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1. Introduction 

1.1. Main  problem. Quasiconformal mappings in Eucl idean n-space, n >2 ,  have been 

studied ra ther  intensively in recent  years by  several authors.  See, for example, Gehring 

[4], [5], [6]; Kr ivov  [8]; Loewner [9]; ~abat  [14]; V/~is/fl// [17], [18]; and Zori5 [20], [21]. 

I t  turns  out  tha t  these mappings have m a n y  properties similar to those of plane quasi- 

conformal mappings.  On the other  hand,  there are also striking differences. P robab ly  the 

most  impor tan t  of these is t ha t  there exists no analogue of the Riemann mapping  theorem 

when n >2 .  This fact  gives rise to the following two problems. Given a domain D in 

Euclidean n-space, does there exist a quasiconformal homeomorphis  m ] of D onto the 

n-dimensional unit  ball B~? Next,  if such a homeomorphism ] exists, how small can the 

dilatation of / be? 

Complete answers to these questions are known when n =2.  For  a plane domain D 

can be mapped  quasiconformally onto the uni t  disk B e if and only if D is s imply connected 

and has at  least two boundary  points. The l~iemann mapping  theorem then shows tha t  

if D satisfies these conditions, there exists a conformal homeomorphism ] of D onto B e. 

The situation is very  much more complicated in higher dimensions, and this paper  

is devoted to the s tudy  of these two questions in the case where n = 3. 

1.2. Notation. We let R 3 denote Euclidean 3-space with a fixed or thonormal  basis 

(e 1, % ea), and we let j~3 denote the MSbius space obtained by  adding the point  ~ to R 3. 
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Unless otherwise stated, all point sets considered in this paper are assumed to lie in _~a. 

Finite points will usually be designated by  capital letters P and Q, or by  small letters 

x and y. In  the latter case, xl,x2,x a will denote the coordinates for x, relative to the basis 

(el, e2,ea) , and similarly for y. Points are treated as vectors and ]P] and Ix] will denote 

the norms of P and x, respectively. 

Given a finite point P and t > 0 we let Ba(P, t) denote the 3-dimensional ball I x - P I  < t 

and S2(P,t)its 2-dimensional boundary sphere I x - P I  =t. We will also employ the ab- 

breviations 

Ba(t)=Ba(O,t), Ba=Ba(1), S~(t)=S2(O,t), $2=$2(1), 

where 0 denotes the origin. Next  for each set E c ~ a  we let E, aE, and C(E) denote the 

closure, boundary, and complement of E, all taken with respect to ~a. When Ec /~a ,  

we let A(E), AS(E), and re(E) denote respectively the linear or 1-dimensional Hausdorff 

measure, the 2-dimensional Hausdorff measure, and the 3-dimensional Lebesgue measure 

of E. (See [10] and [15].) 

By a homeomorphism ] of a domain D c  R a we mean a homeomorphism of D onto a 

domain D' c R a. For each quanti ty A associated with D, such as a subset of D or a family 

of arcs contained in D, we let A' denote its image under 1. 

1.3. Modulus o/a ring. We say tha t  a domain R c  R a is a ring if C(R) has exactly two 

components, say C o and C r Then following Loewner we define the con/ormal capacity 

of R as 

R = inf I ( ~  ] J .,' J R Vu [ad~o, (1.1) c a p  

where the infimum is taken over all functions u which are continuously differentiable in 

R with boundary values 0 on C o and 1 on C1, and where I Vu I is the norm of the gradient 

vector (~u/~xl, ~u/~x~, ~u/~xa). I t  is easy to see tha t  0 ~<capR < co. We then define the 

modulus of R by  means of the relation 

( 4g ]�89 (1.2) mod R = \cap  R] " 

This modulus behaves in many  ways like the familiar modulus of a plane ring, usually 

defined by means of conformal mapping. For example, if R is the domain bounded by  

concentric spheres of radii a and b, a <b, then 

b 
rood R = log - .  

a 
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1.4. Modulus o/a/amily o/arcs. The conformal capaci ty  of a ring can also be expressed 

in terms of extremal lengths, or more precisely, as the modulus  of a certain family of arcs. 

A set y ~ R a is said to  be an arc if it is homeomorphic  to a linear interval  which m a y  

be open, half open, or closed. I f  E 0 and E 1 are two sets which meet  the closure of a set D, 

then an arc (or more generally a connected set) y is said to join E o and E 1 in D if 7 C D 

and if ~ (~ E 0 :~0, ~ ~ E 1 ~O .  

Suppose next  tha t  y is an arc and tha t  Q is a non-negat ive Borel measurable func- 

t ion defined on some set containing y. We define the line integral of ~o along y by  means 

of linear measure, 

f eds=fedA. (1.3) 

(See p. 19 and p. 53 in [15].) When  y is rectifiable, it is not  difficult to see tha t  the integral 

in (1.3) is equal to the usual line integral taken over y with respect to arclength. (When ~) 

is constant ,  this follows from il]. The general case is then obtained by  a simple limiting 

argument.)  

Suppose tha t  F is a family of arcs in R a. We denote by  F(F)  the family of functions 

which are non-negative and Borel measurable in R a and for which 

f ~ds >~ 1 

for each arc y EF. We then define the modulus of the arc family F as 

M(F)=inffffRe , ~adto, (1.4) 

where the infimum is taken over all functions e E Y(F). I t  is clear t ha t  0 4 M ( F ) 4  ~ and  

tha t  M(F) = 0  whenever  the family F is empty.  

I t  is impor tan t  to observe tha t  the nonrectifiable arcs have no influence on the mod- 

ulus of a given arc family. Tha t  is, if F 1 denotes the subfamily of rectifiable arcs in a 

family F, then 
M(F) =M(FI ) .  (1.5) 

See [17] for this and other  properties of the modulus M(F).  

Now suppose tha t  R is a ring and tha t  P is the family of arcs which join the compo- 

nents of ~R in R. Then it follows from (1.5) and Theorem 1 of [3] t ha t  

cap R = M(F).  (1.6) 

1.5. Dilatations o~ a homeomorphism. Suppose tha t  [ is a homeomorphism of a domain  

D c  R a. If  R is a bounded ring with R c  D, then R' is a bounded ring with R ' c  D'. W~ 
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define the  inner dilatation KI(/) and  the  outer dilatation Ko(/) of the  homeomorph i sm / as 

m o d  R rood R '  
KI(/) = sup mod  R"  Ko(/) = sup m o d  _R' (1.7) 

where the  suprema  are  t a k e n  over  all  bounded  r ings R wi th  R c  D for which m o d R  and  

mod  R '  are no t  bo th  infinite.  W e  call 

K (/) = m a x  ( K z(/) , Ko(/) ) (1.8) 

the  maximal dilatation o f / .  Obvious ly  

KI(/)=Ko(/-i), Ko(/)=KI(/-1), K(/)=K(/-1).  (1.9) 

Moreover ,  i t  follows f rom Theorem 5 of [4] or Theorem 6.11 of [17] t h a t  

K,(/) <~Ko(/) ~, Ko(/) <K,(/) ~. (1.10) 

Thus  the  three  d i l a ta t ions  of a homeomorph i sm / are  s imul taneous ly  f ini te  or infinite.  

I n  the  former  case, / is said to be quasicon/ormal; / is said to  be K-quasicon/ormal if K(/) <~K 

where 1 ~< K < cr 

One can also define the  d i l a t a t ions  of a homeomorph i sm in pu re ly  ana ly t i c  terms.  

Suppose  t h a t  / is a homeomorph i sm of a doma in  D c R a. F o r  each P E D we le t  

L(P) = l im sup [/(x) - / ( P ) [  l(P) = l im inf ]/(x) -/(p)] 
I x - P I  ' I x - P I  ' 

(1.11) 
m(B') 

J(P) = h m  sup - - ,  
t--~o re(B) 

where B =Ba(P,t). A t  a po in t  of d i f ferent iabi l i ty ,  L(P) and  l(P) are  jus t  the  m a x i m u m  

a n d  m i n i m u m  s t re tching  under  /, and  J(P) is the  absolu te  va lue  of the  Jacob ian .  :Next 

we say  t h a t  / is absolutely continuous on lines, or s imply  ACL, in D if for each bal l  B wi th  

B ~  D, / is abso lu te ly  cont inuous  on a lmos t  all  l ine segments  in B which are  para l le l  to  

t h e  coordinate  axes.  

LEMM• 1.1. Suppose that / is a homeomorphism o/ a domain D c  R a. I / / i s  not di/- 

]erentiable with J > 0  a.e. in D or i ] /  is not ACL in D, then 

K,(/) =Ko(/ )  = K ( / )  = co. 

I / ]  is di//erentiable with J > 0 a.e. in D and i ] /  is ACL in D, then 

J(P) L(P)  a 
KI(/) 2 = ess sup Ko(/) ~ = ess sup . 

P~D I(P) a' ~'~D J(P) 
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This result follows from Theorems 4 and 6 of [4] and also from Theorems 6.10, 6.13 

and 6.16 of [17]. 

I f  we apply Lemma 1.1 to the affine mapping 

l (x, ,x~,x3) = (K2z, ,K~x~,x3) ,  K > 1, 

we obtain K , ( ] ) = K  2 and Ko(/)=K. Hence the inequalities in (1.10) are best possible. 

We see from (1.2) and (1.6) that  it is possible to define the dilatations of a homeo- 

morphism ] in terms of what happens to the moduli of certain are families under / ,  namely 

the families of arcs which join the boundary components of bounded rings with closure 

in D. Surprisingly enough, if we know what happens to the moduli of this particular class 

of arc families unde r / ,  we know what  happens to the moduli of a/1 arc families unde r / .  

In  particular, combining Lemma 1.1 with Theorem 6.5 of [17], we obtain the following 

result. 

LEMMX 1.2. Suppose that / is a homeomorphism o / a  domain D c  R a. Then 

M(F')  2 M(F) 
 0(1) =suPM , 

where the suprema are taken over all arc/amilies F which lie in D and/or which M(F) and 

M(F')  are not simultaneously equal to 0 or ~r 

1.6. Coe//icients o/ quasicon]ormality. Suppose tha t  D is a domain in R a which is 

homeomorphie to the unit ball B 3. We set 

K~(D) = inf g~(/), Ko(D ) = inf K0(/), K(D) = inf K(/), (1.12) 
f f f 

where the infima are taken over all homeomorphisms / of D onto B 3. We call these three 

numbers K~(D), K0(D), and K ( D) the inner, outer, and total coe//icients o/quasicon/ormality 

of D. From (1.10) we obtain 

Kx(D) <.go(D) 2, Ko(D ) ~< gx(D) ~, (1.13) 

while from (1.8) and (1.10) it follows tha t  

max(K1(D ), K0(D)) <.K(D) <~ min(gl(D),  Ko(D)) ~. (1.14) 

Thus these three coefficients are simultaneously finite or infinite. In  the former case we 

say tha t  D is quasicon/ormally equivalent to a ball. 

1.7. Summary o/ results. We can now formulate in a more precise manner the two 

problems with which our paper is concerned. First determine what  kinds of domains D 
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are quasiconformally equivalent to a ball. Next given such a domain D, determine the 

coefficients KI(D), Ko(D ), and K(D). Needless to say, both of these problems are fairly 

difficult and we give only rather fragmentary contributions to the solution of each. 

The aim of this paper is, therefore, to obtain bounds for the coefficients of certain 

domains. To obtain upper bounds for a given domain D, it is only necessary to construct 

a suitable homeomorphism / of D onto B a and calculate the dilatations of / by means of 

Lemma 1.1. The problem of obtaining significant lower bounds is much more difficult, 

since one must find lower bounds for the various dilatations of all homeomorphisms / 

of D onto B a. We do this by considering what happens to certain arc families under each 

homeomorphism / and then appealing to Lemma 1.2. 

We begin in section 2 by giving a few general properties of the coefficients KI(D), 

Ko(D), and K(D). Next in section 3 we derive bounds for the moduli of some arc families. 

I n  section 4 we show that if D and D' have sufficiently smooth boundaries, each quasicon- 

formal mapping / of D onto D' induces a homeomorphism /* of ~D onto ~D' which is 

quasiconformal with maximal dilatation 

K(/*) < min (KI(/), Ko(/)) ~. (1.15) 

We use this sharp bound in sections 8 and 9 where we actually calculate the outer coeffi- 

cients of an infinite circular cylinder and of a convex circular cone. In  section 5 we obtain 

an  upper bound for the coefficients of a certain class of starshaped domains; here the 

homeomorphism ] may be chosen as a simple radial mapping. In section 6 we give asymp- 

totically best possible lower bounds for the inner coefficient of another class of domains 

which are characterized by a certain separation property. Then in section 7 we calculate 

the inner coefficient of a convex dihedral wedge. 

I t  is natural to assume that the values of the coefficients of a domain depend strongly 

upon how smooth the boundary of the domain is. In  section 1O we study what can be 

said about the coefficients of D when ~D contains a spire or a ridge. I t  turns out that  the 

presence of a spire and the presence of a ridge have quite different effects on the coeffi- 

cients, and that  these effects depend also on whether the spire or the ridge is directed 

into or out of D. Finally in section 11 we prove that  the space of all domains which are 

quasiconformally equivalent to a ball has a natural metric, and that  this metric space is 

complete and nonseparable. 

1.8. Definitions /or quasicon/ormality. The terminology concerning quasiconformal 

mappings in space is rather confused. The class of K-quasiconformal mappings considered 

here is the same as the class studied by Gehring in [4], [5], and [6]. I t  also coincides with 
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the class of K~-quasiconformal mappings studied by V/iis/il/i in [17] and [18]. In particular, 

the numbers KI(/) ~ and Ko(]) 2 were called the inner and outer dilatations of the homeo- 

morphism / in [17]. 

According to ~abat [14], a homeomorphism / of D is K-quasiconformal if / is C 1 

and if J > 0  and L<~Kl everywhere in D. Such mappings are K-quasiconformal by our 

definition. In the other direction, if / is K-quasiconformal by our definition and if / is 

C 1 with J > 0 in D, then / is Ka/3-quasiconformal by ~abat's definition. The affine mapping 

/(X 1, X 2, X3) = ( K  4/3 Xl, K 2/3 x2, x 3) 

shows that  the constant K 4Is cannot be improved. 

2. General properties of the coefficients of domains 

2.1. Lower semicontinuity o/the dilatations. We need the following result to establish 

the existence of extremal mappings and to obtain a similar continuity result for the 

coefficients of a domain. 

LEMMA 2.1. Suppose that {/n} is a sequence o~ homeomorphisms o/ domains Dnc  R 3, 

that each compact subset o / a  domain D c  R 3 is contained in all but a/ ini te  number o/Dn, 

and that the/n converge uni/ormly on each compact subset o/ D to a homeomorphism / o /D .  

Then 
K,(/) ~ lim inf KI(/~), Ko(/) < lim inf K0(/~), (2.1) 

n - - > o o  n - ~ o o  

and similarly/o r the maximal dilatation K(/). 

Proo/. Let R be a bounded ring with R c  D. Then ~ c  D~ for n >~no(R ). If R~ and R' 

denote the images of R under /n  a n d / ,  then the hypotheses imply that  each component 

of ~R~ converges uniformly to the corresponding component of ~R', in the sense of Lemma 

6 of [4]. Hence modRn converges to modR'  and we have 

rood R < lim inf (KI(/n) rood R~) = mod R' lim inf KI(/~). 
n - ~ r 1 6 2  n - - -> r162  

Since this inequality holds for all such R, we obtain the first half of (2.1). The proof for 

the second half is similar, and (2.1) then implies the analogous inequality for K(/). 

2.2. Extremal mappings. We see next that  there exist extremal quasiconformal map- 

pings for each domain with finite coefficients. 

LEM•A 2.2. I] D is a domain in R 3 which is quasicon/ormally equivalent to a ball, 

then there exist extremal homeomorphisms /i, ]o, / o / D  onto B 3/or which 

KI(/I)=KI(D), Ko(/o)=Ko(D), K( / )=K(D).  (2.2) 
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Proo/. Fix K so that  KI(D ) < K <  oo. Then we may  choose a sequence of homeo- 

morphisms (/n) of D onto B a such that  

Kx(D) ~ lim Kx(/n) (2.3) 
n - ~ o o  

and such tha t  Kz(/, ) ~<K for all n. By  composing/n with a suitable M6bius transformation 

of B a onto itself, we may  further assume tha t /n (P)  =P', where P and P '  are fixed points 

in D and B a, respectively. Now (1.10) implies that  t he /n  are all K~-quasiconformal, and 

hence by  Corollary 7 of [4] there exists a subseqnence {/n~) which converges to a homeo- 

morph ism/x  of D onto B a, uniformly on compact subsets of D. Combining Lemma 2.1 

with (2.3) yields 
KI(D) <~ Kl(/~) <~ lira inf Kl(/n~) = K,(D), 

and hence/~ satisfies the first par t  of (2.2). The proofs for the existence of/0 and / follow 

exactly the same lines. 

2.3. Lower semicontinuity o/the coe//icients. Suppose that  {D,} is a sequence of domains 

in R 3 which contain a fixed point P. We define the kernel D at P of the sequence {D,} 

as follows [6]. 

(i) I f  there exists no fixed neighborhood U of P which is contained in all of the Dn, 

then D consists only of the point P.  

(ii) I f  there exists a fixed neighborhood U of P which is contained in all of the D~, 

then D is the unique domain with the following properties. 

(a) PED.  

(b) Each compact set E c  D lies in all but  a finite number  of D n. 

(c) I f  A is a domain satisfying (a) and (b), then A c  D. 

Next  the sequence {Dn} is said to converge to its kernel D at P if for each subsequence 

{nk}, the sequence of domains {D,k} also has D as its kernel at P.  

Using this notion of convergence, we obtain the following continuity proper ty  for 

the coefficients of a domain. 

THEOREM 2.1. Suppose that {Dn} is a sequence o/domains in R 3 which contain the 

point P, that the Dn converge to their kernel D at P, and that D ~={P), R 3. Then 

K~(D) <~ lim inf KI(Dn), Ko(D ) <~ lim inf K0(Dn) , (2.4) 

and similarly/or the coe//icient K(D). 

Proo/. We establish the first half of (2.4). For this let 

K = lira inf Ki(D,). 
n - - ~ o o  
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We m a y  assume tha t  K < c~, for otherwise there is nothing to  prove. Next  for each n, 

let fn be one of the extremal homeomorphisms of Dn onto B 3 for which Kj( /n)=KI(Dn).  

By  choosing a subsequence and relabeling, we m a y  assume tha t  

K = lim Kl(/n) 
n---~oo 

and tha t  K1(fn)~< K + 1 for all n. Fur thermore,  by  composing t h e / ~  with suitable M6bius 

t ransformations of B a onto itself, we m a y  assume tha t  fn(P)= 0. Now the fn are (K + 1) ~- 

quasiconformal, D c R a, and D has a finite boundary  point.  Hence we m a y  apply  Theorem 

3 of [6] to obtain a subsequence {fn~} which converges to a homeomorphism f of D onto 

B a, uniformly on each compact  subset of D. Then with Lemma 2.1 we have 

K~(D) <<. K~(/) <~ lim inf K~([~) = K 
k--.~ ~o 

as desired. The proofs for Ko(D ) and K(D) follow similarly. 

The hypothesis  t ha t  D :k R 8 is essential. For  if we let D~ = Ba(P, n), then all coefficients 

of each D~ are equal to 1. On the other  hand,  D = R a and hence all coefficients of D are 

infinite [9]. 

2.4. Range of the coe/ficients. The inequalities (1.13) and (1.14) imply  tha t  

KI(D) >~ 1, Ko(D ) >~1, K(D) >~1 (2.5) 

for each domain D c  R a, and tha t  there is simultaneously equal i ty  or inequali ty in (2.5). 

I t  then follows f rom Lemma 2.2 and Theorem 15 of [4] tha t  the coefficients of a domain 

D are equal to 1 if and only if D is either a ball or a half space. Hence we see tha t  

Kz(D)>I,  Ko(D )>1, K ( D ) > I  

for essentially all domains D ~  R 3. 

2.5. Influence of the boundary. The main task in this paper  is to obtain some significant 

lower bounds for the coefficients of certain domains; by  significant lower bounds, we 

mean bounds which exceed 1. Up  to now, the only general result of this kind is the follow- 

ing one [18] which considers the topological na ture  of the boundary .  

THEOREM 2.2. I /  D is a domain in R a, if D is locally connected at each point of its 

boundary ~ D, and if ~ D is not homeomorphic to S ~, then all the coefficients of D are in/inite. (1) 

(1) A domain D is said to be locally connected at a boundary point if for each neighborhood U of 
the point there exists a second neighborhood V of the point such tha~ each pair of points in V I1 D 
can be joined by an arc ~,c UN D. 
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I t  is obvious f rom Theorem 2.2 tha t  the coefficients of a given domain depend strongly 

on the global nature  of ~D. We show now how one can obtain lower bounds for the coeffi- 

cients by  examining D in a neighborhood of a fixed finite boundary  point. 

We say t h a t  a domain A c  R a is raylike at  a point  Q if for each point  P ,  P E A  if and 

only if Q + t ( P - Q ) 6 A  for 0 < t <  oo. Tha t  is, A is raylike a t  Q if each open ray  f rom Q 

lies either in A or in C(A). 

THEOREM 2.3. Suppose that D is a domain in R a, that U is a neighborhood o~ QE~D, 

and that D N U = A N U, where A is a domain that is raylilce at Q. Then 

K~(D)>~K~(A), go(D)>~Ko(A), K(D)>~K(A). (2.6) 

Proo/. We m a y  assume wi thout  loss of generali ty tha t  Q =0 .  Choose a > 0  so tha t  

Ba(a) c U, and  for each positive integer n let D n = {x: x/n 6 D}. I f  x 6 A and  n > Ix I/a, 

then because A is raylikc at  the origin 

X-6A N U c D ,  x 6 D , .  (2.7) 
n 

Hence if we fix P 6 A with ] P [ < a, we see tha t  P 6 D ,  for all n. 

Now let D '  denote the kernel of the D ,  at  P.  Arguing as in (2.7) it follows tha t  each 

compact  subset of A must  lie in all but  a finite number  of D, ,  and hence we see tha t  A c D'. 

I f  x 6 D' ,  then x 6 D ,  for n > n 0. Thus n > n o, I x [/a implies tha t  

X 
- 6 D N U c A ,  x s  
n 

since A is raylike at  the origin. Thus A = D', and repeating the above a rgument  with a 

subsequence {nk} , we conclude tha t  the D n converge to their kernel A a t  P .  Final ly since 

0 6~A, we can apply  Theorem 2.1 to obtain  

KI(A) ~< lim inf K z ( D n )  = KI(D), 

and similarly for the two other  coefficients. 

2.6. An example. We conclude this section with an  example which will mot iva te  the 

separation proper ty  discussed in section 6. Let  D he the domain 

D = { x :  (x~+x~) t<  oo, Ix l<l}, 

let {bn} be a ny  sequence of positive numbers  which approach oo, and for each n let D n 

be the r ight  circular cylinder 

D , = { x : ( x ~ + x ~ ) � 8 9  I x 3 l < l } .  
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Then  D satisfies the  hypotheses  of Theorem 2.2 and  hence has  inf ini te  coefficients [18]. 

On the  o ther  hand,  the  Dn also converge to the i r  kernel  D a t  0, and  since D + R  a, we see 

f rom Theorem 2.1 t h a t  

l im Kz(Dn) = l im Ko(D~ ) = l im K(D~) = oo. 
n---)~ n--->~ n-q*~ 

Thus  the  coefficients of a r igh t  c i rcular  cy l inder  app roach  ~ as the  ra t io  of i ts  rad ius  

to  he ight  approaches  ~ .  W e  will give bounds  in sect ion 6 to  show how fas t  the  inner  

coefficient grows. 

3. Estimates for the moduli of  certain arc families 

3'1.  Spherical cap inequality. W e  begin  wi th  an  inequa l i t y  which is requ i red  l a t e r  

in the  proof  of a s y m m e t r y  pr incip le  for the  modul i  of arc  families.  (Cf. L e m m a  1 in [4] 

a n d  Theorem 3.6 in [17].) 

LEMMA 3.1. Suppose that S is a sphere o/radius t, that D is an open hall space, that 

Z = S f] D, and that Q is a non-negative Borel measurable/unction in S. Then each pair o/ 

points P and Q in ~ can be joined by a circular arc ~ c ~ /or which 

where A is the absolute constant 16q2/• and 

(;) q = q = sin u)- �89 (3.2) 

Proo/. Since the  inequa l i t y  (3.1) is i nva r i an t  under  s imi la r i ty  t r ans fo rmat ions  of R a 

~n to  itself, we m a y  assume t h a t  S is the  un i t  sphere S ~ and  t h a t  P is the  po in t  (0,0,1).  

Le t  / m a p  S s te reographica l ly  onto  the  ex t ended  complex  p lane  Z. Then  P corresponds  

to  z = oo and  Q to some po in t  z = a + oo. Moreover,  if S - N is nonempty ,  th is  set corresponds 

to  a closed disk or half  p lane  E which does no t  conta in  a or oo as in ter ior  points .  Since E 

is  convex,  we can f ind  an  angle fl such t h a t  for f i < 0 < f l + g ,  the  r a y  

z = a + u e  i~ 0 < u < o o ,  

does  no t  meet  E .  Hence  this  r a y  corresponds to a c ircular  arc  ~(0) which joins P and  Q 

~n Z.  F o r  each such arc  we see t h a t  

Q(x) ds = 2 Ql(z ) du 
(0) 0 l + l z l  ~' z = a + u e ~ '  ~1=~~ 
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and thus we may choose a particular circular arc a joining P and Q in E for which 

S= ~(X)d8 ~ 2_ ~ ~ el(Z) do* 
= j j a l z _ a  I 1+i=i=, (3 .3)  

where ~ is the half plane fl < arg ( z - a ) < f l  + g .  Now HSlder's inequality implies that  

the cube of the right-hand side of (3.3) is majorized by 

s~(f f lz-al-'(l + lzl2)-'do*)2 (f f el(z)3(l +lzl~)-2do*). 
If  we appeal to the argument in the proof of Lemma 1 in [4] or to Theorem 7.2 in 

[12], we obtain 

ff~ I=- =l-~(1 + I z I=)-+do* < ff= I = -  a l -{(1  + { = r ) -+d~ < ff= I = I-'(1 + Izl2)-�89 �9 

Finally we see that  

4ffae1(z)a(l+lzl~)-~do*<<.ffe(x)ado*, 
and if we combine the above inequalities, we obtain (3.1) as desired. 

3.2. Suppose that  D is an open half space and that  E 0 and E 1 are disjoint continua 

in/~.(1) Next for small t > 0  let F and F(t) be the families of arcs which join E 0 to E 1 and 

Eo(t ) to El(t ) in D, respectively, where E~(t) denotes the closed set of points which lie 

within distance t of E~ for i = 0,1. 

The following result yields an important relation between the families of functions 

F(F) and F(F(t)). (Cf. Lemma 2 in [3] and Lemma 2 in [19].) 

LEMMX 3.2. I[ ~s and i/Q is La-integrable, then/or each a > l  there exists a t > 0  

such that a~ e F(F(t)). 

Proo/. Choose b >0  so that  a(1-2b)= 1, let c >0  denote the minimum of the diameters 

of E 0 and El, and let d > 0 denote the distance between E o and E 1. Next for P ED and 

t > 0  let Y,(P,t)=S~(P,t)ND. Since Q is L3-integrable, we can choose t, O<t<c/4, d/6, 
such that 

f f f ~.(,.~t) d do' <<- l ~  ba 
for all P E D ,  where A is the constant of Lemma 3.1. This means that  for each P E D  we 

can find a spherical cap E(P) =E(P,u)  such that  t < u  = u ( P ) < 2 t  and 

Au JJ~f(P) ~ado* ~< b a. (3.4) 

(1) By a continuum we mean a compact connected set in/~* which contains more tl~n one point. 
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To complete the proof of L e m m a  3.2 we must  show t h a t  

f ~ds ~ 1 - 2b (3.5) 

for all y EF(t). Choose y EF(t). There are two cases to consider. 

Suppose first tha t  there exist finite points P~ E 2 A E~(t) for i =0,1.  Then since P~ E~), 

since the diameter  of ~ exceeds tha t  of E(P~), and since y is a connected set in D, y mus t  

meet  E(P~) for i =0,1.  Next  because Ei  is a connected set in D,  a similar a rgument  shows 

tha t  E~ must  meet  ,~(P~) for i=O,1. We conclude from Lemma 3.1 and (3.4) t ha t  for 

i =0,1 there exists a circular arc a~ which joins y and E~ in E(P~)c  D and for which 

f Qds<~ (3.6) b. 

I t  is then easy to show tha t  ~o U ~i U ~ contains an arc fl which joins E o to E 1 in D 

and hence 

f eds~feds-f~~ 
Suppose next  tha t  one of the sets, say  2 A E~(t), contains only the point  ~ .  Then 

2 A Eo(t ) contains a finite point  P0, and arguing as above, we can find a circular arc ~0 

which joins y to E 0 in F~(P0)c D and for which (3.6) holds with i =0 .  Since ~ EEl,  5 0 (J y 

Contains an arc fi which joins E o to E 1 in D and we obtain  

freds~feds-f, eds~l-b>l-2b. 
Thus the proof for Lemma 3.2 is complete. 

3.3. Remark. Now suppose tha t  D is an arb i t rary  open set and tha t  E o and E i are 

bounded continua in D which lie at  a positive distance from each other. Then the a rgument  

given above, or Lemma 2 of [19], shows tha t  Lemma 3.2 is again valid if for small t > 0 ,  

we let D and F(t) denote the families of arcs which join E o to E i and Eo(t ) to  Ei(t ) in D, 

respectively. 

3.4. Symmetry principle. We next  use Lemma 3.2 to establish the following s y m m e t r y  

principle for the moduli  of arc families. 

L E M M i  3.3. Suppose that D is an open hall space, that E o and E 1 a r e  disjoint continua 

in D, and that ~o and J~i are the symmetric images o/ E o a~wl E i in the plane ~D. I / F  is 

the/amily o/ arcs which loin E o and E i in D and F i the/amily o/ arcs which loin E o U •o 

and E i U E1 in R a, then 
/ ( r )  = �89 (3.7) 
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Proo/. We may  assume, for convenience of notation, that  D is the half space x3>0. 

I f  we let F denote the family of arcs which join ~0 and $1 in 1), the half space x a <0,  then 

F and F are separate families and F U F ~ F  I. Obviously M ( F ) = M ( F )  and hence 

2M(F) =M(F)  + M ( I  ~ ) = M ( F  01 ~) ~< M(F1) 

by Lemma 2.1 of [17]. 

Next  let F denote the family of arcs which join E 0 and E 1 in D, let [ be the contin- 

uous mapping of R 3 into ]9 given by  

/(~1, x~, ~ )  = (~1, z~, I ~ I ), 

and let e e F(F). Set ~x =e ~ and choose Yl eft. Then ][Yl], the image of Yx under [, contains 

an arc ? ~ and hence 

Thus 51 ~ F(F1), 

M(F1)< f f f  ~ e~d~~ fff~e~d~ f f f  ~ d d~~ 

and we conclude tha t  M(F1)~<2M(F). 

To complete the proof of (3.7) we must  show that  

M(F) ~<M(F). (3.8) 

Now the fact tha t  E 0 and E~ are disjoint implies tha t  M ( F ) < o o .  Fix a > l  and choose 

QEF(F) so tha t  ~ is L3-integrable. By Lemma 3.2 we can choose t > 0  so tha t  aQEF(F(t)). 
Set ~l(x)=aQ(x+te~), let 7xEF, and let y be the arc ?1 translated through the vector te 3. 

Then ? EF(t) and we have 

f , edx)ds= f ae(x)ds>~l. 
Hence ~1 E F(F), 

M( )<fff e a'~176 
and taking the infimum over all such Q yields 

M(F) <a3MCr). 

Finally if we let a ->l ,  we obtain (3.8) as desired. 

3.5. Continuity of moduli. The following continuity property for the moduli of arc 

families is an easy consequence of the preceding arguments. (Cf. Lemma 6 in [4].) 
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L ] ~ x  3.4. Suppose that D is an open set, that E o and E 1 are disjoint bounded continua 

in D, and that ]or small t>0 ,  F and F(t) are the/amilies o/arcs which join E o to E 1 and Eo(t ) 

to El(t ) in D, respectively. Then 

M(F) = l i m  M(F (t)). (3.9) 
t--->0 

Proo/. I f  0 < t 1 < t2, then F = F(tl) c F(t2) and hence 

M ( F )  ~< M(r(tl)) < M(r(t2)). 

Thus the limit in (3.9) exists and 

M(F) ~< lim M(F(t)). (3.10) 

Since E .  and E 1 are disjoint continua, 0 <M(F)  < ~ .  Fix a > 1 and choose ~ E F(F) such 

that  

~ f  f ~ ~ dco <~ aM(I ') .  

By  Lemma 3.2 and the remark in section 3.3, we ean choose t >0  so tha t  a~ E F(F(t)). Thus 

M(F(t))<~aa t[ [ ~adoJ<~a4M(F), 
d d d  R a 

and we obtain lim M(F(t)) ~< a4M(F). 
t-->0 

I f  we let a-->l, then the resulting inequality and (3.10) imply (3.9), and the proof is complete. 

3.6. Extremal problem. Now suppose tha t  D is the half space x a > O, that  E 0 and E 1 

are continua in D, and that  Po,OEEo and Pl,  oo EEl, where P 0 ~ 0  and P 1 4  ~ .  We want 

to find a sharp lower bound for M(F), where F is the family of arcs which join E 0 and 

E 1 in  D. 

For this let E~' denote the segment - IPo]  ~ x l ~ O  , x2=xa=O and E~ the ray ]PI] ~< 

xl<~ c~, x2=xa=O, and let F* denote the family of arcs which join E* and E~ in D. We 

shall show tha t  the family F* has the following extremal property.  

T H E O R ~  3.1. M(F) ~>M(F*). 

The proof of Theorem 3.I depends upon an analogous extremal property of the 

Teichmiiller ring in space. In  order to make use of this property we must  first establish 

the following result. 

L ~ M A  3.5. I] E o and E 1 are disjoint continua, then there exist a domain D and dis- 

joint continua C O and C 1 such that C O and C I are the components o /C(D)  and ~Ci= E~c O~ 

/or i = 0 , 1 .  
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Proo[. Choose QoEEo a n d  QiEE1 so t h a t  ]Qo-Qi l  is equal  to  the  d is tance  be tween  

E 0 and  El, let  Q =�89 and  let  D be the  componen t  of C(E o U El)  which conta ins  Q. 

Then  each componen t  A of C(D) is a domain  wi th  a connected  bounda ry .  (See p. 123 

and  p. 137 in [11].) Nex t  since E o N E i = O  and  since 

~ A c  ~ C ( D ) ~  ~ D c  E o U E i, 

e i ther  ~A ~ E o or ~A c E i. Now let  

C ~ = ( U A )  UE~, i = 0 , 1 ,  

where for each i the  union is t aken  over  all  components  A of C(D) for which ~ A c  Ev 

Then  i t  is no t  diff icult  to  see t h a t  C o and  C i are  cont inua  and  t h a t  C ( D ) = C  o U C i. Since 

~ D c  E 0 U E i and  Q~E~D N E~ for i = 0 , 1 ,  ~D is not  connected  and  hence C o and  C1 are  the  

components  of C(D). Fina l l y  we see t h a t  

~ C i ~ D  N C , c  E ~ c  Ci 

for i = 0 , 1 ,  and  the  proof  of L e m m a  3.5 is complete.  

P r o o / o /  Theorem 3.1. W e  first  observe t h a t  M ( F )  = c~ whenever  E 0 N E i # O .  (Cf. p. 

31 in [17].) F o r  fix P E E  o N E i. Then  since E 0 and  E 1 are  nondegenera te ,  we can f ind 

a > 0  such t h a t  the  closure of Y=(t)=S2(P,t)N D meets  E o and  E i for 0 < t < a .  Choose 

Q E F (F ) .  Then 

f ~  ~> 1 ~ds 

for each circular  arc zr which joins E 0 and  E 1 in Y~(t), and  L e m m a  3.1 implies  t h a t  

dt >~ - I -- = c~ 
A J o  t " 

Hence  M(F)  = ~ and  the  desired inequa l i ty  follows t r iv ia l ly .  

Suppose now t h a t  E o and  E i are dis joint ,  let  E0 and  ~'i  be the  symmet r i c  images  of 

E o and  E 1 in ~D, and  let  F x be the  fami ly  of arcs  which join E 0 U Eo to E i U E i  in R a. L e m m a  

3.5 implies  there  exists  a r ing R which has C o and  C i as the  components  of i ts complement ,  

where OC~cE~cC~ for i = 0 , 1 .  Hence  the fami ly  of arcs  which join  the  components  of 

~R in R is a subfami ly  of F i ,  and  we ob ta in  

M(F)  = �89 1_ cap R 

f rom L e m m a  3.3 and  (1.6). Since P0,0EC0 and  P i ,  cr EC i, we can now a p p l y  Theorem 1 

of [2] to conclude t h a t  
cap R ~> cap R*, 
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where R* is the ring bounded by  the continua E~ and E*. Because these sets are sym- 

metric in ~D, it follows tha t  

M(F*) - 1 * - 1 * - ~M(F1) - ~ c a p R  , (3.11) 

where F~ is the family of arcs joining E~' to E~' in R 3, and we obtain M(F)>~M(F*). 

3.7. Some applications. For  each u > 0  we let yJ(u) denote the modulus of the family 

of arcs which join the segment - l~<xl~<0,  x2=x3=O to  the r ay  u < ~ x l < ~ ,  x 2 = x 3 = 0  

in the half space x 3 >0 .  F rom (3.11) it follows tha t  

~f(u) = 2~(log~F(u)) -2, (3.12) 

where ~F(u) is the funct ion described in [2]. I f  we combine Lemmas  6 and 8 in [2] with 

the Corollary in [3] and with the estimates due to Hersch [7] and Teichmiiller [16] for 

the modulus  of the plane Teichmiiller ring, we obtain  

2:~(log22(u + 1)) -2 ~<y~(u) ~< 2ze(log (16u + 1)) -3, (3.13) 

where 2 is an absolute constant ,  4 ~<2 ~< 12.4 . . . .  

Theorem 3.1 now yields the following lower bounds for the moduli  of three different 

families of arcs in D, the half space x 3 > 0. 

COROLLARY 3.1. Suppose that E o and E 1 are continua in D,  that both E o and E 1 

meet S~(a) where a > O, and that 0 E E o and ~ E E 1. 17/F is the /ami ly  o/arcs  which ]oin E o 

and E 1 in  D, then 
M(F) >~(1).  

COROLLARY 3.2. Suppose that E o and E 1 are continua in D,  that E o separates O and 

c~ in aD, and that O, c~ E E 1. I /  F is the /ami ly  o/arcs  which loin E o and E 1 in D, then 

M(F) >W(�89 

COROLLARY 3.3. Suppose that P1,P2,P3,P4 are distinct points in ~D and that El,  E2, 

E3, E a are continua in D which loin P1 to P2, P~ to P3, P3 to Pa, Pa to 1)1, respectively. 17/ 

F 1 and F 2 are the ]amilies o/arcs  which loin E 1 to E 3 and E 2 to E 4 in D, respectively, then 

M(F1)~>~(1) or M(F2)>~fl(1). 

Proo/ o/ Corollary 3.1. B y  hypothesis  there exist points P0 E S2(a) N E 0 and P1 E S2(a) N El,  

and hence b y  Theorem 3.1 

2- -652932  Acta  mathematica 114. Imprim6 le 9 aofi~ 1965. 
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Proo[ o/Corollary 3.2. Since E 0 separates 0 and cr in OD, we can find a pair of points 

Po, Px6Eo f ~ D  such that  O< IpoJ <~�89 For example, we may take P0 as one 

of the points of E 0 N 0D nearest to 0 and then let P1 be any point in the intersection of 

E 0 with the ray from 0 through -Po .  Then after the change of variables y = x - P o ,  Theo- 

rem 3.1 yields 

P1 - Vo I! 

since ~v(u) is nonincreasing in u. 

Proo[ o/Corollary 3.3. By performing a preliminary M6bius transformation of D onto 

itself, we may assume, without loss of generality, that  P2 =0  and P4 = oo. Then since 

P l ,  0 ~ E 1 and Pa, cr 6 E a, we have 

II v,  ]/" 

Next since P3, 0 s E 2 and P1, ~ 6 E 4, 

M(r,) ,e [IPIl  
P, I/" 

Thus M(F1) >~o(1) if [PI[ ~> [e3l and M(r~)~>~o(1) if [PI[ ~< [Pal- 

3.8. Remarks. The bounds in Coronaries 3.1 and 3.3 are sharp. For example, we have 

M(F1) =M(F2)=~o(1) in Corollary 3.3 if E, denotes the arc of the circle x~+x~= 1, xa=0 

which is contained in the closed i-th quadrant of x a = 0, i = 1,2, 3, 4. 

On the other hand, we are sure that  the bound in Corollary 3.2 is not best possible, 

and we conjecture that under the hypotheses of Corollary 3.2, 

M(P)/> = 1.43 .... (3.14) 

where q is as in (3.2). There is equality in (3.14) when E 0 is the circle x~+x~=l ,  xa=0 

and E 1 the ray x I =x~ =0, 0 <~x a <~ oo. From the second half of (3.13) we obtain 

~v(�89 ~< 2:~(log 9) -3 = 1.30 .... 

and hence the conjectured lower bound in (3.14) is greater than %v(�89 

3.9. We consider next the asymptotic behaviour of a particular family of arcs. We 

use this result to establish the bound given in (1.15) for the boundary mapping [* induced 

by a quasiconformal mapping/ .  
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LE~MA 3.6. For each a > 0 ,  let p(a) denote the modulus o I the 1amily o I arcs which 

join the segments x l =  _ a ,  [xs] ~<1, xa=0  in R a. Then ap(a) is nondecreasing in a and 

lim ap(a) = A, (3.15) 
a-=~0 

where 0 < A < c~. 

Proo I. Fix a > 0  and let F be the family of arcs which join the above segments in R 3. 

Then for a' > a, 

(i a) a a 

t(% x2, x . / =  xl, x2, x~ 

is a homeomorphism of R s onto itself and we obtain 

t 

p(a) = ~ / (r )  < go( l )  ~ M(r') = ~: p(a'). 
{h 

Thus ap(a) is nondecreasing in a and the limit in (3.15) exists with A ~<p(1) < oo. To show 

tha t  A >0,  choose ~EF(F).  Then Theorem 3.5 in [17] implies tha t  

1 

> - -  du = . 
R* J - 1 2 1 a  21a 

Hence ap(a)>2/21 and we conclude that  A ~>2/21. 

3.10. Cylinder and cone inequalities. We conclude this section by  obtaining sharp 

lower bounds for the moduli of two more families of arcs. These estimates will be used in  

sections 8 and 9 when we calculate the outer coefficients of an infinite cylinder and of a. 

c o n v e x  c o n e ,  

LEMMA 3.7. Suppose that a <b, that C is the finite part o t the cylinder x21 +x~ < 1 which 

is bounded by the planes xa=a  and xa=b , and that E is a connected set in C which joins the 

bases o I C. 11 F is the lamily  o1 arcs in C which join E to the lateral surlace o I C, then 

M(F) ~> �89 - a). (3.16~ 

There is equality in (3.16) i t E is the segment x I =x~ = O, a < x a < b. 

Proo/. Choose ~EF(F).  For a < u < b ,  the plane x a = u  meets both E and the lateral: 

surface of C, and we can apply Theorem 3.4 of [17] to obtain 

f f / a ~ a d e o > ~ f : ( f f x , _ u ~ a d q ) d u > ~ f :  �89189 

This yields (3.16) as desired. 
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:Next suppose that  E is the segment Xl=X2=O, a<xa<b, and set ~(x)=�89 -�89 in C 

and Q(x) =0  in C(C), where r denotes the distance from x to the xa-axis. Then Q E F(F) and 

f f f e3dw �89 a). 

Hence in this case there is equality in (3.16). 

Finally we have the following cone analogue of Lemma 3.7. 

LEM~A 3.8. Suppose that 0<a~<�89 and 0 < a < b ,  that C is the part o/ the cone 

x a > (cot ~) (x~ +x~)�89 which is bounded by the spheres S2(a) and S2(b), and that E is a connected 

set in C which joins the spherical bases o/C. I / F  is the/amily o/arcs in C which join E to 

the lateral sur/ace o/C, then 
b 

M(F) >/2~q(a) -2 log - ,  (3.17) a 

where q(~)=fi(sinu)-�89 

There is equality in (3.17) i] E is the segment x l = x 2 = 0 ,  a <xa <b. 

(3.18) 

Proo]. Choose ~EF(F) and for each t > 0  let Z(t)=S~(t)N C. We first show tha t  

f f e3 da (3 .19)  

for a<t<b. 

For this fix t, a < t < b. Since E joins S2(a) and S2(b) in C, we can find a point Q E E n Z(t). 

:Next let T be any  fixed plane containing 0 and Q, let T(O) denote the plane through 0 

and  Q which meets T at  an angle 0, and for P E E(t) let ~ = ~v(P) denote the angle formed 

by  the segments 0P and 0Q, 0~<~<2~.  For each 0, fl(O)=T(O)hE(t) contains a pair of 

circular arcs which join E to the lateral surface of C. Thus 

f p(o) o~ ds >12, 

and  with HSlder's inequality we obtain 

Since the length of fl(O) does not exceed 2o~t <~t, it is easy to see tha t  

f~(o)(sinq~)-'ds=tf~(e)(sinq~)-'Idq~l<<'2tq(a) �9 
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[ ' 2  
Thus  we have  Jo(o)~at2sinq~[dq~[>~tq(~r -2, 

and we obta in  (3.19) b y  integrat ing bo th  sides of this inequal i ty  over  0 ~<0 ~<~r. 

Nex t  if we integrate  bo th  sides of (3.19) over  the in terva l  a < t  < b, we get  

f f f n, ead~>~ ffa (f f ~(t)eada) dt>~ 2=q(a)-~l~ 
and hence (3.17) follows. 

Final ly  suppose t h a t  E is the segment  x 1 = x 2 = 0, a < x a < b, and let 

~(x) = t-  1 (sin ~) - �89 q(a)-I  

in C and ~ (x )=0  in C(C), where t =  Ix] and  V is the acute  angle be tween the segment  0x 

and  the posit ive x3-axis. Then  ~ E F(F)  and 

fff Q3da)=2~q(a)_~log b R. a 

Hence in this case there is equal i ty  in (3.17). 

4. Boundary correspondence induced by quasiconformal mappings 

4.1. Introduction. I f  ] is a quasiconformal  mapp ing  of D onto a half space D '  and  if 

D is locally connected a t  each point  of its boundary ,  then  / induces a homeomorph i sm 

/* of OD onto OD' b y  Theorem 1 in [18]. Moreover,  b y  Theorem 10 in [4], this b o u n d a r y  

mapp ing  is a two-dimensional  quasiconformal  mapp ing  whenever  ~D is itself a plane. 

We show in this section t ha t  this result  remains  val id when ~D is, for example ,  a 

smooth  free surface, and  we obta in  a sharp  bound for the max ima l  di la ta t ion of t h e  

bounda ry  m a p p i n g / *  in te rms  of the inner and  outer  di la tat ions o f / .  

4.2. Quasi-isometrics. We introduce the not ion of a quasi - isometry  in order to descr ibe 

a certain class of surfaces. Suppose t ha t  / is a homeomorph i sm of a domain  D c  R 3. W e  

say t h a t  / is a C-isometry, 1 ~ C < ~ , if 

C-11P1 - P 2  [ ~< [ ](P1) - ] (P~)  ] ~< C [P1 - P 2  ] (4.1) 

for all P1,P~ED. A homeomorph i sm is a quasi-isometry if i t  is a C-isometry  for  some C. 

We  define C(/), the  maximal distortion of / in D, as the  smallest  cons tan t  C for  which 

(4.1) holds for all P1,P2ED. 

I f  ] is a C-isometry,  then  it  follows f rom L e m m a  1.1 t h a t  

K,(/) ~< 02, Ko(I) < C~. (4.2) 
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Thus / is quasicon/ormal. On the other hand, it is clear that  a quasiconformal mapping 

need not be a quasi-isometry. 

4.3. Admissible sur/aces. A connected set S c  R 3 is said to be an admissible sur/ace 

if to each point P E S there corresponds a quasi-isometry ip with the following properties. 

For  each e > 0 there exists a neighborhood Up of P, in which ip is defined, such that  ip 

maps S N Up onto a plane domain Tp and such that  the maximal distortion C(ie) of ip 

in Up satisfies the inequalities 

sup C(ip) < co, ess sup C(ip) ~< 1 + e. (4.3) 
PES PES 

Here, and throughout the rest of section 4, the essential suprema and in/ima over S and 

S '  are taken with respect to the A2-measure. 

We want a simple geometric condition which implies that S is an admissible surface. 

~uppose that a point P E S  has a neighborhood V such that  S N V is homeomorphic to 

an  open disk, suppose that n is a fixed unit vector, and suppose that  for each pair of points 

Q1,Q~ E S N V, the acute angle which the segment Q1Q2 makes with n is never less than ~r > 0. 

Then there exists a neighborhood U of P such that  U c  V and each point x E U has a unique 

representation of the form 
x = Q + u n ,  

where QES N U and u is real. For each such x we let 

i(x) = i(Q) + un, 

where i(Q) is the projection of Q onto the plane through P which has n as its normal. 

"]?hen i maps S N U onto a plane domain T, and it follows from Corollary 5.1 that  i is a 

quasi-isometry of U with maximal distortion 

C(i) < cot :r + 1. 

Thus a connected set S ~  R 3 is an admissible surface if to each point P there cor. 

responds a unit vector np with the following property. For each ~ > 0 there exists a neigh- 

borhood Up of P such that S N Up is homeomorphic to an open disk and such that  for each 

pair of points Q1,Q2ES N Up, the acute angle between the segment QIQ2 and the vector 

np is never less than ~p, where 

in/~p > 0, ess in/~p >~ �89 - ~. (4.4) 
P ~ 8  P ~ S  

For example, a two-dimensional manifold S c R  3 is an admissible surface if it has 

a well defined continuously turning tangent plane at each point P E S. 
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4.4. Quasicon/ormal mappings between admissible sur/aees. Suppose tha t  S and S' are 

admissible surfaces and that  / is a homeomorphism of S onto S'. Next  for each PES, 

let P '  = / (P)  and let iv and i v, be the quasi-isometries associated with P and P'. We say 

that  / is K-quasicon/ormal, 1 ~<K < oo, if for each e > 0  there exist neighborhoods Uv of 

P and Uv. of P '  with the following properties. The quasi-isometries iv and iv, map S fl Up 

and S' fl Up. onto plane domains T v and T v, respectively, / maps S fl Uv into S '  fl Up,, and 

sup K(gv) < oo, ess sup K(gv) ~< K + e, (4.5) 
PeS PeS 

where K(gv) denotes the maximal dilatation of the plane homeomorphism 

gp = ip, o/oi;, 1. (4.6) 

We say tha t  / is quasicon/ormal if it is K-quasiconformal for some K, and we define K(/), 

the maximal dilatation o f / ,  as the smallest number  K for which / is K-quasiconformal. 

LEMMA 4.1. Suppose that S and S' are admissible sur/aces and that / is a quasicon- 

/ormal mapping o /S  onto S'. I / E c S  and i/AS(E)=0, then A~(E ') =0.  

Proo/. Suppose tha t  / is K-quasiconformal, and for e = l  and each PES, let Uv and 

Up, be the neighborhoods of the above definition. By Lindel6f's covering theorem, we 

can choose a sequence of points Pn 6 S so tha t  the neighborhoods Uvn cover E. Set En = 

E N Upn. Then 
E'= UE~ 

n 

and A~(En) = 0. Since ira and iv4 are quasi-isometrics and since ge~ is a plane quasiconformal 

mapping, i t  follows tha t  A~(E~)--0. Hence A~(E ' )=0  as desired. 

From Lemma 4.1 it follows that  if / is a K-quasiconformal mapping of S onto S',  

then ] - t  is a K-quasiconformal mapping of S '  onto S. 

4.5. Sur/ace modulus o/ a /amily o/ arcs. The above definition for quasieonformal 

mappings is awkward s ince i t  involves the quasi-isometrics ip and iv.. We shall give two 

other equivalent definitions, but  first we must  introduce the notion of the surface modulus 

of an arc family. 

Suppose tha t  S is an admissible surface and tha t  F is a family of arcs in S. As in section 

1.4 we let F(F) denote the family of functions Q which are non-negative and Borel meas- 

urable in S and for which 

f v s >11 
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for each are ~ EF. We then define the sur/ace modulus of the arc family F as 

MS(F) =iqnf ffsO2d, , 
where the integral is defined by means of the A2-measure and where the infimum is taken 

over all 0 E F(F). 

The surface modulus of a family of arcs in an admissible surface behaves like the 

familiar plane modulus of a family of arcs in a plane domain. In  particular, Ms(F) reduces 

to this modulus when S is a plane domain. Next  it is easy to see tha t  all of the assertions 

of Lemma 2.1 in [17] hold with M 2 replaced by  M s. Finally we can argue as in the proof 

of Theorem 2.3 in [17] to show tha t  the surface modulus of the family of all compact 

nonrectifiable arcs in an admissible surface S is equal to zero. This means tha t  the arcs 

of a family F, which are not locally rectifiable, have no influence on MS(F). That  is, if 

F1 is the subfamily of locally rectifiable arcs in F, then 

MS(F) =MS(F1). (4.7) 

We could also have used the following inequality to reduce the proof of (4.7) to the 

special case where S is a plane domain. 

L ~ M A  4.2. Suppose that S is an admissible sur/aee, that i is a C-isometry o/ U which 

maps S N U onto a plane domain T, that F is a /ami ly  o/ arcs in S (1 U, and that F' is the 

image o/ F under i. Then 
C-4MS(F) < MT(F ') ~< C4MS(F). (4.8) 

Proo]. I f  Q E F(F), then C~'E F(F') ,  where ~' =~oi-~, and 

MT(r')< ffrc2e'2da<c4 ffsdd . 
This yields the second half of (4.8). The first half follows similarly. 

4.6. Analytic characterization. Suppose tha t  / is a homeomorphism of an admissible 

surface S. For each P E S we let 

A2( (S n B) ')  L(P) = l i m  s u p  ] / (x)  - f (P )  ] js(p) = l i m  s u p  (4.9) 
x-~P I x - P [  ' t-~o A2(S N B) ' 

where B = B3(p,t). N e x t  we say that  / is absolutely continuous on arcs, or simply ACA, 

in S if Ms(F)=0,  where F is the family of all locally rectifiable ares in S which contain 

a compact subarc on which / is not absolutely continuous. (x) 

(1) Suppose that  S is a plane domain. If  f is ACA in ~q, then f is clearly ACL in S. Conversely, if 
f is ACL in S and if the partial derivatives of f are locally/~*-integrable in S, then f is ACA by Lemma 
4.1 of [17]. 
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We now have the following analytic characterization of quasiconformal mappings 

between admissible surfaces. 

T~]~ORE~ 4.1. Suppose that S and S' are admissible sur/aces and that / is a homeo. 

morphism o/ S onto S'. Then / is K-quasicon/ormal, 1 <~ K < c~, i / and  only i / / i s  ACA in 

S and 
L(P) 2 <~ Kgs(P) (4.10) 

A~-a.e. in S. 

Proo/. Suppose tha t  / is K-quasiconformal. We wish to show that  / is ACA in S and 

tha t  (4.10) holds for P 6 S - E  where AS(E) =0.  Fix e>0 .  Because S and S' are admissible 

surfaces we can choose for each P E S  and P' =/(P)  neighborhoods U e and U~, such that  

sup C(ip) < oo, ess sup C(ip) ~< 1 + e, 
P ~ S  P e S  

(4.11) 
sup C(ip,) < ~ ,  ess sup C(ie,) ~ 1 + e, 
P ' e S "  P ' ~ S "  

where C(ie) and C(ip,) denote the maximal distortions of ie and i~, in Up and Up,, respec- 

tively. Next  because / is K-quasieonformal, we can choose these neighborhoods so that,  

in addition, ] maps S N U e into S '  N U~, and 

sup K(g~) < oo, ess sup K(gl,) < K(1 + e), (4.12) 
P e S  P e S  

where K(g~) is the maximal dilatation of the plane homeomorphism ge given in (4.6). 

We show first that  / is ACA. Let  F denote the family of all locally rectifiable arcs in 

S which contain compact subares on which / is not absolutely continuous. Next  choose a 

sequence of points PnES so tha t  the corresponding neighborhoods Ue, cover S. Each 

eF  has a compact subarc fl on which / is not absolutely continuous. A bisection argument  

then shows tha t  for some n, fl has a compact subarc a c  S ~ Uen on which / is not absolutely 

continuous. These arcs ~ form a family F,  which minorizes F, (1) and hence 

Ms(F) ~< MS(Fo). 

Let  F ,  be the subfamily of arcs of F 0 which lie in S N Up,, and let F~ denote the image of 

lon under the quasi-isometry iPn. The analytic definition for plane quasic0nformal mappings 

implies tha t  gp, is ACA in Tpn, and since gen is not absolutely continuous on any are of 

Fn, it follows tha t  the plane modulus of Fn is equal to zero. Hence Ms(F~) = 0 by Lemma 

4.2 and we conclude tha t  
Ms(F0) < ~ Ms(F,) = 0. 

Thus Ms(F) = 0  and / is ACA in S. 

(1) A n  are family l~  is said to  minorize an arc family I"~ if for each ~2 EF~ the re  exists  a ~'1 EI"I 
such t h a t  ~1c  ~ .  
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We turn next to the inequality (4.10). Lemma 4.1, (4.11), and (4.12) imply there 

exists a set E 1 c S  such that  A~(E1)=0 and 

C(ip)..<l+e, C(ie,) < l  +e, K(gp)<.K(l+e) 

for P E S - E  1. Fix such a point P and let y=ip(x) for x E S  N Up. Then g=gp is a plane 

K(1 +s mapping of T = Tp and we have, in an obvious notation, 

L(x) z ~< (1 +~)4Lg(y)~ ~<K(1 +~)sjr(y) ~K(1 +e)gJS(x) (4.13) 

A2-a.e. in Tp, and hence A~-a.e. in S N Up. Since there exists a sequence of points Pn E S - E 1 

whose neighborhoods UPn cover S - E 1 ,  we can find a set E 2 such that  A~(E2)=0 and 

L(P) ~ <~ K(1 + ~)9 gs(p) 

for P E S -  E~. Finally let E be the union of the exceptional sets E z for e = l /n, n = 1,2 . . . . .  

Then A2(E)=0 and (4.10) holds for P E S - E .  This completes the proof of the necessity 

part  of Theorem 4.1. 

For the sufficiency part  fix e > 0. Then for P E S and P ' = / ( P )  choose neighborhoods 

Up and Ur  so that  (4.11) holds and so that  / maps S A Up into S' O UF. We show first 

that  the homeomorphism gp of (4.6) is a plane quasiconformal mapping with maximal 

dilatation 
K(gp) <~ KC(ip)4C(ip.) 4. (4.14) 

Fix PES ,  let F'  be the family of all locally rectifiable arcs in Tp which contain a 

compact subarc on which gp is not absolutely continuous, and let F be the image of F'  

under i~ 1. Since / is by hypothesis ACA in S, Ms(F) =0 and hence MrP(F ') =0  by  Lemma 

4.2. Thus gp is ACA and, a fortiori, ACL in Tp. Next arguing as in (4.13) we see from (4.10) 

that  
Lg(y) ~ <<.KC(ip)4C(ip.)4jr(y), g =gp and T = Tp, 

A2-a.e. in Tp, and we obtain (4.14) from the analytic definition for plane quasiconformal 

mappings. 

Now (4.11) and (4.14) imply that  

sup K(gp) < cr 
P e 8  

and hence that  / is quasiconformal. Then Lemma 4.1, (4.11), and (4.14) imply that  

ess sup K(g~,) <~ K(1 + e) s. 
PEs 

Thus / is K-quasiconformal and the proof of Theorem 4.1 is complete. 
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4.7. Modulus characterization. We can also characterize quasiconformal mappings 

between admissible surfaces by means of the surface moduli of arc families. 

THEOREM 4.2. Suppose that S and S' are admissible sur/aces and that [ is a homeo- 

morphism o / S  onto S'. Then [ is K-quasicon/ormal, 1 <<. K < 0% i / and  only i] 

Ms'(F ') 4 KMS(F) (4.15) 

]or each/amily o/arcs F in S. 

Proo/. Suppose that  (4.15) holds for all arc families F in S, fix s>0 ,  and choose Up, 

Up,, and gp as in the last part  of the proof of Theorem 4.1. Then (4.15) and Lemma 4.2 

imply that  
M rP'(F') ~< KC(ip) 4 C(ip,) 4 MrP(F) 

for each are family F in Tp, where F'  is the image of F under gp. Thus we obtain (4.14) 

by virtue of the geometric definition for plane quasiconformal mappings, and the proof 

that  / is K-quasiconformal is concluded as in the proof of Theorem 4.1. 

Suppose now that  / is K-quasiconformal. Since /-1 is K-quasiconformal, (4.15) will 

follow if we can show that  
Ms(F) <~KMS'(F ') (4.16) 

for each are family F in S. For this let F be any family of arcs in S, let F 1 be the family 

of arcs in F which are locally rectifiable, and let F2 be the family of arcs in F1 on each 

compact subarc of which ] is absolutely continuous. Then (4.7) and the fact that  / is ACA 

in S imply that  
Ms(F) =MS(F1) = MS(F~). (4.17) 

Choose ~' E F(F'),  set ~(x) =~'(/(x))L(x) 

for all xES,  and pick yEF2. If/3 is any compact subarc of 7, then fl is rectifiable, / is ab- 

solutely continuous on fl, and we obtain 

f 
(Cf. p. 24 in [17].) Since this inequality holds for all such /~, 

f 
Because ~ is Borel measurable, we conclude that  e eF(r~). Thus 
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and hence Ms(F2) ~< KMS'(F'). 

This, together with (4.17), yields (4.16) as desired. 

4.8. Boundary correspondence theorem. Suppose tha t  D is a domain in R a. We say 

tha t  a two-dimensional manifold 8 is a / ree  boundary sur/ace of D if 

8 c ~ / )  and 8 N ( O D - 8 ) = O .  (4.18) 

Suppose next  tha t  / is a function defined on D. Then for each PEOD we denote by  C(/,P) 

the cluster set of / at  P, tha t  is the set of limit points of all sequences {/(Pn)), where 

Pn-->P in D. 

Our objective, in this section, is to establish the following result on the boundary 

correspondence induced by  quasieonformal mappings. (Cf. Theorem 10 in [4].) 

TH]~OREM 4.3. Suppose that / is a quasicon/ormal mapping o / a  domain D c  R 3, that 

8 and 8" are/ree admissible boundary sur/aces o / D  and D', respectively, and that 

C(/,P) n 8" ~ 0  (4.19) 

/or each P E 8. Then / can be extended to be a homeomorphism o/ D U S onto D' U S', where 

8' is an admissible sur/ace contained in 8". The induced boundary mapping/* is a quasicon- 

/ormal mapping o/ S onto 8' with maximal dilatation 

K(/*) <~ min (KI(/), Ko(/))2. (4.20) 

This bound ]or K(/*) is sharp. 

The proof of Theorem 4.3 depends upon the following four lemmas. 

L~MMA 4.3. I /  / is continuous in D and i / D  is locally connected at PE~D, then C(/,P) 

is a closed connected set. 

Proo/. I f  for each n we let En = D N B3(p, l/n), then it follows tha t  

C = C(/, P) = N lEEr]. 
n 

Clearly C is closed. Because D is locally connected at  P, for each n we can find an m such 

tha t  each pair of points in Em can be joined by  an arc in E,.  Thus each pair of points in 

C can be joined by  a connected set in /[En]. I f  C were not connected, we could find a 

bounded open set G such tha t  both G and C(G) would contain points of C while OG N C = O. 

But  ~G fi/[E,] 4 0  for all n, whence 

aa n c :  n r N / [ E . ] ) . o .  
n 

Hence C is connected. 
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LEMMA 4.4. Suppose that S is a/ree admissible boundary sur/ace o/ D and that U is 

a neighborhood o / P 6 S .  Then P has a neighborhood V= U such that the quasi-isometry i~, 

maps D • V onto a hemibaU H and S N V onto the plane part o/ ~H. 

Proo/. ]By definition P has a neighborhood Up, in which ip is defined, such tha t  ip 

maps  S ~ Up onto a plane domain Tp. Let  Q=i•(P) and B=Ba(Q,t).  B y  (4.18), P lies a t  

a positive distance from ~ D - S .  Hence we m a y  choose t > 0 so tha t  Tp divides B into 

two open hemiballs, H o a n d / / 1 ,  and so tha t  

J~=i~iU n Up], B n i A ( a D - S  ) n U~]=O. (4.21) 

Let  V and  W~ be the images of B and H~ under  i~ 1. Then V c  U and (4.18) implies t ha t  

W 0 or W1, say WI, contains a point  of C(D). Now (4.21) implies tha t  ~D ~ W 1 = O  and hence 

D (/W1 = 0 ,  Thus D (~ V =  W 0 and i~ maps D N V onto H = H  o as desired. 

Lemma 4.4 shows tha t  a domain is locally connected a t  each point  of a free admissible 

boundary  surface. 

LEMMA 4.5. Suppose that S is a/ree admissible boundary sur/ace o] D, that E o and 

E 1 are nondegenerate connected sets in D, and that Eo ~ E1 contains a point P 6 S. I / F  is 

the/amily o/ arcs which loin E o and E 1 in D, then M(F) = oo. 

Proo/. Let  V be the neighborhood of Lemma 4.4 with U = R a, and let F 1 be the family 

of arcs which join F 0 = E 0 N V and F 1 = E 1 N V in D N V. Then 

M(F) ~> M(Fa) >/C(ip)-4M(Fi), F1 = ip [F~] 

by  (4.2), where C(ie) is the maximal  distort ion of the quasi-isometry ip in V. Since the sets 

E 0 and E 1 are connected, we can find a > 0  such tha t  the hemisphere ]E(t) =S~(ip(P),t) ~ H 

meets bo th  ie[F0] and i~[F1] for 0 < t  <a .  Hence we can argue as in the first par t  of the 

proof of Theorem 3.1, or as on p. 31 in [17], to  conclude tha t  M(F~) = ~ .  Thus M(F) = ~ .  

L~MMA 4.6. Suppose that D and D' are domains in the hal/space x 3 >0,  that T and 

T' are plane domains in xa = 0 which are ]ree boundary sur]aces o / D  and D', respectively, 

and that g is a homeomorphism o / D  U T onto D' D T' which is quasicon/ormal in D. Then 

the boundary mapping g* is a plane quasicon/ormal mapping o/ T onto T'  with maximal 

dilatation 
K (g*) <~ rain ( K ~(g), Ko(g ) ) ~. (4.22) 

Proo/. Since T and  T' are free boundary  surfaces, D 1 = D U T U/ )  and D~ = D' [ T' U J~' 

are domains, w h e r e / ~  a n d / ) '  denote the symmetr ic  images of D and  D' in xa=0 .  We 

can next  extend g by  reflection to obtain a quasieonformal mapping  gl of D 1 onto D1 
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with K1(gl) =K~(g) and Ko(gl) =K0(g ). (See Corollary 5 in [4].) Then arguing as in the proof 

of Theorem 10 in [4], we conclude that  g* is actually a plane quasiconformal mapping of 

T onto T' .  

To complete the proof of (4.22), it is sufficient to show tha t  g* has maximal dilatation 

K(g*) <~ Ko(g) 2, 

for then, by  symmetry,  it will follow tha t  

K (g*) = K(g *-1) < Ko(g-1) ~ = K1(g ) ~. 

Next  by  virtue of the analytic definition for plane quasicouformal mappings, it is suffi- 

cient to show tha t  
L(P) ~ <~ Ko(g)2jr(p) 

at  each point P E T, where g* is differentiable with jT  >0; here L and j r  are the distortion 

functions of (4.9) with g* and T in place of [ and S. Fix such a point P.  By  performing 

preliminary similarity mappings in the plane x a = 0, we may  assume without loss of gener- 

ality that  P =0,  tha t  g*(P) =0,  and tha t  

g* ( xl, x2) = ( axl, x2) + ~ I xt [ + Ix2 I ), (4.23) 

where a >~ 1. We then must  show that  

a ~< K0(g) 2. (4.24) 

For this, fix ~ > 0, choose 0 < b < 1 so that  

abp(ab) <~A +~, (4.25) 

where p and A are as in Lemma 3.6, and choose c > 0 so tha t  B3(c) c D1. Then for 0 < u < 2-�89 

let E 0 and E 1 be the segments x l =  +bu, Ix2[ <~u, x3=0, and let F 1 and F~ be the families 

of arcs which join E 0 and E 1 in D x and R a, respectively. Then each arc y E I ~ - F  1 must  

contain a subare which joins $2(2�89 to $2(c). Hence 

M ( F 2 - F 1 )  ~ 4~r (log 2- �89  -2, 

and we m a y  choose u t so tha t  

(4.26) p(b) = M(F~) ~< M(F1) + a-b 

for O<u <u  r 

Next for u >0  and 0 < t  < �89 let F 0 and F 1 be the sets of points which lie within 

a distance of tu of the segments Xl = +_abu, Ix21 ~u ,  xa=0,  and let F a be the family of 

arcs which join F 0 and F 1 in R a. Then by  Lemma 3.4, 

lim M(Fa) =p(ab), 
t--~) 
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and we may  fix t > 0 so that  
g 

/ ( F s )  <~ p(ab) + ~o (4,27) 

for all u > 0. 

Finally by  (4.23), we may  choose u~>0 so tha t  E ~ c F  o and EI~F1 for 0 < u < u a ,  

and hence so tha t  
M(F1) ~< M(Fa) (4.28) 

for 0 < u < u ~ ,  where E~' and F~ are the images of E~ and F 1 under the homeomorphism 

gl- Fix u so tha t  O<U<Ul, U 2. Then we can combine inequalities (4.25) through (4.28) 

with the inequalities 

A <~bp(b), /(F~)<.K0(g)2M(F1) 

to obtain aA <~Ko(g)~A + (2K0(g) ~ + 1)e. 

Letting e-->0 then yields (4.24), and the proof of Lemma 4.6 is complete. 

Proo/o/ Theorem 4.3. We begin by  showing tha t  C(/,P) reduces to a single point for 

each P E S. Fix P E S and suppose tha t  C(/,P) contains two distinct points. Then Lemmas 

4.3 and 4.4 imply tha t  C(/,P) is a continuum, and by  (4.19) we can find a pair of distinct 

points Po,P~ E C(/,P) N S". Hence there exist sequences {P~, n) in D such tha t  P~.n-->P and 

P[. n-->P~ for i = 0,1. Since Po,P~ E S", we can use Lemma 4.4 to construct two nondegenerate 

connected sets E0, El  in D'  such that  So N E1 = 0  and such that  E[ contains all but  a 

finite number  of P~' . ,  i=0 ,1 .  Let  F '  be the family of arcs joining E0 and E~ in D'.  Then 

clearly M ( F ' ) <  ~ .  On the other hand, we see tha t  P E E  0 N El, and hence M(F) = ~ by  

Lemma 4.5. This contradicts the fact that  / is a quasiconformal mapping, and we conclude 

tha t  C(/,P) must reduce to a point P' ES" for each PES. 

We now extend / by  se t t ing/ (P)  =P' for PES. Then / is continuous in D U S. Let  

S'=/[S]. Then S ' cS"  and for each P'ES' we have 

PEC(I-1,P ') N S ~0 .  

The above argument shows tha t  C(/-1,P ') reduces to the point P,  and we conclude tha t  

/ is a homeomorphism of D U S onto D' U S'. I t  is then clear tha t  S' is a free admissible 

boundary surface of D'.  

We must  now show that  the induced boundary mapping/*  is a quasiconformal map- 

ping of S onto S' with maximal dilatation satisfying (4.20). Fix ~>0  and for PES and 

P' =/*(P) choose neighborhoods Up and Up. so tha t  (4.11) holds. Next  let Vp and Ve, be 

the neighborhoods of Lemma 4.4, chosen so tha t  Vpc Up, Vp, c Up, and so that  / maps 
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(D U S) f] Ve into (D' U S') f] V~.. Finally let H and H" be the hemiballs corresponding to 

D f] Vp and D'  f3 Vp,, and let T and T" be the plane parts  of ~H and ~H". Then 

gp = ip.o/oi~, 1 

is a homeomorphism of HU T onto H ' U  T ' c H " U  T" which is quasiconformal in H. 

Since T and T ' c  T" are plane domains which are free boundary surfaces, we have essen- 

tially the situation in Lemma 4.6. Thus the boundary mapping g* is a plane quasiconformal 

mapping of T onto T '  with maximal dilatation 

g(g*) <~ min (Kz(gp), g0(gp)) 2 

<~ C(ip)4C(ip,) 4 min (K~(/), K0(/))~. 

Then arguing as in the last par t  of the proof of Theorem 4.1, we obtain 

sup K(9*) < oo, ess sup K(g*) <~ (1 + e) s min (K,(/), Ko(/)) s, 
PeS PeS 

and hence/* is a qnasicon~formal mapping of S onto S' whose maximal di]atation satisfies 

(4.20). Moreover, if we let 
](xl, x2, xa) = (K2xl, x2, x2), K > 1, 

then ] maps x 3 > 0  onto itself with KI(])=K and Ko(/)=K 2, while the boundary mapping 

/* sends x3=O onto itself with K ( / * ) = K  2. Thus the bound in (4.20) cannot be improved. 

5. Upper bounds for the coefficients of certain domains 

5.1. We shall derive in this section upper bounds for the coefficients of bounded 

starlike domains. To do this, we need only find some appropriate quasiconformal mappings, 

for given any  homeomorphism / of D onto B 3, we obviously have 

KI(D)<~KI(/), Ko(D) <~Ko(/), K(D)<<.K(/). 

All of our estimates are based upon the following homeomorphism. 

5.2. Projection mapping. Suppose tha t  S c  R 3 is homeomorphie to a plane domain 

and that,  for all Q1,Q2ES, the acute angle which the segment Q1Q2 makes with the basis 

vector e 3 is never less than  a > 0 .  Next  let T denote the projection of S onto the plane 

x 3 = 0 and let D denote the set of all points P of the form 

P=Q+ue3, (5.1) 

where Q e S  and u is real. Then for each PED the representation (5.1) is unique and we 

define 
](P) =/(Q) + aue3, (5.2) 

where ](Q) denotes the projection of Q onto xa=O and a is some fixed positive number.  
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L E M ~ A  5.1. The mapping / is a homeomorphism o/ D onto itsel/ which maps S onto 

T, and, 

a ] P 1 - P 2 [  < ] / (Pa) - / (P2) ]  <~A [P~-P21 (5.3) 

/or all P1,P2ED, where 

A = l ( (a  csc ~)2 + 2a + 1)�89 + �89 csc ~)2 _ 2a + 1)�89 (5.4) 

Proo/. Fix  points  P1,P2 E D, 

P I  = Qa + ul Ca, P 2  = Q~ + us ca, 

and  let fl and  ? denote  the acute angles which the segments  P1P2 and Q1Q2 make  with  e a. 

F r o m  (5.2) it  follows tha t  

]/(Pl) -/(P2)I 2 = I/(Q0 -/(Q~)[2 + a 2 ( u x  _ u2)2 

= ((sinfl) 2 + a2(cosfl_ co t?  sinfl)2) [P1 - P 2  [2 (5.5) 

= B 2 [ P I ' P 2 [  2, B > 0 ,  

and  it  is then  not  difficult to ver i fy  t ha t  a/C <<. B <~ C, where C is equal to the r ight  hand  

side of (5.4) with ? in place of ~. Now the hypotheses  on S imply  t h a t  a~-<? ~<g]2. Hence  

C<~A and  (5.3) follows f rom (5.5). 

COROLLARY 5.1. I /  a = l  in (5.2), then ] is a quasi-isometry with maximal distortion 

C(/) <~ cot a + 1, 

and a quasicon]ormal mapping with 

K(/) <~ (�89 :r 2 +4)�89 + ~ cot :r < (cot :r + 1)~. 

COROLLARY 5.2. I /  a = s i n a  in (5.2), then / is a quasicon/ormal mapping with 

KI(/)2 <~ K( / )  2 <<. 2_ �89 a cot ~ esc ~, 

6r 6r 
Ko(] )  2 ~< 2 �89 Cot ~ c o s  ~ .  

Proo/s. If we set a = 1 in (5.4), we have  

A = �89 :r 2 +4)�89 + ~ c o t  ~ ~<cota + 1, 

while if we set  a = s i n ~  in (5.4), we get 

A = �89 + 2 sin r162189 + �89 - 2 sin ~)t = 2 cos ~. 

We  see f rom (5.3) t h a t  
a 

I(P)<~A, l (P)>~,  J(P)=a 

3-- 652932 Acta mathematica 114. Imprim6 le 10 aofit 1965. 

(5.6) 

(5.7) 
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for all PED, and hence Corollaries 5.1 and 5.2 follow from Lemma 1.1 and (5.6) or (5.7), 

respectively. 

5.3. Starlike domains. A domain D ~  R a is said to be starlike at  a point QED if the 

closed segment PQ lies in D whenever P E D. Suppose next  tha t  D is a domain which is 

bounded and starlike at  the origin O, and tha t  Q EaD. For each P EOD, P +Q, we let a(P,Q) 

denote the acute angle which the segment PQ makes with the ray from 0 through Q, 

and we define 

a(Q) = lim inf a(P, Q), 0 ~< ~(Q) ~< �89 (5.8) 
p..-~ Q 

I f  0D has a tangent plane at  Q whose normal forms an acute angle fl with the ray from 

0 through Q, then :r189 

TH~,OREM 5.1. Suppose that D is a domain which is bounded and starlike at the origin, 

and that ~(Q)>~a>0/or  all QEaD. Then 

K~(D) ~ <~ K(D) ~ < 2 - t  cot ~ cse ~, 

Ko(D) 2 ~< 2 �89 cot ~ cos ~. 

(5.9) 

Proo/. Fix a > 0 .  Since D is bounded and starlike at  the origin and since a (Q)>0  

for all QEOD, each point PED, P~:O, has a unique representation of the form P=uQ, 

where Q E ~D and 0 < u < 1. For each such P we define 

I(P) = ua/(Q), /(Q) = IQ[, (5.10) 

and we let / (0)=0.  Then ] is a homeomorphism of R a onto itself which carries D onto 

B a, and a tedious but  elementary argument,  similar to the one given in the proof of 

Lemma 5.1, shows that  

~<A[/(P)I a I/(P)l g(p)=al/(P)[a (5.11) 
FY ' [vI 

for all PED, P~:0,  where A is as in (5.4). The bound on L(P) implies that  [ is ACL and 

tha t  [ is differentiable a.e. in D. Since J > 0  in D, we conclude from (5.11) and Lemma 1.1 

that  
A s A 3 

KI(/)~ ~< a-~' K~ ~< -- 'a 
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Finally if we set a =  sin ~, we obtain, as in Corollary 5.2, 

6f 
KI(/) ~ <. K([) ~ ~< 2 - t  cot ~ cse ~, 

COS ~ Ko(/) ~ ~< 2 i cot 

and this implies (5.9). 

5.4. Convex domains. We can use Theorem 5.1 to obtain the following upper bounds 

for the coefficients of convex domains. 

THEORE~ 5.2. Suppose that O<a<~b, that D is a convex domain, and that Ba(a)c: 

D ~  B3(b). Then (5.9) holds with ~=aresin( a/b). In  particular, 

Proo[. The hypotheses imply tha t  D is bounded and starlike a t  the origin. Hence 

(5.9) will follow if we can show tha t  

a 
a(Q) >/arc sin - 

b 

for all QESD. For this fix QESD, let C 1 be the finite cone which consists of the union o f  

all open segments PQ with P E Ba(a), and let C 2 be the symmetric image of C 1 in Q. Since~ 

D is convex and B3(a)c D, it follows t ha t :C l~  D and C~c C(D). Thus 

~D N C 1 = O, 8D N C~ = O, 

and since D c  Ba(b), we conclude tha t  

a a 
~(Q) >~ are sin ~Q~ >~ arc sin ~. 

Finally if g = a r c  sin (a/b), then 

t ~ ~ (b)  ~ 2 -�89 co ~ c s c ~ < 8  �89 ~)-2=8�89 a ' 

2~ cot ~ cos ~ < 8~ (sin a ) - I  = 8~ b, 
a 

and we obtain the less precise but  simpler bounds in (5.12). 
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6. Lower bounds for the eoeflleients of certain dora-ins 

6.1. In  this section we shall obtain some lower bounds for the inner coefficient of 

domains which have a certain separation property.  In  general, it is much more difficult 

to obtain a significant lower bound for a coefficient of a given domain D than it is to 

obtain an upper bound, since one must  find a lower bound for the corresponding dilata- 

tion of each homeomorphism / of D onto B 3. We shall accomplish this by  studying what  

happens to the modulus of a certain arc family F under / and then appealing to Lemma 1.2. 

6.2. Main theorem. We observed in section 2.6 tha t  the coefficients of a right circular 

cylinder D approach ~ as the ratio of its radius to height approaches ~ .  We establish 

now a rather  general result which gives a lower bound for the order of growth of the inner 

coefficient of the cylinder D. 

THEOREM 6.1. Suppose that 0 < a < b ,  that D is a domain in R 3, and that C(D) N B3(b) 

has at least two components which meet S~(a). Then 

b 
Kz(D) >1 A log a '  (6.1) 

where A is the absolute constant 

and y~ is as in (3.12). 

Proo/. Let  ] be any homeomorphism of D onto B a. We must  show that  

b 
K~(/) >1 A log - .  (6.3) a 

Since the right hand side of (6.3) is continuous in b, it is sufficient to establish (6.3) under 

the  slightly stronger hypothesis tha t  the closed set H = C(D) N B3(b) has at  least two com- 

ponents  which meet  S~(a). 

We consider first the special case where ] can be extended to be a homeomorphism 

of D o n t o / ~ .  By hypothesis, there exist points QI, Q2 E SZ(a) which belong to different com- 

ponents  of H, and hence we can find disjoint compact sets H I and H~ such tha t  H = H  z U H 2 

and  Q1EH1, Q~EH2. Let  F o be the closed segment Q1Q2, let P1 be the last point in F 0 fl H I 

as we move from Q1 toward Q~ along F 0, let P2 be the first point in F 0 n H 2 as we move 

f rom P1 toward Q2 along F0, and let E 0 be the closed segment PIPs. Then E 0 = D  and 

P1,P2 are points of 0D which lie in different components of H. 

Next  let F x = 9 D  n C(B3(b)) and let C be any  connected set in 0D which contains both  

Pz and P2. Since P1 and P~ belong to different components of H,  F x N C # 0 .  Hence F x 
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separates P1 and P~ in aD, and because ~D is homeomorphic to S 2, we can find a con- 

tinuum E 1 c  F 1 which separates P1 and P2 in aD. (See p. 123 in [11].) 

l~ow let F be the family of arcs which join E 0 and E 1 in D. Since E0= Ba(a) and 

E1c C(Ba(b)), F is minorized by the family of ares which join S2(a) and S~(b) in R a, and 

hence 

M(F) ~< 4~ (log !1 -~ . (6.4) 

On the other hand, we see that  E0 joins P~ and P" in B 3, that  El  separates P1 and P" 2 

in S 2, and that  F'  is the family of arcs which join E0 and El  in B 3. Hence if we map B a 

conformally onto x 3 > 0 so that  P~ and P~ map onto 0 and o~, we can apply Corollary 3.2 

to conclude that  
M(F') ~>~(�89 (6.5) 

We then obtain (6.3) from Lemma 1.2, (6.4), and (6.5). 

We consider now the general case. For each positive integer n let D n denote the image 

of Ba(n/(n+ 1)) under / -1 ,  let Hn = C(Dn)N B3(b), and l e t /n  denote the restriction of / to 

D~. The hypotheses imply there exist points Q1,Q2ES*(a) which belong to different com- 

ponents of H. Let C and C~ denote the components of H and Hn which contain Q1. Then 

the C~ are nonincreasing in n, 

C =  NC~, 
n 

and since Q~ ~ C, there exists an n such that  Q~ ~ C~. Thus Q1 and Q2 lie in different com- 

ponents of H. ,  and we can appeal to what was proved above to conclude that  

KI(/) >i Kz(/n) >1 A log ! .  

This completes the proof for Theorem 6.1. 

6.3. An alternative/ormulation. There is a useful inverted form of Theorem 6.1 which 

we will need for studying what effect the presence of a spire in ~D has on the coefficients 

of D. 

THE OREM 6.2. Suppose that 0 < a <b, that D is a domain in R a, and that C( D ) N C( Ba(a ) ) 

has at least two components which meet S~(b). Then 

b 
KI(D) >i A log - ,  (6.6) a 

where A is the absolute constant in (6.2). 



38 F. W. GEHRING AND J .  VAISALA 

Proo/. Let / be a homeomorphism of D onto B a. We want to show that  (6.3) holds; 

the last argument in the proof of Theorem 6.1 shows we may assume that  / can be ex- 

tended to be a homeomorphism o f / )  onto B 3. By hypothesis we can find Q1, Q2 E S2(b) which 

belong to different components of H=C(D)N C(Ba(a)). Let F 0 be any closed arc in S2(b) 

joining these points. Arguing as before, we can find a closed subarc E0c  D with endpoints 

P1,P2 which lie in different components of H. Let F 1 =~D N Ba(a). Then F 1 separates P1 

and P~ in ~D, and hence a continuum E 1= F 1 separates these points in aD. If  we let F 

denote the family of arcs which join E 0 and E 1 in D, then (6.4) and (6.5) hold, and we 

obtain (6.3) as before. 

6.4. Bound/or convex domains. If  we apply Theorem 6.1 to a right circular cylinder D 

with radius b and height.h, we obtain 

(452 + h2) �89 
>/A log ~ .  KI(D) >t A log h 

This is a rather poor estimate for the order of growth of KI(D), since the class of domains 

considered in Theorem 6.1 is so large. For the domains in this class which are also convex, 

we have the following sharper bound. 

T~EOREM 6.3. Suppose that 0 < a < b ,  that D is a convex domain in R a, and that 

C(D) N Ba(b) has at least two components which meet S2(a). Then 

)' 
K~(DI >I 2~ A ~ - 1  , (6.7) 

where A is the absolute constant in (6.2). 

Proo/. Let ] be any homeomorphism of D onto B a. We must show that 

Kz(/) >~ 2'A ( (~) 2 - 1 )  ~. (6.8) 

As in the proof of Theorem 6.1, it is sufficient to establish (6.8) under the hypothesis that  

H = C(D) n B3(b) has at least two components which meet S2(a). 
Consider first the special case where / can be extended to be a homeomorphism of 

D onto B a. By hypothesis there exist points Q1,Q2 E S2(a) which belong to different com- 

ponents of H, and since D is convex, we can find planes T1, T 2 such that Q~E T i and 

T~=C(D) for i=1 ,2 .  Let F 0 be the union of the two closed segments from 0 drawn per- 

pendicular to T 1 and T 2. Now the parts of T 1 and T 2 in Ba(b) must belong to different 

components of H. Hence F 0 has a closed subarc E0c  D with endpoints P1,P2 which lie in 

different components of H. Then, as in the proof of Theorem 6.1, there exists a continuum 
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E I ~ D  N C(Ba(b)) which separates P1 and P~. in ~D, and if we let F denote the family 

of arcs which join E 0 and E 1 in D, we have 

M(F') ~> ~o(�89 (6.9) 

We need an upper bound for M(F). Let G denote the set of points in D which lie 

within a distance of (b s -a s )  �89 from E0, and set 0 =(bZ-aS) -�89 in G and ~ =0  in C(G). Since 

D lies between the planes T 1 and T s, it is not difficult to show that the distance between 

E 0 and E 1 is not less than (b ~ -a2) �89 and that 

m( G) < 27ca(b ~ - aS). 

Thus ~ E F(F), M(F) < f f f  R3 ~adc~ < 2~a(bS - aS)-�89 (6.10) 

and we obtain (6.8) from Lcmma 1.2, (6.9), and (6.10). 

For the general case let D~ be the image of Ba(n/(n + 1)) under ]-1, let 

Hn=C(Dn) N Ba(b), 

and let In denote the restriction of / to D~. Next pick points Q1,Qs ES2(a) which belong to 

different components of H. Then there exists an n such that  Q1,Qs belong to different 

components of Hn. Since D n is a subdomain of the convex domain D, we can find planes 

T1, T 2 such that  Q, E Ti and Tic C(Dn) for i = 1,2. The above argument then shows that 

K ,(/) >~ Kt(f~) >~ 2�89 ( (b) S-1)  ~, 

and this completes the proof of Theorem 6.3. 

6.5. Remarks. I t  is not difficult to verify that 

logx < 2�89 2 - 1)t 

for 1 < x  < c~, and hence Theorem 6.3 yields a better lower bound for the inner coefficient 

of a convex domain than that  given by Theorem 6.1. Moreover, if the conjectured ine- 

quality (3.14) were true, we could take 

~�89 
A = ~q = .337... 

in Theorems 6.1, 6.2, and 6.3. On the other hand, we should point out that  these three 

theorems give sharp bounds for the order of growth of KI(D) as b/a-->~. 
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To see this in the case of Theorem 6.1, for 1 <b  < r let ~(b) denote the class of domains 

which meet S2(a), where 

From (6.13) and (6.14) it follows tha t  

a = l - c o s 2 ,  b = s i n 2 ,  b - - c o t 4 .  (6.14) 

:~�89 (are cot b ) - i  ~, ~ (b )  �89 K,(D) = --~ 

D c  R a such that  C(D) N Ba(b) has at  least two components which meet S 2, and let 

g(b) = inf Kz(D), (6.11) 
D 

where the infimum is taken over all D E O(b). I f  1 <b'< b, then the mapping 

log b' o-', 
log b '  

is a homeomorphism of R a onto itself such tha t  for each domain D c  R a, DEO(b) if and 

only if D 'E  O(b'). From Lemma 1.1 it follows tha t  Kz(/)=c -1, and we obtain 

log b , 
g(b) <~ ~ g(b ). 

Thus g(b)/log b is nonincreasing in 1 < b < co and 

lim g(b) = B/> A > 0. (6.12) 
b-,= log b 

Hence g(b),~ Blogb as b-->c~, and we see that  the lower bound for the order of growth of 

KI(D) given in Theorem 6.1 cannot be improved. The above argument  shows tha t  the 

same is true of Theorem 6.2. 

We exhibit a particular domain D to show tha t  the order is right in Theorem 6.3. 

For 0 < ~ <g ,  let P1 = (cos �89 0, 0) and P2 = ( - cos �89 0), and let 

D = Ba(P1,1) n Ba(Pe, 1). 

Then D is a lens shaped domain which can be mapped by  means of an inversion onto a 

convex wedge D', bounded by  two half planes which meet at  an angle cr Hence from 

Theorem 7.1 we obtain 

Kj(D)= K~(D')= (~) �89 (6.13, 

Next  it is easy to see tha t  D is itself convex and tha t  C(D) fl Ba(b) has two components 
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as b/a-->oo, and thus the order of the lower bound in Theorem 6.3 cannot be improved. 

This example also yields the upper bound 

for the constant in Theorem 6.3. 

6.6. Bounds /or a right circular cylinder. We conclude this section by  determining 

how fast the inner coefficient of a right circular cylinder grows as the ratio of its radius 

to height approaches ~ .  

Suppose that  0 < h < 2b and that  D is the right circular cylinder 

Then from Theorem 6.3 we obtain 

KI(D)>~2A(b)�89 �89 (6.15) 

where A is as in (6.2). Next the homeomorphism 

/(x1' x2" xa)= ( b 1' x2b ' h ] 2xa~ 

maps D onto a right circular cylinder D', where Ba(1)c D ' c  Ba(2�89 Theorem 5.2 implies 

that  
7~ 7~ K~(D') 2 ~< 2 -�89 cot ~ esc ~ = 4.46 .... 

and since K1(/)~=2b]h, we obtain 

Kz(D) < 2.99 (-bh) �89 (6.16) 

Neither of the constants given in (6.15) and (6.16) is best possible. For example an 

independent argument, based on Corollary 3.3, shows that  we can replace the constant 

.259... in (6.15) by  .408 .. . .  Moreover, if the conjectured inequality (3.14) were true, we 

could improve this constant to .667 .... Similarly, by making a more judicious choice for 

a in (5.10), we can improve the bound for Kz(D' ) and thus reduce the constant in (6.16). 

Nevertheless, these inequalities do show that  the order of growth for the inner coefficient 

of a right circular cylinder is equal to the square root of the ratio of its radius to height. 
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7. The inner coefficient of  a dihedral wedge 

7.1. Introduction. In  the last two sections we obtained lower and upper bounds for 

coefficients of various domains. In  the next  three sections we will calculate coefficients 

of three different domains. 

To calculate a given coefficient of a domain D c  R 3, we first must  obtain a lower 

bound for the corresponding dilatation of each homeomorphism / of D onto B 3. Then 

we must  show tha t  this bound is actually assumed by some extremal homeomorphism 

of D onto B 3. Clearly it is the sharp lower bounds which are most  difficult to obtain. We 

use two different methods. The first involves selecting a certain extremal family of ares 

F in D and then comparing M(F) and M(F').  In  the second, we choose arc families F l c  D 

and F2c  S ~ D  and then compare the relations between M(F1) and Ms(F~) and between 

M(F1) and Ms'(F~). 

7.2. Dihedral wedge. Let (r,O,x3) be cylindrical coordinates in R ~. We say tha t  a domain 

D is a dihedral wedge o/angle ~, 0 < :r ~<2~, if it can be mapped by  means of a similarity 

transformation / onto the domain 

D~={x=(r,O,xa): 0<0<: r  Ix ]<c~} .  (7.1) 

The image of the Xa-axis unde r / -1  is said to be the edge of the dihedral wedge D. We 

shall calculate here the inner coefficient of a convex dihedral wedge. But  first we require 

the following preliminary result. 

LEMMA 7.1. Suppose that 0<a~<2xr, that E o is the segment r=O, - 1  <~xa < O , and that 

E 1 is the ray r = 0 ,  1 < x a <  ~ .  I / F ~  is the/amily o/arcs which join E o to E 1 in D~, then 

M(F~) = ~0(1), 

where ~ is as in (3.12). 

Proof. Suppose tha t  0 < ~ < ~  ~2~.  Then the homeomorphism 

maps D~ onto D~, P~ onto P~, and since Kl(f)~-=fl/~, we obtain 

M(F#) ~< ~M(F~). (7.2) 

Suppose next  tha t  0<:r  that  fl/a is a positive integer n, and for m = l , 2  ..... n 

let F~ be the family of arcs which join E o and E 1 in the dihedral wedge 
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Then the F~ n are separate families, F ~ F ~  U ... tJ F~, and hence by  Lemma 2.1 of [17] 

M(F~)/> M(F~) + ... + M(F~) = ~M(F~). (7.3) 

With the aid of (7.2) and (7.3) it is now easy to show tha t  

M(F~) = fl- M(F~), (7.4) 

whenever 0 < g, fl < 2 ~  and fi/~ is rational. Then since M(F~) is nondeereasing in 6, an ele- 

mentary  limiting argument,  together with (7.2), gives (7.4) even when fl/~ is irrational. 

Finally if we set fl = g  in (7.4), we obtain 

M(F~)= ~ M (F,)= ~ v/(1) 

as desired. 

7.3. The inner coe//icient. We now calculate the inner coefficient of a convex dihedral 

wedge. 

TH]~ORE~ 7.1. Suppose that D is a convex dihedral wedge o/ angle o:. Then 

K~(D)= (~)  �89 (7.5) 

Proo/. We may  assume, for convenience of notation, tha t  D is the dihedral wedge 

1)6 in (7.1). Then since D~ is convex, 0 < ~ < z ,  and we see tha t  the folding mapping 

is a homeomorphism of D~ onto the half space D,, with KI(/)~=:~/~. Since we can map 

/)~ onto B 3 by  means of a M6bius transformation g, we have 

K~(D~) 2 <~ K~(gol) 2 --- K~(/) 2 = ~_. 

To complete the proof of (7.5), it is sufficient to show tha t  

K~(/) ~ >1 ~- (7.6) 6C 

~or each quasiconformal mapping / of D~ onto D..  For this let E 1 and E~ be the segments 

=0,  - 1  ~<x 8 ~<0 and r =0,  0 ~<x 3 ~< 1, let E 3 and E 4 be the rays r=O, 1 <x a <~ ~ and r=O, 
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- co ~<x3 ~ - 1 ,  and let F i and F~ be the families of arcs which join E i to E a and E s to E 4 

in D~. Then by Lemma 7.1 

M(F~) = M(F~) = ~p(1). (7.7) 
7~ 

Since D~ is locally connected at  each point of its boundary, / can be extended to be a 

homeomorphism of D~ onto D .  by Theorem 1 of [18]. Then E~, E~, E~, E~ are continua 

in ~D. which satisfy the hypotheses of Corollary 3.3. Hence 

M(r;)>~W(1) or M ( P ~ ) ~ v 2 ( 1 ) ,  (7 .8)  

and (7.6) follows from Lemma 1.2, (7.7), and (7.8). 

7.4. The other coe//icients. We have not been able to calculate the other coefficients 

of a convex dihedral wedge. However, the following estimates are easily obtained. 

THEOREM 7.2. Suppose that D is a convex dihedral wedge o/angle ~. Then 

(7.9) 

Proo/. The lower bounds follow directly from (1.13), (1.14), and (7.5). The upper 

bounds result from the fact that  the mappings 

/(r, O, x3) = r, ~ O, - x3 , g(r, O, x3)= r, O, 

are homeomorphisms of .D~ onto D~ with Ko([)= (:~/~)t and K(g)= (~]e)t. We conjec- 

ture tha t  

7.5 Some lower bounds. We can combine these results with Theorem 2.3 to obtain 

the following lower bounds for the coefficients of a large class of domains. 

THEOREM 7.3. Suppose that D is a domain in R 3, that U is a neighborhood o / a  point 

QEaD, and that D N U = A  N U, where A is a dihedral wedge o/angle o~ which has Q am a 

point o/ i ts  edge. Then the coe//icients o~ D are not less than the corresponding coe//icients of 

A. In  particular i / A  is convex, 

Proo]. Since Q is on the edge of A, A is raylike at  Q, and the results follow from 

(2.6), (7.5), and (7.9). 
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Theorem 7.3 yields lower bounds for the coefficients of all polyhedra. For example 

if D is a convex polyhedron with n faces, then the planes of a pair of adjacent faces must  

bound a dihedral wedge A which contains D and is of angle a, 0 < g ~ < ( n - 3 ) ( n - 1 ) - l z  

and we obtain 
( n - l ~  �89 ( n - l ~  ~ 

K~(D) >1 \n - a] K~ ~ \n - 3] " 

Or if D is a rectangular parallelepiped, then (7.9) gives 

K~(D) >~ 2 �89 Ko(D ) >12 i . 

We can also use Theorem 7.3 to obtain lower bounds for the coefficients of a domain 

with a piecewise smooth boundary. For example, suppose tha t  D is the r i g h t  circular 

cylinder 
1) = {x = (r,O,x3): 

fix O<a<b,h, and let g(u)=(b2-u2) �89 in 

Corollary 5.1 it follows tha t  

0~<r<b, O<xa<h), 

lu] < a  and g(u)=(b2-a2) ~ in ]u[ >a .  From 

/ ( x .  x2, x3) = (xl + g(x2), x2, x3) 

is a quasiconformal mapping of R aonto itself and that  K(/) --> 1 as a-->0. Now D'  N U = A N U, 

where U=Ba(a) and A is the quarter space x l > 0  , x3>0. Hence 

K~(D)K(/) >~K~(D') >~2 ~, Ko(D)K(/) >~Ko(D' ) >~2~, 

and letting a-->0 yields 

KI(D) ~2 �89 Ko(D ) ~2~. 

8. The outer coefficient of  an infinite cylinder 

8.1. In/inite cylinder. Let (r,O,xa) be cylindrical coordinates in R 3. We say that  a 

domain is an in]inite circular cylinder if it can be mapped by  means of a similarity trans- 

formation onto the domain 

D={x=(r,O, xa): 0~<r< l ,  Ix I < oo}. (8.1) 

We shall calculate in this section the outer coefficient of an infinite circular cylinder. 

For this we require the following preliminary result. 

L]~MMA 8.1. Suppose that D is the cylinder in (8.1), that D' is the hall space x3>0, 

that / is a homeomorphism o / D - {  c~) onto D ' - { 0 ) - {  oo ), and that 

lim /(x)=O, ]im / (x)= oo. (8.2) 
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Then/or  each a' >0,  the image o/the hemisphere S~(a ') N D'  under/-1 lies between two planes 

x a = a  0 and x a =al, where 
0 <a 1 - a  o <AKz(/)  (8.3) 

and A is an absolute constant. 

Proo/. Fix a '  >0 ,  let E '  =S~(a ') f l / ) ' ,  and  set  

a o = inf xa, a 1 = sup x a. 
xEZ xGZ 

Clearly we m a y  assume tha t  a 0 <a~, for otherwise there is nothing to prove.  Nex t  let 

Eo={X: x e D ,  - o o  <x3<ao} , Ex={X: x e D , a ,  <xa < oo}, 

and let F be the family  of arcs which join E o and  E 1 in D. Then it  is easy to see t h a t  

M(F)  =z~(a 1 -ao) -2. (8.4) 

Nex t  it follows f rom (8.2) t ha t  E0 = Eo (J {0} and  t h a t  E~ = E~ tJ { oo}. Hence  F '  is the fami ly  

of arcs which join the  cont inua Eo and E~ in D ' .  Final ly  since Eo and E~ bo th  mee t  S2(a'), 

we have  
/ ( r ' )  ~>~(1) (8.5) 

b y  vi r tue  of Corollary 3.1, and  (8.3) follows f rom L e m m a  1.2, (8.4), and  (8.5) wi th  

8.2. The outer coe//icient. We calculate now the outer  coefficient of an infinite circular 

cylinder. 

T H E 0 R E ~ 8.1. Suppose that 1) is an inJinite circular cylinder. Then 

Ko(D) = ( q )  �89 1.14 . . . .  (8.6) 

where as in (3.2) q =  (sin u)-�89 

Proo/. We m a y  assume,  for convenience of nota t ion,  t ha t  D is the cylinder in (8.1). 

Nex t  let (t,O, q~) be spherical coordinates in R a, where the polar  angle ~0 is measured  f rom 

the posit ive half  of the xa-axis, let D '  be the half space xa>0 ,  and  set  

/~(r,O, x3) = (t, O, q)), (8.7) 

where r =  o (sin u)-�89 , Xa=q log t. (8.8) 
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Then /1  is a continuously differentiable homeomorphism of D onto D '  which maps each 

infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to 

dt _ qt t d_~ = qt (sin ~0~�89 t sin q~ dO sin 
dx3-  2'  dr ~ ~--V--/ ' rdO t r (S.9) 

I t  is easy to show by  means of elementary calculus tha t  

r �89 

increases from 2/q to 1 as ~ increases from 0 to ~/2. Hence from Lemma 1.1 and 

(8.9) it follows tha t  
L(P) s q 

Ko(/1) ~ = sup -- 2 '  P ~ D J(P) 

and since we can map D '  onto B a by  means of a Mhbius transformation g, we have 

Ko(D) <-- Ko(gO/1)= Ko(/1)= (q)  �89 

To complete the proof for (8.6), it is sufficient to show tha t  

for every quasiconformal mapping / of D onto D',  the half space xa>O. Choose such a 

mapping / and let/1 be the mapping given in (8.7) and (8.8). T h e n / o / f  1 is a quasieonformal 

mapping of D '  onto D' which can be extended to be a homeomorphism of D '  onto D' .  

We can next choose a Mhbius transformation g such tha t  h =go/o Jr z is a homeomorphism 

o f / ) '  onto D '  with h(0)=0 and h ( ~ ) =  ~ .  Since go/=ho/D it follows from the properties 

of h tha t  we can extend 9o/ to be a homeomorphism of D - { ~ }  onto D ' - { O } - ( ~ }  

such that  
lim go/(x)=O, lim g o / ( x ) = ~ .  

xa- . -~-  ~ Xa--~+ oo 

Finally since Ko(go/)=Ko(/), we may  assume, without loss of generality, tha t  the given 

mapping / satisfies the hypotheses of Lemma 8.1. 

Now choose 0 < a '  <b ' ,  and let C', S' ,  and E '  be the parts  of D' ,  aD' ,  and the positive 

xa-axis bounded by  S2(a ') and S2(b'). Next let U1 be the family of arcs which join E '  to 

S '  in C' and let U~ be the family of arcs which join S2(a ') to S~(b ') in S'. Then by  virtue 

of Lemma 3.8, 
M(FI) 2z  b' = q-~ log a-" (8.11) 
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while a familiar calculation yields 

= (log Ms'(F~) (8.12) \ a ~ / �9 

Lemma 8.1 implies tha t / -1  maps S2(a ') fl .D' and S2(b ') N D' into ao <~Xa <<.al and 5o <.Xa <.bv 

respectively, where 
O<~al-ao, b l -bo <~AKi(/), ao<b v (8.13) 

7g 
Hence we obtain M(F1) >~ ~ (b 0 - al) (8.14) 

from Lemma 3.7, while a direct calculation shows that  

MS(F2) >/2~(b 1 - a0) -1. (8.15) 

Now S and S' are free admissible boundary surfaces of D and D', respectively. Hence 

by Theorem 4.3, /*, the restriction of / to S, is a quasiconformal mapping of S onto S' 

with maximal dilatation 
K (t*) <-rain ( K I(I), Ko(/) )2, 

and we have Ms(F2) ~ K(/*) Ms'(F~) ~< Ko(f)~MS'(F~) (8.16) 

from Theorem 4.2. If we combine the above inequalities with Lemma 1.2, we obtain 

4 8 
.'~ b ~  al <-< M (Fx) Ms(F~) <~ Ko(/)4 M(F~) M s" (F,~) = - ~  Ko(/)4. (8.17) 
" b l  - a 0 

Now (8.17) holds for all 0 <a '  <b', while (8.2) and (8.13) imply that  

lira b ~  al - 1. (8.18) 
a ' - , o  b 1 -  a 0 
b'--~Oo 

Combining (8.17) and (8.18) yields (8.10), and the proof for Theorem 8.1 is complete. 

8.3. The inner coe//icient. We have not been able to calculate the other coefficients 

for an infinite circular cylinder. However, we have obtained the following bounds for 

the inner coefficient. 

THEORIZer 8.2. Suppose that D is an in/inite circular cylinder. Then 

2 lj6 <. KI(D) ~< 2 t.  (8.19) 

Proo]. Assume that  D is the cylinder in (8.1), that  D' is the half space xa>0 , and 

let (r,O,xa) and (t,O,q)) be the cylindrical and spherical coordinate systems given in sec- 

tion 8.2. Next set 
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/(r, O, x3) = (t, O, q~), 

where r = 2 -  �89 sin ~0 2-  �89 log t. 
sin (~ + ~/4) '  x3 = 

Then / is a continuously differentiable homeomorphism of D onto D '  which maps  each 

infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proport ional  to 

Since 

t dq)_ t sin q0 dO 
dt _ 2  �89 t, - - - -  2t(sin (~0+7r/4)) ~, 2�89 sin (~0+z/4). (8.20) 

dx a dr r dO 

2�89 sin (~ + ~/4) ~< 2(sin (~0 + ~/4)) *, 2 �89 

it follows t h a t  K / ~ 2  = su ~ J(P)  = 2 �89 
1w p~D v / (p)a  �9 

Then because we can map  D '  onto B 3 by  means of a M6bius t ransformat ion g, we have 

KI( D) < Ki(go /) = KI(/) =2~. 

To establish the left hand  par t  of (8.19), we must  show tha t  

Kz(]) >~21/6 (8.21) 

for each quasiconformal mapping  ] of D onto D' ,  the half space x a >0 .  As in the proof 

of Theorem 8.1, we m a y  assume tha t  / satisfies the hypotheses of Lemma 8.1. l~ix 0 < a '  < b '  

so tha t  a 1 <bo, let C'  and S '  be the par ts  of D '  and ~D'  bounded by  S2(a ') and  S2(b'), and  

let I'1 and I'~ be the families of arcs which join S2(a ') to  S2(b ') in C' and S' ,  respectively. 

Then it is easy to verify tha t  
b t --2 

3/ (P2)=2:~ log ~ (8.23) 

Lemma 8.1 implies t ha t  the images of S2(a ') rl .D' and S2(b ') Cl D'  u n d e r / - 1  lie in a o ~<x 3 ~<a 1 

and in b o ~<x 3 ~<bl, respectively, where (8.13) holds. Hence it follows tha t  

3/(Pl) ~<~(bo-al)-~, 

while as in (8.15) Ms(F~) >~2~(b I - a0 )  -1. 

Now S and S '  are free admissible boundary  surfaces of D and D' .  Thus 

M(F/)  ~< KI(/)2M(F~), MS(F2) ~< K~(/)2MS'(F~) 

4 - - 6 5 2 9 3 2  Acta mathematlca 114.  I m p r i m 6  le 10 aof i t  1965 .  
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by  virtue of Lemma 1.2 and Theorems 4.2 and 4.3. I f  we combine all of these inequalities, 

we obtain 

1 b 1 - a 0 ~ 123.~ M(F;)Ms'(F2)-2~KI(/)6M(I~I)MS(F2)-2~4~ (bo~-a~) El(l)6" 
Again (8.18) holds, and letting a'-->O, b' --> co yields (8.21). 

8.4. Some lower bounds. We shall require the following analogue of Theorem 7.3 in 

order to derive some lower bounds for the coefficients of a domain which has a spire in 

its boundary. 

T H ~ O R ~  8.3. Suppose that D is a domain in R a, that U is a hall space, and that 

D N U =A N U, where A is an in/inite circular cylinder whose axis is perpendicular to 8U. 

Then the coe]/icients o / D  are not less than the corresponding coe//icients o /A .  In  particular, 

Proo/. Assume, for convenience of notation, that  U is the half space xs>0 ,  choose 

P E A N U, and for each positive n let 

D n = (x: x +ne~E D). 

Then as in the proof of Theorem 2.3, it is easy to show tha t  the Dn converge to their kernel 

A at P. Hence 
K~(D) = lim inf Kx(Dn) >1 KI(A), 

and similarly for the other coefficients, by  virtue of Theorem 2.1. The rest follows from 

(8.6) and (8.19). 

8.5. Eolding o /an  in/inite cylinder. We shall also need the following homeomorphism, 

which folds an infinite cylinder onto a semi-infinite cylinder, in our s tudy of spires. 

LEMMA 8.2. Suppose that D is the cylinder in (8.1) and that D' and E are the parts 

o / D  and ~D which lie in the hall space x 3 < O. Then there exists a homeomorphism / o / D  U E 

onto D' U E such that ](x)= x /or  x E E, 

K(/) ~ 2  (q)  ' =  3.00... (8.24) 

in D, and JL(x) <~q2= 10.3... (8.25) 

in D'. 
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Proo]. Let /1 be the homeomorphism given in (8.7) and (8.8), and let U denote the 

half space x a >0. Then there exists a MSbius transformation/~ which carries U onto the 

dihedral wedge D.  and UN B a onto the dihedral wedge D./2, where for 0 < a < 2 ~ ,  D~ 

is as defined in (7.1). We see that /2o]1 is a homeomorphism of D onto D.  which maps 

D' onto D~/2 and E into the closed half plane 

T=(x=(r,O,xa): 0=0}.  

Now le t /a  be the folding mapping 

]~(r,O, xa)=(r,~,xa).  

Then )c a maps D.  onto D~/2 and )ca(x)=x for all xET. Hence the homeomorphism 

/ =/~o/~o/~o/~oh 

maps D U E onto D'U E, /(x)=x for x EE ,  and 

( / )~  K,(/I)Ko(/i ) K(/3)= 2 ( ~ ) '  K 

in D. Finally from (8.9) we see that  

I/~(x) l <./r,(x) ~< Ls,(x) ~< I/~(x) l (8.26) 

for x E D, while a direct calculation yields 

Lg(x)<l and Ig(z) I~>lx] 
6 

for x E B a N U, 

(8.27). 

where g=/~1o/3o]2. Inequality (8.25) follows from (8.26) and (8.27). 

9. T h e  outer  coef f ic ient  of  a c o n e  

9.1. Cone. Let (t,O, cf) be spherical coordinates in R 3, where the polar angle ~0 is meas- 

ured from the positive half of the xa-axis. We say that  a domain is a circular cone o/angle 
~, 0 < ~ < ~ ,  if it can be mapped by means of a similarity transformation onto the domain 

D={x=(t,O,q~): 0~<~<a~, 0 < t < c ~ } .  (9.1) 

We have the following cone analogue of Lemma 8.1. 

LEM~A 9.1. Suppose that D is the cone in (9.1), that D' is the hal/space x3>0, that f 
is a homeomorphism o / D  onto D', and that / (0)=0 and / (c~)= ~ .  Then /or each a '>0~  



5 2  F. W~ GEHRI~G AND J.  V~IS~[L~. 

the image o] the hemisphere S2(a ') f~ D' under ]-1 lies between two spheres S~(ao) and S~(al), 

where 

1 ~< a-1 ~< e A~l~) (9.2) 
go 

and A is an absolute constant. 

Proo/. Fix a' >0, let E' =S2(a ') N D', and set 

ao=inf  [xl, a , = s u p  Ix[. 
xeZ xeE 

We may assume that  a 0 < ax, for otherwise there is nothing to prove. Next  let 

and let F be the family of arcs which join E o to E 1 in D. Then F is minorized by  the family 

of  ares which join S2(a0) to S~(eh) in R s, and hence 

M(F) ~ 4n (log a-x~ -2 . (9.3) 
ao] 

Next  since 0 E E~ and ~ E E~, Corollary 3.1 implies that  

M(F') >~(1), (9.4) 

and we obtain (9.2) from Lemma 1.2, (9.3), and (9.4) with 

A = ~ 4 " ~  �89 
\~(1)/  

9.2. The outer coe//icient. We calculate now the outer coefficient of a convex circular 

Cone. 

T~WORE~ 9.1. Suppose that D is a convex circular cone o/angle r162 Then 

q �89 . 
K0(D) = ( q ~ ) ( s i n  ~)', (9.5) 

.where q=q(a/2) and q(a)= f i (s inu)- �89 (9.6) 

Proo[. Assume, for convenience of notation, that  D is the cone in (9.1) and let D' 

b e  the half space z a > 0. Next  set 

](t ,O,~) = (t',O, ~'), 

q (9.7) ~vhere t ' = t  ~(~tn~)-�89 q(~0')=aq(~0), a=q(a ) .  
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Then [ is a continuously differentiable homeomorphism of D onto D' which maps each 

infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to 

t ' d ~ ' _ t '  (sin~v'1�89 ' t 'sin~v' d r '  a(sin ~)-�89 - - a  . (9.8) 
dt t d? t \ sin ~ /  t sin 

Moreover, since 0<g~<~/2,  it is not difficult to show that  

sin ' �89 q( ")=a (sin ~)-t  < / s i n  r '~ < qt~ 
\ sin q ] q(q) 

for 0 < ~ ~< g. Hence 

L(P)a q (sin a) �89 K~ d(p) q(~) 

by virtue of Lemma 1.1, (9.7), and (9.8). Then since D'  is conformally equivalent to Ba, 

we obtain 

Ko(D) <'--Ko(/)= (~--(~)) �89 (sin a) '. 

To complete the proof for (9.5), we must show that  

K0(/) ~> ( & ) � 8 9  (sin ~) ' (9.9) 

for each quasiconformal mapping [ of D onto the half space D'. Choose any such mapping 

/. Then arguing as in the proof of Theorem 8.1, we see we may assume that / satisfies 

the hypotheses of Lemma 9.1. Fix O<a'<b', let C', S', and E'  be the parts of D', ~D', 

and the positive xa-axis bounded by S2(a ') and Sa(b'), and let F~ and F~ be the familiea 

of arcs which join E'  to S' in C' and S2(a ') to S~(b ') in S', respectively. Then as in (8.11) 

and (8.12) we have 
2g b' ( b'~ -1 

M(F/) = ~ -  log a"  Ms'(F~) = 2~ log a-'/ " 

Lemma 9.1 implies that the images of S2(a ') ~ D' and S2(b ') fl D' under / -1  lie betwee~ 

S2(ao) and $2(al) and between S2(bo) and SZ(b0, respectively, where 

1 <~,  ~ < e  aK~(1), ao<b r (9.10) 
ao b0 

Hence we obtain M(F1) >12~q(a) -e log bo 
51 

from Lemma 3.8, while a direct calculation yields 

b -1 
Ms(P2) ~ 2~ sin ~ (log ~o ) �9 (9.11) 
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Again S and S'  are free admissible boundary surfaces of D and D',  and hence 

M(rl) -< Ko(l) 2 M(F~), Ms(F~) < Ko(/) 2 MS'(F~). 

I f  we combine the above inequalities, we have 

b0 
q~ sin ~ log ax 

Ko(/)4 .  

q(~)2 log 
a o 

Finally if we let a'--> 0, b'--> oo, then bl/ao-->oo and (9.9) follows from (9.10). 

(9.12) 

9.3. The inner coe//icient. We have obtained the following bounds for the inner 

coefficient of a convex circular cone. 

TH~ORElVi 9.2. Suppose that D is a convex circular cone o/angle o~. Then 

(1 + cos~)  116 <~KI(D) < (1 + cos :r ~. (9.13) 

Proof. Assume tha t  D is the cone in (9.1) and that  D'  is the half space x a >0.  Next  set 

l(t,O,~) =ff',O,~'), 

sin (:r - ~) a = (1 - cos a) -�89 where t '=f~,  c o t ~ '  s inT ' 

Then / is a continuously differentiable homeomorphism of D onto D'.  A direct calculation 

shows tha t  
J(P) 

K,(f) = s u p / ( ~ =  (1 + cos a) �89 

and since D'  is conformally equivalent to B a, we conclude that  

K1(D ) <~ K~(/) = (1 + cos a) ~. 

For the left hand side of (9.13) we must  show tha t  

KI(/) >~ (1 + cos a) 1'6 (9.14) 

for each quasiconformal mapping / of D onto the half space D'.  As in the proof of Theorem 

9.1, we may  assume ] satisfies the hypotheses of Lemma 9.1. Fix 0 < a ' <  b' so that  a x < b0, 

let C' and S' be the parts  of D'  and ~D' bounded by  S~(a ') and S2(b'), and let r l  and r~ 

be the families of arcs which join S2(a ') to S2(b ') in C' and S',  respectively. Then as in 

(8.22) and (8.23), 
/ b ' \ -~  [ b'~ -1 M(F/) = 2~ \/l~ al-~/ , Ms'W~) = 2~ \log a--'] " 
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Lemma 9.1 implies that  the images of S2(a ') N D'  and S2(b ') (~/9' under / -1  lie between 

S~(ao) and $2(al) and between S2(b0) and S~(bl), respectively, where (9.10) holds. Direct 

calculation yields 
b -~ 

M(F1) ~< 2~ (1 - cos ~) (log ~ )  , 

( while as in (9.11) MS(p2)~>2~sina log . 

Again S and S' are free admissible boundary surfaces of D and we obtain 

M(Fx) < KI(/) ~ M(F1), MS(r~) < KI(/) ~ Ms'(r~). 

Combining all of the above inequalities, we have 

{ ~ l o g  ~ ~ 

Finally if we let a'--> 0, b'--> oo, then bo/az-->oo and (9.14) follows from (9.10). 

9.4. Remark. Suppose that  D is the cylinder in (8.1) and that for 0<~<7t /2 ,  D~ is 

the cone in (9.1) translated through the vector - (cot~)e  a. Then the D~ converge to their 

kernel D at 0 as zc-->0, and we may think of D as a cone of angle 0. In particular, since 

q �89 . 
(q)�89 = lim ( q ~ ) ( s i n  zc)', 

(8.6) is what we get by formally letting a-->0 in (9.5). Similarly the bounds in (8.19) are 

the limits of those given in (9.13) as a-->0. 

9.5. Some lower bounds. We conclude this section with the following cone analogue 

of Theorem 8.3. 

THEOREM 9.3. Suppose that D is a domain in R a, that U is a neighborhood o] a point 

QESD, and that D ~ U= A N U, where A is a circular cone o/angle zr which has Q as its vertex. 

Then the coe]/icients o] D are not less than the corresponding coe//icients o/ A. I n  particular 

i] A is convex, 

K,(D) ~> (1 + cos :r 1/~ , K0(D) ~> (q~))�89 (sin ~) ~ �9 

Proo/. Since Q is the vertex of A, A is raylike at Q, and the results follow from (2.6), 

(9.5), and (9.13). 
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10. Spites and ridges 

10.1. Introduction. In  view of the results of section 2.5, it is natural to assume that  

for a given domain D, the presence of a spire or a ridge in ~D has a strong influence on 

the coefficients of D. We shall study this question in detail. I t  turns out that  if OD has a 

spire which is directed into D or a ridge which is directed out of D, then K(D) = oo. In  

the reverse situations, K(D) may be finite. 

10.2. Spires. A point set in R a is said to be a spire if it can be mapped by means of 

a similarity transformation j onto 

S=(x=(r,O,xa): r=g(xa), 0<xa~<a}, (10.1) 

where a < oo and g is subject to the following restrictions: 

(i) 
(ii) g'(u) is continuous increasing < u  <a,~ (10.2) and in 0 

g(u) is continuous in 0 ~<u ~<a and g(a)= 0, ] 

J (iii) l img'(u)=0.  
u - - ~ a  

These conditions imply that  g(u)>0 in 0 ~<u < a  and that  

f a  = (10.3) 
du 

o g(u) ~ "  

The image of the point Q = (0,0,a) under / -1  is called the vertex of the spire, the image 

of the basis vector e a is its direction, and the image of the disk 

B=(x=(r,O,xa): 0~<r<g(0), xa=O ) 

is its base. 

A domain D c R a  is said to have a spire in its boundary if some point QE~/) has a 

neighborhood U such that  S =~D N U is a spire with vertex at Q. Let n be the direction 

of S. Then the points Q+un do not belong to S, and hence not to ~D, for small u > 0 .  

Thus there exists a constant b > 0  such that  either Q+unED for 0 < u < b  or Q+unEC(D) 

for 0 < u < b. We say that the spire S is inward directed in the first case and outward directed 

in the second case. 

10.3. Inward directed spires. The following result answers a question raised by B. V. 

~abat. 

TH~0R~M 10.1. I /  D is a domain in R a whose boundary contains an inward directed 

spire, then K(D) = 00. 
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Proo/. B y  per forming  a pre l iminary  s imilar i ty  t ransformat ion ,  we m a y  assume t h a t  

the ve r t ex  of the spire S is the  origin, t h a t  its direction is -e3 ,  and  t h a t  for  some a > 0  

S N Ba(a) =~D N Ba(a). 

Then S splits B3(a) into two domains,  and  since S is inward  directed, C(D) r) Ba(a) is the  

componen t  of Ba(a) - S which contains the in terval  r = 0, 0 < x a < a. F ix  0 < c < 1. Because 

S is a spire, we can choose b, 0 < b < � 8 9  such t h a t  S2(bea, bc) separates  0 f rom c~ in C(D). 

Hence C(D)N C(Ba(bea,bc)) has  two components  which mee t  S2(bea, b), and  we conclude 

f rom Theorem 6.2 t h a t  
1 

Kz(D) >~Alog ~,  (10.4) 

where A is an absolute  constant .  Le t t ing  c ->0  in (10.4) yields Kz(D) = o o  whence K(D) = c~. 

10.4. Outward directed spires. I n  contras t  to the  above  si tuation,  there  exist  domains  

wi th  ou tward  directed spires in their  boundaries  and  finite coefficients. We require first  

the  following result.  

LEMMA 10.1. Suppose that g(u) > 0 / o r  O < u <a ~ ~ and that 

[g(u)-g(v)l  <~blu-v I, b < ~ ,  (10.5) 

/or 0 <~u,v <a. Suppose next that D is the domain 

D={x=(r,O,x3): O<~r<g(xa), O<xa<a }, 

that D' is the circular cylinder 

D'={x=(r,O, x3): 0<r<g(0), 0<x3<g(0) (~ 1 
Jo g(u)]' 

and that B is the common base o / D  and D', 

B={x=(r,O,xa): O~<r<g(O), xa=O }. 

Then there exists a homeomorphism / o/ D U B onto D' U B such-that [(x) =x  /or x E B  and 

K([) <~ (1(b2 + 4) �89 + �89 ~< (b + 1)t. (10.6) 

Proo/. Let /(r, O, xa) = (rh(xa),O, ~(xa) ), 

f x. du 
where h(xa ) = g(0) ](xs) = g(0) g-~). 

g(x3)' 0 
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Then ] is a homeomorphism of D U B onto D'  U B and / (x )  =x for xEB.  Since g satisfies 

(10.5), ] is ACL and a.e. differentiable in D. Next  an easy computat ion shows tha t  at  

each point x = (r,0, xs)E D where g'(x3) exists, 

J(x) L(x) 3 2 " 1 ( ~ -  a-~ = (�89 §189 1) ", (10.7) 

r t p 

where c = g-~s) [g (x3) i < I g (x3) l ~< b 

by  virtue of (10.5). Hence (10.6) follows from (10.7) and Lemma 1.1. 

:Now for 0 < a <  c~ set g ( u ) = ( a - u )  ~ in O<~u<.a. Then g satisfies the hypotheses of 

Lemma 10.1 with b =2a, and 

D={x=(r,O,x3): O<r<g(lx3l), 0<Ix31 <a} 

is a domain with a pair of outward directed spires in its boundary. Since g satisfies (10.3), 

we can use the mapping of Lemma 10.1 to construct a homeomorphism ] of D onto an 

infinite circular cylinder D' with K(/) <~ (2a + 1) 4. Finally since a may  be chosen arbitrarily 

small, we obtain the following result. 

TH~OaV.M 10.2. For each e > 0  there exists a domain D c  R a whose boundary contains 

an outward directed spire and whose coe//icients are within e o/the corresponding coe//icients 

o] an in/inite circular cylinder. 

10.5. An  example. We consider next  the class of domains D which are obtained by  

adding an arbi t rary number  of outward directed spires to a half space. More precisely, 

let T be the plane x 8 =0,  let {B,,} be a collection of disjoint open disks in T, and for each 

n let Sn be a spire with base B n and direction e 3. Then 

( r -  UB,,) U (US,,) 
n ,,  

is a surface which divides R a into two domains. By Theorem 10.1, the upper domain has 

infinite coefficients, Let  D be the lower domain. One might think tha t  K(D) could be 

made arbitrarily large by  making the spires S,, very sharp or by  adjusting their positions 

on T. We show, however, tha t  this is not the case. 

THEOR~.M 10.3. For each such domain D, K(D)~<4.5. 

Proo/. Let D,, denote the points of D which lie below S,, 

D n = { x = P - u e 3 :  PESn, O < u < c ~ } ,  
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and let D~ and Eit denote the parts  of Dn and ~Dn which lie in the half space xa<0.  The 

proof of Theorem 10.3 depends upon the following result. 

LEMMA 10.2. For each n there exists a homeomorphism /n o ] D  n U E n onto Dn U E n 

such that ]~(x)=x /or x E E=, 

in D n, and 

in D'~. 

K(/~) <4.5 (10.8) 

Lilt(x) < 10.4 (10.9) 

We now define a mapping / of D by  setting 

/(x)=Ifit(x) if xEDn, 

t x if x E F = D - ( [ . J D n ) .  
I t  

By (10.8) and (10.9), ] is a homeomorphism which is ACL and a.e. differentiable in D. 

Each point of D -  F has a neighborhood in which K(/)<4.5. Since/(x) =x in F and since 

almost every point of F is a point of linear density in the directions of the coordinate 

axes [15], 
L(x) = l(x) = J (x) = 1 

a.e. in 2'. We conclude from Lemma 1.1 that  / is a 4.5-quasiconformal mapping of D, 

and hence that  K(D) <4.5 as desired. 

10.6. Proo] o/Lemma 10.2. Fix n and for convenience of notation write S =Sn, B = Bn, 

D =Dn, D' =D'~, and E = Eft. By  performing a preliminary translation, we may  assume 

tha t  S is the spire in (10.1). We now define a homeomorphism ] of D U E onto D'  U E, 

such tha t / (x )  =x for x E E  and 

K([) <4.5 in D, L(x) < 10.4 in D',  (10.10) 
as follows. 

Suppose first tha t  Ig'(u)l <�89 in 0 < u < a ,  let D1 be the par t  of D in xa>0,  and let 

1)~ be the symmetric image of D'  in x 3 =0.  Since g satisfies (10.3) and the hypotheses of 

:Lemma 10.1 with b =�89 there exists a homeomorphism/1 of D 1 U B onto D~ U B such tha t  

]1@) = x  for x E B  and 

K(I~) < < 1.45 (10.11) 

in D r Now let / ) s = D ' U  B U D[. By Lemma 8.2 we can find a homeomorphism /2 of 

/)2 U E onto D'  U E such that/~(x) = x  for x E E  and 

K(/~) < 3.01 in/)3,  Lr,(x ) < 10.4 in D'.  (10.12) 

Now set / (x)=II2o/l(x)  if x E D  1U B, 
t /2(x) if x E D ' U E .  
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Then / is a homeomorphism of D U E onto D'  U E, / (x )  =x for xEE,  and ] satisfies (10.10) 

by  virtue of (10.11), (10.12), and Corollary 5 of [4]. 

Suppose next  tha t  there exists a number  b, 0 < b < a ,  such tha t  g ' ( b ) = - � 8 9  let C be 

the infinite circular cylinder 0 ~< r <g(b), and set 

x - h ( r ) e  a if x e ( D U E ) - C ,  
h(x) = x - b e  a if x E D I'I C, 

where h is the inverse function of g. Then /1  is a homeomorphism of D U E and/1 ( x ) = x  

for xEE.  Moreover, since Ig'(u)] >�89 in 0 < u < b ,  Ih'(u)l < 2  in g(b)<u<g(O), and we 

conclude from Corollary 5.1, with cot :r = 2, tha t  

K(/~) ~< (2�89 + 1)J <3.76, L1,(x) ~<3, (10.13) 

in D. Now It translates D N C onto a domain D 1 which lies below the spire 

St=(x=(r,O,x3): r=g(xa+b), O<xa<~a-b }. 

Let D~ and E 1 denote the parts  of D1 and aD~ which lie in  xa<0.  Since Ig'(u+b)l <1 

in 0 < u < a - b, by  what  was proved above we can find a homeomorphism/~ of D 1 U E 1 

onto D~ U E 1 such that/2(x) = x  for x E E 1 and 

K(/2) < 4.5 in Dr, Lr,(x ) <~ 10.4 in D~. (10.14) 

Finally set 

/t(x) if x E ( D U E ) - C ,  
I(~) 

[/~o/1(x ) if x e D n O .  

Then / is a homeomorphism of D U E onto D 'U E, / (x)=x for xEE,  and (10.10) holds 

by  virtue of (10.13), (10.14), and Corollary 5 of [4]. Hence the proof of Lemma 10.2 is 

complete. 

10.7, Inaccessible boundary points. We can use Theorem 10.3 to show tha t  there exists 

a domain which has finite coefficients and some inaccessible boundary points. For choose 

a sequence of disjoint open disks {Bn) which converge to the origin, erect a spire S~ of 

height 1 on each B~, and let D be the corresponding domain, as defined in section 10.5. 

Then each point of the segment r = 0, 0 < x  3 ~< 1 is an inaccessible boundary point of D,  

while K(D)~<4.5 by  Theorem 10.3. Another such example has been given by  Zori5 [21]. 

I t  is clear how the above construction can be slightly modified to yield a domain with 

finite coefficients, for which the set of inaccessible boundary points has positive 3-dimen- 

sional measure. 
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10.8. A lower bound. Finally we have the following sharp lower bound for the coeffi- 

cients of a domain whose boundary contains a spire. 

T ~ E O ~ E ~  10.4. I] D is a domain in R 3 whose boundary contains a spire, then the 

coefficients o] D are not less than the corresponding coe]]icients o] an in]inite circular cylinder. 

In  particular, 

Kz(D) >~ 2116, Ko(D) >~ (q) �89 

Proo/. By performing a preliminary similarity transformation, we may  assume tha t  

the vertex of the spire S is the origin and tha t  its direction is - e  3. Next  by  Theorem 10.1 

we may  assume tha t  S is outward directed. Finally by  definition we can choose a >0  

so tha t  
S N B~(a) =~D fl Ba(a). 

Then S splits Ba(a) into two domains and D N Ba(a) is the component of Ba(a) - S  which 

contains the segment r = 0 ,  O<xa<a. Let /1  denote inversion in S~(a), let /)1 denote the 

image of D under/1, and let U 1 denote the half space x a > a. Since S is a spire, it follows tha t  

D1N Ul={x=(r,O,xa): O~r<g(xa), a < x a < c ~  ~, 

where g'(u) is continuous in a < u  < co and 

lim g'(u) = 0. (10.15) 

Fix e>0 ,  choose b>a so tha t  ]g'(u)] <e  in b < u < ~ ,  let U be the half space xa>b, and 

let A be the infinite circular cylinder 

A=(x=(r,O,xa): O<r<g(b), [x] <c~}. 

S i n c e  [g'(u)l <e  in b < u <  ~ ,  

f ~ d u  = 

b g(u) ~ '  

and hence by  Lemma 10.1 there exists a homeomorphism/2 of D 1N C" onto A N 0 such 

that/~(x) =x in D 1N ~U and K(/2) ~<(1 +e) t in D 1N U. Set 

]a(x)=S]~(x ) if xED1N U, 
if x E DI - (]. 

Then ]=/ao]l is a homeomorphism of D onto a domain D', D'O U=A N U, and K(/)<~ 

(1 +c) t. The desired lower bounds are now obtained by  first applying Theorem 8.3 to D' 

and then letting e-->0. Theorem 10.2 shows tha t  these bounds cannot be improved. 
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10.9. Ridges. A point  set in R a is said to be a ridge if it can be mapped  b y  means of 

a similarity t ransformat ion / onto 

S={x=(xl,x~,xa): [x~[ =g(xl) , O<xl •a , Ixa[ <b}, (10.16) 

where a <  ~ ,  b <~ ~ ,  and g satisfies the conditions in (10.2). The image of the line segment 

E={x=(xl,x~,xa): x l=a,  x~=O, ] x a ] < b  ) 

u n d e r / - 1  is called the edge of the ridge and the image of the vector  e I is its direction. 

A domain D c R  3 is said to have a ridge in its boundary  if some point  QE~D has a 

neighborhood U such t h a t  S = ~ D  N U is a ridge with Q a point  of its edge E.  Le t  n be 

the direction of S. As in the case of spires, there exists a constant  c > 0  such tha t  either 

Q + u n E D  for 0 < u < c  or Q+unEC(D) for 0 < u < c .  The ridge S is said to be inward 

directed in the first  case and outward directed in the second case. 

10.10. Outward directed ridges. We have the following analogue of Theorem 10.1 for 

ridges. 

THEOREM 10.5. I /  D is a domain in R 3 whose boundary contains an outward directed 

ridge, then K(D) = ~ .  

Proo/. By performing a prel iminary similarity t ransformation,  we m a y  assume tha t  

the edge of the ridge S is the line segment x 1= x 2 = 0, [x3[ < 1, t ha t  its direction is - e l ,  

t ha t  Q = 0, and tha t  for some a > 0 

S N Ba(a) =~D ~ Ba(a). 

Then  S divides Ba(a) into two domains, and since S is outward directed, D N Ba(a) is 

the component  of B a ( a ) - S  which contains the interval 0 < x  1 <a, x 2 =x a =0.  Because S 

is a ridge, given 0 < c < 1 ,  we can choose 0 < b < � 8 9  so tha t  D separates (b,bc, O) from 

(b, -bc,  O) in Ba(beDb). Thus C(D) N B3(bel, b) has two components  which meet  S2(bel, bc), 

and  we conclude f rom Theorem 6.1 tha t  

1 
K,(D) >1 A log - .  (10.17) 

C 

Lett ing c-->O in (10.17) yields K~(D) = ~ ,  whence K(D) = ~ .  

10.11. Inward directed ridges. I n  contras t  to  the above situation, there exist domains 

with inward directed ridges in their boundaries and finite coefficients. For  example, given 

0 < a < oo, set g(u) = rain (u 2, a 2) and let 

T={~=(xl,x~,x3): Iz~l=g(xl), x~>~0}. 
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Then T bounds a domain D c R 3 which has an inward directed ridge in its boundary. 

For x = (Xl, x2, x3) E D let 

, l (X)={: -g(x l ) ( sgnx2)% if Xl>~0, 

if x 1<0,  

where the function sgnu is defined to be u/]u] when u # 0  and 0 when u = 0 .  Then / is a 

homeomorphism of D onto a dihedral wedge D'  of angle 2z~, 

D'={x=(r,O, xa): 0<0<27t ,  I x [<co} ,  

and K(/1)<~ (2a + 1)~ by virtue of Corollary 5.1. Now D'  has finite coefficients, since 

/2(r,O,x3) =(r 1-0 r189 

maps D'  onto a half space with K(/2)=23. Finally because a may be chosen arbitrarily 

small, we obtain the following analogue of Theorem 10.2. 

THEOREM 10.6. For each s > 0  there exists a domain D= R 3 whose boundary contains 

an inward directed ridge and whose coe//icients are within ~ o/ the corresponding coe//icients 

o /a  dihedral wedge o] angle 2~. 

10.12. An example. We consider next a class of domains analogous to those studied 

in section 10.5. Let g be any function which satisfies (10.2). Next let T be the plane x 1 =0, 

S the ridge 
S={x=(xvx2,xa): [x2l=g(xi), 0<Xl~<a}, 

and B the base of S, 

B={x=(xi,x2,x3)" Ix2l<g(0), Xl=0}. 

Then (T - B) U S is a surface which divides R 3 into two domains. The domain which con- 

tains the negative half of the xl-axis has infinite coefficients by Theorem 10.5. Let D be 

the other domain. We show t h a t  the coefficients of D remain bounded no matter how 

sharp we make the ridge S. 

THEORE~ 10.7. For each such domain D, K(D) ~2.6. 

Proo/. Set 

/I(Xl,  X 2, X3)=  ( a - x  1, x 2, x3), /2(r, O, x3)= (r, ]0, (~)�89 

Then/2o/1 is a homeomorphism of D onto a domain D1, which lies in the dihedral wedge 

0 < 0 < ~z, and 
K(/2o/1 ) = K(/2) = (~)~ < 1.25. 
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Now for each pair  of points Q1,Q~ EaD1, the angle between the segment Q1Q~ and the  vector  

e 2 - e  1 is never less than  ~/4. Hence Corollary 5.1 yields a homeomorphism ]a of D 1 onto 

the half space x ~ -  x~ > 0 with 

K(fs) ~< ( ~ - ~ ) '  < 2.06, 

and we conclude tha t  K ( D ) <~ K (/3o12o /1) < 2.6. 

10.13. A lower bound. We conclude this section with the following implicit sharp 

lower bound  for the coefficients of a domain whose boundary  contains a ridge. 

THV.OR]~M 10.8. I /  D is a domain in R 3 whose boundary contains a ridge, then the 

coe/]icients o / D  are not less than the corresponding coe//icients o /a  dihedral wedge o/angle 2xe. 

Proo/. Suppose tha t  D contains a ridge in its boundary ,  and  for 0 < a < oo, let U be 

the open cube bounded by  the planes x 1 = a +_ a, x~ = -F a, x 3 = • a. B y  performing a preli- 

minary  similarity t ransformation,  we m a y  choose a so tha t  

aDN V={x=(xl,x2,xa): ]x~l=g(x,), 0<xl~<a ,  Ixa l<a} ,  

where g satisfies (10.2). Nex t  b y  Theorem 10.5, we m a y  assume tha t  the ridge is inward 

directed and hence tha t  

V(D) N V={x=(Xl,X2,X3): <g(~ ) ,  ~  Iz l <a}.  

Now fix b so t h a t  �89 set h(u) equal to  g(u) for b<~u~a and  0 for u>a,  and  extend 

h so tha t  h(u) = h(2b - u) for all u. Nex t  for x = (x 1, X~, x3) E D let 

/(x) = - h(xl) (sgn x~) e 2 if a -  b ~< I xa [ ~< a, 

if ]x31>a. 

Then / is a homeomorphism of D onto a domain D '  and 

D' n B3(Q,t)=4' n B~(Q,t), 

where Q = (a,0,0), O < t < a - b ,  and  A'  is a dihedral wedge of angle 2~. Using Corollary 5.1, 

we can show tha t  K(/)-->I as b--->a, and hence the desired conclusion follows f rom Theo- 

rem 7.3. 
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11. The space of domains quasiconformally equivalent to a bail 

11.1. Space o/domains. Let ~ denote the class of all domains D c  _R 3 with K(D) < co. 

Next given D, D 'E O, we define the distance between D and D' as 

d(n, D') = inf (log K(/)), (11.1) 
f 

where the infimum is taken over all homeomorphisms / of D onto D'. We identify two 

domains D and D'  whenever d(D,D')=O. Then it is trivial to show tha t  d is a metric 

on O. In  this final section we show tha t  O is complete and nonseparable under d. 

11.2. Completeness. The completeness is equivalent to the following result. 

T~WOREM 11.1. Suppose that {Dn} is a sequence o/domains in ~ and that 

lim d(Dm, Dn)=O. (11.2) 
m ,  n-.-~oo 

Then there exists a domain D o E 0 such that 

lim d(D~, Do) = 0. (11.3) 
n - ~ o o  

Proo/. By virtue of (11.2) we may  choose a subsequ~nce {nm} such tha t  

d(D~m, D~m+l) < 2 -m 

for m = l ,  2 . . . . .  Next  fix a pair of distinct points Po, P1EDn,, let /m be a homeo- 

morphism of Dnm onto D~m+l with 

log K(/.,) < 2 -m, (11.4) 

and let ~Om be a M6bius transformation of D.m onto a domain Dm c R a, chosen so tha t  

9m(Po) = Po and gin(P1)=P1 where 

gm=q),nO/m-1 o ... o/1. 

Then gm is a homeomorphism of Dn~ onto D~n and (11.4) implies that 

logK(gm) < 1 

for all m. Hence by Lemma 5 of [6], the gm are uniformly bounded and equicontinuous 

on each compact subset of D~, and there exists a subsequence {mk) such that 

lim gmk(X) = g(x) (11.5) 
k--~oO 

uniformly on each compact subset of D~,. Since g(Po)=Po ttnd g(P1)=P1, Lemma 7 of [6] 

implies that  q is a homeomorphism of D=, onto a domain DoC R a. Fix m and for m'  > m  set 

h m, =gm, O/llo... o/ml--1 = qgm, O/m,_lO... O/re. 
5 -  652932 Acta mathematica 114. Imprlm6 le 11 aofit 1965. 
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Then h~, is a homeomorphism of Dnm for which 

log K(hm.) < 2 -re+l, 

and from (11.5) it follows tha t  

(11.6) 

uniformly on each compact subset of Dnm, where 

h = g o / l l o  ... O/~nl--1. 

Thus h is a homeomorphism of Dnm onto D 0, and from (11.6), (11.7), and Lemma 2.1 

it  follows tha t  
log K(h) <~ 2 -m+l. 

Hence d(Dnm, D o) <~ 2 -~+1, (11.8) 

and (11.3) follows from (11.2) and (11.8). 

11.3. Lower bounds/or the dilatations o/ a homeomorphism. We require the following 

result in the proof tha t  ~ is not separable. 

THEOREM 11.2. Suppose that D and D' are domains in R 3, that U and U' are neigh- 

borhoods o/ QEOD and Q' E~D', and that D N U=A N U and D' n U' = A '  f3 U', where A is a 

dihedral wedge with Q a point o/ i ts  edge and A' is a hall space. I / / i s  a homeomorphism o/ 

D onto D' and i//(P)--->Q'as P->Q in D, then 

KI(/)>~KI(A), Ko(/)>~Ko(A), K(/)>~K(A). (11.9) 

Proo/. We may  assume tha t  K(/) < oo, for otherwise there is nothing to prove. Next  

by  performing preliminary translations, we may  assume tha t  Q=Q'=O. Choose a > 0  so 

tha t  Ba(a)c  U and fix P E D  with [P] <a .  For each n let 

,(:) /n(X) = an + Qn, 

I (')1 where an= / ~ Q ' ~ = P ' - a J  , P ' = / ( P ) .  

Then /n(P) = P' and I Q~ [ ~< ] P ' I  + 1. Moreover, since l ( x )  ~ o a s  x - - ,  o in D, 

lim an = oo. (11.10) 

Now let Dn = x: n E D ,  D'~={anx+Qn: xED'}.  

lim hmk(X) = h(x) (11.7) 
k--).oo 
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As in the proof of Theorem 2.3, P E D n for all n and the D,  converge to their kernel A at  

P. Since [,  is a homeomorphism of Dn onto D'n, P ' e  D'~ for all n. Next because the Q~ 

are bounded, by choosing a subsequence and relabeling, we may assume that  

l im Q'~=Q". (11.11) 

Using Theorem 11 of [4], one can prove that  P '  has a neighborhood which is contained in 

all the Dn. Then with (11.10) and (11.11) it is easy to show that  the D~ converge to their 

kernel A" at P ' ,  where A" is the half space A' translated through Q". Since K(/~) = K(]) < oo, 

Theorem 3 of [6] implies there exists a subsequence {nm} such that  

lim f ~ ( x )  = g(x) 
m - ~  

uniformly on each compact subset of A, where g is a homeomorphism of A onto A". Hence 

we obtain 
K~(A) ~< K~(g) <~ l im inf  K~(/~,,) = Kz(/) 

from Lemma 2.1, and the rest of (11.9) follows similarly. 

11.4. Nonseparability. Finally we show that  ~ is nonseparable by establishing the  

following result. 

TK~OREM 11.3. Given 0 < a < ~ ,  we can associate with each b, 0 < b < l ,  a domaiu  

Db e ~ such that 
d(Db, B 3) 4 a  (11.12) 

/or 0 <b < 1 and such that d(Db, Db.) >~ c (11.13) 

/or 0 <b, b' < 1, b +b', where c is a positive constant which depends only on a. 

Proo]. Pick m > 0 so that  
log (m + 1)~ =a.  (11.14~ 

With each b, 0 <b < 1, we can associate a sequence {b,) such that  bn =0  or 1 for each n and 

b = ~ b,2 -" .  (ll .15) 
1 

Next let c o = 0 and 
cn = (Cn-1 + 1) e ~+1 + 1 > cn-1 + 2 (11.16~ 

for n - -1 ,  2 . . . . .  Then for u>~ 0 set 

g~(u) = f ~ (1 - (U - Cn) ~) if [ u - cn [~< l  for some n~>0, 

if [ u - c n l > l  for all n>~0, 
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and let Db be the domain 

Db={x=(r,O,xa): gb(r)<xa<oo, 0 ~ < r < ~ } .  

I t  is not difficult to show that,  for each pair of points Q1,Q~ E~Db, the acute angle between 

the segment Q1Q2 and the vector e a is not less than arc cot m. Hence Corollary 5.1 yields 

a homeomorphism / of D b onto the half space x a > 0 for which 

K (/) < (m + 1) t, (11.17) 

and (11.12) follows from (11.14) and (11.17). 

Let {b~}, {Cn}, and D b, be the sequences and domain corresponding to a second number  

b' =~b, O<b' <1.  To complete the proof of Theorem 11.3, we shall show tha t  (11.13) holds 

with c =log M, where 

M = ( 1  arc tanm)- �89  (11.18) 

Suppose this is not the case. Then there exists a homeomorphism / of D b onto Db, with 

K(/) <M <2  ~. (11.19) 

Since D~ and Db, are Jordan domains in ~ ,  / induces a homeomorphism/*  of OD b onto 

ODb, [18]. Let  E~ be the union of the circles r=l ,  x3=0 and r=cn++_l, xa=0,  n=l ,2  .... 

in OD b, and let E b, be the corresponding set in OD~,. We prove first that ,  because of (11.19), 

]* maps E~ onto Eb,. 

Choose QEEb and suppose that  ]*(Q) is a finite point Q'EODo,-Eb,. Then OD~, has 

tangent plane at  Q'. Fix e>0 .  Arguing essentially as in section 7.5, we can find (1 +e)- 

quasiconformal mappings h and h' of R a onto itself with the following properties: h carries 

Db onto D, h'  carries Db, onto D',  and the points h(Q) and h'(Q') have neighborhoods U 

and  U' such tha t  19 fl U = A  fl U and D ' t l  U' =A'(1 U r, where A is a dihedral wedge of 

angle ~ -  arc tan m with h(Q) as a point of its edge and where A' is a half space. From 

,(7.5), (11.9), and (11.18) it follows tha t  

K1(h'o/oh -~) >~ Kx(A) = M ,  

a n d  hence K(/) >~ KI(/) >~ (1 +e)-~ M. (11.20) 

:Since (11.20) holds for all e > 0, we can let ~--> 0 to obtain an inequality which contradicts 

{11.19). 

Suppose next  that /*(Q) = c~, let C be the circle of E~ which contains Q, and let C' 

b e  the image of C under/*.  Then C ' - {  c~ } is connected, and by  what was proved above, 

Eb.. 
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This means tha t  C ' - {  ~ } must  lie in one of the circles of Eb,. Hence C ' - {  o~ } is bounded 

and this contradicts the assumption that  ]*(Q) = co. We conclude that  [*(Q) e Eb, as desired. 

I t  follows that  [* must  map each circle of Eb onto a circle of Eb,. Let  C1, C 2 ..... C . . . . .  

and C~, Co' ..... C~ .... be the circles of E~ and Eo,, respectively, ordered according to increas- 

ing radii, let S n be the bounded component of ODb--Cn, and let S~ be the image of S .  

under /*. Then S~ and S~ must  contain exactly n - 1  and n circles of E0,, respectively, 

and hence Sn is the bounded component of ~Do,-  C~. In  particular, this means tha t  ]* 

maps the plane annulus 

A~=(x=(r,O,xs): c~_l + l  < r < c ~ - l ,  xa=0  } 

onto the plane annulus 

A'~ = (x=  (r, O, xa): c ~ _ l + l < r < c ~ - l ,  x a = 0  } 

for n =  1, 2, ..., and from (11.16) we obtain 

(b '~+l)<K(/*)(bn+l) ,  (b~+l)<.K(/*)(b'~+l).  (11.21} 

Theorem 4.3 and (11.19) imply that  

K(/*) <K(/) 2 <2,  (11.22} 

and combining (11.21) and (11.22) yields 

(b:+ 1)<2(b~+ 1), (b~+ 1)<2(b~+l) (11 23> 

for n = 1,2 ..... Finally. since bn and b~ take on only the values 0 and 1, (11.23) implies t ha t  

b~=b~ for all n, and hence that  b =b '  by virtue of (11.15) and its counterpart  for b'. This 

contradicts the hypothesis ths b+b'. Hence (11.13) must hold with c=logM,  and the 

proof for Theorem 11.3 is complete. 
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