}$ on G^{\prime} is invariant under G and

$$
f\left(h ; \nabla_{G}^{*}\right)=(-1)^{m} \Delta_{A}(h)^{-1} f\left(h ; \varpi_{A} \circ \Delta_{A}^{2}\right) \quad\left(h \in A^{\prime}\right)
$$

for $f \in C^{\infty}\left(G^{\prime}\right)$.
Since ∇_{G} is invariant, it is obvious that the same holds for $\nabla_{G}{ }^{*}$. Fix $h_{0} \in A^{\prime}$ and an open and relatively compact neighborhood U of h_{0} in A^{\prime}. Then $V=U^{G}$ is an open neighborhood of h_{0} in G. Put $\Delta=\Delta_{A}$ and let us use the notation of [2 (m), Lemma 41]. Then if $g \in C_{c}^{\infty}(V)$, it is clear that

$$
\begin{aligned}
\int g \nabla_{G}^{*} f d x & =\int \nabla_{G} g \cdot f d x=c \int_{A}|\Delta(h)|^{2} d h \int_{G^{*}} g\left(h^{x^{*}} ; \nabla_{G}\right) f\left(h^{x^{*}}\right) d x^{*} \\
& =c \int_{A \cap V}|\Delta(h)|^{2} d h \int_{G^{*}} g\left(x^{*}: h ; \varpi_{A} \circ \Delta\right) f\left(x^{*}: h\right) d x^{*}
\end{aligned}
$$

where $g\left(x^{*}: h\right)=g\left(h^{x^{*}}\right)$ and $f\left(x^{*}: h\right)=f\left(h^{x^{*}}\right)\left(h \in A \cap V, x^{*} \in G^{*}\right)$. On the other hand

$$
|\Delta|^{2}=(-1)^{m+m(R)} \Delta^{2}
$$

from Lemma 64 and it is obvious that

$$
A \cap V=\bigcup_{s \in W_{A}} U^{s}
$$

in the notation of [2(m), §20]. Hence $A \cap V$ is relatively compact in A^{\prime}. Therefore (see [2 (f), Theorem 1]) there exists a compact set Ω^{*} in G^{*} such that $h^{x^{*}} \ddagger \operatorname{Supp} g$ for $h \in A \cap V$ and $x^{*} \in G^{*}$ unless $x^{*} \in \Omega^{*}$. Hence it is obvious that

$$
\int g \nabla_{G}^{*} f d x=c(-1)^{m} \int_{A \cap V}|\Delta(h)|^{2} d h \int_{G^{*}} g\left(h^{x^{*}}\right) f\left(x^{*}: h ; \Delta^{-1} w_{A} \circ \Delta^{2}\right) d x^{*}
$$

On the other hand, there exists (see $[2(\mathrm{~m}), \S 20]$) a unique differential operator ∇^{\prime} on $G_{A}=\left(A^{\prime}\right)^{G}$ such that

$$
\beta\left(h^{x} ; \nabla^{\prime}\right)=\beta\left(x: h ; \Delta^{-1} \varpi_{A} \circ \Delta^{2}\right)
$$

for $x \in G$ and $h \in A^{\prime}$. Here β is any C^{∞} function on G_{A} and $\beta(x: h)=\beta\left(h^{x}\right)$. Therefore

$$
\int g \nabla_{G}^{*} f d x=c(-1)^{m} \int_{A}|\Delta(h)|^{2} d h \int_{G^{*}} g\left(h^{x^{*}}\right) f\left(h^{x^{*}} ; \nabla^{\prime}\right) d x^{*}=(-1)^{m} \int g \nabla^{\prime} f d x .
$$

This shows that $\nabla_{G}{ }^{*}=(-1)^{m} \nabla^{\prime}$ on V and therefore

$$
f\left(h_{0} ; \nabla_{G}^{*}\right)=(-1)^{m} f\left(h_{0} ; \Delta^{-1} \varpi_{A} \circ \Delta^{2}\right)
$$

Thus the lemma is proved.
Now in Lemma 66, both sides are C^{∞} functions on z_{0} which are invariant under E. Therefore it would be enough to show that they are equal on $a_{0}{ }^{\prime}=\mathfrak{a}^{\prime} \cap_{z_{0}}$ for any Cartan subalgebra \mathfrak{a} of \mathfrak{z}. Fix \mathfrak{a} and let A denote the corresponding Cartan subgroup of G. Since

$$
V_{\varepsilon}(b \exp Z) \Psi^{+}(b \exp Z)=S_{\varepsilon}^{+}(Z) \quad\left(Z \in_{\delta_{0}}\right)
$$

and $D(a)=(-1)^{m} \Delta_{A}(a)^{2}(a \in A)$, it follows from Lemma 67 that

$$
\Psi^{++}\left(b \exp H ; \nabla_{G}^{*} \circ D^{-1} V_{\varepsilon}\right)=\Delta_{A}(b \exp H)^{-1} S_{\varepsilon}^{+}\left(H ; \partial\left(\varpi_{A}\right)\right) \quad\left(H \in \mathfrak{a}_{0}{ }^{\prime}\right) .
$$

Let G_{c} denote, as before, the (connected) adjoint group of \mathfrak{g}_{c} and Ξ_{c} the complexanalytic subgroup corresponding to ad \mathfrak{z}_{c}. Select $y \in \Xi_{c}$ such that $\mathfrak{b}_{c}{ }^{y}=a_{c}$. P being the set of positive roots of $(\mathfrak{g}, \mathfrak{b})$, we may assume that P^{y} is the set of all positive roots of (g, a). Then it is clear that

$$
\Delta_{A}(b \exp H)=\pi_{\mathfrak{b}}{ }^{\mathfrak{a}}(H) D_{b}(H) \quad(H \in \mathfrak{a})
$$

Hence

$$
D_{b}(H) \Psi^{+}\left(b \exp H ; \nabla_{G}{ }^{*} \circ D^{-1} V_{\varepsilon}\right)=S_{\varepsilon}{ }^{+}\left(H ;\left(\pi_{3}{ }^{\mathrm{a}}\right)^{-1} \partial\left(\varpi_{A}\right)\right) \quad\left(H \in \mathfrak{a}_{0}{ }^{\prime}\right)
$$

Put $q=q_{\mathrm{g} / \mathrm{z}}$ and let q_{a} denote the projection of q in $S\left(\mathfrak{a}_{c}\right)$ (see $[2(\mathrm{j}), \S 8]$). Then

$$
\varpi_{A}=\varpi^{y}=\left(\varpi_{8 / 3} \varpi_{\mathfrak{z}}\right)^{y}=q_{\mathfrak{a}} \varpi_{\mathfrak{z}}^{y}
$$

in the notation of $\S 18$. Therefore since $S_{\varepsilon}{ }^{+}$is invariant under Ξ, it follows from the corollary of Lemma 2 and [$2(c)$, Theorem 1] that

$$
S_{\varepsilon}{ }^{+}\left(H ; \partial(q) \circ \nabla_{z}{ }^{*} \circ \eta_{z}{ }^{-1}\right)=S_{\varepsilon}{ }^{+}\left(H ;\left(\pi_{z}{ }^{\mathfrak{a}}\right)^{-1} \partial\left(w_{A}\right)\right) \quad\left(H \in \mathfrak{a}_{0}{ }^{\prime}\right) .
$$

This proves Lemma 66.

§ 29. Some convergence questions

We use the notation introduced at the beginning of $\S 24$. Put

$$
\chi_{\lambda}=\chi_{b^{*}} \text { for } \lambda=\log b^{*}\left(b^{*} \in B^{*}\right)
$$

Lemma 68. Let p be a (complex-valued) polynomial function on \mathfrak{F}. Then we can choose an element $z \in 3$ with the following property. If \mathfrak{F}^{+}is a connected component of \mathfrak{F}^{\prime} and $\lambda \in L \cap \mathrm{Cl} \mathfrak{F}^{+}$, then

$$
\left|p(\lambda) \Theta_{\lambda, \mathfrak{F}^{+}}(f)\right| \leqslant \sum_{1 \leqslant i \leqslant r} c_{i} \int_{A_{i}}\left|F_{z f, i}\right| d_{i} a \quad\left(f \in C_{c}^{\infty}(G)\right) .
$$

Here the nolation is the same as in Lemma 65.
Define \mathfrak{c} and \mathfrak{g}_{1} as in $\S 14$ and let ω_{1} be the Casimir operator corresponding to \mathfrak{g}_{1} (see [2 (b), p. 140]). Then $\omega_{1} \in 马$. Put $\omega_{0}=\omega_{1}-\left(H_{1}{ }^{2}+\ldots+H_{s}{ }^{2}\right)$ where H_{1}, \ldots, H_{s} is a base for c over \mathbf{R}. Then a simple calculation shows that $\chi_{\lambda}\left(\omega_{0}\right)=\|\lambda\|^{2}-c(\lambda \in L)$, where c is a real number (independent of λ) and $\mu \rightarrow\|\mu\|(\mu \in \mathfrak{F})$ is a Euclidean norm on \mathfrak{F}. Put $\omega=1+c+\omega_{0}$. Then $\chi_{\lambda}(\omega)=1+\|\lambda\|^{2}(\lambda \in \mathfrak{F})$ and ω is a self-adjoint differential operator in 3 . Now fix \mathfrak{F}^{+}and write $\Theta_{\lambda}^{+}=\Theta_{\lambda, \mathfrak{F}^{+}}\left(\lambda \in L^{+}=L \cap \mathrm{Cl} \mathfrak{F}^{+}\right)$. Then

$$
\Theta_{\lambda}^{+}\left(\omega^{a} f\right)=\chi_{\lambda}\left(\omega^{a}\right) \Theta_{\lambda}^{+}(f)=\left(1+\|\lambda\|^{2}\right)^{q} \Theta_{\lambda}^{+}(f)
$$

for any integer $q \geqslant 0\left(\lambda \in L^{+}, f \in C_{c}^{\infty}(G)\right)$. Define C as in the corollary of Lemma 60. Then it follows from Lemma 63 that

$$
\left|\Theta_{\lambda}^{+}(f)\right| \leqslant \sum_{i} c_{i} \int_{A_{i}}\left|\Delta_{i}(a) \Theta_{\lambda}^{+}(a) F_{f . i}(a)\right| d_{i} a \leqslant C \sum_{i} c_{i} \int_{A_{i}}\left|F_{f, i}\right| d_{i} a \quad\left(f \in C_{c}^{\infty}(G)\right)
$$

Replacing f by $\omega^{q} f$, we get

$$
\left(1+\|\lambda\|^{2}\right)^{q}\left|\Theta_{\lambda}^{+}(f)\right| \leqslant \sum_{1 \leqslant i \leqslant r} c_{i} \int\left|F_{z f, i}\right| d_{i} a
$$

where $z=C \omega^{q}$. The assertion of the lemma is now obvious.

Now L is a closed additive subgroup of \mathfrak{F}. Let $d \lambda$ denote the Haar measure of L. It is clear from Lemmas 57 and 58 that for a fixed $f \in C_{c}^{\infty}(G), \Theta_{\lambda}^{+}(f)\left(\lambda \in L^{+}\right)$ is a measurable function of $\lambda \in L^{+}$.

Corollary 1. For any $p \in S\left(\mathfrak{b}_{c}\right)$, we can choose $z \in\{$ such that

$$
\int_{L^{+}}\left|p(\lambda) \Theta_{\lambda^{+}}(f)\right| d \lambda \leqslant \sum_{1 \leqslant i \leqslant r} c_{i} \int_{A_{i}}\left|F_{2 f, i}\right| d_{i} a
$$

for all $f \in C_{c}{ }^{\infty}(G)$.
We can obviously choose an integer $q \geqslant 0$ such that

$$
\alpha=\int_{L}(1+\|\lambda\|)^{-q} d \lambda<\infty .
$$

On the other hand, by the above lemma, we can select $z_{0} \in\{$ such that

$$
(\mathrm{I}+\|\lambda\|)^{a}\left|p(\lambda) \Theta_{\lambda}^{+}(f)\right| \leqslant \sum_{i} c_{i} \int\left|F_{z_{0} f, i}\right| d_{i} a
$$

for $\lambda \in L^{+}$and $f \in C_{c}^{\infty}(G)$. Hence we can take $z=\alpha z_{0}$.
Define Θ_{λ} for $\lambda \in L^{\prime}$ as in $\S 24$ and let us agree to the convention that $w(\lambda) \Theta_{\lambda}=0$ if $\varpi(\lambda)=0 \quad(\lambda \in L)$.

Corollary 2. Put

$$
T(f)=\int_{L} w(\lambda) \Theta_{\lambda}(f) d \lambda \quad\left(f \in C_{c}^{\infty}(G)\right)
$$

Then T is an invariant distribution on G and, in fact, we can choose $z \in\{$ such that

$$
|T(f)| \leqslant \sum_{1 \leqslant i \leqslant \tau} c_{i} \int_{A_{i}}\left|F_{z f, i}\right| d_{i} a
$$

for all $f \in C_{c}{ }^{\infty}(G)$.
The second statement follows from Corollary 1 above and the rest is obvious from [2 (f), Theorem 2].

Now assume B is compact. Then L is discrete and therefore

$$
T(f)=\sum_{\lambda \in L} \varpi(\lambda) \Theta_{\lambda}(f)
$$

Put $q=\frac{1}{2} \operatorname{dim}(G / K)$. Then q is an integer (see [2(k), Lemma 18]) and we shall see in another paper that there exists a number $c>0$ such that $(-1)^{q} c T$ is precisely the contribution of the discrete series (see [2(a), §5]) to the Plancherel formula of G (see [2 (h), Theorem 4]). The proof of this fact depends on Theorem 4.

§ 30. Appendix

Let \mathfrak{g} be a reductive Lie algebra over \mathbf{R} and Ω a completely invariant open subset of \mathfrak{g}.

Lemma 69. Let $F_{k}(k \geqslant 1)$ be a sequence of continuous and invariant functions on Ω. Then the following two conditions are equivalent.

1) For any Cartan subalgebra a of $\mathfrak{g}, \boldsymbol{F}_{k}$ converges uniformly on every compact subset of $\mathfrak{a} \cap \Omega$.
2) F_{k} converges uniformly on every compact subset of Ω.

Obviously 2) implies 1). So let us assume that 1) holds. Let Ω_{0} be the set of all elements $X_{0} \in \Omega$ with the following property. There exists an open neighborhood U of X_{0} in Ω such that F_{k} converges uniformly on U. It would be sufficient to show that $\Omega_{0}=\Omega$. Clearly Ω_{0} is open and invariant. Therefore in view of [2 (1), Cor. 2 of Lemma 8], we have only to verify that every semisimple point of Ω lies in Ω_{0}.

Fix a semisimple element $H_{0} \in \Omega$ and an open and relatively compact neighborhood U of H_{0} in Ω. It would obviously be enough to show that F_{k} converges uniformly on $U^{\prime}=U \cap \mathfrak{g}^{\prime}$

Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ be a complete set of Cartan subalgebras of \mathfrak{g} no two of which are conjugate under G. Then $V_{i}=\mathrm{Cl}\left(\mathfrak{a}_{i} \cap U^{G}\right)$ is a compact subset of $\mathfrak{a}_{i} \cap \Omega$ (see [2(k), Lemma 23]). Now fix $X \in U^{\prime}$. Then $X=H^{x}$ where $x \in G$ and $H \in V_{i}$ for some i. Hence

$$
F_{j}(X)-F_{k}(X)=F_{j}(H)-F_{k}(H) \quad(j, k \geqslant 1)
$$

However, the sequence F_{k} converges uniformly on $\bigcup_{1 \leqslant i \leqslant r} V_{i}$ by l) and so the required result follows immediately.

References

[1]. Borel, A., \& Harish-Chandra, Arithmetic subgroups of algebraic groups. Ann. of Math., 75 (1962), 485-535.
[2]. Harish-Chandra, (a) Representations of semisimple Lie groups, VI. Amer. J. Math., 78 (1956), 564-628.
(b) The characters of semisimple Lie groups. Trans. Amer. Math. Soc., 83 (1956), 98-163.
(c) Differential operators on a semisimple Lie algebra. Amer. J. Math., 79 (1957), 87-120.
(d) Fourier transforms on a semisimple Lie algebra, I. Amer. J. Math., 79 (1957), 193-257.
(e) Fourier transforms on a semisimple Lie algebra, II. Amer. J. Math. 79 (1957), 653-686.
(f) A formula for semisimple Lie groups. Amer. J. Math., 79 (1957), 733-760.
(g) Spherical functions on a semisimple Lie group, I. Amer. J. Math., 80 (1958), 241-310.
(h) Invariant eigendistributions on semisimple Lie groups. Bull. Amer. Math. Soc., 69 (1963), 117-123.
(i) Invariant distributions on Lie algebras. Amer. J. Math., 86 (1964), 271-309.
(j) Invariant differential operators and distributions on a semisimple Lie algebra. Amer. J. Math., 86 (1964), 534-564.
(k) Some results on an invariant integral on a semisimple Lie algebra. Ann. of Math., 80 (1964), 551-593.
(1) Invariant eigendistributions on a semisimple Lie algebra. Pub, Math. I.H.E.S., No. 27.
(m) Invariant eigendistributions on a semisimple Lie group. Trans. Amer. Math. Soc. To appear.
[3]. Sohwartz L., Théorie des distributions, II. Paris, Hermann, 1951.

[^0]: ${ }^{(1)}$ Here the notation is obvious (cf. [2 (1), Theorem 3]).
 $\left(^{2}\right)$ See footnote 1, p. 265.

[^1]: ${ }^{(1)}$ For most applications a_{s} will be constants.

[^2]: (1) See footnote 1, p. 285.

