DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

CONSTRUCTION OF INVARIANT EIGENDISTRIBUTIONS

ВY

HARISH-CHANDRA

The Institute for Advanced Study, Princeton, N.J., U.S.A.

Table of contents

§ 1.	Introduction		
PART I. THEORY ON THE LIE ALGEBRA			
§2.	Reduction of Theorem 1 to the semisimple case		
§ 3.	Second reduction		
§4.	Third reduction		
§ 5.	New expressions for J and J'		
§ 6.	Proof of Lemma 7		
§7.	A consequence of Theorem 1		
§ 8.	Some elementary facts about tempered distributions		
§ 9.	Proof of Lemma 17		
§ 10.	An auxiliary result		
§ 11.	Proof of Lemma 21		
§ 12.	Recapitulation of some elementary facts		
§ 13.	Proof of Lemma 26		
§ 14.	Tempered and invariant eigendistributions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 271$		
§ 15.	Proof of Lemma 30		
§ 16.	The distribution T_{λ}		
§ 17.	Application of Theorem 1 to T_{λ}		
§ 18.	Proof of Lemma 41		
PART II. THEORY ON THE GROUP			
§ 19.	Statement of Theorem 3		
§ 20.	Proof of the uniqueness		

§ 21.	Some elementary facts about Cartan subgroups	1
§ 22.	Proof of the existence	2
§ 23.	Further properties of Θ	2
§ 24.	The distribution Θ^*_{λ}	5
§ 25.	Statement of Theorem 4	8
§ 26.	A simple property of the function Δ	9
§ 27.	Reduction of Theorem 4 to Lemma 66	0
§ 28.	Proof of Lemma 66	3
§ 29.	Some convergence questions	5
§ 30.	Appendix	7

§1. Introduction

Let G be a connected semisimple Lie group with a compact Cartan subgroup B, and B^* the character group of B. Let g and b denote the Lie algebras of G and B respectively. Then every $b^* \in B^*$ defines a linear function $\lambda = \log b^*$ on \mathfrak{b}_c by the relation

$$\langle b^*, \exp H \rangle = e^{\lambda(H)} \quad (H \in \mathfrak{b}).$$

Let W be the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. We say that b^* is regular if $s\lambda \neq \lambda$ for every $s \neq 1$ in W. Let $B^{*'}$ denote the set of all regular elements of B^* and define \mathfrak{Z} as in $[2(\mathfrak{m}), \S 1]$. Then corresponding to every $b^* \in B^{*'}$, we construct in Theorem 3 an invariant eigendistribution Θ_{b^*} of \mathfrak{Z} on G (cf. [2(h), Theorem 2]). We shall see later in another paper that those irreducible characters of G which correspond to the discrete series (see [2(a), §5]) are actually finite linear combinations of these distributions (cf. [2(h), Theorems 3 and 4]).

The second main result of this paper is contained in Theorem 4 which gives an alternative formula for the distribution Θ_{b^*} . This will be needed for the determination of the contribution of the discrete series to the Plancherel formula of G.

Our method consists in first proving analogous results on g and then lifting them to G, roughly speaking, by means of the exponential mapping. Theorem 1 is the ganalogue of Theorem 4 and its proof depends very much on Theorem 5 of [2 (k)]. Then in §8 we introduce the notion of a tempered distribution on an open subset of a Euclidean space (see also [2 (c), p. 90]) and prove some elementary results which are then applied in §14 to certain tempered and invariant eigendistributions on a reductive subalgebra z of g containing b. Lemma 28 asserts the uniqueness of such distributions and the existence is proved in Theorem 2 and Lemma 37. Lemma 41

$\mathbf{242}$

contains the key result required for the reduction of the proof of Theorem 4 from the group to the Lie algebra.

The rest of this paper is devoted to the proofs of Theorems 3 and 4. The uniqueness part of Theorem 3 is relatively easy and follows from Lemma 28. However the problem of existence is more delicate. Lemma 50 contains the main step required in its solution. Lemma 59 gives a rather explicit formula for Θ_{b^*} which will be useful in later work. The main burden of the proof of Theorem 4 rests on Lemma 66.

Let L' be the set of all linear functions λ on b of the form $\lambda = \log b^* (b^* \in B^{*'})$ and write $\Theta_{\lambda} = \Theta_{b^*}$. Define $\varpi \in S(b_c)$ as in [2 (k), §11]. Then we show in §29 that for any $f \in C_c^{\infty}(G)$, the series

$$\sum_{\lambda \in L'} \varpi(\lambda) \Theta_{\lambda}(f)$$

converges absolutely and its sum represents a distribution T on G. We shall see later that, apart from a constant factor, T is just the contribution of the discrete series to the Plancherel formula of G (cf. [2 (h), Theorem 4]).

This work was partially supported by a grant from the National Science Foundation.

Part I. Theory on the Lie algebra

§ 2. Reduction of Theorem 1 to the semisimple case

We use the notation and terminology of [2 (1)]. Let g be a reductive Lie algebra over **R**, Ω a completely invariant open subset of g, T a distribution on Ω satisfying the conditions of [2 (1), Theorem 1] and F the corresponding analytic function on $\Omega' = \Omega \cap g'$. Then we have seen in [2 (1), § 9] that $\Phi = \nabla_g F$ extends to a continuous function on Ω .

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . For any function ϕ on Ω' let $\phi_{\mathfrak{h}}$ denote its restriction on $\mathfrak{h} \cap \Omega'$.

LEMMA 1. Let $D \in \mathfrak{D}(\mathfrak{h}_c)$. Then the function $D\Phi_{\mathfrak{h}}$ is locally bounded (1) on $\mathfrak{h} \cap \Omega$.

Fix a point $H_0 \in \mathfrak{h} \cap \Omega$ and select a positive-definite quadratic form Q on \mathfrak{h} . For any $\varepsilon > 0$, consider the set $\mathfrak{h}(\varepsilon)$ of all $H \in \mathfrak{h}$ such that $Q(H - H_0) < \varepsilon^2$. Then if ε is sufficiently small, $\mathfrak{h}(\varepsilon) \subset \Omega$. Moreover the set $\mathfrak{h}'(\varepsilon) = \mathfrak{h}(\varepsilon) \cap \Omega'$ has only a finite number of connected components. It follows from [2 (1), Lemma 2] that $D\Phi_{\mathfrak{h}}$ remains bounded on each connected component of $\mathfrak{h}'(\varepsilon)$ and therefore also on $\mathfrak{h}'(\varepsilon)$. Obviously this implies the statement of the lemma.

⁽¹⁾ This means that $D\Phi_{\mathfrak{h}}$ remains bounded on $C \cap \Omega'$ for any compact subset C of $\mathfrak{h} \cap \Omega$.

COBOLLARY. For any $D \in \mathfrak{J}(\mathfrak{g}_c)$, $D\Phi$ is locally summable on Ω .

Fix \mathfrak{h} as above. Then by [2 (j), Lemma 14],

$$(D\Phi)_{\mathfrak{h}} = \delta_{\mathfrak{g}/\mathfrak{h}}'(D) \Phi_{\mathfrak{h}} = \pi^{-1}(\delta_{\mathfrak{g}/\mathfrak{h}}(D) \circ \pi) \Phi_{\mathfrak{h}}.$$

But $\delta_{\mathfrak{g}/\mathfrak{h}}(D) \circ \pi \in \mathfrak{D}(\mathfrak{h}_c)$ by [2 (j), Theorem 1] and therefore we conclude from the above lemma that $\pi(D\Phi)_{\mathfrak{h}}$ is locally bounded on $\mathfrak{h} \cap \Omega$.

Let m = (n-l)/2 where $n = \dim g$, $l = \operatorname{rank} g$. Then $m = d^0 \pi$. Let t be an indeterminate and $\eta(X)$ the coefficient of t^l in det(t - adX) $(X \in g_c)$. Then η is an invariant polynomial function on g_c and $\eta(H) = (-1)^m \pi(H)^2$ $(H \in \mathfrak{h}_c)$. Moreover it follows from the above result (see the proof of Lemma 3 of [2 (l)]) that $|\eta|^{\frac{1}{2}} |D\Phi|$ is locally bounded on Ω . Therefore since $|\eta|^{-\frac{1}{2}}$ is locally summable on g [2 (k), Corollary 2 of Lemma 30], our assertion is now obvious.

Let ∇_{g}^{*} denote the adjoint of ∇_{g} . Then ∇_{g}^{*} is also an invariant and analytic differential operator on g'.

LEMMA 2. Put $f(x:H) = f(H^x)$ $(x \in G, H \in \mathfrak{h})$ for $f \in C^{\infty}(\mathfrak{g})$. Then $f(H^x; \nabla_{\mathfrak{g}}^*) = (-1)^m f(x:H; \pi^{-1}\partial(\varpi) \circ \pi^2)$ $(x \in G, H \in \mathfrak{h}')$

where $m = \frac{1}{2}$ (dim g - rank g).

Put $\mathfrak{g}_{\mathfrak{h}} = (\mathfrak{h}')^{G}$. Then $\mathfrak{g}_{\mathfrak{h}}$ is an open subset of \mathfrak{g}' . Fix $g \in C_{c}^{\infty}(\mathfrak{g}_{\mathfrak{h}})$. Then

$$\int \nabla_{\mathfrak{g}}^{*} f \cdot g \, dX = \int f \cdot \nabla_{\mathfrak{g}} g \, dX$$

and therefore we conclude from Corollary 1 of Lemma 30 of [2(k)] that

$$\int \pi(H)^2 f(x^*H; \nabla_{\mathfrak{g}}^*) g(x^*H) dx^* dH = \int \pi(H)^2 f(x^*H) g(x^*H; \nabla_{\mathfrak{g}}) dx^* dH.$$

Now define $\phi(x^*:H) = \phi(x^*H)$ $(x^* \in G^*, H \in \mathfrak{h})$ for $\phi = f$ or g. Then it follows from the definition of $\nabla_{\mathfrak{g}}$ [2 (1), Lemma 24] that

$$g(x^*H; \nabla_g) = g(x^*:H; \partial(\varpi) \circ \pi).$$

Therefore

$$\int \pi(H)^2 f(x^*H) g(x^*H; \nabla_g) dx^* dH = (-1)^m \int \pi(H)^2 f(x^*:H; \pi^{-1}\partial(\varpi) \circ \pi^2) g(x^*H) dx^* dH$$

since ϖ is homogeneous of degree m. The differential operator $\pi^{-1}\partial(\varpi)\circ\pi^2$ being in-

 $\mathbf{244}$

variant under the Weyl group of $(\mathfrak{g}, \mathfrak{h})$, there exists (see the proof of Lemma 24 of [2 (1)]) a unique invariant differential operator D on $\mathfrak{g}_{\mathfrak{h}}$ such that

$$f(x^*H; D) = (-1)^m f(x^*: H; \pi^{-1}\partial(\varpi) \circ \pi^2)$$

for $x^* \in G^*$, $H \in \mathfrak{h}'$ and $f \in C^{\infty}(\mathfrak{g})$. Hence it is clear that

$$\int \nabla_{g}^{*} f \cdot g \, dX = \int D f \cdot g \, dX.$$

This being true for every $g \in C_c^{\infty}(\mathfrak{g}_{\mathfrak{h}})$, we conclude that $\Delta_{\mathfrak{g}}^* = D$ on $\mathfrak{g}_{\mathfrak{h}}$ and therefore

$$f(H^{x^*}; \nabla_g^*) = (-1)^m f(x^*: H; \pi^{-1}\partial(\varpi) \circ \pi^2)$$

for $x^* \in G^*$, $H \in \mathfrak{h}'$. This is equivalent to the statement of the lemma.

COROLLARY. $f(H^x; \nabla_g^* \circ \eta^{-1}) = f(x: H; \pi^{-1} \partial(\varpi)) \quad (x \in G, H \in \mathfrak{h}').$

Since $\eta(H) = (-1)^m \pi(H)^2$, this is obvious from Lemma 2.

By Chevalley's theorem [2 (c), Lemma 9], there exists a unique element $p \in I(\mathfrak{g}_c)$ such that $p_{\mathfrak{h}} = (\varpi^{\mathfrak{h}})^2$ for every Cartan subalgebra \mathfrak{h} of \mathfrak{g} . (Here we have used the notation of [2 (i), § 8] and [2 (1), Theorem 3].) Put $\Box = \partial(p)$.

LEMMA 3. Let f be a locally invariant C^{∞} function on an open subset U of g'. Then

$$(\nabla_{\mathfrak{g}}^{*} \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}) f = \Box f.$$

Fix a point $H_0 \in U$ and let \mathfrak{h} be the centralizer of H_0 in g. Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and it follows from the corollary of Lemma 2 that

$$f(H; \nabla_{\mathfrak{g}}^* \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}) = f_1(H; \pi^{-1} \partial(\varpi)) \quad (H \in \mathfrak{h} \cap U)$$

where $f_1 = \nabla_g f$. However

$$f_1(H) = f(H; \partial(\varpi) \circ \pi) \quad (H \in \mathfrak{h} \cap U)$$

from the definition of ∇_{g} . Therefore

$$f(H; \nabla_{\mathfrak{g}}^* \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}) = f(H; \pi^{-1} \partial(\varpi^2) \circ \pi).$$

On the other hand since f is locally invariant, we have

$$f(H; \Box) = f(H; \delta_{\mathfrak{g}/\mathfrak{h}'}(\Box)) = f(H; \pi^{-1}\partial(\varpi^2) \circ \pi) \quad (H \in \mathfrak{h} \cap U)$$

from [2 (c), Theorem 1] and the definition of \Box . This shows that

$$f(H_0; \nabla_g^* \circ \eta^{-1} \circ \nabla_g) = f(H_0; \Box)$$

and so the lemma is proved.

Corollary. $\Box F = (\nabla_{\mathfrak{g}}^* \circ \eta^{-1} \circ \nabla_{\mathfrak{g}}) F = \nabla_{\mathfrak{g}}^* (\eta^{-1} \Phi).$

This is obvious since F is invariant and $\nabla_{\theta} F = \Phi$.

For any $\varepsilon > 0$ let $g(\varepsilon)$ denote the set of all $X \in \mathfrak{g}$ where $|\eta(X)| > \varepsilon^2$. Let u be a measurable function on \mathfrak{g}' which is integrable (with respect to the Euclidean measure dX) on $\mathfrak{g}(\varepsilon)$ for every $\varepsilon > 0$. Then we define (1)

$$p.v. \int u \, dX = \lim_{\epsilon \to 0} \int_{\mathfrak{g}(\epsilon)} u \, dX$$

provided this limit exists and is finite.

```
THEOREM 1. For any f \in C_c^{\infty}(\Omega) we have
```

$$\int f \Box F \, dX = \mathbf{p}.\mathbf{v}. \int \eta^{-1} \nabla_{\mathbf{g}} f \cdot \Phi \, dX.$$

Since $\Box \in \mathfrak{J}(\mathfrak{g}_c)$, it follows from [2 (1), Lemma 16] that $\Box F$ is locally summable on Ω . Hence the left side of the above equation is well defined. Now consider the right side. Let V_{δ} ($0 < \delta \leq \delta_0$) be a family of invariant measurable functions on \mathfrak{g} with the following properties.

- 1) There exists a number a such that $|V_{\delta}(X)| \leq a$ for $X \in \mathfrak{g}$ and all δ .
- 2) $V_{\delta}(X) = 0$ if $|\eta(X)| < \delta^2$ $(X \in \mathfrak{g}, 0 < \delta \leq \delta_0)$.
- 3) $\lim_{\delta \to 0} V_{\delta}(X) = 1$ for $X \in \mathfrak{g}'$.

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and put $\mathfrak{g}_{\mathfrak{h}} = (\mathfrak{h}')^G$ as before. Then we can choose a real number $c = c(\mathfrak{h}) \neq 0$ such that

$$\int g \, dX = c \int \pi(H)^2 g(x^* H) \, dx^* \, dH$$

for $g \in C_c(\mathfrak{g}_{\mathfrak{h}})$ in the notation of Corollary 1 of [2 (k), Lemma 30]. Since $V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi$ vanishes outside a compact subset of \mathfrak{g}' , it is obviously integrable on \mathfrak{g} . Therefore

$$\int_{\mathfrak{g}_{\mathfrak{g}}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi \, dX = (-1)^m c \int_{\mathfrak{g}} V_{\delta}(H) \Phi(H) \, dH \int_{G^*} f(x^*H; \nabla_{\mathfrak{g}}) \, dx^*$$

 $\mathbf{246}$

⁽¹⁾ p.v. stands for "principal value".

if we recall that $\eta = (-1)^m \pi^2$ on \mathfrak{h} . On the other hand it follows from the definition of $\nabla_{\mathfrak{g}}$ that

$$\int_{G^*} f(x^*H; \nabla_{\theta}) \, dx^* = \varepsilon_R(H) \, \psi_f(H:\partial(\varpi)) \quad (H \in \mathfrak{h}')$$

in the notation of [2 (k), § 5], Therefore since $\partial(\varpi)^* = (-1)^m \partial(\varpi)$, we get

$$\int_{\mathfrak{g}\mathfrak{h}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi \, dx = c \int_{\mathfrak{h}} V_{\delta.\mathfrak{h}} \varepsilon_R \Phi_{\mathfrak{h}} \partial(\varpi)^* \psi_f \, dH$$

where $V_{\delta,\mathfrak{h}}$ denotes the restriction of V_{δ} on \mathfrak{h} . Since Φ is continuous on Ω , it is clear (see [2 (k), § 15]) that

$$\int \left| \Phi_{\mathfrak{h}} \partial(\boldsymbol{\varpi})^* \boldsymbol{\psi}_f \right| dH < \infty.$$

Therefore the following lemma is now obvious.

LEMMA 4. Let
$$f \in C_c^{\infty}(\Omega)$$
. Then

$$\lim_{\delta \to 0} \int_{\mathfrak{G}\mathfrak{f}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi \, dX = c \int_{\mathfrak{h}} \varepsilon_R \Phi_{\mathfrak{h}} \partial(\varpi)^* \psi_f \, dH.$$

Select a maximal set \mathfrak{h}_i $(1 \leq i \leq r)$ of Cartan subalgebras of \mathfrak{g} no two of which are conjugate under G. Put $\mathfrak{g}_i = (\mathfrak{h}'_i)^G$. Then \mathfrak{g}' is the disjoint union of $\mathfrak{g}_1, \mathfrak{g}_2, \ldots, \mathfrak{g}_r$. Fix a Euclidean measure d_iH on \mathfrak{h}_i and put $c_i = c(\mathfrak{h}_i)$, $\Phi_i = \Phi_{\mathfrak{h}_i}$ and $\varpi_i = \varpi^{\mathfrak{h}_i}$. Then we have the following result in the notation of (1) [2 (k), § 16].

COROLLARY. For any $f \in C_c^{\infty}(\Omega)$,

$$\lim_{\delta\to 0} \int_{\mathfrak{g}} V_{\delta} \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi \, dX = \sum_{1\leqslant i\leqslant r} c_i \int \varepsilon_{R,i} \Phi_i \partial(\boldsymbol{\varpi}_i)^* \psi_{f,i} d_i H = \mathrm{p.v.} \int \eta^{-1} \nabla_{\mathfrak{g}} f \cdot \Phi \, dX.$$

The first equality is obvious from Lemma 4 and the second follows by taking V_{δ} to be the characteristic function of $g(\delta)$.

On the other hand (see the proof of Lemma 3),

$$F(H; \Box) = F(H; \pi^{-1}\partial(\varpi)^2 \circ \pi) = \Phi(H; \pi^{-1}\partial(\varpi)) \quad (H \in \mathfrak{h}' \cap \Omega).$$
$$\int_{\mathfrak{g}_{\mathfrak{h}}} f \cdot \Box F \, dX = c \int \varepsilon_R \psi_f \partial(\varpi) \, \Phi_{\mathfrak{h}} \, dH$$

Therefore

and so it is obvious that Theorem 1 is equivalent to the following lemma.

⁽¹⁾ $\varepsilon_{R,i}$ denotes ε_R for $\mathfrak{h} = \mathfrak{h}_i$.

LEMMA 5. Let $f \in C_c^{\infty}(\Omega)$. Then

$$\sum_{1\leqslant i\leqslant r}c_i\int_{\mathfrak{h}_i}\varepsilon_{\mathbf{R},i}\left(\psi_{f,i}\partial(\boldsymbol{\varpi}_i)\Phi_i-\partial(\boldsymbol{\varpi}_i)^*\psi_{f,i}\cdot\Phi_i\right)d_iH=0.$$

We shall now prove Theorem 1 by induction on dim g. Put

$$J(f) = \int f \Box F \, dX - \mathbf{p} \cdot \mathbf{v} \cdot \int \eta^{-1} \nabla_{\mathfrak{g}}^* f \cdot \Phi \, dX$$
$$= \sum_{1 \leq i \leq r} c_i \int_{\mathfrak{h}_i} \varepsilon_{B,i} (\psi_{f,i} \partial(\varpi_i) \Phi_i - \partial(\varpi_i)^* \psi_{f,i} \cdot \Phi_i) d_i H$$

for $f \in C_c^{\infty}(\Omega)$. Then it follows from [2 (k), §15] that J is an invariant distribution on Ω . We have to prove that J=0.

Let c be the center and \mathfrak{g}_1 the derived algebra of \mathfrak{g} and first assume that $\mathfrak{c} \neq \{0\}$. Fix a point $X_0 \in \Omega$. We have to show that J = 0 around X_0 . Let $X_0 = C_0 + Z_0$ ($C_0 \in \mathfrak{c}, Z_0 \in \mathfrak{g}_1$). Select on open and relatively compact neighborhood \mathfrak{c}_0 of C_0 in \mathfrak{c} such that $Z_0 + \operatorname{Cl}(\mathfrak{c}_0) \subset \Omega$. Let Ω_1 be the set of all points $Z \in \mathfrak{g}_1$ such that $Z + \operatorname{Cl}(\mathfrak{c}_0) \subset \Omega$. Then Ω_1 is an open and completely invariant neighborhood of Z_0 in \mathfrak{g}_1 (see [2 (l), Lemma 9]). It would be sufficient to prove (see [2 (i), Lemma 3]) that

$$J(\alpha \times g) = 0 \quad (\alpha \in C_c^{\infty}(\mathfrak{c}_0), \ g \in C_c^{\infty}(\Omega_1)).$$

Fix $\alpha \in C_c^{\infty}(c_0)$ and consider the distributions

$$T_{\alpha}(g) = T(\alpha \times g), \quad J_{\alpha}(g) = J(\alpha \times g) \quad (g \in C_c^{\infty}(\Omega_1))$$

on Ω_1 . Then T_{α} and J_{α} are both invariant. Put $\mathfrak{U}_1 = \mathfrak{U} \cap I(\mathfrak{g}_{1c})$ where \mathfrak{U} has the same meaning as in [2 (1), Theorem 1]. Then

dim
$$I(\mathfrak{g}_{1c})/\mathfrak{U}_1 \leq \dim I(\mathfrak{g}_c)/\mathfrak{U} < \infty$$

and $\partial(\mathfrak{U}_1) T_{\alpha} = \{0\}$. Hence Theorem 1 of [2 (1)] is also applicable to $(T_{\alpha}, \mathfrak{g}_1, \Omega_1)$ instead of $(T, \mathfrak{g}, \Omega)$. Put $\Omega_1' = \Omega_1 \cap \mathfrak{g}'$ and fix Euclidean measures dC and dZ on \mathfrak{c} and \mathfrak{g}_1 respectively such that dX = dC dZ $(X = C + Z, C \in \mathfrak{c}, Z \in \mathfrak{g}_1)$. Let F_{α} be the analytic function on Ω_1' such that

$$T_{\alpha}(g) = \int F_{\alpha} g \, dZ \quad (g \in C_c^{\infty}(\Omega_1)).$$

Then it is clear that

$$F_{\alpha}(Z) = \int \alpha(C) F(C+Z) dC \quad (Z \in \Omega_1')$$

 $\mathbf{248}$

Put $\Phi_{\alpha} = \nabla_{\mathfrak{g}_1} F_{\alpha}$. If \mathfrak{h} is any Cartan subalgebra of \mathfrak{g} , it is clear that $\mathfrak{h} = \mathfrak{c} + \mathfrak{h}_1$ where $\mathfrak{h}_1 = \mathfrak{h} \cap \mathfrak{g}_1$. Moreover π and $\partial(\varpi)$ are in $\mathfrak{D}(\mathfrak{h}_{1c})$ and $\square \in \partial(I(\mathfrak{g}_{1c}))$. Hence it follows without difficulty that

$$J_{\alpha}(g) = \int_{\mathfrak{g}_1} g \square F_{\alpha} dZ - \mathrm{p.v.} \int_{\mathfrak{g}_1} \eta^{-1} \nabla_{\mathfrak{g}_1} g \cdot \Phi_{\alpha} dZ$$

for $g \in C_c^{\infty}(\mathfrak{g}_1)$. But since dim $\mathfrak{g}_1 < \dim \mathfrak{g}$, we conclude from the induction hypothesis that $J_{\alpha} = 0$. This shows that $J(\alpha \times g) = 0$ for $\alpha \in C_c^{\infty}(\mathfrak{c}_0)$ and $g \in C_c^{\infty}(\Omega_1)$ and therefore J = 0 around X_0 .

§ 3. Second reduction

Hence we may now assume that g is semisimple and identify \mathfrak{g} with its dual space by means of the Killing form ω of g. For any $p \in I(\mathfrak{g}_c)$, let p_i denote the restriction of p on \mathfrak{h}_i and put $\pi_i = \pi^{\mathfrak{h}_i}$ $(1 \leq i \leq r)$. We also identify \mathfrak{h}_i with its dual space by means of ω_i . Then $\varpi_i = \pi_i$. Put $\delta_i(D) = \delta_{\mathfrak{g}/\mathfrak{h}_i}(D)$ $(D \in \mathfrak{J}(\mathfrak{g}_c))$ in the notation of [2 (j), Theorem 1].

LEMMA 6. Let $D \in \mathfrak{J}(\mathfrak{g}_c)$, $p \in I(\mathfrak{g}_c)$ and $f \in C_c^{\infty}(\Omega)$. Then

$$\sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \partial(\omega_i p_i) (\pi_i \psi_{f,i}) \cdot \delta_i(D) \Phi_i d_i H$$
$$= \sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \partial(p_i) (\pi_i \psi_{f,i}) \cdot \delta_i(\partial(\omega) \circ D) \Phi_i d_i H$$

and

$$\sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \partial(\omega_i) \psi_{f,i} \cdot (\delta_i(D) \circ \pi_i \circ \partial(p_i)) \Phi_i d_i H$$
$$= \sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \psi_{f,i} (\delta_i(\partial(\omega) \circ D) \circ \pi_i \circ \partial(p_i)) \Phi_i d_i H$$

We shall prove this in §4.

COROLLARY 1. For any $k \ge 0$,

$$\sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \partial(\omega_i^k) \psi_{f,i} \cdot (\delta_i(D) \circ \pi_i \circ \partial(p_i)) \Phi_i d_i H$$
$$= \sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \psi_{f,i} (\partial(\omega_i^k) \circ \delta_i(D) \circ \pi_i \circ \partial(p_i)) \Phi_i d_i H$$

Since $\psi_{\partial(\omega)f,i} = \partial(\omega_i) \psi_{f,i}$ and $\delta_i(\partial(\omega^k) \circ D) = \partial(\omega_i^k) \circ \delta_i(D)$, this follows immediately from the second statement of Lemma 6 by induction on k.

COROLLARY 2.

$$\sum_{i} c_{i} \int \varepsilon_{R,i} \partial(\omega_{i}^{k}) (\pi_{i} \psi_{f,i}) \cdot \delta_{i}(D) \Phi_{i} d_{i} H = \sum_{i} c_{i} \int \varepsilon_{R,i} \pi_{i} \psi_{f,i} \cdot \delta_{i}(\partial(\omega^{k}) \circ D) \Phi_{i} d_{i} H$$

for $k \ge 0$.

This follows from the first statement of Lemma 6 by induction on k.

COROLLARY 3.

$$\sum_{i} c_{i} \int \varepsilon_{R,i} (\partial (\omega_{i}^{j}) \circ \pi_{i} \circ \partial (\omega_{i}^{k})) \psi_{f,i} \cdot \Phi_{i} d_{i} H = \sum_{i} \int \varepsilon_{R,i} \psi_{f,i} (\partial (\omega_{i}^{k}) \circ \pi_{i} \circ \partial (\omega_{i}^{j})) \Phi_{i} d_{i} H$$

for $j, k \ge 0$.

Apply Corollary 2 to $f_k = \partial(\omega)^k f$ with D = 1. Then since

$$\begin{split} \psi_{f_k,i} &= \partial(\omega_i^k) \, \psi_{f,i}, \\ \sum_i c_i \int \varepsilon_{R,i} (\partial(\omega_i^j) \circ \pi_i \circ \partial(\omega_i^k)) \, \psi_{f,i} \cdot \Phi_i \, d_i \, H \\ &= \sum_i c_i \int \varepsilon_{R,i} \partial(\omega_i^k) \, \psi_{f,i} \cdot \pi_i \partial(\omega_i^j) \, \Phi_i \, d_i \, H. \end{split}$$

we obtain

Now apply Corollary 1 with D=1 and $p=\omega^{i}$. This gives the required result.

We shall now complete the proof of Lemma 5 and therefore also of Theorem 1. Let Λ_i denote the derivation of $\mathfrak{D}(\mathfrak{h}_{ic})$ given by⁽¹⁾

$$\Lambda_i \xi = \frac{1}{2} \{ \partial(\omega_i), \xi \} \quad (\xi \in \mathfrak{D}(\mathfrak{h}_{ic})).$$

Then since π_i is homogeneous of degree *m*, it is clear that (see [2 (c), p. 99]) that

$$\Lambda_i^m \pi_i = m ! \partial(\pi_i).$$

Therefore
$$\partial(\pi_i) = (m ! 2^m)^{-1} \sum_{0 \le k \le m} C_k^m (-1)^{m-k} \partial(\omega_i^k) \circ \pi_i \circ \partial(\omega_i^{m-k})$$

where C_k^{m} denotes the usual binomial coefficient. Hence Lemma 5 follows immediately from Corollary 3 above.

§ 4. Third reduction

Fix $D \in \mathfrak{J}(\mathfrak{g}_c)$ and put

 $\mathbf{250}$

⁽¹⁾ As usual $\{D_1, D_2\} = D_1 \circ D_2 - D_2 \circ D_1$ for two differential operators D_1, D_2 .

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$J(f) = \sum_{i} c_{i} \int \varepsilon_{R,i} \left\{ \partial(\omega_{i}) \left(\pi_{i} \psi_{f,i}\right) \cdot \delta_{i}(D) \Phi_{i} - \pi_{i} \psi_{f,i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i} \right\} d_{i} H$$
$$J'(f) = \sum_{i} c_{i} \int \varepsilon_{R,i} \left\{ \partial(\omega_{i}) \psi_{f,i} \cdot \delta_{i}(D) \left(\pi_{i} \Phi_{i}\right) - \psi_{f,i} \delta_{i}(\partial(\omega) \circ D) \left(\pi_{i} \Phi_{i}\right) \right\} d_{i} H$$

and

for $f \in C_c^{\infty}(\Omega)$. Then J and J' are invariant distributions on Ω .

LEMMA 7. No semiregular element of Ω of noncompact type lies in

(Supp
$$J$$
) \cup (Supp J')

Assuming this result, we shall now prove Lemma 6. For $p \in I(\mathfrak{g}_c)$ and $f \in C_c^{\infty}(\Omega)$, define

$$J_{p}(f) = \sum_{i} c_{i} \int \varepsilon_{R,i} \left\{ \partial(\omega_{i} p_{i}) \left(\pi_{i} \psi_{f,i} \right) \cdot \delta_{i}(D) \Phi_{i} - \partial(p_{i}) \left(\pi_{i} \psi_{f,i} \right) \cdot \delta_{i}(\partial(\omega) \circ D) \Phi_{i} \right\} d_{i} H.$$

Then J_p is an invariant distribution on Ω . We shall now show that $J_p = J' = 0$.

Fix a point $X_0 \in \Omega$ and, for any $\varepsilon > 0$, define $U_{X_{\varepsilon}}(\varepsilon)$ as in [2 (1), Lemma 14] and put $\Omega(\varepsilon) = \Omega \cap U_{X_0}(\varepsilon)$. Then $\Omega(\varepsilon)$ is an open and completely invariant neighborhood of X_0 in g. Put

$$\mathfrak{h}_i(\varepsilon) = \mathfrak{h}_i \cap \Omega_i(\varepsilon), \quad \mathfrak{h}_i(0) = \bigcap_{\varepsilon > 0} \mathfrak{h}_i(\varepsilon) \quad (1 \leq i \leq r).$$

Then we have seen during the proof of [2(1), Lemma 13] that $\mathfrak{h}_i(0)$ is a finite set. For every $H \in \mathfrak{h}_i(0)$, select two open, convex neighborhoods U_H , V_H of H in \mathfrak{h}_i such that Cl $U_H \subset V_H \subset \mathfrak{h}_i(1)$ and $V_H \cap V_{H'} = \emptyset$ for H = H' $(H, H' \in \mathfrak{h}_i(0))$. Put

$$U_i = \bigcup_{H \in \mathfrak{h}_i(0)} U_H, \quad V_i = \bigcup_{H \in \mathfrak{h}_i(0)} V_H$$

and select $\alpha_H \in C_c^{\infty}(V_H)$ such that $\alpha_H = 1$ on U_H $(H \in \mathfrak{h}_i(0))$. Define

$$\alpha_i = \sum_{H \in \mathfrak{h}_i(0)} \alpha_H$$

and put $g_i = c_i \varepsilon_{R,i} \alpha_i \delta_i(D) \Phi_i, \quad g_i' = c_i \varepsilon_{R,i} \alpha_i \delta_i(D) (\pi_i \Phi_i).$

Then it follows from [2 (j), Theorem 1], [2 (l), Theorem 2] and [2 (l), § 4] that g_i and g'_i are functions of class C^{∞} on the closure of each connected component of $\mathfrak{h}'_i(R)$.

Now choose $\varepsilon > 0$ so small that $\mathfrak{h}_i(\varepsilon) \subset U_i$ $(1 \leq i \leq r)$. Then if $f \in C_c^{\infty}(\Omega(\varepsilon))$, it is clear that $\operatorname{Supp} \psi_{f,i} \subset U_i$. Since $\alpha_i = 1$ on U_i , it follows that

$$J_{p}(f) = \sum_{i} \int \{\partial(\omega_{i} p_{i}) \psi_{f,i} \cdot g_{i} - \partial(p_{i}) \psi_{f,i} \cdot \partial(\omega_{i}) g_{i} \} d_{i} H$$

and
$$J'(f) = \sum_{i} \int \{\partial(\omega_i) \, \psi_{f,i} \cdot g_i' - \psi_{f,i} \cdot \partial(\omega_i) \, g_i'\} \, d_i \, H$$

for $f \in C_c^{\infty}(\Omega(\varepsilon))$. Moreover $\Omega(\varepsilon)$ being completely invariant, we can choose an open neighborhood V of X_0 in g such that $\operatorname{Cl}(V^G) \subset \Omega(\varepsilon)$. Now $J = J_1$ and therefore it follows from Lemma 7 and [2 (k), Theorem 5] that $J_p = 0$ on V^G for $p \in I(\mathfrak{g}_c)$. Hence $X_0 \notin \operatorname{Supp} J_p$. But X_0 was an arbitrary point of Ω . Therefore we conclude that $J_p = 0$. This proves the first statement of Lemma 6.

Similarly by applying [2(k), Theorem 4] we conclude that J'=0. This gives the second statement of Lemma 6 in the special case p=1. Now fix $p \in I(\mathfrak{g}_c)$ and consider the distribution $T_0 = \partial(p) T$. Then T_0 also satisfies the conditions of [2(l), Theorem 1] and therefore $T_0 = F_0$ where $F_0 = \partial(p) F$. Put $\Phi_0 = \nabla_{\mathfrak{g}} F_0$ and let Φ_{0i} denote the restriction of Φ_0 on $\mathfrak{h}_i \cap \Omega'$ $(1 \leq i \leq r)$.

LEMMA 8.
$$\Phi_{0i} = \partial(p_i) \Phi_i \quad (1 \le i \le r).$$

Let F_i and F_{0i} respectively denote the restrictions of F and F_0 on $\mathfrak{h}_i \cap \Omega'$. Since F is an invariant function, we know [2 (c), Theorem 1] that

$$F_{0i} = \pi_i^{-1} \partial(p) (\pi_i F_i).$$

Therefore

$$\Phi_{0i} = \partial(\pi_i) (\pi_i F_{0i}) = \partial(p_i \pi_i) (\pi_i F_i) = \partial(p_i) \Phi_i.$$

Now if we apply the result J'=0 to the distribution T_0 (instead of T), we obtain

$$\sum_{i} c_{i} \int \varepsilon_{R,i} \left\{ \partial(\omega_{i}) \psi_{f,i} \cdot \delta_{i}(D) \left(\pi_{i} \Phi_{0i} \right) - \psi_{f,i} \delta_{i}(\partial(\omega) \circ D) \left(\pi_{i} \Phi_{0i} \right) \right\} d_{i} H = 0$$

for $f \in C_c^{\infty}(\Omega)$. In view of Lemma 8, this is equivalent to the second assertion of Lemma 6.

§ 5. New expressions for J and J'

Define η as in § 2. Then $\eta \in I(\mathfrak{g}_c)$ and $\eta_i = (-1)^m \pi_i^2$ $(1 \leq i \leq r)$. Moreover $|\eta|^{\frac{1}{2}}$ and $|\eta|^{-\frac{1}{2}}$ are analytic functions on \mathfrak{g}' .

LEMMA 9. Define J and J' as in §4. Then

$$J(f) = \mathbf{p}.\mathbf{v}.\int \{\partial(\omega) \left(|\eta|^{\frac{1}{2}}f\right) \cdot D\left(|\eta|^{-\frac{1}{2}}\Phi\right) - |\eta|^{\frac{1}{2}}f(\partial(\omega) \circ D \circ |\eta|^{-\frac{1}{2}})\Phi\} dX$$

252

and
$$J'(f) = \int \{\partial(\omega) f \cdot D\Phi - f \partial(\omega) (D\Phi)\} dX$$

for $f \in C_c^{\infty}(\Omega)$.

Since η takes only real values on \mathfrak{g} , it is obvious that $|\eta_i|^{\frac{1}{2}} = \varepsilon_i \pi_i$ on \mathfrak{h}_i' where ε_i is a locally constant function on \mathfrak{h}_i such that $\varepsilon_i^4 = 1$. Since Φ and $|\eta|^{-\frac{1}{2}}$ are invariant functions, it follows from [2 (j), Lemma 14] that

$$D'(|\eta|^{-\frac{1}{2}}\Phi) = \varepsilon_i^{-1}\pi_i^{-1}\delta_i(D')\Phi_i$$

on $\mathfrak{h}_i \cap \Omega'$ for any $D' \in \mathfrak{J}(\mathfrak{g}_c)$.

For any $f \in C_c^{\infty}(\Omega)$, let g_f denote the function on \mathfrak{g}' given by

$$g_f = \partial(\omega) \left(|\eta|^{\frac{1}{2}} f \right) \cdot D(|\eta|^{-\frac{1}{2}} \Phi) - |\eta|^{\frac{1}{2}} f(\partial(\omega) \circ D \circ |\eta|^{-\frac{1}{2}}) \Phi.$$

Fix a function $v \in C^{\infty}(\mathbf{R})$ such that v(t) = 0 if $|t| \leq \frac{1}{2}$ and v(t) = 1 if $|t| \geq 1$ $(t \in \mathbf{R})$. For any $\varepsilon > 0$, put $v_{\varepsilon}(t) = v(\varepsilon^{-2}t)$ and

$$V_{\varepsilon}(X) = v_{\varepsilon}(\eta(X)) \quad (X \in \mathfrak{g}).$$

Then V_{ε} is an invariant C^{∞} function on g and $V_{\varepsilon} = 1$ on $g(\varepsilon)$ (in the notation of § 2). Put $f_{\varepsilon}' = V_{\varepsilon} f$ and $f_{\varepsilon} = |\eta|^{\frac{1}{2}} f_{\varepsilon}'$. It is clear that f_{ε} and f_{ε}' are in $C_{\varepsilon}^{\infty}(\Omega)$ and $f = f_{\varepsilon}'$ on $\mathfrak{g}(\varepsilon)$. Hence

$$\int_{\mathfrak{g}(\mathfrak{s})} g_f \, dX = \int_{\mathfrak{g}(\mathfrak{s})} g_{f_{\mathfrak{s}'}} \, dX$$
$$= \sum_i c_i \int_{\mathfrak{h}_i(\mathfrak{s})} \varepsilon_{i,R} \, \varepsilon_i^{-1} \left\{ \partial(\omega_i) \, \psi_{f_{\mathfrak{s}},i} \cdot \delta_i(D) \, \Phi_i - \psi_{f_{\mathfrak{s}},i} \, \delta_i(\partial(\omega) \circ D) \, \Phi_i \right\} d_i H$$

where $\mathfrak{h}_i(\varepsilon) = \mathfrak{h}_i \cap \mathfrak{g}(\varepsilon)$. However it is obvious that

$$\psi_{f_{\varepsilon},i} = \varepsilon_i \pi_i \psi_{f,i}$$

on $\mathfrak{h}_i(\varepsilon)$. Therefore

$$\int_{\mathfrak{g}(\epsilon)} g_f \, dX = \sum_i c_i \int_{\mathfrak{h}_i(\epsilon)} \varepsilon_{i,R} \left\{ \partial(\omega_i) \left(\pi_i \psi_{f,i} \right) \cdot \delta_i(D) \Phi_i - \pi_i \psi_{f,i} \delta_i(\partial(\omega) \circ D) \Phi_i \right\} \, d_i H.$$

$$g \ \varepsilon \to 0 \quad \text{we get} \qquad p.v. \int g_f \, dX = J(f)$$

Making $\varepsilon \rightarrow 0$ we get

and this proves the first statement of the lemma.

We know from the corollary of Lemma 1 that the integral

$$\int \{\partial(\omega)f \cdot D\Phi - f\partial(\omega)(D\Phi)\} dX$$

is well defined. Moreover since Φ is an invariant function,

$$D' \Phi = \pi_i^{-1} \delta_i(D') (\pi_i \Phi_i) \quad (D' \in \mathfrak{J}(\mathfrak{g}_c))$$

on $\mathfrak{h}_i \cap \Omega'$ and therefore the above integral is equal to J'(f). This proves the second statement of the lemma.

LEMMA 10. For any $\varepsilon > 0$, define the function V_{ε} as above and put

$$J_{\varepsilon}(f) = \int V_{\varepsilon} \{\partial(\omega) \left(|\eta|^{\frac{1}{2}} f \right) \cdot D\left(|\eta|^{-\frac{1}{2}} \Phi \right) - |\eta|^{\frac{1}{2}} f(\partial(\omega) \circ D \circ |\eta|^{-\frac{1}{2}}) \Phi \} dX$$
$$J_{\varepsilon}'(f) = \int V_{\varepsilon} \{\partial(\omega) f \cdot D \Phi - f\partial(\omega) (D \Phi) \} dX$$

and

$$(f) = \int V_{\varepsilon} \{\partial(\omega) f \cdot D\Phi - f \partial(\omega) (D\Phi)\} d\lambda$$

for $f \in C_c^{\infty}(\Omega)$. Then

$$J(f) = \lim_{\varepsilon \to 0} J_{\varepsilon}(f), \quad J'(f) = \lim_{\varepsilon \to 0} J_{\varepsilon}'(f).$$

Put $f_{\varepsilon} = [\eta]^{\frac{1}{4}} V_{\varepsilon/2} f$. Then $f_{\varepsilon} \in C_c^{\infty}(\Omega)$ and $J_{\varepsilon}(f) = J_{\varepsilon}(V_{\varepsilon/2} f)$. Hence it follows that

$$J_{\varepsilon}(f) = \sum_{i} c_{i} \int V_{\varepsilon, i} \varepsilon_{i, R} \varepsilon_{i}^{-1} \{ \partial(\omega_{i}) \psi_{f_{\varepsilon}, i} \cdot \delta_{i}(D) \Phi_{i} - \psi_{f_{\varepsilon}, i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i} \} d_{i} H$$

where $V_{\varepsilon,i}$ is the restriction of V_{ε} on \mathfrak{h}_i . On the other hand, it is clear that

$$\psi_{f_{\varepsilon},i}(H) = \varepsilon_i \pi_i(H) \psi_{f,i}(H)$$

if $|\pi_i(H)| \ge \varepsilon/2$ ($H \in \mathfrak{h}_i$). Hence

$$J_{\varepsilon}(f) = \sum_{i} c_{i} \int V_{\varepsilon,i} \varepsilon_{i,R} \{ \partial(\omega_{i}) (\pi_{i} \psi_{f,i}) \cdot \delta_{i}(D) \Phi_{i} - \pi_{i} \psi_{f,i} \delta_{i}(\partial(\omega) \circ D) \Phi_{i} \} d_{i} H.$$

The two assertions of the lemma are now obvious.

LEMMA 11. Put (1)

$$\Psi_{\varepsilon} = (|\eta|^{\frac{1}{2}} \{\partial(\omega), V_{\varepsilon}\} \circ D \circ |\eta|^{-\frac{1}{2}}) \Phi,$$

$$\Psi_{\varepsilon}' = (\{\partial(\omega), V_{\varepsilon}\} \circ D) \Phi$$

for $\varepsilon > 0$. Then

254

⁽¹⁾ See footnote 1, p. 250.

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$J_{\varepsilon}(f) = \int f \Psi_{\varepsilon} \, dX, \quad J_{\varepsilon}'(f) = \int f \Psi_{\varepsilon}' \, dX$$

for $f \in C_c^{\infty}(\Omega)$.

Since $\operatorname{Supp} V_{\varepsilon} \subset \mathfrak{g}'$, this follows from Lemma 10 if we observe that

$$(V_{\varepsilon}\partial(\omega)\circ|\eta|^{\frac{1}{2}})^{*}=|\eta|^{\frac{1}{2}}\partial(\omega)\circ V_{\varepsilon}, \quad (V_{\varepsilon}\partial(\omega))^{*}=\partial(\omega)\circ V_{\varepsilon}.$$

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and let us use the notation introduced at the beginning of § 2. In particular $V_{\varepsilon,\mathfrak{h}}$ and $\omega_{\mathfrak{h}}$ denote the restrictions of V_{ε} and ω on \mathfrak{h} .

LEMMA 12. For any $\varepsilon > 0$, we have

$$(\Psi_{\varepsilon})_{\mathfrak{h}} = (\{\partial(\omega_{\mathfrak{h}}), V_{\varepsilon,\mathfrak{h}}\} \circ \delta_{\mathfrak{g}/\mathfrak{h}}(D)) \Phi_{\mathfrak{h}}$$

 $(\Psi_{\varepsilon}')_{\mathfrak{h}} = (\pi^{-1} \{ \partial(\omega_{\mathfrak{h}}), V_{\varepsilon, \mathfrak{h}} \} \circ \delta_{\mathfrak{g}/\mathfrak{h}}(D) \circ \pi) \Phi_{\mathfrak{h}}.$

and

 $|\eta|^{\frac{1}{2}}$, Φ and V_s are invariant C^{∞} functions on Ω' . Moreover there exists a locally constant function a on \mathfrak{h}' such that $a^4 = 1$ and $|\eta|^{\frac{1}{2}} = a\pi$ on \mathfrak{h}' . The required relations now follow easily by a repeated use of [2 (j), Lemma 14] and [2 (c), Theorem 1].

§ 6. Proof of Lemma 7

We now come to the proof of Lemma 7. Fix a semiregular element $H_0 \in \Omega$ of noncompact type and let \mathfrak{z} denote the centralizer of H_0 in \mathfrak{g} . Define ζ and \mathfrak{z}' as in $[2(\mathfrak{j}), \S 2]$ and put $\Omega_{\mathfrak{z}} = \Omega \cap \mathfrak{z}'$. Then $\Omega_{\mathfrak{z}}$ is an open and completely invariant neighborhood of H_0 in \mathfrak{z} . Fix a Euclidean measure dZ on \mathfrak{z} and define

$$j = \sigma_J, j' = \sigma_{J'}, j_{\varepsilon} = \sigma_{J_{\varepsilon}} \text{ and } j_{\varepsilon}' = \sigma_{J_{\varepsilon}'} \quad (\varepsilon > 0)$$

in the notation of [2 (j), Lemma 17] corresponding to $G_0 = G$ and $z_0 = \Omega_3$. Since $J_\varepsilon = \Psi_\varepsilon$ and $J_\varepsilon' = \Psi_\varepsilon'$ (Lemma 11), it is obvious that

$$j_{\varepsilon}(\gamma) = \int \gamma(Z) \Psi_{\varepsilon}(Z) dZ, \quad j_{\varepsilon}'(\gamma) = \int \gamma(Z) \Psi_{\varepsilon}'(Z) dZ$$

for $\gamma \in C_c^{\infty}(\Omega_{\delta})$. Moreover

$$j(\gamma) = \lim_{\varepsilon \to 0} j_{\varepsilon}(\gamma), \quad j'(\gamma) = \lim_{\varepsilon \to 0} j_{\varepsilon}'(\gamma) \quad (\gamma \in C_c^{\infty}(\Omega_{\delta}))$$

from Lemma 10.

Now we use the notation of [2 (k), § 7]. In particular σ is the center of z and $\mathfrak{a} = \mathbf{R}H' + \sigma$, $\mathfrak{b} = \mathbf{R}(X' - Y') + \sigma$ are two Cartan subalgebras of z. Fix Euclidean measures $d\sigma$, $d\mathfrak{a}$, $d\mathfrak{b}$ on σ , \mathfrak{a} , \mathfrak{b} respectively such that

255

$$d\mathfrak{a} = dt \, d\sigma, \quad d\mathfrak{b} = d\phi \, d\sigma$$

where $t = \alpha/2$ and $\phi = (-1)^{\frac{1}{2}}\beta/2$ in the notation of [2 (k), Lemma 13]. Then $d\sigma$ can be so normalized that (see [2 (e), Lemma 3])

$$\int \gamma \, dZ = \frac{1}{2} \int_{\mathfrak{a}^+} \alpha J_{\gamma}^{\mathfrak{a}} d\mathfrak{a} + (-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} \beta J_{\gamma}^{\mathfrak{b}} d\mathfrak{b}$$

for $\gamma \in C_c^{\infty}(\mathfrak{z})$. Here

$$J_{\gamma}^{\mathfrak{a}}(H) = J_{\mathfrak{a}}(\gamma:H) \quad (H \in \mathfrak{a}),$$
$$J_{\gamma}^{\mathfrak{b}}(H) = J_{\mathfrak{b}}(\gamma:H) \quad (H \in \mathfrak{b}'')$$

in the notation of [2 (k), Lemma 14], \mathfrak{a}^+ is the set of all points H in \mathfrak{a} where $\alpha(H) > 0$ and \mathfrak{b}'' is the set of those $H \in \mathfrak{b}$ where $\beta(H) \neq 0$. Therefore since Ψ_e is an invariant C^{∞} function on Ω , it is clear that

$$j_{\epsilon}(\gamma) = \frac{1}{2} \int_{\mathfrak{a}^+} \alpha J_{\gamma}^{\mathfrak{a}}(\Psi_{\epsilon})_{\mathfrak{a}} d\mathfrak{a} + (-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} \beta J_{\gamma}^{\mathfrak{b}}(\Psi_{\epsilon})_{\mathfrak{b}} d\mathfrak{b}$$

for $\gamma \in C_c^{\infty}(\Omega_{\mathfrak{z}})$. Now apply Lemma 12 and observe that $\operatorname{Supp} V_{\varepsilon,\mathfrak{h}} \subset \mathfrak{h} \cap \mathfrak{g}'$ and

$$(\partial(\omega_{\mathfrak{h}}) \circ V_{\varepsilon,\mathfrak{h}})^* = V_{\varepsilon,\mathfrak{h}} \partial(\omega_{\mathfrak{h}}) \quad (\mathfrak{h} = \mathfrak{a} \text{ or } \mathfrak{h}).$$

Then it follows that

$$\begin{split} j_{\varepsilon}(\gamma) &= \frac{1}{2} \int_{\mathfrak{a}^{+}} V_{\varepsilon, \mathfrak{a}} \{ \partial(\omega_{\mathfrak{a}}) (\alpha J_{\gamma}^{\mathfrak{a}}) \cdot \Phi_{0, \mathfrak{a}} - \alpha J_{\gamma}^{\mathfrak{a}} \cdot \partial(\omega_{\mathfrak{a}}) \Phi_{0, \mathfrak{a}} \} d\mathfrak{a} \\ &+ (-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} V_{\varepsilon, \mathfrak{b}} \{ \partial(\omega_{\mathfrak{b}}) (\beta J_{\gamma}^{\mathfrak{b}}) \cdot \Phi_{0, \mathfrak{b}} - \beta J_{\gamma}^{\mathfrak{b}} \cdot \partial(\omega_{\mathfrak{b}}) \Phi_{0, \mathfrak{b}} \} d\mathfrak{b} \end{split}$$

where $\Phi_{\mathfrak{d},\mathfrak{h}} = \delta_{\mathfrak{g}/\mathfrak{h}}(D) \Phi_{\mathfrak{h}}$ ($\mathfrak{h} = \mathfrak{a}$ or \mathfrak{h}). Hence it is obvious that

$$j(\gamma) = \frac{1}{2} \int_{\mathfrak{a}^+} \left\{ \partial(\omega_{\mathfrak{a}}) \left(\alpha J_{\gamma}^{\mathfrak{a}} \right) \cdot \Phi_{0,\mathfrak{a}} - \alpha J_{\gamma}^{\mathfrak{a}} \partial(\omega_{\mathfrak{a}}) \Phi_{0,\mathfrak{a}} \right\} d\mathfrak{a}$$
$$+ (-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} \left\{ \partial(\omega_{\mathfrak{b}}) \left(\beta J_{\gamma}^{\mathfrak{b}} \right) \cdot \Phi_{0,\mathfrak{b}} - \beta J_{\gamma}^{\mathfrak{b}} \partial(\omega_{\mathfrak{b}}) \Phi_{0,\mathfrak{b}} \right\} d\mathfrak{b}$$

for $\gamma \in C_c^{\infty}(\Omega_3)$. Now $\omega_a = \omega_{\sigma} + |\alpha|^{-2} \alpha^2$ where ω_{σ} is the restriction of ω on σ . Similarly $\omega_b = \omega_{\sigma} + |\beta|^{-2} \beta^2$. Hence (see [2 (k), Lemma 21]) it follows that

$$j(\gamma) = \frac{1}{2|\alpha|^2} \int_{a^+} \partial(\alpha) \left\{ \partial(\alpha) (\alpha J_{\gamma}^{a}) \cdot \Phi_{0,a} - \alpha J_{\gamma}^{a} \partial(\alpha) \Phi_{0,a} \right\} d\alpha$$
$$+ \frac{(-1)^{\frac{1}{2}}}{2|\beta|^2} \int_{b} \partial(\beta) \left\{ \partial(\beta) (\beta J_{\gamma}^{b}) \cdot \Phi_{0,b} - \beta J_{\gamma}^{b} \partial(\beta) \Phi_{0,b} \right\} db$$

 $\mathbf{256}$

Now $da = d\sigma dt$, $db = d\sigma d\phi$ and

$$\partial(\alpha) = \frac{1}{2} |\alpha|^2 \partial/\partial t, \quad \partial(\beta) = \frac{1}{2} (-1)^{\frac{1}{2}} |\beta|^2 \partial/\partial \phi$$

since

$$H' = 2 |\alpha|^{-2} H_{\alpha}, \quad X' - Y' = -2 (-1)^{\frac{1}{2}} |\beta|^{-2} H_{\beta}$$

in the notation of [2 (k), § 7]. Therefore

$$\begin{split} j(\gamma) &= -\frac{1}{4} \int_{\sigma} \{ \partial(\alpha) \, (\alpha J_{\gamma}{}^{\mathfrak{a}}) \cdot \Phi_{0,\mathfrak{a}} - \alpha J_{\gamma}{}^{\mathfrak{a}} \cdot \partial(\alpha) \, \Phi_{0,\mathfrak{a}} \}^{+} \, d\sigma \\ &+ \frac{1}{4} \int_{\sigma} \{ \partial(\beta) \, (\beta J_{\gamma}{}^{\mathfrak{b}}) \cdot \Phi_{0,\mathfrak{b}} - \beta J_{\gamma}{}^{\mathfrak{b}} \, \partial(\beta) \, \Phi_{0,\mathfrak{b}} \}^{-}_{-} + \, d\sigma. \end{split}$$

Here

$$u_{\mathfrak{a}}^{+}(H) = \lim_{t \to +0} u_{\mathfrak{a}}(H + tH'), \quad u_{\mathfrak{b}}^{\pm}(H) = \lim_{\phi \to +0} u_{\mathfrak{b}}(H \pm \phi(X' - Y')) \quad (H \in \sigma; t, \phi \in \mathbf{R})$$

for two functions u_a and u_b on a and b respectively and $(u_b)_{-}^{+} = u_b^{+} - u_b^{-}$. Since $\alpha = \beta = 0$ on σ and $|\alpha|^2 = |\beta|^2$ [2 (k), Lemma 13], it follows that

$$j(\gamma) = \frac{1}{4} |\alpha|^2 \int_{\sigma} \left\{ (J_{\gamma}{}^{\mathfrak{b}} \Phi_{0,\mathfrak{b}})_{-}^{+} - (J_{\gamma}{}^{\mathfrak{a}} \Phi_{0,\mathfrak{a}})^{+} \right\} d\sigma.$$

However $\Phi_{0,\mathfrak{a}}$ and $\Phi_{0,\mathfrak{b}}$ are continuous functions on $\mathfrak{a} \cap \Omega_{\mathfrak{z}}$ and $\mathfrak{b} \cap \Omega_{\mathfrak{z}}$ respectively and $\Phi_{0,\mathfrak{a}} = \Phi_{0,\mathfrak{b}}$ on $\sigma \cap \Omega_{\mathfrak{z}}$ [2 (l), Lemma 18]. Therefore

$$j(\gamma) = \frac{1}{4} |\alpha|^2 \int_{\sigma} \{ (J_{\gamma}^{b})_{-}^{+} - J_{\gamma}^{a} \} \Phi_{0,a} d\sigma \quad (\gamma \in C_c^{\infty}(\Omega_{\delta})).$$

But $(J_{\gamma}^{\ b})_{-}^{\ +} = J_{\gamma}^{\ a}$ on σ [2 (k), § 19]. Hence j = 0 on Ω_{δ} .

Now put (1) $\pi_{\alpha} = \alpha^{-1} \pi^{\mathfrak{a}}, \ \pi_{\beta} = \beta^{-1} \pi^{\mathfrak{b}}$ and

$$\Phi_{\mathfrak{h}}' = \delta_{\mathfrak{g}/\mathfrak{h}}(D) \left(\pi^{\mathfrak{h}} \Phi_{\mathfrak{h}}\right)$$

for $\mathfrak{h} = \mathfrak{a}$ or \mathfrak{h} . Then if $\gamma \in C_c^{\infty}(\Omega_{\mathfrak{d}})$, we have

$$\begin{split} j_{\varepsilon}'(\gamma) &= \frac{1}{2} \int_{\mathfrak{a}^+} \alpha J_{\gamma}^{\mathfrak{a}} (\Psi_{\varepsilon}')_{\mathfrak{a}} d\mathfrak{a} + (-1)^{\frac{1}{2}} \frac{1}{2} \int_{\mathfrak{b}} \beta J_{\gamma}^{\mathfrak{b}} (\Psi_{\varepsilon}')_{\mathfrak{b}} d\mathfrak{b} \\ &= \frac{1}{2} \int_{\mathfrak{a}^+} V_{\varepsilon,\mathfrak{a}} \{ \partial(\omega_{\mathfrak{a}}) \left(\pi_{\alpha}^{-1} J_{\gamma}^{\mathfrak{a}} \right) \cdot \Phi_{\mathfrak{a}}' - \pi_{\alpha}^{-1} J_{\gamma}^{\mathfrak{a}} \partial(\omega_{\mathfrak{a}}) \Phi_{\mathfrak{a}}' \} d\mathfrak{a} \\ &\quad + \frac{1}{2} \left(-1 \right)^{\frac{1}{2}} \int_{\mathfrak{b}} V_{\varepsilon,\mathfrak{b}} \{ \partial(\omega_{\mathfrak{b}}) \left(\pi_{\beta}^{-1} J_{\gamma}^{\mathfrak{b}} \right) \cdot \Phi_{\mathfrak{b}}' - \pi_{\beta}^{-1} J_{\gamma}^{\mathfrak{b}} \partial(\omega_{\mathfrak{b}}) \Phi_{\mathfrak{b}}' \} d\mathfrak{b} \end{split}$$

⁽¹⁾ We assume, as we may, that $(\pi^{\mathfrak{q}})^{\nu} = \pi^{\mathfrak{b}}$ in the notation of [2 (k). § 7].

from Lemma 12. Hence

$$\begin{split} j'(\gamma) &= \frac{1}{2 |\alpha|^2} \int_{\mathfrak{a}^+} \partial(\alpha) \left\{ \partial(\alpha) \left(\pi_{\alpha}^{-1} J_{\gamma}^{\mathfrak{a}} \right) \cdot \Phi_{\mathfrak{a}}' - \pi_{\alpha}^{-1} J_{\gamma}^{\mathfrak{a}} \partial(\alpha) \Phi_{\mathfrak{a}}' \right\} d\mathfrak{a} \\ &+ \frac{(-1)^{\frac{1}{2}}}{2 |\beta|^2} \int_{\mathfrak{b}} \partial(\beta) \left\{ \partial(\beta) \left(\pi_{\beta}^{-1} J_{\gamma}^{\mathfrak{b}} \right) \cdot \Phi_{\mathfrak{b}}' - \pi_{\beta}^{-1} J_{\gamma}^{\mathfrak{b}} \partial(\beta) \Phi_{\mathfrak{b}}' \right\} d\mathfrak{b} \\ &= -\frac{1}{4} \int_{\sigma} \left\{ \partial(\alpha) \left(\pi_{\alpha}^{-1} J_{\gamma}^{\mathfrak{a}} \right) \cdot \Phi_{\mathfrak{a}}' - \pi_{\alpha}^{-1} J_{\gamma}^{\mathfrak{a}} \partial(\alpha) \Phi_{\mathfrak{a}}' \right\}^{+} d\sigma \\ &+ \frac{1}{4} \int_{\sigma} \left\{ \partial(\beta) \left(\pi_{\beta}^{-1} J_{\gamma}^{\mathfrak{b}} \right) \cdot \Phi_{\mathfrak{b}}' - \pi_{\beta}^{-1} J_{\gamma}^{\mathfrak{b}} \partial(\beta) \Phi_{\mathfrak{b}}' \right\}^{-+} d\sigma. \end{split}$$

Now $\pi_{\alpha}^{-1}J_{\gamma}^{a}$ is a C^{∞} function on a which is invariant under the Weyl reflexion s_{α} . Hence $\partial(\alpha) (\pi_{\alpha}^{-1}J_{\gamma}^{a}) = 0$ on σ . Moreover, $\partial(\beta) (\pi_{\beta}^{-1}J_{\gamma}^{b})$ is a continuous function on b by [2 (k), Theorem 1] and $\partial(\alpha) \Phi_{\alpha}', \partial(\beta) \Phi_{b}'$ are continuous functions on $\alpha \cap \Omega_{\beta}, b \cap \Omega_{\delta}$ respectively and they are equal on $\sigma \cap \Omega_{\delta}$ [2 (l), Lemma 18]. Finally Φ_{b}' is an analytic function on $b \cap \Omega_{\delta}$ [2 (l), Theorem 2]. Hence

$$j'(\gamma) = \frac{1}{4} \int_{\sigma} \pi_{\alpha}^{-1} J_{\gamma}^{a} \partial(\alpha) \Phi_{\alpha}' d\sigma - \frac{1}{4} \int_{\sigma} (\pi_{\beta}^{-1} J_{\gamma}^{b})_{-}^{+} \partial(\beta) \Phi_{b}' d\sigma$$
$$= \frac{1}{4} \int_{\sigma} \{\pi_{\alpha}^{-1} J_{\gamma}^{a} - (\pi_{\beta}^{-1} J_{\gamma}^{b})_{-}^{+}\} \partial(\beta) \Phi_{b}' d\sigma.$$

But (1) $\pi_{\alpha} = \pi_{\beta}$ and $J_{\gamma}^{\alpha} = (J_{\gamma}^{b})_{-}^{+}$ on σ . Therefore j' = 0 on Ω_{δ} . In view of [2 (j), Lemma 17] this completes the proof of Lemma 7.

§7. A consequence of Theorem 1

We now return to the notation of §2 so that g is again reductive. For any $p \in I(\mathfrak{g}_c)$, let p_i denote the projection of p in $I(\mathfrak{h}_{ic})$ (see [2 (j), §8]).

LEMMA 13. Fix $p \in I(g_c)$. Then

$$\sum_{1 \leq i \leq r} c_i \int \varepsilon_{R,i} \{ \partial (\boldsymbol{\varpi}_i \boldsymbol{p}_i) \, \psi_{f,i} \cdot \boldsymbol{\Phi}_i - \psi_{f,i} \, \partial (\boldsymbol{\varpi}_i \boldsymbol{p}_i)^* \boldsymbol{\Phi}_i \} \, d_i \, H = 0$$

for $f \in C_c^{\infty}(\Omega)$.

We note that $\partial(\varpi_i)^* = (-1)^m \partial(\varpi_i)$. Therefore applying Lemma 5 to $\partial(p)f$, instead of f, we get

 $\mathbf{258}$

^{(&}lt;sup>1</sup>) See footnote 1, p. 257.

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$\sum_{i} c_{i} \int \varepsilon_{i,R} \partial(\boldsymbol{\varpi}_{i} p_{i}) \psi_{f,i} \cdot \Phi_{i} d_{i} H = \sum_{i} c_{i} \int \varepsilon_{i,R} \partial(p_{i}) \psi_{f,i} \partial(\boldsymbol{\varpi}_{i})^{*} \Phi_{i} d_{i} H = (-1)^{m} \int \partial(p) f \cdot \Box F dX.$$

But it follows from the corollary of [2 (l), Lemma 16] that

$$\int \partial(p) f \cdot \Box F dX = \int f \cdot \Box (\partial(p)^* F) dX.$$

Hence we conclude from Lemma 8 and [2 (j), Lemma 13] that

$$(-1)^m \int f \Box (\partial(p)^* F) dX = \sum_i c_i \int \varepsilon_{i,R} \psi_{f,i} \partial(p_i \varpi_i)^* \Phi_i d_i H.$$

The statement of Lemma 13 is now obvious.

§ 8. Some elementary facts about tempered distributions

Let E be a vector space over **R** of finite dimension. Define $S(E_c)$, $P(E_c)$ and $\mathfrak{D}(E_c)$ as usual (see [2 (j), § 3]). Let U be an open subset of E and T a distribution on U. We say that T is tempered if we can choose $D_i \in \mathfrak{D}(E_c)$ $(1 \le i \le r)$ such that

$$|T(f)| \leq \sum_{i} \sup |D_i f| \quad (f \in C_c^{\infty}(U)).$$

It is clear that if T is tempered, the same holds for DT for any $D \in \mathfrak{D}(E_c)$.

Fix a Euclidean measure dX on E and let g be a locally summable function on U. Then g will be said to be tempered (on U) if the distribution

$$f \to \int fg \, dX \quad (f \in C_c^{\infty}(U))$$

on U is tempered.

Introduce a Euclidean norm $\| \|$ on E.

LEMMA 14. Let g be a measurable function on U such that

$$\sup_{X \in U} |g(X)| (1 + ||X||)^{-m} < \infty$$

for some $m \ge 0$. Then g is tempered.

We can choose $r \ge 0$ such that

$$c_1 = \int_E (1 + ||X||)^{-r} \, dX < \infty.$$

259

Put $c_2 = \sup_{X \in U} |g(X)| (1 + ||X||)^{-m}$. Then

$$\left| \int gfdX \right| \leq c_1 c_2 v_{m+r} (f) \quad (f \in C_c^{\infty} U))$$
$$v_{m+r} (f) = \sup_{X \in U} |f(X)| (1 + ||X||)^{m+r}.$$

where

Since $X \to ||X||^2$ is a quadratic form on E, it is now clear that g is tempered.

A subset V of E is called full if $tX \in V$ whenever $X \in V$ and $t \ge 1$.

LEMMA 15. Let V be a non-empty, open and full subset of E. Put

$$g(X) = \sum_{1 \leq i \leq r} p_i(X) e^{\lambda_i(X)} \quad (X \in E)$$

where $\lambda_1, \ldots, \lambda_r$ are distinct linear functions on E_c and $p_i \in P(E_c)$ $(p_i \neq 0)$. Then g is tempered on V if and only if⁽¹⁾

 $\Re \lambda_i(X) \leq 0$

for all $X \in V$ and $1 \leq i \leq r$.

We recall that $S(E_c)$ is the algebra of polynomial functions on the dual space E_c' of E_c . Fix $p \in S(E_c)$ and $\lambda \in E_c'$. Then

$$\partial(p) \circ e^{\lambda} = e^{\lambda} \partial(p_{\lambda})$$

where p_{λ} is the polynomial function $\mu \rightarrow p(\lambda + \mu)$ ($\mu \in E_c'$). Therefore if $q \in P(E_c)$ and $\partial(p) (e^{\lambda}q) = 0$, we conclude that $\partial(p_{\lambda})q = 0$. Now assume that $q \neq 0$ and let q_0 be the homogeneous component of q of the highest degree. Then it is clear that $p_{\lambda}(0)q_0 = 0$ and therefore $p(\lambda) = 0$. We shall need this fact presently.

Let us now turn to the proof of Lemma 15. If $\Re \lambda_i(X) \leq 0$ for $X \in V$ and $1 \leq i \leq r$, it follows from Lemma 14 that g is tempered on V. To prove the converse we use induction on r.

So let us assume that g is tempered on V. It would be enough to show that $\Re \lambda_1(X) \leq 0$ for $X \in V$. First suppose that $r \geq 2$. Then $\lambda_1 \neq \lambda_r$ and therefore we can choose $q \in S(E_c)$ such that $q(\lambda_r) = 0$ while $q(\lambda_1) \neq 0$. Put $p = q^d$ where $d > d^0 p_r$. Then

$$\partial(p) (e^{\lambda_i} p_i) = p_i' e^{\lambda_i} \quad (1 \leq i \leq r)$$

where $p_i' = \partial(p_{\lambda_i}) p_i$. Since $p(\lambda_1) = q(\lambda_1)^d \neq 0$, it follows from what we have seen above, that $p_1' \neq 0$. On the other hand $p_{\lambda_r} = (q_{\lambda_r})^d$ and $q_{\lambda_r}(0) = q(\lambda_r) = 0$. Therefore since $d > d^0 p_r$, it is obvious that $p_r' = 0$. Hence

 $\mathbf{260}$

⁽¹⁾ $\Re c$ denotes the real part of a complex number c.

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$\partial(p)g = \sum_{1 \leq i < r} p_i' e^{\lambda_i}.$$

Now $\partial(p)g$ is also tempered on V and $p_1' \neq 0$. Therefore we conclude from the induction hypothesis that $\Re \lambda_1(X) \leq 0$ for $X \in V$.

Thus it remains to consider the case r=1. Fix $X_1 \in V$ and write λ and p instead of λ_1 and p_1 respectively. Then we have to prove that $\Re\lambda(X_1) \leq 0$. If $X_1=0$, this is obvious. So let us assume that $X_1 \neq 0$. Choose a linear subspace F of E complementary to $\mathbb{R}X_1$ and an open convex neighborhood U of zero in F such that $X_1 + U \subset V$. Then

$$tX_1 + U = t(X_1 + t^{-1}U) \subset t(X_1 + U) \subset V$$

for $t \ge 1$. Let J denote the open interval (l, ∞) in **R**. Fix $\alpha \in C_c^{\infty}(U)$ and for any $\beta \in C_c^{\infty}(J)$, consider the function $\gamma_{\beta} \in C_c^{\infty}(V)$ given by

$$\gamma_{\beta}(tX_1 + X_2) = \beta(t) \alpha(X_2) \quad (t \in \mathbf{R}, X_2 \in F).$$
$$\sigma(\beta) = \int \gamma_{\beta} g \, dX = \int \beta(t) \alpha(X_2) g(tX_1 + X_2) \, dt \, dX_2$$

Put

where dX_2 is the Euclidean measure on F normalized in such a way that $dX = dt dX_2$ for $X = tX_1 + X_2$. Then

$$\sigma(\beta) = \int e^{ct} q(t) \beta(t) dt \quad (\beta \in C_c^{\infty}(J))$$

where $c = \lambda(X_1)$ and

$$q(t) = \int p(tX_1 + X_2) \alpha(X_2) e^{\lambda(X_2)} dX_2.$$

Since $p \neq 0$, α can obviously be so selected that $q \neq 0$. Moreover since g is tempered on V, it is easy to see that σ is a tempered distribution on J. Hence it would be sufficient to prove the following lemma.

LEMMA 16. Fix $c \in \mathbb{C}$, $t_0 \in \mathbb{R}$ and let $q \neq 0$ be a (complex-valued) polynomial function on \mathbb{R} . Then if the function $q(t) e^{ct}$ $(t \in \mathbb{R})$ is tempered on the open interval $J = (t_0, \infty)$, we can conclude that $\Re c \leq 0$.

Put
$$T(\beta) = \int \beta(t) q(t) e^{ct} dt \quad (\beta \in C_c^{\infty}(J))$$

and $D = d/dt$. Let $T_0 = (D-c)^d T$

where $d = d^0 q$. Then T_0 is also a tempered distribution on J. But

$$(D-c)^d (qe^{ct}) = e^{ct} D^d q = ae^{ct}$$

where a is a nonzero constant. Hence it would be enough to consider the case when q=1. Then T being tempered, we can choose a number $A \ge 0$ and an integer $r \ge 0$ such that

$$\left|\int \alpha(t) e^{ct} dt\right| \leq A \sum_{0 \leq m, n \leq r} \sup |t^m D^n \alpha|$$

for $\alpha \in C_c^{\infty}(J)$. Let $c = 2 c_1 + (-1)^{\frac{1}{2}} c_2$ where $c_i \in \mathbb{R}$ (i = 1, 2). We have to show that $c_1 \leq 0$. So let us assume that $c_1 > 0$. Put

$$\alpha(t) = \beta(t) \, e^{-c't}$$

where $c' = c_1 + (-1)^{\frac{1}{2}} c_2$ and $\beta \in C_c^{\infty}(J)$. Then

$$\left|D^{n}\alpha\right| = e^{-c_{1}t} \left|(D-c')^{n}\beta\right|.$$

Therefore we can select a number $A_1 \ge 0$ such that

$$\left|\int \beta(t) e^{c_1 t} dt\right| \leq A_1 \sum_{0 \leq m, n \leq r} \sup e^{-c_1 t} |t^m D^n \beta|$$

for all $\beta \in C_c^{\infty}(J)$.

Now fix a function $f \in C^{\infty}(\mathbb{R})$ such that 1) $0 \le t \le 1$, 2) f(t) = 0 if $t \le 0$ and 3) f(t) = 1 if $t \ge 1$. For any $M > t_0 + 2$, define

$$\beta_M(t) = f(t - t_0 - 1) f(M + 1 - t) \quad (t \in \mathbf{R}).$$

Then $\beta_M \in C_c^{\infty}(J)$ and

$$\int \beta_M(t) e^{c_1 t} dt \ge \int_{t_0+2} e^{c_1 t} dt.$$
$$\sup |e^{-c_1 t} t^m D^n \beta_M| \le a_m b_n$$

On the other hand

$$a_m = \sup_{t \ge t_0} |t^m e^{-c_1 t}|, \quad b_n = 2^n \max_{0 \le k \le n} \sup |D^k f|^2.$$

(say).

Therefore

where

$$\left| \int \beta_M(t) e^{c_1 t} dt \right| \leq A' \sum_{0 \leq m \leq r} a_m \sum_{0 \leq n \leq r} b_n = B$$
$$B \geq \int_{t_0+2}^M e^{c_1 t} dt.$$

This proves that

But as $M \to +\infty$, the right side tends to $+\infty$ giving a contradiction. This completes the proof.

Let U be an open subset of E and C(U) the space of all C^{∞} functions f on U such that

 $\mathbf{262}$

$$\mathbf{v}_D(f) = \sup |Df| < \infty$$

for all $D \in \mathfrak{D}(E_c)$. The seminorms \mathfrak{v}_D $(D \in \mathfrak{D}(E_c))$ define the structure of a locally convex space on $\mathcal{C}(U)$.

It is well known (see [3, p. 93]) that the inclusion mapping of $C_c^{\infty}(E)$ into $\mathcal{C}(E)$ is continuous and the image is dense in $\mathcal{C}(E)$. Hence tempered distributions on E are the same as continuous linear functions on $\mathcal{C}(E)$.

§ 9. Proof of Lemma 17

We now return to the notation of §2. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and define g as in [2 (1), Theorem 2].

LEMMA 17. Suppose T is tempered on Ω . Then we can choose an integer $q \ge 0$ such that $\pi^q g$ is tempered on $\Omega \cap \mathfrak{h}'$.

Let A be the Cartan subgroup of G corresponding to \mathfrak{h} and $x \to x^*$ the natural projection of G on $G^* = G/A$. The group W_G operates on G^* on the right in the usual way (see [2 (1), § 9]). Fix an invariant measure dx^* on G^* and a function $\alpha_0 \in C_c^{\infty}(G^*)$ such that

$$\int \alpha_0(x^*) dx^* = 1.$$
$$\alpha(x^*) = [W_G]^{-1} \sum_{s \in W_G} \alpha_0(x^*s).$$

 \mathbf{Put}

Select a compact set C in G such that $\operatorname{Supp} \alpha \subset C^*$ and $C^*s = C^*$ for $s \in W_G$ and, for any $\beta \in C_c^{\infty}(\mathfrak{h}')$, define a function $f_{\beta} \in C_c^{\infty}(\mathfrak{g})$ as follows.

$$f_{\beta}(x^*H) = [W_G]^{-1} \alpha(x^*) \sum_{s \in W_G} \beta(s^{-1}H)$$

for $x^* \in C^*$ and $H \in \text{Supp } \beta$ and $\text{Supp } f_\beta \subset (\text{Supp } \beta)^{C^*}$.

Now define $f(x:X) = f(X^x)$ as usual $(x \in G, X \in \mathfrak{g})$ for any $f \in C^{\infty}(\mathfrak{g})$. Fix $D \in \mathfrak{D}(\mathfrak{g}_c)$. Then

$$f(xH; D) = f(x:H; D^{x^{-1}}) \quad (H \in \mathfrak{h})$$

 $D^{x^{-1}} = \sum_{1 \leq i \leq r} a_i(x) D_i \quad (x \in G)$

and it is clear that

where a_1, \ldots, a_r are analytic functions on G and D_1, \ldots, D_r are linearly independent elements in $\mathfrak{D}(\mathfrak{g}_c)$. Hence

$$f(xH;D) = \sum_{i} a_i(x) f(x:H;D_i).$$

On the other hand if $q = [\mathfrak{h}, \mathfrak{g}]$, we can choose (see [2(j), §2]) an integer $m \ge 0$ and elements $q_{ij} \in \mathfrak{S}_+(\mathfrak{q}_c)$, $\xi_{ij} \in \mathfrak{D}(\mathfrak{h}_c)$ $(1 \le j \le N)$ such that

$$f(x:H;D_i) = \pi(H)^{-m} \sum_{j} f(x;q_{ij}:H;\xi_{ij}) \quad (1 \le i \le r)$$

for $f \in C^{\infty}(\mathfrak{g})$, $x \in G$ and $H \in \mathfrak{h}'$. Put $\alpha(x) = \alpha(x^*)$ ($x \in G$). Then if $x \in C$ and $H \in \mathfrak{h}'$, we get

$$f_{\beta}(xH; D) = \pi(H)^{-m} \sum_{i,j} a_i(x) \, \alpha(x; q_{ij}) \, \beta_0(H; \xi_{ij})$$
$$\beta_0(H) = [W_G]^{-1} \sum_{s \in W_G} \beta(s^{-1}H).$$

Since C is compact, it is obvious that

$$\sup |Df_{\beta}| \leq B \sum_{i,j} \sup |\pi^{-m} \xi_{ij} \beta_0| \quad (\beta \in C_c^{\infty}(\mathfrak{h}')),$$

where B is a constant which depends only on D. Thus we have obtained the following result.

LEMMA 18. For any $D \in \mathfrak{D}(\mathfrak{g}_c)$, we can choose an integer $m \ge 0$ and a finite number of elements $\xi_i \in \mathfrak{D}(\mathfrak{h}_c)$ $(1 \le i \le N)$ such that

$$\sup |Df_{\beta}| \leq \sum_{1 \leq i \leq N} \sup |\pi^{-m}\xi_i\beta|$$

for all $\beta \in C_c^{\infty}(\mathfrak{h}')$.

Now we come to the proof of Lemma 17. Since T is tempered, there exist $D_i \in \mathfrak{D}(\mathfrak{g}_c)$ $(1 \le i \le r)$ such that

$$|T(f)| \leq \sum_{i} \sup |D_i f|$$

for all $f \in C_c^{\infty}(\Omega)$. Therefore by Lemma 18, we can choose an integer $m_0 \ge 0$ and elements $\xi_j \in \mathfrak{D}(\mathfrak{h}_c)$ $(1 \le j \le N)$ such that

$$|T(f_{\beta})| \leq \sum_{1 \leq i \leq r} \sup |D_i f_{\beta}| \leq \sum_{1 \leq j \leq N} \sup |\pi^{-m_0} \xi_j \beta|$$

for $\beta \in C_c^{\infty}(\Omega \cap \mathfrak{h}')$. On the other hand

$$T(f_{\beta}) = \int f_{\beta} F \, dx = c \int \varepsilon_R \, \psi_{f_{\beta}} g \, dH$$

where $c = c(\mathfrak{h})$ in the notation of § 2. Moreover

$$\psi_{f_{\beta}}(H) = \varepsilon_{R}(H)\pi(H)\int f_{\beta}(x^{*}H) dx^{*} = \varepsilon_{R}(H)\pi(H)\beta_{0}(H) \quad (H \in \mathfrak{h}').$$

264

where

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$T(f_{\beta}) = c \int \pi \beta_0 g \, dH = c \int \pi \beta g \, dH$$

if we take into account the fact that $g^s = \varepsilon(s)g$ $(s \in W_G)$. Put $\gamma = \pi^{m-1}\beta$ $(m \ge 1)$. Then

$$\left|\int \beta \pi^m g \, dH\right| = |c^{-1}T(f_\gamma)| \leq |c|^{-1} \sum_j \sup |\pi^{-m_\bullet} \xi_j(\pi^{m-1}\beta)|$$

for $\beta \in C_c^{\infty}(\Omega \cap \mathfrak{h}')$. If *m* is sufficiently large, it is clear that $\pi^{-m_0}\xi_j \circ \pi^{m-1} \in \mathfrak{D}(\mathfrak{h}_c)$. This shows that $\pi^m g$ is tempered on $\Omega \cap \mathfrak{h}'$.

Fix a Euclidean norm ||X|| $(X \in \mathfrak{g})$ on \mathfrak{g} and for any Cartan subalgebra \mathfrak{h} define $g^{\mathfrak{h}}$ as in [2 (1), Theorem 3].

LEMMA 19. Suppose for every Cartan subalgebra \mathfrak{h} of \mathfrak{g} we can choose numbers $a \ge 0$ and $m \ge 0$ such that

$$g\mathfrak{h}(H) | \leq a(1 + ||H||)^m$$

for $H \in \Omega \cap \mathfrak{h}'(R)$. Then T is tempered.

Hence

We use the notation of Lemma 5 and put $g_i = g^{\mathfrak{h}_i}$ $(1 \leq i \leq r)$. Then

$$T(f) = \sum_{i} c_{i} \int \varepsilon_{R,i} g_{i} \psi_{f,i} d_{i} H \quad (f \in C_{c}^{\infty}(\Omega)).$$

Therefore we can choose $c \ge 0$ and an integer $M \ge 0$ such that

$$|T(f)| \leq c \sum_{i} \sup_{\mathfrak{h}i'} (1 + ||H||)^{M} |\psi_{f,i}(H)|$$

for $f \in C_c^{\infty}(\Omega)$. Our assertion now follows immediately from [2 (d), Theorem 3].

§ 10. An auxiliary result

Let g be a reductive Lie algebra over C, \mathfrak{h} a Cartan subalgebra of g and W the Weyl group of $(\mathfrak{g}, \mathfrak{h})$.

LEMMA 20. Let λ be a linear function on \mathfrak{h} and α a root of $(\mathfrak{g}, \mathfrak{h})$. Suppose $s\lambda = \lambda - c\alpha$ for some $s \in W$ and $c \neq 0$ in C. Then (1) $s\lambda = s_{\alpha}\lambda$.

For the proof we may obviously assume that g is semisimple. Let \mathfrak{F} be the real vector space consisting of all linear functions μ on \mathfrak{h} such that (2) $\mu(H_{\beta}) \in \mathbb{R}$ for every

265

⁽¹⁾ As usual s_{α} denotes the Weyl reflexion corresponding to α .

⁽²⁾ H_{β} has the same meaning as in [2 (k), § 4].

^{18-652923.} Acta mathematica. 113. Imprimé le 11 mai 1965.

root β . Fix an order in \mathfrak{F} and first assume that $\lambda \in \mathfrak{F}$. Then $\sigma \lambda \in \mathfrak{F}$ for every $\sigma \in W$. Select $\sigma_0 \in W$ such that $\sigma_0 \lambda \ge \sigma \lambda$ for all $\sigma \in W$. Then if we put $\lambda' = \sigma_0 \lambda$, $s' = \sigma_0 s \sigma_0^{-1}$ and $\alpha' = \sigma_0 \alpha$, we obviously get $s' \lambda' = \lambda' - c \alpha'$. Moreover the relation $s \lambda = s_\alpha \lambda$ is equivalent to $s' \lambda' = s_\alpha' \lambda'$. Hence without loss of generality, we may assume that $\lambda \ge \sigma \lambda$ for all $\sigma \in W$. Since λ and $s \lambda$ are both in \mathfrak{F} , it is clear that $c \in \mathbf{R}$. Replacing α by $-\alpha$, if necessary, we may assume that $\alpha > 0$. Then c > 0 since $\lambda \ge s \lambda$. Now consider

$$s_{\alpha} s \lambda = s_{\alpha} \lambda + c \alpha = \lambda - c' \alpha$$

where $c' = 2 (\lambda(H_{\alpha})/\alpha(H_{\alpha})) - c$. We claim c' = 0. For otherwise c' > 0 since $s_{\alpha} s \lambda \leq \lambda$. Moreover

$$s_{\alpha} \lambda = \lambda - (c + c') \alpha = s\lambda - c' \alpha.$$

Therefore

$$s^{-1}s_{\alpha}\lambda = \lambda - c's^{-1}\alpha, \quad s^{-1}\lambda = \lambda + cs^{-1}\alpha.$$

Since c and c' are both positive, it follows that at least one of the two elements $s^{-1}s_{\alpha}\lambda$, $s^{-1}\lambda$ is higher than λ in our order. But this contradicts the condition that $\lambda \ge \sigma\lambda$ for all $\sigma \in W$. Hence c'=0. This shows that $s_{\alpha}s\lambda = \lambda$ and therefore $s\lambda = s_{\alpha}\lambda$.

Now consider the general case. Then $\lambda = \lambda_R + (-1)^{\frac{1}{2}} \lambda_I$ and $c = a + (-1)^{\frac{1}{2}} b$ where $\lambda_R, \lambda_I \in \mathfrak{F}$ and $a, b \in \mathbb{R}$. The relation $s\lambda = \lambda - c\alpha$ implies that

$$s\lambda_R = \lambda_R - a\alpha, \quad s\lambda_I = \lambda_I - b\alpha.$$

Hence if $ab \neq 0$, we get $s\lambda_R = s_{\alpha}\lambda_R$, $s\lambda_I = s_{\alpha}\lambda_I$ from the above proof. Therefore $s\lambda = s_{\alpha}\lambda$ in this case. Now suppose $a \neq 0$, b = 0. Then $s\lambda_R = s_{\alpha}\lambda_R$ and $s\lambda_I = \lambda_I$ again from the above proof. Let W_0 be the subgroup of all $\sigma \in W$ such that $\sigma\lambda_I = \lambda_I$. For $\mu_1, \mu_2 \in \mathfrak{F}$, let $\langle \mu_1, \mu_2 \rangle$ denote the usual scalar product defined by means of the Killing form of g so that

$$\langle \mu_1, \mu_2 \rangle = \sum_{\beta} \mu_1(H_{\beta}) \mu_2(H_{\beta})$$

where β runs over all roots of $(\mathfrak{g}, \mathfrak{h})$. Then $\langle \sigma \mu_1, \mu_2 \rangle = \langle \mu_1, \sigma^{-1} \mu_2 \rangle$ for $\sigma \in W$. Hence

$$\langle s\lambda_R, \lambda_I \rangle = \langle \lambda_R, s^{-1} \lambda_I \rangle = \langle \lambda_R, \lambda_I \rangle.$$

But $\lambda_R - s\lambda_R = a\alpha$ and $a \neq 0$. Therefore $\langle \alpha, \lambda_I \rangle = 0$ and this implies that $s_{\alpha} \lambda_I = \lambda_I$. Hence $s\lambda = s_{\alpha} \lambda$. The case a = 0, $b \neq 0$ can be reduced to the one above by replacing λ by $(-1)^{\frac{1}{2}} \lambda$.

We shall need the above result for the proof of Lemma 26.

 $\mathbf{266}$

§11. Proof of Lemma 21

We return to the notation of §2. So g is a reductive Lie algebra over **R** and $g_1 = [g, g]$. Let a be a Cartan subalgebra of g and a_R the set of all points of $a_1 = a \cap g_1$ where every root of (g, a) takes a real value. Similarly let a_I be the set of those points of a where all roots of (g, a) take pure imaginary values. Define θ , ξ , β and K as in $[2(m), \S 16]$ corresponding to a. Then it is clear that $a_R = a \cap \beta$, $a_I = a \cap \xi$ and therefore $a = a_R + a_I$, where the sum is direct.

Define a'(R) as usual (see [2 (k), § 4]) and fix a connected component a_R^+ of $a'(R) \cap a_R$. Let P_R be the set of all real roots of (g, a) which take only positive values on a_R^+ . We can introduce compatible orders (see [2 (d), p. 195]) in the spaces of real-valued linear functions on a_R and $a_R^+(-1)^{\frac{1}{2}}a_I$ in such a way that all roots in P_R are positive. Let P be the set of all positive roots of (g, a) under this order.

Let m be the centralizer of a_I in g. Then m is reductive in g (see [2 (m), Cor. 3 of Lemma 26]) and it is obvious that P_R is the set of all positive roots of (m, a).

LEMMA 21. Suppose g has a Cartan subalgebra \mathfrak{h} such that every root of $(\mathfrak{g}, \mathfrak{h})$ is imaginary. Then $\mathfrak{a}_{\mathbb{R}}$ is a Cartan subalgebra of $\mathfrak{m}_1 = [\mathfrak{m}, \mathfrak{m}]$ and \mathfrak{a}_I is the center of \mathfrak{m} .

We can choose $x \in G$ such that $\mathfrak{h}^x \subset \mathfrak{k}$ (see [2 (d), § 8]). Since \mathfrak{h}^x is maximal abelian in \mathfrak{k} and $\mathfrak{a}_I \subset \mathfrak{k}$, we can select $k \in K$ such that $\mathfrak{h}^{kx} \supset \mathfrak{a}_I$. Hence without loss of generality we may suppose that $\mathfrak{a}_I \subset \mathfrak{h} \subset \mathfrak{k}$.

Let Q be the set of all positive roots of (g, \mathfrak{h}) and Q_0 the subset consisting of those $\beta \in Q$ which vanish identically on \mathfrak{a}_l . Then it is clear that

$$\mathfrak{m}_{c} = \mathfrak{h}_{c} + \sum_{\beta \in \mathcal{Q}_{0}} (\mathbb{C} X_{\beta} + \mathbb{C} X_{-\beta})$$

in the usual notation (see [(2 (k), § 4]). Since $\mathfrak{h} \subset \mathfrak{k}$, both \mathfrak{k} and \mathfrak{p} are stable under ad \mathfrak{h} and therefore, for any root γ , X_{γ} lies either in \mathfrak{k}_c or in \mathfrak{p}_c . Hence it is obvious that

$$[\mathfrak{m}_{c}, \mathfrak{m}_{c}] \supset [\mathfrak{h}_{c}, \mathfrak{m}_{c}] = \sum_{\beta \in Q_{0}} (\mathbb{C}X_{\beta} + \mathbb{C}X_{-\beta}) \supset \mathfrak{m}_{c} \cap \mathfrak{p}_{c}.$$

 $\mathfrak{m}_1 \supset \mathfrak{m} \cap \mathfrak{p} \supset \mathfrak{a}_R.$

This shows that

On the other hand let c_m denote the center of m and put $l = \operatorname{rank} g$. Since $a \subset m$, it is clear that

$$l = \operatorname{rank} \mathfrak{m} = \dim \mathfrak{c}_{\mathfrak{m}} + \operatorname{rank} \mathfrak{m}_{1}.$$

But $a_I \subset c_m$, $a_R \subset m_1$ and dim a_I + dim a_R = dim a = l. Therefore we conclude that $c_m = a_I$ and a_R is a Cartan subalgebra of m_1 .

Select a fundamental system $(\alpha_1, ..., \alpha_m)$ of positive roots of $(\mathfrak{m}, \mathfrak{a})$ and let W_R be the subgroup (1) of $W(\mathfrak{g}/\mathfrak{a})$ generated by (2) s_{α} for $\alpha \in P_R$. Then $s_{\alpha_1}, ..., s_{\alpha_m}$ generate W_R and $m = \dim \mathfrak{a}_R$ from Lemma 21.

LEMMA 22. Let μ be a linear function on \mathfrak{a}_c which takes only real values on $\mathfrak{a}_R + (-1)^{\frac{1}{2}}\mathfrak{a}_I$ and suppose $\mu \ge s_{\alpha_i}\mu$ $(1 \le i \le m)$. Then $\mu \ge s\mu$ for $s \in W_R$ and $\mu(H) \ge 0$ for $H \in \mathfrak{a}_R^+$.

Define linear functions μ_j $(1 \le j \le m)$ on a s follows.

$$s_{\alpha_i} \mu_j = \mu_j - \delta_{ij} \alpha_j \quad (1 \leq i \leq m)$$

and $\mu_i = 0$ on \mathfrak{a}_i . Then $\mu_i \ge s\mu_i$ ($s \in W_R$) and $\mu_i(H) \ge 0$ for $H \in \mathfrak{a}_R^+$ (see [2 (g), p. 280]). Let

$$s_{\alpha_i} \mu = \mu - c_i \alpha_i \quad (1 \leq i \leq m)$$

where $c_i \in \mathbb{R}$. Then $c_i \ge 0$. Put $\mu_0 = \sum_j c_j \mu_j$. Then $\mu = \mu_0$ on \mathfrak{a}_R . Therefore it is clear that

$$\mu - s\mu = \mu_0 - s\mu_0 \ge 0 \quad (s \in W_R)$$

and $\mu(H) = \mu_0(H) \ge 0$ for $H \in \mathfrak{a}_R^+$.

§ 12. Recapitulation of some elementary facts

Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and let $j = j_{\mathfrak{h}}$ denote the Chevalley isomorphism $p \to p_{\mathfrak{h}}$ of $I(\mathfrak{g}_c)$ onto $I(\mathfrak{h}_c)$ [2(j), §9]. Let λ be a linear function on \mathfrak{h}_c . Since every element q of $S(\mathfrak{h}_c)$ is a polynomial function on the dual space of \mathfrak{h}_c , we can consider its value $q(\lambda)$ at λ . Let $\chi_{\lambda} = \chi_{\lambda}^{\mathfrak{h}}$ denote the homomorphism $p \to p_{\mathfrak{h}}(\lambda)$ ($p \in I(\mathfrak{g}_c)$) of $I(\mathfrak{g}_c)$ into \mathbb{C} .

Let $W = W(\mathfrak{g}/\mathfrak{h})$. Then W operates on $\mathfrak{D}(\mathfrak{h}_c)$. We say that λ is regular if $s\lambda = \lambda^s \pm \lambda$ for $s \pm 1$ in W. It is well known that λ is singular or regular according as $\varpi(\lambda) = 0$ or not. Moreover if λ' is another linear function on \mathfrak{h}_c , then $\chi_{\lambda} = \chi_{\lambda'}$ if and only if $\lambda' = s\lambda$ for some $s \in W$.

Conversely let $\chi \neq 0$ be a homomorphism of $I(\mathfrak{g}_c)$ into C. Then $\xi: q \to \chi(j^{-1}(q))$ $(q \in I(\mathfrak{h}_c))$ is a homomorphism of $I(\mathfrak{h}_c)$ into C. Since $S(\mathfrak{h}_c)$ is a finite module over $I(\mathfrak{h}_c)$ (see [2 (c), Lemma 11]), ξ can be extended to a homomorphism of $S(\mathfrak{h}_c)$. Hence there exists a linear function λ on \mathfrak{h}_c such that $\xi(q) = q(\lambda)$ for all $q \in I(\mathfrak{h}_c)$. This shows

268

⁽¹⁾ W(g/a) denotes the Weyl group of (g, a).

^{(&}lt;sup>2</sup>) See footnote 1, p. 265.

that $\chi = \chi_{\lambda}$. Moreover, as we have seen above, λ is unique up to an operation of W. We say that χ is regular if λ is regular. Put $p_0 = j^{-1}(\varpi^2)$. Then

$$\chi(p_0) = \varpi(\lambda)^2.$$

Hence χ is regular if and only if $\chi(p_0) \neq 0$. We note that p_0 is actually independent of \mathfrak{h} and therefore the concept of the regularity of χ does not depend on the choice of \mathfrak{h} .

Let \mathfrak{a} , \mathfrak{b} be two Cartan subalgebras of \mathfrak{g} and y an element of the connected complex adjoint group G_c of \mathfrak{g}_c such that $\mathfrak{b}_c = (\mathfrak{a}_c)^y$. Then y defines an isomorphism $D \to D^y$ of $\mathfrak{D}(\mathfrak{a}_c)$ onto $\mathfrak{D}(\mathfrak{b}_c)$.

LEMMA 23. Let λ be a linear function on a_c . Then

$$\chi_{\lambda}^{a} = \chi_{\lambda y}^{b}.$$

This follows from the obvious fact that $j_{\mathfrak{b}}(p) = (j_{\mathfrak{a}}(p))^{y}$ for $p \in I(\mathfrak{g}_{c})$.

LEMMA 24. Let U be a non-empty open connected subset of \mathfrak{h} and λ a regular linear function on \mathfrak{h}_c . Suppose g is an analytic function on U such that $\partial(q)g = q(\lambda)g$ for all $q \in I(\mathfrak{h}_c)$. Then there exist unique complex numbers $c_s(s \in W)$ such that

$$g(H) = \sum_{s \in W} \varepsilon(s) c_s e^{\lambda(s^{-1}H)} \quad (H \in U).$$

For a proof see [2 (c), p. 102].

§ 13. Proof of Lemma 26

Let \mathfrak{z} be a subalgebra of \mathfrak{g} such that 1) \mathfrak{z} is reductive in \mathfrak{g} and 2) rank $\mathfrak{z} = \operatorname{rank} \mathfrak{g}$. Let $\Omega_{\mathfrak{z}}$ be an open and completely invariant subset of \mathfrak{z} and \mathfrak{z} a regular homomorphism of $I(\mathfrak{g}_c)$ into \mathfrak{C} . Let Ξ denote the analytic subgroup of G corresponding to \mathfrak{z} and define the isomorphism $p \to p_{\mathfrak{z}}$ of $I(\mathfrak{g}_c)$ into $I(\mathfrak{z}_c)$ as in [2 (j), § 9]. Consider a distribution $T_{\mathfrak{z}}$ on $\Omega_{\mathfrak{z}}$ such that

- 1) $T_{\mathfrak{z}}$ is invariant under Ξ ,
- 2) $\partial(p_3) T_3 = \chi(p) T_3$ for all $p \in I(\mathfrak{g}_c)$.

Fix a Euclidean measure dZ on \mathfrak{z} and let $\Omega_{\mathfrak{z}'}$ denote the set of those points of $\Omega_{\mathfrak{z}}$ which are regular in \mathfrak{z} . Then by [2 (j), Lemma 19] and [2 (l), Theorem 1], $T_{\mathfrak{z}}$ coincides with an analytic function on $\Omega_{\mathfrak{z}'}$. We denote by $T_{\mathfrak{z}}(Z)$ the value of this function at any point $Z \in \Omega_{\mathfrak{z}'}$.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{z} , P the set of all positive roots of $(\mathfrak{g}, \mathfrak{h})$ and $P_{\mathfrak{z}}$ the subset consisting of all positive roots of $(\mathfrak{z}, \mathfrak{h})$. Put

$$\pi_{\mathfrak{z}} = \prod_{\alpha \in P_{\mathfrak{z}}} \alpha, \quad g_{\mathfrak{z}}(H) = \pi_{\mathfrak{z}}(H) T_{\mathfrak{z}}(H) \quad (H \in \Omega_{\mathfrak{z}}' \cap \mathfrak{h}).$$

Let $\mathfrak{h}'(\mathfrak{z}:R)$ denote the set of those points of \mathfrak{h} where no real root in $P_{\mathfrak{z}}$ takes the value zero. Then by [2 (1), Theorem 2], $g_{\mathfrak{z}}$ extends to an analytic function on $\Omega_{\mathfrak{z}} \cap \mathfrak{h}'(\mathfrak{z}:R)$. Put $W = W(\mathfrak{g}/\mathfrak{h})$ and select a linear function λ on \mathfrak{h}_c such that $\chi = \chi_{\mathfrak{z}}$ in the notation of § 12.

LEMMA 25. There exist locally constant functions c_s ($s \in W$) on $\Omega_b \cap \mathfrak{h}'(\mathfrak{z}; R)$ such that

$$g_{\mathfrak{z}} = \sum_{s \in W} \varepsilon(s) \, c_s \, e^{s\lambda}$$

on $\Omega_{\mathfrak{z}} \cap \mathfrak{h}'(\mathfrak{z}: \mathbb{R})$.

Since $(\partial(p_3) - \chi_\lambda(p)) T = 0$ $(p \in I(\mathfrak{g}_c))$, it follows (see the proof of [2 (1), Lemma 1]) that

$$(\partial(q) - q(\lambda))g_{\mathfrak{z}} = 0 \quad (q \in I(\mathfrak{h}_c))$$

Hence our assertion is an immediate consequence of Lemma 24.

Put $\zeta(Z) = \det(\operatorname{ad} Z)_{\mathfrak{g}/\mathfrak{z}}$ $(Z \in \mathfrak{g})$ and fix an element $H_0 \in \mathfrak{z}$ such that $\zeta(H_0) \neq 0$. Then the centralizers of H_0 in \mathfrak{z} and \mathfrak{g} are the same. Hence H_0 is semiregular in \mathfrak{z} if and only if it is so in \mathfrak{g} . Now assume $H_0 \in \Omega_{\mathfrak{z}}, \zeta(H_0) \neq 0$ and H_0 is semiregular of noncompact type. We shall now use the notation of $[2 (k), \mathfrak{z}, 7]$ without further comment. Then it is clear that \mathfrak{a} and \mathfrak{b} are Cartan subalgebras of \mathfrak{z} . Put $W = W(\mathfrak{g}/\mathfrak{a})$ and choose a linear function λ on \mathfrak{a}_c such that $\chi = \chi_{\lambda}\mathfrak{a}$. Define G_c as in \mathfrak{z} and let Ξ_c denote its complex-analytic subgroup corresponding to $\mathfrak{ad}\mathfrak{z}_c$. Then it is clear that the element ν of $[2 (k), \mathfrak{z}, 7]$ lies in Ξ_c . We assume that the orders of roots are so chosen that (1) $(\varpi^n)^{\nu} = \varpi^{\mathfrak{b}}$ and $(\pi_{\mathfrak{z}}\mathfrak{a})^{\nu} = \pi_{\mathfrak{z}}\mathfrak{b}$. Then it follows from Lemma 24 that

$$\partial(\boldsymbol{\varpi}^{\mathfrak{a}})g_{\mathfrak{z}}^{\mathfrak{a}} = \boldsymbol{\varpi}^{\mathfrak{a}}(\lambda)\sum_{s \in W} c_{s}^{\mathfrak{a}}e^{s\lambda}$$

on $\Omega_{\mathfrak{z}} \cap \mathfrak{a}'(\mathfrak{z}: R)$ and $\partial(\boldsymbol{\varpi}^{\mathfrak{b}}) g_{\mathfrak{z}}^{\mathfrak{b}} = \boldsymbol{\varpi}^{\mathfrak{a}}(\lambda)$

$$\partial(\boldsymbol{\varpi}^{\mathfrak{b}}) g_{\mathfrak{z}}^{\mathfrak{b}} = \boldsymbol{\varpi}^{\mathfrak{a}}(\lambda) \sum_{s \in W} c_s^{\mathfrak{b}} \exp\left((s\lambda)^{\nu}\right)$$

on $\Omega_{\mathfrak{z}} \cap \mathfrak{b}'(\mathfrak{z}: R)$. Here $c_{\mathfrak{z}}^{\mathfrak{h}}$ are locally constant functions on $\Omega_{\mathfrak{z}} \cap \mathfrak{h}'(\mathfrak{z}: R)$ ($\mathfrak{h} = \mathfrak{a}$ or \mathfrak{b}). Put

$$c_s^{\pm \alpha}(H_0) = \lim_{t \to +0} c_s^{\alpha}(H_0 \pm tH')$$

and note that $H_0 \in \Omega_{\mathfrak{z}} \cap \mathfrak{b}'(\mathfrak{z}: R)$.

LEMMA 26. For any (2) $s \in W$,

270

⁽¹⁾ Here the notation is obvious (cf. [2 (1), Theorem 3]).

⁽²⁾ See footnote 1, p. 265.

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$c_s^{\alpha}(H_0) + c_{s_{\alpha}s}^{\alpha}(H_0) = c_s^{-\alpha}(H_0) + c_{s_{\alpha}s}^{-\alpha}(H_0) = c_s^{b}(H_0) + c_{s_{\alpha}s}^{b}(H_0).$$

Put $\sigma = \mathfrak{a} \cap \mathfrak{b}$, $\pi_{\alpha} = \alpha^{-1} \pi^{\mathfrak{a}}$, $\pi_{\beta} = \beta^{-1} \pi^{\mathfrak{b}}$ and let U be an open and convex neighborhood of H_0 in $\Omega_{\mathfrak{z}}$. We assume that U is so small that π_{α} and π_{β} never take the value zero on $U \cap \mathfrak{a}$ and $U \cap \mathfrak{b}$ respectively. Since $c_s^{\mathfrak{a}}$ ($s \in W$) is locally constant on $\Omega_{\mathfrak{z}} \cap \mathfrak{a}'(\mathfrak{z}: R)$, it is clear that

$$c_s^{\mathfrak{a}}(H) = c_s^{\pm \alpha}(H_0) \quad (H \in U \cap \mathfrak{a}')$$

according as $\alpha(H)$ is positive or negative. Similarly $c_s^{\mathfrak{b}}(H) = c_s^{\mathfrak{b}}(H_0)$ for $H \in U \cap \mathfrak{b}$. Moreover $\varpi^{\mathfrak{a}}(\lambda) \neq 0$ since λ is regular. Therefore if we apply [2(1), Lemma 18] with $D = \partial(\varpi^{\mathfrak{a}})$ and recall that ν leaves σ pointwise fixed, we get

$$\sum_{s \in W} c_s^{\alpha}(H_0) \exp(\lambda(s^{-1}H))$$

= $\sum_{s \in W} c_s^{-\alpha}(H_0) \exp(\lambda(s^{-1}H)) = \sum_{s \in W} c_s^{\beta}(H_0) \exp(\lambda(s^{-1}H)) \quad (H \in U \cap \sigma).$

Let μ_s denote the restriction of $s\lambda$ on σ .

LEMMA 27. Suppose s_1, s_2 are two distinct elements in W. Then $\mu_{s_1} = \mu_{s_2}$ if and only if $s_2 = s_{\alpha} s_1$.

Since s_{α} leaves σ pointwise fixed, it is clear that $\mu_{s_1} = \mu_{s_1}$ if $s_2 = s_{\alpha} s_1$. Conversely suppose $\mu_{s_1} = \mu_{s_2}$. Then it is obvious that $s_2 \lambda - s_1 \lambda = c\alpha$ for some $c \in \mathbb{C}$. Since λ is regular, $c \neq 0$. Therefore it follows from Lemma 20 that $s_1^{-1}s_2 \lambda = s_{\gamma} \lambda$ where $\gamma = s_1^{-1} \alpha$. But then $s_{\gamma} = s_1^{-1}s_{\alpha}s_1$ and therefore $s_2 \lambda = s_{\alpha}s_1 \lambda$. Since λ is regular, this implies that $s_2 = s_{\alpha}s_1$.

Now if we take into account the elementary fact that the exponentials of distinct linear functions on σ are linearly independent, Lemma 26 follows immediately from the relations proved above.

§ 14. Tempered and invariant eigendistributions

Let c be the center and g_1 the derived algebra of g. Fix a number c > 0 and put $g_0 = c_0 + g_1(c)$. Here c_0 is a nonempty, open, connected subset of c and $g_1(c)$ is defined as in [2 (m), §3]. Then g_0 is a completely invariant open set in g.

Now take $\Omega_{\mathfrak{z}} = \mathfrak{z} \cap \mathfrak{g}_0$ and assume that there exists a Cartan subalgebra \mathfrak{h} of \mathfrak{z} and a linear function λ on \mathfrak{h}_c such that 1) every root of $(\mathfrak{g}, \mathfrak{h})$ is imaginary, 2) λ takes only pure imaginary values on \mathfrak{h} and 3) $\chi = \chi_{\lambda} \mathfrak{h}$ in the notation of §12. Since

 (g, \mathfrak{h}) has no real roots and $g_0 \cap \mathfrak{h}$ is connected, we conclude from Lemma 25 that

$$g_{\mathfrak{z}}^{\mathfrak{h}}(H) = \sum_{s \in W(\mathfrak{g}(\mathfrak{h})} \varepsilon(s) c_s \exp\left(\lambda \left(s^{-1}H\right)\right) \quad (H \in \mathfrak{g}_0 \cap \mathfrak{h})$$

where $c_s \in \mathbb{C}$. Let *C* denote the additive subgroup of **C** generated by c_s $(s \in W(\mathfrak{g}/\mathfrak{h}))$. Fix a Cartan subalgebra \mathfrak{a} of \mathfrak{z} and a connected component \mathfrak{a}^+ of $\mathfrak{g}_0 \cap \mathfrak{a}'(\mathfrak{z}; \mathbb{R})$. Select a linear function $\lambda_\mathfrak{a}$ on \mathfrak{a}_c such that $\chi_{\lambda_\mathfrak{a}}\mathfrak{a} = \chi$. Then by Lemma 25 there exist unique complex numbers $c_s(\mathfrak{a}^+)$ such that

$$g_{\mathfrak{z}}^{\mathfrak{a}} = \sum_{s \in W(\mathfrak{g}/\mathfrak{a})} \varepsilon(s) c_s(\mathfrak{a}^+) \exp(s\lambda_\mathfrak{a})$$

on \mathfrak{a}^+ .

LEMMA 28. Suppose $T_{\mathfrak{z}}$ is tempered on $\mathfrak{z}_0 = \mathfrak{z} \cap \mathfrak{g}_0$. Then for a given $s \in W(\mathfrak{g}/\mathfrak{a})$, $c_s(\mathfrak{a}^+) = 0$ unless (1)

 $\Re \lambda_{\mathfrak{a}}(s^{-1}H) \leq 0$

for all $H \in \mathfrak{a}^+$. Moreover $c_s(\mathfrak{a}^+) \in C$.

COROLLARY. Under the above conditions $g_3^{\mathfrak{h}} = 0$ implies $T_3 = 0$.

This is obvious from the lemma since $C = \{0\}$ if $\mathfrak{g}_{\mathfrak{z}}^{\mathfrak{h}} = 0$.

Fix a real quadratic form Q on \mathfrak{g} such that 1) $Q(X) = \operatorname{tr} (\operatorname{ad} X)^2$ for $X \in \mathfrak{g}_1, 2) Q$ is negative-definite on \mathfrak{c} and 3) \mathfrak{g}_1 and \mathfrak{c} are orthogonal under Q. Let U be any subspace of \mathfrak{g} such that the restriction of Q on U is nondegenerate. Then we denote by $i_U(Q)$ the index of Q on U (see the proof of Lemma 12 of [2(k)]).

Since $c \subset a$, it is obvious that the restriction of Q on a is nondegenerate. We shall prove Lemma 28 by induction on $i_a(Q)$. Let $l = \operatorname{rank} g$. It is obvious that $i_a(Q) \ge -l$. Now if $i_a(Q) = -l$, it follows that all roots of (g, a) (and therefore also of $(\mathfrak{z}, \mathfrak{a})$) are imaginary. Hence (see [2 (d), p. 237]) a is conjugate to \mathfrak{h} under Ξ and so our assertion is obvious in this case. Therefore we may assume that $i_a(Q) \ge -l$ so that $\mathfrak{a}_R \neq \{0\}$. Since \mathfrak{c}_q is connected, it is clear that

$$\mathfrak{a}^+ = \mathfrak{a}_I \cap \mathfrak{g}_0 + \mathfrak{a}_R^+(\mathfrak{z})$$

where $\mathfrak{a}_R^+(\mathfrak{z})$ is a connected component of $\mathfrak{a}'(\mathfrak{z}:R) \cap \mathfrak{a}_R$.

LEMMA 29. Let $a_R(\mathfrak{z})$ be the set of points in $\mathfrak{a} \cap [\mathfrak{z}, \mathfrak{z}]$ where every root of $(\mathfrak{z}, \mathfrak{a})$ takes real values. Similarly let $\mathfrak{a}_I(\mathfrak{z})$ be the set of those points of \mathfrak{a} where all roots of $(\mathfrak{z}, \mathfrak{a})$ take pure imaginary values. Then $\mathfrak{a}_R(\mathfrak{z}) = \mathfrak{a}_R$ and $\mathfrak{a}_I(\mathfrak{z}) = \mathfrak{a}_I$.

 $\mathbf{272}$

^{(&}lt;sup>1</sup>) See footnote 1, p. 260.

It is obvious that $a_I(\mathfrak{z}) \supset a_I$. Moreover we may assume without loss of generality that $a_I(\mathfrak{z}) \subset \mathfrak{h}$ (see the proof of Lemma 21). Fix $H \in \mathfrak{a}_I(\mathfrak{z})$. Since every root of $(\mathfrak{g}, \mathfrak{h})$ is imaginary, it is clear that every eigenvalue of $\operatorname{ad} H$ is pure imaginary. Hence $H \in \mathfrak{a}_I$. This proves that $\mathfrak{a}_I(\mathfrak{z}) = \mathfrak{a}_I$. Let m be the centralizer of \mathfrak{a}_I in \mathfrak{g} and put $\mathfrak{m}_{\mathfrak{z}} = \mathfrak{m} \cap \mathfrak{z}$. Then it follows from Lemma 21 that

$$\mathfrak{a}_R(\mathfrak{z}) = \mathfrak{a} \cap [\mathfrak{m}_\mathfrak{z}, \mathfrak{m}_\mathfrak{z}] \subset \mathfrak{a} \cap [\mathfrak{m}, \mathfrak{m}] = \mathfrak{a}_R.$$

Since $a = a_R + a_I = a_R(z) + a_I(z)$ and both sums are direct (see § 11), we conclude that $a_R(z) = a_R$.

Let $P_R(\mathfrak{z})$ be the set of all real roots of $(\mathfrak{z}, \mathfrak{a})$ which take only positive values on $\mathfrak{a}_R^+(\mathfrak{z})$. Then $P_R(\mathfrak{z})$ can be regarded as the set of all positive roots of $(\mathfrak{m}_\mathfrak{z}, \mathfrak{a})$ and if $m = \dim \mathfrak{a}_R$, we can choose a fundamental system $(\mathfrak{a}_1, \ldots, \mathfrak{a}_m)$ of roots in $P_R(\mathfrak{z})$ (see \mathfrak{z} 11). Let $W_R(\mathfrak{z}/\mathfrak{a})$ be the subgroup of $W(\mathfrak{g}/\mathfrak{a})$ generated by \mathfrak{s}_α ($\alpha \in P_R(\mathfrak{z})$). Then $W_R(\mathfrak{z}/\mathfrak{a})$ is also generated by $\mathfrak{s}_{\mathfrak{a}_i}$ ($1 \leq i \leq m$) and $\mathfrak{a}_R^+(\mathfrak{z})$ is exactly the set of those $H \in \mathfrak{a}_R$ where $\mathfrak{a}_i(H) > 0$ ($1 \leq i \leq m$).

Now fix *i* and choose $H_R \in \mathfrak{a}_R$ such that $\alpha_i(H_R) = 0$, $\alpha_j(H_R) > 0$ $(j \neq i, 1 \leq j \leq m)$ and $\alpha(H_R) \neq 0$ for any real root $\alpha \neq \pm \alpha_i$ of $(\mathfrak{g}, \mathfrak{a})$. Then $H_R \in \operatorname{Cl}(\mathfrak{a}_R^+(\mathfrak{z}))$ and we can obviously choose a connected component \mathfrak{a}_R^+ of $\mathfrak{a}'(R) \cap \mathfrak{a}_R$ such that 1) $\mathfrak{a}_R^+ \subset \mathfrak{a}_R^+(\mathfrak{z})$ and 2) $H_R \in \operatorname{Cl}(\mathfrak{a}_R^+)$. Define P and P_R as in § 11 corresponding to \mathfrak{a}_R^+ and select $H_I \in \mathfrak{a}_I \cap \mathfrak{g}_0$ in such a way that $\alpha(H_I) \neq 0$ for $\alpha \in P$ unless $\alpha \in P_R$. This is obviously possible. Then it is clear that $H_0 = H_I + H_R \in \operatorname{Cl}(\mathfrak{a}^+)$ and the only root in P which vanishes at H_0 is α_i . Therefore H_0 is semiregular in \mathfrak{z} and $\zeta(H_0) \neq 0$. Define \mathfrak{v} and \mathfrak{b} as in § 13. Then \mathfrak{b} is a Cartan subalgebra of \mathfrak{z} and, as we have seen during the proof of [2 (k), Lemma 12], $i_{\mathfrak{b}}(Q) = i_{\mathfrak{a}}(Q) - 2$. Therefore the induction hypothesis is applicable to \mathfrak{b} and so it follows from Lemma 26 that

$$c_s(\mathfrak{a}^+) + c_{s_{\alpha},s}(\mathfrak{a}^+) \in C \quad (s \in W(\mathfrak{g}/\mathfrak{a})).$$

Now fix $s \in W(\mathfrak{g}/\mathfrak{a})$. Then it follows from Lemma 23 that we can choose $y \in G_c$ such that $\mathfrak{a}_c = (\mathfrak{h}_c)^y$ and $s\lambda_{\mathfrak{a}} = \lambda^y$. Let $(\beta_1, \ldots, \beta_r)$ be a maximal set of linearly independent roots of $(\mathfrak{g}, \mathfrak{h})$. Since λ takes only pure imaginary values on \mathfrak{h} , we can choose $a_i \in \mathbf{R}$ such that

on
$$\mathfrak{h}_1 = \mathfrak{h} \cap \mathfrak{g}_1$$
. Hence
 $\lambda - \sum_{1 \leq j \leq r} a_j \beta_j = 0$
 $s \lambda_a = \lambda^y = \sum a_j \beta_j^y$

on $\mathfrak{a}_1 = \mathfrak{a} \cap \mathfrak{g}_1$. Since β_j^{y} is a root of $(\mathfrak{g}, \mathfrak{a})$, it follows that $s\lambda_{\mathfrak{a}}$ takes only real values

on \mathfrak{a}_R . Moreover $\lambda = \lambda^y$ on \mathfrak{c} and so $\lambda_\mathfrak{a}(s^{-1}H)$ is pure imaginary for $H \in \mathfrak{a}_I$. Fix a nonempty open subset U of \mathfrak{a}_I such that 1) $U \subset \mathfrak{a}_I \cap \mathfrak{g}_0$ and 2) all the roots of $(\mathfrak{g}, \mathfrak{a})$ which take the value zero on U, are real. Also fix a connected component \mathfrak{a}_R^+ of $\mathfrak{a}_R^+(\mathfrak{z}) \cap \mathfrak{a}'(R)$. Then it is clear that

$$U + \mathfrak{a}_R^+ \subset \mathfrak{a}' \cap \mathfrak{z}_0.$$

Since $T_{\mathfrak{z}}$ is tempered on \mathfrak{z}_0 , it follows from Lemma 17 that $(\pi_{\mathfrak{z}}^{\mathfrak{a}})^q g_{\mathfrak{z}}^{\mathfrak{a}}$ is tempered on $\mathfrak{a}' \cap \mathfrak{z}_0$ for some $q \ge 0$. Fix a function $\gamma \in C_c^{\infty}(U)$ and put

$$g_{\gamma}(H) = \int_{U} \gamma(H_{I}) \left(\pi_{\delta}^{\mathfrak{a}}(H+H_{I})\right)^{\mathfrak{a}} g_{\delta}^{\mathfrak{a}}(H+H_{I}) dH_{I} \quad (H \in \mathfrak{a}_{R}^{+})$$

where dH_I is a Euclidean measure on \mathfrak{a}_I . Then it is obvious that g_{γ} is tempered on \mathfrak{a}_R^+ . Let μ_s and ν_s respectively denote the restrictions of $s\lambda_{\mathfrak{a}}$ ($s \in W(\mathfrak{g}/\mathfrak{a})$) on \mathfrak{a}_R and \mathfrak{a}_I . Then it is clear that

$$g_{\gamma}(H) = \sum_{s \in W(\mathfrak{g}/\mathfrak{a})} \varepsilon(s) c_s(\mathfrak{a}^+) e^{\mu_s(H)} \int \gamma(H_I) (\pi_{\mathfrak{z}}^{\mathfrak{a}}(H + H_I))^q e^{\nu_s(H_I)} dH_I$$

for $H \in \mathfrak{a}_R^+$. Fix $s_0 \in W(\mathfrak{g}/\mathfrak{a})$ and suppose $\mu_{s_0}(H) > 0$ for some $H \in \mathfrak{a}_R^+$. Let W_0 be the set of all $s \in W(\mathfrak{g}/\mathfrak{a})$ such that $\mu_s = \mu_{s_0}$. Then it follows from Lemma 15 that

$$\sum_{s \in W_{\mathfrak{s}}} \varepsilon(s) c_s(\mathfrak{a}^+) \int \gamma(H_I) (\pi_{\mathfrak{s}}^{\mathfrak{a}}(H+H_I))^q e^{\gamma_{\mathfrak{s}}(H_I)} dH_I = 0.$$

This being true for every $\gamma \in C_c^{\infty}(U)$, we conclude that

$$\sum_{s \in W_{\mathfrak{g}}} \varepsilon(s) c_s(\mathfrak{a}^+) e^{\mathfrak{v}_s} = 0.$$

But since $\mu_s = \mu_{s_0}$ ($s \in W_0$), it follows that

$$\sum_{s \in W_{\mathfrak{g}}} \varepsilon(s) c_s(\mathfrak{a}^+) e^{s\lambda_{\mathfrak{g}}} = 0.$$

However $\lambda_{\mathfrak{a}}$ being regular, this implies that $c_s(\mathfrak{a}^+) = 0$ ($s \in W_0$). Therefore in particular $c_{s_0}(\mathfrak{a}^+) = 0$. Since \mathfrak{a}_R^+ was an arbitrary component of $\mathfrak{a}_R^+(\mathfrak{z}) \cap \mathfrak{a}'(R)$, the first assertion of Lemma 28 is now obvious.

It remains to show that $c_s(\mathfrak{a}^+) \in C$ for all $s \in W(\mathfrak{g}/\mathfrak{a})$. Suppose this is false. Let W_1 be the set of all $s \in W(\mathfrak{g}/\mathfrak{a})$ such that $c_s(\mathfrak{a}^+) \notin C$. We have seen above that

$$c_s(\mathfrak{a}^+) + c_{s_{\alpha},s}(\mathfrak{a}^+) \in C \quad (s \in W(\mathfrak{g}/\mathfrak{a}), \ 1 \leq i \leq m).$$

Therefore $s_{\alpha_i} s \in W_1$ whenever $s \in W_1$. This shows that W_1 is a union of cosets of the form $W_R(\mathfrak{z}/\mathfrak{a}) s$.

 $\mathbf{274}$

Introduce compatible orders on the spaces of real-valued linear functions on a_R and $a_R + (-1)^{\frac{1}{2}} a_I$ corresponding to some connected component a_R^+ of $a_R^+(\mathfrak{z}) \cap \mathfrak{a}'(R)$ (see § 11). We have seen that $s\lambda_a$ ($s \in W(\mathfrak{g}/\mathfrak{a})$) takes only real values on $a_R + (-1)^{\frac{1}{2}} a_I$. Choose $\sigma \in W_1$ such that $\mu = \sigma\lambda_a \ge s\lambda_a$ for all $s \in W_1$. Then $\mu \ge s\mu$ for all $s \in W_R(\mathfrak{z}/\mathfrak{a})$ and therefore we conclude from Lemma 22 (applied to $(\mathfrak{z},\mathfrak{a})$) that $\mu(H) \ge 0$ for $H \in a_R^+(\mathfrak{z})$. However $c_{\sigma}(\mathfrak{a}^+) = 0$ since $\sigma \in W_I$. Therefore it follows from the above proof that $\mu(H) \le 0$ for $H \in \mathfrak{a}_R^+(\mathfrak{z})$. This shows that $\mu = 0$ on \mathfrak{a}_R and therefore $s_{\mathfrak{a}_i}\mu = \mu$ ($1 \le i \le m$). But since λ_a is regular and $m = \dim \mathfrak{a}_R \ge 1$, this is impossible. The proof of Lemma 28 is now complete.

§15. Proof of Lemma 30

We keep to the notation of §14. Let $\mathfrak{z}_1, \mathfrak{z}_2$ be two subalgebras of g and h a Cartan subalgebra of g such that:

- 1) \mathfrak{z}_i is reductive in \mathfrak{g} (i=1, 2) and $\mathfrak{z}_1 \supset \mathfrak{z}_2 \supset \mathfrak{h}$.
- 2) Every root of $(\mathfrak{g}, \mathfrak{h})$ is imaginary.
- 3) If a is any Cartan subalgebra of z_2 , then every real root of (z_1, a) is also a root of (z_2, a) .

Define χ as in § 14.

Let T_i be a tempered distribution on $z_i \cap g_0$ such that

$$\partial(p_{\mathfrak{z}_i}) T_i = \chi(p) T_i \quad (p \in I(\mathfrak{g}_c), \ i = 1, 2).$$

Consider the set P of positive roots of $(\mathfrak{g}, \mathfrak{h})$ and let P_i denote the subset of those $\beta \in P$ which are roots of $(\mathfrak{z}_i, \mathfrak{h})$ (i=1, 2). Then $P \supset P_1 \supset P_2$. Put $\pi_i = \prod_{\alpha \in P_i} \alpha$. Then it is clear that π_1/π_2 is a polynomial function on \mathfrak{h}_c which is invariant under the Weyl reflexions s_{α} for $\alpha \in P_2$. Therefore by Chevalley's theorem [2(c), Lemma 9] there exists a unique invariant polynomial function η_0 on \mathfrak{z}_2 which coincides with π_1/π_2 on \mathfrak{h} .

Put $g_0' = g_0 \cap g'$ where g' denotes, as before, the set of all regular elements of g.

LEMMA 30. Suppose $T_2 = \eta_0 T_1$ pointwise on $\mathfrak{h} \cap \mathfrak{g}_0'$. Then $T_2 = \eta_0 T_1$ pointwise on $\mathfrak{z}_2 \cap \mathfrak{g}_0'$.

Let a be a Cartan subalgebra of \mathfrak{z}_2 . It would be enough to show that $T_2 = \eta_0 T_1$ pointwise on $\mathfrak{a} \cap \mathfrak{g}_0'$. We shall do this by induction on $i_\mathfrak{a}(Q)$ as in § 14. Let Ξ_2 be the analytic subgroup of G corresponding to \mathfrak{z}_2 . If $i_\mathfrak{a}(Q) = -l$, then a is conjugate to \mathfrak{h} under Ξ_2 and so our assertion is obvious. Hence we may assume that $i_\mathfrak{a}(Q) > -l$ so that $m = \dim \mathfrak{a}_B \ge 1$.

We use the notation of § 14 corresponding to $\mathfrak{z} = \mathfrak{z}_1, \mathfrak{z}_2$. In particular $\mathfrak{g}_{\mathfrak{z}_i}^{\mathfrak{a}}$ is defined corresponding to T_i and we put $g_i^{\mathfrak{a}} = g_{\mathfrak{z}_i}^{\mathfrak{a}}$, $\pi_i^{\mathfrak{a}} = \pi_{\mathfrak{z}_i}^{\mathfrak{a}}$ (i = 1, 2). It follows from our assumptions on $\mathfrak{z}_1, \mathfrak{z}_2$ that

$$\mathfrak{a}'(\mathfrak{z}_1:R) = \mathfrak{a}'(\mathfrak{z}_2:R).$$

Fix a connected component $\mathfrak{a}_R^+(\mathfrak{z}_2)$ of $\mathfrak{a}'(\mathfrak{z}_2:R) \cap \mathfrak{a}_R$ and let $P_R(\mathfrak{z}_2)$ be the set of all real roots of $(\mathfrak{z}_2,\mathfrak{a})$ which take only positive values on $\mathfrak{a}_R^+(\mathfrak{z}_2)$. Select the fundamental system $(\alpha_1, \ldots, \alpha_m)$ of roots in $P_R(\mathfrak{z}_2)$ as in § 14.

Choose a linear function $\lambda_{\mathfrak{a}}$ on \mathfrak{a}_c such that $\chi = \chi_{\lambda_{\mathfrak{a}}}^{\mathfrak{a}}$. Then by Lemma 25 there exist complex numbers $c_s(i)$ $(s \in W(\mathfrak{g}/\mathfrak{a}))$ such that

$$g_i^{\mathfrak{a}} = \sum_{s \in W(\mathfrak{g}/\mathfrak{a})} \varepsilon(s) c_s(i) e^{s\lambda_{\mathfrak{a}}} \quad (i = 1, 2)$$

on $\mathfrak{a}^+ = \mathfrak{g}_0 \cap \mathfrak{a}_I + \mathfrak{a}_R^+(\mathfrak{z}_2)$. It is obvious that

$$\eta_0 = a \pi_1^{\mathfrak{a}} / \pi_2^{\mathfrak{a}}$$

on a where a is a constant $(a = \pm 1)$. Therefore it would be sufficient to show that $g_2^{a} = ag_1^{a}$ on a^+ .

Fix $j \ (1 \le j \le m)$. Then (see § 14) we can select an element $H_0 \in Cl(\mathfrak{a}^+)$ such that 1) $\alpha_j(H_0) = 0$ and 2) $\alpha(H_0) \neq 0$ for any root $\alpha \neq \pm \alpha_j$ of $(\mathfrak{g}, \mathfrak{a})$. It is clear that H_0 is semiregular in each of the three algebras $\mathfrak{z}_1, \mathfrak{z}_2$ and \mathfrak{g} . Define ν and \mathfrak{b} as in § 13. Then $\mathfrak{b} \subset \mathfrak{z}_2$ and $i_{\mathfrak{b}}(Q) = i_{\mathfrak{a}}(Q) - 2$. Hence our induction hypothesis is applicable to \mathfrak{b} and so it follows from Lemma 26 that

$$c_{s}(2) + c_{s_{\alpha_{j}}s}(2) = a \{ c_{s}(1) + c_{s_{\alpha_{j}}s}(1) \}$$

for $s \in W(\mathfrak{g}/\mathfrak{a})$.

In order to complete the proof we have to show that $c_s(2) = ac_s(1)$ for all $s \in W(\mathfrak{g}/\mathfrak{a})$. Suppose this is false. Let W_1 be the set of all $s \in W(\mathfrak{g}/\mathfrak{a})$ such that $c_s(2) \neq ac_s(1)$. Then it follows from the above result that if $s \in W_1$, the same holds for $s_{\alpha_j}s$ $(1 \leq j \leq m)$. Define $W_R(\mathfrak{z}_2/\mathfrak{a})$ as in §14. Then W_1 is a union of cosets of the form $W_R(\mathfrak{z}_2/\mathfrak{a})s$. Fix a connected component \mathfrak{a}_R^+ of $\mathfrak{a}_R^+(\mathfrak{z}_2) \cap \mathfrak{a}'(R)$ and define an order in the space \mathfrak{F} of real-valued linear functions on $\mathfrak{a}_R + (-1)^{\frac{1}{2}}\mathfrak{a}_I$ corresponding to \mathfrak{a}_R^+ as in §11. We have seen in §14 that $s\lambda_\mathfrak{a} \in \mathfrak{F}$ for all $s \in W(\mathfrak{g}/\mathfrak{a})$. Choose $\sigma \in W_1$ such that $\mu = \sigma\lambda_\mathfrak{a} \geq s\lambda_\mathfrak{a}$ for all $s \in W_1$. Then $\mu \geq s\mu$ for $s \in W_R(\mathfrak{z}_2/\mathfrak{a})$. Therefore by Lemma 22, $\mu(H) \geq 0$ for $H \in \mathfrak{a}_R^+$. On the other hand since $\sigma \in W_1$, it is clear that $c_\sigma(1)$ and $c_\sigma(2)$ cannot both be zero. Therefore it follows from Lemma 28 that $\mu(H) \leq 0$ for $H \in \mathfrak{a}_R^+$. But this

 $\mathbf{276}$
implies that $\mu = 0$ on \mathfrak{a}_R and therefore $s_{\alpha_j} \mu = \mu$ $(1 \leq j \leq m)$. Since $m \geq 1$ and $\lambda_{\mathfrak{a}}$ is regular, this is impossible and thus Lemma 30 is proved.

We continue our assumption that $\mathfrak{h}_I = \mathfrak{h}$ and define θ as in [2 (m), §16] corresponding to \mathfrak{h} .

LEMMA 31. Let \mathfrak{z}_1 be a subalgebra of \mathfrak{g} such that $\theta(\mathfrak{z}_1) = \mathfrak{z}_1$ and $\mathfrak{z}_1 \supset \mathfrak{h}$. Fix an element $H_1 \in \mathfrak{h}$ and let \mathfrak{z}_2 be the centralizer of H_1 in \mathfrak{z}_1 . Then $\mathfrak{z}_1, \mathfrak{z}_2$ satisfy all the conditions required above.

Since $\theta = 1$ on \mathfrak{h} , it is clear that $\theta(\mathfrak{z}_i) = \mathfrak{z}_i \supset \mathfrak{h}$ and hence \mathfrak{z}_i (i = 1, 2) is reductive in g (see [2 (d), Lemma 10]). Let a be a Cartan subalgebra of \mathfrak{z}_2 . Then we know from Lemma 29 that $\mathfrak{a}_R(\mathfrak{z}_i) = \mathfrak{a}_R$ and $\mathfrak{a}_I(\mathfrak{z}_i) = \mathfrak{a}_I$ (i = 1, 2). Let m be the centralizer of \mathfrak{a}_I in \mathfrak{z}_2 . Since $H_1 \in \mathfrak{a}_I$, m is also the centralizer of \mathfrak{a}_I in \mathfrak{z}_1 . Therefore the real roots of $(\mathfrak{z}_i, \mathfrak{a})$ are the same as the roots of $(\mathfrak{m}, \mathfrak{a})$ (see § 11). This proves the lemma.

§ 16. The distribution T_{λ}

Let \mathfrak{b} be a Cartan subalgebra of \mathfrak{g} and assume that every root of $(\mathfrak{g}, \mathfrak{b})$ is imaginary. Consider the space \mathfrak{F} of all linear functions on \mathfrak{b}_c which take only pure imaginary values on \mathfrak{b} . Define π, ϖ and $W = W(\mathfrak{g}/\mathfrak{b})$ as usual (corresponding to \mathfrak{b}) and let \mathfrak{F}' be the set of all $\lambda \in \mathfrak{F}$ where $\varpi(\lambda) \neq 0$. Consider the subgroup $W_k = W_k(\mathfrak{g}/\mathfrak{b})$ of W generated by s_β corresponding to the compact roots β of $(\mathfrak{g}, \mathfrak{b})$ (see [2 (k), § 4]). Then $W_k = W_G$ (see Cor. 2 of [2 (m), Lemma 6]) in the notation of [2 (k), § 4].

THEOREM 2. For any $\lambda \in \mathcal{F}'$, there exists a unique distribution T_{λ} on g with the following properties:

1) T_{λ} is invariant and tempered. 2) $\partial(p) T_{\lambda} = p_{\mathfrak{b}}(\lambda) T_{\lambda}$ $(p \in I(\mathfrak{g}_{c})).$ 3) $T_{\lambda}(H) = \pi(H)^{-1} \sum_{s \in W_{\lambda}} \varepsilon(s) e^{\lambda(s^{-1}H)}$ $(H \in \mathfrak{b}').$

The uniqueness is obvious from the corollary of Lemma 28. Hence only the existence requires proof.

First assume that g is semisimple. We identify g_c and b_c with their respective duals by means of the Killing form of g (see [2 (j), § 6]). Fix a Euclidean measure dX on g and put

$$f(Y) = \int f(X) \exp ((-1)^{\frac{1}{2}} B(X, Y)) \, dX \quad (Y \in g)$$

for $f \in C(g)$. (As usual B(X, Y) = tr(ad X ad Y) for $X, Y \in g_c$.) Moreover for any $H_0 \in \mathfrak{b}'$ define

$$\tau_{H_0}(f) = \psi_{\hat{f}}(H_0) = \pi(H_0) \int_{G^*} \hat{f}(x^*H_0) \, dx^* \quad (f \in \mathcal{C}(g))$$

in the notation of $[2 (k), \S 5]$ (for $\mathfrak{h} = \mathfrak{h}$). Then we know from [2 (d), Theorem 3] that the integral is absolutely convergent and τ_{H_0} is an invariant and tempered distribution on g which satisfies (see [2 (d), p. 226]) the differential equations

$$\partial(p) \tau_{H_0} = p((-1)^{\frac{1}{2}}H_0) \tau_{H_0} \quad (p \in I(\mathfrak{g}_c)).$$

Fix $H_0 \in \mathfrak{b}'$ and let \mathfrak{T}_{H_0} denote the space of all invariant and tempered distributions T on g such that

$$\partial(p) T = p((-1)^{\frac{1}{2}}H_0) T \quad (p \in I(\mathfrak{g}_c)).$$

For any $T \in \mathfrak{T}_{H_0}$, let g_T denote the analytic function on \mathfrak{b} (see [2 (1), Theorem 2]) given by $g_T(H) = \pi(H) T(H) \quad (H \in \mathfrak{b}').$

Then by Lemma 25,

$$g_T(H) = \sum_{s \in W} c(s) c_s(T) \exp \left((-1)^{\frac{1}{2}} B(sH_0, H)\right) \quad (H \in \mathfrak{b})$$

where $c_s(T)$ are uniquely determined complex numbers. It is clear that $g_T^t = \varepsilon(t)g_T$ and therefore $c_{ts}(T) = c_s(T)$ for $t \in W_G = W_k$ and $s \in W$. On the other hand the linear mapping $T \rightarrow g_T$ is injective from the corollary of Lemma 28. Hence it is obvious that

dim
$$\mathfrak{T}_{H_0} \leq [W:W_k]$$
.

On the other hand it is clear that $\tau_{sH_0} \in \mathfrak{T}_{H_0}(s \in W)$. Put $r = [W:W_k]$ and select $s_i \in W$ $(1 \leq i \leq r)$ such that И

$$W = \bigcup_{1 \leq i \leq r} W_k s_i.$$

Write $\tau_i = \tau_{s_i H_0}$. Then we claim that τ_1, \ldots, τ_r are linearly independent over C. Put

$$\sigma_i(f) = \psi_f(s_i H_0) \quad (f \in \mathcal{C}(\mathfrak{g})).$$

Since $t \to \hat{f}$ is a topological mapping of $C(\mathfrak{g})$ onto itself, it would be enough to verify that the tempered distributions $\sigma_1, \ldots, \sigma_r$ are linearly independent. Since $s_i H_0$ is semisimple, the orbit $(s_i H_0)^G$ is closed in g (see [1, p. 523]). Therefore it follows from the definition of σ_i that

Supp
$$\sigma_i = (s_i H_0)^G$$
.

Now we claim that $(s_i H_0)^G \cap (s_j H_0)^G = \emptyset$ if $i \neq j$. For otherwise $s_i H_0 = (s_j H_0)^x$ for some $x \in G$. Since H_0 is regular, this implies that $s_i = ss_j$ for some $s \in W_G = W_k$. But this is impossible from the definition of (s_1, \ldots, s_r) . This shows that the sets Supp σ_i are disjoint and non-empty and therefore the distributions σ_i $(1 \leq i \leq r)$ are linearly independent.

So it is now obvious that dim $\mathfrak{T}_{H_0} = r$ and τ_1, \ldots, τ_r is a base for \mathfrak{T}_{H_0} . Let a_s $(s \in W)$ be given complex numbers such that $a_{ts} = a_s$ $(t \in W_k)$. Then it follows from the above result that we can choose a unique element $T \in \mathfrak{T}_{H_0}$ such that $a_s = c_s(T)$. Hence, in particular, there exists a distribution T in \mathfrak{T}_{H_0} such that

$$g_T(H) = \sum_{s \in W_k} \varepsilon(s) \exp \left((-1)^{\frac{1}{2}} B(sH_0, H)\right).$$

This proves Theorem 2 when g is semisimple.

Now we come to the general case. Define g_1 and c as before (see § 2), put $\mathfrak{b}_1 = \mathfrak{b} \cap \mathfrak{g}_1$ and let λ_1 denote the restriction of λ on \mathfrak{b}_{1c} . Fix Euclidean measures dC and dZ on c and \mathfrak{g}_1 respectively such that dX = dC dZ for X = C + Z ($C \in \mathfrak{c}, Z \in \mathfrak{g}_1$). Since \mathfrak{g}_1 is semisimple, there exists, from the above proof, an invariant and tempered distribution T_1 on \mathfrak{g}_1 such that $\partial(p) T_1 = p_b(\lambda) T_1$ ($p \in I(\mathfrak{g}_{1c})$) and

$$\begin{aligned} \pi(H) \ T_1(H) &= \sum_{s \in W_k} \varepsilon(s) \ \exp\left(\lambda_1\left(s^{-1}H\right)\right) \quad (H \in \mathfrak{b}_1 \cap \mathfrak{g}'). \\ \\ T_\lambda(f) &= T_1(f_1) \quad (f \in C_c^{\infty}(\mathfrak{g})) \end{aligned}$$

Put

where

Since
$$\lambda$$
 takes only pure imaginary values on c , it is clear that T_{λ} satisfies all the conditions of Theorem 2.

 $f_1(Z) = \int f(Z+C) e^{\lambda(C)} dC \quad (Z \in \mathfrak{g}_1).$

Fix a Cartan subalgebra \mathfrak{a} of \mathfrak{g} and an element $y \in G_c$ such that $(\mathfrak{b}_c)^y = \mathfrak{a}_c$. For any $\lambda \in \mathfrak{F}'$, define the analytic function $g_{\lambda}{}^{\mathfrak{a}}$ on $\mathfrak{a}'(R)$ corresponding to T_{λ} as usual so that

$$g_{\lambda}^{\mathfrak{a}}(H) = \pi^{\mathfrak{a}}(H) T_{\lambda}(H) \quad (H \in \mathfrak{a}').$$

Fix a connected component a^+ of a'(R). Then by Lemmas 25 and 28,

$$g_{\lambda} \mathfrak{a} = \sum_{s \in W} \varepsilon(s) c(s: \lambda : \mathfrak{a}^+) e^{(s\lambda)^y}$$

on a^+ where $c(s:\lambda:a^+) \in \mathbb{Z}$.

LEMMA 32. For fixed $s \in W$ and a^+ , the integer $c(s:\lambda:a^+)$ ($\lambda \in \mathfrak{F}'$) depends only on the connected component of λ in \mathfrak{F}' .

In view of the last part of the proof of Theorem 2, it is clear that it would be sufficient to consider the case when g is semisimple. Define τ_{H_0} as above for $H_0 \in b'$. Then by [2 (l), Theorem 1] there exists an analytic function F_{H_0} on g' such that

$$\tau_{H_0}(f) = \psi_{\widehat{f}}(H_0) = \int F_{H_0}(X) f(X) dX \quad (f \in C_c^{\infty}(\mathfrak{g})).$$

We know from Lemma 25 that

$$\pi^{\mathfrak{a}}(H) F_{H_{\mathfrak{o}}}(H) = \sum_{s \in W} \varepsilon(s) a_{s}(H_{\mathfrak{o}}) \exp\left((-1)^{\frac{1}{8}} B(sH_{\mathfrak{o}}, y^{-1}H)\right)$$

for $H \in \mathfrak{a}^+ = \mathfrak{a}^+ \cap \mathfrak{g}'$. Here $a_s(H_0)$ are uniquely determined complex numbers. Moreover we know from [2 (d), pp. 229-231] that a_s , regarded as functions on \mathfrak{b}' , are locally constant. By considering, in particular, the case $\mathfrak{a} = \mathfrak{b}$, we get

$$\pi(H) F_{H_0}(H) = \sum_{s \in W} \varepsilon(s) b_s(H_0) \exp\left((-1)^{\frac{1}{2}} B(sH_0, H)\right)$$

for $H, H_0 \in \mathfrak{b}'$. Here b_s are certain locally constant functions on \mathfrak{b}' .

Now define $s_1 = 1, s_2, ..., s_r$ as in the proof of Theorem 2 and put

$$b_{ij}(H_0) = b_{s_i s_j}^{-1}(s_j H_0) \quad (1 \le i, j \le r, H_0 \in \mathfrak{b}').$$

Fix $H_0 \in \mathfrak{b}'$. Since $b_{ts}(H_0) = b_s(H_0)$ $(t \in W_k)$ and $\tau_{s_t H_0}$ $(1 \le i \le r)$ are linearly independent, it follows from the proof of Theorem 2 that the matrix $(b_{ij}(H_0))_{1 \le i, j \le r}$ is non-singular. Let $(b^{ij}(H_0))_{1 \le i, j \le r}$ denote its inverse. Put $b^j = b^{j1}$ and

$$T_{H_0} = \sum_{1 \leqslant j \leqslant r} b^j(H_0) \, \tau_{s_j H_0} \quad (H_0 \in \mathfrak{b}').$$

Then it is obvious that $T_{H_0} \in \mathfrak{T}_{H_0}$ (in the notation of the proof of Theorem 2) and

$$\pi(H) T_{H_0}(H) = \sum_{s \in W_k} \varepsilon(s) \exp\left((-1)^{\frac{1}{2}} B(sH_0, H)\right) \quad (H \in \mathfrak{b}')$$

for $H_0 \in \mathfrak{b}'$. Hence it follows from Theorem 2 that $T_{H_0} = T_{\lambda}$ where λ is the element of \mathfrak{F}' given by $\lambda(H) = (-1)^{\frac{1}{2}} B(H_0, H)$ $(H \in \mathfrak{b})$. Therefore

$$g_{\lambda}^{\mathfrak{a}}(H) = \sum_{1 \leq j \leq r} b^{j}(H_{0}) \pi^{\mathfrak{a}}(H) F_{s_{j}H_{0}}(H) \quad (H \in \mathfrak{a}')$$

and this shows that

$$c(s:\lambda:\mathfrak{a}^+) = \sum_{1 \leq j \leq r} \varepsilon(s_j) \, b^j(H_0) \, a_{ss_j}^{-1}(s_j H_0) \quad (s \in W).$$

 $\mathbf{280}$

Since b^{i} and a_{s} are locally constant on \mathfrak{b}' , the assertion of the lemma is now obvious.

 \mathfrak{F}^+ being any connected component of \mathfrak{F}' , we denote by $c(s:\mathfrak{F}^+:\mathfrak{a}^+)$ the integer $c(s:\lambda:\mathfrak{a}^+)$ ($\lambda\in\mathfrak{F}^+$). Put

$$\phi_{\lambda} = \boldsymbol{\varpi}(\lambda)^{-1} \nabla_{\boldsymbol{g}} F_{\lambda} \quad (\lambda \in \mathfrak{F}')$$

where F_{λ} is the analytic function on g' corresponding to T_{λ} and ∇_{g} is defined as before (see § 2).

LEMMA 33.
$$\phi_{\lambda} = \sum_{s \in W} c(s: \mathfrak{F}^+: \mathfrak{a}^+) e^{(s\lambda)y}$$

on \mathfrak{a}^+ for $\lambda \in \mathfrak{F}^+$.

This is obvious from the definition of $\nabla_{\mathfrak{g}}$ and the above formula for $g_{\lambda}^{\mathfrak{a}}$. For any $s \in W$ define an element $s^{y} \in W(\mathfrak{g}/\mathfrak{a})$ as follows:

$$(sH)^y = s^y H^y$$
 $(H \in \mathfrak{b}_c).$

Then $s \to s^y$ is an isomorphism of $W(g/\mathfrak{a})$ whose inverse we denote by $t \to t^{y^{-1}}$ $(t \in W(g/\mathfrak{a}))$. Define the subgroup $W_G(g/\mathfrak{a})$ of $W(g/\mathfrak{a})$ as usual (see [2 (k), § 4]). We have seen above that $W_k = W_G = W_G(g/\mathfrak{b})$.

COROLLARY. Fix $s \in W$, $t \in W_G(g/a)$ and $u \in W_k$. Then

$$c(t^{y^{-1}}su^{-1}:u\mathfrak{F}^+:t\mathfrak{a}^+)=c(s:\mathfrak{F}^+:\mathfrak{a}^+)$$

Fix $\lambda \in \mathfrak{F}^+$. Then it is clear from Theorem 2 that $T_{u\lambda} = \varepsilon(u) T_{\lambda}$ and therefore $\phi_{u\lambda} = \phi_{\lambda}$. Moreover ϕ_{λ} is invariant under G and therefore its restriction on a is invariant under $W_G(\mathfrak{g}/\mathfrak{a})$. Our assertion is an immediate consequence of these facts.

§ 17. Application of Theorem 1 to T_{λ}

Now we use the notation of §2 and assume that $\mathfrak{h}_1 = \mathfrak{h}$. Let $m_i(R)$ denote the number of positive real roots of $(\mathfrak{g}, \mathfrak{h}_i)$ $(1 \leq i \leq r)$ and put $m = \frac{1}{2}$ (dim \mathfrak{g} -rank \mathfrak{g}). For any $\lambda \in \mathfrak{F}'$, let $\phi_{\lambda,i}$ denote the restriction of ϕ_{λ} on \mathfrak{h}_i .

Define numbers $c_i > 0$ by the relation

$$\int_{\mathfrak{g}} f(X) \, dX = \sum_{1 \leq i \leq r} c_i \, (-1)^{m_i(I)} \int \varepsilon_{R,i} \, \pi_i \, \psi_{f,i} \, d_i \, H \quad (f \in C_c^{\infty} \, (\mathfrak{g}))$$

where $m_i(I)$ is the number of positive imaginary roots of $(\mathfrak{g}, \mathfrak{h}_i)$ (see [2 (k), Cor. 1 of Lemma 30]). Also put $dH = d_1 H$.

19-652923. Acta mathematica. 113. Imprimé le 11 mai 1965.

LEMMA 34. For any $f \in C_c^{\infty}(\mathfrak{g})$ and $\lambda \in \mathfrak{F}'$,

$$\begin{split} c_1[W_k] \int_{\mathfrak{h}} \partial(\varpi) \, \psi_f e^{\lambda} \, dH &= c_1 \int_{\mathfrak{h}} \partial(\varpi) \, \psi_f \sum_{s \in W_k} e^{s\lambda} \, dH \\ &= \varpi(\lambda) \, T_\lambda(f) - \sum_{2 \leqslant i \leqslant r} \, (-1)^{m_i(R)} \, c_i \int_{\mathfrak{h}_i} \varepsilon_{R,i} \, \partial(\varpi_i) \, \psi_{f,i} \cdot \phi_{\lambda,i} \, d_i \, H. \end{split}$$

Since the number of positive complex roots of $(\mathfrak{g}, \mathfrak{h}_i)$ is even (see the proof of Lemma 9 of [2 (k)]), it follows that

$$m_i(R) + m_i(I) \equiv m \mod 2.$$

Hence

$$(-1)^m \int_{\mathfrak{g}} f(X) \, dX = \sum_{1 \leq i \leq r} c_i \, (-1)^{m_i(R)} \int \varepsilon_{R,i} \, \pi_i \, \psi_{f,i} \, d_i \, H \quad (f \in C_c^{\infty}(\mathfrak{g})).$$

Moreover $\partial(\varpi) \psi_f$ is invariant under $W_k = W_G$ (see [2 (k), § 6]) and

$$\phi_{\lambda,1} = \sum_{s \in W_k} e^{s\lambda}.$$

Therefore our assertion follows from Theorem 1 and the corollary of Lemma 4, if we take into account the fact that $\Box F_{\lambda} = \varpi(\lambda)^2 F_{\lambda}$.

Fix a connected component \mathfrak{F}^+ of \mathfrak{F}' . Then for any $\mu \in \operatorname{Cl}(\mathfrak{F}^+)$, we define a distribution $T_{\mu,\mathfrak{F}^+} = T_{\mu}^+$ as follows:

$$T_{\mu}^{+}(f) = \lim_{\lambda \to \mu} T_{\lambda}(f) \quad (f \in C_{c}^{\infty}(\mathfrak{g}))$$

where $\lambda \in \mathfrak{F}^+$. Put $g_{\lambda,i} = g_{\lambda}^{\mathfrak{h}_i}$. Then

$$T_{\lambda}(f) = (-1)^m \sum_{1 \leq i \leq r} (-1)^{m_i(R)} c_i \int \varepsilon_{R,i} \psi_{f,i} g_{\lambda,i} d_i H$$

and so it is obvious that the above limit exists and

$$T_{\mu}^{+}(f) = (-1)^{m} \sum_{1 \leq i \leq r} (-1)^{m_{i}(R)} c_{i} \int \varepsilon_{R,i} \psi_{f,i} g_{\mu,i}^{+} d_{i} H$$

where $g_{\mu,i}^{+}$ is defined as follows. Fix *i* and put $\mathfrak{a} = \mathfrak{h}_i$. Then

$$g_{\mu,i}^{+} = \lim_{\lambda \to \mu} g_{\lambda}^{\mathfrak{a}} = \sum_{s \in W} \varepsilon(s) c \left(s : \mathfrak{F}^{+} : \mathfrak{a}^{+}\right) e^{(s\mu) \Psi}$$

on any connected component \mathfrak{a}^+ of $\mathfrak{a}'(R)$. We know from Lemma 28 that $c(s:\mathfrak{F}^+:\mathfrak{a}^+)=0$ $(s\in W)$ unless $\mathfrak{R}(s\lambda)^y(H)\leq 0$ for all $H\in\mathfrak{a}^+$ and $\lambda\in\mathfrak{F}^+$. Therefore it is clear from the above formulas and Lemma 19 that T_{μ}^+ is an invariant and tempered distribution

on g. Since $\partial(p) T_{\lambda} = p_{b}(\lambda) T_{\lambda}$, it follows immediately by going over to the limit that

$$\partial(p) T_{\mu}^{+} = p_{\mathfrak{b}}(\mu) T_{\mu}^{+} \quad (p \in I(\mathfrak{g}_c)).$$

For any Cartan subalgebra a of g define the function $(\phi_{\mu}^{+})_{a}$ on a' (R) by

$$(\phi_{\mu}^{+})_{\mathfrak{a}} = \sum_{s \in W} c(s:\mathfrak{F}^{+}:\mathfrak{a}^{+}) e^{(s\mu)y}$$

on \mathfrak{a}^+ .

LEMMA 35.
$$|(\phi_{\mu}^{+})_{\mathfrak{a}}| \leq \sum_{s \in W} |c(s:\mathfrak{F}^{+}:\mathfrak{a}^{+})|$$

on a^+ .

Fix $H \in \mathfrak{a}^+$. Then if $\lambda \in \mathfrak{F}^+$, it follows from Lemma 28 that

$$|\phi_{\lambda}(H)| \leq \sum_{s \in W} |c(s:\mathfrak{F}^+:\mathfrak{a}^+)|.$$

Our assertion now follows by letting λ tend to μ .

For $a = h_i$ we denote the function $(\phi_{\mu}^{+})_a$ by $\phi_{\mu,i}^{+}$.

LEMMA 36. For any $f \in C_c^{\infty}(\mathfrak{g})$,

$$c_1[W_k] \int_{\mathfrak{h}} \partial(\boldsymbol{\varpi}) \, \psi_f \, e^{\mu} \, dH = \boldsymbol{\varpi}(\mu) \, T_{\mu}^{+}(f) - \sum_{2 \leqslant i \leqslant r} (-1)^{m_i(R)} \, c_i \int \varepsilon_{R,i} \, \partial(\boldsymbol{\varpi}_i) \, \psi_{f,i} \cdot \boldsymbol{\phi}_{\mu,i}^{+} \, d_i \, H.$$

Take a variable element $\lambda \in \mathfrak{F}^+$ which converges to μ . Then our assertion follows immediately from Lemma 34 by taking limits.

§ 18. Proof of Lemma 41

As in §14, let \mathfrak{z} be a subalgebra of \mathfrak{g} such that 1) $\mathfrak{z} \supset \mathfrak{b}$ and 2) \mathfrak{z} is reductive in \mathfrak{g} . Fix a Euclidean measure dZ on \mathfrak{z} and let $W_k(\mathfrak{z}/\mathfrak{b})$ be the subgroup of $W(\mathfrak{z}/\mathfrak{b})$ generated by the Weyl reflexions corresponding to the compact roots of $(\mathfrak{z}, \mathfrak{b})$. Then $W(\mathfrak{z}/\mathfrak{b}) \subset W$ and $W_k(\mathfrak{z}/\mathfrak{b}) \subset W_k$. Define $\varpi_{\mathfrak{z}}$ and $\pi_{\mathfrak{z}}$ as in §13 for $\mathfrak{h} = \mathfrak{b}$.

LEMMA 37. Let a_s $(s \in W_k)$ be continuous functions (1) on F such that $a_{ts} = a_s$ for $t \in W_k \cap W(\mathfrak{z}/\mathfrak{b})$. Then for any $\lambda \in \mathfrak{F}'$, there exists a unique distribution $T_{\mathfrak{z},\lambda}$ on \mathfrak{z} such that:

- 1) $T_{3,\lambda}$ is invariant and tempered.
- 2) $\partial(p_{\mathfrak{z}}) T_{\mathfrak{z},\lambda} = p_{\mathfrak{b}}(\lambda) T_{\mathfrak{z},\lambda} \quad (p \in I(\mathfrak{g}_{c})).$
- 3) $\pi_{\mathfrak{z}} T_{\mathfrak{z},\lambda} = \sum_{s \in W_k} \varepsilon(s) a_s(\lambda) e^{s\lambda}$ pointwise on \mathfrak{b}' .

⁽¹⁾ For most applications a_s will be constants.

The uniqueness is obvious from the corollary of Lemma 28. The existence is proved as follows. Applying Theorem 2 to $(\mathfrak{z}, \mathfrak{b})$ instead of $(\mathfrak{g}, \mathfrak{b})$, we conclude that there exists a unique invariant and tempered distribution τ_{λ} on \mathfrak{z} such that $\partial(p)\tau_{\lambda} = p_{\mathfrak{b}}(\lambda)\tau_{\lambda}$ $(p \in I(\mathfrak{z}_c))$ and

$$\pi_{\mathfrak{z}} \tau_{\lambda} = \sum_{s \in W_{k}(\mathfrak{z}/\mathfrak{b})} \varepsilon(s) \ e^{s\lambda}$$

pointwise on b'. Put

$$T_{\mathfrak{z},\lambda} = [W_k(\mathfrak{z}/\mathfrak{b})]^{-1} \sum_{s \in W_k} \varepsilon(s) a_s(\lambda) \tau_{s\lambda} = \sum_{s \in W_k(\mathfrak{z}/\mathfrak{b}) \setminus W_k} \varepsilon(s) a_s(\lambda) \tau_{s\lambda}$$

where the second sum is over a complete system of representatives. Then it is obvious that $T_{3,\lambda}$ fulfills all the conditions of the lemma.

COROLLARY.

$$T_{\mathfrak{z},\lambda} = [W_k(\mathfrak{z}/\mathfrak{b})]^{-1} \sum_{s \in W_k} \varepsilon(s) a_s(\lambda) \tau_{s\lambda} = \sum_{s \in W_k(\mathfrak{z}/\mathfrak{b}) \setminus W_k} \varepsilon(s) a_s(\lambda) \tau_{s\lambda}.$$

Fix a connected component \mathfrak{F}^+ of \mathfrak{F}' and for any $\mu \in \operatorname{Cl} \mathfrak{F}^+$ define $T_{\mathfrak{z},\mu}^+$ and $\tau_{\mu}^+ = \tau_{\mu,\mathfrak{F}^+}$ by means of the limits

$$T_{\mathfrak{z},\mu^{+}}(f) = \lim_{\lambda \to \mu} T_{\mathfrak{z},\lambda}(f), \quad \tau_{\mu^{+}}(f) = \lim_{\lambda \to \mu} \tau_{\lambda}(f) \quad (f \in C_{c}^{\infty}(\mathfrak{z}))$$

where $\lambda \in \mathfrak{F}^+$. We have seen in § 17 that τ_{μ}^+ is a tempered distribution and therefore it follows from the above corollary that the same holds for $T_{\mathfrak{z},\mu}^+$. In fact the following lemma is now obvious.

LEMMA 38.
$$T_{\mathfrak{z},\mu}^{+} = \sum_{s \in W_{k}(\mathfrak{z}/\mathfrak{b}) \setminus W_{k}} \varepsilon(s) a_{s}(\mu) \tau_{s\mu,s\mathfrak{v}}.$$

Let P and $P_{\mathfrak{z}}$ respectively be the sets of all positive roots of $(\mathfrak{g}, \mathfrak{b})$ and $(\mathfrak{z}, \mathfrak{b})$ and let $P_{\mathfrak{g}/\mathfrak{z}}$ denote the complement of $P_{\mathfrak{z}}$ in P. Put

$$\pi_{\mathfrak{g}/\mathfrak{z}} = \prod_{\alpha \in P\mathfrak{g}/\mathfrak{z}} \alpha, \quad \varpi_{\mathfrak{g}/\mathfrak{z}} = \prod_{\alpha \in P\mathfrak{g}/\mathfrak{z}} H_{\alpha}.$$

It is clear that $\pi_{\mathfrak{z}}^2$, $\pi_{\mathfrak{g}/\mathfrak{z}}$ and $\varpi_{\mathfrak{g}/\mathfrak{z}}$ are all invariant under $W(\mathfrak{z}/\mathfrak{b})$. Hence by Chevalley's theorem [2 (c), Lemma 9], we can choose an invariant polynomial function $\eta_{\mathfrak{z}}$ on \mathfrak{z}_c and an element $q_{\mathfrak{g}/\mathfrak{z}} = q \in I(\mathfrak{z}_c)$ such that $\eta_{\mathfrak{z}} = (-1)^r \pi_{\mathfrak{z}}^2$ on \mathfrak{b} and $q_{\mathfrak{b}} = \varpi_{\mathfrak{g}/\mathfrak{z}}$. (Here r is the number of roots in $P_{\mathfrak{z}}$.) Let \mathfrak{z}' be the set of all $Z \in \mathfrak{z}$ where $\eta_{\mathfrak{z}}(Z) \neq 0$ and define the invariant differential operator $\nabla_{\mathfrak{z}}$ on \mathfrak{z}' as usual (see [2 (1), § 9]). Fix $\lambda \in \mathfrak{T}'$. Then we know [2 (1), Lemma 25] that there exists a continuous function $S_{\mathfrak{z},\lambda}$ on \mathfrak{z} such that

 $\mathbf{284}$

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$S_{\mathfrak{z},\lambda} = \boldsymbol{\varpi}(\lambda)^{-1} \nabla_{\mathfrak{z}} \left(\partial (q_{\mathfrak{g}/\mathfrak{z}}) T_{\mathfrak{z},\lambda} \right)$$

pointwise on 3'.

LEMMA 39. Fix $\lambda \in \mathfrak{F}'$. Then (1)

$$\boldsymbol{\varpi}(\lambda) \boldsymbol{T}_{\boldsymbol{\vartheta},\lambda}(f) = \mathbf{p}.\mathbf{v}. \int \eta_{\boldsymbol{\vartheta}}^{-1} \boldsymbol{S}_{\boldsymbol{\vartheta},\lambda} \nabla_{\boldsymbol{\vartheta}} \left(\partial \left(q_{\boldsymbol{\mathfrak{g}}/\boldsymbol{\vartheta}} \right)^* f \right) d\boldsymbol{Z} \quad (f \in C_c^{\infty}(\boldsymbol{\vartheta})),$$

in the notation of Theorem 1.

Put $\Box_{\delta} = \partial(q_1)$ where q_1 is the unique element in $I(\mathfrak{z}_c)$ such that $(q_1)_{\delta} = \varpi_{\delta}^2$. Then $(q_1q^2)_{\delta} = \varpi^2$. Hence if Q is the unique element in $I(\mathfrak{g}_c)$ such that $Q_{\delta} = \varpi^2$ and Q_{δ} is the projection (see [2 (j), §8]) of Q on \mathfrak{z} , it is obvious that $Q_{\delta} = q_1q^2$. Therefore

$$(\Box_{\mathfrak{z}} \circ \partial(q^2)) T_{\mathfrak{z},\lambda} = \partial(Q_{\mathfrak{z}}) T_{\mathfrak{z},\lambda} = Q_{\mathfrak{b}}(\lambda) T_{\mathfrak{z},\lambda} = \varpi(\lambda)^2 T_{\mathfrak{z},\lambda}$$

Hence if $T = (\square_{\mathfrak{z}} \circ \partial(q)) T_{\mathfrak{z},\mathfrak{z}}$, it follows from Theorem 1 that

$$\boldsymbol{\varpi}(\boldsymbol{\lambda})^{2} T_{\boldsymbol{\delta},\boldsymbol{\lambda}}(f) = T(\partial(q)^{*} f) = \boldsymbol{\varpi}(\boldsymbol{\lambda}) \left\{ \mathrm{p.v.} \int \eta_{\boldsymbol{\delta}}^{-1} S_{\boldsymbol{\delta},\boldsymbol{\lambda}}(\nabla_{\boldsymbol{\delta}} \circ \partial(q)^{*}) f \, dZ \right\}$$

for $f \in C_c^{\infty}(\lambda)$. Since $\varpi(\lambda) \neq 0$, this implies the assertion of the lemma.

Let a be a Cartan subalgebra of \mathfrak{z} and $S_{\lambda}^{\mathfrak{a}}$ the restriction of $S_{\mathfrak{z},\lambda}$ on a. Then it follows from the definitions of $\nabla_{\mathfrak{z}}$ and q and [2 (c), Lemma 8] that (²)

$$S_{\lambda}^{\mathfrak{a}} = \varpi(\lambda)^{-1} \partial(\varpi^{y}) (\pi_{\mathfrak{z}}^{\mathfrak{a}} T_{\mathfrak{z},\lambda})$$

pointwise on a'.

On the other hand let $\mathfrak{F}_{\mathfrak{z}}'$ be the set of all $\lambda \in \mathfrak{F}$ where $\varpi_{\mathfrak{z}}(\lambda) \neq 0$ and $\mathfrak{F}_{\mathfrak{z}}^{+}$ a connected component of $\mathfrak{F}_{\mathfrak{z}}'$. Fix a connected component \mathfrak{a}^{+} of $\mathfrak{a}'(\mathfrak{z}:R)$ (see § 13). Then corresponding to Lemma 32 and the corollary of Lemma 33 we have the following result for \mathfrak{z} .

LEMMA 40. There exist integers $c_{\mathfrak{z}}(s:\mathfrak{F}_{\mathfrak{z}}^+:\mathfrak{a}^+)$ $(s \in W(\mathfrak{z}/\mathfrak{a}))$ such that

$$\pi_{\mathfrak{z}}^{\mathfrak{a}} \tau_{\lambda} = \sum_{s \in W(\mathfrak{z}/\mathfrak{a})} \varepsilon(s) c_{\mathfrak{z}}(s : \mathfrak{F}_{\mathfrak{z}}^{+} : \mathfrak{a}^{+}) e^{s\lambda^{\mathfrak{z}}}$$

on $\mathfrak{a}^+ \cap \mathfrak{z}'$ for $\lambda \in \mathfrak{F}_{\mathfrak{z}}^+$. Moreover

$$c_{\mathfrak{z}}(st^{y}:t^{-1}\mathfrak{F}_{\mathfrak{z}}^{+}:\mathfrak{a}^{+})=c_{\mathfrak{z}}(s:\mathfrak{F}_{\mathfrak{z}}^{+}:\mathfrak{a}^{+})$$

for $t \in W_k(\mathfrak{z}/\mathfrak{b})$.

(1) As usual, the star denotes the adjoint here.

 $\mathbf{285}$

⁽²⁾ Here y is an element in the complex analytic subgroup Ξ_c of G_c corresponding to $\operatorname{ad} \mathfrak{z}_c$ such that $(\mathfrak{b}_c)^y = \mathfrak{a}_c$. We also assume that $P_{\mathfrak{z}}^y$ is the set of positive roots of $(\mathfrak{z}, \mathfrak{a})$.

Now write $c_{\mathfrak{z}}(s:\mathfrak{F}^+:\mathfrak{a}^+) = c_{\mathfrak{z}}(s:\mathfrak{F}_{\mathfrak{z}}^+:\mathfrak{a}^+)$ for any connected component \mathfrak{F}^+ of \mathfrak{F}' which is contained in $\mathfrak{F}_{\mathfrak{z}}^+$. Then it follows from the corollary of Lemma 37 that

$$\pi_{\mathfrak{z}}^{\mathfrak{a}}T_{\mathfrak{z},\lambda} = \sum_{t \in W_{k}(\mathfrak{z}/\mathfrak{b}) \setminus W_{k}} \varepsilon(t) a_{t}(\lambda) \sum_{s \in W(\mathfrak{z}/\mathfrak{a})} \varepsilon(s) c_{\mathfrak{z}}(s:t \mathfrak{F}^{+}:\mathfrak{a}^{+}) e^{s(t\lambda)^{y}}$$

on $\mathfrak{a}^+ \cap \mathfrak{z}'$ for any λ lying in a connected component \mathfrak{F}^+ of \mathfrak{F}' . Therefore it follows from the above formula for $S_{\lambda}^{\mathfrak{a}}$ that

$$S_{\lambda}^{\mathfrak{a}} = \sum_{t \in W_{k}(\mathfrak{z}/\mathfrak{b}) \setminus W_{k}} a_{t}(\lambda) \sum_{s \in W(\mathfrak{z}/\mathfrak{a})} c_{\mathfrak{z}}(s:t\mathfrak{F}^{+}:\mathfrak{a}^{+}) e^{s(t\lambda)^{y}}$$

on $\mathfrak{a}^+ \cap \mathfrak{z}'$.

Now fix $\mu \in Cl(\mathfrak{F}^+)$. Then as λ tends to μ ($\lambda \in \mathfrak{F}^+$), it is clear that the functions $S_{\lambda}{}^{\mathfrak{a}}$ converge uniformly on every compact subset of \mathfrak{a} . Hence we conclude (see Lemma 69 of § 30) that the functions $S_{\mathfrak{z},\lambda}$ converge uniformly on every compact subset of \mathfrak{z} . We denote the limit function by $S_{\mathfrak{z},\mu}{}^+$. It is obviously continuous and invariant.

LEMMA 41.
$$S_{\mathfrak{z},\mu}^{+} = \sum_{t \in W_k(\mathfrak{z}/\mathfrak{b}) \setminus W_k} a_t(\mu) \sum_{s \in W(\mathfrak{z}/\mathfrak{a})} c_{\mathfrak{z}}(s:t\mathfrak{F}^+:\mathfrak{a}^+) e^{s(t_\mu)\mathfrak{z}}$$

on $a^+ \cap z'$. Moreover

$$\boldsymbol{\varpi}(\boldsymbol{\mu}) \boldsymbol{T}_{\mathfrak{z},\boldsymbol{\mu}^{+}}(\boldsymbol{f}) = \mathrm{p.v.} \int \eta_{\mathfrak{z}}^{-1} \boldsymbol{S}_{\mathfrak{z},\boldsymbol{\mu}^{+}} \nabla_{\mathfrak{z}} \left(\partial \left(\boldsymbol{q}_{\mathfrak{z}/\mathfrak{z}} \right)^{*} \boldsymbol{f} \right) d\boldsymbol{Z}$$

for $f \in C_c^{\infty}(\mathfrak{z})$.

The first statement is obvious from the above formula for S_{λ}^{α} and the second follows from Lemma 39 if we take into account the corollary of Lemma 4.

COROLLARY. $S_{3,\mu}^{+} = 0$ if $a_t(\mu) = 0$ $(t \in W_k)$.

Now suppose $\mathfrak{z}_1, \mathfrak{z}_2$ and η_0 are as in Lemma 30 (with $\mathfrak{h} = \mathfrak{b}$). Then since

$$\pi_{\mathfrak{z}_1} T_{\mathfrak{z}_1,\lambda} = \pi_{\mathfrak{z}_2} T_{\mathfrak{z}_2,\lambda} = \sum_{s \in W_k} \varepsilon(s) e^{s\lambda}$$

pointwise on b' for $\lambda \in \mathfrak{F}'$, it follows from Lemma 30 that

$$T_{\mathfrak{z},\lambda} = \eta_0 T_{\mathfrak{z},\lambda}$$

pointwise on $g' \cap \mathfrak{z}_2$. Fix a Cartan subalgebra \mathfrak{a} of \mathfrak{z}_2 and an element y in the complex analytic subgroup Ξ_{2c} of G_c corresponding to $\mathrm{ad}\mathfrak{z}_{2c}$, such that $\mathfrak{b}_c^y = \mathfrak{a}_c$. We may assume that P^y is the set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$. Then

 $\mathbf{286}$

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$S_{\mathfrak{z}_{i},\lambda} = \boldsymbol{\varpi}(\lambda)^{-1} \nabla_{\mathfrak{z}_{i}} \left(\partial \left(q_{\mathfrak{g}/\mathfrak{z}_{i}} \right) T_{\mathfrak{z}_{i},\lambda} \right) = \boldsymbol{\varpi}(\lambda)^{-1} \partial (\boldsymbol{\varpi}^{y}) \boldsymbol{F}_{\lambda}$$

pointwise on a' where

$$F_{\lambda}(H) = \pi_{\mathfrak{z}_{1}}^{\mathfrak{a}}(H) T_{\mathfrak{z}_{1},\lambda}(H) = \pi_{\mathfrak{z}_{2}}^{\mathfrak{a}}(H) T_{\mathfrak{z}_{2},\lambda}(H) \quad (H \in \mathfrak{a}').$$

This shows that $S_{\mathfrak{z}_1,\lambda} = S_{\mathfrak{z}_2,\lambda}$ on \mathfrak{z}_2 and therefore we get the following result by taking limits.

LEMMA 42. Fix $\mu \in Cl(\mathfrak{F}^+)$. Then

$$T_{\mathfrak{z}_{2},\mu}^{+} = \eta_{0} T_{\mathfrak{z}_{1},\mu}^{+}$$

 $S_{3_1\mu}^{+} = S_{3_2\mu}^{+}$

pointwise on $g' \cap z_2$ and

on z_2 .

We now return to the notation of Lemma 41 and write $T_{\mathfrak{z},\mu,\mathfrak{F}^+} = T_{\mathfrak{z},\mu}^+$ whenever it is convenient to do so. Let Ξ be the analytic subgroup of G corresponding to \mathfrak{z} and $\mathfrak{h}_1, \mathfrak{h}_2, \ldots, \mathfrak{h}_r$ a maximal set of Cartan subalgebras of \mathfrak{z} no two of which are conjugate under Ξ . Fix a Euclidean measure $d_i H$ on \mathfrak{h}_i and define $\psi_{\mathfrak{z},f,i}$ $(f \in C_c^{\infty}(\mathfrak{z}))$ as in Lemma 5 for $(\mathfrak{z}, \mathfrak{h}_i)$ instead of $(\mathfrak{g}, \mathfrak{h}_i)$.

LEMMA 43. Assume that the functions a_t $(t \in W_k)$ remain bounded on F. Then there exists a number $C \ge 0$ with the following property. Let \mathcal{F}^+ be a connected component of \mathcal{F}' and μ a point in $Cl(\mathcal{F}^+)$. Then

$$|T_{\mathfrak{z},\mu,\mathfrak{F}^+}(f)| \leq C \sum_{1 \leq i \leq r} \int_{\mathfrak{H}_i} |\psi_{\mathfrak{z},f,i}| d_i H.$$

Let a be a Cartan subalgebra of 3. It follows from Lemmas 28 and 40 that

$$\left|\pi_{\mathfrak{z}}^{\mathfrak{a}}(H)\tau_{\lambda}(H)\right| \leq \sum_{s \in W(\mathfrak{z}/\mathfrak{a})} \left|c_{\mathfrak{z}}(s:\mathfrak{F}^{+}:\mathfrak{a}^{+})\right|$$

for $H \in \mathfrak{a}^+ \cap \mathfrak{z}'$ and $\lambda \in \mathfrak{F}^+$. Put

$$g_{\lambda^{\mathfrak{a}}}(H) = \pi_{\mathfrak{z}}^{\mathfrak{a}}(H) T_{\mathfrak{z},\lambda}(H) \quad (H \in \mathfrak{a}').$$

Then, in view of the corollary of Lemma 37, we can choose a number $a \ge 0$ such that

$$|g_{\lambda}^{\mathfrak{a}}(H)| \leq a$$

for $H \in \mathfrak{a}'$ and $\lambda \in \mathfrak{F}'$. Now put $g_{\lambda,i} = g_{\lambda} \mathfrak{h}_i$ $(1 \leq i \leq r)$. Then, as we have seen in §2, there exist real numbers c_1, \ldots, c_r such that

 $\mathbf{287}$

$$T_{\mathfrak{z},\lambda}(f) = \sum_{1 \leq i \leq r} c_i \int \psi_{\mathfrak{z},f,i} g_{\lambda,i} \varepsilon_{\mathfrak{z},R,i} d_i H$$

for all $f \in C_c^{\infty}(\mathfrak{z})$ and $\lambda \in \mathfrak{F}'$. (Here $\varepsilon_{\mathfrak{z},R,i}$ is a locally constant function on \mathfrak{h}_i' whose values are ± 1 .) Therefore

$$|T_{\mathfrak{z},\lambda}(f)| \leq C \sum_{1 \leq i \leq r} \int |\psi_{\mathfrak{z},f,i}| d_i H$$

where $C = a \max_i |c_i|$. The statement of the lemma now follows by letting λ tend to μ ($\lambda \in \mathfrak{F}^+$).

Part II. Theory on the group

§ 19. Statement of Theorem 3

We keep to the notation of § 16 and assume, moreover, that G is acceptable. Let B be the Cartan subgroup of G corresponding to \mathfrak{b} . Then B is connected and therefore abelian (see [2 (m), Cor. 5 of Lemma 26]). Let B^* denote the character group of B. For any $b^* \in B^*$, we denote by $\langle b^*, b \rangle$ the value of the character b^* at a point $b \in B$. It is obvious that there exists a unique element $\lambda \in \mathfrak{F}$ such that

$$\langle b^*, \exp H \rangle = e^{\lambda(H)} \quad (H \in \mathfrak{b}).$$

We shall denote λ by log b^* . b^* is called singular or regular according as $\varpi(\lambda) = 0$ or not. We have seen that $W_k = W_G$. Now W_G operates on B as usual (see [2 (m), § 20]) and therefore, by duality, also on B^* . Then

$$\langle (b^*)^s, b \rangle = \langle b^*, b^{s^{-1}} \rangle \quad (b^* \in B^*, b \in B)$$

and $\log (b^*)^s = s (\log b^*)$ $(s \in W_G)$.

Define 3 as in [2 (m), § 6] and let $z \to p_z$ ($z \in 3$) denote the canonical isomorphism of 3 onto $I(\mathfrak{g}_c)$ (see [2 (m), § 12]). For $b^* \in B^*$, define

$$\chi_{b*}(z) = \chi_{\lambda^{\mathfrak{b}}}(p_z) \quad (z \in \mathfrak{Z})$$

(in the notation of § 12) for $\lambda = \log b^*$. Then χ_{b^*} is a homomorphism of \mathfrak{Z} into C.

Let t be an indeterminate and l the rank of G. For any $x \in G$, we denote by D(x) the coefficient of t^{l} in det $(t+1-\operatorname{Ad}(x))$. Then D is an analytic function on G. As usual let G' denote the set of all regular elements in G (see [2 (m), § 3]). Fix a Haar measure dx on G and let Θ be a distribution on G. We say that Θ is an invariant eigendistribution of \mathfrak{Z} if 1) $\Theta^{x} = \Theta$ ($x \in G$) and 2) there exists a homomorphism

 $\mathbf{288}$

 χ of 3 into C such that $z \Theta = \chi(z) \Theta$ for all $z \in 3$. In view of [2 (m), Theorem 2], we can speak of the value $\Theta(x)$ of such a distribution at a point $x \in G'$.

Let $B^{*'}$ denote the set of all regular elements in B^* and put $\Delta = \Delta_B$ in the notation of [2 (m), § 19].

THEOREM 3. Fix an element $b^* \in B^{*'}$. Then there exists exactly one invariant eigendistribution Θ on G such that:

1)
$$z \Theta = \chi_{b^*}(z) \Theta \quad (z \in \mathcal{Z});$$

2)
$$\sup |D(x)|^{\frac{1}{2}} |\Theta(x)| < \infty$$

$$\begin{split} \sup_{x \in G'} |D(x)|^{\frac{1}{2}} |\Theta(x)| &< \infty; \\ \Theta &= \Delta^{-1} \sum_{s \in W_G} \varepsilon(s) (b^*)^s \text{ pointwise on } B' = B \cap G'. \end{split}$$
3)

§ 20. Proof of the uniqueness

In order to obtain the uniqueness in Theorem 3, it is sufficient to prove the following result.

LEMMA 44. Fix $b^* \in B^{*'}$ and let Θ be an invariant eigendistribution of β on G such that:

1)	$z\Theta = \chi_{b^*}(z)\Theta (z\in \mathfrak{Z});$
2)	$\sup_{x\in G'} D(x) ^{\frac{1}{2}} \Theta(x) <\infty;$
3)	$\Theta = 0$ pointwise on B'.

Then $\Theta = 0$.

Fix a semisimple element $a \in G$. In view of [2 (m), Lemma 7], it would be sufficient to prove that $a \notin \text{Supp } \Theta$. We now use the notation of [2 (m), §4] and put $\sigma = |\nu_a|^{\frac{1}{2}} \sigma_{\Theta}$ in the notation of [2 (m), Lemma 15]. Since $z \Theta = \chi_{b^*}(z) \Theta$, we conclude from [2 (m), Lemma 22] that

$$\mu_{\mathfrak{g}/\mathfrak{z}}(z)\,\sigma=\chi_{\mathfrak{b}^*}(z)\,\sigma\quad(z\in\mathfrak{Z}).$$

Define $g_0 = c_0 + g_1(c)$ as in § 14 where c_0 is an open and convex neighborhood of zero in c. Then g_0 is an open and completely invariant neighborhood of zero in gand if c_0 and c are sufficiently small, the exponential mapping of g into G is univalent and regular on g_0 (see [2 (m), § 9]). Put $z_0 = g_0 \cap z$.

Now first assume that $a \in B$ and let Z_G denote the center of G. Then since

 B/Z_{σ} is compact [2 (m), § 16], every eigenvalue of Ad(a) has absolute value 1. Hence if c is sufficiently small, it is obvious that no eigenvalue of $(Ad(a \exp Z))_{g/\delta}$ can be 1 for $Z \in \mathfrak{z}_0$. This shows that $\exp \mathfrak{z}_0 \subset \Xi'$. Let τ denote the distribution on \mathfrak{z}_0 obtained from σ by applying the procedure of [2 (m), § 10] to \mathfrak{z} (in place of g). Since

$$\mu_{\mathfrak{g}/\mathfrak{z}}(z)\,\sigma=\chi_{b^*}(z)\,\sigma\ (z\in\mathfrak{Z}),$$

it follows from the corollary of [2 (m), Lemma 24] and the definition of $\mu_{g/3}$ [2 (m), § 12] that

$$\partial(p_{\delta})\tau = \chi(p)\tau \quad (p \in I(\mathfrak{g}_c)),$$

where $\chi = \chi_{\lambda}^{b}$ and $\lambda = \log b^{*}$. Now $b \subset \mathfrak{z}$ since $a \in B$. Therefore $T_{\mathfrak{z}} = \tau$ satisfies all the conditions of § 13. Let \mathfrak{z}_{0}' be the set of those elements of \mathfrak{z}_{0} which are regular in \mathfrak{z} . Then we know from [2 (m), Lemma 32] that

$$\tau(Z) = \xi_{\mathfrak{z}}(Z) \left| v_a (\exp Z) \right|^{\frac{1}{2}} \Theta(a \exp Z) \quad (Z \in \mathfrak{z}_0').$$

Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{z} and A the corresponding Cartan subgroup of G. It is easy to verify that

$$|D(a \exp H)| = |\pi_{\mathfrak{z}}^{\mathfrak{a}}(H) \xi_{\mathfrak{z}}(H)|^{2} |\nu_{a} (\exp H)|$$

for $H \in \mathfrak{a}$ and therefore

$$|\pi_{3}^{a}(H)\tau(H)| = |D(a \exp H)|^{\frac{1}{2}} |\Theta(a \exp H)|$$

for $H \in \mathfrak{a}' \cap \mathfrak{z}_0$. Hence we conclude from Lemma 19 and condition 2) that τ is a tempered distribution on \mathfrak{z}_0 . Moreover if we take $\mathfrak{a} = \mathfrak{b}$, it follows from condition 3) that $\tau = 0$ pointwise on $\mathfrak{z}_0 \cap \mathfrak{b}'$. Therefore (see the corollary of Lemma 29), $\tau = 0$ on \mathfrak{z}_0 . This, in turn, implies that $\Theta = 0$ pointwise on $\mathfrak{a} \exp \mathfrak{z}_0' = G' \cap (\mathfrak{a} \exp \mathfrak{z}_0)$. But $V = (\mathfrak{a} \exp \mathfrak{z}_0)^G$ is open in G [2 (m), Lemma 14]. Hence $\Theta = 0$ on V.

Now we drop the assumption that $a \in B$. Define θ , \mathfrak{k} , \mathfrak{p} and K as in [2 (m), § 16] corresponding to $\mathfrak{h} = \mathfrak{b}$. Then $B \subset K$ [2 (m), Cor. 5 of Lemma 26]. Let a be any Cartan subalgebra of \mathfrak{z} . We can choose $x \in G$ such that $\theta(\mathfrak{a}^x) = \mathfrak{a}^x$ and $\mathfrak{a}^x \cap \mathfrak{k} \subset \mathfrak{b}$ (see Lemma 45 below). Let A be the Cartan subgroup of G corresponding to $\mathfrak{h} = \mathfrak{a}^x$. Then $a^x \in A$. Let $a^x = a_0 \exp H$ where $a_0 \in A \cap K$ and $H \in \mathfrak{h} \cap \mathfrak{p}$ (see [2 (m), Cor. 4 of Lemma 26]). Since K is connected and K/Z_G is compact, we can choose $k \in K$ such that $b = a_0^k \in B$. Then

$$a^{kx} = b \exp Z_0$$

where $Z_0 = H^k \in \mathfrak{p} \subset [\mathfrak{g}, \mathfrak{g}]$. Let \mathfrak{z}_b denote the centralizer of b in \mathfrak{g} . It is obvious that

 $\mathbf{290}$

 $Z_0 \in_{\mathcal{J}b}$. Moreover since $Z_0 \in \mathfrak{p}$, all the eigenvalues of ad Z_0 are real [2 (i), Lemma 27]. Hence by applying the result obtained above to b, we conclude that

$$a^{kx} = b \exp Z_0 \notin \operatorname{Supp} \Theta.$$

Therefore since Θ is invariant, it follows that $a \notin \text{Supp } \Theta$. This proves the lemma.

§ 21. Some elementary facts about Cartan subgroups

Let a be a Cartan subalgebra of \mathfrak{g} and A the corresponding Cartan subgroup of G. Define \mathfrak{a}_R and \mathfrak{a}_I as in § 11.

LEMMA 45. Let A_I be the subgroup of all $a \in A$ such that all eigenvalues of Ad(a) have absolute values 1. Then $(a, H) \rightarrow a \exp H$ $(a \in A_I, H \in \mathfrak{a}_R)$ is a topological mapping of $A_I \times \mathfrak{a}_R$ onto A. Moreover for any $a \in A_I$, we can choose $x \in G$ such that 1) $a^x \in B$, 2) $\theta(\mathfrak{a}^x) = \mathfrak{a}^x$ and 3) $(\mathfrak{a}_I)^x \subset \mathfrak{b}$. Finally, x may be selected to lie in K if $\theta(\mathfrak{a}) = \mathfrak{a}$.

It follows from [2 (b), p. 100] that we can choose $y \in G$ such that $\theta(a^y) = a^y$. Then $(a_I)^y$ is an abelian subspace of \mathfrak{k} . Since \mathfrak{b} is maximal abelian in \mathfrak{k} and K/Z_G is compact, we can choose $k \in K$ such that $(a_I)^{ky} \subset \mathfrak{b}$. Replacing \mathfrak{a} by \mathfrak{a}^{ky} , we can now obviously assume that $\theta(\mathfrak{a}) = \mathfrak{a}$ and $\mathfrak{a}_I \subset \mathfrak{b}$. Then the first statement follows from the results of [2 (m), § 16]. Moreover it is clear that $A_I = A \cap K \subset K = B^K$. Fix $a \in A_I$ and choose $k \in K$ such that $b = a^k \in B$. Let \mathfrak{z} be the centralizer of b in \mathfrak{g} and Ξ the analytic subgroup of G corresponding to \mathfrak{z} . Then \mathfrak{a}^k and \mathfrak{b} are two Cartan subalgebras of \mathfrak{z} and $\mathfrak{a}_I^k + \mathfrak{b} \subset \mathfrak{z} \cap \mathfrak{k}$. Since \mathfrak{b} is maximal abelian in $\mathfrak{z} \cap \mathfrak{k}$, we can choose $\xi \in \Xi \cap K$ such that $(\mathfrak{a}_I)^{\xi k} \subset \mathfrak{b}$. Put $x = \xi k$. Then $\mathfrak{a}^x = \mathfrak{b}^{\xi} = \mathfrak{b}$ and $(\mathfrak{a}_I)^x \subset \mathfrak{b}$. Moreover since $x \in K$, it is clear that $\theta(\mathfrak{a}^x) = \mathfrak{a}^x$. The last statement follows from the fact that we can take y = 1 if $\theta(\mathfrak{a}) = \mathfrak{a}$.

COROLLARY. An element a of G lies in B^G if and only if 1) a is semisimple and 2) all eigenvalues of Ad(a) have absolute value 1.

Since $B \subset K$, it is obvious that any $a \in B^G$ fullfills these two conditions. Conversely suppose these conditions hold. Then by 1), a is contained in some Cartan subgroup A of G [2 (m), Cor. of Lemma 5]. Therefore by 2) $a \in A_I$. But then $a \in B^G$ by Lemma 45.

We write $A_R = \exp \mathfrak{a}_R$. By Lemma 45, every $h \in A$ can be written uniquely in the form $h = h_1 h_2$ $(h_1 \in A_I, h_2 \in A_R)$. We call h_1 and h_2 the components of h in A_I and A_R respectively.

§ 22. Proof of the existence

We now come to the proof of the existence of Θ in Theorem 3. In view of later applications, we shall consider a somewhat more general situation.

Fix a connected component \mathfrak{F}^+ of \mathfrak{F}' and a point $b^* \in B^*$ such that

$$\lambda = \log b^* \in \operatorname{Cl}(\mathfrak{F}^+).$$

Select an open convex neighborhood c_0 of zero in c and define

$$g_0 = c_0 + g_1(c) \quad (0 < c \le \pi = 3.14...)$$

as in §14. We assume that c_0 is so small that the exponential mapping of g into G is univalent and regular on g_0 (see [2 (m), § 9]).

Fix $b \in B$ and let $\mathfrak{z} = \mathfrak{z}_b$ denote the centralizer of b in \mathfrak{g} . Define $T_b^+ = T_{\mathfrak{z},\lambda}^+$ and $S_b^+ = S_{\mathfrak{z},\lambda}^+$ in the notation of § 18 corresponding to the constants $a_s = \langle (b^*)^s, b \rangle$ $(s \in W_G)$. (Here we have to observe that $b^t = b$ for $t \in W_k \cap W(\mathfrak{z}/\mathfrak{b})$ and therefore $a_{ts} = a_{s}$.)

Let $\Xi = \Xi$ (b) denote the analytic subgroup of G corresponding to 3. Put $\mathfrak{z}_0 = \mathfrak{g}_0 \cap \mathfrak{z}$ and $\Xi_0(b) = \Xi_0 = \exp \mathfrak{z}_0$. Then Ξ_0 is an open and completely invariant subset of Ξ [2 (m), Lemma 8]. As usual define the function $\xi_{\mathfrak{z}}$ on 3 by

$$\xi_{\mathfrak{z}}(Z) = \left| \det \left\{ (e^{\operatorname{ad} Z/2} - e^{-\operatorname{ad} Z/2}) / \operatorname{ad} Z \right\} \right|^{\frac{1}{2}} \quad (Z \in \mathfrak{z}).$$

Then ξ_3 is analytic and nowhere zero on z_0 . Put

$$\Phi_{b}^{+} (\exp Z) = \xi_{\mathfrak{z}}(Z)^{-1} T_{b}^{+}(Z) \quad (Z \in \mathfrak{g}_{0} \cap \mathfrak{z}')$$

where \mathfrak{z}' is the set of those elements of \mathfrak{z} which are regular in \mathfrak{z} . Then Φ_b^+ is a locally summable function on $\Xi_0(b)$.

Define the homomorphism $\mu_b = \mu_{g/3}$ as in [2 (m), § 12].

LEMMA 46.
$$\mu_b(z) \Phi_b^+ = \chi_{b^*}(z) \Phi_b^+ \quad (z \in \mathcal{X})$$

as a distribution on $\Xi_0(b)$.

This follows immediately from the corollary of [2 (m), Lemma 24] (applied to 3) and the fact (see § 18) that $\partial(p_3) T_b^+ = p_b(\lambda) T_b^+$ for $p \in I(\mathfrak{g}_c)$.

We have seen in [2 (m), §22] that there exists an invariant analytic function D_b on \mathfrak{z} such that

$$\Delta(b \exp H) = \pi_{\mathfrak{z}}(H) D_{\mathfrak{z}}(H) \quad (H \in \mathfrak{b}).$$

Put $\Xi_0''(b) = \Xi_0(b) \cap (b^{-1}G')$ and let \mathfrak{z}'' be the set of all points $Z \in \mathfrak{z}'$ where $D_b(Z) \neq 0$. Then it is clear that $\Xi_0''(b) = \exp(\mathfrak{g}_0 \cap \mathfrak{z}'')$. Put

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

 $\Theta_{b}^{+} (\exp Z) = D_{b}(Z)^{-1}T_{b}^{+}(Z) \quad (Z \in \mathfrak{g}_{0} \cap \mathfrak{z}'').$

Then Θ_b^+ is an analytic function on $\Xi_0^{\prime\prime}(b)$. Similarly define

$$\Psi_b^+ (\exp Z) = S_b^+ (Z) \quad (Z \in \mathfrak{z}_0).$$

Then Ψ_b^+ is a continuous function on $\Xi_0(b)$.

Define
$$v_b(y) = \det(\operatorname{Ad}(by)^{-1} - 1)_{g/3} \quad (y \in \Xi)$$

as in [2 (m), § 14].

LEMMA 47. Let 'z be the set of all points $Z \in \mathfrak{z}$ where $\mathfrak{v}_b(\exp Z) \neq 0$. Then there exists a locally constant function ε_b on 'z such that $\varepsilon_b^4 = 1$ and

$$\xi_{\mathfrak{z}}(Z) \left| \mathfrak{v}_{\mathfrak{b}}(\exp Z) \right|^{\frac{1}{2}} = \varepsilon_{\mathfrak{b}}(Z) D_{\mathfrak{b}}(Z) \quad (Z \in \mathfrak{z}).$$

It would be enough to verify that

$$\xi_{3}(Z)^{4} \nu_{b}(\exp Z)^{2} = D_{b}(Z)^{4}$$

for $Z \in \mathfrak{z}$. Since both sides are analytic functions on \mathfrak{z} which are invariant under Ξ , it would be enough to do this when Z varies in some non-empty open subset of \mathfrak{b} . Hence our assertion follows from [2 (m), Lemma 33].

COROLLARY.
$$|v_a(\exp Z)|^{\frac{1}{2}}\Theta_b^+(\exp Z) = \varepsilon_b(Z)\Phi_b^+(\exp Z)$$

for $Z \in \mathfrak{g}_0 \cap \mathfrak{z}''$.

This is obvious. Put $\mathfrak{z}_0^{\prime\prime} = \mathfrak{g}_0 \cap \mathfrak{z}^{\prime\prime}$ and let u be an element in G such that $\mathfrak{b}^u = \mathfrak{b}$.

LEMMA 48. We have the relations

$$\Theta_{b^{u^+}}(\exp Z^u) = \Theta_{b^+}(\exp Z), \quad \Psi_{b^{u^+}}(\exp Z^u) = \Psi_{b^+}(\exp Z)$$

for $Z \in \mathfrak{z}_0^{\prime\prime}$.

Since \mathfrak{z}^{u} is the centralizer of b^{u} in \mathfrak{g} , it is clear that $\mathfrak{\Theta}_{b^{u}}^{+}$ (exp Z^{u}) and $\Psi_{b^{u}}^{+}$ (exp Z^{u}) are defined for $Z \in \mathfrak{z}_{\mathfrak{g}_{0}}^{\prime\prime\prime}$. Let t be an element in W_{G} such that $H^{u} = tH$ for $H \in \mathfrak{b}$. It is obvious that $\pi_{\mathfrak{z}^{u}} = \gamma \pi_{\mathfrak{z}}^{t}$ where $\gamma = \pm 1$. Therefore since

$$\Delta(b^u \exp H^u) = \varepsilon(t) \,\Delta(b \exp H) \quad (H \in \mathfrak{b}),$$

it follows that $D_{b^u}(H^u) = \varepsilon(t) \gamma D_b(H)$. But the function

 $\mathbf{293}$

$$Z \to D_{b^u}(Z^u) - \varepsilon(t) \, \gamma \, D_b(Z) \quad (Z \in \mathfrak{z})$$

is obviously analytic and invariant under Ξ . Hence we can conclude that

$$D_{b^{u}}(Z^{u}) = \varepsilon(t) \gamma D_{b}(Z) \quad (Z \in \mathfrak{z}).$$

Now for any $\mu \in \mathfrak{F}^+$, let $T_{\mathfrak{z},\mu}$ be the distribution of Lemma 37 corresponding to the constants $a_s = \langle (b^*)^s, b \rangle$ ($s \in W_G$). Similarly define $T_{\mathfrak{z}^u,\mu}$ on \mathfrak{z}^u corresponding to the constants $a_s = \langle (b^*)^s, b^u \rangle$. Then

$$\pi_{\mathfrak{z}^{\mu}}(uH) T_{\mathfrak{z}^{u},\mu}(uH) = \sum_{s \in W_{G}} \varepsilon(s) \langle (b^{*})^{s}, b^{u} \rangle e^{s\mu(uH)}$$
$$= \varepsilon(t) \sum_{s \in W_{G}} \varepsilon(s) \langle (b^{*})^{s}, b \rangle e^{s\mu(H)} = \varepsilon(t) \pi_{\mathfrak{z}}(H) T_{\mathfrak{z},\mu}(H) \quad (H \in \mathfrak{b}').$$

Hence

$$T_{\mathfrak{z}^{u},\mu}(uH) = \varepsilon(t) \gamma T_{\mathfrak{z},\mu}(H) \quad (H \in \mathfrak{b}').$$

Now consider the distribution

$$T_{\mu}': f \to \int f(Z) T_{\mathfrak{z}^{u},\mu}(uZ) dZ \quad (f \in C_{c}^{\infty}(\mathfrak{z}))$$

on 3. It is obviously invariant and tempered. Moreover it is clear that $p_{\mathfrak{z}^u} = (p_{\mathfrak{z}})^u$ for $p \in I(\mathfrak{g}_c)$. Let dZ' denote the Euclidean measure on \mathfrak{z}^u which corresponds to dZunder the mapping $Z' = Z^u$ $(Z \in \mathfrak{z})$. Then

$$T_{\mu}'(\partial(p_{\delta})^{*}f) = \int f(u^{-1}Z'; \ \partial(p_{\delta})^{*}) T_{\delta^{u},\mu}(Z') dZ'$$
$$= \int f'(Z'; \ \partial(p_{\delta^{u}})^{*}) T_{\delta^{u},\mu}(Z') dZ'$$
$$= p_{6}(\mu) \int f'(Z') T_{\delta^{u},\mu}(Z') dZ' = p_{6}(\mu) T_{\mu}'(f)$$

for $p \in I(\mathfrak{g}_c)$ and $f \in C_c^{\infty}(\mathfrak{z})$. Here f' denotes the function $Z' \to f(u^{-1}Z')$ $(Z' \in \mathfrak{z}^u)$ in $C_c^{\infty}(\mathfrak{z}^u)$. Hence it follows from the uniqueness assertion of Lemma 37 that

$$T_{\mu}' = \varepsilon(t) \gamma T_{\mathfrak{z},\mu}.$$
$$T_{\mathfrak{z}^{\mu},\mu}(f') = \varepsilon(t) \gamma T_{\mathfrak{z},\mu}(f)$$

Therefore

and by making
$$\mu$$
 tend to λ , we conclude that

$$T_{b^{u^{+}}}(f') = \varepsilon(t) \gamma T_{b^{+}}(f) \quad (f \in C_{c}^{\infty}(\mathfrak{z})).$$

This proves that

 $T_{b^{u^{+}}}(Z^{u}) = \varepsilon(t) \gamma T_{b^{+}}(Z) \quad (Z \in \mathfrak{z}').$

The first assertion of the lemma is now obvious.

Define $\nabla_{\mathfrak{z}}$, $\nabla_{\mathfrak{z}^{u}}$ and $\varpi_{\mathfrak{g}/\mathfrak{z}^{u}}$ as in §18. It is clear that

$$\nabla_{\mathfrak{z}^{\mathfrak{u}}}f' = (\nabla_{\mathfrak{z}}f)'$$

for $f \in C_c^{\infty}(\mathfrak{z}')$. On the other hand $\varpi_{\mathfrak{g}/\mathfrak{z}^u} = \varepsilon(t) \gamma (\varpi_{\mathfrak{g}/\mathfrak{z}})^t$. Therefore it is clear that

$$q_{\mathfrak{g}/\mathfrak{z}^{u}} = \varepsilon(t) \, \gamma \, (q_{\mathfrak{g}/\mathfrak{z}})^{u}$$

in the notation of §18. Hence

$$\boldsymbol{\varpi}(\mu) \, S_{\mathfrak{z}^{\mathfrak{u}},\mu}(Z^{\mathfrak{u}}) = T_{\mathfrak{z}^{\mathfrak{u}},\mu}(Z^{\mathfrak{u}}; \nabla_{\mathfrak{z}^{\mathfrak{u}}} \circ \partial (q_{\mathfrak{g}/\mathfrak{z}^{\mathfrak{u}}})) = T_{\mathfrak{z},\mu}(Z; \nabla_{\mathfrak{z}} \circ \partial (q_{\mathfrak{g}/\mathfrak{z}})) = \boldsymbol{\varpi}(\mu) \, S_{\mathfrak{z},\mu}(Z)$$

for $Z \in \mathfrak{z}'$ and $\mu \in \mathfrak{F}^+$. This shows that

$$S_{\mathfrak{z}^{u},\mu}\left(Z^{u}\right)=S_{\mathfrak{z},\mu}\left(Z\right)$$

and so by making μ tend to λ , we deduce that

$$S_{b^{u^+}}(Z) = S_{b^+}(Z) \quad (Z \in \mathfrak{z}).$$

Obviously this implies the second assertion of the lemma.

COROLLARY. Let x be an element in G such that $b^{x} \in B$. Then

$$\Theta_{b^{x^{+}}} (\exp Z^{x}) = \Theta_{b^{+}} (\exp Z),$$
$$\Psi_{b^{x^{+}}} (\exp Z^{x}) = \Psi_{b^{+}} (\exp Z) \quad (Z \in \mathfrak{z}_{0}^{\prime\prime})$$

Since $b^x \in B$, it is clear that $B^{x^{-1}} \subset \Xi$. Hence \mathfrak{b} and $\mathfrak{b}^{x^{-1}}$ are two fundamental Cartan subalgebras of \mathfrak{z} and therefore we can choose $y \in \Xi$ such that $\mathfrak{b}^{yx^{-1}} = \mathfrak{b}$ (see [2 (d), p. 237]). Put $u = xy^{-1}$. Then x = uy and $b^x = b^u$. Therefore

$$\Theta_{b^x}(\exp Z^x) = \Theta_{b^u}(\exp Z^{uy}) = \Theta_b(\exp Z^y)$$

by Lemma 48. Similarly

$$\Psi_{b^x}^+ (\exp Z^x) = \Psi_b^+ (\exp Z^y) \quad (Z \in \mathfrak{z}_0'').$$

Since Θ_b^+ and Ψ_b^+ are obviously invariant under Ξ , we get the required assertion. Since $b^x = b^u$, we have obtained the following result during the above proof.

LEMMA 49. If two elements of B are conjugate under G, then they are also conjugate under the normalizer of B in G.

Now fix $a \in B^G$, define \mathfrak{z}_a and $\Xi(a)$ as usual (see [2 (m), §4]) and put $\Xi_0(a) = \exp(\mathfrak{g}_0 \cap \mathfrak{z}_a), \ \Xi_0''(a) = \Xi_0(a) \cap (a^{-1}G')$. Choose $x \in G$ such that $a^x \in B$ and define

$$\begin{split} &\Theta_{a}{}^{+}(y) = \Theta_{a}{}^{x}{}^{+}(y^{x}) \quad (y \in \Xi_{0}{}^{\prime\prime}(a)) \\ &\Psi_{a}{}^{+}(y) = \Psi_{a}{}^{x}{}^{+}(y^{x}) \quad (y \in \Xi_{0}(a)). \end{split}$$

It follows from the corollary of Lemma 48 that these definitions are independent of the choice of x.

We now define two functions Θ^+ and Ψ^+ on G' as follows. Fix $h \in G'$ and let a be the centralizer of h in g and A the corresponding Cartan subgroup of G. Define A_I and A_R as in §21 and let $h = h_1 h_2$ $(h_1 \in A_I, h_2 \in A_R)$. Since every eigenvalue of ad H is real for $H \in \mathfrak{a}_R$ and since h is regular, it is clear that $h_2 \in \Xi_0''(h_1)$. We define

$$\Theta^+(h) = \Theta_{h_1}^+(h_2), \quad \Psi^+(h) = \Psi_{h_1}^+(h_2).$$

(Observe that $A_I \subset B^G$ from the corollary of Lemma 45.) If $x \in G$, it is obvious that

$$\Theta^+(h^x) = \Theta_{h_1x^+}(h_2^x) = \Theta_{h_1}^+(h_2) = \Theta^+(h).$$

Similarly $\Psi^{+}(h^{x}) = \Psi^{+}(h)$. This shows that Θ^{+} and Ψ^{+} are invariant under G. We intend to prove that they are analytic on G'.

LEMMA 50. Fix $b \in B$. Then there exists a number $c_b > 0$ with the following property. Let $\mathfrak{z}_b(c_b)$ be the set of all $Z \in \mathfrak{z}_b$ such that (1) $|\operatorname{Im} \mu| < c_b$ for every eigenvalue μ of $(\operatorname{ad} Z)_{\mathfrak{g}/\mathfrak{z}_b}$. Then

$$\Theta_b^+(\exp Z) = \Theta^+(b \exp Z), \qquad \Psi_b^+(\exp Z) = \Psi^+(b \exp Z)$$

for all $Z \in \mathfrak{g}_0 \cap \mathfrak{z}_b(c_b)$ such that $b \exp Z \in G'$.

It is obvious that if c_b is sufficiently small, $\nu_b(\exp Z) \neq 0$ for $Z \in \mathfrak{z}_b(c_b)$. Let $\mathfrak{z}_b'(c_b)$ be the set of those elements of $\mathfrak{z}_b(c_b)$ which are regular in \mathfrak{z}_b . Then for any $Z \in \mathfrak{g}_0 \cap \mathfrak{z}_b(c_b)$, the two conditions $b \exp Z \in G'$ and $Z \in \mathfrak{g}_0 \cap \mathfrak{z}_b'(c_b)$ are obviously equivalent. Hence, in particular,

$$\mathfrak{z}_0\cap\mathfrak{z}_b'(c_b)\subset\mathfrak{g}_0\cap\mathfrak{z}_b''.$$

Fix $Z_0 \in \mathfrak{g}_0 \cap \mathfrak{z}_b'(c_b)$ and let a be the centralizer of Z_0 in \mathfrak{z}_b . Then a is a Cartan subalgebra of g. Since $b = \theta(b)$, \mathfrak{z}_b is stable under θ and therefore, by Lemmas 29 and 45, we can choose $y \in \Xi(b)$ such that \mathfrak{a}^y is stable under θ and $(\mathfrak{a}_I)^y \subset \mathfrak{b}$. Put $H_0 = Z_0^y$.

296

and

⁽¹⁾ Im μ denotes, as usual, the imaginary part of a complex number μ .

Since Θ_b^+ , Θ^+ , Ψ_b^+ and Ψ^+ are all invariant under $\Xi(b)$, it would be enough to verify that

$$\Theta_{b}^{+}(\exp H_{0}) = \Theta^{+}(b \exp H_{0}), \quad \Psi_{b}^{+}(\exp H_{0}) = \Psi^{+}(b \exp H_{0}).$$

So we may assume that $Z_0 = H_0$, y = 1, $\theta(\mathfrak{a}) = \mathfrak{a}$ and $\mathfrak{a}_I = \mathfrak{a} \cap \mathfrak{k} \subset \mathfrak{b}$.

Let $H_0 = H_1 + H_2$ where $H_1 \in \mathfrak{a}_I$, $H_2 \in \mathfrak{a}_R$. Then $h = b \exp H_0 = h_1 h_2$ where $h_1 = b \exp H_1 \in A_I$ and $h_2 = \exp H_2$. (A is, as before, the Cartan subgroup of G corresponding to a.) It is clear that $H_1 \in \mathfrak{z}_b(c_b)$ and therefore $v_b (\exp H_1) \neq 0$. Hence $\mathfrak{z}_{h_1} \subset \mathfrak{z}_b$. Now put $\mathfrak{z}_1 = \mathfrak{z}_b$, $\mathfrak{z}_2 = \mathfrak{z}_{h_1}$. Then \mathfrak{z}_2 is the centralizer of H_1 in \mathfrak{z}_1 so that Lemma 31 is applicable.

For $\mu \in \mathfrak{F}'$, define the distributions $T_{i,\mu} = T_{\mathfrak{F}_i,\mu}$ and $S_{i,\mu} = S_{\mathfrak{F}_i,\mu}$ on \mathfrak{F}_i (i = 1, 2) as in Lemma 37 corresponding to the constants $a_s = \langle (b^*)^s, b \rangle$ $(s \in W_G)$. For any $f \in C_c^{\infty}(\mathfrak{F}_2)$, define $f_{H_1}(Z) = f(Z - H_1)$ $(Z \in \mathfrak{F}_2)$ and put

$$T_{2,\mu'}(f) = T_{2,\mu}(f_{H_1}), \quad S_{2,\mu'}(f) = S_{2,\mu}(f_{H_1}).$$
$$\pi_{\mathfrak{z}_2}(H) T_{2,\mu'}(H) = \sum_{s \in Wa} \varepsilon(s) \langle (b^*)^s, b \rangle e^{s\mu(H+H_1)} \quad (H \in \mathfrak{b}').$$

Then

Moreover
$$H_1$$
 lies in the center of z_2 and

$$\langle (b^*)^s, h_1 \rangle = \langle (b^*)^s, b \rangle e^{s\lambda(H_1)} \quad (s \in W_G).$$

Now suppose μ tends to λ ($\mu \in \mathfrak{F}^+$). Then it follows from Lemma 38 that

$$\lim_{\mu \to \lambda} T_{2, \mu'}(f) = T_{h_1}^{+}(f)$$

and similarly (see the corollary of Lemma 41)

$$\lim_{\mu \to \lambda} S_{2,\mu'}(f) = S_{h_1}^+(f) \quad (f \in C_c^\infty(\mathfrak{z}_2)).$$
$$T_c^+ = T_{2,\mu'}^+ \quad S_c^+ = S_{2,\mu'}^+ \quad (i = 1, 2)$$

Define

$$= 1 = \frac{1}{\delta_i} \cdot \lambda \quad , \quad \sim 1 \quad \sim \frac{1}{\delta_i} \cdot \lambda \quad (r = 1, 2)$$

in the notation of §18. Then it is clear from the above result that

$$T_{h_1}^{+}(f) = T_2^{+}(f_{H_1}), \quad S_{h_1}^{+}(f) = S_2^{+}(f_{H_1}) \quad (f \in C_c^{\infty}(\mathfrak{z}_2)).$$

Moreover $T_b^+ = T_1^+$, $S_b^+ = S_1^+$ by definition. Hence

$$\Theta^{+}(h) = \Theta_{h_{1}}^{+}(h_{2}) = D_{h_{1}}(H_{2})^{-1} T_{h_{1}}^{+}(H_{2}) = D_{h_{1}}(H_{2})^{-1} T_{2}^{+}(H_{1} + H_{2}).$$

On the other hand $T_2^+ = \eta_0 T_1^+$ pointwise on $g' \cap \mathfrak{z}_2$ by Lemma 42 and 20 - 652923. Acta mathematica. 113. Imprimé le 12 mai 1965.

$$\Theta_b^+ (\exp H_0) = D_b (H_0)^{-1} T_1^+ (H_0).$$

Hence it would be enough to verify that $D_b(H)\eta_0(H) = D_{h_1}(H-H_1)$ for $H \in \mathfrak{a}$. Put

$$v(Z) = D_{h_1}(Z - H_1) - D_b(Z) \eta_0(Z) \quad (Z \in z_0).$$

Then v is an analytic function on \mathfrak{z}_2 which is invariant under $\Xi_2 = \Xi(h_1)$. So it would be enough to show that v = 0 on \mathfrak{b}' . But it follows from the definition of D_{h_1} , D_b and η_0 that

$$v(H) = \pi_{\mathfrak{z}_{\mathfrak{z}}} (H - H_1)^{-1} \Delta(h_1 \exp (H - H_1))$$

- $\pi_{\mathfrak{z}_1}(H)^{-1} \Delta(b \exp H) \pi_{\mathfrak{z}_1}(H) \pi_{\mathfrak{z}_2}(H)^{-1} = 0 \quad (H \in \mathfrak{b}'),$

since $\pi_{\delta_3}(H-H_1) = \pi_{\delta_3}(H)$. This proves the first statement of the lemma. On the other hand,

$$\Psi^{+}(h) = \Psi_{h_{1}}^{+}(h_{2}) = S_{h_{1}}^{+}(H_{2}) = S_{2}^{+}(H_{1} + H_{2})$$
$$= S_{1}^{+}(H_{1} + H_{2}) = S_{b}^{+}(H_{0}) = \Psi_{b}^{+}(\exp H_{0})$$

since $S_1^+ = S_2^+$ on z_2 from Lemma 42. This proves the second statement.

COROLLARY. Θ^+ and Ψ^+ are both analytic on G'. Moreover Ψ^+ can be extended to a continuous function on G.

Let Ω be the set of all points $x_0 \in G$ with the following property. There exists an open neighborhood U of x_0 in G such that Θ^+ and Ψ^+ are both analytic on $U \cap G'$ and Ψ^+ extends to a continuous function on U. We have to verify that $\Omega = G$. Clearly Ω is an open and invariant subset of G. Therefore, in view of [2 (m), Lemma 7], it would be sufficient to verify that every semisimple element of G lies in Ω .

Fix a semisimple element $a \in G$. Then we can choose (see the corollary of [2 (m), Lemma 5]) a Cartan subgroup A of G containing a. Let $a = a_1 a_2$ where $a_1 \in A_I$, $a_2 \in A_R$. By Lemma 45 we can choose $x \in G$ such that $b = a_1^x \in B$. Since Ω is invariant, it would be enough to verify that $a^x \in \Omega$. Hence we may assume that x = 1 and $a = ba_2$ where $b = a_1 \in A_I \cap B$. Now put $V = \exp(\mathfrak{g}_0 \cap \mathfrak{z}_b(c_b)) \subset \Xi(b)$ in the notation of Lemma 50. Then V is an open neighborhood of 1 in $\Xi(b)$ and

$$\Theta^+(by) = \Theta_b^+(y), \quad \Psi^+(by) = \Psi_b^+(y)$$

for $y \in V' = V \cap (b^{-1}G')$. Moreover we note that Ψ_b^+ is continuous on V, $a_2 \in V$ and $\nu_b(a_2) \neq 0$.

 $\mathbf{298}$

Now let $x \to x^*$ denote the natural mapping of G on $G^* = G/\Xi(b)$ and fix open neighborhoods V_0 and G_0^* of a_2 and 1^* in V and G^* respectively. If V_0 and G_0^* are sufficiently small, we can choose an analytic mapping ϕ of G_0^* into G such that:

1)
$$(\phi(x^*))^* = x^* (x^* \in G_0^*)$$

2) The mapping $\psi: (x^*, y) \to (by)^{\phi(x^*)}$ of $G_0^* \times V_0$ into G is univalent and regular.

This is evidently possible (see [2 (m), Lemma 14]). Put $U = \psi(G_0^* \times V_0)$. Then U is an open neighborhood of $a = ba_2$ in G and ψ defines an analytic diffeomorphism of $G_0^* \times V_0$ onto U. Put $V_0' = V_0 \cap V'$ and $U' = U \cap G'$. Then it is obvious that $\psi(G_0^* \times V_0') = U'$. Since Θ^+ and Ψ^+ are invariant functions, it is clear that

$$\Theta^{+}(\psi(x^{*}, y)) = \Theta^{+}(by) = \Theta_{b}^{+}(y), \qquad \Psi^{+}(\psi(x^{*}, y)) = \Psi^{+}(by) = \Psi_{b}^{+}(y)$$

for $x^* \in G_0^*$ and $y \in V_0'$. However Θ_b^+ and Ψ_b^+ are both analytic on V'. Therefore it follows that Θ^+ and Ψ^+ are analytic on U'. Similarly since Ψ_b^+ is continuous on V, we conclude that Ψ^+ can be extended to a continuous function on U. This proves the corollary-

Define the character ξ_{ϱ} of B as in [2 (m), §18].

LEMMA 51. Let Z_G be the center of G. Then

$$\Theta^+(zx) = \xi_\varrho(z)^{-1} \langle b^*, z \rangle \Theta^+(x), \qquad \Psi^+(zx) = \langle b^*, z \rangle \Psi^+(x)$$

for $z \in Z_G$ and $x \in G'$.

Fix $h \in G'$ and let a be the centralizer of h in g and A the corresponding Cartan subgroup of G. Then $h = h_1 h_2$ $(h_1 \in A_I, h_2 \in A_R)$ and we can choose $y \in G$ such that $h_1^y \in B$ (Lemma 45). The required result holds for x = h if and only if it holds for $x = h^y$. Hence we may assume that y = 1 and therefore $h_1 \in B$. Then

$$\begin{split} \Theta^+(zh) &= \Theta_{zh_1}{}^+(h_2) = D_{zh_1}(H_2){}^{-1}T_{zh_1}{}^+(H_2), \\ \Psi^+(zh) &= \Psi_{zh_1}{}^+(h_2) = S_{zh_1}{}^+(H_2) \quad (z \in Z_G) \end{split}$$

where (1) $H_2 = \log h_2 \in \mathfrak{a}_R$. Now h_1 and zh_1 have the same centralizer \mathfrak{z} in \mathfrak{g} and so it is obvious from the definitions of the various distributions that

$$T_{zh_1}^{+} = \langle b^*, z \rangle T_{h_1}^{+}, \quad S_{zh_1}^{+} = \langle b^*, z \rangle S_{h_1}^{+}.$$

 $\Delta(zb) = \xi_{\varrho}(z) \Delta(b) \quad (b \in B).$

On the other hand

⁽¹⁾ As usual log denotes the inverse of the exponential mapping of a_R onto A_R .

Therefore it is clear that

$$D_{zh_1}(Z) = \xi_{\varrho}(z) D_{h_1}(Z) \quad (Z \in \mathfrak{z})$$

and now our assertions follow immediately.

LEMMA 52. Let A be a Cartan subgroup of G and put $A' = A \cap G'$. Then

$$\sup_{h\to H} |\Delta_A(h) \Theta^+(h)| < \infty,$$

in the notation of [2 (m), \S 19].

Since A_I/Z_G is compact, it would, in view of Lemma 51, be enough to prove the following result.

LEMMA 53. For any $a \in A_I$, we can choose an open neighborhood U of 1 in A such that $U \supset A_R$ and

$$\sup_{h \in \widetilde{U}'} \left| \Delta_A(ah) \Theta^+(ah) \right| < \infty$$

Here $U' = U \cap a^{-1}A'$.

By Lemma 45 we can select $x \in G$ such that $a^x \in B$. Hence, in view of the invariance of Θ^+ , we may assume, without loss of generality, that $a \in B$. Then from Lemma 50,

$$\Theta^+(a \exp Z) = \Theta_a^+(\exp Z) = D_a(Z)^{-1}T_a^+(Z)$$

for all $Z \in \mathfrak{g}_0 \cap \mathfrak{z}_a(c_a)$ such that $a \exp Z \in G'$. Let \mathfrak{a} be the Lie algebra of A. Then $\mathfrak{a} \subset \mathfrak{z}_a$. Put $\mathfrak{a}_0 = \mathfrak{a} \cap \mathfrak{g}_0 \cap \mathfrak{z}_a(c_a)$ and $U = \exp \mathfrak{a}_0$. Then $U \supset A_R$ and if $a \exp H \in G'$ $(H \in \mathfrak{a}_0)$, it is clear that

$$\left|\Delta_A(a \exp H)\Theta^+(a \exp H)\right| = \left|\Delta_A(a \exp H)\Theta_a^+(\exp H)\right| = \left|\pi_{\delta a}(H)T_a^+(H)\right|$$

from the corollary of Lemma 47 and [2 (m), Lemma 33]. Hence if we take into account Lemmas 28, 38 and 40, we get

$$\sup_{h\in U'} \left|\Delta_A(ah)\Theta^+(ah)\right| < \infty.$$

LEMMA 54. Θ^+ is locally summable on G and

$$\sup_{x \in G'} |D(x)|^{\frac{1}{2}} |\Theta^+(x)| < \infty.$$

$$z \Theta^+ = \chi_{b^*}(z) \Theta^+ \quad (z \in \mathfrak{Z})$$

Moreover

~ .

. .

Since there are only a finite number of non-conjugate Cartan subgroups of G, it follows from Lemma 52 that

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$\sup_{x \in G'} |D(x)|^{\frac{1}{2}} |\Theta^+(x)| < \infty.$$

Therefore Θ^+ is locally summable on G from [2 (m), Lemma 53].

Now fix $z \in 3$ and consider the distribution

$$T = z \Theta^+ - \chi_{b^*}(z) \Theta^+$$

on G. We have to show that T = 0. In view of [2 (m), Lemma 7], it would be enough to verify that no semisimple element of G lies in Supp T.

Fix a semisimple element $h \in G$. Then h lies in some Cartan subgroup A of G [2 (m), Cor. of Lemma 5]. Let $h = h_1 h_2$ $(h_1 \in A_I, h_2 \in A_R)$. Then again by Lemma 45, there exists $x \in G$ such that $h_1^x \in B$. T being invariant, it would be sufficient to prove that $h^x \notin \text{Supp } T$. Hence replacing (h, A) by (h^x, A^x) , we may assume that $a = h_1 \in B$. Let σ_T and σ_{Θ^+} be the distributions on $\Xi'(a)$ corresponding to T and Θ^+ respectively under [2 (m), Lemma 15]. Then

$$\sigma_T = |\boldsymbol{v}_a|^{-\frac{1}{2}} \mu_a(z) \left(|\boldsymbol{v}_a|^{\frac{1}{2}} \sigma_{\Theta^+} \right) - \chi_{b^*}(z) \sigma_{\Theta^+}$$

by [2 (m), Lemma 22] where $\mu_a = \mu_{g/3a}$ as in Lemma 46. Let θ_a denote the function $y \to \Theta^+(ay)$ on $\Xi'(a)$. Then it follows from [2 (i), Cor. 2 of Theorem 1] that θ_a is locally summable and therefore $\sigma_{\Theta^+} = \theta_a$ from the definition of σ_{Θ^+} . Hence it follows from Lemma 50 and the corollary of Lemma 47 that the distribution $|v_a|^{\frac{1}{2}}\sigma_{\Theta^+}$ coincides on $V = \exp(\mathfrak{g}_0 \cap \mathfrak{z}_a(c_a))$ with the locally summable function $\varepsilon_a(0) \Phi_a^+$. Therefore we conclude from Lemma 46 that $\sigma_T = 0$ on V. Since V is an open subset of $\Xi'(a)$ containing h_2 , we conclude [2 (m), Lemma 15] that T = 0 around $h = ah_2$. This proves Lemma 54.

LEMMA 55.
$$\Theta^+(b) = \Delta(b)^{-1} \sum_{s \in W_G} \varepsilon(s) \langle (b^*)^s, b \rangle$$

for $b \in B'$.

Fix $b \in B'$. Then $z_b = b$ and therefore $D_b(H) = \Delta(b \exp H)$ and

$$T_{b}^{+}(H) = \sum_{s \in W_{\mathcal{G}}} \varepsilon(s) \langle (b^{*})^{s}, b \rangle e^{\lambda(s^{-1}H)} \quad (H \in \mathfrak{b}).$$

Hence

$$\Theta^+(b) = \Theta_b^+(1) = D_b(0)^{-1}T_b^+(0) = \Delta(b)^{-1}\sum_{s \in W_{\mathcal{G}}} \varepsilon(s) \langle (b^*)^s, b \rangle.$$

This shows that Θ^+ satisfies all the conditions of Theorem 3. Therefore in view of Lemma 44, the proof of Theorem 3 is now complete.

§ 23. Further properties of Θ

Let a be a Cartan subalgebra of \mathfrak{g} and A the corresponding Cartan subgroup of G. Put $\mathfrak{a}_R' = \mathfrak{a}_R \cap \mathfrak{a}'(R)$ and $A_R' = A_R \cap A'(R)$ in the notation of [2 (m), § 19]. Let A^+ be a connected component of A'(R). Then it is obvious that $A^+ = A_I^+ A_R^+$ where A_I^+ is a connected component of A_I and $A_R^+ \subset A_R$.

Let us assume that $\theta(\mathfrak{a}) = \mathfrak{a}$. Then by Lemma 45 we can choose $k \in K$ such that $(A_I^+)^k \subset B$. Hence we may suppose that $A_I^+ \subset B$. Let 3 denote the centralizer of A_I^+ in g. Then a and b are both Cartan subalgebras of 3. Consider the complex-analytic subgroup Ξ_c of G_c corresponding to ad_{3c} . We can choose $y \in \Xi_c$ such that $\mathfrak{b}_c^y = \mathfrak{a}_c$. Put $W(A^+) = W(\mathfrak{z}/\mathfrak{a})$. Since \mathfrak{a}_I lies in the center of 3, every root of $(\mathfrak{z},\mathfrak{a})$ is real. Hence (see [2 (k), Lemma 6]) every element of $W(A^+)$ is induced on \mathfrak{a} by some element of the analytic subgroup Ξ of G corresponding to \mathfrak{z} . Let W_{Ξ} be the subgroup of those elements of $W(\mathfrak{z}/\mathfrak{b})$ which can be induced on \mathfrak{b} by some element of Ξ . Then $W_{\Xi} = W_k(\mathfrak{z}/\mathfrak{b})$ in the notation of § 18.

Put $\mathfrak{w}(A_I^+) = W_G \cap W(\mathfrak{z}/\mathfrak{b})$ and write $\mathfrak{w} = \mathfrak{w}(A_I^+)$ for simplicity.

LEMMA 56. Suppose t_1, t_2 are two elements in W_G such that

 $t_1^{y} \in W(A^+) t_2^{y}.$

Then $t_1 \in \mathfrak{w} t_2$.

Put
$$t = t_1 t_2^{-1}$$
. Then $t \in (W(A^+))^{y^{-1}} \cap W_G = W(\lambda/b) \cap W_G = w$.

COROLLARY. Let $r = [W_G: w]$ and t_1, \ldots, t_r a complete set of representatives in W_G for $w \setminus W_G$. Then the elements st_i^y ($s \in W(A^+)$, $1 \le i \le r$) are all distinct.

This is obvious from the above lemma.

LEMMA 57. Fix an element $b^* \in B^{*'}$ and define Θ as in Theorem 3. Then there exist unique complex numbers $c_{b^*}(s:t:A^+)$ ($s \in W(A^+), t \in W_G$) such that

1)
$$c_{b^*}(su^y:u^{-1}t:A^+) = c_{b^*}(s:t:A^+)$$
 $(u \in w),$
2) $\Delta_A(h_1h_2)\Theta(h_1h_2) = \sum_{t \in w \setminus W_G} \varepsilon(t) \langle (b^*)^t, h_1 \rangle \sum_{s \in W(A^+)} \varepsilon(s) c_{b^*}(s:t:A^+) \exp(s(t\lambda)^y(H_2))$

for $h_1 \in A_I^+$, $h_2 \in A_R^+$. Here $\lambda = \log b^*$ and (1) $H_2 = \log h_2$.

Let $H_1 \in \mathfrak{a}_I$ and $H_2 \in \mathfrak{a}_R$. Then since s^{-1} and y^{-1} leave H_1 fixed, it is clear that $\langle (b^*)^t, \exp H_1 \rangle \exp (s (t\lambda)^y (H_2)) = \exp (s (t\lambda)^y (H_1 + H_2))$

^{(&}lt;sup>1</sup>) See footnote 1, p. 299.

for $s \in W(A^+)$ and $t \in W_G$. Since λ is regular, the uniqueness is obvious from the corollary of Lemma 56. On the other hand the existence is seen as follows. We use the notation of § 18. Put $\mathfrak{a}^+ = \mathfrak{a}_I + \log A_R^+$. Then \mathfrak{a}^+ is a connected component of $\mathfrak{a}'(\mathfrak{z}:R)$ (see § 13).

LEMMA 58. Put

$$c(s:\mathfrak{F}^+:A^+) = \sum_{t \in \mathfrak{W}/W_{\Xi}} c_{\mathfrak{z}}(st^y:t^{-1}\mathfrak{F}^+:\mathfrak{a}^+)$$

for $s \in W(A^+)$ and any connected component \mathfrak{F}^+ of \mathfrak{F}' . Then

$$c_{b*}(s:t:A^+) = c(s:t_{\mathcal{X}}^+:A^+) \quad (s \in W(A^+), t \in W_G)$$

where \mathfrak{F}^+ is the component of $\log b^*$ in \mathfrak{F}' ($b^* \in B^{*'}$).

In view of Lemma 40, the definition of $c(s:\mathfrak{F}^+:A^+)$ is legitimate and it is obvious that

$$c(su^{y}:u^{-1}\mathfrak{F}^{+}:A^{+})=c(s:\mathfrak{F}^{+}:A^{+}) \quad (u\in\mathfrak{W}).$$

Therefore it would be sufficient to prove the following result.

LEMMA 59. Fix $b^* \in B^*$ and a connected component \mathfrak{F}^+ of \mathfrak{F}' such that $\lambda = \log b^* \in \operatorname{Cl} \mathfrak{F}^+$ and define Θ^+ , Ψ^+ as in § 22 corresponding to b^* and \mathfrak{F}^+ . Then

$$\Delta_{A}(h_{1}h_{2})\Theta^{+}(h_{1}h_{2}) = \sum_{t \in \mathfrak{w} \setminus W_{G}} \varepsilon(t) \langle (b^{*})^{t}, h_{1} \rangle \sum_{s \in W(A^{+})} \varepsilon(s) c (s:t \mathfrak{F}^{+}:A^{+}) \exp(s (t\lambda)^{y} (H_{2})),$$

and $\Psi^{+}(h_{1}h_{2}) = \sum_{t \in W \setminus W_{G}} \langle (b^{*})^{t}, h_{1} \rangle \sum_{s \in W(A^{+})} c(s:t \mathfrak{F}^{+}:A^{+}) \exp(s(t\lambda)^{y}(H_{2}))$

for $h_1 \in A_I^+$ and $h_2 \in A_R^+$. Here $H_2 = \log h_2$ as before.

Fix a point $b_0 \in A_I^+$. Then we can choose $H_0 \in \mathfrak{a}_I$ arbitrarily near zero such that 1) $\mathfrak{v}_{b_0}(\exp H_0) \neq 0$ and 2) every root of $(\mathfrak{z}_{b_0}, \mathfrak{a})$ which vanishes at H_0 is real. Put $b = b_0 \exp H_0$. Then $b \in A_I^+$ and it is obvious that $\mathfrak{z}_b = \mathfrak{z}$. This shows that the set V of those points $b \in A_I^+$ for which $\mathfrak{z}_b = \mathfrak{z}$, is dense in A_I^+ . Fix a point $b \in V$. Then from Lemma 50,

$$\Theta^{+}(b \exp Z) = \Theta_{b}^{+}(\exp Z) = D_{b}(Z)^{-1}T_{b}^{+}(Z), \quad \Psi^{+}(b \exp Z) = \Psi_{b}^{+}(\exp Z) = S_{b}^{+}(Z)$$

for all $Z \in \mathfrak{g}_0 \cap \mathfrak{z}_b(c_b)$ such that $b \exp Z \in G'$. Put $U = \mathfrak{a}^+ \cap \mathfrak{g}_0 \cap \mathfrak{z}_b(c_b)$ and let U' be the set of all points $H \in U$ where $\Delta_A(b \exp H) \neq 0$. Recall that P is the set of all positive roots of $(\mathfrak{g}, \mathfrak{b})$. Then we may assume, without loss of generality, that P'' is the

set of all positive roots of (g, a). Then it is clear that

$$D_b(\exp H) = \Delta_A(b \exp H) \pi_{\mathfrak{z}}^{\mathfrak{a}}(H)^{-1}$$

and therefore

$$\Delta_{A}(b \exp H) \Theta^{+}(b \exp H) = \pi_{\delta}^{\mathfrak{a}}(H) T_{b}^{+}(H) \quad (H \in U')$$

On the other hand it follows from Lemmas 38 and 40 that

$$\pi_{\mathfrak{z}}^{\mathfrak{a}}(H) T_{b}^{+}(H) = \sum_{t \in W_{\underline{s}} \setminus W_{G}} \varepsilon(t) \langle (b^{*})^{t}, b \rangle \sum_{s \in W(A^{+})} \varepsilon(s) c_{\mathfrak{z}}(s:t \mathfrak{F}^{+}:\mathfrak{a}^{+}) \exp(s(t\lambda)^{y}(H))$$

for $H \in U'$. Now suppose $H = H_1 + H_2$ $(H_1 \in \mathfrak{a}_I, H_2 \in \mathfrak{a}_R)$. Since s^{-1} and y^{-1} leave \mathfrak{a}_I pointwise fixed, it is clear that

$$\langle (b^*)^i, b \rangle \exp(s(t\lambda)^y(H)) = \langle (b^*)^i, h_1 \rangle \exp(s(t\lambda)^y(H_2))$$

for $s \in W(A^+)$ and $t \in W_G$. Here $h_1 = b \exp H_1$. Therefore since the function

$$h \rightarrow \Delta_A(h) \Theta^+(h) \quad (h \in A^+ \cap A')$$

extends to an analytic function on A^+ (see [2 (m), Lemma 31]), it is obvious that

$$\Delta_{A}(h_{1}h_{2})\Theta^{+}(h_{1}h_{2}) = \sum_{t \in W_{\Xi} \setminus W_{G}} \varepsilon(t) \langle (b^{*})^{t}, h_{1} \rangle \sum_{s \in W(A^{+})} \varepsilon(s) c_{\mathfrak{z}}(s:t\mathfrak{F}^{+}:\mathfrak{a}^{+}) \exp(s(t\lambda)^{y}(H_{2}))$$

for $h_1 \in A_I^+$, $h_2 \in A_R^+$. Our first assertion now follows immediately if we take into account Lemma 40.

Similarly we conclude from Lemmas 50 and 41 that

$$\Psi^{*+}(b \operatorname{exp} H) = S_{b}^{+}(H) = \sum_{t \in W_{\Xi} \setminus W_{G}} \langle (b^{*})^{t}, b \rangle \sum_{s \in W(A^{+})} c_{b}(s:t \mathfrak{F}^{+}:\mathfrak{a}^{+}) \operatorname{exp}(s(t\lambda)^{y}(H))$$

for $H \in U'$. Since Ψ^{+} extends to a continuous function on G (see the corollary of Lemma 50), this relation holds for all $H \in U$. Now $\log A_{R}^{+} \subset U$ and V is dense in A_{I}^{+} . Therefore the second assertion of the lemma is now obvious.

LEMMA 60. $c(s:\mathfrak{F}^+:A^+)=0$ unless $\mathfrak{R}\mu^y(s^{-1}H)\leq 0$ for every $\mu\in\mathfrak{F}^+$ and $H\in\mathfrak{a}^+$.

This is obvious from Lemma 58 and Lemma 28.

COROLLARY. There exists a number C (independent of b^* and \mathfrak{F}^+) such that

 $|D(x)|^{\frac{1}{2}}|\Theta^+(x)| \leq C \quad (x \in G')$

 $\mathbf{304}$

$$|\Psi^+(x)| \leq C \quad (x \in G)$$

in the above notation.

and

and

Let $C(A^+)$ denote the maximum of $|c_{\mathfrak{z}}(s:\mathfrak{F}^+:\mathfrak{a}^+)|$ for all $s \in W(A^+)$ and all \mathfrak{F}^+ . Then it follows from Lemmas 58, 59 and 60 that

$$\left|\Delta_{A}(h)\Theta^{+}(h)\right| \leq \left[\mathfrak{w}:W_{\Xi}\right] \left[W_{G}:\mathfrak{w}\right] \left[W(A^{+})\right] C(A^{+}) \leq \left[W\right]^{2} C(A^{+}) \quad (h \in A' \cap A^{+})$$

where W = W(g/b) as usual. Similarly

$$|\Psi^+(h)| \leq [W]^2 C(A^+) \quad (h \in A^+).$$

It is clear that $C(zA^+) = C(A^+)$ for $z \in Z_G$. Therefore since A/Z_G and a'(R) both have only a finite number of connected components,

$$C(A) = [W]^2 \sup_{A^+} C(A^+) < \infty.$$

Here A^+ runs over all connected components of A'(R). This shows that

 $|\Delta_A(h) \Theta^+(h)| \leq C(A) \quad (h \in A')$ $|\Psi^+(h)| \leq C(A) \quad (h \in A).$

But then since G has only a finite number of non-conjugate Cartan subgroups, our assertion is obvious.

§ 24. The distribution Θ_{λ}^{*}

Put $L = \log B^*$. Then L is a closed additive subgroup of \mathfrak{F} which is, in fact, a lattice if B is compact. For any $\lambda \in L$, let ξ_{λ} denote the corresponding element of B^* so that $\xi_{\lambda}(\exp H) = e^{\lambda(H)}$ $(H \in \mathfrak{h})$. Fix $\lambda \in L$ and a connected component \mathfrak{F}^+ of \mathfrak{F}' such that $\lambda \in Cl \mathfrak{F}^+$. Then we denote by $\Theta_{\lambda,\mathfrak{F}^+}$ and $\Psi_{\lambda,\mathfrak{F}^+}$ respectively, the distributions Θ^+ and Ψ^+ of § 22 for $b^* = \xi_{\lambda}$. In particular if $\lambda \in L' = L \cap \mathfrak{F}'$, the component \mathfrak{F}^+ is uniquely determined and so in this case we denote them simply by Θ_{λ} and Ψ_{λ} .

Now fix $\lambda \in L'$ and suppose that $s \lambda \in L$ for every $s \in W = W(\mathfrak{g}/\mathfrak{b})$. Then we intend to study the distribution

$$\Theta_{\lambda}^{*} = \sum_{s \in W} \varepsilon(s) \Theta_{s\lambda}$$

more closely. Let us return to the notation of §23 and define

$$\xi_{t,\lambda}(h_1 h_2) = \xi_{t\lambda}(h_1) \exp\left((t\lambda)^y \left(\log h_2\right)\right) \quad (t \in W)$$

21-652923. Acta mathematica. 113. Imprimé le 12 mai 1965.

for $h_1 \in A_I^+$ and $h_2 \in A_R$. Let m be the centralizer of a_R in g and put

$$W_0 = W(\mathfrak{m}/\mathfrak{a})^{y^{-1}}$$

Since a_I lies in the center of z and a_R in the center of \mathfrak{M} , it is clear that W(z/a) and $W(\mathfrak{M}/\mathfrak{a})$ commute (as subgroups of $W(g/\mathfrak{a})$). Therefore $W(z/\mathfrak{b})$ and W_0 also commute in W.

LEMMA 61. For any connected component \mathfrak{F}^+ of \mathfrak{F}' , define

$$c^{*}(t:\mathfrak{F}^{+}:A^{+}) = [W_{G}:\mathfrak{W}] \sum_{s \in W(\mathfrak{g}/\mathfrak{h})} c(s^{y}:s^{-1}t\mathfrak{F}^{+}:A^{+}) \quad (t \in W).$$

Then

$$c^*(u^{-1}t:\mathfrak{F}^+:A^+)=c^*(t:\mathfrak{F}^+:A^+)$$

for $u \in W_0$ and $t \in W$. Moreover,

$$\Delta_A \Theta_{\lambda}^* = \sum_{t \in W} \varepsilon(t) c^*(t; \mathfrak{F}^+; A^+) \xi_{t, \lambda}$$

on A^+ . Here \mathcal{F}^+ is the component of \mathcal{F}' containing λ .

Fix $u \in W_0$ and $t \in W$. Since u and W(z/b) commute, it is clear that

$$c^*(u^{-1}t:\mathfrak{F}^+:A^+) = [W_G:\mathfrak{W}] \sum_{s \in W(\mathfrak{z}/\mathfrak{b})} c(s^y:u^{-1}s^{-1}t\mathfrak{F}^+:A^+)$$
$$= [W_G:W_{\Xi}] \sum_{s \in W(\mathfrak{z}/\mathfrak{b})} c_{\mathfrak{z}}(s^y:u^{-1}s^{-1}t\mathfrak{F}^+:\mathfrak{a}^+)$$

from Lemma 58. Define $\mathfrak{F}_{\mathfrak{z}}'$ as in § 18 and for fixed $s \in W(\mathfrak{z}/\mathfrak{b})$ and $t \in W$, let $\mathfrak{F}_{\mathfrak{z}}^+$ be the unique connected component of $\mathfrak{F}_{\mathfrak{z}}'$ containing $s^{-1}t\mathfrak{F}^+$. Since u^{-1} leaves every root of $(\mathfrak{z}, \mathfrak{b})$ fixed, it is clear that $u^{-1}\mathfrak{F}_{\mathfrak{z}}^+ = \mathfrak{F}_{\mathfrak{z}}^+$. Hence

$$c_{\mathfrak{z}}(s^{y}:u^{-1}s^{-1}t\mathfrak{F}^{+}:\mathfrak{a}^{+}) = c_{\mathfrak{z}}(s^{y}:\mathfrak{F}_{\mathfrak{z}}^{+}:\mathfrak{a}^{+}) = c_{\mathfrak{z}}(s^{y}:s^{-1}t\mathfrak{F}^{+}:\mathfrak{a}^{+})$$

in the notation of §18. This implies the first assertion of the lemma.

Now let \mathfrak{F}^+ be the component of \mathfrak{F}' containing λ . Then it follows from Lemma 59 that

$$\Delta_A \Theta_{\lambda}^* = \sum_{u \in W} \varepsilon(u) \sum_{t \in \mathfrak{W} \setminus W_G} \varepsilon(t) \sum_{s \in W(\mathfrak{z}/\mathfrak{b})} \varepsilon(s) c \left(s^y : tu \,\mathfrak{F}^+ : A^+\right) \xi_{stu,\lambda}$$

on A^+ . From this the second assertion of the lemma follows immediately.

Now assume that G_c is an acceptable complexification (see [2 (m), § 18]) of G and G is the real analytic subgroup of G_c corresponding to g. Let A_c and B_c be the Cartan subgroups of G_c corresponding to \mathfrak{a}_c and \mathfrak{b}_c respectively. Then W operates on

 B_c and therefore also on B. Hence L is invariant under W. Similarly $W(\mathfrak{m}/\mathfrak{a})$ operates on A_c . Since it maps \mathfrak{a}_I into itself and leaves \mathfrak{a}_R pointwise fixed, it leaves every point in $A_I \cap \exp((-1)^{\frac{1}{2}}\mathfrak{a}_R$ fixed and maps $A_I^0 = \exp \mathfrak{a}_I$ into itself. Therefore (see [2 (m), Lemma 50]) $W(\mathfrak{m}/\mathfrak{a})$ operates on A and maps A_I^+ into itself. Now if $u \in W_0$ then $s = u^y \in W(\mathfrak{m}/\mathfrak{a})$ and

$$\xi_{ut,\lambda}(h_1 h_2) = \xi_{ut\lambda}(h_1) \exp((t\lambda)^y (\log h_2)) = \xi_{t,\lambda}((h_1 h_2)^{s^{-1}}) \quad (t \in W)$$

for $h_1 \in A_1^+$, $h_2 \in A_R$. Hence we obtain the following result from Lemma 61.

LEMMA 62. Under the above conditions

$$\Delta_{A}(h) \Theta_{\lambda}^{*}(h) = \sum_{t \in W_{0} \setminus W} \varepsilon(t) c^{*}(t: \mathfrak{F}^{+}: A^{+}) \sum_{s \in W(\mathfrak{m}/\mathfrak{a})} \varepsilon(s) \xi_{t, \lambda}(h^{s})$$

for $h \in A^+$.

Let P_+ be the set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$ which do not vanish identically on \mathfrak{a}_R . Put $\sigma = \frac{1}{2} \sum_{\alpha \in P_+} \alpha$ and

$$\Delta_+(h) = e^{\sigma(\log h_*)} \prod_{\alpha \in P_+} (1 - \xi_\alpha(h^{-1})) \quad (h \in A)$$

in the notation of [2 (m), §18]. Here h_2 is the component of h in A_R .

COROLLARY.
$$\sup_{h \in A'} |\Delta_+(h) \Theta_{\lambda}^*(h)| < \infty.$$

In view of Lemma 51, it is enough to show that $\Delta_+(h) \Theta_{\lambda}^*(h)$ remains bounded for $h \in A^+ \cap A'$. In order to do this we can obviously assume that the set of positive roots of $(\mathfrak{g}, \mathfrak{a})$ is chosen as in [2 (m), § 27]. Define M, Δ_M and ξ_{ϱ} as in [2 (m), § 27]. Then

$$\Delta_A(h) = \Delta_M(h) \Delta_+(h) \quad (h \in A)$$

Moreover, it follows from Lemma 60, that

$$c(s^{y}:s^{-1}t\mathfrak{F}^{+}:A^{+})=0 \quad (s\in W(\mathfrak{z}/\mathfrak{b}), t\in W)$$

unless $(t\lambda)^{y}(H_{2}) \leq 0$ for $H_{2} \in \log A_{R}^{+}$. Therefore it is clear from Lemmas 61 and 62 that

$$\left|\Delta_{+}(h) \Theta_{\lambda}^{*}(h)\right| \leq \sum_{t \in W_{0} \setminus W} \left|c^{*}(t : \mathfrak{F}^{+} : A^{+})\right| \left|\Delta_{M}(h_{1})^{-1} \sum_{s \in W(\mathfrak{m}/\mathfrak{a})} \varepsilon(s) \xi_{t\lambda}(h_{1}^{s})\right|$$

for $h \in A' \cap A^+$ where h_1 is the component of h in A_1^+ . Now choose

$$a \in A_I^+ \cap \exp{(-1)^{\frac{1}{2}}} \mathfrak{a}_R$$

such that $A_I^+ = a A_I^0$, Then (see [2 (m), § 23])

 $\Delta_M(ah) = \xi_\varrho(a) \, \Delta_M(h)$

and

308

$$\sum_{s \in W(\mathfrak{m}/\mathfrak{a})} \varepsilon(s) \, \xi_{t\lambda}((ah)^s) = \xi_{t\lambda}(a) \sum_{s \in W(\mathfrak{m}/\mathfrak{a})} \varepsilon(s) \, \xi_{t\lambda}(h^s)$$

for $h \in A_I^0$ and $t \in W$. Therefore our assertion is obvious from [2 (b), Cor. 2, p. 139].

§ 25. Statement of Theorem 4

Fix a Haar measure dx on G and consider the distribution

$$\Theta_{c}^{+}(f) = \int f \Theta^{+} dx \quad (f \in C_{c}^{\infty}(G))$$

as in Lemma 54. For any $\varepsilon > 0$, get $G(\varepsilon)$ denote the set of all $x \in G$ where $|D(x)| > \varepsilon^2$. Suppose u is a measurable function on G' which is integrable (with respect to dx) on $G(\varepsilon)$ for every $\varepsilon > 0$. Then we define (1)

$$p.v. \int u \, dx = \lim_{\varepsilon \to 0} \int_{G(\varepsilon)} u \, dx$$

provided this limit exists and is finite.

THEOREM 4. Define Θ^+ and Ψ^+ as in §22 and put $\lambda = \log b^*$. Then

$$\boldsymbol{\varpi}(\boldsymbol{\lambda}) \boldsymbol{\Theta}^{+}(f) = \mathbf{p}.\mathbf{v}.\int D^{-1} \boldsymbol{\Psi}^{+} \nabla_{\boldsymbol{G}} f \, d\boldsymbol{x}$$

where ∇_G has the same meaning as in [2 (m), § 20].

Before proceeding with the proof, we need some formulas on integrals (cf. § 2). Let $\mathfrak{a}_1 = \mathfrak{b}, \mathfrak{a}_2, \ldots, \mathfrak{a}_r$ be a maximal set of Cartan subalgebras of \mathfrak{g} no two of which are conjugate under G. Let A_i be the Cartan subgroup of G corresponding to \mathfrak{a}_i . Put $G_i^* = G/A_{i0}$ where A_{i0} is the center of A_i and fix a Haar measure $d_i a$ on A_i and an invariant measure $d_i x^*$ on G_i^* . Also let

$$\Delta_i(a) = \Delta_{A_i}(a) \quad (a \in A_i)$$

in the usual notation (see [2 (m), §19]).

LEMMA 63. There exist numbers $c_i > 0$ $(1 \le i \le r)$ such that

^{(&}lt;sup>1</sup>) See footnote 1, p. 246.

$$\int f(x) dx = \sum_{1 \leq i \leq r} c_i \int_{G_i^* \times A_i} |\Delta_i(a)|^2 f(a^{z^*}) d_i x^* d_i a$$

for $f \in C_c(G)$ in the notation of [2 (m), § 22].

Put $G_i = A_i^{\ G} \cap G'$. Then G' is the disjoint union of G_1, \ldots, G_r and our assertion is an immediate consequence of [2 (m), Lemma 41].

§ 26. A simple property of the function Δ

Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g} and A the corresponding Cartan subgroup of G. Suppose a is an element of A and α a root of $(\mathfrak{g}, \mathfrak{a})$. We say that a and α commute if $\xi_{\alpha}(a) = 1$ in the notation of [2 (m), § 19].

Put $m = \frac{1}{2}$ (dim \mathfrak{g} -rank \mathfrak{g}) as in §2. Then m is the number of positive roots of $(\mathfrak{g}, \mathfrak{a})$. For any $a \in A$, define the integer $m(R:a) \ge 0$ as follows. Let $a = a_1 a_2$ $(a_1 \in A_1, a_2 \in A_R)$. Then m(R:a) is the number of positive real roots of $(\mathfrak{g}, \mathfrak{a})$ which commute with a_1 . If α is a real root, $\alpha(H) = 0$ for $H \in \mathfrak{a}_I$. Hence it is clear that m(R:a) depends only on the connected component of a_1 in A_I . Therefore the function $m(R):a \to m(R:a)$ is locally constant on A.

LEMMA 64.
$$\operatorname{conj} \Delta_A(a) = (-1)^{m+m(R:a)} \Delta_A(a) \quad (a \in A).$$

This result is obviously independent of the choice of positive roots. Hence we may select compatible orders on the spaces of real linear functions on a_R and $a_R + (-1)^{\frac{1}{2}} a_I$ respectively and assume that P is the set of positive roots of (g, a) in this order. Let η denote the conjugation of g_c with respect to g. Then it is clear that if α is a root, the same holds for $\eta \alpha$ and

$$\xi_{\eta\alpha}(a) = \operatorname{conj} \, \xi_{\alpha}(a) \quad (a \in A).$$

Let P_R , P_I and P_c respectively denote the sets of real, imaginary and complex roots in P (see [2 (k), § 4]). We now use the notation of [2 (m), § 19]. Then

$$\Delta(a) = \xi_{\varrho}(a) \Delta_{I}'(a) \Delta_{+}'(a)$$

where

$$\Delta_{I}'(a) = \prod_{\alpha \in P_{I}} (1 - \xi_{\alpha}(a)^{-1}), \quad \Delta_{+}'(a) = \prod_{\alpha \in P_{+}} (1 - \xi_{\alpha}(a)^{-1}) \quad (a \in A)$$

and $P_+ = P_R \cup P_c$. Since P_+ is invariant under η , it is clear that $\Delta_+'(a)$ is real. On the other hand, $\eta \alpha = -\alpha$ for $\alpha \in P_I$. Therefore

conj
$$\Delta_{I}'(a) = (-1)^{m(I)} \xi_{2\varrho_{I}}(a) \Delta_{I}'(a)$$

where m(I) is the number of roots in P_I and $\varrho_I = \frac{1}{2} \sum_{\alpha \in P_I} \alpha$. Now suppose $a = a_1 a_2$ $(a_1 \in A_I, a_2 \in A_R)$. Then $\operatorname{conj} \xi_{\varrho}(a) = \xi_{\varrho}(a_1^{-1}a_2)$ and $\xi_{2\varrho_I}(a_2) = 1$. Hence

conj
$$\Delta(a) = (-1)^{m(I)} \xi_{\varrho}(a_1^{-1}a_2) \xi_{2\varrho_I}(a_1) \Delta_I'(a) \Delta_+'(a)$$

= $(-1)^{m(I)} \xi_{2\varrho}(a_1)^{-1} \xi_{2\varrho_I}(a_1) \Delta(a) = (-1)^{m(I)} \xi_{2\varrho_+}(a_1)^{-1} \Delta(a)$

where $\varrho_{+} = \frac{1}{2} \sum_{\alpha \in P_{+}} \alpha$. Now if $\alpha \in P_{c}$ then the same holds for $\eta \alpha$ and $\eta \alpha \neq \alpha$. Moreover,

$$\begin{aligned} \xi_{\alpha}(a_{1}) \,\xi_{\eta\alpha}(a_{1}) &= |\xi_{\alpha}(a_{1})|^{2} = 1 \,. \\ \\ \xi_{2\varrho_{+}}(a_{1}) &= \xi_{2\varrho_{R}}(a_{1}) \end{aligned}$$

Hence

where $\varrho_R = \frac{1}{2} \sum_{\alpha \in P_R} \alpha$. But for any $\alpha \in P_R$, $\xi_{\alpha}(a_1)$ is both real and unimodular. Therefore it is ± 1 . Hence

$$\xi_{2\varrho_R}(\alpha_1) = \prod_{\alpha \in P_R} \xi_\alpha(\alpha_1) = (-1)^q$$

where q is the number of roots $\alpha \in P_R$ such that $\xi_{\alpha}(a_1) = -1$. But then q + m(R:a) is the total number of roots in P_R . We have seen above that the roots in P_c occur in pairs. Hence

 $q+m(R:a)+m(I)\equiv m \mod 2.$

This shows that $q + m(I) \equiv m + m(R:a) \mod 2$

and therefore $\operatorname{conj} \Delta(a) = (-1)^{m(I)+q} \Delta(a) = (-1)^{m+m(R:a)} \Delta(a).$

This proves the lemma.

§ 27. Reduction of Theorem 4 to Lemma 66

We now come to Theorem 4. Suppose V_{ε} $(0 < \varepsilon \leq \varepsilon_0)$ is a family of measurable functions on G such that (cf. § 2)

- 1) $0 \leq V_{\varepsilon} \leq 1$ and $\lim_{\varepsilon \to 0} V_{\varepsilon}(x) = 1$ for $x \in G'$,
- 2) V is invariant under G.
- 3) $V_{\varepsilon}(x) = 0$ if $|D(x)| < \varepsilon^2$ $(x \in G)$.

Fix $f \in C_c^{\infty}(G)$ and define $F_{f,i}$, $\varepsilon_{R,i}$ and ϖ_i on A_i $(1 \le i \le r)$ as in [2 (m), § 22] and let $m_i(R)$ be the locally constant function on A_i introduced in § 26. Since

$$D(a) = (-1)^m \Delta_i(a)^2 \quad (a \in A_i),$$

it is obvious from Lemmas 63 and 64 that

DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS I

$$\int V_{\varepsilon} D^{-1} \Psi^+ \nabla_G f \, dx = \sum_i c_i \int V_{\varepsilon,i} (-1)^{m_i(R)} \varepsilon_{R,i} \Psi_i^+ \varpi_i F_{f,i} d_i a$$

where $V_{\varepsilon,i}$ and Ψ_i^+ respectively denote the restrictions of V_{ε} and Ψ^+ on A_i . Therefore the following lemma is now obvious (cf. Lemma 4) from [2 (f), Theorem 2].

LEMMA 65. Fix
$$f \in C_c^{\infty}(G)$$
. Then

$$\lim_{\epsilon \to 0} \int V_{\epsilon} D^{-1} \Psi^+ \nabla_G f \, dx = \text{p.v.} \int D^{-1} \Psi^+ \nabla_G f \, dx = \sum_{1 \leq i \leq r} c_i \int (-1)^{m_i(R)} \varepsilon_{R,i} \Psi_i^+ \varpi_i F_{f,i} \, d_i a.$$
Now put $T(f) = \varpi(\lambda) \Theta^+(f) - \text{p.v.} \int D^{-1} \Psi^+ \nabla_G f \, dx$

for $f \in C_c^{\infty}(G)$. It follows from [2 (f), Theorem 2] and the above lemma that T is an invariant distribution on G. We have to show that T=0. Hence it is sufficient by [2 (m), Lemma 7] to verify that no semisimple element of G lies in Supp T.

Fix a function $v \in C^{\infty}(\mathbf{R})$ such that $0 \le v \le 1$, v(t) = 0 if $|t| \le \frac{1}{2}$ and v(t) = 1 if $|t| \ge 1$ ($t \in \mathbf{R}$). For any $\varepsilon > 0$, put

$$V_{\varepsilon}(x) = v(2^{-1} \varepsilon^{-2} D(x)) \quad (x \in G).$$

Then it follows from Lemma 65 that

$$\lim_{\varepsilon \to 0} \int D^{-1} V_{\varepsilon} \Psi^{+} \nabla_{G} f \, dx = \text{p.v.} \int D^{-1} \Psi^{+} \nabla_{G} f \, dx.$$
$$T_{\varepsilon}(f) = \varpi(\lambda) \Theta^{+}(f) - \int D^{-1} V_{\varepsilon} \Psi^{+} \nabla_{G} f \, dx \quad (f \in C_{c}^{\infty}(G))$$

for $\varepsilon > 0$. As usual let ∇_G^* denote the adjoint of ∇_G on G'. Since $D^{-1}V_{\varepsilon}\Psi^+$ is a C^{∞} function on G whose support is contained in G', if follows that the distribution T_{ε} is, in fact, a locally summable function given by the formula

$$T_{\varepsilon} = \varpi(\lambda) \Theta^{+} - \nabla_{G}^{*} (D^{-1} V_{\varepsilon} \Psi^{+}).$$
$$T(f) = \lim_{\varepsilon \to 0} T_{\varepsilon}(f) \quad (f \in C_{c}^{\infty}(G)).$$

Moreover,

Put

Fix a semisimple element $a \in G$. Then *a* is contained in some Cartan subgroup A of G and $a = a_1 a_2$ where $a_1 \in A_I$, $a_2 \in A_R$. Let *a* be the Lie algebra of A. By Lemma 45, we can choose $x \in G$ such that $\theta(a^x) = a^x$, $(a_I)^x \subset \mathfrak{b}$ and $a_1^x \in B$. Since T is invariant under G, it would be enough to verify that $a^x \notin \text{Supp } T$. Hence replacing

(a, A) by (a^x, A^x) , we may assume that $\theta(\mathfrak{a}) = \mathfrak{a}, \mathfrak{a}_1 \subset \mathfrak{b}$ and $a_1 \in B$. Then $a = b \exp H_0$ where $b = a_1 \in A_I \cap B$ and $H_0 = \log a_2 \in \mathfrak{a}_R$. Define $\mathfrak{z}_b(c_b)$ as in Lemma 50. Then $\mathfrak{z}_0 = \mathfrak{z}_b(c_b) \cap \mathfrak{g}_0$ is an open and completely invariant neighborhood of zero in $\mathfrak{z} = \mathfrak{z}_b$ and $H_0 \in \mathfrak{z}_0$. Put $\Xi = \Xi(b)$ and $\Xi_0 = \exp \mathfrak{z}_0$. Then Ξ_0 is an open and completely invariant neighborhood of 1 in Ξ (see [2 (m), Lemma 8]) and $\exp H_0 \in \Xi_0$. Let σ and σ_ε be the distributions on Ξ_0 corresponding to T and T_ε respectively under [2 (m), Lemma 15]. It would be sufficient to verify that $\sigma = 0$. It is obvious (see [2 (i), Cor. 2 of Theorem 1]) that σ_ε is the locally summable function

 $y \to T_{\varepsilon}(by) \quad (y \in \Xi_0)$

on Ξ_0 and therefore

$$\sigma(g) = \lim_{\varepsilon \to 0} \sigma_{\varepsilon}(g) = \varpi(\lambda) \int g(y) \Theta^{+}(by) \, dy - \lim_{\varepsilon \to 0} \int g(y) \Psi^{+}(by; \nabla_{G}^{*} \circ D^{-1}V_{\varepsilon}) \, dy$$

for $g \in C_c^{\infty}(\Xi_0)$. (Here dy is the Haar measure on Ξ .) Let τ' be the distribution on \mathfrak{z}_0 which corresponds to σ under the process described in [2 (m), § 10]. Then by Lemma 50,

$$\tau'(f) = \varpi(\lambda) \int \xi_{\mathfrak{z}}(Z) f(Z) \Theta_{\mathfrak{z}}^{+} (\exp Z) dZ - \lim_{\varepsilon \to 0} \int \xi_{\mathfrak{z}}(Z) \Psi^{+}(b \exp Z; \nabla_{G}^{*} \circ D^{-1} V_{\varepsilon}) dZ$$

for $f \in C_c^{\infty}(\mathfrak{z}_0)$ and it would be sufficient to verify that $\tau' = 0$.

 \mathbf{Put}

$$S_{\varepsilon}^{+}(Z) = V_{\varepsilon}(b \exp Z) \Psi^{+}(b \exp Z) = V_{\varepsilon}(b \exp Z) S_{b}^{+}(Z) \quad (Z \in \mathfrak{z}_{0})$$

in the notation of § 22.

LEMMA 66. We have (1)

$$\Psi^{+}(b \exp Z; \nabla_{G}^{*} \circ D^{-1}V_{\varepsilon}) = D_{b}(Z)^{-1}S_{\varepsilon}^{+}(Z; \partial(q_{\mathfrak{g}/\mathfrak{z}}) \circ \nabla_{\mathfrak{z}}^{*} \circ \eta_{\mathfrak{z}}^{-1})$$

for $Z \in \mathfrak{F}_{\mathfrak{d}_0}$ in the notation of § 22 and Lemma 41.

Assuming this for a moment, we shall first finish the proof of Theorem 4. Put $\tau = \xi_{3}^{-1} D_{b} \tau'$ and recall that

$$\Theta_b^+(\exp Z) = D_b(Z)^{-1}T_b^+(Z)$$

by definition (see § 22). Hence if we write $q = q_{g/3}$, we get

$$\tau(f) = \varpi(\lambda) T_{b}^{+}(f) - \lim_{\varepsilon \to 0} \int f(Z) S_{\varepsilon}^{+}(Z; \partial(q) \circ \nabla_{\delta}^{*} \circ \eta_{\delta}^{-1}) dZ$$

⁽¹⁾ See footnote 1, p. 285.
for $f \in C_c^{\infty}(\mathfrak{z}_0)$. But since S_e^+ is a C^{∞} function on \mathfrak{z}_0 and $\eta_{\mathfrak{z}}$ is nowhere zero on its support, it is clear that

$$\int f(Z) S_{\varepsilon}^{+}(Z; \partial(q) \circ \nabla_{\delta}^{*} \circ \eta_{\delta}^{-1}) dZ = \int \eta_{\delta}^{-1} (\nabla_{\delta} \circ \partial(q)^{*}) f \cdot S_{\varepsilon}^{+} dZ.$$

Now as $\varepsilon \rightarrow 0$ the right side obviously tends (see Lemma 4) to the limit

$$p.v. \int \eta_{\delta}^{-1} (\nabla_{\delta} \circ \partial(q)^{*}) f \cdot S_{b}^{+} dZ.$$

$$\tau(f) = \varpi(\lambda) T_{b}^{+}(f) - p.v. \int \eta_{\delta}^{-1} (\nabla_{\delta} \circ \partial(q)^{*}) f \cdot S_{b}^{+} dZ = 0$$

Hence

.

§ 28. Proof of Lemma 66

We have still to prove Lemma 66. This requires some preparation. Fix a Cartan subgroup A of G and define ϖ_A , Δ_A as in [2 (m), § 20]. Also put $A' = A \cap G'$ as usual.

LEMMA 67. The differential operator ∇_{G}^{*} on G' is invariant under G and

$$f(h; \nabla_G^*) = (-1)^m \Delta_A(h)^{-1} f(h; \varpi_A \circ \Delta_A^2) \quad (h \in A')$$

for $f \in C^{\infty}(G')$.

Since ∇_G is invariant, it is obvious that the same holds for ∇_G^* . Fix $h_0 \in A'$ and an open and relatively compact neighborhood U of h_0 in A'. Then $V = U^G$ is an open neighborhood of h_0 in G. Put $\Delta = \Delta_A$ and let us use the notation of [2 (m), Lemma 41]. Then if $g \in C_c^{\infty}(V)$, it is clear that

$$\int g \nabla_G^* f \, dx = \int \nabla_G g \cdot f \, dx = c \int_A |\Delta(h)|^2 \, dh \int_{G^*} g(h^{x^*}; \nabla_G) f(h^{x^*}) \, dx^*$$
$$= c \int_{A \cap V} |\Delta(h)|^2 \, dh \int_{G^*} g(x^*; h; \varpi_A \circ \Delta) f(x^*; h) \, dx^*$$

where $g(x^*:h) = g(h^{x^*})$ and $f(x^*:h) = f(h^{x^*})$ $(h \in A \cap V, x^* \in G^*)$. On the other hand

$$|\Delta|^2 = (-1)^{m+m(R)} \Delta^2$$

from Lemma 64 and it is obvious that

$$A\cap V=\bigcup_{s\in W_A}U^s$$

HARISH-CHANDRA

in the notation of [2 (m), § 20]. Hence $A \cap V$ is relatively compact in A'. Therefore (see [2 (f), Theorem 1]) there exists a compact set Ω^* in G^* such that $h^{x^*} \notin \text{Supp } g$ for $h \in A \cap V$ and $x^* \in G^*$ unless $x^* \in \Omega^*$. Hence it is obvious that

$$\int g \nabla_G^* f \, dx = c \, (-1)^m \int_{A \cap V} |\Delta(h)|^2 \, dh \int_{G^*} g(h^{x^*}) f(x^*;h;\Delta^{-1} \varpi_A \circ \Delta^2) \, dx^*.$$

On the other hand, there exists (see [2 (m), § 20]) a unique differential operator ∇' on $G_A = (A')^G$ such that

$$\beta(h^x; \nabla') = \beta(x:h; \Delta^{-1} \varpi_A \circ \Delta^2)$$

for $x \in G$ and $h \in A'$. Here β is any C^{∞} function on G_A and $\beta(x:h) = \beta(h^x)$. Therefore

$$\int g \nabla_G^* f \, dx = c \, (-1)^m \int_A |\Delta(h)|^2 \, dh \int_{G^*} g(h^{x^*}) \, f(h^{x^*}; \nabla') \, dx^* = (-1)^m \int g \, \nabla' \, f \, dx.$$

This shows that $\nabla_G^* = (-1)^m \nabla'$ on V and therefore

$$f(h_0; \nabla_G^*) = (-1)^m f(h_0; \Delta^{-1} \varpi_A \circ \Delta^2).$$

Thus the lemma is proved.

Now in Lemma 66, both sides are C^{∞} functions on \mathfrak{z}_0 which are invariant under Ξ . Therefore it would be enough to show that they are equal on $\mathfrak{a}_0' = \mathfrak{a}' \cap \mathfrak{z}_0$ for any Cartan subalgebra \mathfrak{a} of \mathfrak{z} . Fix \mathfrak{a} and let A denote the corresponding Cartan subgroup of G. Since

$$V_{\varepsilon}(b \exp Z) \Psi^{+}(b \exp Z) = S_{\varepsilon}^{+}(Z) \quad (Z \in \mathfrak{z}_{0})$$

and $D(a) = (-1)^m \Delta_A(a)^2$ $(a \in A)$, it follows from Lemma 67 that

$$\Psi^{+}(b \exp H; \nabla_{G}^{*} \circ D^{-1}V_{\varepsilon}) = \Delta_{A}(b \exp H)^{-1} S_{\varepsilon}^{+}(H; \partial(\varpi_{A})) \quad (H \in \mathfrak{a}_{0}').$$

Let G_c denote, as before, the (connected) adjoint group of \mathfrak{g}_c and Ξ_c the complexanalytic subgroup corresponding to $\operatorname{ad}\mathfrak{z}_c$. Select $y \in \Xi_c$ such that $\mathfrak{b}_c^{y} = \mathfrak{a}_c$. P being the set of positive roots of $(\mathfrak{g}, \mathfrak{b})$, we may assume that P^{y} is the set of all positive roots of $(\mathfrak{g}, \mathfrak{a})$. Then it is clear that

$$\Delta_{A}(b \exp H) = \pi_{\delta}^{\mathfrak{a}}(H) D_{b}(H) \quad (H \in \mathfrak{a}).$$

Hence $D_b(H) \Psi^+(b \exp H; \nabla_G^* \circ D^{-1} V_{\varepsilon}) = S_{\varepsilon}^+(H; (\pi_3^{\mathfrak{a}})^{-1} \partial(\varpi_A)) \quad (H \in \mathfrak{a}_0').$

Put $q = q_{\mathfrak{g}/\mathfrak{z}}$ and let $q_{\mathfrak{a}}$ denote the projection of q in $S(\mathfrak{a}_c)$ (see [2 (j), § 8]). Then

$$\boldsymbol{\varpi}_{A} = \boldsymbol{\varpi}^{y} = (\boldsymbol{\varpi}_{\mathfrak{g}/\mathfrak{z}} \boldsymbol{\varpi}_{\mathfrak{z}})^{y} = q_{\mathfrak{a}} \boldsymbol{\varpi}_{\mathfrak{z}}^{y}$$

314

in the notation of § 18. Therefore since S_{e}^{+} is invariant under Ξ , it follows from the corollary of Lemma 2 and [2 (c), Theorem 1] that

$$S_{\varepsilon}^{+}(H;\partial(q)\circ\nabla_{\mathfrak{z}}^{*}\circ\eta_{\mathfrak{z}}^{-1})=S_{\varepsilon}^{+}(H;(\pi_{\mathfrak{z}}^{\mathfrak{a}})^{-1}\partial(\varpi_{A}))\quad (H\in\mathfrak{a}_{\mathfrak{z}}').$$

This proves Lemma 66.

§ 29. Some convergence questions

We use the notation introduced at the beginning of §24. Put

$$\chi_{\lambda} = \chi_{b^*}$$
 for $\lambda = \log b^*$ $(b^* \in B^*)$.

LEMMA 68. Let p be a (complex-valued) polynomial function on F. Then we can choose an element $z \in B$ with the following property. If F^+ is a connected component of F' and $\lambda \in L \cap Cl F^+$, then

$$|p(\lambda) \Theta_{\lambda,\mathfrak{F}^+}(f)| \leq \sum_{1 \leq i \leq r} c_i \int_{A_i} |F_{zf,i}| d_i a \quad (f \in C_c^{\infty}(G)).$$

Here the notation is the same as in Lemma 65.

Define c and g_1 as in § 14 and let ω_1 be the Casimir operator corresponding to g_1 (see [2 (b), p. 140]). Then $\omega_1 \in \mathfrak{Z}$. Put $\omega_0 = \omega_1 - (H_1^2 + \ldots + H_s^2)$ where H_1, \ldots, H_s is a base for c over **R**. Then a simple calculation shows that $\chi_\lambda(\omega_0) = \|\lambda\|^2 - c$ ($\lambda \in L$), where c is a real number (independent of λ) and $\mu \to \|\mu\|$ ($\mu \in \mathfrak{F}$) is a Euclidean norm on \mathfrak{F} . Put $\omega = 1 + c + \omega_0$. Then $\chi_\lambda(\omega) = 1 + \|\lambda\|^2$ ($\lambda \in \mathfrak{F}$) and ω is a self-adjoint differential operator in \mathfrak{Z} . Now fix \mathfrak{F}^+ and write $\Theta_{\lambda}^+ = \Theta_{\lambda,\mathfrak{F}^+}$ ($\lambda \in L^+ = L \cap \mathrm{Cl} \,\mathfrak{F}^+$). Then

$$\Theta_{\lambda}^{+}(\omega^{q}f) = \chi_{\lambda}(\omega^{q}) \Theta_{\lambda}^{+}(f) = (1 + \|\lambda\|^{2})^{q} \Theta_{\lambda}^{+}(f)$$

for any integer $q \ge 0$ ($\lambda \in L^+$, $f \in C_c^{\infty}(G)$). Define C as in the corollary of Lemma 60. Then it follows from Lemma 63 that

$$\left|\Theta_{\lambda}^{+}(f)\right| \leq \sum_{i} c_{i} \int_{A_{i}} \left|\Delta_{i}(a) \Theta_{\lambda}^{+}(a) F_{f,i}(a)\right| d_{i} a \leq C \sum_{i} c_{i} \int_{A_{i}} \left|F_{f,i}\right| d_{i} a \quad (f \in C_{c}^{\infty}(G)).$$

Replacing f by $\omega^{q} f$, we get

$$(1+\|\lambda\|^2)^q |\Theta_{\lambda^+}(f)| \leq \sum_{1\leq i\leq r} c_i \int |F_{zf,i}| d_i a$$

where $z = C \omega^{q}$. The assertion of the lemma is now obvious.

HARISH-CHANDRA

Now L is a closed additive subgroup of \mathfrak{F} . Let $d\lambda$ denote the Haar measure of L. It is clear from Lemmas 57 and 58 that for a fixed $f \in C_c^{\infty}(G)$, $\Theta_{\lambda}^+(f)$ ($\lambda \in L^+$) is a measurable function of $\lambda \in L^+$.

COROLLARY 1. For any $p \in S(\mathfrak{b}_c)$, we can choose $z \in \mathfrak{Z}$ such that

$$\int_{L^+} |p(\lambda) \Theta_{\lambda}^+(f)| d\lambda \leq \sum_{1 \leq i \leq r} c_i \int_{A_i} |F_{zf,i}| d_i a$$

for all $f \in C_c^{\infty}(G)$.

We can obviously choose an integer $q \ge 0$ such that

$$\alpha = \int_L (1 + \|\lambda\|)^{-q} \, d\lambda < \infty \, .$$

On the other hand, by the above lemma, we can select $z_0 \in 3$ such that

$$(1+\|\lambda\|)^q |p(\lambda) \Theta_{\lambda}^+(f)| \leq \sum_i c_i \int |F_{z_0f,i}| d_i a$$

for $\lambda \in L^+$ and $f \in C_c^{\infty}(G)$. Hence we can take $z = \alpha z_0$.

Define Θ_{λ} for $\lambda \in L'$ as in § 24 and let us agree to the convention that $\varpi(\lambda) \Theta_{\lambda} = 0$ if $\varpi(\lambda) = 0$ ($\lambda \in L$).

COROLLARY 2. Put

$$T(f) = \int_{L} \boldsymbol{\varpi}(\lambda) \, \Theta_{\lambda}(f) \, d\lambda \quad (f \in C_{c}^{\infty}(G)).$$

Then T is an invariant distribution on G and, in fact, we can choose $z \in 3$ such that

$$|T(f)| \leq \sum_{1 \leq i \leq r} c_i \int_{A_i} |F_{zf,i}| d_i a$$

for all $f \in C_c^{\infty}(G)$.

The second statement follows from Corollary 1 above and the rest is obvious from [2 (f), Theorem 2].

Now assume B is compact. Then L is discrete and therefore

$$T(f) = \sum_{\lambda \in L} \boldsymbol{\varpi}(\lambda) \, \Theta_{\lambda}(f)$$

Put $q = \frac{1}{2} \dim (G/K)$. Then q is an integer (see [2 (k), Lemma 18]) and we shall see in another paper that there exists a number c > 0 such that $(-1)^q c T$ is precisely the contribution of the discrete series (see [2 (a), § 5]) to the Plancherel formula of G (see [2 (h), Theorem 4]). The proof of this fact depends on Theorem 4.

316

§ 30. Appendix

Let g be a reductive Lie algebra over R and Ω a completely invariant open subset of g.

LEMMA 69. Let F_k $(k \ge 1)$ be a sequence of continuous and invariant functions on Ω . Then the following two conditions are equivalent.

1) For any Cartan subalgebra a of g, F_k converges uniformly on every compact subset of $\mathfrak{a} \cap \Omega$.

2) F_k converges uniformly on every compact subset of Ω .

Obviously 2) implies 1). So let us assume that 1) holds. Let Ω_0 be the set of all elements $X_0 \in \Omega$ with the following property. There exists an open neighborhood U of X_0 in Ω such that F_k converges uniformly on U. It would be sufficient to show that $\Omega_0 = \Omega$. Clearly Ω_0 is open and invariant. Therefore in view of [2 (1), Cor. 2 of Lemma 8], we have only to verify that every semisimple point of Ω lies in Ω_0 .

Fix a semisimple element $H_0 \in \Omega$ and an open and relatively compact neighborhood U of H_0 in Ω . It would obviously be enough to show that F_k converges uniformly on $U' = U \cap \mathfrak{g}'$

Let a_1, \ldots, a_r be a complete set of Cartan subalgebras of g no two of which are conjugate under G. Then $V_i = \operatorname{Cl}(a_i \cap U^G)$ is a compact subset of $a_i \cap \Omega$ (see [2 (k), Lemma 23]). Now fix $X \in U'$. Then $X = H^x$ where $x \in G$ and $H \in V_i$ for some *i*. Hence

$$F_{i}(X) - F_{k}(X) = F_{i}(H) - F_{k}(H)$$
 $(j, k \ge 1).$

However, the sequence F_k converges uniformly on $\bigcup_{1 \le i \le r} V_i$ by 1) and so the required result follows immediately.

References

- BOREL, A., & HARISH-CHANDRA, Arithmetic subgroups of algebraic groups. Ann. of Math., 75 (1962), 485-535.
- [2]. HARISH-CHANDRA, (a) Representations of semisimple Lie groups, VI. Amer. J. Math., 78 (1956), 564-628.
 - (b) The characters of semisimple Lie groups. Trans. Amer. Math. Soc., 83 (1956), 98-163.
 - (c) Differential operators on a semisimple Lie algebra. Amer. J. Math., 79 (1957), 87-120.
 - (d) Fourier transforms on a semisimple Lie algebra, I. Amer. J. Math., 79 (1957), 193-257.

HARISH-CHANDRA

- (e) Fourier transforms on a semisimple Lie algebra, II. Amer. J. Math. 79 (1957), 653-686.
- (f) A formula for semisimple Lie groups. Amer. J. Math., 79 (1957), 733-760.
- (g) Spherical functions on a semisimple Lie group, I. Amer. J. Math., 80 (1958), 241-310.
- (h) Invariant eigendistributions on semisimple Lie groups. Bull. Amer. Math. Soc., 69 (1963), 117–123.
- (i) Invariant distributions on Lie algebras. Amer. J. Math., 86 (1964), 271-309.
- (j) Invariant differential operators and distributions on a semisimple Lie algebra. Amer. J. Math., 86 (1964), 534-564.
- (k) Some results on an invariant integral on a semisimple Lie algebra. Ann. of Math., 80 (1964), 551-593.
- (l) Invariant eigendistributions on a semisimple Lie algebra. Pub. Math. I.H.E.S., No. 27.
- (m) Invariant eigendistributions on a semisimple Lie group. Trans. Amer. Math. Soc. To appear.
- [3]. SCHWARTZ L., Théorie des distributions, II. Paris, Hermann, 1951.

Received October 27, 1964.