THE COEFFICIENTS OF QUASICONFORMALITY OF DOMAINS IN SPACE

BY
F. W. GEHRING and J. VÄISÄLÄ
University of Michigan, Ann Arbor, Mich., U.S.A. $\left(^{(1)}\right.$ and University of Helsinki, Finland
Dedicated to Professor C. Loewner on his seventieth birthday

1. Introduction

1.1. Main problem. Quasiconformal mappings in Euclidean n-space, $n>2$, have been studied rather intensively in recent years by several authors. See, for example, Gehring [4], [5], [6]; Krivov [8]; Loewner [9]; Šabat [14]; Väisälä [17], [18]; and Zorič [20], [21]. It turns out that these mappings have many properties similar to those of plane quasiconformal mappings. On the other hand, there are also striking differences. Probably the most important of these is that there exists no analogue of the Riemann mapping theorem when $n>2$. This fact gives rise to the following two problems. Given a domain D in Euclidean n-space, does there exist a quasiconformal homeomorphism f of D onto the n-dimensional unit ball B^{n} ? Next, if such a homeomorphism f exists, how small can the dilatation of f be?

Complete answers to these questions are known when $n=2$. For a plane domain D can be mapped quasiconformally onto the unit disk B^{2} if and only if D is simply connected and has at least two boundary points. The Riemann mapping theorem then shows that if D satisfies these conditions, there exists a conformal homeomorphism f of D onto B^{2}.

The situation is very much more complicated in higher dimensions, and this paper is devoted to the study of these two questions in the case where $n=3$.
1.2. Notation. We let R^{3} denote Euclidean 3 -space with a fixed orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$, and we let \bar{R}^{3} denote the Möbius space obtained by adding the point ∞ to R^{3}.
${ }^{(1)}$ This research was supported by the National Science Foundation, Contract NSF-G-18913 and Contract NSF-GP-1648.
1-652932 Acta mathematica 114. Imprimé le 9 août 1965.

Unless otherwise stated, all point sets considered in this paper are assumed to lie in \bar{R}^{3}. Finite points will usually be designated by capital letters P and Q, or by small letters x and y. In the latter case, x_{1}, x_{2}, x_{3} will denote the coordinates for x, relative to the basis $\left(e_{1}, e_{2}, e_{3}\right)$, and similarly for y. Points are treated as vectors and $|P|$ and $|x|$ will denote the norms of P and x, respectively.

Given a finite point P and $t>0$ we let $B^{3}(P, t)$ denote the 3 -dimensional ball $|x-P|<t$ and $S^{2}(P, t)$ its 2 -dimensional boundary sphere $|x-P|=t$. We will also employ the abbreviations

$$
B^{3}(t)=B^{3}(0, t), \quad B^{3}=B^{3}(1), \quad S^{2}(t)=S^{2}(0, t), \quad S^{2}=S^{2}(1)
$$

where 0 denotes the origin. Next for each set $E \subset \bar{R}^{3}$ we let $\bar{E}, \partial E$, and $C(E)$ denote the closure, boundary, and complement of E, all taken with respect to \bar{R}^{3}. When $E \subset R^{3}$, we let $\Lambda(E), \Lambda^{2}(E)$, and $m(E)$ denote respectively the linear or 1-dimensional Hausdorff measure, the 2 -dimensional Hausdorff measure, and the 3 -dimensional Lebesgue measure of E. (See [10] and [15].)

By a homeomorphism f of a domain $D \subset R^{3}$ we mean a homeomorphism of D onto a domain $D^{\prime} \subset R^{3}$. For each quantity Δ associated with D, such as a subset of D or a family of arcs contained in D, we let Δ^{\prime} denote its image under f.
1.3. Modulus of a ring. We say that a domain $R \subset R^{3}$ is a ring if $C(R)$ has exactly two components, say C_{0} and C_{1}. Then following Loewner we define the conformal capacity of R as

$$
\begin{equation*}
\operatorname{cap} R=\inf _{u} \iiint_{R}|\nabla u|^{3} d \omega \tag{1.1}
\end{equation*}
$$

where the infimum is taken over all functions u which are continuously differentiable in R with boundary values 0 on C_{0} and 1 on C_{1}, and where $|\nabla u|$ is the norm of the gradient vector $\left(\partial u / \partial x_{1}, \partial u / \partial x_{2}, \partial u / \partial x_{3}\right)$. It is easy to see that $0 \leqslant \operatorname{cap} R<\infty$. We then define the modulus of R by means of the relation

$$
\begin{equation*}
\bmod R=\left(\frac{4 \pi}{\operatorname{cap} R}\right)^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

This modulus behaves in many ways like the familiar modulus of a plane ring, usually defined by means of conformal mapping. For example, if R is the domain bounded by concentric spheres of radii a and $b, a<b$, then

$$
\bmod R=\log \frac{b}{a}
$$

1.4. Modulus of a family of arcs. The conformal capacity of a ring can also be expressed in terms of extremal lengths, or more precisely, as the modulus of a certain family of arcs.

A set $\gamma \subset R^{3}$ is said to be an arc if it is homeomorphic to a linear interval which may be open, half open, or closed. If E_{0} and E_{1} are two sets which meet the closure of a set D, then an arc (or more generally a connected set) γ is said to join E_{0} and E_{1} in D if $\gamma \subset D$ and if $\bar{\gamma} \cap E_{0} \neq \varnothing, \bar{\gamma} \cap E_{1} \neq \varnothing$.

Suppose next that γ is an arc and that ϱ is a non-negative Borel measurable function defined on some set containing γ. We define the line integral of ϱ along γ by means of linear measure,

$$
\begin{equation*}
\int_{\gamma} \varrho d s=\int_{\gamma} \varrho d \Lambda . \tag{1.3}
\end{equation*}
$$

(See p. 19 and p. 53 in [15].) When γ is rectifiable, it is not difficult to see that the integral in (1.3) is equal to the usual line integral taken over γ with respect to arclength. (When ϱ is constant, this follows from [1]. The general case is then obtained by a simple limiting argument.)

Suppose that Γ is a family of arcs in R^{3}. We denote by $F(\Gamma)$ the family of functions ϱ which are non-negative and Borel measurable in R^{3} and for which

$$
\int_{y} \varrho d s \geqslant 1
$$

for each arc $\gamma \in \Gamma$. We then define the modulus of the arc family Γ as

$$
\begin{equation*}
M(\Gamma)=\inf _{\varrho} \iiint_{R^{3}} \varrho^{3} d \omega \tag{1.4}
\end{equation*}
$$

where the infimum is taken over all functions $\varrho \in F(\Gamma)$. It is clear that $0 \leqslant M(\Gamma) \leqslant \infty$ and that $M(\Gamma)=0$ whenever the family Γ is empty.

It is important to observe that the nonrectifiable ares have no influence on the modulus of a given arc family. That is, if Γ_{1} denotes the subfamily of rectifiable ares in a family Γ, then

$$
\begin{equation*}
M(\Gamma)=M\left(\Gamma_{1}\right) \tag{1.5}
\end{equation*}
$$

See [17] for this and other properties of the modulus $M(\Gamma)$.
Now suppose that R is a ring and that Γ is the family of ares which join the components of ∂R in R. Then it follows from (1.5) and Theorem 1 of [3] that

$$
\begin{equation*}
\operatorname{cap} R=M(\Gamma) \tag{1.6}
\end{equation*}
$$

1.5. Dilatations of a homeomorphism. Suppose that f is a homeomorphism of a domain $D \subset R^{3}$. If R is a bounded ring with $\bar{R} \subset D$, then R^{\prime} is a bounded ring with $\bar{R}^{\prime} \subset D^{\prime}$. We
define the inner dilatation $K_{I}(f)$ and the outer dilatation $K_{0}(f)$ of the homeomorphism f as

$$
\begin{equation*}
K_{I}(f)=\sup _{R} \frac{\bmod R}{\bmod R^{\prime}}, \quad K_{0}(f)=\sup _{R} \frac{\bmod R^{\prime}}{\bmod R} \tag{1.7}
\end{equation*}
$$

where the suprema are taken over all bounded rings R with $\bar{R} \subset D$ for which $\bmod R$ and $\bmod R^{\prime}$ are not both infinite. We call

$$
\begin{equation*}
K(f)=\max \left(K_{I}(f), K_{0}(f)\right) \tag{1.8}
\end{equation*}
$$

the maximal dilatation of f. Obviously

$$
\begin{equation*}
K_{I}(f)=K_{0}\left(f^{-1}\right), \quad K_{0}(f)=K_{I}\left(f^{-1}\right), \quad K(f)=K\left(f^{-1}\right) \tag{1.9}
\end{equation*}
$$

Moreover, it follows from Theorem 5 of [4] or Theorem 6.11 of [17] that

$$
\begin{equation*}
K_{I}(f) \leqslant K_{0}(f)^{2}, \quad K_{0}(f) \leqslant K_{I}(f)^{2} \tag{1.10}
\end{equation*}
$$

Thus the three dilatations of a homeomorphism f are simultaneously finite or infinite. In the former case, f is said to be quasiconformal; f is said to be K-quasiconformal if $K(f) \leqslant K$ where $1 \leqslant K<\infty$.

One can also define the dilatations of a homeomorphism in purely analytic terms. Suppose that f is a homeomorphism of a domain $D \subset R^{3}$. For each $P \in D$ we let

$$
\begin{align*}
& L(P)=\lim _{x \rightarrow P} \frac{|f(x)-f(P)|}{|x-P|}, \quad l(P)=\lim _{x \rightarrow P} \inf \frac{|f(x)-f(P)|}{|x-P|}, \tag{1.11}\\
& J(P)=\limsup _{t \rightarrow 0} \frac{m\left(B^{\prime}\right)}{m(B)}
\end{align*}
$$

where $B=B^{3}(P, t)$. At a point of differentiability, $L(P)$ and $l(P)$ are just the maximum and minimum stretching under f, and $J(P)$ is the absolute value of the Jacobian. Next we say that f is absolutely continuous on lines, or simply ACL, in D if for each ball B with $\bar{B} \subset D, f$ is absolutely continuous on almost all line segments in B which are parallel to the coordinate axes.

Lemma 1.1. Suppose that f is a homeomorphism of a domain $D \subset R^{3}$. If f is not differentiable with $J>0$ a.e. in D or if f is not ACL in D, then

$$
K_{I}(f)=K_{0}(f)=K(f)=\infty
$$

If f is differentiable with $J>0$ a.e. in D and if f is ACL in D, then

$$
K_{I}(f)^{2}=\underset{P \in D}{\operatorname{ess} \sup } \frac{J(P)}{l(P)^{3}}, \quad K_{0}(f)^{2}=\underset{P \in D}{\operatorname{ess}} \sup \frac{L(P)^{3}}{J(P)} .
$$

This result follows from Theorems 4 and 6 of [4] and also from Theorems 6.10, 6.13 and 6.16 of [17].

If we apply Lemma 1.1 to the affine mapping

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(K^{2} x_{1}, K^{2} x_{2}, x_{3}\right), \quad K>1,
$$

we obtain $K_{I}(f)=K^{2}$ and $K_{0}(f)=K$. Hence the inequalities in (1.10) are best possible.
We see from (1.2) and (1.6) that it is possible to define the dilatations of a homeomorphism f in terms of what happens to the moduli of certain are families under f, namely the families of ares which join the boundary components of bounded rings with closure in D. Surprisingly enough, if we know what happens to the moduli of this particular class of are families under f, we know what happens to the moduli of all are families under f. In particular, combining Lemma 1.1 with Theorem 6.5 of [17], we obtain the following result.

Limma 1.2. Suppose that f is a homeomorphism of a domain $D \subset R^{3}$. Then

$$
K_{I}(f)^{2}=\sup _{\Gamma} \frac{M\left(\Gamma^{\prime}\right)}{M(\Gamma)}, \quad K_{0}(f)^{2}=\sup _{\Gamma} \frac{M(\Gamma)}{M\left(\Gamma^{\prime}\right)},
$$

where the suprema are taken over all arc families Γ which lie in D and for which $M(\Gamma)$ and $M\left(\Gamma^{\prime}\right)$ are not simultaneously equal to 0 or ∞.
1.6. Coefficients of quasiconformality. Suppose that D is a domain in R^{3} which is homeomorphic to the unit ball B^{3}. We set

$$
\begin{equation*}
K_{I}(D)=\inf _{f} K_{I}(f), \quad K_{0}(D)=\inf _{f} K_{0}(f), \quad K(D)=\inf _{f} K(f), \tag{1.12}
\end{equation*}
$$

where the infima are taken over all homeomorphisms f of D onto B^{3}. We call these three numbers $K_{I}(D), K_{0}(D)$, and $K(D)$ the inner, outer, and total coefficients of quasiconformality of D. From (1.10) we obtain

$$
\begin{equation*}
K_{I}(D) \leqslant K_{0}(D)^{2}, \quad K_{0}(D) \leqslant K_{I}(D)^{2}, \tag{1.13}
\end{equation*}
$$

while from (1.8) and (1.10) it follows that

$$
\begin{equation*}
\max \left(K_{I}(D), K_{0}(D)\right) \leqslant K(D) \leqslant \min \left(K_{I}(D), K_{0}(D)\right)^{2} \tag{1.14}
\end{equation*}
$$

Thus these three coefficients are simultaneously finite or infinite. In the former case we say that D is quasiconformally equivalent to a ball.
1.7. Summary of results. We can now formulate in a more precise manner the two problems with which our paper is concerned. First determine what kinds of domains D
are quasiconformally equivalent to a ball. Next given such a domain D, determine the coefficients $K_{I}(D), K_{0}(D)$, and $K(D)$. Needless to say, both of these problems are fairly difficult and we give only rather fragmentary contributions to the solution of each.

The aim of this paper is, therefore, to obtain bounds for the coefficients of certain domains. To obtain upper bounds for a given domain D, it is only necessary to construct a suitable homeomorphism f of D onto B^{3} and calculate the dilatations of f by means of Lemma 1.1. The problem of obtaining significant lower bounds is much more difficult, since one must find lower bounds for the various dilatations of all homeomorphisms f of D onto B^{3}. We do this by considering what happens to certain arc families under each homeomorphism f and then appealing to Lemma 1.2.

We begin in section 2 by giving a few general properties of the coefficients $K_{I}(D)$, $K_{0}(D)$, and $K(D)$. Next in section 3 we derive bounds for the moduli of some arc families. In section 4 we show that if D and D^{\prime} have sufficiently smooth boundaries, each quasiconformal mapping f of D onto D^{\prime} induces a homeomorphism f^{*} of ∂D onto ∂D^{\prime} which is quasiconformal with maximal dilatation

$$
\begin{equation*}
K\left(f^{*}\right) \leqslant \min \left(K_{I}(f), K_{0}(f)\right)^{2} . \tag{1.15}
\end{equation*}
$$

We use this sharp bound in sections 8 and 9 where we actually calculate the outer coefficients of an infinite circular cylinder and of a convex circular cone. In section 5 we obtain an upper bound for the coefficients of a certain class of starshaped domains; here the homeomorphism f may be chosen as a simple radial mapping. In section 6 we give asymptotically best possible lower bounds for the inner coefficient of another class of domains which are characterized by a certain separation property. Then in section 7 we calculate the inner coefficient of a convex dihedral wedge.

It is natural to assume that the values of the coefficients of a domain depend strongly upon how smooth the boundary of the domain is. In section 10 we study what can be said about the coefficients of D when ∂D contains a spire or a ridge. It turns out that the presence of a spire and the presence of a ridge have quite different effects on the coefficients, and that these effects depend also on whether the spire or the ridge is directed into or out of D. Finally in section 11 we prove that the space of all domains which are quasiconformally equivalent to a ball has a natural metric, and that this metric space is complete and nonseparable.
1.8. Definitions for quasiconformality. The terminology concerning quasiconformal mappings in space is rather confused. The class of K-quasiconformal mappings considered here is the same as the class studied by Gehring in [4], [5], and [6]. It also coincides with
the class of K^{2}-quasiconformal mappings studied by Väisälä in [17] and [18]. In particular, the numbers $K_{I}(f)^{2}$ and $K_{0}(f)^{2}$ were called the inner and outer dilatations of the homeomorphism f in [17].

According to Sabat [14], a homeomorphism f of D is K-quasiconformal if f is C^{1} and if $J>0$ and $L \leqslant K l$ everywhere in D. Such mappings are K-quasiconformal by our definition. In the other direction, if f is K-quasiconformal by our definition and if f is C^{1} with $J>0$ in D, then f is $K^{4 / 3}$-quasiconformal by Šabat's definition. The affine mapping

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(K^{4 / 3} x_{1}, K^{2 / 3} x_{2}, x_{3}\right)
$$

shows that the constant $K^{4 / 3}$ cannot be improved.

2. General properties of the coefficients of domains

2.1. Lower semicontinuity of the dilatations. We need the following result to establish the existence of extremal mappings and to obtain a similar continuity result for the coefficients of a domain.

Lemma 2.1. Suppose that $\left\{f_{n}\right\}$ is a sequence of homeomorphisms of domains $D_{n} \subset R^{3}$, that each compact subset of a domain $D \subset R^{3}$ is contained in all but a finite number of D_{n}, and that the f_{n} converge uniformly on each compact subset of D to a homeomorphism f of D. Then

$$
\begin{equation*}
K_{I}(f) \leqslant \liminf _{n \rightarrow \infty} K_{I}\left(f_{n}\right), \quad K_{0}(f) \leqslant \liminf _{n \rightarrow \infty} K_{0}\left(f_{n}\right), \tag{2.1}
\end{equation*}
$$

and similarly for the maximal dilatation $K(f)$.
Proof. Let R be a bounded ring with $\bar{R} \subset D$. Then $\bar{R} \subset D_{n}$ for $n \geqslant n_{0}(R)$. If R_{n}^{\prime} and R^{\prime} denote the images of R under f_{n} and f, then the hypotheses imply that each component of ∂R_{n}^{\prime} converges uniformly to the corresponding component of ∂R^{\prime}, in the sense of Lemma 6 of [4]. Hence $\bmod R_{n}^{\prime}$ converges to $\bmod R^{\prime}$ and we have

$$
\bmod R \leqslant \liminf _{n \rightarrow \infty}\left(K_{I}\left(f_{n}\right) \bmod R_{n}^{\prime}\right)=\bmod R^{\prime} \liminf _{n \rightarrow \infty} K_{I}\left(f_{n}\right) .
$$

Since this inequality holds for all such R, we obtain the first half of (2.1). The proof for the second half is similar, and (2.1) then implies the analogous inequality for $K(f)$.
2.2. Extremal mappings. We see next that there exist extremal quasiconformal mappings for each domain with finite coefficients.

Lemma 2.2. If D is a domain in R^{3} which is quasiconformally equivalent to a ball, then there exist extremal homeomorphisms f_{I}, f_{0}, f of D onto B^{3} for which

$$
\begin{equation*}
K_{I}\left(f_{I}\right)=K_{I}(D), \quad K_{0}\left(f_{0}\right)=K_{0}(D), \quad K(f)=K(D) . \tag{2.2}
\end{equation*}
$$

Proof. Fix K so that $K_{I}(D)<K<\infty$. Then we may choose a sequence of homeomorphisms $\left\{f_{n}\right\}$ of D onto B^{3} such that

$$
\begin{equation*}
K_{I}(D)=\lim _{n \rightarrow \infty} K_{I}\left(f_{n}\right) \tag{2.3}
\end{equation*}
$$

and such that $K_{I}\left(f_{n}\right) \leqslant K$ for all n. By composing f_{n} with a suitable Möbius transformation of B^{3} onto itself, we may further assume that $f_{n}(P)=P^{\prime}$, where P and P^{\prime} are fixed points in D and B^{3}, respectively. Now (1.10) implies that the f_{n} are all K^{2}-quasiconformal, and hence by Corollary 7 of [4] there exists a subsequence $\left\{f_{n_{k}}\right\}$ which converges to a homeomorphism f_{I} of D onto B^{3}, uniformly on compact subsets of D. Combining Lemma 2.1 with (2.3) yields

$$
K_{I}(D) \leqslant K_{I}\left(f_{I}\right) \leqslant \liminf _{k \rightarrow \infty} K_{I}\left(f_{n_{k}}\right)=K_{I}(D)
$$

and hence f_{I} satisfies the first part of (2.2). The proofs for the existence of f_{0} and f follow exactly the same lines.
2.3. Lower semicontinuity of the coefficients. Suppose that $\left\{D_{n}\right\}$ is a sequence of domains in R^{3} which contain a fixed point P. We define the kernel D at P of the sequence $\left\{D_{n}\right\}$ as follows [6].
(i) If there exists no fixed neighborhood U of P which is contained in all of the D_{n}, then D consists only of the point P.
(ii) If there exists a fixed neighborhood U of P which is contained in all of the D_{n}, then D is the unique domain with the following properties.
(a) $P \in D$.
(b) Each compact set $E \subset D$ lies in all but a finite number of D_{n}.
(c) If Δ is a domain satisfying (a) and (b), then $\Delta \subset D$.

Next the sequence $\left\{D_{n}\right\}$ is said to converge to its kernel D at P if for each subsequence $\left\{n_{k}\right\}$, the sequence of domains $\left\{D_{n_{k}}\right\}$ also has D as its kernel at P.

Using this notion of convergence, we obtain the following continuity property for the coefficients of a domain.

Theorem 2.1. Suppose that $\left\{D_{n}\right\}$ is a sequence of domains in R^{3} which contain the point P, that the D_{n} converge to their kernel D at P, and that $D \neq\{P\}, R^{3}$. Then

$$
\begin{equation*}
K_{I}(D) \leqslant \liminf _{n \rightarrow \infty} K_{I}\left(D_{n}\right), \quad K_{0}(D) \leqslant \liminf _{n \rightarrow \infty} K_{0}\left(D_{n}\right) \tag{2.4}
\end{equation*}
$$

and similarly for the coefficient $K(D)$.
Proof. We establish the first half of (2.4). For this let

$$
K=\liminf _{n \rightarrow \infty} K_{I}\left(D_{n}\right)
$$

We may assume that $K<\infty$, for otherwise there is nothing to prove. Next for each n, let f_{n} be one of the extremal homeomorphisms of D_{n} onto B^{3} for which $K_{I}\left(f_{n}\right)=K_{I}\left(D_{n}\right)$. By choosing a subsequence and relabeling, we may assume that

$$
K=\lim _{n \rightarrow \infty} K_{I}\left(f_{n}\right)
$$

and that $K_{I}\left(f_{n}\right) \leqslant K+1$ for all n. Furthermore, by composing the f_{n} with suitable Möbius transformations of B^{3} onto itself, we may assume that $f_{n}(P)=0$. Now the f_{n} are $(K+1)^{2}-$ quasiconformal, $D \subset R^{3}$, and D has a finite boundary point. Hence we may apply Theorem 3 of [6] to obtain a subsequence $\left\{f_{n_{k}}\right\}$ which converges to a homeomorphism f of D onto B^{3}, uniformly on each compact subset of D. Then with Lemma 2.1 we have

$$
K_{I}(D) \leqslant K_{I}(f) \leqslant \underset{k \rightarrow \infty}{\liminf } K_{I}\left(f_{n_{k}}\right)=K
$$

as desired. The proofs for $K_{0}(D)$ and $K(D)$ follow similarly.
The hypothesis that $D \neq R^{3}$ is essential. For if we let $D_{n}=B^{3}(P, n)$, then all coefficients of each D_{n} are equal to 1 . On the other hand, $D=R^{3}$ and hence all coefficients of D are infinite [9].
2.4. Range of the coefficients. The inequalities (1.13) and (1.14) imply that

$$
\begin{equation*}
K_{1}(D) \geqslant 1, \quad K_{0}(D) \geqslant 1, \quad K(D) \geqslant 1 \tag{2.5}
\end{equation*}
$$

for each domain $D \subset R^{3}$, and that there is simultaneously equality or inequality in (2.5). It then follows from Lemma 2.2 and Theorem 15 of [4] that the coefficients of a domain D are equal to 1 if and only if D is either a ball or a half space. Hence we see that

$$
K_{I}(D)>1, \quad K_{0}(D)>1, \quad K(D)>1
$$

for essentially all domains $D \subset R^{3}$.
2.5. Influence of the boundary. The main task in this paper is to obtain some significant lower bounds for the coefficients of certain domains; by significant lower bounds, we mean bounds which exceed l. Up to now, the only general result of this kind is the following one [18] which considers the topological nature of the boundary.

Theorem 2.2. If D is a domain in R^{3}, if D is locally connected at each point of its boundary ∂D, and if ∂D is not homeomorphic to S^{2}, then all the coefficients of D are infinite. $\left.{ }^{(}{ }^{1}\right)$
$\left.{ }^{(}{ }^{1}\right)$ A domain D is said to be locally connected at a boundary point if for each neighborhood U of the point there exists a second neighborhood V of the point such that each pair of points in $V \cap D$ can be joined by an arc $\gamma \subset U \cap D$.

It is obvious from Theorem 2.2 that the coefficients of a given domain depend strongly on the global nature of ∂D. We show now how one can obtain lower bounds for the coefficients by examining D in a neighborhood of a fixed finite boundary point.

We say that a domain $\Delta \subset R^{3}$ is raylike at a point Q if for each point $P, P \in \Delta$ if and only if $Q+t(P-Q) \in \Delta$ for $0<t<\infty$. That is, Δ is raylike at Q if each open ray from Q lies either in Δ or in $C(\Delta)$.

THEOREM 2.3. Suppose that D is a domain in R^{3}, that U is a neighborhood of $Q \in \partial D$, and that $D \cap U=\Delta \cap U$, where Δ is a domain that is raylike at Q. Then

$$
\begin{equation*}
K_{I}(D) \geqslant K_{I}(\Delta), \quad K_{0}(D) \geqslant K_{0}(\Delta), \quad K(D) \geqslant K(\Delta) \tag{2.6}
\end{equation*}
$$

Proof. We may assume without loss of generality that $Q=0$. Choose $a>0$ so that $B^{3}(a) \subset U$, and for each positive integer n let $D_{n}=\{x: x / n \in D\}$. If $x \in \Delta$ and $n>|x| / a$, then because Δ is raylike at the origin

$$
\begin{equation*}
\frac{x}{n} \in \Delta \cap U \subset D, \quad x \in D_{n} . \tag{2.7}
\end{equation*}
$$

Hence if we fix $P \in \Delta$ with $|P|<a$, we see that $P \in D_{n}$ for all n.
Now let D^{\prime} denote the kernel of the D_{n} at P. Arguing as in (2.7) it follows that each compact subset of Δ must lie in all but a finite number of D_{n}, and hence we see that $\Delta \subset D^{\prime}$. If $x \in D^{\prime}$, then $x \in D_{n}$ for $n>n_{0}$. Thus $n>n_{\mathbf{0}},|x| / a$ implies that

$$
\frac{x}{n} \in D \cap U \subset \Delta, \quad x \in \Delta
$$

since Δ is raylike at the origin. Thus $\Delta=D^{\prime}$, and repeating the above argument with a subsequence $\left\{n_{k}\right\}$, we conclude that the D_{n} converge to their kernel Δ at P. Finally since $0 \in \partial \Delta$, we can apply Theorem 2.1 to obtain

$$
K_{I}(\Delta) \leqslant \liminf _{n \rightarrow \infty} K_{I}\left(D_{n}\right)=K_{I}(D),
$$

and similarly for the two other coefficients.
2.6. An example. We conclude this section with an example which will motivate the separation property discussed in section 6. Let D be the domain

$$
D=\left\{x:\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}<\infty, \quad\left|x_{3}\right|<1\right\},
$$

let $\left\{b_{n}\right\}$ be any sequence of positive numbers which approach ∞, and for each n let D_{n} be the right circular cylinder

$$
D_{n}=\left\{x:\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}<b_{n}, \quad\left|x_{3}\right|<1\right\} .
$$

Then D satisfies the hypotheses of Theorem 2.2 and hence has infinite coefficients [18]. On the other hand, the D_{n} also converge to their kernel D at 0 , and since $D \neq R^{3}$, we see from Theorem 2.1 that

$$
\lim _{n \rightarrow \infty} K_{I}\left(D_{n}\right)=\lim _{n \rightarrow \infty} K_{0}\left(D_{n}\right)=\lim _{n \rightarrow \infty} K\left(D_{n}\right)=\infty .
$$

Thus the coefficients of a right circular cylinder approach ∞ as the ratio of its radius to height approaches ∞. We will give bounds in section 6 to show how fast the inner coefficient grows.

3. Estimates for the moduli of certain arc families

3.1. Spherical cap inequality. We begin with an inequality which is required later in the proof of a symmetry principle for the moduli of are families. (Cf. Lemma 1 in [4] and Theorem 3.6 in [17].)

Lemma 3.1. Suppose that S is a sphere of radius t, that D is an open half space, that $\Sigma=S \cap D$, and that ϱ is a non-negative Borel measurable function in S. Then each pair of points P and Q in $\bar{\Sigma}$ can be joined by a circular arc $\alpha \subset \Sigma$ for which

$$
\begin{equation*}
\left(\int_{\alpha} \varrho d s\right)^{3} \leqslant A t \iint_{\Sigma} \varrho^{3} d \sigma \tag{3.1}
\end{equation*}
$$

where A is the absolute constant $16 q^{2} / \pi$ and

$$
\begin{equation*}
q=q\left(\frac{\pi}{2}\right)=\int_{0}^{\frac{\pi}{2}}(\sin u)^{-\frac{1}{2}} d u . \tag{3.2}
\end{equation*}
$$

Proof. Since the inequality (3.1) is invariant under similarity transformations of R^{3} onto itself, we may assume that S is the unit sphere S^{2} and that P is the point $(0,0,1)$. Let f map S stereographically onto the extended complex plane Z. Then P corresponds to $z=\infty$ and Q to some point $z=a \neq \infty$. Moreover, if $S-\Sigma$ is nonempty, this set corresponds to a closed disk or half plane E which does not contain a or ∞ as interior points. Since E is convex, we can find an angle β such that for $\beta<\theta<\beta+\pi$, the ray

$$
z=a+u e^{i \theta}, \quad 0<u<\infty,
$$

does not meet E. Hence this ray corresponds to a circular arc $\alpha(\theta)$ which joins P and Q in Σ. For each such are we see that

$$
\int_{\alpha(\theta)} \varrho(x) d s=2 \int_{0}^{\infty} \varrho_{1}(z) \frac{d u}{1+|z|^{2}}, \quad z=a+u e^{i \theta}, \quad \varrho_{1}=\varrho \circ f^{-1}
$$

and thus we may choose a particular circular arc α joining P and Q in Σ for which

$$
\begin{equation*}
\int_{\alpha} \varrho(x) d s \leqslant \frac{2}{\pi} \iint_{\Omega} \frac{\varrho_{1}(z)}{|z-a|} \frac{d \sigma}{1+|z|^{2}}, \tag{3.3}
\end{equation*}
$$

where Ω is the half plane $\beta<\arg (z-a)<\beta+\pi$. Now Hölder's inequality implies that the cube of the right-hand side of (3.3) is majorized by

$$
\frac{8}{\pi^{3}}\left(\iint_{\Omega}|z-a|^{-\frac{3}{2}}\left(1+|z|^{2}\right)^{-\frac{1}{2}} d \sigma\right)^{2}\left(\iint_{\Omega} \varrho_{1}(z)^{3}\left(1+|z|^{2}\right)^{-2} d \sigma\right) .
$$

If we appeal to the argument in the proof of Lemma 1 in [4] or to Theorem 7.2 in [12], we obtain
$\iint_{\Omega}|z-a|^{-\frac{3}{2}}\left(1+|z|^{2}\right)^{-\frac{1}{2}} d \sigma \leqslant \iint_{Z}|z-a|^{-\frac{2}{2}}\left(1+|z|^{2}\right)^{-\frac{1}{2}} d \sigma \leqslant \iint_{Z}|z|^{-\frac{3}{2}}\left(1+|z|^{2}\right)^{-\frac{1}{2}} d \sigma=2^{\frac{3}{2}} \pi q$.
Finally we see that

$$
4 \iint_{\Omega} \varrho_{1}(z)^{3}\left(1+|z|^{2}\right)^{-2} d \sigma \leqslant \iint_{\Sigma} \varrho(x)^{3} d \sigma
$$

and if we combine the above inequalities, we obtain (3.1) as desired.
3.2. Suppose that D is an open half space and that E_{0} and E_{1} are disjoint continua in $\bar{D} .\left({ }^{(1)}\right.$ Next for small $t>0$ let Γ and $\Gamma(t)$ be the families of arcs which join E_{0} to E_{1} and $E_{0}(t)$ to $E_{1}(t)$ in D, respectively, where $E_{i}(t)$ denotes the closed set of points which lie within distance t of E_{i} for $i=0,1$.

The following result yields an important relation between the families of functions $F(\Gamma)$ and $F(\Gamma(t))$. (Cf. Lemma 2 in [3] and Lemma 2 in [19].)

Lemma 3.2. If $\varrho \in F(\Gamma)$ and if ϱ is L^{3}-integrable, then for each $a>1$ there exists $a t>0$ such that $a_{\varrho} \in F(\Gamma(t))$.

Proof. Choose $b>0$ so that $a(1-2 b)=1$, let $c>0$ denote the minimum of the diameters of E_{0} and E_{1}, and let $d>0$ denote the distance between E_{0} and E_{1}. Next for $P \in \bar{D}$ and $t>0$ let $\Sigma(P, t)=S^{2}(P, t) \cap D$. Since ϱ is L^{3}-integrable, we can choose $t, 0<t<c / 4, d / 6$, such that

$$
\iiint_{B^{3}(P, 2 t)} \varrho^{3} d \omega \leqslant \frac{\log 2}{A} b^{3}
$$

for all $P \in \bar{D}$, where A is the constant of Lemma 3.1. This means that for each $P \in \bar{D}$ we can find a spherical cap $\Sigma(P)=\Sigma(P, u)$ such that $t<u=u(P)<2 t$ and

$$
\begin{equation*}
A u \iint_{\Sigma(P)} \varrho^{3} d \sigma \leqslant b^{3} \tag{3.4}
\end{equation*}
$$

${ }^{(1)}$ By a continuum we mean a compact connected set in $\bar{R}^{\mathbf{3}}$ which contains more than one point.

To complete the proof of Lemma 3.2 we must show that

$$
\begin{equation*}
\int_{\gamma} \varrho d s \geqslant 1-2 b \tag{3.5}
\end{equation*}
$$

for all $\gamma \in \Gamma(t)$. Choose $\gamma \in \Gamma(t)$. There are two cases to consider.
Suppose first that there exist finite points $P_{i} \in \bar{\gamma} \cap E_{i}(t)$ for $i=0,1$. Then since $P_{i} \in \bar{\gamma}$, since the diameter of γ exceeds that of $\Sigma\left(P_{i}\right)$, and since γ is a connected set in D, γ must meet $\Sigma\left(P_{i}\right)$ for $i=0,1$. Next because E_{i} is a connected set in \bar{D}, a similar argument shows that E_{i} must meet $\bar{\Sigma}\left(P_{i}\right)$ for $i=0,1$. We conclude from Lemma 3.1 and (3.4) that for $i=0,1$ there exists a circular arc α_{i} which joins γ and E_{i} in $\Sigma\left(P_{i}\right) \subset D$ and for which

$$
\begin{equation*}
\int_{\alpha_{i}} \varrho d s \leqslant b \tag{3.6}
\end{equation*}
$$

It is then easy to show that $\bar{\alpha}_{0} \cup \bar{\alpha}_{1} \cup \gamma$ contains an arc β which joins E_{0} to E_{1} in D and hence

$$
\int_{\gamma} \varrho d s \geqslant \int_{\beta} \varrho d s-\int_{\alpha_{0}} \varrho d s-\int_{\alpha_{1}} \varrho d s \geqslant 1-2 b .
$$

Suppose next that one of the sets, say $\bar{\gamma} \cap E_{1}(t)$, contains only the point ∞. Then $\bar{\gamma} \cap E_{0}(t)$ contains a finite point P_{0}, and arguing as above, we can find a circular arc α_{0} which joins γ to E_{0} in $\Sigma\left(P_{0}\right) \subset D$ and for which (3.6) holds with $i=0$. Since $\infty \in E_{1}, \bar{\alpha}_{0} \cup \gamma$ contains an are β which joins E_{0} to E_{1} in D and we obtain

$$
\int_{\gamma} \varrho d s \geqslant \int_{\beta} \varrho d s-\int_{\alpha_{0}} \varrho d s \geqslant 1-b>1-2 b .
$$

Thus the proof for Lemma 3.2 is complete.
3.3. Remark. Now suppose that D is an arbitrary open set and that E_{0} and E_{1} are bounded continua in D which lie at a positive distance from each other. Then the argument given above, or Lemma 2 of [19], shows that Lemma 3.2 is again valid if for small $t>0$, we let Γ and $\Gamma(t)$ denote the families of arcs which join E_{0} to E_{1} and $E_{0}(t)$ to $E_{1}(t)$ in D, respectively.
3.4. Symmetry principle. We next use Lemma 3.2 to establish the following symmetry principle for the moduli of are families.

Lemma 3.3. Suppose that D is an open half space, that E_{0} and E_{1} are disjoint continua in \bar{D}, and that \tilde{E}_{0} and \tilde{E}_{1} are the symmetric images of E_{0} and E_{1} in the plane ∂D. If Γ is the family of arcs which join E_{0} and E_{1} in D and Γ_{1} the family of arcs which join $E_{0} \cup \widetilde{E}_{0}$ and $E_{1} \cup \widetilde{E}_{1}$ in R^{3}, then

$$
\begin{equation*}
M(\Gamma)=\frac{1}{2} M\left(\Gamma_{1}\right) \tag{3.7}
\end{equation*}
$$

Proof. We may assume, for convenience of notation, that D is the half space $x_{3}>0$. If we let $\tilde{\Gamma}$ denote the family of arcs which join \widetilde{E}_{0} and \widetilde{E}_{1} in \tilde{D}, the half space $x_{3}<0$, then Γ and $\tilde{\Gamma}$ are separate families and $\Gamma \cup \tilde{\Gamma} \subset \Gamma_{1}$. Obviously $M(\Gamma)=M(\tilde{\Gamma})$ and hence

$$
2 M(\Gamma)=M(\Gamma)+M(\bar{\Gamma})=M(\Gamma \cup \tilde{\Gamma}) \leqslant M\left(\Gamma_{1}\right)
$$

by Lemma 2.1 of [17].
Next let $\bar{\Gamma}$ denote the family of arcs which join E_{0} and E_{1} in \bar{D}, let f be the continuous mapping of R^{3} into \bar{D} given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2},\left|x_{3}\right|\right)
$$

and let $\varrho \in F(\bar{\Gamma})$. Set $\varrho_{1}=\varrho \circ f$ and choose $\gamma_{1} \in \Gamma_{1}$. Then $f\left[\gamma_{1}\right]$, the image of γ_{1} under f, contains an are $\gamma \in \bar{\Gamma}$ and hence

$$
\int_{\gamma_{1}} \varrho_{1}(x) d s=\int_{\gamma_{1}} \varrho(f(x)) d \Lambda \geqslant \int_{f\left(\gamma_{1}\right]} \varrho(x) d \Lambda \geqslant \int_{\gamma} \varrho(x) d s \geqslant 1 .
$$

Thus $\varrho_{1} \in F\left(\Gamma_{1}\right)$,

$$
M\left(\Gamma_{1}\right) \leqslant \iiint_{R^{3}} \varrho_{1}^{3} d \omega=2 \iiint_{\bar{D}} \varrho^{3} d \omega \leqslant 2 \iiint_{R^{3}} \varrho^{3} d \omega,
$$

and we conclude that $M\left(\Gamma_{1}\right) \leqslant 2 M(\bar{\Gamma})$.
To complete the proof of (3.7) we must show that

$$
\begin{equation*}
M(\overline{\mathrm{~T}}) \leqslant M\left(\mathrm{I}^{\prime}\right) \tag{3.8}
\end{equation*}
$$

Now the fact that E_{0} and E_{1} are disjoint implies that $M(\Gamma)<\infty$. Fix $a>1$ and choose $\varrho \in F(\Gamma)$ so that ϱ is L^{3}-integrable. By Lemma 3.2 we can choose $t>0$ so that $a_{\varrho} \in F(\Gamma(t))$. Set $\varrho_{1}(x)=a \varrho\left(x+t e_{3}\right)$, let $\gamma_{1} \in \bar{\Gamma}$, and let γ be the arc γ_{1} translated through the vector te e_{3}. Then $\gamma \in \Gamma(t)$ and we have

$$
\int_{\gamma_{1}} \varrho_{1}(x) d s=\int_{\gamma} a \varrho(x) d s \geqslant 1 .
$$

Hence $\varrho_{1} \in F(\bar{\Gamma})$,

$$
M(\bar{\Gamma}) \leqslant \iiint_{R^{3}} \varrho_{1}^{3} d \omega=a^{3} \iiint_{R^{3}} \varrho^{3} d \omega,
$$

and taking the infimum over all such ϱ yields

$$
M(\bar{\Gamma}) \leqslant a^{3} M(\Gamma)
$$

Finally if we let $a \rightarrow 1$, we obtain (3.8) as desired.
3.5. Continuity of moduli. The following continuity property for the moduli of are families is an easy consequence of the preceding arguments. (Cf. Lemma 6 in [4].)

Lemma 3.4. Suppose that D is an open set, that E_{0} and E_{1} are disjoint bounded continua in D, and that for small $t>0, \Gamma$ and $\Gamma(t)$ are the families of arcs which join E_{0} to E_{1} and $E_{0}(t)$ to $E_{1}(t)$ in D, respectively. Then

$$
\begin{equation*}
M(\Gamma)=\lim _{t \rightarrow 0} M(\Gamma(t)) \tag{3.9}
\end{equation*}
$$

Proof. If $0<t_{1}<t_{2}$, then $\Gamma \subset \Gamma\left(t_{1}\right) \subset \Gamma\left(t_{2}\right)$ and hence

$$
M(\Gamma) \leqslant M\left(\Gamma\left(t_{1}\right)\right) \leqslant M\left(\Gamma\left(t_{2}\right)\right)
$$

Thus the limit in (3.9) exists and

$$
\begin{equation*}
M(\Gamma) \leqslant \lim _{t \rightarrow 0} M(\Gamma(t)) \tag{3.10}
\end{equation*}
$$

Since E_{0} and E_{1} are disjoint continua, $0<M(\Gamma)<\infty$. Fix $a>1$ and choose $\varrho \in F(\Gamma)$ such that

$$
\iiint_{R^{3}} \varrho^{3} d \omega \leqslant a M(\Gamma)
$$

By Lemma 3.2 and the remark in section 3.3, we can choose $t>0$ so that $a \varrho \in F(\Gamma(t))$. Thus

$$
M(\Gamma(t)) \leqslant a^{3} \iiint_{R^{3}} \varrho^{3} d \omega \leqslant a^{4} M(\Gamma)
$$

and we obtain

$$
\lim _{t \rightarrow 0} M(\Gamma(t)) \leqslant a^{4} M(\Gamma)
$$

If we let $a \rightarrow 1$, then the resulting inequality and (3.10) imply (3.9), and the proof is complete.
3.6. Extremal problem. Now suppose that D is the half space $x_{3}>0$, that E_{0} and E_{1} are continua in \bar{D}, and that $P_{0}, 0 \in E_{0}$ and $P_{1}, \infty \in E_{1}$, where $P_{0} \neq 0$ and $P_{1} \neq \infty$. We want to find a sharp lower bound for $M(\Gamma)$, where Γ is the family of ares which join E_{0} and E_{1} in D.

For this let E_{0}^{*} denote the segment $-\left|P_{0}\right| \leqslant x_{1} \leqslant 0, x_{2}=x_{3}=0$ and E_{1}^{*} the ray $\left|P_{1}\right| \leqslant$ $x_{1} \leqslant \infty, x_{2}=x_{3}=0$, and let Γ^{*} denote the family of arcs which join E_{0}^{*} and E_{1}^{*} in D. We shall show that the family Γ^{*} has the following extremal property.

Theorem 3.1. $M(\Gamma) \geqslant M\left(\Gamma^{*}\right)$.
The proof of Theorem 3.1 depends upon an analogous extremal property of the Teichmüller ring in space. In order to make use of this property we must first establish the following result.

Lemma 3.5. If E_{0} and E_{1} are disjoint continua, then there exist a domain D and disjoint continua C_{0} and C_{1} such that C_{0} and C_{1} are the components of $C(D)$ and $\partial C_{i} \subset E_{i} \subset C_{i}$ for $i=0,1$.

Proof. Choose $Q_{0} \in E_{0}$ and $Q_{1} \in E_{1}$ so that $\left|Q_{0}-Q_{1}\right|$ is equal to the distance between E_{0} and E_{1}, let $Q=\frac{1}{2}\left(Q_{0}+Q_{1}\right)$, and let D be the component of $C\left(E_{0} \cup E_{1}\right)$ which contains Q. Then each component Δ of $C(\bar{D})$ is a domain with a connected boundary. (See p. 123 and p. 137 in [11].) Next since $E_{0} \cap E_{1}=\varnothing$ and since

$$
\partial \Delta \subset \partial C(\bar{D}) \subset \partial D \subset E_{0} \cup E_{1}
$$

either $\partial \Delta \subset E_{0}$ or $\partial \Delta \subset E_{1}$. Now let

$$
C_{i}=(\cup \bar{\Delta}) \cup E_{i}, \quad i=0,1
$$

where for each i the union is taken over all components Δ of $C(\bar{D})$ for which $\partial \Delta \subset E_{i}$. Then it is not difficult to see that C_{0} and C_{1} are continua and that $C(D)=C_{0} \cup C_{1}$. Since $\partial D \subset E_{0} \cup E_{1}$ and $Q_{i} \in \partial D \cap E_{i}$ for $i=0,1, \partial D$ is not connected and hence C_{0} and C_{1} are the components of $C(D)$. Finally we see that

$$
\partial C_{i} \subset \partial D \cap C_{i} \subset E_{i} \subset C_{i}
$$

for $i=0,1$, and the proof of Lemma 3.5 is complete.
Proof of Theorem 3.1. We first observe that $M(\Gamma)=\infty$ whenever $E_{0} \cap E_{1} \neq \varnothing$. (Cf. p. 31 in [17].) For fix $P \in E_{0} \cap E_{1}$. Then since E_{0} and E_{1} are nondegenerate, we can find $a>0$ such that the closure of $\Sigma(t)=S^{2}(P, t) \cap D$ meets E_{0} and E_{1} for $0<t<a$. Choose $\varrho \in F(\Gamma)$. Then

$$
\int_{\alpha} \varrho d s \geqslant 1
$$

for each circular arc α which joins E_{0} and E_{1} in $\Sigma(t)$, and Lemma 3.1 implies that

$$
\iiint_{R^{3}} \varrho^{3} d \omega \geqslant \int_{0}^{a}\left(\iint_{\Sigma(t)} \varrho^{3} d \sigma\right) d t \geqslant \frac{1}{A} \int_{0}^{a} \frac{d t}{t}=\infty
$$

Hence $M(\Gamma)=\infty$ and the desired inequality follows trivially.
Suppose now that E_{0} and E_{1} are disjoint, let \tilde{E}_{0} and \widetilde{E}_{1} be the symmetric images of E_{0} and E_{1} in ∂D, and let Γ_{1} be the family of ares which join $E_{0} \cup \widetilde{E}_{0}$ to $E_{1} \cup \widetilde{E}_{1}$ in R^{3}. Lemma 3.5 implies there exists a ring R which has C_{0} and C_{1} as the components of its complement, where $\partial C_{i} \subset E_{i} \subset C_{i}$ for $i=\mathbf{0}, \mathbf{1}$. Hence the family of ares which join the components of ∂R in R is a subfamily of Γ_{1}, and we obtain

$$
M(\Gamma)=\frac{1}{2} M\left(\Gamma_{1}\right) \geqslant \frac{1}{2} \operatorname{cap} R
$$

from Lemma 3.3 and (1.6). Since $P_{0}, 0 \in C_{0}$ and $P_{1}, \infty \in C_{1}$, we can now apply Theorem 1 of [2] to conclude that

$$
\operatorname{cap} R \geqslant \operatorname{cap} R^{*},
$$

where R^{*} is the ring bounded by the continua E_{0}^{*} and E_{1}^{*}. Because these sets are symmetric in ∂D, it follows that

$$
\begin{equation*}
M\left(\Gamma^{*}\right)=\frac{1}{2} M\left(\Gamma_{1}^{*}\right)=\frac{1}{2} \operatorname{cap} R^{*} \tag{3.11}
\end{equation*}
$$

where Γ_{1}^{*} is the family of arcs joining E_{0}^{*} to E_{1}^{*} in R^{3}, and we obtain $M(\Gamma) \geqslant M\left(\Gamma^{*}\right)$.
3.7. Some applications. For each $u>0$ we let $\psi(u)$ denote the modulus of the family of ares which join the segment $-1 \leqslant x_{1} \leqslant 0, x_{2}=x_{3}=0$ to the ray $u \leqslant x_{1} \leqslant \infty, x_{2}=x_{3}=0$ in the half space $x_{3}>0$. From (3.11) it follows that

$$
\begin{equation*}
\psi(u)=2 \pi(\log \Psi(u))^{-2} \tag{3.12}
\end{equation*}
$$

where $\Psi^{P}(u)$ is the function described in [2]. If we combine Lemmas 6 and 8 in [2] with the Corollary in [3] and with the estimates due to Hersch [7] and Teichmüller [16] for the modulus of the plane Teichmüller ring, we obtain

$$
\begin{equation*}
2 \pi\left(\log \lambda^{2}(u+1)\right)^{-2} \leqslant \psi(u) \leqslant 2 \pi(\log (16 u+1))^{-2} \tag{3.13}
\end{equation*}
$$

where λ is an absolute constant, $4 \leqslant \lambda \leqslant 12.4 \ldots$.
Theorem 3.1 now yields the following lower bounds for the moduli of three different families of arcs in D, the half space $x_{3}>0$.

Corollary 3.1. Suppose that E_{0} and E_{1} are continua in \bar{D}, that both E_{0} and E_{1} meet $S^{2}(a)$ where $a>0$, and that $0 \in E_{0}$ and $\infty \in E_{1}$. If Γ is the family of arcs which join E_{0} and E_{1} in D, then

$$
M(\Gamma) \geqslant \psi(1) .
$$

Corollary 3.2. Suppose that E_{0} and E_{1} are continua in \bar{D}, that E_{0} separates 0 and ∞ in ∂D, and that $0, \infty \in E_{1}$. If Γ is the family of arcs which join E_{0} and E_{1} in D, then

$$
M(\Gamma) \geqslant \psi\left(\frac{1}{2}\right) .
$$

Corollary 3.3. Suppose that $P_{1}, P_{2}, P_{3}, P_{4}$ are distinct points in ∂D and that E_{1}, E_{2}, E_{3}, E_{4} are continua in \bar{D} which join P_{1} to P_{2}, P_{2} to P_{3}, P_{3} to P_{4}, P_{4} to P_{1}, respectively. If Γ_{1} and Γ_{2} are the families of arcs which join E_{1} to E_{3} and E_{2} to E_{4} in D, respectively, then

$$
M\left(\Gamma_{1}\right) \geqslant \psi(1) \quad \text { or } \quad M\left(\Gamma_{2}\right) \geqslant \psi(1) .
$$

Proof of Corollary 3.1. By hypothesis there exist points $P_{0} \in S^{2}(a) \cap E_{0}$ and $P_{1} \in S^{2}(a) \cap E_{1}$, and hence by Theorem 3.1

$$
M(\Gamma) \geqslant \psi\left(\frac{\left|P_{1}\right|}{\left|P_{0}\right|}\right)=\psi(1)
$$

2-652932 Acta mathematica 114. Imprimé le 9 août 1965.

Proof of Corollary 3.2. Since E_{0} separates 0 and ∞ in ∂D, we can find a pair of points $P_{0}, P_{1} \in E_{0} \cap \partial D$ such that $0<\left|P_{0}\right| \leqslant \frac{1}{2}\left|P_{1}-P_{0}\right|$. For example, we may take P_{0} as one of the points of $E_{0} \cap \partial D$ nearest to 0 and then let P_{1} be any point in the intersection of E_{0} with the ray from 0 through $-P_{0}$. Then after the change of variables $y=x-P_{0}$, Theorem 3.1 yields

$$
M(\Gamma) \geqslant \psi\left(\frac{\left|P_{0}\right|}{\left|P_{1}-P_{0}\right|}\right) \geqslant \psi\left(\frac{1}{2}\right),
$$

since $\psi(u)$ is nonincreasing in u.
Proof of Corollary 3.3. By performing a preliminary Möbius transformation of D onto itself, we may assume, without loss of generality, that $P_{2}=0$ and $P_{4}=\infty$. Then since $P_{1}, 0 \in E_{1}$ and $P_{3}, \infty \in E_{3}$, we have

$$
M\left(\Gamma_{1}\right) \geqslant \psi\left(\frac{\left|P_{3}\right|}{\left|P_{1}\right|}\right)
$$

Next since $P_{3}, 0 \in E_{2}$ and $P_{1}, \infty \in E_{4}$,

$$
M\left(\Gamma_{2}\right) \geqslant \psi\left(\frac{\left|P_{1}\right|}{\left|P_{3}\right|}\right) .
$$

Thus $M\left(\Gamma_{1}\right) \geqslant \psi(1)$ if $\left|P_{1}\right| \geqslant\left|P_{3}\right|$ and $M\left(\Gamma_{2}\right) \geqslant \psi(1)$ if $\left|P_{1}\right| \leqslant\left|P_{3}\right|$.
3.8. Remarks. The bounds in Corollaries 3.1 and 3.3 are sharp. For example, we have $M\left(\Gamma_{1}\right)=M\left(\Gamma_{2}\right)=\psi(1)$ in Corollary 3.3 if E_{i} denotes the arc of the circle $x_{1}^{2}+x_{2}^{2}=1, x_{3}=0$ which is contained in the closed i-th quadrant of $x_{3}=0, i=1,2,3,4$.

On the other hand, we are sure that the bound in Corollary 3.2 is not best possible, and we conjecture that under the hypotheses of Corollary 3.2,

$$
\begin{equation*}
M(\Gamma) \geqslant\left(\frac{\pi}{q}\right)^{2}=1.43 \ldots \tag{3.14}
\end{equation*}
$$

where q is as in (3.2). There is equality in (3.14) when E_{0} is the circle $x_{1}^{2}+x_{2}^{2}=1, x_{3}=0$ and E_{1} the ray $x_{1}=x_{2}=0,0 \leqslant x_{3} \leqslant \infty$. From the second half of (3.13) we obtain

$$
\psi\left(\frac{1}{2}\right) \leqslant 2 \pi(\log 9)^{-2}=1.30 \ldots
$$

and hence the conjectured lower bound in (3.14) is greater than $\psi\left(\frac{1}{2}\right)$.
3.9. We consider next the asymptotic behaviour of a particular family of arcs. We use this result to establish the bound given in (1.15) for the boundary mapping f^{*} induced by a quasiconformal mapping f.

Lemma 3.6. For each $a>0$, let $p(a)$ denote the modulus of the family of arcs which join the segments $x_{1}= \pm a,\left|x_{2}\right| \leqslant 1, x_{3}=0$ in R^{3}. Then ap (a) is nondecreasing in a and

$$
\begin{equation*}
\lim _{a \rightarrow 0} a p(a)=A \tag{3.15}
\end{equation*}
$$

where $0<A<\infty$.
Proof. Fix $a>0$ and let Γ be the family of arcs which join the above segments in R^{3}. Then for $a^{\prime}>a$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{a^{\prime}}{a} x_{1}, x_{2}, \frac{a^{\prime}}{a} x_{3}\right)
$$

is a homeomorphism of R^{3} onto itself and we obtain

$$
p(a)=M(\Gamma) \leqslant K_{0}(f)^{2} M\left(\Gamma^{\prime}\right)=\frac{a^{\prime}}{a} p\left(a^{\prime}\right)
$$

Thus $a p(a)$ is nondecreasing in a and the limit in (3.15) exists with $A \leqslant p(1)<\infty$. To show that $A>0$, choose $\varrho \in F(\Gamma)$. Then Theorem 3.5 in [17] implies that

$$
\iiint_{R^{z}} \varrho^{3} d \omega \geqslant \int_{-1}^{1}\left(\iint_{x_{2}=u} \varrho^{3} d \sigma\right) d u>\int_{-1}^{1} \frac{1}{21 a} d u=\frac{2}{21 a} .
$$

Hence $a p(a)>2 / 21$ and we conclude that $A \geqslant 2 / 21$.
3.10. Cylinder and cone inequalities. We conclude this section by obtaining sharp lower bounds for the moduli of two more families of ares. These estimates will be used in sections 8 and 9 when we calculate the outer coefficients of an infinite cylinder and of a convex cone.

Lemma 3.7. Suppose that $a<b$, that C is the finite part of the cylinder $x_{1}^{2}+x_{2}^{2}<1$ which is bounded by the planes $x_{3}=a$ and $x_{3}=b$, and that E is a connected set in C which joins the bases of C. If Γ is the family of arcs in C which join E to the lateral surface of C, then

$$
\begin{equation*}
M(\Gamma) \geqslant \frac{1}{2} \pi(b-a) . \tag{3.16}
\end{equation*}
$$

There is equality in (3.16) if E is the segment $x_{1}=x_{2}=0, a<x_{3}<b$.
Proof. Choose $\varrho \in F(\Gamma)$. For $a<u<b$, the plane $x_{3}=u$ meets both E and the lateral surface of C, and we can apply Theorem 3.4 of [17] to obtain

$$
\iiint_{R^{3}} \varrho^{3} d \omega \geqslant \int_{a}^{b}\left(\iint_{x_{3}=u} \varrho^{3} d \sigma\right) d u \geqslant \int_{a}^{b} \frac{1}{2} \pi d u=\frac{1}{2} \pi(b-a) .
$$

This yields (3.16) as desired.

Next suppose that E is the segment $x_{1}=x_{2}=0, a<x_{3}<b$, and set $\varrho(x)=\frac{1}{2} r^{-\frac{1}{2}}$ in C and $\varrho(x)=0$ in $C(C)$, where r denotes the distance from x to the x_{3}-axis. Then $\varrho \in F(\Gamma)$ and

$$
\iiint_{R^{3}} \varrho^{3} d \omega=\frac{1}{2} \pi(b-a)
$$

Hence in this case there is equality in (3.16).
Finally we have the following cone analogue of Lemma 3.7.
Lemma 3.8. Suppose that $0<\alpha \leqslant \frac{1}{2} \pi$ and $0<a<b$, that C is the part of the cone $x_{3}>(\cot \alpha)\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}$ which is bounded by the spheres $S^{2}(a)$ and $S^{2}(b)$, and that E is a connected set in C which joins the spherical bases of C. If Γ is the family of arcs in C which join E to the lateral surface of C, then
where

$$
\begin{align*}
& M(\Gamma) \geqslant 2 \pi q(\alpha)^{-2} \log \frac{b}{a} \tag{3.17}\\
& q(\alpha)=\int_{0}^{\alpha}(\sin u)^{-\frac{t}{2}} d u \tag{3.18}
\end{align*}
$$

There is equality in (3.17) if E is the segment $x_{1}=x_{2}=0, a<x_{3}<b$.
Proof. Choose $\varrho \in F(\Gamma)$ and for each $t>0$ let $\Sigma(t)=S^{2}(t) \cap C$. We first show that

$$
\begin{equation*}
\iint_{\Sigma(t)} \varrho^{3} d \sigma \geqslant \frac{2 \pi}{t} q(\alpha)^{-2} \tag{3.19}
\end{equation*}
$$

for $a<t<b$.
For this fix $t, a<t<b$. Since E joins $S^{2}(a)$ and $S^{2}(b)$ in C, we can find a point $Q \in E \cap \Sigma(t)$. Next let T be any fixed plane containing 0 and Q, let $T(\theta)$ denote the plane through 0 and Q which meets T at an angle θ, and for $P \in \Sigma(t)$ let $\varphi=\varphi(P)$ denote the angle formed by the segments $0 P$ and $0 Q, 0 \leqslant \varphi<2 \alpha$. For each $\theta, \beta(\theta)=T(\theta) \cap \Sigma(t)$ contains a pair of circular ares which join E to the lateral surface of C. Thus

$$
\int_{\beta(\theta)} \varrho d s \geqslant 2,
$$

and with Hölder's inequality we obtain

$$
\left(\int_{\beta(\theta)} \varrho^{3} \sin \varphi d s\right)\left(\int_{\beta(\theta)}(\sin \varphi)^{-\frac{1}{2}} d s\right)^{2} \geqslant 8 .
$$

Since the length of $\beta(\theta)$ does not exceed $2 \alpha t \leqslant \pi t$, it is easy to see that

$$
\int_{\beta(\theta)}(\sin \varphi)^{-\frac{1}{2}} d s=t \int_{\beta(\theta)}(\sin \varphi)^{-\frac{1}{2}}|d \varphi| \leqslant 2 t q(\alpha) .
$$

Thus we have

$$
\int_{\beta(\theta)} \varrho^{3} t^{2} \sin \varphi|d \varphi| \geqslant \frac{2}{t} q(\alpha)^{-2}
$$

and we obtain (3.19) by integrating both sides of this inequality over $0 \leqslant \theta \leqslant \pi$.
Next if we integrate both sides of (3.19) over the interval $a<t<b$, we get

$$
\iiint_{R^{3}} e^{3} d \omega \geqslant \int_{a}^{b}\left(\iint_{\Sigma(t)} e^{3} d \sigma\right) d t \geqslant 2 \pi q(\alpha)^{-2} \log \frac{b}{a}
$$

and hence (3.17) follows.
Finally suppose that E is the segment $x_{1}=x_{2}=0, a<x_{3}<b$, and let

$$
\varrho(x)=t^{-1}(\sin \varphi)^{-\frac{1}{2}} q(\alpha)^{-1}
$$

in C and $\varrho(x)=0$ in $C(C)$, where $t=|x|$ and φ is the acute angle between the segment $0 x$ and the positive x_{3}-axis. Then $\varrho \in F(\Gamma)$ and

$$
\iiint_{R^{s}} \varrho^{3} d \omega=2 \pi q(\alpha)^{-2} \log \frac{b}{a}
$$

Hence in this case there is equality in (3.17).

4. Boundary correspondence induced by quasiconformal mappings

4.1. Introduction. If f is a quasiconformal mapping of D onto a half space D^{\prime} and if D is locally connected at each point of its boundary, then f induces a homeomorphism f^{*} of ∂D onto ∂D^{\prime} by Theorem 1 in [18]. Moreover, by Theorem 10 in [4], this boundary mapping is a two-dimensional quasiconformal mapping whenever ∂D is itself a plane.

We show in this section that this result remains valid when ∂D is, for example, a smooth free surface, and we obtain a sharp bound for the maximal dilatation of the boundary mapping f^{*} in terms of the inner and outer dilatations of f.
4.2. Quasi-isometries. We introduce the notion of a quasi-isometry in order to describe a certain class of surfaces. Suppose that f is a homeomorphism of a domain $D \subset R^{3}$. We say that f is a C-isometry, $1 \leqslant C<\infty$, if

$$
\begin{equation*}
C^{-1}\left|P_{1}-P_{2}\right| \leqslant\left|f\left(P_{1}\right)-J\left(P_{2}\right)\right| \leqslant C\left|P_{1}-P_{2}\right| \tag{4.1}
\end{equation*}
$$

for all $P_{1}, P_{2} \in D$. A homeomorphism is a quasi-isometry if it is a C-isometry for some C. We define $C(f)$, the maximal distortion of f in D, as the smallest constant C for which (4.1) holds for all $P_{1}, P_{2} \in D$.

If f is a C-isometry, then it follows from Lemma 1.1 that

$$
\begin{equation*}
K_{I}(f) \leqslant C^{2}, \quad K_{0}(f) \leqslant C^{2} \tag{4.2}
\end{equation*}
$$

Thus f is quasiconformal. On the other hand, it is clear that a quasiconformal mapping need not be a quasi-isometry.
4.3. Admissible surfaces. A connected set $S \subset R^{3}$ is said to be an admissible surface if to each point $P \in S$ there corresponds a quasi-isometry i_{P} with the following properties. For each $\varepsilon>0$ there exists a neighborhood U_{P} of P, in which i_{P} is defined, such that i_{P} maps $S \cap U_{P}$ onto a plane domain T_{P} and such that the maximal distortion $C\left(i_{P}\right)$ of i_{P} in U_{P} satisfies the inequalities

$$
\begin{equation*}
\sup _{P \in S} C\left(i_{P}\right)<\infty, \quad \underset{P \in S}{\operatorname{ess} \sup } C\left(i_{P}\right) \leqslant 1+\varepsilon . \tag{4.3}
\end{equation*}
$$

Here, and throughout the rest of section 4, the essential suprema and infima over S and S^{\prime} are taken with respect to the Λ^{2}-measure.

We want a simple geometric condition which implies that S is an admissible surface. Suppose that a point $P \in S$ has a neighborhood V such that $S \cap V$ is homeomorphic to an open disk, suppose that n is a fixed unit vector, and suppose that for each pair of points $Q_{1}, Q_{2} \in S \cap V$, the acute angle which the segment $Q_{1} Q_{2}$ makes with n is never less than $\alpha>0$. Then there exists a neighborhood U of P such that $U \subset V$ and each point $x \in U$ has a unique representation of the form

$$
x=Q+u n,
$$

where $Q \in S \cap U$ and u is real. For each such x we let

$$
i(x)=i(Q)+u n,
$$

where $i(Q)$ is the projection of Q onto the plane through P which has n as its normal. Then i maps $S \cap U$ onto a plane domain T, and it follows from Corollary 5.1 that i is a quasi-isometry of U with maximal distortion

$$
C(i) \leqslant \cot \alpha+1
$$

Thus a connected set $S \subset R^{3}$ is an admissible surface if to each point P there corresponds a unit vector n_{P} with the following property. For each $\varepsilon>0$ there exists a neighborhood U_{P} of P such that $S \cap U_{P}$ is homeomorphic to an open disk and such that for each pair of points $Q_{1}, Q_{2} \in S \cap U_{P}$, the acute angle between the segment $Q_{1} Q_{2}$ and the vector n_{P} is never less than α_{P}, where

$$
\begin{equation*}
\inf _{P \in S} \alpha_{P}>0, \quad \underset{P \in S}{\operatorname{ess} \inf } \alpha_{P} \geqslant \frac{1}{2} \pi-\varepsilon . \tag{4.4}
\end{equation*}
$$

For example, a two-dimensional manifold $S \subset R^{3}$ is an admissible surface if it has a well defined continuously turning tangent plane at each point $P \in S$.
4.4. Quasiconformal mappings between admissible surfaces. Suppose that S and S^{\prime} are admissible surfaces and that f is a homeomorphism of S onto S^{\prime}. Next for each $P \in S$, let $P^{\prime}=f(P)$ and let i_{P} and $i_{P^{\prime}}$ be the quasi-isometries associated with P and P^{\prime}. We say that f is K-quasiconformal, $1 \leqslant K<\infty$, if for each $\varepsilon>0$ there exist neighborhoods U_{P} of P and $U_{P^{\prime}}$ of P^{\prime} with the following properties. The quasi-isometries i_{P} and $i_{P^{\prime}}$ map $S \cap U_{P}$ and $S^{\prime} \cap U_{P^{\prime}}$ onto plane domains T_{P} and $T_{P^{\prime}}$ respectively, f maps $S \cap U_{P}$ into $S^{\prime} \cap U_{P^{\prime}}$, and

$$
\begin{equation*}
\sup _{P \in S} K\left(g_{P}\right)<\infty, \quad \text { ess } \sup _{P \in S} K\left(g_{P}\right) \leqslant K+\varepsilon \tag{4.5}
\end{equation*}
$$

where $K\left(g_{P}\right)$ denotes the maximal dilatation of the plane homeomorphism

$$
\begin{equation*}
g_{P}=i_{P} \circ \circ f \circ i_{P}^{-1} \tag{4.6}
\end{equation*}
$$

We say that f is quasiconformal if it is K-quasiconformal for some K, and we define $K(f)$, the maximal dilatation of f, as the smallest number K for which f is K-quasiconformal.

Lemma 4.1. Suppose that S and S^{\prime} are admissible surfaces and that f is a quasiconformal mapping of S onto S^{\prime}. If $E \subset S$ and if $\Lambda^{2}(E)=0$, then $\Lambda^{2}\left(E^{\prime}\right)=0$.

Proof. Suppose that f is K-quasiconformal, and for $\varepsilon=1$ and each $P \in S$, let U_{P} and $U_{P^{\prime}}$ be the neighborhoods of the above definition. By Lindelöf's covering theorem, we can choose a sequence of points $P_{n} \in S$ so that the neighborhoods $U_{P_{n}}$ cover E. Set $E_{n}=$ $E \cap U_{P n}$. Then

$$
E^{\prime}=\bigcup_{n} E_{n}^{\prime}
$$

and $\Lambda^{2}\left(E_{n}\right)=0$. Since $i_{P_{n}}$ and $i_{P_{n}^{\prime}}$ are quasi-isometries and since $g_{P_{n}}$ is a plane quasiconformal mapping, it follows that $\Lambda^{2}\left(E_{n}^{\prime}\right)=0$. Hence $\Lambda^{2}\left(E^{\prime}\right)=0$ as desired.

From Lemma 4.1 it follows that if f is a K-quasiconformal mapping of S onto S^{\prime}, then f^{-1} is a K-quasiconformal mapping of S^{\prime} onto S.
4.5. Surface modulus of a family of arcs. The above definition for quasiconformal mappings is awkward since it involves the quasi-isometries i_{P} and $i_{P^{\prime}}$. We shall give two other equivalent definitions, but first we must introduce the notion of the surface modulus of an arc family.

Suppose that S is an admissible surface and that Γ is a family of arcs in S. As in section 1.4 we let $F(\Gamma)$ denote the family of functions ϱ which are non-negative and Borel measurable in S and for which

$$
\int_{\gamma} \varrho d s \geqslant 1
$$

for each arc $\gamma \in \Gamma$. We then define the surface modulus of the arc family Γ as

$$
M^{S}(\Gamma)=\inf _{\varrho} \iint_{S} \varrho^{2} d \sigma
$$

where the integral is defined by means of the Λ^{2}-measure and where the infimum is taken over all $\varrho \in F(\Gamma)$.

The surface modulus of a family of arcs in an admissible surface behaves like the familiar plane modulus of a family of arcs in a plane domain. In particular, $M^{S}(\Gamma)$ reduces to this modulus when S is a plane domain. Next it is easy to see that all of the assertions of Lemma 2.1 in [17] hold with M_{2} replaced by M^{S}. Finally we can argue as in the proof of Theorem 2.3 in [17] to show that the surface modulus of the family of all compact nonrectifiable arcs in an admissible surface S is equal to zero. This means that the arcs of a family Γ, which are not locally rectifiable, have no influence on $M^{S}(\Gamma)$. That is, if Γ_{1} is the subfamily of locally rectifiable arcs in Γ, then

$$
\begin{equation*}
M^{S}(\Gamma)=M^{S}\left(\Gamma_{1}\right) \tag{4.7}
\end{equation*}
$$

We could also have used the following inequality to reduce the proof of (4.7) to the special case where S is a plane domain.

Lemma 4.2. Suppose that S is an admissible surface, that i is a C-isometry of U which maps $S \cap U$ onto a plane domain T, that Γ is a family of arcs in $S \cap U$, and that Γ^{\prime} is the image of Γ under i. Then

$$
\begin{equation*}
C^{-4} M^{S}(\Gamma) \leqslant M^{T}\left(\Gamma^{\prime}\right) \leqslant C^{4} M^{S}(\Gamma) \tag{4.8}
\end{equation*}
$$

Proof. If $\varrho \in F(\Gamma)$, then $C \varrho^{\prime} \in F\left(\Gamma^{\prime}\right)$, where $\varrho^{\prime}=\varrho \circ i^{-1}$, and

$$
M^{T}\left(\Gamma^{\prime}\right) \leqslant \iint_{T} C^{2} \varrho^{\prime 2} d \sigma \leqslant C^{4} \iint_{S} \varrho^{2} d \sigma
$$

This yields the second half of (4.8). The first half follows similarly.
4.6. Analytic characterization. Suppose that f is a homeomorphism of an admissible surface S. For each $P \in S$ we let

$$
\begin{equation*}
L(P)=\operatorname{limssup}_{x \rightarrow P} \frac{|f(x)-f(P)|}{|x-\bar{P}|}, \quad J^{S}(P)=\limsup _{t \rightarrow 0} \frac{\Lambda^{2}\left((S \cap B)^{\prime}\right)}{\Lambda^{2}(S \cap B)}, \tag{4.9}
\end{equation*}
$$

where $B=B^{3}(P, t)$. Next we say that f is absolutely continuous on arcs, or simply ACA, in S if $M^{S}(\Gamma)=0$, where Γ is the family of all locally rectifiable arcs in S which contain a compact subare on which f is not absolutely continuous. (1)

[^0]We now have the following analytic characterization of quasiconformal mappings between admissible surfaces.

Theorem 4.1. Suppose that S and S^{\prime} are admissible surfaces and that f is a homeomorphism of S onto S^{\prime}. Then f is K-quasiconformal, $1 \leqslant K<\infty$, if and only if f is ACA in S and

$$
\begin{equation*}
L(P)^{2} \leqslant K J^{S}(P) \tag{4.10}
\end{equation*}
$$

Λ^{2}-a.e. in S.
Proof. Suppose that f is K-quasiconformal. We wish to show that f is ACA in S and that (4.10) holds for $P \in S-E$ where $\Lambda^{2}(E)=0$. Fix $\varepsilon>0$. Because S and S^{\prime} are admissible surfaces we can choose for each $P \in S$ and $P^{\prime}=f(P)$ neighborhoods U_{P} and $U_{P^{\prime}}$ such that

$$
\begin{array}{ll}
\sup _{P \in S} C\left(i_{P}\right)<\infty, & \underset{P \in S}{\operatorname{ess} \sup } C\left(i_{P}\right) \leqslant 1+\varepsilon, \tag{4.11}\\
\sup _{P^{\prime} \in S^{\prime}} C\left(i_{P^{\prime}}\right)<\infty, & \underset{P^{\prime} \in S^{\prime}}{\operatorname{ess} \sup } C\left(i_{P^{\prime}}\right) \leqslant 1+\varepsilon,
\end{array}
$$

where $C\left(i_{P}\right)$ and $C\left(i_{P^{\prime}}\right)$ denote the maximal distortions of i_{P} and $i_{P^{\prime}}$ in U_{P} and $U_{P^{\prime}}$, respectively. Next because f is K-quasiconformal, we can choose these neighborhoods so that, in addition, f maps $S \cap U_{P}$ into $S^{\prime} \cap U_{P^{\prime}}$ and

$$
\begin{equation*}
\sup _{P \in S} K\left(g_{P}\right)<\infty, \quad \operatorname{ess} \sup _{P \in S} K\left(g_{P}\right) \leqslant K(1+\varepsilon) \tag{4.12}
\end{equation*}
$$

where $K\left(g_{P}\right)$ is the maximal dilatation of the plane homeomorphism g_{P} given in (4.6).
We show first that f is ACA. Let Γ denote the family of all locally rectifiable arcs in S which contain compact subarcs on which f is not absolutely continuous. Next choose a sequence of points $P_{n} \in S$ so that the corresponding neighborhoods $U_{P n}$ cover S. Each $\gamma \in \Gamma$ has a compact subarc β on which f is not absolutely continuous. A bisection argument then shows that for some n, β has a compact subare $\alpha \subset S \cap U_{P n}$ on which f is not absolutely continuous. These arcs α form a family Γ_{0} which minorizes $\left.\Gamma,{ }^{1}\right)$ and hence

$$
M^{S}(\Gamma) \leqslant M^{S}\left(\Gamma_{0}\right) .
$$

Let Γ_{n} be the subfamily of arcs of Γ_{0} which lie in $S \cap U_{P n}$, and let Γ_{n}^{\prime} denote the image of Γ_{n} under the quasi-isometry $i_{P n}$. The analytic definition for plane quasiconformal mappings implies that $g_{P n}$ is ACA in $T_{P n}$, and since $g_{P n}$ is not absolutely continuous on any arc of Γ_{n}^{\prime}, it follows that the plane modulus of Γ_{n}^{\prime} is equal to zero. Hence $M^{s}\left(\Gamma_{n}\right)=0$ by Lemma 4.2 and we conclude that

$$
M^{S}\left(\Gamma_{\mathbf{0}}\right) \leqslant \sum_{n} M^{S}\left(\Gamma_{n}\right)=0
$$

Thus $M^{S}(\Gamma)=0$ and f is ACA in S.
${ }^{(1)}$ An arc family Γ_{1} is said to minorize an are family Γ_{2} if for each $\gamma_{2} \in \Gamma_{2}$ there exists a $\gamma_{1} \in \Gamma_{1}$ such that $\gamma_{1} \subset \gamma_{2}$.

We turn next to the inequality (4.10). Lemma 4.1, (4.11), and (4.12) imply there exists a set $E_{1} \subset S$ such that $\Lambda^{2}\left(E_{1}\right)=0$ and

$$
C\left(i_{P}\right) \leqslant 1+\varepsilon, \quad C\left(i_{P^{\prime}}\right) \leqslant 1+\varepsilon, \quad K\left(g_{P}\right) \leqslant K(1+\varepsilon)
$$

for $P \in S-E_{1}$. Fix such a point P and let $y=i_{P}(x)$ for $x \in S \cap U_{P}$. Then $g=g_{P}$ is a plane $K(1+\varepsilon)$-quasiconformal mapping of $T=T_{P}$ and we have, in an obvious notation,

$$
\begin{equation*}
L(x)^{2} \leqslant(1+\varepsilon)^{4} L_{g}(y)^{2} \leqslant K(1+\varepsilon)^{5} J_{g}^{T}(y) \leqslant K(1+\varepsilon)^{9} J^{S}(x) \tag{4.13}
\end{equation*}
$$

Λ^{2}-a.e. in T_{P}, and hence Λ^{2}-a.e. in $S \cap U_{P}$. Since there exists a sequence of points $P_{n} \in S-E_{1}$ whose neighborhoods $U_{P_{n}}$ cover $S-E_{1}$, we can find a set E_{2} such that $\Lambda^{2}\left(E_{2}\right)=0$ and

$$
L(P)^{2} \leqslant K(1+\varepsilon)^{9} J^{S}(P)
$$

for $P \in S-E_{2}$. Finally let E be the union of the exceptional sets E_{2} for $\varepsilon=1 / n, n=1,2, \ldots$. Then $\Lambda^{2}(E)=0$ and (4.10) holds for $P \in S-E$. This completes the proof of the necessity part of Theorem 4.1.

For the sufficiency part fix $\varepsilon>0$. Then for $P \in S$ and $P^{\prime}=f(P)$ choose neighborhoods U_{P} and $U_{P^{\prime}}$ so that (4.11) holds and so that f maps $S \cap U_{P}$ into $S^{\prime} \cap U_{P^{\prime}}$. We show first that the homeomorphism g_{P} of (4.6) is a plane quasiconformal mapping with maximal dilatation

$$
\begin{equation*}
K\left(g_{P}\right) \leqslant K C\left(i_{P}\right)^{4} C\left(i_{P}\right)^{4} \tag{4.14}
\end{equation*}
$$

Fix $P \in S$, let Γ^{\prime} be the family of all locally rectifiable ares in T_{P} which contain a compact subare on which g_{P} is not absolutely continuous, and let Γ be the image of Γ^{\prime} under i_{P}^{-1}. Since f is by hypothesis ACA in $S, M^{S}(\Gamma)=0$ and hence $M^{T P}\left(\Gamma^{\prime}\right)=0$ by Lemma 4.2. Thus g_{P} is ACA and, a fortiori, ACL in T_{P}. Next arguing as in (4.13) we see from (4.10) that

$$
L_{g}(y)^{2} \leqslant K C\left(i_{P}\right)^{4} C\left(i_{P}\right)^{4} J_{g}^{T}(y), \quad g=g_{P} \text { and } T=T_{P}
$$

Λ^{2}-a.e. in T_{P}, and we obtain (4.14) from the analytic definition for plane quasiconformal mappings.

Now (4.11) and (4.14) imply that

$$
\sup _{P \in S} K\left(g_{P}\right)<\infty
$$

and hence that f is quasiconformal. Then Lemma 4.1, (4.11), and (4.14) imply that

$$
\underset{P \in S}{\operatorname{ess} \sup _{S}} K\left(g_{P}\right) \leqslant K(1+\varepsilon)^{8} .
$$

Thus f is K-quasiconformal and the proof of Theorem 4.1 is complete.
4.7. Modulus characterization. We can also characterize quasiconformal mappings between admissible surfaces by means of the surface moduli of arc families.

Theorem 4.2. Suppose that S and S^{\prime} are admissible surfaces and that f is a homeomorphism of S onto S^{\prime}. Then f is K-quasiconformal, $1 \leqslant K<\infty$, it and only if

$$
\begin{equation*}
M^{S^{\prime}}\left(\Gamma^{\prime}\right) \leqslant K M^{S}(\Gamma) \tag{4.15}
\end{equation*}
$$

for each family of arcs Γ in S.
Proof. Suppose that (4.15) holds for all are families Γ in S, fix $\varepsilon>0$, and choose U_{P}, $U_{P^{\prime}}$, and g_{P} as in the last part of the proof of Theorem 4.1. Then (4.15) and Lemma 4.2 imply that

$$
M^{T_{P^{\prime}}}\left(\Gamma^{\prime}\right) \leqslant K C\left(i_{P}\right)^{4} C\left(i_{P^{\prime}}\right)^{4} M^{T_{P}}(\Gamma)
$$

for each are family Γ in T_{P}, where Γ^{\prime} is the image of Γ under g_{P}. Thus we obtain (4.14) by virtue of the geometric definition for plane quasiconformal mappings, and the proof that f is K-quasiconformal is concluded as in the proof of Theorem 4.1.

Suppose now that f is K-quasiconformal. Since f^{-1} is K-quasiconformal, (4.15) will follow if we can show that

$$
\begin{equation*}
M^{S}(\Gamma) \leqslant K M^{S^{\prime}}\left(\Gamma^{\prime}\right) \tag{4.16}
\end{equation*}
$$

for each are family Γ in S. For this let Γ be any family of arcs in S, let Γ_{1} be the family of arcs in Γ which are locally rectifiable, and let Γ_{2} be the family of arcs in Γ_{1} on each compact subarc of which f is absolutely continuous. Then (4.7) and the fact that f is ACA in S imply that

$$
\begin{equation*}
M^{S}(\Gamma)=M^{S}\left(\Gamma_{1}\right)=M^{S}\left(\Gamma_{2}\right) \tag{4.17}
\end{equation*}
$$

Choose $\varrho^{\prime} \in F\left(\Gamma^{\prime}\right)$, set $\quad \varrho(x)=\varrho^{\prime}(f(x)) L(x)$
for all $x \in S$, and pick $\gamma \in \Gamma_{2}$. If β is any compact subarc of γ, then β is rectifiable, f is absolutely continuous on β, and we obtain

$$
\int_{\gamma} \varrho d s \geqslant \int_{\beta} \varrho d s=\int \varrho^{\prime} L d s \geqslant \int_{R^{\prime}} \varrho^{\prime} d s
$$

(Cf. p. 24 in [17].) Since this inequality holds for all such β,

$$
\int_{\gamma} \varrho d s \geqslant \sup _{\beta^{\prime}} \int_{\beta^{\prime}} \varrho^{\prime} d s=\int_{\gamma^{\prime}} \varrho^{\prime} d s \geqslant 1 .
$$

Because ϱ is Borel measurable, we conclude that $\varrho \in F\left(\Gamma_{2}\right)$. Thus

$$
M^{s}\left(\Gamma_{2}\right) \leqslant \iint_{S} \varrho^{2} d \sigma=\iint_{S}\left(\varrho^{\prime} L\right)^{2} d \sigma \leqslant K \iint_{S} \varrho^{\prime 2} J^{s} d \sigma \leqslant K \iint_{S^{\prime}} \varrho^{\prime 2} d \sigma
$$

and hence

$$
M^{S}\left(\Gamma_{2}\right) \leqslant K M^{S^{\prime}}\left(\Gamma^{\prime}\right)
$$

This, together with (4.17), yields (4.16) as desired.
4.8. Boundary correspondence theorem. Suppose that D is a domain in R^{3}. We say that a two-dimensional manifold S is a free boundary surface of D if

$$
\begin{equation*}
S \subset \partial \bar{D} \quad \text { and } \quad S \cap(\overline{\partial D-S})=\emptyset \tag{4.18}
\end{equation*}
$$

Suppose next that f is a function defined on D. Then for each $P \in \partial D$ we denote by $C(f, P)$ the cluster set of f at P, that is the set of limit points of all sequences $\left\{f\left(P_{n}\right)\right\}$, where $P_{n} \rightarrow P$ in D.

Our objective, in this section, is to establish the following result on the boundary correspondence induced by quasiconformal mappings. (Cf. Theorem 10 in [4].)

Theorem 4.3. Suppose that f is a quasiconformal mapping of a domain $D \subset R^{3}$, that S and $S^{\prime \prime}$ are free admissible boundary surfaces of D and D^{\prime}, respectively, and that

$$
\begin{equation*}
C(f, P) \cap S^{\prime \prime} \neq \varnothing \tag{4.19}
\end{equation*}
$$

for each $P \in S$. Then f can be extended to be a homeomorphism of $D \cup S$ onto $D^{\prime} \cup S^{\prime}$, where S^{\prime} is an admissible surface contained in $S^{\prime \prime}$. The induced boundary mapping f^{*} is a quasiconformal mapping of S onto S^{\prime} with maximal dilatation

$$
K\left(f^{*}\right) \leqslant \min \left(K_{I}(f), K_{0}(f)\right)^{2} .
$$

This bound for $K\left(f^{*}\right)$ is sharp.
The proof of Theorem 4.3 depends upon the following four lemmas.
Lemma 4.3. If f is continuous in D and if D is locally connected at $P \in \partial D$, then $C(f, P)$ is a closed connected set.

Proof. If for each n we let $E_{n}=D \cap B^{3}(P, 1 / n)$, then it follows that

$$
C=C(f, P)=\bigcap_{n} \overline{f\left[E_{n}\right]} .
$$

Clearly C is closed. Because D is locally connected at P, for each n we can find an m such that each pair of points in E_{m} can be joined by an arc in E_{n}. Thus each pair of points in C can be joined by a connected set in $\overline{f\left[E_{n}\right]}$. If C were not connected, we could find a bounded open set G such that both G and $C(G)$ would contain points of C while $\partial G \cap C=\emptyset$. But $\partial G \cap \overline{f\left[E_{n}\right]} \neq \emptyset$ for all n, whence

$$
\partial G \cap C=\bigcap_{n}\left(\partial G \cap \overline{f\left[E_{n}\right]}\right) \neq \varnothing .
$$

Hence C is connected.

Lemma 4.4. Suppose that S is a free admissible boundary surface of D and that U is a neighborhood of $P \in S$. Then P has a neighborhood $V \subset U$ such that the quasi-isometry i_{P} maps $D \cap V$ onto a hemiball H and $S \cap V$ onto the plane part of ∂H.

Proof. By definition P has a neighborhood U_{P}, in which i_{P} is defined, such that i_{P} maps $S \cap U_{P}$ onto a plane domain T_{P}. Let $Q=i_{P}(P)$ and $B=B^{3}(Q, t)$. By (4.18), P lies at a positive distance from $\partial D-S$. Hence we may choose $t>0$ so that T_{P} divides B into two open hemiballs, H_{0} and H_{1}, and so that

$$
\begin{equation*}
B \subset i_{P}\left[U \cap U_{P}\right], \quad B \cap i_{P}\left[(\partial D-S) \cap U_{P}\right]=\varnothing . \tag{4.21}
\end{equation*}
$$

Let V and W_{i} be the images of B and H_{i} under i_{P}^{-1}. Then $V \subset U$ and (4.18) implies that W_{0} or W_{1}, say W_{1}, contains a point of $C(\bar{D})$. Now (4.21) implies that $\partial D \cap W_{1}=\varnothing$ and hence $D \cap W_{1}=\emptyset$. Thus $D \cap V=W_{0}$ and i_{P} maps $D \cap V$ onto $H=H_{0}$ as desired.

Lemma 4.4 shows that a domain is locally connected at each point of a free admissible boundary surface.

Lemma 4.5. Suppose that S is a free admissible boundary surface of D, that E_{0} and E_{1} are nondegenerate connected sets in D, and that $\bar{E}_{0} \cap \bar{E}_{1}$ contains a point $P \in S$. If Γ is the family of arcs which join E_{0} and E_{1} in D, then $M(\Gamma)=\infty$.

Proof. Let V be the neighborhood of Lemma 4.4 with $U=R^{3}$, and let Γ_{1} be the family of arcs which join $F_{0}=E_{0} \cap V$ and $F_{1}=E_{1} \cap V$ in $D \cap V$. Then

$$
M(\Gamma) \geqslant M\left(\Gamma_{1}\right) \geqslant C\left(i_{P}\right)^{-4} M\left(\Gamma_{1}^{\prime}\right), \quad \Gamma_{1}^{\prime}=i_{P}\left[\Gamma_{1}\right]
$$

by (4.2), where $C\left(i_{P}\right)$ is the maximal distortion of the quasi-isometry i_{P} in V. Since the sets E_{0} and E_{1} are connected, we can find $a>0$ such that the hemisphere $\Sigma(t)=S^{2}\left(i_{P}(P), t\right) \cap H$ meets both $i_{P}\left[F_{0}\right]$ and $i_{P}\left[F_{1}\right]$ for $0<t<a$. Hence we can argue as in the first part of the proof of Theorem 3.1, or as on p. 31 in [17], to conclude that $M\left(\Gamma_{1}^{\prime}\right)=\infty$. Thus $M(\Gamma)=\infty$.

Lemma 4.6. Suppose that D and D^{\prime} are domains in the halt space $x_{3}>0$, that T and T^{\prime} are plane domains in $x_{3}=0$ which are free boundary surfaces of D and D^{\prime}, respectively, and that g is a homeomorphism of $D \cup T$ onto $D^{\prime} \cup T^{\prime}$ which is quasiconformal in D. Then the boundary mapping g^{*} is a plane quasiconformal mapping of T onto T^{\prime} with maximal dilatation

$$
\begin{equation*}
K\left(g^{*}\right) \leqslant \min \left(K_{I}(g), K_{0}(g)\right)^{2} \tag{4.22}
\end{equation*}
$$

Proof. Since T and T^{\prime} are free boundary surfaces, $D_{1}=D \cup T \cup \tilde{D}$ and $D_{1}^{\prime}=D^{\prime} \cup T^{\prime} \cup \tilde{D}^{\prime}$ are domains, where \tilde{D} and \tilde{D}^{\prime} denote the symmetric images of D and D^{\prime} in $x_{3}=0$. We can next extend g by reflection to obtain a quasiconformal mapping g_{1} of D_{1} onto D_{1}^{\prime}
with $K_{I}\left(g_{1}\right)=K_{I}(g)$ and $K_{0}\left(g_{1}\right)=K_{0}(g)$. (See Corollary 5 in [4].) Then arguing as in the proof of Theorem 10 in [4], we conclude that g^{*} is actually a plane quasiconformal mapping of T onto T^{\prime}.

To complete the proof of (4.22), it is sufficient to show that g^{*} has maximal dilatation

$$
K\left(g^{*}\right) \leqslant K_{0}(g)^{2}
$$

for then, by symmetry, it will follow that

$$
K\left(g^{*}\right)=K\left(g^{*-1}\right) \leqslant K_{0}\left(g^{-1}\right)^{2}=K_{I}(g)^{2} .
$$

Next by virtue of the analytic definition for plane quasiconformal mappings, it is sufficient to show that

$$
L(P)^{2} \leqslant K_{0}(g)^{2} J^{T}(P)
$$

at each point $P \in T$, where g^{*} is differentiable with $J^{T}>0$; here L and J^{T} are the distortion functions of (4.9) with g^{*} and T in place of f and S. Fix such a point P. By performing preliminary similarity mappings in the plane $x_{3}=0$, we may assume without loss of generality that $P=0$, that $g^{*}(P)=0$, and that

$$
\begin{equation*}
g^{*}\left(x_{1}, x_{2}\right)=\left(a x_{1}, x_{2}\right)+o\left(\left|x_{1}\right|+\left|x_{2}\right|\right), \tag{4.23}
\end{equation*}
$$

where $a \geqslant 1$. We then must show that

$$
\begin{equation*}
a \leqslant K_{0}(g)^{2} \tag{4.24}
\end{equation*}
$$

For this, fix $\varepsilon>0$, choose $0<b<1$ so that

$$
\begin{equation*}
a b p(a b) \leqslant A+\varepsilon \tag{4.25}
\end{equation*}
$$

where p and A are as in Lemma 3.6, and choose $c>0$ so that $B^{3}(c) \subset D_{1}$. Then for $0<u<2^{-\frac{1}{2}} c$ let E_{0} and E_{1} be the segments $x_{1}= \pm b u,\left|x_{2}\right| \leqslant u, x_{3}=0$, and let Γ_{1} and Γ_{2} be the families of arcs which join E_{0} and E_{1} in D_{1} and R^{3}, respectively. Then each arc $\gamma \in \Gamma_{2}-\Gamma_{1}$ must contain a subarc which joins $S^{2}\left(2^{\frac{1}{2}} u\right)$ to $S^{2}(c)$. Hence

$$
M\left(\Gamma_{2}-\Gamma_{1}\right) \leqslant 4 \pi\left(\log 2^{-\frac{1}{2} \frac{c}{u}}\right)^{-2},
$$

and we may choose u_{1} so that

$$
\begin{equation*}
p(b)=M\left(\Gamma_{2}\right) \leqslant M\left(\Gamma_{1}\right)+\frac{\varepsilon}{a b} \tag{4.26}
\end{equation*}
$$

for $0<u<u_{1}$.
Next for $u>0$ and $0<t<\frac{1}{2} a b$, let F_{0} and F_{1} be the sets of points which lie within a distance of $t u$ of the segments $x_{1}= \pm a b u,\left|x_{2}\right| \leqslant u, x_{3}=0$, and let Γ_{3} be the family of ares which join F_{0} and F_{1} in R^{3}. Then by Lemma 3.4,

$$
\lim _{t \rightarrow 0} M\left(\Gamma_{3}\right)=p(a b)
$$

and we may fix $t>0$ so that

$$
\begin{equation*}
M\left(\Gamma_{\mathbf{3}}\right) \leqslant p(a b)+\frac{\varepsilon}{a b} \tag{4.27}
\end{equation*}
$$

for all $u>0$.
Finally by (4.23), we may choose $u_{2}>0$ so that $E_{0}^{\prime} \subset F_{0}$ and $E_{1}^{\prime} \subset F_{1}$ for $0<u<u_{2}$, and hence so that

$$
\begin{equation*}
M\left(\Gamma_{1}^{\prime}\right) \leqslant M\left(\Gamma_{3}\right) \tag{4.28}
\end{equation*}
$$

for $0<u<u_{2}$, where E_{i}^{\prime} and Γ_{1}^{\prime} are the images of E_{i} and Γ_{1} under the homeomorphism g_{1}. Fix u so that $0<u<u_{1}, u_{2}$. Then we can combine inequalities (4.25) through (4.28) with the inequalities
to obtain

$$
\begin{gathered}
A \leqslant b p(b), \quad M\left(\Gamma_{1}\right) \leqslant K_{0}(g)^{2} M\left(\Gamma_{1}^{\prime}\right) \\
a A \leqslant K_{0}(g)^{2} A+\left(2 K_{0}(g)^{2}+1\right) \varepsilon
\end{gathered}
$$

Letting $\varepsilon \rightarrow 0$ then yields (4.24), and the proof of Lemma 4.6 is complete.

Proof of Theorem 4.3. We begin by showing that $C(f, P)$ reduces to a single point for each $P \in S$. Fix $P \in S$ and suppose that $C(f, P)$ contains two distinct points. Then Lemmas 4.3 and 4.4 imply that $C(f, P)$ is a continuum, and by (4.19) we can find a pair of distinct points $P_{0}^{\prime}, P_{1}^{\prime} \in C(f, P) \cap S^{\prime \prime}$. Hence there exist sequences $\left\{P_{i, n}\right\}$ in D such that $P_{i, n} \rightarrow P$ and $P_{i, n}^{\prime} \rightarrow P_{i}^{\prime}$ for $i=0,1$. Since $P_{0}^{\prime}, P_{1}^{\prime} \in S^{\prime \prime}$, we can use Lemma 4.4 to construct two nondegenerate connected sets $E_{0}^{\prime}, E_{1}^{\prime}$ in D^{\prime} such that $\bar{E}_{0}^{\prime} \cap \bar{E}_{1}^{\prime}=\emptyset$ and such that E_{i}^{\prime} contains all but a finite number of $P_{i, n}^{\prime}, i=0,1$. Let Γ^{\prime} be the family of ares joining E_{0}^{\prime} and E_{1}^{\prime} in D^{\prime}. Then clearly $M\left(\Gamma^{\prime}\right)<\infty$. On the other hand, we see that $P \in \bar{E}_{0} \cap \bar{E}_{1}$, and hence $M(\Gamma)=\infty$ by Lemma 4.5. This contradicts the fact that f is a quasiconformal mapping, and we conclude that $C(f, P)$ must reduce to a point $P^{\prime} \in S^{\prime \prime}$ for each $P \in S$.

We now extend f by setting $f(P)=P^{\prime}$ for $P \in S$. Then f is continuous in $D \cup S$. Let $S^{\prime}=f[S]$. Then $S^{\prime} \subset S^{\prime \prime}$ and for each $P^{\prime} \in S^{\prime}$ we have

$$
P \in C\left(f^{-1}, P^{\prime}\right) \cap S \neq \emptyset
$$

The above argument shows that $C\left(f^{-1}, P^{\prime}\right)$ reduces to the point P, and we conclude that f is a homeomorphism of $D \cup S$ onto $D^{\prime} \cup S^{\prime}$. It is then clear that S^{\prime} is a free admissible boundary surface of D^{\prime}.

We must now show that the induced boundary mapping f^{*} is a quasiconformal mapping of S onto S^{\prime} with maximal dilatation satisfying (4.20). Fix $\varepsilon>0$ and for $P \in S$ and $P^{\prime}=f^{*}(P)$ choose neighborhoods U_{P} and $U_{F^{\prime}}$ so that (4.11) holds. Next let V_{P} and $V_{P^{\prime}}$ be the neighborhoods of Lemma 4.4, chosen so that $V_{P} \subset U_{P}, V_{P^{\prime}} \subset U_{P^{\prime}}$ and so that f maps
$(D \cup S) \cap V_{P}$ into $\left(D^{\prime} \cup S^{\prime}\right) \cap V_{P^{\prime}}$. Finally let H and $H^{\prime \prime}$ be the hemiballs corresponding to $D \cap V_{P}$ and $D^{\prime} \cap V_{P^{\prime}}$, and let T and $T^{\prime \prime}$ be the plane parts of ∂H and $\partial H^{\prime \prime}$. Then

$$
g_{P}=i_{P} \circ f \circ i_{P}^{-1}
$$

is a homeomorphism of $H \cup T$ onto $H^{\prime} \cup T^{\prime} \subset H^{\prime \prime} \cup T^{\prime \prime}$ which is quasiconformal in H. Since T and $T^{\prime} \subset T^{\prime \prime}$ are plane domains which are free boundary surfaces, we have essentially the situation in Lemma 4.6. Thus the boundary mapping g_{P}^{*} is a plane quasiconformal mapping of T onto T^{\prime} with maximal dilatation

$$
\begin{aligned}
K\left(g_{P}^{*}\right) & \leqslant \min \left(K_{I}\left(g_{P}\right), K_{0}\left(g_{P}\right)\right)^{2} \\
& \leqslant C\left(i_{P}\right)^{4} C\left(i_{P}\right)^{4} \min \left(K_{I}(f), K_{0}(f)\right)^{2}
\end{aligned}
$$

Then arguing as in the last part of the proof of Theorem 4.1, we obtain

$$
\sup _{P \in S} K\left(g_{P}^{*}\right)<\infty, \quad \quad \underset{P \in S}{\operatorname{ess} \sup } K\left(g_{P}^{*}\right) \leqslant(1+\varepsilon)^{8} \min \left(K_{I}(f), K_{0}(f)\right)^{2}
$$

and hence f^{*} is a quasiconformal mapping of S onto S^{\prime} whose maximal dilatation satisfies (4.20). Moreover, if we let

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(K^{2} x_{1}, x_{2}, x_{3}\right), \quad K>1
$$

then f maps $x_{3}>0$ onto itself with $K_{I}(f)=K$ and $K_{0}(f)=K^{2}$, while the boundary mapping f^{*} sends $x_{3}=0$ onto itself with $K\left(f^{*}\right)=K^{2}$. Thus the bound in (4.20) cannot be improved.

5. Upper bounds for the coefficients of certain domains

5.1. We shall derive in this section upper bounds for the coefficients of bounded starlike domains. To do this, we need only find some appropriate quasiconformal mappings, for given any homeomorphism f of D onto B^{3}, we obviously have

$$
K_{I}(D) \leqslant K_{I}(f), \quad K_{0}(D) \leqslant K_{0}(f), \quad K(D) \leqslant K(f)
$$

All of our estimates are based upon the following homeomorphism.
5.2. Projection mapping. Suppose that $S \subset R^{3}$ is homeomorphic to a plane domain and that, for all $Q_{1}, Q_{2} \in S$, the acute angle which the segment $Q_{1} Q_{2}$ makes with the basis vector e_{3} is never less than $\alpha>0$. Next let T denote the projection of S onto the plane $x_{3}=0$ and let D denote the set of all points P of the form

$$
\begin{equation*}
P=Q+u e_{3} \tag{5.1}
\end{equation*}
$$

where $Q \in S$ and u is real. Then for each $P \in D$ the representation (5.1) is unique and we define

$$
\begin{equation*}
f(P)=f(Q)+a u e_{3} \tag{5.2}
\end{equation*}
$$

where $f(Q)$ denotes the projection of Q onto $x_{3}=0$ and a is some fixed positive number.

Lemma 5.1. The mapping f is a homeomorphism of D onto itself which maps S onto T, and

$$
\begin{equation*}
\frac{a}{A}\left|P_{1}-P_{2}\right| \leqslant\left|f\left(P_{1}\right)-f\left(P_{2}\right)\right| \leqslant A\left|P_{1}-P_{2}\right| \tag{5.3}
\end{equation*}
$$

for all $P_{1}, P_{2} \in D$, where

$$
\begin{equation*}
A=\frac{1}{2}\left((a \csc \alpha)^{2}+2 a+1\right)^{\frac{1}{2}}+\frac{1}{2}\left((a \csc \alpha)^{2}-2 a+1\right)^{\frac{1}{2}} . \tag{5.4}
\end{equation*}
$$

Proof. Fix points $P_{1}, P_{2} \in D$,

$$
P_{1}=Q_{1}+u_{1} e_{3}, \quad P_{2}=Q_{2}+u_{2} e_{3}
$$

and let β and γ denote the acute angles which the segments $P_{1} P_{2}$ and $Q_{1} Q_{2}$ make with e_{3}. From (5.2) it follows that

$$
\begin{align*}
\left|f\left(P_{1}\right)-f\left(P_{2}\right)\right|^{2} & =\left|f\left(Q_{1}\right)-f\left(Q_{2}\right)\right|^{2}+a^{2}\left(u_{1}-u_{2}\right)^{2} \\
& =\left((\sin \beta)^{2}+a^{2}(\cos \beta \pm \cot \gamma \sin \beta)^{2}\right)\left|P_{1}-P_{2}\right|^{2} \tag{5.5}\\
& =B^{2}\left|P_{1}-P_{2}\right|^{2}, \quad B>0,
\end{align*}
$$

and it is then not difficult to verify that $a / C \leqslant B \leqslant C$, where C is equal to the right hand side of (5.4) with γ in place of α. Now the hypotheses on S imply that $\alpha \leqslant \gamma \leqslant \pi / 2$. Hence $C \leqslant A$ and (5.3) follows from (5.5).

Corollary 5.1. If $a=1$ in (5.2), then f is a quasi-isometry with maximal distortion

$$
C(f) \leqslant \cot \alpha+1
$$

and a quasiconformal mapping with

$$
K(f) \leqslant\left(\frac{1}{2}\left((\cot \alpha)^{2}+4\right)^{\frac{1}{2}}+\frac{1}{2} \cot \alpha\right)^{\frac{3}{2}} \leqslant(\cot \alpha+1)^{\frac{3}{2}} .
$$

Corollary 5.2. If $a=\sin \alpha$ in (5.2), then f is a quasiconformal mapping with

$$
\begin{aligned}
& K_{I}(f)^{2} \leqslant K(f)^{2} \leqslant 2^{-\frac{1}{2}} \cot \frac{\alpha}{2} \csc \frac{\alpha}{2}, \\
& K_{0}(f)^{2} \leqslant 2^{\frac{1}{2}} \cot \frac{\alpha}{2} \cos \frac{\alpha}{2}
\end{aligned}
$$

Proofs. If we set $a=1$ in (5.4), we have

$$
\begin{equation*}
A=\frac{1}{2}\left((\cot \alpha)^{2}+4\right)^{\frac{1}{2}}+\frac{1}{2} \cot \alpha \leqslant \cot \alpha+1, \tag{5.6}
\end{equation*}
$$

while if we set $a=\sin \alpha$ in (5.4), we get

$$
\begin{equation*}
A=\frac{1}{2}(2+2 \sin \alpha)^{\frac{1}{2}}+\frac{1}{2}(2-2 \sin \alpha)^{\frac{1}{2}}=2^{\frac{1}{2}} \cos \frac{\alpha}{2} . \tag{5.7}
\end{equation*}
$$

We see from (5.3) that

$$
L(P) \leqslant A, \quad l(P) \geqslant \frac{a}{A}, \quad J(P)=a
$$

3-652932 Acta mathematica 114. Imprimé le 10 août 1965.
for all $P \in D$, and hence Corollaries 5.1 and 5.2 follow from Lemma 1.1 and (5.6) or (5.7), respectively.
5.3. Starlike domains. A domain $D \subset R^{3}$ is said to be starlike at a point $Q \in D$ if the closed segment $P Q$ lies in D whenever $P \in D$. Suppose next that D is a domain which is bounded and starlike at the origin 0 , and that $Q \in \partial D$. For each $P \in \partial D, P \neq Q$, we let $\alpha(P, Q)$ denote the acute angle which the segment $P Q$ makes with the ray from 0 through Q, and we define

$$
\begin{equation*}
\alpha(Q)=\liminf _{P \rightarrow Q} \alpha(P, Q), \quad 0 \leqslant \alpha(Q) \leqslant \frac{1}{2} \pi \tag{5.8}
\end{equation*}
$$

If ∂D has a tangent plane at Q whose normal forms an acute angle β with the ray from 0 through Q, then $\alpha(Q)=\frac{1}{2} \pi-\beta$.

Theorem 5.1. Suppose that D is a domain which is bounded and starlike at the origin, and that $\alpha(Q) \geqslant \alpha>0$ for all $Q \in \partial D$. Then

$$
\begin{align*}
& K_{I}(D)^{2} \leqslant K(D)^{2} \leqslant 2^{-\frac{1}{2}} \cot \frac{\alpha}{2} \csc \frac{\alpha}{2} \\
& K_{0}(D)^{2} \leqslant 2^{\frac{1}{2}} \cot \frac{\alpha}{2} \cos \frac{\alpha}{2} \tag{5.9}
\end{align*}
$$

Proof. Fix $a>0$. Since D is bounded and starlike at the origin and since $\alpha(Q)>0$ for all $Q \in \partial D$, each point $P \in D, P \neq 0$, has a unique representation of the form $P=u Q$, where $Q \in \partial D$ and $0<u<1$. For each such P we define

$$
\begin{equation*}
f(P)=u^{a} f(Q), \quad f(Q)=\frac{Q}{|Q|} \tag{5.10}
\end{equation*}
$$

and we let $f(0)=0$. Then f is a homeomorphism of R^{3} onto itself which carries D onto B^{3}, and a tedious but elementary argument, similar to the one given in the proof of Lemma 5.1, shows that

$$
\begin{equation*}
L(P) \leqslant A \frac{|f(P)|}{|P|}, \quad l(P) \geqslant \frac{a}{A} \frac{|f(P)|}{|P|}, \quad J(P)=a \frac{|f(P)|^{3}}{|P|^{3}} \tag{5.11}
\end{equation*}
$$

for all $P \in D, P \neq 0$, where A is as in (5.4). The bound on $L(P)$ implies that f is ACL and that f is differentiable a.e. in D. Since $J>0$ in D, we conclude from (5.11) and Lemma 1.1 that

$$
K_{I}(f)^{2} \leqslant \frac{A^{3}}{a^{2}}, \quad K_{0}(f)^{2} \leqslant \frac{A^{3}}{a}
$$

Finally if we set $a=\sin \alpha$, we obtain, as in Corollary 5.2,

$$
\begin{aligned}
& K_{I}(f)^{2} \leqslant K(f)^{2} \leqslant 2^{-\frac{1}{2}} \cot \frac{\alpha}{2} \csc \frac{\alpha}{2}, \\
& K_{0}(f)^{2} \leqslant 2^{\frac{1}{2}} \cot \frac{\alpha}{2} \cos \frac{\alpha}{2}
\end{aligned}
$$

and this implies (5.9).
5.4. Convex domains. We can use Theorem 5.1 to obtain the following upper bounds for the coefficients of convex domains.

Theorem 5.2. Suppose that $0<a \leqslant b$, that D is a convex domain, and that $B^{3}(a) \subset$ $D \subset B^{3}(b)$. Then (5.9) holds with $\alpha=\operatorname{arc} \sin (a / b)$. In particular,

$$
\begin{equation*}
K_{I}(D) \leqslant K(D)<8^{\frac{1}{a}} \frac{b}{a}, \quad K_{0}(D)<8^{\frac{1}{2}}\left(\frac{b}{a}\right)^{\frac{1}{2}} \tag{5.12}
\end{equation*}
$$

Proof. The hypotheses imply that D is bounded and starlike at the origin. Hence (5.9) will follow if we can show that

$$
\alpha(Q) \geqslant \arcsin \frac{a}{b}
$$

for all $Q \in \partial D$. For this fix $Q \in \partial D$, let C_{1} be the finite cone which consists of the union of all open segments $P Q$ with $P \in B^{3}(a)$, and let C_{2} be the symmetric image of C_{1} in Q. Since: D is convex and $B^{3}(a) \subset D$, it follows that $C_{1} \subset D$ and $C_{2} \subset C(\bar{D})$. Thus

$$
\partial D \cap C_{\mathbf{1}}=\emptyset, \quad \partial D \cap C_{\mathbf{2}}=\emptyset
$$

and since $D \subset B^{3}(b)$, we conclude that

$$
\alpha(Q) \geqslant \arcsin \frac{a}{|Q|} \geqslant \arcsin \frac{a}{b}
$$

Finally if $\alpha=\arcsin (a / b)$, then

$$
\begin{gathered}
2^{-\frac{1}{2}} \cot \frac{\alpha}{2} \csc \frac{\alpha}{2}<8^{\frac{1}{2}}(\sin \alpha)^{-2}=8^{\frac{1}{b}}\left(\frac{b}{a}\right)^{2}, \\
2^{\frac{1}{2}} \cot \frac{\alpha}{2} \cos \frac{\alpha}{2}<8^{\frac{1}{3}}(\sin \alpha)^{-1}=8^{\frac{1}{\frac{1}{2}}} \frac{b}{a}
\end{gathered}
$$

and we obtain the less precise but simpler bounds in (5.12).

6. Lower bounds for the coefficients of certain domains

6.1. In this section we shall obtain some lower bounds for the inner coefficient of domains which have a certain separation property. In general, it is much more difficult to obtain a significant lower bound for a coefficient of a given domain D than it is to obtain an upper bound, since one must find a lower bound for the corresponding dilatation of each homeomorphism f of D onto B^{3}. We shall accomplish this by studying what happens to the modulus of a certain are family Γ under f and then appealing to Lemma 1.2.
6.2. Main theorem. We observed in section 2.6 that the coefficients of a right circular cylinder D approach ∞ as the ratio of its radius to height approaches ∞. We establish now a rather general result which gives a lower bound for the order of growth of the inner coefficient of the cylinder D.

Theorem 6.1. Suppose that $0<a<b$, that D is a domain in R^{3}, and that $C(D) \cap B^{3}(b)$ has at least two components which meet $S^{2}(a)$. Then

$$
\begin{equation*}
K_{I}(D) \geqslant A \log \frac{b}{a} \tag{6.1}
\end{equation*}
$$

where A is the absolute constant

$$
\begin{equation*}
A=\left(\frac{\psi\left(\frac{1}{2}\right)}{4 \pi}\right)^{\frac{1}{2}} \geqslant .129 \ldots \tag{6.2}
\end{equation*}
$$

and ψ is as in (3.12).
Proof. Let f be any homeomorphism of D onto B^{3}. We must show that

$$
\begin{equation*}
K_{I}(f) \geqslant A \log \frac{b}{a} \tag{6.3}
\end{equation*}
$$

Since the right hand side of (6.3) is continuous in b, it is sufficient to establish (6.3) under the slightly stronger hypothesis that the closed set $H=C(D) \cap \overline{B^{3}(b)}$ has at least two components which meet $S^{2}(a)$.

We consider first the special case where f can be extended to be a homeomorphism of \bar{D} onto $\overline{B^{3}}$. By hypothesis, there exist points $Q_{1}, Q_{2} \in S^{2}(a)$ which belong to different components of H, and hence we can find disjoint compact sets H_{1} and H_{2} such that $H=H_{1} \cup H_{2}$ and $Q_{1} \in H_{1}, Q_{2} \in H_{2}$. Let F_{0} be the closed segment $Q_{1} Q_{2}$, let P_{1} be the last point in $F_{0} \cap H_{1}$ as we move from Q_{1} toward Q_{2} along F_{0}, let P_{2} be the first point in $F_{0} \cap H_{2}$ as we move from P_{1} toward Q_{2} along F_{0}, and let E_{0} be the closed segment $P_{1} P_{2}$. Then $E_{0} \subset \bar{D}$ and P_{1}, P_{2} are points of ∂D which lie in different components of H.

Next let $F_{1}=\partial D \cap C\left(B^{3}(b)\right)$ and let C be any connected set in ∂D which contains both P_{1} and P_{2}. Since P_{1} and P_{2} belong to different components of $H, F_{1} \cap C \neq \emptyset$. Hence F_{1}
separates P_{1} and P_{2} in ∂D, and because ∂D is homeomorphic to S^{2}, we can find a continuum $E_{1} \subset F_{1}$ which separates P_{1} and P_{2} in ∂D. (See p. 123 in [11].)

Now let Γ be the family of arcs which join E_{0} and E_{1} in D. Since $E_{0} \subset \overline{B^{3}(a)}$ and $E_{1} \subset C\left(B^{3}(b)\right), \Gamma$ is minorized by the family of arcs which join $S^{2}(a)$ and $S^{2}(b)$ in R^{3}, and hence

$$
\begin{equation*}
M(\Gamma) \leqslant 4 \pi\left(\log \frac{b}{a}\right)^{-2} \tag{6.4}
\end{equation*}
$$

On the other hand, we see that E_{0}^{\prime} joins P_{1}^{\prime} and P_{2}^{\prime} in B^{3}, that E_{1}^{\prime} separates P_{1}^{\prime} and P_{2}^{\prime} in S^{2}, and that Γ^{\prime} is the family of arcs which join E_{0}^{\prime} and E_{1}^{\prime} in B^{3}. Hence if we map B^{3} conformally onto $x_{3}>0$ so that P_{1}^{\prime} and P_{2}^{\prime} map onto 0 and ∞, we can apply Corollary 3.2 to conclude that

$$
\begin{equation*}
M\left(\Gamma^{\prime}\right) \geqslant \psi\left(\frac{1}{2}\right) \tag{6.5}
\end{equation*}
$$

We then obtain (6.3) from Lemma 1.2, (6.4), and (6.5).
We consider now the general case. For each positive integer n let D_{n} denote the image of $B^{3}\left(n /(n+1)\right.$) under f^{-1}, let $H_{n}=C\left(D_{n}\right) \cap \overline{B^{3}(b)}$, and let f_{n} denote the restriction of f to D_{n}. The hypotheses imply there exist points $Q_{1}, Q_{2} \in S^{2}(a)$ which belong to different components of H. Let C and C_{n} denote the components of H and H_{n} which contain Q_{1}. Then the C_{n} are nonincreasing in n,

$$
C=\bigcap_{n} C_{n}
$$

and since $Q_{2} \ddagger C$, there exists an n such that $Q_{2} \ddagger C_{n}$. Thus Q_{1} and Q_{2} lie in different components of H_{n}, and we can appeal to what was proved above to conclude that

$$
K_{I}(f) \geqslant K_{I}\left(f_{n}\right) \geqslant A \log \frac{b}{a}
$$

This completes the proof for Theorem 6.1.
6.3. An alternative formulation. There is a useful inverted form of Theorem 6.1 which we will need for studying what effect the presence of a spire in ∂D has on the coefficients of D.

Theorem 6.2. Suppose that $0<a<b$, that D is a domain in R^{3}, and that $C(D) \cap C\left(B^{3}(a)\right)$ has at least two components which meet $S^{2}(b)$. Then

$$
\begin{equation*}
K_{I}(D) \geqslant A \log \frac{b}{a} \tag{6.6}
\end{equation*}
$$

where A is the absolute constant in (6.2).

Proof. Let f be a homeomorphism of D onto B^{3}. We want to show that (6.3) holds; the last argument in the proof of Theorem 6.1 shows we may assume that f can be extended to be a homeomorphism of \bar{D} onto $\overline{B^{3}}$. By hypothesis we can find $Q_{1}, Q_{2} \in S^{2}(b)$ which belong to different components of $H=C(D) \cap C\left(B^{3}(a)\right)$. Let F_{0} be any closed arc in $S^{2}(b)$ joining these points. Arguing as before, we can find a closed subarc $E_{0} \subset \bar{D}$ with endpoints P_{1}, P_{2} which lie in different components of H. Let $F_{1}=\partial D \cap \overline{B^{3}(a)}$. Then F_{1} separates P_{1} and P_{2} in ∂D, and hence a continuum $E_{1} \subset F_{1}$ separates these points in ∂D. If we let Γ denote the family of arcs which join E_{0} and E_{1} in D, then (6.4) and (6.5) hold, and we obtain (6.3) as before.
6.4. Bound for convex domains. If we apply Theorem 6.1 to a right circular cylinder D with radius b and height. h, we obtain

$$
K_{I}(D) \geqslant A \log \frac{\left(4 b^{2}+h^{2}\right)^{\frac{1}{2}}}{h} \geqslant A \log \frac{2 b}{h}
$$

This is a rather poor estimate for the order of growth of $K_{I}(D)$, since the class of domains considered in Theorem 6.1 is so large. For the domains in this class which are also convex, we have the following sharper bound.

Theorem 6.3. Suppose that $0<a<b$, that D is a convex domain in R^{3}, and that $C(D) \cap B^{3}(b)$ has at least two components which meet $S^{2}(a)$. Then

$$
\begin{equation*}
K_{I}(D) \geqslant 2^{\frac{1}{a}} A\left(\left(\frac{b}{a}\right)^{2}-1\right)^{\downarrow} \tag{6.7}
\end{equation*}
$$

where A is the absolute constant in (6.2).
Proof. Let f be any homeomorphism of D onto B^{3}. We must show that

$$
\begin{equation*}
K_{I}(f) \geqslant 2^{\frac{1}{2}} A\left(\left(\frac{b}{a}\right)^{2}-1\right)^{\frac{z}{2}} \tag{6.8}
\end{equation*}
$$

As in the proof of Theorem 6.1, it is sufficient to establish (6.8) under the hypothesis that $H=C(D) \cap \overline{B^{3}(b)}$ has at least two components which meet $S^{2}(a)$.

Consider first the special case where f can be extended to be a homeomorphism of \bar{D} onto $\overline{B^{3}}$. By hypothesis there exist points $Q_{1}, Q_{2} \in S^{2}(a)$ which belong to different components of H, and since D is convex, we can find planes T_{1}, T_{2} such that $Q_{i} \in T_{i}$ and $T_{i} \subset C(D)$ for $i=1,2$. Let F_{0} be the union of the two closed segments from 0 drawn perpendicular to T_{1} and T_{2}. Now the parts of T_{1} and T_{2} in $\overline{B^{3}(b)}$ must belong to different components of H. Hence F_{0} has a closed subarc $E_{0} \subset \bar{D}$ with endpoints P_{1}, P_{2} which lie in different components of H. Then, as in the proof of Theorem 6.1, there exists a continuum
$E_{1} \subset \partial D \cap C\left(B^{3}(b)\right)$ which separates P_{1} and P_{2} in ∂D, and if we let Γ denote the family of arcs which join E_{0} and E_{1} in D, we have

$$
\begin{equation*}
M\left(\Gamma^{\prime}\right) \geqslant \psi\left(\frac{1}{2}\right) \tag{6.9}
\end{equation*}
$$

We need an upper bound for $M(\Gamma)$. Let G denote the set of points in D which lie within a distance of $\left(b^{2}-a^{2}\right)^{\frac{1}{2}}$ from E_{0}, and set $\varrho=\left(b^{2}-a^{2}\right)^{-\frac{1}{2}}$ in G and $\varrho=0$ in $C(G)$. Since D lies between the planes T_{1} and T_{2}, it is not difficult to show that the distance between E_{0} and E_{1} is not less than $\left(b^{2}-a^{2}\right)^{\frac{1}{\frac{1}{2}}}$ and that

$$
m(G) \leqslant 2 \pi a\left(b^{2}-a^{2}\right)
$$

Thus $\varrho \in F(\Gamma)$,

$$
\begin{equation*}
M(\Gamma) \leqslant \iiint_{R^{3}} e^{3} d \omega \leqslant 2 \pi a\left(b^{2}-a^{2}\right)^{-\frac{1}{2}}, \tag{6.10}
\end{equation*}
$$

and we obtain (6.8) from Lemma 1.2, (6.9), and (6.10).
For the general case let D_{n} be the image of $B^{3}(n /(n+1))$ under f^{-1}, let

$$
H_{n}=C\left(D_{n}\right) \cap \overline{B^{3}(b)},
$$

and let f_{n} denote the restriction of f to D_{n}. Next pick points $Q_{1}, Q_{2} \in S^{2}(a)$ which belong to different components of H. Then there exists an n such that Q_{1}, Q_{2} belong to different components of H_{n}. Since D_{n} is a subdomain of the convex domain D, we can find planes T_{1}, T_{2} such that $Q_{i} \in T_{i}$ and $T_{i} \subset C\left(D_{n}\right)$ for $i=1,2$. The above argument then shows that

$$
K_{r}(f) \geqslant K_{I}\left(f_{n}\right) \geqslant 2^{\frac{1}{2}} A\left(\left(\frac{b}{a}\right)^{2}-1\right)^{\frac{1}{2}},
$$

and this completes the proof of Theorem 6.3.
6.5. Remarks. It is not difficult to verify that

$$
\log x<2^{\frac{1}{2}}\left(x^{2}-1\right)^{\frac{1}{2}}
$$

for $1<x<\infty$, and hence Theorem 6.3 yields a better lower bound for the inner coefficient of a convex domain than that given by Theorem 6.1. Moreover, if the conjectured inequality (3.14) were true, we could take

$$
A=\frac{\pi^{\frac{1}{2}}}{2 q}=.337 \ldots
$$

in Theorems 6.1, 6.2, and 6.3. On the other hand, we should point out that these three theorems give sharp bounds for the order of growth of $K_{I}(D)$ as $b / a \rightarrow \infty$.

To see this in the case of Theorem 6.1, for $1<b<\infty$ let $\mathcal{D}(b)$ denote the class of domains $D \subset R^{3}$ such that $C(D) \cap B^{3}(b)$ has at least two components which meet \mathcal{S}^{2}, and let

$$
\begin{equation*}
g(b)=\inf _{D} K_{I}(D), \tag{6.11}
\end{equation*}
$$

where the infimum is taken over all $D \in \mathcal{D}(b)$. If $1<b^{\prime}<b$, then the mapping

$$
f(x)=x|x|^{c-1}, \quad c=\frac{\log b^{\prime}}{\log b}
$$

is a homeomorphism of R^{3} onto itself such that for each domain $D \subset R^{3}, D \in D(b)$ if and only if $D^{\prime} \in \mathcal{D}\left(b^{\prime}\right)$. From Lemma 1.1 it follows that $K_{I}(f)=c^{-1}$, and we obtain

$$
g(b) \leqslant \frac{\log b}{\log b^{\prime}} g\left(b^{\prime}\right) .
$$

Thus $g(b) / \log b$ is nonincreasing in $1<b<\infty$ and

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \frac{g(b)}{\log b}=B \geqslant A>0 . \tag{6.12}
\end{equation*}
$$

Hence $g(b) \sim B \log b$ as $b \rightarrow \infty$, and we see that the lower bound for the order of growth of $K_{I}(D)$ given in Theorem 6.1 cannot be improved. The above argument shows that the same is true of Theorem 6.2.

We exhibit a particular domain D to show that the order is right in Theorem 6.3. For $0<\alpha<\pi$, let $P_{1}=\left(\cos \frac{1}{2} \alpha, 0,0\right)$ and $P_{2}=\left(-\cos \frac{1}{2} \alpha, 0,0\right)$, and let

$$
D=B^{3}\left(P_{1}, 1\right) \cap B^{3}\left(P_{2}, 1\right)
$$

Then D is a lens shaped domain which can be mapped by means of an inversion onto a convex wedge D^{\prime}, bounded by two half planes which meet at an angle α. Hence from Theorem 7.1 we obtain

$$
\begin{equation*}
K_{I}(D)=K_{I}\left(D^{\prime}\right)=\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} \tag{6.13}
\end{equation*}
$$

Next it is easy to see that D is itself convex and that $C(D) \cap B^{3}(b)$ has two components which meet $S^{2}(a)$, where

$$
\begin{equation*}
a=1-\cos \frac{\alpha}{2}, \quad b=\sin \frac{\alpha}{2}, \quad \frac{b}{a}=\cot \frac{\alpha}{4} . \tag{6.14}
\end{equation*}
$$

From (6.13) and (6.14) it follows that

$$
K_{I}(D)=\frac{\pi^{\frac{1}{2}}}{2}\left(\operatorname{arccot} \frac{b}{a}\right)^{-\frac{1}{2}} \sim \frac{\pi^{\frac{1}{2}}}{2}\left(\frac{b}{a}\right)^{\frac{1}{2}}
$$

as $b / a \rightarrow \infty$, and thus the order of the lower bound in Theorem 6.3 cannot be improved. This example also yields the upper bound

$$
A \leqslant\left(\frac{\pi}{8}\right)^{\frac{1}{2}}=.626 \ldots
$$

for the constant in Theorem 6.3.
6.6. Bounds for a right circular cylinder. We conclude this section by determining how fast the inner coefficient of a right circular cylinder grows as the ratio of its radius to height approaches ∞.

Suppose that $0<h<2 b$ and that D is the right circular cylinder

$$
D=\left\{x:\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}<b, \quad\left|x_{3}\right|<\frac{h}{2}\right\} .
$$

Then from Theorem 6.3 we obtain

$$
\begin{equation*}
K_{I}(D) \geqslant 2 A\left(\frac{b}{h}\right)^{\frac{1}{2}}>.259\left(\frac{b}{h}\right)^{\frac{1}{2}}, \tag{6.15}
\end{equation*}
$$

where A is as in (6.2). Next the homeomorphism

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{x_{1}}{b}, \frac{x_{2}}{b}, \frac{2 x_{3}}{h}\right)
$$

maps D onto a right circular cylinder D^{\prime}, where $B^{3}(1) \subset D^{\prime} \subset B^{3}\left(2^{\frac{1}{2}}\right)$. Theorem 5.2 implies that

$$
K_{I}\left(D^{\prime}\right)^{2} \leqslant 2^{-\frac{1}{2}} \cot \frac{\pi}{8} \csc \frac{\pi}{8}=4.46 \ldots
$$

and since $K_{I}(f)^{2}=2 b / h$, we obtain

$$
\begin{equation*}
K_{I}(D)<2.99\left(\frac{b}{h}\right)^{\frac{1}{2}} \tag{6.16}
\end{equation*}
$$

Neither of the constants given in (6.15) and (6.16) is best possible. For example an independent argument, based on Corollary 3.3 , shows that we can replace the constant $.259 \ldots$ in (6.15) by $.408 \ldots$. Moreover, if the conjectured inequality (3.14) were true, we could improve this constant to $.667 \ldots$. Similarly, by making a more judicious choice for a in (5.10), we can improve the bound for $K_{I}\left(D^{\prime}\right)$ and thus reduce the constant in (6.16). Nevertheless, these inequalities do show that the order of growth for the inner coefficient of a right circular cylinder is equal to the square root of the ratio of its radius to height.

7. The inner coefficient of a dihedral wedge

7.1. Introduction. In the last two sections we obtained lower and upper bounds for coefficients of various domains. In the next three sections we will calculate coefficients of three different domains.

To calculate a given coefficient of a domain $D \subset R^{3}$, we first must obtain a lower bound for the corresponding dilatation of each homeomorphism f of D onto B^{3}. Then we must show that this bound is actually assumed by some extremal homeomorphism of D onto B^{3}. Clearly it is the sharp lower bounds which are most difficult to obtain. We use two different methods. The first involves selecting a certain extremal family of arcs Γ in D and then comparing $M(\Gamma)$ and $M\left(\Gamma^{\prime}\right)$. In the second, we choose arc families $\Gamma_{1} \subset D$ and $\Gamma_{2} \subset S \subset \partial D$ and then compare the relations between $M\left(\Gamma_{1}\right)$ and $M^{S}\left(\Gamma_{2}\right)$ and between $M\left(\Gamma_{1}^{\prime}\right)$ and $M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)$.
7.2. Dihedral wedge. Let $\left(r, \theta, x_{3}\right)$ be cylindrical coordinates in R^{3}. We say that a domain D is a dihedral wedge of angle $\alpha, 0<\alpha \leqslant 2 \pi$, if it can be mapped by means of a similarity transformation f onto the domain

$$
\begin{equation*}
D_{\alpha}=\left\{x=\left(r, \theta, x_{3}\right): \quad 0<\theta<\alpha, \quad|x|<\infty\right\} . \tag{7.1}
\end{equation*}
$$

The image of the x_{3}-axis under f^{-1} is said to be the edge of the dihedral wedge D. We shall calculate here the inner coefficient of a convex dihedral wedge. But first we require the following preliminary result.

Lemma 7.1. Suppose that $0<\alpha \leqslant 2 \pi$, that E_{0} is the segment $r=0,-1 \leqslant x_{3} \leqslant 0$, and that E_{1} is the ray $r=0,1 \leqslant x_{3} \leqslant \infty$. If Γ_{α} is the family of arcs which join E_{0} to E_{1} in D_{α}, then

$$
M\left(\Gamma_{\alpha}\right)=\frac{\alpha}{\pi} \psi(1)
$$

where ψ is as in (3.12).
Proof. Suppose that $0<\alpha<\beta \leqslant 2 \pi$. Then the homeomorphism

$$
f\left(r, \theta, x_{3}\right)=\left(r, \frac{\beta}{\alpha} \theta, x_{3}\right)
$$

maps D_{α} onto $D_{\beta}, \Gamma_{\alpha}$ onto Γ_{β}, and since $K_{I}(f)^{2}=\beta / \alpha$, we obtain

$$
\begin{equation*}
M\left(\Gamma_{\beta}\right) \leqslant \frac{\beta}{\alpha} M\left(\Gamma_{\alpha}\right) . \tag{7.2}
\end{equation*}
$$

Suppose next that $0<\alpha<\beta \leqslant 2 \pi$, that β / α is a positive integer n, and for $m=1,2, \ldots, n$ let Γ_{β}^{m} be the family of arcs which join E_{0} and E_{1} in the dihedral wedge

$$
D_{\beta}^{m}=\left\{x=\left(r, \theta, x_{3}\right): \frac{m-1}{n} \beta<\theta<\frac{m}{n} \beta,|x|<\infty\right\} .
$$

Then the Γ_{β}^{m} are separate families, $\Gamma_{\beta} \supset \Gamma_{\beta}^{1} \cup \ldots \cup \Gamma_{\beta}^{n}$, and hence by Lemma 2.1 of [17]

$$
\begin{equation*}
M\left(\Gamma_{\beta}\right) \geqslant M\left(\Gamma_{\beta}^{1}\right)+\ldots+M\left(\Gamma_{\beta}^{n}\right)=\frac{\beta}{\alpha} M\left(\Gamma_{\alpha}\right) . \tag{7.3}
\end{equation*}
$$

With the aid of (7.2) and (7.3) it is now easy to show that

$$
\begin{equation*}
M\left(\Gamma_{\beta}\right)=\frac{\beta}{\alpha} M\left(\Gamma_{\alpha}\right), \tag{7.4}
\end{equation*}
$$

whenever $0<\alpha, \beta<2 \pi$ and β / α is rational. Then since $M\left(\Gamma_{\alpha}\right)$ is nondecreasing in α, an elementary limiting argument, together with (7.2), gives (7.4) even when β / α is irrational. Finally if we set $\beta=\pi$ in (7.4), we obtain

$$
M\left(\Gamma_{\alpha}\right)=\frac{\alpha}{\pi} M\left(\Gamma_{\pi}\right)=\frac{\alpha}{\pi} \psi(1)
$$

as desired.
7.3. The inner coefficient. We now calculate the inner coefficient of a convex dihedral wedge.

Theorem 7.1. Suppose that D is a convex dihedral wedge of angle α. Then

$$
\begin{equation*}
K_{I}(D)=\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} \tag{7.5}
\end{equation*}
$$

Proof. We may assume, for convenience of notation, that D is the dihedral wedge D_{α} in (7.1). Then since D_{α} is convex, $0<\alpha \leqslant \pi$, and we see that the folding mapping

$$
f\left(r, \theta, x_{3}\right)=\left(r, \frac{\pi}{\alpha} \theta, x_{3}\right)
$$

is a homeomorphism of D_{α} onto the half space D_{π} with $K_{I}(f)^{2}=\pi / \alpha$. Since we can map D_{π} onto B^{3} by means of a Möbius transformation g, we have

$$
K_{I}\left(D_{\alpha}\right)^{2} \leqslant K_{I}(g \circ f)^{2}=K_{I}(f)^{2}=\frac{\pi}{\alpha} .
$$

To complete the proof of (7.5), it is sufficient to show that

$$
\begin{equation*}
K_{I}(f)^{2} \geqslant \frac{\pi}{\alpha} \tag{7.6}
\end{equation*}
$$

for each quasiconformal mapping f of D_{α} onto D_{π}. For this let E_{1} and E_{2} be the segments $r=0,-1 \leqslant x_{3} \leqslant 0$ and $r=0,0 \leqslant x_{3} \leqslant 1$, let E_{3} and E_{4} be the rays $r=0,1 \leqslant x_{3} \leqslant \infty$ and $r=0$,
$-\infty \leqslant x_{3} \leqslant-1$, and let Γ_{1} and Γ_{2} be the families of arcs which join \boldsymbol{E}_{1} to $\boldsymbol{E}_{\mathbf{3}}$ and $\boldsymbol{E}_{\mathbf{2}}$ to $\boldsymbol{E}_{\mathbf{4}}$ in D_{α}. Then by Lemma 7.1

$$
\begin{equation*}
M\left(\Gamma_{1}\right)=M\left(\Gamma_{2}\right)=\frac{\alpha}{\pi} \psi(1) \tag{7.7}
\end{equation*}
$$

Since D_{α} is locally connected at each point of its boundary, f can be extended to be a homeomorphism of \bar{D}_{α} onto \bar{D}_{π} by Theorem l of [18]. Then $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}, E_{4}^{\prime}$ are continua in ∂D_{π} which satisfy the hypotheses of Corollary 3.3. Hence

$$
\begin{equation*}
M\left(\Gamma_{1}^{\prime}\right) \geqslant \psi(1) \quad \text { or } \quad M\left(\Gamma_{2}^{\prime}\right) \geqslant \psi(1) \tag{7.8}
\end{equation*}
$$

and (7.6) follows from Lemma 1.2, (7.7), and (7.8).
7.4. The other coefficients. We have not been able to calculate the other coefficients of a convex dihedral wedge. However, the following estimates are easily obtained.

Theorem 7.2. Suppose that D is a convex dihedral wedge of angle α. Then

$$
\begin{equation*}
\left(\frac{\pi}{\alpha}\right)^{\frac{t}{2}} \leqslant K_{0}(D) \leqslant\left(\frac{\pi}{\alpha}\right)^{\frac{t}{2}}, \quad\left(\frac{\pi}{\alpha}\right)^{\frac{t}{2}} \leqslant K(D) \leqslant\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} . \tag{7.9}
\end{equation*}
$$

Proof. The lower bounds follow directly from (1.13), (1.14), and (7.5). The upper bounds result from the fact that the mappings

$$
f\left(r, \theta, x_{3}\right)=\left(r, \frac{\pi}{\alpha} \theta, \frac{\pi}{\alpha} x_{3}\right), \quad g\left(r, \theta, x_{3}\right)=\left(r, \frac{\pi}{\alpha} \theta,\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} x_{3}\right)
$$

are homeomorphisms of D_{α} onto D_{π} with $K_{0}(f)=(\pi / \alpha)^{\frac{1}{2}}$ and $K(g)=(\pi / \alpha)^{\frac{2}{z}}$. We conjecture that

$$
K_{0}(D)=\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}}
$$

7.5 Some lower bounds. We can combine these results with Theorem 2.3 to obtain the following lower bounds for the coefficients of a large class of domains.

Theorem 7.3. Suppose that D is a domain in R^{3}, that U is a neighborhood of a point $Q \in \partial D$, and that $D \cap U=\Delta \cap U$, where Δ is a dihedral wedge of angle α which has Q as a point of its edge. Then the coetficients of D are not less than the corresponding coefficients of Δ. In particular if Δ is convex,

$$
K_{I}(D) \geqslant\left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}}, \quad K_{0}(D) \geqslant\left(\frac{\pi}{\alpha}\right)^{t}
$$

Proof. Since Q is on the edge of Δ, Δ is raylike at Q, and the results follow from (2.6), (7.5), and (7.9).

Theorem 7.3 yields lower bounds for the coefficients of all polyhedra. For example if D is a convex polyhedron with n faces, then the planes of a pair of adjacent faces must bound a dihedral wedge Δ which contains D and is of angle $\alpha, 0<\alpha \leqslant(n-3)(n-1)^{-1} \pi$ and we obtain

$$
K_{I}(D) \geqslant\left(\frac{n-1}{n-3}\right)^{\frac{1}{2}}, \quad K_{0}(D) \geqslant\left(\frac{n-1}{n-3}\right)^{\frac{1}{2}}
$$

Or if D is a rectangular parallelepiped, then (7.9) gives

$$
K_{I}(D) \geqslant 2^{\frac{1}{2}}, \quad K_{0}(D) \geqslant 2^{\frac{1}{2}}
$$

We can also use Theorem 7.3 to obtain lower bounds for the coefficients of a domain with a piecewise smooth boundary. For example, suppose that D is the right circular cylinder

$$
D=\left\{x=\left(r, \theta, x_{3}\right): \quad 0 \leqslant r<b, \quad 0<x_{3}<h\right\},
$$

fix $0<a<b, h$, and let $g(u)=\left(b^{2}-u^{2}\right)^{\frac{1}{2}}$ in $|u| \leqslant a$ and $g(u)=\left(b^{2}-a^{2}\right)^{\frac{1}{2}}$ in $|u|>a$. From Corollary 5.1 it follows that

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+g\left(x_{2}\right), x_{2}, x_{3}\right)
$$

is a quasiconformal mapping of R^{3} onto itself and that $K(f) \rightarrow 1$ as $a \rightarrow 0$. Now $D^{\prime} \cap U=\Delta \cap U$, where $U=B^{3}(a)$ and Δ is the quarter space $x_{1}>0, x_{3}>0$. Hence

$$
K_{I}(D) K(f) \geqslant K_{I}\left(D^{\prime}\right) \geqslant 2^{\frac{1}{2}}, \quad K_{0}(D) K(f) \geqslant K_{0}\left(D^{\prime}\right) \geqslant 2^{\frac{1}{2}},
$$

and letting $a \rightarrow 0$ yields

$$
K_{I}(D) \geqslant 2^{\frac{1}{z}}, \quad K_{0}(D) \geqslant 2^{\frac{1}{2}} .
$$

8. The outer coefficient of an infinite cylinder

8.1. Infinite cylinder. Let $\left(r, \theta, x_{3}\right)$ be cylindrical coordinates in R^{3}. We say that a domain is an infinite circular cylinder if it can be mapped by means of a similarity transformation onto the domain .

$$
\begin{equation*}
D=\left\{x=\left(r, \theta, x_{3}\right): 0 \leqslant r<1,|x|<\infty\right\} . \tag{8.1}
\end{equation*}
$$

We shall calculate in this section the outer coefficient of an infinite circular cylinder. For this we require the following preliminary result.

Lemma 8.1. Suppose that D is the cylinder in (8.1), that D^{\prime} is the half space $x_{3}>0$, that f is a homeomorphism of $\bar{D}-\{\infty\}$ onto $\bar{D}^{\prime}-\{0\}-\{\infty\}$, and that

$$
\begin{equation*}
\lim _{x_{\mathrm{x}} \rightarrow-\infty} f(x)=0, \quad \lim _{x_{\mathrm{s}} \rightarrow+\infty} f(x)=\infty \tag{8.2}
\end{equation*}
$$

Then for each $a^{\prime}>0$, the image of the hemisphere $S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$ under f^{-1} lies between two planes $x_{3}=a_{0}$ and $x_{3}=a_{1}$, where

$$
\begin{equation*}
0 \leqslant a_{1}-a_{0} \leqslant A K_{I}(f) \tag{8.3}
\end{equation*}
$$

and A is an absolute constant.
Proof. Fix $a^{\prime}>0$, let $\Sigma^{\prime}=S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$, and set

$$
a_{0}=\inf _{x \in \Sigma} x_{3}, \quad a_{1}=\sup _{x \in \Sigma} x_{3}
$$

Clearly we may assume that $a_{0}<a_{1}$, for otherwise there is nothing to prove. Next let

$$
E_{0}=\left\{x: x \in \stackrel{\rightharpoonup}{D},-\infty<x_{3} \leqslant a_{0}\right\}, \quad E_{1}=\left\{x: x \in \bar{D}, a_{1} \leqslant x_{3}<\infty\right\},
$$

and let Γ be the family of arcs which join E_{0} and E_{1} in D. Then it is easy to see that

$$
\begin{equation*}
M(\Gamma)=\pi\left(a_{1}-a_{0}\right)^{-2} . \tag{8.4}
\end{equation*}
$$

Next it follows from (8.2) that $\bar{E}_{0}^{\prime}=E_{0}^{\prime} \cup\{0\}$ and that $\bar{E}_{1}^{\prime}=E_{1}^{\prime} \cup\{\infty\}$. Hence Γ^{\prime} is the family of arcs which join the continua \bar{E}_{0}^{\prime} and \bar{E}_{1}^{\prime} in D^{\prime}. Finally since \bar{E}_{0}^{\prime} and \bar{E}_{1}^{\prime} both meet $S^{2}\left(a^{\prime}\right)$, we have

$$
\begin{equation*}
M\left(\Gamma^{\prime}\right) \geqslant \psi(1) \tag{8.5}
\end{equation*}
$$

by virtue of Corollary 3.1, and (8.3) follows from Lemma 1.2, (8.4), and (8.5) with

$$
A=\left(\frac{\pi}{\psi(1)}\right)^{\frac{1}{2}}
$$

8.2. The outer coefficient. We calculate now the outer coefficient of an infinite circular cylinder.

Theorem 8.1. Suppose that D is an infinite circular cylinder. Then
where as in (3.2)

$$
\begin{gather*}
K_{0}(D)=\left(\frac{q}{2}\right)^{\frac{1}{2}}=1.14 \ldots \tag{8.6}\\
q=\int_{0}^{\pi / 2}(\sin u)^{-\frac{1}{2}} d u
\end{gather*}
$$

Proof. We may assume, for convenience of notation, that D is the cylinder in (8.1). Next let (t, θ, φ) be spherical coordinates in R^{3}, where the polar angle φ is measured from the positive half of the x_{3}-axis, let D^{\prime} be the half space $x_{3}>0$, and set
where

$$
\begin{gather*}
f_{1}\left(r, \theta, x_{3}\right)=(t, \theta, \varphi), \tag{8.7}\\
r=\left(\frac{1}{q} \int_{0}^{\varphi}(\sin u)^{-\frac{1}{2}} d u\right)^{2}, \quad x_{3}=\frac{2}{q} \log t . \tag{8.8}
\end{gather*}
$$

Then f_{1} is a continuously differentiable homeomorphism of D onto D^{\prime} which maps each infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to

$$
\begin{equation*}
\frac{d t}{d x_{3}}=\frac{q t}{2}, \quad \frac{t d \varphi}{d r}=\frac{q t}{2}\left(\frac{\sin \varphi}{r}\right)^{\frac{1}{2}}, \quad \frac{t \sin \varphi d \theta}{r d \theta}=t \frac{\sin \varphi}{r} \tag{8.9}
\end{equation*}
$$

It is easy to show by means of elementary calculus that

$$
\left(\frac{r}{\sin \varphi}\right)^{\frac{1}{2}}=\frac{1}{q}(\sin \varphi)^{-\frac{1}{2}} \int_{0}^{\varphi}(\sin u)^{-\frac{1}{2}} d u
$$

increases from $2 / q$ to 1 as φ increases from 0 to $\pi / 2$. Hence from Lemma 1.1 and (8.9) it follows that

$$
K_{0}\left(f_{1}\right)^{2}=\sup _{P \in D} \frac{L(P)^{3}}{J(P)}=\frac{q}{2}
$$

and since we can map D^{\prime} onto B^{3} by means of a Möbius transformation g, we have

$$
K_{0}(D) \leqslant K_{0}\left(g \circ f_{1}\right)=K_{0}\left(f_{1}\right)=\left(\frac{q}{2}\right)^{\frac{1}{2}}
$$

To complete the proof for (8.6), it is sufficient to show that

$$
\begin{equation*}
K_{0}(f) \geqslant\left(\frac{q}{2}\right)^{\frac{1}{2}} \tag{8.10}
\end{equation*}
$$

for every quasiconformal mapping f of D onto D^{\prime}, the half space $x_{3}>0$. Choose such a mapping f and let f_{1} be the mapping given in (8.7) and (8.8). Then $f \circ f_{1}^{-1}$ is a quasiconformal mapping of D^{\prime} onto D^{\prime} which can be extended to be a homeomorphism of \bar{D}^{\prime} onto \bar{D}^{\prime}. We can next choose a Möbius transformation g such that $h=g \circ f \circ f_{1}^{-1}$ is a homeomorphism of \bar{D}^{\prime} onto \bar{D}^{\prime} with $h(0)=0$ and $h(\infty)=\infty$. Since $g \circ f=h \circ f_{1}$, it follows from the properties of f_{1} that we can extend $g \circ f$ to be a homeomorphism of $\bar{D}-\{\infty\}$ onto $\bar{D}^{\prime}-\{0\}-\{\infty\}$ such that

$$
\lim _{x_{x} \rightarrow-\infty} g \circ f(x)=0, \quad \lim _{x_{3} \rightarrow+\infty} g \circ f(x)=\infty
$$

Finally since $K_{0}(g \circ f)=K_{0}(f)$, we may assume, without loss of generality, that the given mapping f satisfies the hypotheses of Lemma 8.1.

Now choose $0<a^{\prime}<b^{\prime}$, and let C^{\prime}, S^{\prime}, and E^{\prime} be the parts of $D^{\prime}, \partial D^{\prime}$, and the positive x_{3}-axis bounded by $S^{2}\left(a^{\prime}\right)$ and $S^{2}\left(b^{\prime}\right)$. Next let Γ_{1}^{\prime} be the family of arcs which join E^{\prime} to S^{\prime} in C^{\prime} and let Γ_{2}^{\prime} be the family of arcs which join $S^{2}\left(a^{\prime}\right)$ to $S^{2}\left(b^{\prime}\right)$ in S^{\prime}. Then by virtue of Lemma 3.8,

$$
\begin{equation*}
M\left(\Gamma_{1}^{\prime}\right)=\frac{2 \pi}{q^{2}} \log \frac{b^{\prime}}{a^{\prime}} \tag{8.11}
\end{equation*}
$$

while a familiar calculation yields

$$
\begin{equation*}
M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)=2 \pi\left(\log \frac{b^{\prime}}{a^{\prime}}\right)^{-1} \tag{8.12}
\end{equation*}
$$

Lemma 8.1 implies that f^{-1} maps $S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$ and $S^{2}\left(b^{\prime}\right) \cap \bar{D}^{\prime}$ into $a_{0} \leqslant x_{3} \leqslant a_{1}$ and $b_{0} \leqslant x_{3} \leqslant b_{1}$, respectively, where

$$
\begin{equation*}
0 \leqslant a_{1}-a_{0}, b_{1}-b_{0} \leqslant A K_{I}(f), \quad a_{0}<b_{1} . \tag{8.13}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
M\left(\Gamma_{1}\right) \geqslant \frac{\pi}{2}\left(b_{0}-a_{1}\right) \tag{8.14}
\end{equation*}
$$

from Lemma 3.7, while a direct calculation shows that

$$
\begin{equation*}
M^{S}\left(\Gamma_{2}\right) \geqslant 2 \pi\left(b_{1}-a_{0}\right)^{-1} \tag{8.15}
\end{equation*}
$$

Now S and S^{\prime} are free admissible boundary surfaces of D and D^{\prime}, respectively. Hence by Theorem 4.3, f^{*}, the restriction of f to S, is a quasiconformal mapping of S onto S^{\prime} with maximal dilatation

$$
K\left(f^{*}\right) \leqslant \min \left(K_{I}(f), K_{0}(f)\right)^{2}
$$

and we have

$$
\begin{equation*}
M^{S}\left(\Gamma_{2}\right) \leqslant K\left(f^{*}\right) M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right) \leqslant K_{0}(f)^{2} M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right) \tag{8.16}
\end{equation*}
$$

from Theorem 4.2. If we combine the above inequalities with Lemma 1.2, we obtain

$$
\begin{equation*}
\pi^{2} \frac{b_{0}-a_{1}}{b_{1}-a_{0}} \leqslant M\left(\Gamma_{1}\right) M^{S}\left(\Gamma_{2}\right) \leqslant K_{0}(f)^{4} M\left(\Gamma_{1}^{\prime}\right) M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)=\frac{4 \pi^{2}}{q^{2}} K_{0}(f)^{4} \tag{8.17}
\end{equation*}
$$

Now (8.17) holds for all $0<a^{\prime}<b^{\prime}$, while (8.2) and (8.13) imply that

$$
\begin{equation*}
\lim _{\substack{a_{1}^{\prime} \rightarrow 0 \\ b_{\rightarrow} \rightarrow \infty}} \frac{b_{0}-a_{1}}{b_{1}-a_{0}}=1 \tag{8.18}
\end{equation*}
$$

Combining (8.17) and (8.18) yields (8.10), and the proof for Theorem 8.1 is complete.
8.3. The inner coefficient. We have not been able to calculate the other coefficients for an infinite circular cylinder. However, we have obtained the following bounds for the inner coefficient.

Theorem 8.2. Suppose that D is an infinite circular cylinder. Then

$$
\begin{equation*}
2^{1 / 6} \leqslant K_{I}(D) \leqslant 2^{\frac{1}{2}} . \tag{8.19}
\end{equation*}
$$

Proof. Assume that D is the cylinder in (8.1), that D^{\prime} is the half space $x_{3}>0$, and let $\left(r, \theta, x_{3}\right)$ and (t, θ, φ) be the cylindrical and spherical coordinate systems given in section 8.2. Next set

$$
\begin{gathered}
f\left(r, \theta, x_{3}\right)=(t, \theta, \varphi), \\
r=2^{-\frac{1}{2}} \frac{\sin \varphi}{\sin (\varphi+\pi / 4)}, \quad x_{3}=2^{-\frac{1}{2}} \log t .
\end{gathered}
$$

where

Then f is a continuously differentiable homeomorphism of D onto D^{\prime} which maps each infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to

$$
\begin{equation*}
\frac{d t}{d x_{3}}=2^{\frac{1}{2}} t, \quad \frac{t d \varphi}{d r}=2 t(\sin (\varphi+\pi / 4))^{2}, \quad \frac{t \sin \varphi d \theta}{r d \theta}=2^{\frac{1}{t}} t \sin (\varphi+\pi / 4) . \tag{8.20}
\end{equation*}
$$

Since

$$
2^{\frac{1}{2}} \sin (\varphi+\pi / 4) \leqslant 2(\sin (\varphi+\pi / 4))^{2}, 2^{\frac{1}{2}}
$$

it follows that

$$
K_{I}(f)^{2}=\sup _{P \in D} \frac{J(P)}{l(P)^{3}}=2^{\frac{1}{2}}
$$

Then because we can map D^{\prime} onto B^{3} by means of a Möbius transformation g, we have

$$
K_{I}(D) \leqslant K_{I}(g \circ f)=K_{I}(f)=2^{\ddagger} .
$$

To establish the left hand part of (8.19), we must show that

$$
\begin{equation*}
K_{I}(f) \geqslant 2^{1 / 6} \tag{8.21}
\end{equation*}
$$

for each quasiconformal mapping f of D onto D^{\prime}, the half space $x_{3}>0$. As in the proof of Theorem 8.1, we may assume that f satisfies the hypotheses of Lemma 8.1. Fix $0<a^{\prime}<b^{\prime}$ so that $a_{1}<b_{0}$, let C^{\prime} and S^{\prime} be the parts of D^{\prime} and ∂D^{\prime} bounded by $S^{2}\left(a^{\prime}\right)$ and $S^{2}\left(b^{\prime}\right)$, and let Γ_{1}^{\prime} and Γ_{2}^{\prime} be the families of arcs which join $S^{2}\left(a^{\prime}\right)$ to $S^{2}\left(b^{\prime}\right)$ in C^{\prime} and S^{\prime}, respectively. Then it is easy to verify that

$$
\begin{equation*}
M\left(\Gamma_{1}^{\prime}\right)=2 \pi\left(\log \frac{b^{\prime}}{a^{\prime}}\right)^{-2} \tag{8.22}
\end{equation*}
$$

while as in (8.12)

$$
\begin{equation*}
M^{s^{\prime}}\left(\Gamma_{2}^{\prime}\right)=2 \pi\left(\log \frac{b^{\prime}}{a^{\prime}}\right)^{-1} \tag{8.23}
\end{equation*}
$$

Lemma 8.1 implies that the images of $S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$ and $S^{2}\left(b^{\prime}\right) \cap \bar{D}^{\prime}$ under f^{-1} lie in $a_{0} \leqslant x_{3} \leqslant a_{1}$ and in $b_{0} \leqslant x_{3} \leqslant b_{1}$, respectively, where (8.13) holds. Hence it follows that
while as in (8.15)

$$
\begin{gathered}
M\left(\Gamma_{1}\right) \leqslant \pi\left(b_{0}-a_{1}\right)^{-2} \\
M^{S}\left(\Gamma_{2}\right) \geqslant 2 \pi\left(b_{1}-a_{0}\right)^{-1}
\end{gathered}
$$

Now S and S^{\prime} are free admissible boundary surfaces of D and D^{\prime}. Thus

$$
M\left(\Gamma_{1}^{\prime}\right) \leqslant K_{I}(f)^{2} M\left(\Gamma_{1}\right), \quad M^{S}\left(\Gamma_{2}\right) \leqslant K_{I}(f)^{2} M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)
$$

4-652932 Acta mathematica 114 . Imprimé le 10 août 1965.
by virtue of Lemma 1.2 and Theorems 4.2 and 4.3. If we combine all of these inequalities, we obtain

$$
\frac{1}{2 \pi}=M\left(\Gamma_{1}^{\prime}\right) M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)^{-2} \leqslant K_{I}(f)^{6} M\left(\Gamma_{1}\right) M^{S}\left(\Gamma_{2}\right)^{-2} \leqslant \frac{1}{4 \pi}\left(\frac{b_{1}-a_{0}}{b_{0}-a_{1}}\right)^{2} K_{I}(f)^{6} .
$$

Again (8.18) holds, and letting $a^{\prime} \rightarrow 0, b^{\prime} \rightarrow \infty$ yields (8.21).
8.4. Some lower bounds. We shall require the following analogue of Theorem 7.3 in order to derive some lower bounds for the coefficients of a domain which has a spire in its boundary.

Theorem 8.3. Suppose that D is a domain in R^{3}, that U is a half space, and that $D \cap U=\Delta \cap U$, where Δ is an infinite circular cylinder whose axis is perpendicular to ∂U. Then the coefficients of D are not less than the corresponding coefficients of Δ. In particular,

$$
K_{1}(D) \geqslant 2^{1 / 6}, \quad K_{0}(D) \geqslant\left(\frac{q}{2}\right)^{\frac{1}{2}}
$$

Proof. Assume, for convenience of notation, that U is the half space $x_{3}>0$, choose $P \in \Delta \cap U$, and for each positive n let

$$
D_{n}=\left\{x: x+n e_{3} \in D\right\} .
$$

Then as in the proof of Theorem 2.3, it is easy to show that the D_{n} converge to their kernel Δ at P. Hence

$$
K_{I}(D)=\liminf _{n \rightarrow \infty} K_{I}\left(D_{n}\right) \geqslant K_{I}(\Delta)
$$

and similarly for the other coefficients, by virtue of Theorem 2.1. The rest follows from (8.6) and (8.19).
8.5. Folding of an infinite cylinder. We shall also need the following homeomorphism, which folds an infinite cylinder onto a semi-infinite cylinder, in our study of spires.

Lemma 8.2. Suppose that D is the cylinder in (8.1) and that D^{\prime} and E are the parts of D and ∂D which lie in the half space $x_{3}<0$. Then there exists a homeomorphism f of $D \cup E$ onto $D^{\prime} \cup E$ such that $f(x)=x$ for $x \in E$,

$$
\begin{equation*}
K(f) \leqslant 2\left(\frac{q}{2}\right)^{\frac{z}{2}}=3.00 \ldots \tag{8.24}
\end{equation*}
$$

in D, and

$$
\begin{equation*}
L(x) \leqslant \frac{3}{2} q^{2}=10.3 \ldots \tag{8.25}
\end{equation*}
$$

in D^{\prime}.

Proof. Let f_{1} be the homeomorphism given in (8.7) and (8.8), and let U denote the half space $x_{3}>0$. Then there exists a Möbius transformation f_{2} which carries U onto the dihedral wedge D_{π} and $U \cap B^{3}$ onto the dihedral wedge $D_{\pi / 2}$, where for $0<\alpha<2 \pi, D_{\alpha}$ is as defined in (7.1). We see that $f_{2} \circ f_{1}$ is a homeomorphism of D onto D_{π} which maps D^{\prime} onto $D_{\pi / 2}$ and E into the closed half plane

$$
T=\left\{x=\left(r, \theta, x_{3}\right): \quad \theta=0\right\} .
$$

Now let f_{3} be the folding mapping

$$
f_{3}\left(r, \theta, x_{3}\right)=\left(r, \frac{\theta}{2}, x_{3}\right)
$$

Then f_{3} maps D_{π} onto $D_{\pi / 2}$ and $f_{3}(x)=x$ for all $x \in T$. Hence the homeomorphism

$$
f=f_{1}^{-1} \circ f_{2}^{-1} \circ f_{3} \circ f_{2} \circ f_{1}
$$

maps $D \cup E$ onto $D^{\prime} \cup E, f(x)=x$ for $x \in E$, and

$$
K(f) \leqslant K_{I}\left(f_{1}\right) K_{0}\left(f_{1}\right) K\left(f_{3}\right)=2\left(\frac{q}{2}\right)^{\frac{1}{2}}
$$

in D. Finally from (8.9) we see that

$$
\begin{equation*}
\left|f_{1}(x)\right| \leqslant l_{f_{1}}(x) \leqslant L_{f_{1}}(x) \leqslant\left(\frac{q}{2}\right)^{2}\left|f_{1}(x)\right| \tag{8.26}
\end{equation*}
$$

for $x \in D$, while a direct calculation yields

$$
\begin{equation*}
L_{g}(x) \leqslant 1 \quad \text { and } \quad|g(x)| \geqslant \frac{|x|}{6} \tag{8.27}
\end{equation*}
$$

for $x \in B^{3} \cap U$, where $g=f_{2}^{-1} \circ f_{3} \circ f_{2}$. Inequality (8.25) follows from (8.26) and (8.27).

9. The outer coefficient of a cone

9.1. Cone. Let (t, θ, φ) be spherical coordinates in R^{3}, where the polar angle φ is measured from the positive half of the x_{3}-axis. We say that a domain is a circular cone of angle $\alpha, 0<\alpha<\pi$, if it can be mapped by means of a similarity transformation onto the domain

$$
\begin{equation*}
D=\{x=(t, \theta, \varphi): \quad 0 \leqslant \varphi<\alpha, \quad 0<t<\infty\} . \tag{9.1}
\end{equation*}
$$

We have the following cone analogue of Lemma 8.1.
Lemma 9.1. Suppose that D is the cone in (9.1), that D^{\prime} is the half space $x_{3}>0$, that f is a homeomorphism of \bar{D} onto \bar{D}^{\prime}, and that $f(0)=0$ and $f(\infty)=\infty$. Then for each $a^{\prime}>0$,
the image of the hemisphere $S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$ under f^{-1} lies between two spheres $S^{2}\left(a_{0}\right)$ and $S^{2}\left(a_{1}\right)$, where

$$
\begin{equation*}
1 \leqslant \frac{a_{1}}{a_{0}} \leqslant e^{A K_{I}(f)} \tag{9.2}
\end{equation*}
$$

and A is an absolute constant.
Proof. Fix $a^{\prime}>0$, let $\Sigma^{\prime}=S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$, and set

$$
a_{0}=\inf _{x \in \Sigma}|x|, \quad a_{1}=\sup _{x \in \Sigma}|x| .
$$

We may assume that $a_{0}<a_{1}$, for otherwise there is nothing to prove. Next let

$$
E_{0}=\left\{x: \quad x \in \bar{D}, \quad|x| \leqslant a_{0}\right\}, \quad E_{1}=\left\{x: \quad x \in \bar{D}, \quad|x| \geqslant a_{1}\right\}
$$

and let Γ be the family of arcs which join E_{0} to E_{1} in D. Then Γ is minorized by the family of arcs which join $S^{2}\left(a_{0}\right)$ to $S^{2}\left(a_{1}\right)$ in R^{3}, and hence

$$
\begin{equation*}
M(\Gamma) \leqslant 4 \pi\left(\log \frac{a_{1}}{a_{0}}\right)^{-2} \tag{9.3}
\end{equation*}
$$

Next since $0 \in E_{0}^{\prime}$ and $\infty \in E_{1}^{\prime}$, Corollary 3.1 implies that

$$
\begin{equation*}
M\left(\Gamma^{\prime}\right) \geqslant \psi(1) \tag{9.4}
\end{equation*}
$$

and we obtain (9.2) from Lemma 1.2, (9.3), and (9.4) with

$$
A=\left(\frac{4 \pi}{\psi(1)}\right)^{\frac{1}{2}}
$$

9.2. The outer coefficient. We calculate now the outer coefficient of a convex circular cone.

Theorem 9.1. Suppose that D is a convex circular cone of angle α. Then

$$
\begin{equation*}
K_{0}(D)=\left(\frac{q}{q(\alpha)}\right)^{\frac{1}{2}}(\sin \alpha)^{\frac{1}{2}} \tag{9.5}
\end{equation*}
$$

where $q=q(\pi / 2)$ and

$$
\begin{equation*}
q(\alpha)=\int_{0}^{\alpha}(\sin u)^{-\frac{1}{2}} d u \tag{9.6}
\end{equation*}
$$

Proof. Assume, for convenience of notation, that D is the cone in (9.1) and let D^{\prime} be the half space $x_{3}>0$. Next set

$$
f(t, \theta, \varphi)=\left(t^{\prime}, \theta, \varphi^{\prime}\right)
$$

where

$$
\begin{equation*}
t^{\prime}=t^{a(\sin \alpha)^{-\frac{1}{2}}}, \quad q\left(\varphi^{\prime}\right)=a q(\varphi), \quad a=\frac{q}{q(\alpha)} \tag{9.7}
\end{equation*}
$$

Then f is a continuously differentiable homeomorphism of D onto D^{\prime} which maps each infinitesimal sphere onto an infinitesimal ellipsoid whose axes are proportional to

$$
\begin{equation*}
\frac{d t^{\prime}}{d t}=\frac{t^{\prime}}{t} a(\sin \alpha)^{-\frac{1}{2}}, \quad \frac{t^{\prime} d \varphi^{\prime}}{t d \varphi}=\frac{t^{\prime}}{t} a\left(\frac{\sin \varphi^{\prime}}{\sin \varphi}\right)^{\frac{1}{2}}, \quad \frac{t^{\prime} \sin \varphi^{\prime}}{t \sin \varphi} . \tag{9.8}
\end{equation*}
$$

Moreover, since $0<\alpha \leqslant \pi / 2$, it is not difficult to show that

$$
(\sin \alpha)^{-\frac{1}{2}} \leqslant\left(\frac{\sin \varphi^{\prime}}{\sin \varphi}\right)^{\frac{1}{2}} \leqslant \frac{q\left(\varphi^{\prime}\right)}{q(\varphi)}=a
$$

for $0<\varphi \leqslant \alpha$. Hence

$$
K_{0}(f)^{2}=\sup _{P \in D} \frac{L(P)^{3}}{J(P)}=\frac{q}{q(\alpha)}(\sin \alpha)^{\frac{1}{2}}
$$

by virtue of Lemma 1.1, (9.7), and (9.8). Then since D^{\prime} is conformally equivalent to $B^{3}{ }_{r}$ we obtain

$$
K_{0}(D) \leqslant K_{0}(f)=\left(\frac{q}{q(\alpha)}\right)^{\frac{1}{2}}(\sin \alpha)^{\frac{t}{2}}
$$

To complete the proof for (9.5), we must show that

$$
\begin{equation*}
K_{0}(f) \geqslant\left(\frac{q}{q(\alpha)}\right)^{\frac{1}{2}}(\sin \alpha)^{\frac{1}{2}} \tag{9.9}
\end{equation*}
$$

for each quasiconformal mapping f of D onto the half space D^{\prime}. Choose any such mapping f. Then arguing as in the proof of Theorem 8.1, we see we may assume that f satisfies the hypotheses of Lemma 9.1. Fix $0<a^{\prime}<b^{\prime}$, let C^{\prime}, S^{\prime}, and E^{\prime} be the parts of $D^{\prime}, \partial D^{\prime}$, and the positive x_{3}-axis bounded by $S^{2}\left(a^{\prime}\right)$ and $S^{2}\left(b^{\prime}\right)$, and let Γ_{1}^{\prime} and Γ_{2}^{\prime} be the families of arcs which join E^{\prime} to S^{\prime} in C^{\prime} and $S^{2}\left(a^{\prime}\right)$ to $S^{2}\left(b^{\prime}\right)$ in S^{\prime}, respectively. Then as in (8.11) and (8.12) we have

$$
M\left(\Gamma_{1}^{\prime}\right)=\frac{2 \pi}{q^{2}} \log \frac{b^{\prime}}{a^{\prime \prime}}, \quad M^{s^{\prime}}\left(\Gamma_{2}^{\prime}\right)=2 \pi\left(\log \frac{b^{\prime}}{a^{\prime}}\right)^{-1}
$$

Lemma 9.1 implies that the images of $S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$ and $S^{2}\left(b^{\prime}\right) \cap \bar{D}^{\prime}$ under f^{-1} lie between $S^{2}\left(a_{0}\right)$ and $S^{2}\left(a_{1}\right)$ and between $S^{2}\left(b_{0}\right)$ and $S^{2}\left(b_{1}\right)$, respectively, where

$$
\begin{equation*}
1 \leqslant \frac{a_{1}}{a_{0}}, \frac{b_{1}}{b_{0}} \leqslant e^{A K_{I}(f)}, \quad a_{0}<b_{1} \tag{9.10}
\end{equation*}
$$

Hence we obtain

$$
M\left(\Gamma_{1}\right) \geqslant 2 \pi q(\alpha)^{-2} \log \frac{b_{0}}{a_{1}}
$$

from Lemma 3.8, while a direct calculation yields

$$
\begin{equation*}
M^{S}\left(\Gamma_{2}\right) \geqslant 2 \pi \sin \alpha\left(\log \frac{b_{1}}{a_{0}}\right)^{-1} \tag{9.11}
\end{equation*}
$$

Again S and S^{\prime} are free admissible boundary surfaces of D and D^{\prime}, and hence

$$
M\left(\Gamma_{1}\right) \leqslant K_{0}(f)^{2} M\left(\Gamma_{1}^{\prime}\right), \quad M^{S}\left(\Gamma_{2}\right) \leqslant K_{0}(f)^{2} M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)
$$

If we combine the above inequalities, we have

$$
\begin{equation*}
\frac{q^{2} \sin \alpha}{q(\alpha)^{2}} \frac{\log \frac{b_{0}}{a_{1}}}{\log \frac{b_{1}}{a_{0}}} \leqslant K_{0}(f)^{4} \tag{9.12}
\end{equation*}
$$

Finally if we let $a^{\prime} \rightarrow 0, b^{\prime} \rightarrow \infty$, then $b_{1} / a_{0} \rightarrow \infty$ and (9.9) follows from (9.10).
9.3. The inner coefficient. We have obtained the following bounds for the inner coefficient of a convex circular cone.

Theormm 9.2. Suppose that D is a convex circular cone of angle α. Then

$$
\begin{equation*}
(1+\cos \alpha)^{1 / 6} \leqslant K_{I}(D) \leqslant(1+\cos \alpha)^{\frac{1}{2}} . \tag{9.13}
\end{equation*}
$$

Proof. Assume that D is the cone in (9.1) and that D^{\prime} is the half space $x_{3}>0$. Next set
where

$$
\begin{gathered}
f(t, \theta, \varphi)=\left(t^{\prime}, \theta, \varphi^{\prime}\right) \\
t^{\prime}=t^{a}, \quad \cot \varphi^{\prime}=\frac{\sin (\alpha-\varphi)}{\sin \varphi}, \quad a=(1-\cos \alpha)^{-\frac{1}{2}}
\end{gathered}
$$

Then f is a continuously differentiable homeomorphism of D onto D^{\prime}. A direct calculation shows that

$$
K_{I}(f)^{2}=\sup _{P \in D} \frac{J(P)}{l(P)^{3}}=(1+\cos \alpha)^{\frac{1}{2}},
$$

and since D^{\prime} is conformally equivalent to B^{3}, we conclude that

$$
K_{I}(D) \leqslant K_{t}(f)=(1+\cos \alpha)^{\frac{1}{2}} .
$$

For the left hand side of (9.13) we must show that

$$
\begin{equation*}
K_{I}(f) \geqslant(1+\cos \alpha)^{1 / 6} \tag{9.14}
\end{equation*}
$$

for each quasiconformal mapping f of D onto the half space D^{\prime}. As in the proof of Theorem 9.1, we may assume f satisfies the hypotheses of Lemma 9.1. Fix $0<a^{\prime}<b^{\prime}$ so that $a_{1}<b_{0}$, let C^{\prime} and S^{\prime} be the parts of D^{\prime} and ∂D^{\prime} bounded by $S^{2}\left(a^{\prime}\right)$ and $S^{2}\left(b^{\prime}\right)$, and let Γ_{1}^{\prime} and Γ_{2}^{\prime} be the families of ares which join $S^{2}\left(a^{\prime}\right)$ to $S^{2}\left(b^{\prime}\right)$ in C^{\prime} and S^{\prime}, respectively. Then as in (8.22) and (8.23),

$$
M\left(\Gamma_{1}^{\prime}\right)=2 \pi\left(\log \frac{b^{\prime}}{a^{\prime}}\right)^{-2}, \quad M^{S^{\prime}}\left(\Gamma_{2}^{\prime}\right)=2 \pi\left(\log \frac{b^{\prime}}{a^{\prime}}\right)^{-1}
$$

Lemma 9.1 implies that the images of $S^{2}\left(a^{\prime}\right) \cap \bar{D}^{\prime}$ and $S^{2}\left(b^{\prime}\right) \cap \bar{D}^{\prime}$ under f^{-1} lie between $S^{2}\left(a_{0}\right)$ and $S^{2}\left(a_{1}\right)$ and between $S^{2}\left(b_{0}\right)$ and $S^{2}\left(b_{1}\right)$, respectively, where (9.10) holds. Direct calculation yields
while as in (9.11)

$$
M\left(\Gamma_{1}\right) \leqslant 2 \pi(1-\cos \alpha)\left(\log \frac{b_{0}}{a_{1}}\right)^{-2}
$$

$$
M^{S}\left(\Gamma_{2}\right) \geqslant 2 \pi \sin \alpha\left(\log \frac{b_{1}}{a_{0}}\right)^{-1}
$$

Again S and S^{\prime} are free admissible boundary surfaces of D and we obtain

$$
M\left(\Gamma_{1}^{\prime}\right) \leqslant K_{I}(f)^{2} M\left(\Gamma_{1}\right), \quad M^{S}\left(\Gamma_{2}\right) \leqslant K_{1}(f)^{2} M^{S}\left(\Gamma_{2}^{\prime}\right)
$$

Combining all of the above inequalities, we have

$$
\begin{equation*}
(1+\cos \alpha)\left(\frac{\log \frac{b_{0}}{a_{1}}}{\log \frac{b_{1}}{a_{0}}}\right)^{2} \leqslant K_{I}(f)^{6} \tag{9.15}
\end{equation*}
$$

Finally if we let $a^{\prime} \rightarrow 0, b^{\prime} \rightarrow \infty$, then $b_{0} / a_{1} \rightarrow \infty$ and (9.14) follows from (9.10).
9.4. Remark. Suppose that D is the cylinder in (8.1) and that for $0<\alpha<\pi / 2, D_{\alpha}$ is the cone in (9.1) translated through the vector $-(\cot \alpha) e_{3}$. Then the D_{α} converge to their kernel D at 0 as $\alpha \rightarrow 0$, and we may think of D as a cone of angle 0 . In particular, since

$$
\left(\frac{q}{2}\right)^{\frac{1}{2}}=\lim _{\alpha \rightarrow 0}\left(\frac{q}{q(\alpha)}\right)^{\frac{1}{2}}(\sin \alpha)^{\frac{1}{2}}
$$

(8.6) is what we get by formally letting $\alpha \rightarrow 0$ in (9.5). Similarly the bounds in (8.19) are the limits of those given in (9.13) as $\alpha \rightarrow 0$.
9.5. Some lower bounds. We conclude this section with the following cone analogue of Theorem 8.3.

Theorem 9.3. Suppose that D is a domain in R^{3}, that U is a neighborhood of a point $Q \in \partial D$, and that $D \cap U=\Delta \cap U$, where Δ is a circular cone of angle α which has Q as its vertex. Then the coefficients of D are not less than the corresponding coefficients of Δ. In particular if Δ is convex,

$$
K_{I}(D) \geqslant(1+\cos \alpha)^{1 / 6}, \quad K_{0}(D) \geqslant\left(\frac{q}{q(\alpha)}\right)^{\frac{1}{2}}(\sin \alpha)^{\frac{1}{2}}
$$

Proof. Since Q is the vertex of Δ, Δ is raylike at Q, and the results follow from (2.6), (9.5), and (9.13).

10. Spires and ridges

10.1. Introduction. In view of the results of section 2.5 , it is natural to assume that for a given domain D, the presence of a spire or a ridge in ∂D has a strong influence on the coefficients of D. We shall study this question in detail. It turns out that if ∂D has a spire which is directed into D or a ridge which is directed out of D, then $K(D)=\infty$. In the reverse situations, $K(D)$ may be finite.
10.2. Spires. A point set in R^{3} is said to be a spire if it can be mapped by means of a similarity transformation f onto

$$
\begin{equation*}
S=\left\{x=\left(r, \theta, x_{3}\right): \quad r=g\left(x_{3}\right), \quad 0<x_{3} \leqslant a\right\}, \tag{10.1}
\end{equation*}
$$

where $a<\infty$ and g is subject to the following restrictions:
(i) $g(u)$ is continuous in $0 \leqslant u \leqslant a$ and $g(a)=0$,
(ii) $g^{\prime}(u)$ is continuous and increasing in $0<u<a$,
(iii) $\lim _{u \rightarrow a} g^{\prime}(u)=0$.

These conditions imply that $g(u)>0$ in $0 \leqslant u<a$ and that

$$
\begin{equation*}
\int_{0}^{a} \frac{d u}{g(u)}=\infty . \tag{10.3}
\end{equation*}
$$

The image of the point $Q=(0,0, a)$ under f^{-1} is called the vertex of the spire, the image of the basis vector e_{3} is its direction, and the image of the disk

$$
B=\left\{x=\left(r, 0, x_{3}\right): \quad 0 \leqslant r<g(0), \quad x_{3}=0\right\}
$$

is its base.
A domain $D \subset R^{3}$ is said to have a spire in its boundary if some point $Q \in \partial \bar{D}$ has a neighborhood U such that $S=\partial D \cap U$ is a spire with vertex at Q. Let n be the direction of S. Then the points $Q+u n$ do not belong to S, and hence not to ∂D, for small $u>0$. Thus there exists a constant $b>0$ such that either $Q+u n \in D$ for $0<u<b$ or $Q+u n \in C(\bar{D})$ for $0<u<b$. We say that the spire S is inward directed in the first case and outward directed in the second case.
10.3. Inward directed spires. The following result answers a question raised by B. V. Sabat.

Theorem 10.1. If D is a domain in R^{3} whose boundary contains an inward directed spire, then $K(D)=\infty$.

Proof. By performing a preliminary similarity transformation, we may assume that the vertex of the spire S is the origin, that its direction is $-e_{3}$, and that for some $a>0$

$$
S \cap B^{3}(a)=\partial D \cap B^{3}(a)
$$

Then S splits $B^{3}(a)$ into two domains, and since S is inward directed, $C(\bar{D}) \cap B^{3}(a)$ is the component of $B^{3}(a)-S$ which contains the interval $r=0,0<x_{3}<a$. Fix $0<c<1$. Because S is a spire, we can choose $b, 0<b<\frac{1}{2} a$, such that $S^{2}\left(b e_{3}, b c\right)$ separates 0 from ∞ in $C(D)$. Hence $C(D) \cap C\left(B^{3}\left(b e_{3}, b c\right)\right)$ has two components which meet $S^{2}\left(b e_{3}, b\right)$, and we conclude from Theorem 6.2 that

$$
\begin{equation*}
K_{I}(D) \geqslant A \log \frac{1}{c} \tag{10.4}
\end{equation*}
$$

where A is an absolute constant. Letting $c \rightarrow 0$ in (10.4) yields $K_{I}(D)=\infty$, whence $K(D)=\infty$.
10.4. Outward directed spires. In contrast to the above situation, there exist domains with outward directed spires in their boundaries and finite coefficients. We require first the following result.

Lemma 10.1. Suppose that $g(u)>0$ for $0 \leqslant u<a \leqslant \infty$ and that

$$
\begin{equation*}
|g(u)-g(v)| \leqslant b|u-v|, \quad b<\infty, \tag{10.5}
\end{equation*}
$$

for $0 \leqslant u, v<a$. Suppose next that D is the domain

$$
D=\left\{x=\left(r, \theta, x_{3}\right): \quad 0 \leqslant r<g\left(x_{3}\right), \quad 0<x_{3}<a\right\},
$$

that D^{\prime} is the circular cylinder

$$
D^{\prime}=\left\{x=\left(r, \theta, x_{3}\right): \quad 0 \leqslant r<g(0), \quad 0<x_{3}<g(0) \int_{0}^{a} \frac{d u}{g(u)}\right\},
$$

and that B is the common base of D and D^{\prime},

$$
B=\left\{x=\left(r, \theta, x_{3}\right): \quad 0 \leqslant r<g(0), \quad x_{3}=0\right\} .
$$

Then there exists a homeomorphism f of $D \cup B$ onto $D^{\prime} \cup B$ such -that $f(x)=x$ for $x \in B$ and

$$
\begin{equation*}
K(f) \leqslant\left(\frac{1}{2}\left(b^{2}+4\right)^{\frac{1}{2}}+\frac{1}{2} b\right)^{\frac{3}{2}} \leqslant(b+1)^{\frac{3}{2}} . \tag{10.6}
\end{equation*}
$$

Proof. Let

$$
f\left(r, \theta, x_{3}\right)=\left(r h\left(x_{3}\right), \theta, j\left(x_{3}\right)\right)
$$

where

$$
h\left(x_{3}\right)=\frac{g(0)}{g\left(x_{3}\right)}, \quad j\left(x_{3}\right)=g(0) \int_{0}^{x_{3}} \frac{d u}{g(u)}
$$

Then f is a homeomorphism of $D \cup B$ onto $D^{\prime} \cup B$ and $f(x)=x$ for $x \in B$. Since g satisfies (10.5), f is ACL and a.e. differentiable in D. Next an easy computation shows that at each point $x=\left(r, \theta, x_{3}\right) \in D$ where $g^{\prime}\left(x_{3}\right)$ exists,
where

$$
\begin{equation*}
\frac{J(x)}{l(x)^{3}}=\frac{L(x)^{3}}{J(x)}=\left(\frac{1}{2}\left(c^{2}+4\right)^{\frac{1}{2}}+\frac{1}{2} c\right)^{3} \leqslant(c+1)^{3} \tag{10.7}
\end{equation*}
$$

$$
c=\frac{r}{g\left(x_{3}\right)}\left|g^{\prime}\left(x_{3}\right)\right| \leqslant\left|g^{\prime}\left(x_{3}\right)\right| \leqslant b
$$

by virtue of (10.5). Hence (10.6) follows from (10.7) and Lemma 1.1.
Now for $0<a<\infty$ set $g(u)=(a-u)^{2}$ in $0 \leqslant u \leqslant a$. Then g satisfies the hypotheses of Lemma 10.1 with $b=2 a$, and

$$
D=\left\{x=\left(r, \theta, x_{3}\right): \quad 0 \leqslant r<g\left(\left|x_{3}\right|\right), \quad 0 \leqslant\left|x_{3}\right|<a\right\}
$$

is a domain with a pair of outward directed spires in its boundary. Since g satisfies (10.3), we can use the mapping of Lemma 10.1 to construct a homeomorphism f of D onto an infinite circular cylinder D^{\prime} with $K(f) \leqslant(2 a+1)^{\frac{3}{2}}$. Finally since a may be chosen arbitrarily small, we obtain the following result.

Theorem 10.2. For each $\varepsilon>0$ there exists a domain $D \subset R^{3}$ whose boundary contains an outward directed spire and whose coefficients are within ε of the corresponding coefficients of an infinite circular cylinder.
10.5. An example. We consider next the class of domains D which are obtained by adding an arbitrary number of outward directed spires to a half space. More precisely, let T be the plane $x_{3}=0$, let $\left\{B_{n}\right\}$ be a collection of disjoint open disks in T, and for each n let S_{n} be a spire with base B_{n} and direction e_{3}. Then

$$
\left(T-\bigcup_{n} B_{n}\right) \cup\left(\bigcup_{n} S_{n}\right)
$$

is a surface which divides R^{3} into two domains. By Theorem 10.1, the upper domain has infinite coefficients. Let D be the lower domain. One might think that $K(D)$ could be made arbitrarily large by making the spires S_{n} very sharp or by adjusting their positions on T. We show, however, that this is not the case.

Theorem 10.3. For each such domain $D, K(D) \leqslant 4.5$.
Proof. Let D_{n} denote the points of D which lie below S_{n},

$$
D_{n}=\left\{x=P-u e_{3}: \quad P \in S_{n}, \quad 0<u<\infty\right\},
$$

and let D_{n}^{\prime} and E_{n} denote the parts of D_{n} and ∂D_{n} which lie in the half space $x_{3}<0$. The proof of Theorem 10.3 depends upon the following result.

Lemma 10.2. For each n there exists a homeomorphism f_{n} of $D_{n} \cup E_{n}$ onto $D_{n}^{\prime} \cup E_{n}$ such that $f_{n}(x)=x$ for $x \in E_{n}$,

$$
\begin{equation*}
K\left(f_{n}\right) \leqslant 4.5 \tag{10.8}
\end{equation*}
$$

in D_{n}, and

$$
\begin{equation*}
L_{f n}(x) \leqslant 10.4 \tag{10.9}
\end{equation*}
$$

in D_{n}^{\prime}.
We now define a mapping f of D by setting

$$
f(x)=\left\{\begin{array}{lll}
f_{n}(x) & \text { if } & x \in D_{n} \\
x & \text { if } & x \in F=D-\left(\bigcup_{n} D_{n}\right)
\end{array}\right.
$$

By (10.8) and (10.9), f is a homeomorphism which is ACL and a.e. differentiable in D. Each point of $D-F$ has a neighborhood in which $K(f) \leqslant 4.5$. Since $f(x)=x$ in F and since almost every point of F is a point of linear density in the directions of the coordinate axes [15],

$$
L(x)=l(x)=J(x)=1
$$

a.e. in F. We conclude from Lemma 1.1 that f is a 4.5 -quasiconformal mapping of D, and hence that $K(D) \leqslant 4.5$ as desired.
10.6. Proof of Lemma 10.2. Fix n and for convenience of notation write $S=S_{n}, B=B_{n}$, $D=D_{n}, D^{\prime}=D_{n}^{\prime}$, and $E=E_{n}$. By performing a preliminary translation, we may assume that S is the spire in (10.1). We now define a homeomorphism f of $D \cup E$ onto $D^{\prime} \cup E$, such that $f(x)=x$ for $x \in E$ and

$$
\begin{equation*}
K(f) \leqslant 4.5 \text { in } D, \quad L(x) \leqslant 10.4 \text { in } D^{\prime}, \tag{10.10}
\end{equation*}
$$

as follows.
Suppose first that $\left|g^{\prime}(u)\right|<\frac{1}{2}$ in $0<u<a$, let D_{1} be the part of D in $x_{3}>0$, and let D_{1}^{\prime} be the symmetric image of D^{\prime} in $x_{3}=0$. Since g satisfies (10.3) and the hypotheses of Lemma 10.1 with $b=\frac{1}{2}$, there exists a homeomorphism f_{1} of $D_{1} \cup B$ onto $D_{1}^{\prime} \cup B$ such that $f_{1}(x)=x$ for $x \in B$ and

$$
\begin{equation*}
K\left(f_{1}\right) \leqslant\left(\frac{17^{\frac{1}{2}}+1}{4}\right)^{\frac{3}{2}}<1.45 \tag{10.11}
\end{equation*}
$$

in D_{1}. Now let $D_{2}=D^{\prime} \cup B \cup D_{1}^{\prime}$. By Lemma 8.2 we can find a homeomorphism f_{2} of $D_{2} \cup E$ onto $D^{\prime} \cup E$ such that $f_{2}(x)=x$ for $x \in E$ and

Now set

$$
\begin{gather*}
K\left(f_{2}\right)<3.01 \text { in } D_{2}, \tag{10.12}\\
f(x)=\left\{\begin{array}{ll}
f_{f_{2}} \circ f_{1}(x) \leqslant 10.4 \text { in } D^{\prime} . \\
f_{2}(x) & \text { if }
\end{array} \quad x \in D_{1} \cup B,\right.
\end{gather*}, \quad . \quad \begin{aligned}
& \text { if } \cup E .
\end{aligned}
$$

Then f is a homeomorphism of $D \cup E$ onto $D^{\prime} \cup E, f(x)=x$ for $x \in E$, and f satisfies (10.10) by virtue of (10.11), (10.12), and Corollary 5 of [4].

Suppose next that there exists a number $b, 0<b<a$, such that $g^{\prime}(b)=-\frac{1}{2}$, let C be the infinite circular cylinder $0 \leqslant r<g(b)$, and set

$$
f_{1}(x)=\left\{\begin{array}{lll}
x-h(r) e_{3} & \text { if } & x \in(D \cup E)-\bar{C} \\
x-b e_{3} & \text { if } & x \in D \cap \bar{C}
\end{array}\right.
$$

where h is the inverse function of g. Then f_{1} is a homeomorphism of $D \cup E$ and $f_{1}(x)=x$ for $x \in E$. Moreover, since $\left|g^{\prime}(u)\right|>\frac{1}{2}$ in $0<u<b,\left|h^{\prime}(u)\right|<2$ in $g(b)<u<g(0)$, and we conclude from Corollary 5.1, with $\cot \alpha=2$, that

$$
\begin{equation*}
K\left(f_{1}\right) \leqslant\left(2^{\frac{1}{2}}+1\right)^{\frac{1}{2}}<3.76, \quad L_{f_{1}}(x) \leqslant 3 \tag{10.13}
\end{equation*}
$$

in D. Now f_{1} translates $D \cap C$ onto a domain D_{1} which lies below the spire

$$
S_{1}=\left\{x=\left(r, \theta, x_{3}\right): \quad r=g\left(x_{3}+b\right), \quad 0<x_{3} \leqslant a-b\right\} .
$$

Let D_{1}^{\prime} and E_{1} denote the parts of D_{1} and ∂D_{1} which lie in $x_{3}<0$. Since $\left|g^{\prime}(u+b)\right|<\frac{1}{2}$ in $0<u<a-b$, by what was proved above we can find a homeomorphism f_{2} of $D_{1} \cup E_{1}$ onto $D_{1}^{\prime} \cup E_{1}$ such that $f_{2}(x)=x$ for $x \in E_{1}$ and

$$
\begin{equation*}
K\left(f_{2}\right) \leqslant 4.5 \text { in } D_{1}, \quad L_{f_{2}}(x) \leqslant 10.4 \text { in } D_{1}^{\prime} . \tag{10.14}
\end{equation*}
$$

Finally set

$$
f(x)=\left\{\begin{array}{lll}
f_{1}(x) & \text { if } & x \in(D \cup E)-\bar{C} \\
f_{2} \circ f_{1}(x) & \text { if } & x \in D \cap \bar{C}
\end{array}\right.
$$

Then f is a homeomorphism of $D \cup E$ onto $D^{\prime} \cup E, f(x)=x$ for $x \in E$, and (10.10) holds by virtue of (10.13), (10.14), and Corollary 5 of [4]. Hence the proof of Lemma 10.2 is complete.
10.7. Inaccessible boundary points. We can use Theorem 10.3 to show that there exists a domain which has finite coefficients and some inaccessible boundary points. For choose a sequence of disjoint open disks $\left\{B_{n}\right\}$ which converge to the origin, erect a spire S_{n} of height 1 on each B_{n}, and let D be the corresponding domain, as defined in section 10.5. Then each point of the segment $r=0,0<x_{3} \leqslant 1$ is an inaccessible boundary point of D, while $K(D) \leqslant 4.5$ by Theorem 10.3. Another such example has been given by Zorič [21].

It is clear how the above construction can be slightly modified to yield a domain with finite coefficients, for which the set of inaccessible boundary points has positive 3-dimensional measure.
10.8. A lower bound. Finally we have the following sharp lower bound for the coefficients of a domain whose boundary contains a spire.

Theorem 10.4. If D is a domain in R^{3} whose boundary contains a spire, then the coefficients of D are not less than the corresponding coefficients of an infinite circular cylinder. In particular,

$$
K_{I}(D) \geqslant 2^{1 / 6}, \quad K_{0}(D) \geqslant\left(\frac{q}{2}\right)^{\frac{1}{2}}
$$

Proof. By performing a preliminary similarity transformation, we may assume that the vertex of the spire S is the origin and that its direction is $-e_{3}$. Next by Theorem 10.1 we may assume that S is outward directed. Finally by definition we can choose $a>0$ so that

$$
S \cap B^{3}(a)=\partial D \cap B^{3}(a) .
$$

Then S splits $B^{3}(a)$ into two domains and $D \cap B^{3}(a)$ is the component of $B^{3}(a)-S$ which contains the segment $r=0,0<x_{3}<a$. Let f_{1} denote inversion in $S^{2}(a)$, let D_{1} denote the image of D under f_{1}, and let U_{1} denote the half space $x_{3}>a$. Since S is a spire, it follows that

$$
D_{1} \cap U_{1}=\left\{x=\left(r, 0, x_{3}\right): \quad 0 \leqslant r<g\left(x_{3}\right), \quad a<x_{3}<\infty\right\},
$$

where $g^{\prime}(u)$ is continuous in $a<u<\infty$ and

$$
\begin{equation*}
\lim _{u \rightarrow \infty} g^{\prime}(u)=0 \tag{10.15}
\end{equation*}
$$

Fix $\varepsilon>0$, choose $b>a$ so that $\left|g^{\prime}(u)\right|<\varepsilon$ in $b<u<\infty$, let U be the half space $x_{3}>b$, and let Δ be the infinite circular cylinder

$$
\Delta=\left\{x=\left(r, \theta, x_{3}\right): \quad 0 \leqslant r<g(b), \quad|x|<\infty\right\} .
$$

Since $\left|g^{\prime}(u)\right|<\varepsilon$ in $b<u<\infty$,

$$
\int_{0}^{\infty} \frac{d u}{g(u)}=\infty
$$

and hence by Lemma 10.1 there exists a homeomorphism f_{2} of $D_{1} \cap \bar{U}$ onto $\Delta \cap \bar{U}$ such that $f_{2}(x)=x$ in $D_{1} \cap \partial U$ and $K\left(f_{2}\right) \leqslant(1+\varepsilon)^{\frac{3}{2}}$ in $D_{1} \cap U$. Set

$$
f_{3}(x)=\left\{\begin{array}{lll}
f_{2}(x) & \text { if } & x \in D_{1} \cap \bar{U} \\
x & \text { if } & x \in D_{1}-\bar{U}
\end{array}\right.
$$

Then $f=f_{3} \circ f_{1}$ is a homeomorphism of D onto a domain $D^{\prime}, D^{\prime} \cap U=\Delta \cap U$, and $K(f) \leqslant$ $(1+\varepsilon)^{\frac{2}{2}}$. The desired lower bounds are now obtained by first applying Theorem 8.3 to D^{\prime} and then letting $\varepsilon \rightarrow 0$. Theorem 10.2 shows that these bounds cannot be improved.
10.9. Ridges. A point set in R^{3} is said to be a ridge if it can be mapped by means of a similarity transformation f onto

$$
\begin{equation*}
S=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad\left|x_{2}\right|=g\left(x_{1}\right), \quad 0<x_{1} \leqslant a, \quad\left|x_{3}\right|<b\right\} \tag{10.16}
\end{equation*}
$$

where $a<\infty, b \leqslant \infty$, and g satisfies the conditions in (10.2). The image of the line segment

$$
E=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad x_{1}=a, \quad x_{2}=0, \quad\left|x_{3}\right|<b\right\}
$$

under f^{-1} is called the edge of the ridge and the image of the vector e_{1} is its direction.
A domain $D \subset R^{3}$ is said to have a ridge in its boundary if some point $Q \in \partial \bar{D}$ has a neighborhood U such that $S=\partial D \cap U$ is a ridge with Q a point of its edge E. Let n be the direction of S. As in the case of spires, there exists a constant $c>0$ such that either $Q+u n \in D$ for $0<u<c$ or $Q+u n \in C(\bar{D})$ for $0<u<c$. The ridge S is said to be inward directed in the first case and outward directed in the second case.
10.10. Outward directed ridges. We have the following analogue of Theorem 10.1 for ridges.

Theorem 10.5. If D is a domain in R^{3} whose boundary contains an outward directed ridge, then $K(D)=\infty$.

Proof. By performing a preliminary similarity transformation, we may assume that the edge of the ridge S is the line segment $x_{1}=x_{2}=0,\left|x_{3}\right|<1$, that its direction is $-e_{1}$, that $Q=0$, and that for some $a>0$

$$
S \cap B^{3}(a)=\partial D \cap B^{3}(a)
$$

Then S divides $B^{3}(a)$ into two domains, and since S is outward directed, $D \cap B^{3}(a)$ is the component of $B^{3}(a)-S$ which contains the interval $0<x_{1}<a, x_{2}=x_{3}=0$. Because S is a ridge, given $0<c<1$, we can choose $0<b<\frac{1}{2} a$ so that D separates ($b, b c, 0$) from $(b,-b c, 0)$ in $B^{3}\left(b e_{1}, b\right)$. Thus $C(D) \cap B^{3}\left(b e_{1}, b\right)$ has two components which meet $S^{2}\left(b e_{1}, b c\right)$, and we conclude from Theorem 6.1 that

$$
\begin{equation*}
K_{I}(D) \geqslant A \log \frac{1}{c} \tag{10.17}
\end{equation*}
$$

Letting $c \rightarrow 0$ in (10.17) yields $K_{I}(D)=\infty$, whence $K(D)=\infty$.
10.11. Inward directed ridges. In contrast to the above situation, there exist domains with inward directed ridges in their boundaries and finite coefficients. For example, given $0<a<\infty$, set $g(u)=\min \left(u^{2}, a^{2}\right)$ and let

$$
T=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad\left|x_{2}\right|=g\left(x_{1}\right), \quad x_{1} \geqslant 0\right\} .
$$

Then T bounds a domain $D \subset R^{3}$ which has an inward directed ridge in its boundary. For $x=\left(x_{1}, x_{2}, x_{3}\right) \in D$ let

$$
f_{1}(x)= \begin{cases}x-g\left(x_{1}\right)\left(\operatorname{sgn} x_{2}\right) e_{2} & \text { if } \quad x_{1} \geqslant 0, \\ x & \text { if } \quad x_{1}<0,\end{cases}
$$

where the function $\operatorname{sgn} u$ is defined to be $u /|u|$ when $u \neq 0$ and 0 when $u=0$. Then f is a homeomorphism of D onto a dihedral wedge D^{\prime} of angle 2π,

$$
D^{\prime}=\left\{x=\left(r, \theta, x_{3}\right): \quad 0<\theta<2 \pi, \quad|x|<\infty\right\}
$$

and $K\left(f_{1}\right) \leqslant(2 a+1)^{\frac{3}{3}}$ by virtue of Corollary 5.1. Now D^{\prime} has finite coefficients, since

$$
f_{2}\left(r, \theta, x_{3}\right)=\left(r, \frac{1}{2} \theta,\left(\frac{1}{2}\right)^{\frac{1}{3}} x_{3}\right)
$$

maps D^{\prime} onto a half space with $K\left(f_{2}\right)=2^{\frac{7}{f}}$. Finally because a may be chosen arbitrarily small, we obtain the following analogue of Theorem 10.2.

Theorem 10.6. For each $\varepsilon>0$ there exists a domain $D \subset R^{3}$ whose boundary contains an inward directed ridge and whose coefficients are within ε of the corresponding coefficients of a dihedral wedge of angle 2π.
10.12. An example. We consider next a class of domains analogous to those studied in section 10.5. Let g be any function which satisfies (10.2). Next let T be the plane $x_{1}=0$, S the ridge

$$
S=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad\left|x_{2}\right|=g\left(x_{1}\right), \quad 0<x_{1} \leqslant a\right\}
$$

and B the base of S,

$$
B=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad\left|x_{2}\right|<g(0), \quad x_{1}=0\right\} .
$$

Then $(T-B) \cup S$ is a surface which divides R^{3} into two domains. The domain which contains the negative half of the x_{1}-axis has infinite coefficients by Theorem 10.5. Let D be the other domain. We show that the coefficients of D remain bounded no matter how sharp we make the ridge S.

Theorem 10.7. For each such domain $D, K(D) \leqslant 2.6$.
Proof. Set

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(a-x_{1}, x_{2}, x_{3}\right), \quad f_{2}\left(r, \theta, x_{3}\right)=\left(r, \frac{3}{4} \theta,\left(\frac{3}{4}\right)^{\frac{1}{2}} x_{3}\right) .
$$

Then $t_{2} \circ f_{1}$ is a homeomorphism of D onto a domain D_{1}, which lies in the dihedral wedge $0<\theta<\frac{3}{2} \pi$, and

$$
K\left(f_{2} \circ f_{1}\right)=K\left(f_{2}\right)=\left(\frac{4}{3}\right)^{\frac{2}{2}}<1.25 .
$$

Now for each pair of points $Q_{1}, Q_{2} \in \partial D_{1}$, the angle between the segment $Q_{1} Q_{2}$ and the vector $e_{2}-e_{1}$ is never less than $\pi / 4$. Hence Corollary 5.1 yields a homeomorphism f_{3} of D_{1} onto the half space $x_{2}-x_{1}>0$ with

$$
\begin{aligned}
& K\left(f_{3}\right) \leqslant\left(\frac{5^{\frac{1}{2}}+1}{2}\right)^{\frac{3}{2}}<2.06 \\
& K(D) \leqslant K\left(f_{3} \circ f_{2} \circ f_{1}\right)<2.6
\end{aligned}
$$

and we conclude that
10.13. A lower bound. We conclude this section with the following implicit sharp lower bound for the coefficients of a domain whose boundary contains a ridge.

Theorem 10.8. If D is a domain in R^{3} whose boundary contains a ridge, then the coefficients of D are not less than the corresponding coefficients of a dihedral wedge of angle 2π.

Proof. Suppose that D contains a ridge in its boundary, and for $0<a<\infty$, let U be the open cube bounded by the planes $x_{1}=a \pm a, x_{2}= \pm a, x_{3}= \pm a$. By performing a preliminary similarity transformation, we may choose a so that

$$
\partial D \cap U=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad\left|x_{2}\right|=g\left(x_{1}\right), \quad 0<x_{1} \leqslant a, \quad\left|x_{3}\right|<a\right\},
$$

where g satisfies (10.2). Next by Theorem 10.5, we may assume that the ridge is inward directed and hence that

$$
C(D) \cap U=\left\{x=\left(x_{1}, x_{2}, x_{3}\right): \quad\left|x_{2}\right| \leqslant g\left(x_{1}\right), \quad 0<x_{1} \leqslant a, \quad\left|x_{3}\right|<a\right\} .
$$

Now fix b so that $\frac{1}{2} a<b<a$, set $h(u)$ equal to $g(u)$ for $b \leqslant u \leqslant a$ and 0 for $u>a$, and extend h so that $h(u)=h(2 b-u)$ for all u. Next for $x=\left(x_{1}, x_{2}, x_{3}\right) \in D$ let

$$
f(x)=\left\{\begin{array}{lll}
x-h\left(x_{1}\right)\left(\operatorname{sgn} x_{2}\right) e_{2} & \text { if } \quad\left|x_{3}\right|<a-b \\
x-h\left(x_{1}\right)\left(\operatorname{sgn} x_{2}\right)\left(\frac{a-\left|x_{3}\right|}{b}\right) e_{2} & \text { if } \quad a-b \leqslant\left|x_{3}\right| \leqslant a \\
x & \text { if } \quad\left|x_{3}\right|>a
\end{array}\right.
$$

Then f is a homeomorphism of D onto a domain D^{\prime} and

$$
D^{\prime} \cap B^{3}(Q, t)=\Delta^{\prime} \cap B^{3}(Q, t)
$$

where $Q=(a, 0,0), 0<t<a-b$, and Δ^{\prime} is a dihedral wedge of angle 2π. Using Corollary 5.1, we can show that $K(f) \rightarrow 1$ as $b \rightarrow a$, and hence the desired conclusion follows from Theorem 7.3.

11. The space of domains quasiconformally equivalent to a ball

11.1. Space of domains. Let \mathcal{D} denote the class of all domains $D \subset R^{3}$ with $K(D)<\infty$. Next given $D, D^{\prime} \in \mathcal{D}$, we define the distance between D and D^{\prime} as

$$
\begin{equation*}
d\left(D, D^{\prime}\right)=\inf _{f}(\log K(f)) \tag{11.1}
\end{equation*}
$$

where the infimum is taken over all homeomorphisms f of D onto D^{\prime}. We identify two domains D and D^{\prime} whenever $d\left(D, D^{\prime}\right)=0$. Then it is trivial to show that d is a metric on \mathcal{D}. In this final section we show that \mathcal{D} is complete and nonseparable under d.
11.2. Completeness. The completeness is equivalent to the following result.

Theorem 11.1. Suppose that $\left\{D_{n}\right\}$ is a sequence of domains in \mathcal{D} and that

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} d\left(D_{m}, D_{n}\right)=0 \tag{11.2}
\end{equation*}
$$

Then there exists a domain $D_{0} \in \mathcal{D}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(D_{n}, D_{0}\right)=0 \tag{11.3}
\end{equation*}
$$

Proof. By virtue of (11.2) we may choose a subsequence $\left\{n_{m}\right\}$ such that

$$
d\left(D_{n_{m}}, D_{n_{m+1}}\right)<2^{-m}
$$

for $m=1,2, \ldots$. Next fix a pair of distinct points $P_{0}, P_{1} \in D_{n_{1}}$, let f_{m} be a homeomorphism of $D_{n_{m}}$ onto $D_{n_{m+1}}$ with

$$
\begin{equation*}
\log K\left(f_{m}\right)<2^{-m}, \tag{11.4}
\end{equation*}
$$

and let φ_{m} be a Möbius transformation of $D_{n_{m}}$ onto a domain $D_{m}^{\prime} \subset R^{3}$, chosen so that $g_{m}\left(P_{0}\right)=P_{0}$ and $g_{m}\left(P_{1}\right)=P_{1}$ where

$$
g_{m}=\varphi_{m} \circ f_{m-1} \circ \ldots \circ f_{1}
$$

Then g_{m} is a homeomorphism of $D_{n_{1}}$ onto D_{m}^{\prime} and (11.4) implies that

$$
\log K\left(g_{m}\right)<1
$$

for all m. Hence by Lemma 5 of [6], the g_{m} are uniformly bounded and equicontinuous on each compact subset of $D_{n_{1}}$, and there exists a subsequence $\left\{m_{k}\right\}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} g_{m_{k}}(x)=g(x) \tag{11.5}
\end{equation*}
$$

uniformly on each compact subset of $D_{n_{1}}$. Since $g\left(P_{0}\right)=P_{0}$ and $g\left(P_{1}\right)=P_{1}$, Lemma 7 of [6] implies that g is a homeomorphism of $D_{n_{1}}$ onto a domain $D_{0} \subset R^{3}$. Fix m and for $m^{\prime}>m$ set

$$
h_{m^{\prime}}=g_{m^{\prime}} \circ f_{1}^{-1} \circ \ldots \circ f_{m-1}^{-1}=\varphi_{m^{\prime}} \circ f_{m^{\prime}-1} \circ \ldots \circ f_{m}
$$

5-652932 Acta mathematica 114. Imprimé le 11 août 1965.

Then $h_{m^{\prime}}$ is a homeomorphism of $D_{n_{m}}$ for which

$$
\begin{equation*}
\log K\left(h_{m^{\prime}}\right)<2^{-m+1}, \tag{11.6}
\end{equation*}
$$

and from (11.5) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} h_{m_{k}}(x)=h(x) \tag{11.7}
\end{equation*}
$$

uniformly on each compact subset of $D_{n m}$, where

$$
h=g \circ f_{1}^{-1} \circ \ldots \circ f_{m-1}^{-1} .
$$

Thus h is a homeomorphism of $D_{n_{m}}$ onto D_{0}, and from (11.6), (11.7), and Lemma 2.1 it follows that

$$
\log K(h) \leqslant 2^{-m+1}
$$

Hence

$$
\begin{equation*}
d\left(D_{n m}, D_{0}\right) \leqslant 2^{-m+1} \tag{11.8}
\end{equation*}
$$

and (11.3) follows from (11.2) and (11.8).
11.3. Lower bounds for the dilatations of a homeomorphism. We require the following result in the proof that \mathcal{D} is not separable.

Theorem 11.2. Suppose that D and D^{\prime} are domains in R^{3}, that U and U^{\prime} are neighborhoods of $Q \in \partial D$ and $Q^{\prime} \in \partial D^{\prime}$, and that $D \cap U=\Delta \cap U$ and $D^{\prime} \cap U^{\prime}=\Delta^{\prime} \cap U^{\prime}$, where Δ is a dihedral wedge with Q a point of its edge and Δ^{\prime} is a half space. If f is a homeomorphism of D onto D^{\prime} and if $f(P) \rightarrow Q^{\prime}$ as $P \rightarrow Q$ in D, then

$$
\begin{equation*}
K_{I}(f) \geqslant K_{I}(\Delta), \quad K_{0}(f) \geqslant K_{0}(\Delta), \quad K(f) \geqslant K(\Delta) . \tag{11.9}
\end{equation*}
$$

Proof. We may assume that $K(f)<\infty$, for otherwise there is nothing to prove. Next by performing preliminary translations, we may assume that $Q=Q^{\prime}=0$. Choose $a>0$ so that $B^{3}(a) \subset U$ and fix $P \in D$ with $|P|<a$. For each n let

$$
f_{n}(x)=a_{n} f\left(\frac{x}{n}\right)+Q_{n}^{\prime}
$$

where

$$
a_{n}=\left|f\left(\frac{P}{n}\right)\right|^{-1}, \quad Q_{n}^{\prime}=P^{\prime}-a_{n} f\left(\frac{P}{n}\right), \quad P^{\prime}=f(P)
$$

Then $f_{n}(P)=P^{\prime}$ and $\left|Q_{n}^{\prime}\right| \leqslant\left|P^{\prime}\right|+1$. Moreover, since $f(x) \rightarrow 0$ as $x \rightarrow 0$ in D,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=\infty \tag{11.10}
\end{equation*}
$$

Now let

$$
D_{n}=\left\{x: \quad \frac{x}{n} \in D\right\}, \quad D_{n}^{\prime}=\left\{a_{n} x+Q_{n}^{\prime}: \quad x \in D^{\prime}\right\}
$$

As in the proof of Theorem 2.3, $P \in D_{n}$ for all n and the D_{n} converge to their kernel Δ at P. Since f_{n} is a homeomorphism of D_{n} onto $D_{n}^{\prime}, P^{\prime} \in D_{n}^{\prime}$ for all n. Next because the Q_{n}^{\prime} are bounded, by choosing a subsequence and relabeling, we may assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q_{n}^{\prime}=Q^{\prime \prime} \tag{11.11}
\end{equation*}
$$

Using Theorem 11 of [4], one can prove that P^{\prime} has a neighborhood which is contained in all the D_{n}^{\prime}. Then with (11.10) and (11.11) it is easy to show that the D_{n}^{\prime} converge to their kernel $\Delta^{\prime \prime}$ at P^{\prime}, where $\Delta^{\prime \prime}$ is the half space Δ^{\prime} translated through $Q^{\prime \prime}$. Since $K\left(f_{n}\right)=K(f)<\infty$, Theorem 3 of [6] implies there exists a subsequence $\left\{n_{m}\right\}$ such that

$$
\lim _{m \rightarrow \infty} f_{n_{m}}(x)=g(x)
$$

uniformly on each compact subset of Δ, where g is a homeomorphism of Δ onto $\Delta^{\prime \prime}$. Hence we obtain

$$
K_{I}(\Delta) \leqslant K_{I}(g) \leqslant \liminf _{m \rightarrow \infty} K_{I}\left(f_{n_{m}}\right)=K_{I}(f)
$$

from Lemma 2.1, and the rest of (11.9) follows similarly.
11.4. Nonseparability. Finally we show that \mathcal{D} is nonseparable by establishing the following result.

Theorem 11.3. Given $0<a<\infty$, we can associate with each $b, 0<b<1$, a domain $D_{b} \in \mathcal{D}$ such that

$$
\begin{equation*}
d\left(D_{b}, B^{3}\right) \leqslant a \tag{11.12}
\end{equation*}
$$

for $0<b<1$ and such that

$$
\begin{equation*}
d\left(D_{b}, D_{b^{\prime}}\right) \geqslant c \tag{11.13}
\end{equation*}
$$

for $0<b, b^{\prime}<1, b \neq b^{\prime}$, where c is a positive constant which depends only on a.
Proof. Pick $m>0$ so that

$$
\begin{equation*}
\log (m+1)^{\frac{3}{2}}=a . \tag{11.14}
\end{equation*}
$$

With each $b, 0<b<1$, we can associate a sequence $\left\{b_{n}\right\}$ such that $b_{n}=0$ or 1 for each n and

$$
\begin{equation*}
b=\sum_{1}^{\infty} b_{n} 2^{-n} \tag{11.15}
\end{equation*}
$$

Next let $c_{0}=0$ and

$$
\begin{equation*}
c_{n}=\left(c_{n-1}+1\right) e^{b_{n}+1}+1>c_{n-1}+2 \tag{11.16}
\end{equation*}
$$

for $n=1,2, \ldots$ Then for $u \geqslant 0$ set

$$
g_{b}(u)= \begin{cases}\frac{m}{2}\left(1-\left(u-c_{n}\right)^{2}\right) & \text { if }\left|u-c_{n}\right| \leqslant 1 \text { for some } n \geqslant 0, \\ 0 & \text { if }\left|u-c_{n}\right|>1 \text { for all } n \geqslant 0,\end{cases}
$$

and let D_{b} be the domain

$$
D_{b}=\left\{x=\left(r, \theta, x_{3}\right): \quad g_{b}(r)<x_{3}<\infty, \quad 0 \leqslant r<\infty\right\} .
$$

It is not difficult to show that, for each pair of points $Q_{1}, Q_{2} \in \partial D_{b}$, the acute angle between the segment $Q_{1} Q_{2}$ and the vector e_{3} is not less than arc cot m. Hence Corollary 5.1 yields a homeomorphism f of D_{b} onto the half space $x_{3}>0$ for which

$$
\begin{equation*}
K(f) \leqslant(m+1)^{\frac{3}{2}}, \tag{11.17}
\end{equation*}
$$

and (11.12) follows from (11.14) and (11.17).
Let $\left\{b_{n}^{\prime}\right\},\left\{c_{n}^{\prime}\right\}$, and $D_{b^{\prime}}$ be the sequences and domain corresponding to a second number $b^{\prime} \neq b, 0<b^{\prime}<1$. To complete the proof of Theorem 11.3, we shall show that (11.13) holds with $c=\log M$, where

$$
\begin{equation*}
M=\left(1-\frac{\arctan m}{\pi}\right)^{-\frac{1}{2}}>1 \tag{11.18}
\end{equation*}
$$

Suppose this is not the case. Then there exists a homeomorphism f of D_{b} onto D_{b}, with

$$
\begin{equation*}
K(f)<M<2^{\frac{1}{2}} . \tag{11.19}
\end{equation*}
$$

Since D_{b} and $D_{b^{\prime}}$ are Jordan domains in \mathcal{D}, f induces a homeomorphism f^{*} of ∂D_{b} onto $\partial D_{b^{\prime}}$ [18]. Let E_{b} be the union of the circles $r=1, x_{3}=0$ and $r=c_{n} \pm 1, x_{3}=0, n=1,2, \ldots$ in ∂D_{b}, and let $E_{b^{\prime}}$ be the corresponding set in $\partial D_{b^{\prime}}$. We prove first that, because of (11.19), f^{*} maps E_{b} onto $E_{b^{\prime}}$.

Choose $Q \in E_{b}$ and suppose that $f^{*}(Q)$ is a finite point $Q^{\prime} \in \partial D_{b^{\prime}}-E_{b^{\prime}}$. Then $\partial D_{b^{\prime}}$ has a tangent plane at Q^{\prime}. Fix $\varepsilon>0$. Arguing essentially as in section 7.5, we can find $(1+\varepsilon)$ quasiconformal mappings h and h^{\prime} of R^{3} onto itself with the following properties: h carries D_{b} onto D, h^{\prime} carries $D_{b^{\prime}}$ onto D^{\prime}, and the points $h(Q)$ and $h^{\prime}\left(Q^{\prime}\right)$ have neighborhoods U and U^{\prime} such that $D \cap U=\Delta \cap U$ and $D^{\prime} \cap U^{\prime}=\Delta^{\prime} \cap U^{\prime}$, where Δ is a dihedral wedge of angle $\pi-\operatorname{arc} \tan m$ with $h(Q)$ as a point of its edge and where Δ^{\prime} is a half space. From (7.5), (11.9), and (11.18) it follows that

$$
\begin{gather*}
K_{I}\left(h^{\prime} \circ f \circ h^{-1}\right) \geqslant K_{I}(\Delta)=M, \\
K(f) \geqslant K_{I}(f) \geqslant(\mathbf{l}+\varepsilon)^{-2} M . \tag{11.20}
\end{gather*}
$$

and hence
Since (11.20) holds for all $\varepsilon>0$, we can let $\varepsilon \rightarrow 0$ to obtain an inequality which contradicts (11.19).

Suppose next that $f^{*}(Q)=\infty$, let C be the circle of E_{b} which contains Q, and let C^{\prime} be the image of C under f^{*}. Then $C^{\prime}-\{\infty\}$ is connected, and by what was proved above,

$$
C^{\prime}-\{\infty\} \subset E_{b^{\prime}}
$$

This means that $C^{\prime}-\{\infty\}$ must lie in one of the circles of $E_{b^{\prime}}$. Hence $C^{\prime}-\{\infty\}$ is bounded and this contradicts the assumption that $f^{*}(Q)=\infty$. We conclude that $f^{*}(Q) \in E_{b^{\prime}}$ as desired.

It follows that f^{*} must map each circle of E_{b} onto a circle of $E_{b^{\prime}}$. Let $C_{1}, C_{2}, \ldots, C_{n}, \ldots$ and $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}, \ldots$ be the circles of E_{b} and E_{b}, respectively, ordered according to increasing radii, let S_{n} be the bounded component of $\partial D_{b}-C_{n}$, and let S_{n}^{\prime} be the image of S_{n} under f^{*}. Then S_{n}^{\prime} and \bar{S}_{n}^{\prime} must contain exactly $n-1$ and n circles of $E_{b^{\prime}}$, respectively, and hence S_{n}^{\prime} is the bounded component of $\partial D_{b^{\prime}}-C_{n}^{\prime}$. In particular, this means that f^{*} maps the plane annulus

$$
A_{n}=\left\{x=\left(r, \theta, x_{3}\right): \quad c_{n-1}+1<r<c_{n}-1, \quad x_{3}=0\right\}
$$

onto the plane annulus

$$
A_{n}^{\prime}=\left\{x=\left(r, \theta, x_{3}\right): c_{n-1}^{\prime}+1<r<c_{n}^{\prime}-1, x_{3}=0\right\}
$$

for $n=1,2, \ldots$, and from (11.16) we obtain

$$
\begin{equation*}
\left(b_{n}^{\prime}+1\right) \leqslant K\left(f^{*}\right)\left(b_{n}+1\right), \quad\left(b_{n}+1\right) \leqslant K\left(f^{*}\right)\left(b_{n}^{\prime}+1\right) . \tag{11.21}
\end{equation*}
$$

Theorem 4.3 and (11.19) imply that

$$
\begin{equation*}
K\left(f^{*}\right) \leqslant K(f)^{2}<2 \tag{11.22}
\end{equation*}
$$

and combining (11.21) and (11.22) yields

$$
\begin{equation*}
\left(b_{n}^{\prime}+1\right)<2\left(b_{n}+1\right),\left(b_{n}+1\right)<2\left(b_{n}^{\prime}+1\right) \tag{11.23}
\end{equation*}
$$

for $n=1,2, \ldots$. Finally since b_{n} and b_{n}^{\prime} take on only the values 0 and 1 , (11.23) implies that $b_{n}=b_{n}^{\prime}$ for all n, and hence that $b=b^{\prime}$ by virtue of (11.15) and its counterpart for b^{\prime}. This contradicts the hypothesis that $b \neq b^{\prime}$. Hence (11.13) must hold with $c=\log M$, and the proof for Theorem 11.3 is complete.

References

[I]. Carathéodory, C., Über das lineare Mass von Punktmengen - eine Verallgemeinerung des Längenbegriffs. Nachr. Ges. Wiss. Göttingen (1914), 404-426.
[2]. Gehring, F. W., Symmetrization of rings in space. Trans. Amer, Math. Soc., 101 (1961), 499-519.
[3]. -. Extremal length definitions for the conformal capacity of rings in space. Michigan Math. J., 9 (1962), 137-150.
[4]. -, Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., 103 (1962), 353-393.
[5]. ——, Quasiconformal mappings in space. Bull. Amer. Math. Soc., 69 (1963), 146-164.
[6]. --, The Carathéodory convergence theorem for quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. AI, 336/11 (1963), 1-21.
[7]. Hersch, J., Longueurs extrémales et théorie des fonctions. Comment. Math. Helv., 29 (1955), 301-337.
[8]. Krivov, V. V., Extremal quasiconformal mappings in space. Dokl. Akad. Nauk SSSR, 145 (1962), 516-518.
[9]. Loewner, C., On the conformal capacity in space. J. Math. Mech., 8 (1959), 411-414. [10]. Marstrand, J. M., Hausdorff two-dimensional measure in 3-space. Proc. London Math. Soc. (3), 11 (1961), 91-108.
[11]. Newman, M. H. A., Elements of the Topology of Plane Sets of Points. Cambridge University Press, 1954.
[12]. Pólya, G. and Szegö, G., Isoperimetric Inequalities in Mathematical Physics. Ann. of Math. Studies 27, Princeton University Press, 1951.
[13]. Šabat, B. V., The modulus method in space. Dokl. Akad. Nauk SSSR, 130 (1960), 12101213.
[14]. --, On the theory of quasiconformal mappings in space. Dokl. Akad. Nauk SSSR, 132 (1960), 1045-1048.
[15]. Saks, S., Theory of the Integral. Warsaw, 1937.
[16]. Teichmüller, O., Untersuchungen über konforme und quasikonforme Abbildung. Deutsche Math., 3 (1938), 621-678.
[17]. Värsälä, J., On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. AI, 298 (1961), 1-36.
[18]. --, On quasiconformal mappings of a ball. Ann. Acad. Sci. Fenn. Ser. AI, 304 (1961), 1-7.
[19]. --, On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. AI, 322 (1962), 1-12.
[20]. Zorič, V. A., On a correspondence of boundaries for Q-quasiconformal mappings of a sphere. Dokl. Akad. Nauk SSSR, 145 (1962), 31-34.
[21]. -- Correspondence of the boundaries in Q-quasiconformal mapping of a sphere. Dokl. Akad. Nauk SSSR, 145 (1962), 1209-1212.

[^0]: ${ }^{(1)}$ Suppose that S is a plane domain. If f is ACA in S, then f is clearly ACL in S. Conversely, if f is ACL in S and if the partial derivatives of f are locally L^{2}-integrable in S, then f is ACA by Lemma 4.1 of [17].

