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1. Introduction 

At present a great deal is known about the value distribution of systems of mero- 

morphic functions on an open Riemann surface. One has the beautiful results of Picard, 

E. Borel, Nevanlinna, Ahlfors, H. and J. Weyl and many others to point to. (See [1], [2].) 

The aim of this paper is to make the initial step towards an n-dimensional analogue of 

this theory. 

A natural general setting for the value distribution theory is the following one. We 

consider a complex n-manifold X and a holomorphic vector bundle E over X whose fiber 

dimension equals the dimension of X and wish to study the zero-sets of holomorphic 

sections of E. 

When X is compact (and without boundary) then it is well-known that  if the zeroes of 

any continuous section are counted properly then the algebraic sum of these zero-points 

is independent of the section and is given by the integral of the nth Chern(2) class of E 

over X: Thus we have 

zeroes of s = |  cn(E), (1.1) Number of  
J x 

and this formula is especially meaningful for a holomorphic section because the indexes 

of all the isolated zeroes of such a section are necessarily positive. 

The central question of the value distribution theory is to describe the behavior of 

the zeroes of holomorphic sections when X is not compact. (For continuous sections there 
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are no restrictions in that case, for instance there is always a section which does not vanish 

at all!) 

The main results, all concerned with the case d imX = 1, then take the following form. 

One considers a finite-dimensional "sufficiently ample" subspace V of the space of all 

holomorphic sections of E and shows that  under suitable convexity conditions on E and 

X "most" of the sections in V vanish the "same number of times". Depending on how 

"most"  and "same number of times" are defined, one gets results of various degrees of 

delicacy and difficulty. For example, the classical Picard theorem asserts that  when X 

is the Gauss-plane, so that E may be taken as the trivial line bundle C, and dim V=2,  

then at most 2 sections of V in general position can fail to vanish on X. The Borel generali- 

zation of this theorem asserts that  when dim V = n, then at most n sections in V, in general 

position, can fail to vanish. Here, as throughout, the term general position is used in the 

following sense: A set of n elements v: .... , vn of a vector-space V is called in general position, 

if any subset of k elements span a/c-dimensional subspace of V, for k = 1 ..... dim V. 

In  the Nevanlinna theory one again deals with X = C, dim V = 2, but  now a deficiency 

index ~(s) is defined for every sE V - 0 ,  which measures the extent to which s behaves 

unlike the generic section in V. In  particular (~ has the properties (~(~s)=~(s), if ~ E C - 0 ;  

0 <~(s)~< 1; and finally: (~(s)= 1 if s does not vanish on X. The "first main theorem" may 

then be interpreted as asserting that ~ considered as a function on the projective space 

P:(V) of lines in V, is equal to 0 almost everywhere. Thus "most" sections in the measure 

sense behave the same way. 

The second main theorem yields the much stronger inequality: 

~(s,) -<<2 (1.2) 
|=1  

valid for any system of sections s~ E V in general position. The Ahlfors generalization deals 

with the case dim V = n  and again proves among other things that 6(s)=0 nearly every- 

where, and that now the inequality 

(~(s~) < n 
t=1 

is valid for any system of s~ E V, which are in general position. 

Usually these results are stated in terms of maps of X into the Riemann-sphere, 

(i.e., meromorphic functions) for the Picard and Nevanlinna theory, while the Borel and 

Ahlfors generalizations deal with maps of X into complex projective spaces of higher 

dimensions. The transition to our formulation is quite trivial. Indeed consider the evalua- 

tion map: ex: V-->E x which attaches to each section in V, the value of s at x. By definition, 

a space of sections V will be "sufficiently ample" if and only if: 
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~) ex: V-->Ex is onto for each xEX. 

/~) V contains a section which vanishes to the first order at some point of X. 

Now let k(x) be the kernel of e x. This is then a subspaee of a fixed dimension 

m = d i m V - d i m  Ex, in V, so that  the assignment x--->k(x) defines a map ev:X---~P,~(V) 

of X into the Grassmannian of m-dimensional subspaces in V. 

Now for each s C V, let z(s) be the subvariety of P,~(V) consisting of those subspaces 

which contain 8. Then, for s ~-0, z(s) has codimension n in P,~(V), and it is clear that  the 

zeroes of s on X correspond precisely to the intersections of ev(X) with z(s) in P,~(V). 

In  particular, when dim E z is 1, Pro(V) is just a projective space, and z(s) is a hyper- 

plane, so that  we may reformulate our statements in the terms of the number of hyper- 

planes which the image of X avoids. 

Conversely, starting with a map e:X-->Pm(V), one may pull back the quotient bundle 

of Pro(V) (see the end of Section 6) to obtain a bundle E over X, together with a finite 

dimensional subspace, V, of sections of E, for which ev=e. Indeed, let K c  X • V, consist 

of the subset (x, v) for which v Ee(x). Then K is a sub-bundle of the trivial bundle X • V, 

and the corresponding quotient bundle, X • V/K is the desired bundle E. The constant 

sections of X • V over X, then go over into the desired subspace, V, of sections of E. Thus 

these two points of view are 5ompletely equivalent. 

The aim of this paper is to discuss the n-dimensional case and we are able to push to 

an analogue of the first main theorem. Thus we obtain the weak equidistribution in the 

measure sense only. On the other hand this generalization is not quite immediate and in 

fact depends on a formula in the theory of characteristic classes, which seems to us of 

independent interest. To formulate this result we need to recall two facts: Namely 1) That  

the complex structure on X induces a natural "twisted boundary operator", d c, on the real 

differential forms, A(X), of X, and 2) That a given Hermitian structure on E determines 

definite representatives, ck(E)EA(X), ]c=l ,  ..., n, of the Chern classes of E. With this 

understood, we consider a given Hermitian, complex n-bundle E, over X and its Chern 

form cn(E) eA(X).  Also let B*(E) = (e e E l0  < l e I < 1} be the subset of vectors in e which 

are of length greater than 0 and length less than 1, and set ~:B*(E)-->X equal to the 

natural projection. Then our first and principal result is expressed by the theorem: 

THEOREM I. There exists a real valued/orm ~ on B*(E) which is o/type ( n - l ,  n - l )  

and/or which 
dd c 

:~*cn (E) = ~  e- (1.3) 

Further i / E  is non-negative then Q may be chosen to be non-negative. 
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Remark  tha t  B*(E) has the homotopy type of the unit sphere bundle S(E), of E, 

and it is of course well known tha t  cn(E), when lifted to S(E), becomes a boundary. Hence 

Theorem I refines this result for the complex analytic model B*(X) of S(E). 

The method which leads to Theorem I also yields the following auxiliary result. 

PROPOSITION 1.4. Let E be a complex analytic bundle and let e(E) and c'(E) be the 

Chern ]orms o/ E relative to two different Hermitian structures. Then c(E)-c ' (E)=ddc'2  

/or some 2. 

In  other words, if we define/~k(X) by: 

I:F(X) = Ak'k(X) ~ Ker  (d)/ddCAk-l"~-l(X) 

then the class in/~*(X) =~I:Ik(X) of the Chern form c(E), of E relative to some Hermit ian 

structure on E, is independent of tha t  Hermit ian structure, so tha t  we may  define a 

"refined Chern class" d(E)E/~*(X). (Cf. Section 3 for definition of A k'k (X).) 

In  fact, Theorem I will follow directly from the following Whitney type duality 

theorem concerning these refined Cheru classes: 

PROPOSITION 1.5. Let O-->E'--->E-->E"--->O be an exact sequence o/ holomorphic 

vector-bundles over X. Then their refined Chern classes satis/y the duality ]ormula: 

~(E') .d(E') = d(E). 

The formula (1.2) is very pert inant  for the whole Nevanlinna theory; for instance in 

the one-dimensional case, ~ is just a real valued function on B*(E), and is seen to be minus 

the logarithmic "height" function: 

Q(e)= - l o g  I(e)l ~, eEB*(E). 

Indeed one may  roughly express the situation by saying tha t  the first "main inequality" 

of the Nevanlinna theory is just a twice integrated version of (1.3). 

The plan of the paper  is as follows: In  Section 2 we review the theory of characteristic 

classes as found in [3], [5]. We then go on to refine this theory for complex analytic Her- 

mitian bundles in Sections 3 to 5. Section 6 is devoted to a proof of the generalized Gauss- 

Bonnet theorem which fits into the context of this paper. In  Section 7 we define the order 

function, while in Section 8 we formulate and s tar t  to prove the eqnidistribution theorem. 

Sections 9 and 10 then complete this proof. Our final section brings a leisurely account of 

the classical Nevanlinna theorem. This Section 11 is included primarily to show how much 

more will have to be done before an n-dimensional analogue of this delicate theorem is 

established. 
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2. Curvature and characterist ic  c lasses  

In  this section E will denote a C~ over the Coo manifold X. We write T = T(X)  

for the cotangent bundle of X, and A ( X ) ~ A ~ ( X )  for the graded ring of Coo complex 

valued differential forms on X. The differential operator on A(X)  is denoted by d. More 

generally we write A(X; E) for the differential forms on X with values in E. Thus if F(E) 

denotes the C ~ sections of E, then A(X; E ) =  A (X)| Aocx)F(E). 

The natural pairing from F(E) |  A~ to F(E@ F)(1) will often be written simply 

as multiplication. 

Our aim here is to give an elementary and essentially selfeontained review of the 

geometric theory of characteristic classes, as developed by Chern and Weil. More precisely, 

we will describe how the curvature of a connection on the vector bundle E can be used 

to construct closed differential forms on X whose cohomology classes are independent of 

the connection chosen and therefore furnish topological invariants of the bundle E. Of the 

many definitions of a connection we will use the differential operator one. I t  leads to the 

simplest local formulae. We will also thereby avoid the possibly less elementary concept 

of principal bundles. For a more general account of this theory see [3], [4], [5]. 

DEF~NITIO~ 2.1. A connection on E is a di/]erential operator D: F( E)---~-F( T* | E) 

which is a derivation in the sense that ]or any ] EA~ 

D(/s)=d].s§  s e t ( E ) .  (2.2) 

Remarks. In  general a differential operator from F(E) to F(F) is just a C-linear map 

which decreases supports. If  such an operator is also A~ linear, then it is induced by a 

]inear map from E to F, i.e., by a section of Hom (E, F). Thus if D 1 and D 2 are connec- 

tions then D ~ -  D 2 is induced by an element of 

F Horn (E*, T*|  Hom (E, E)). 

Suppose now that  E is equipped with a definite connection D. One may then construct 

the Chern form of E relative to the connection D in the following manner. 

Let S = (s~}, i = 1, ..., n be a set of sections (2) of E I U where U is open in X, such that  

the values (s~(x)} form a base for each E~, with xE U. (Such a set s will be called a / rame 

of E over U.) In view of (2.2) a formula of the type: 

Dst = ~. 0~) 8t, 0ii E AI(U), (2.3) 
J 

(1) The tensor product is over C unless otherwise indicated. 
(2) We will be dealing with smooth sections throughout. 
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must then exist and serves to define a matrix of 1-forms on U: O(s; D)=H0~sH--the so- 

called connection matrix relative to the frame s. 

In  terms of O(s, D) one now defines a matrix g(s, D ) =  Ilg~j]] of 2-forms on V by the 

formula: Ktj=dO~j-~O~ A O~j. In  matrix notation: 

K(s, D)=dO(s, D)-O(s, D)AO(s, D). (2.4) 

This is the curvature matrix of D relative to the frame s. Because even forms commute 

with one another it makes sense to take the determinant of the matrix 1 § D)/2g 
and so to obtain an element det {1 + iK(s, D)/2g} E A(U). 

A priori, this form depends on the frame s. However as we will show in a moment, 

det {l§ D)/2g} is actually independent of the frame s, and therefore defines a 

global form, the Chern form of E relative to D, c(E, D) in A(X). More precisely c(E, D) 
is defined as follows: We cover X by {U~} which admit frames s ~ over U~, and then set 

c(E, D)]U~ =de t  {1 +iK(s ~, D)/2~}. On the overlap these definitions agree because of the 

asserted independence of our form on the frame s. 

Consider then two frames s and s' over U. Then there exist elements AijEA~ such 

that  s[ =~sAljsj and in matrix notation we write simply s' =As. From (2.2) it follows 

that  Ds'={dA+AO(s, D)}s. Further, by definition, Ds'=O(s', D)s'. Hence the connec- 

tion matrices are related by 
dA +AO(s, D)=O(s', D)A, s' =As, (2.5) 

from which one directly derives the important formula: 

AK(s, D)=K(s', D)A, s'=As. (2.6) 

This transformation law of the curvature matrix, together with the invariance of the 

determinant under conjugation now immediately implies the desired independence of 

our form det {1 +iK(s, D)/2~} on s. 

Thus we now have defined c(E, D) explicitly and our next aim is to show tha t  

c(E, D) is closed and its cohomology class independent of D. For this purpose it is expedient 

to analyse the above construction a little more carefully, and then to generalize the whole 

situation. 

Note first of all that  the transformation law (2.6) is characteristic of the elements of 

A(X; Hom (E, E)). Indeed if ~EAP(X; Horn (E, E)) and if s is a frame for E over U, then 

determines a matrix of p-forms ~(s)= II~(s),j[ I by the formula: 

~(s),j 8j = ~ .  84, 8 = {8,}, (2.7)  
1 

and under the substitution s'=As, these matrices transform by the law ~(s')A =A~(s). 
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The converse is equally true so that  in particular the curvature matrix K(s, D) represents a 

definite element K[E, D] EA2(X; Horn (E, E)). 

Next we observe tha t  the "determinant construction" really becomes more under- 

standable when formulated in this manner. 

We let M n denote the vector-space of n • n matrices over (~. A k-linear function ~ on 

Mn will be called invariant if for all yEGL(n, C): 

~(Xi . . . . .  Xk ) =qJ(yxly-1, YX2 y-1 ..... yxky-1), x~EM n. (2.8) 

The vector-space of all ]c-linear invariant forms shall be denoted by I~(M~). Now given 

~EIk(M~) and U c X ,  we extend ~ to a ]c-linear map denoted by ~v---ffom M~| 

to A(U) by setting: 

q~u(XlWl, x2w2 .... , XkWk)=qD(Xl ..... Xk)WlAW2A ... AWk, x~EM~, wiEA(U). (2.9) 

With this understood consider ]c elements ~ E A(X; Hom (E, E)) and let ~ E Ik(M~). I t  is 

then clear that  there is a well-defined form ~(~1 ..... ~k) EA(X), which has the local descrip- 

tion: 

Given a frame s over U, then 

~(~1 ..... ~ ) [ V  =~{~l(s)  ..... ~(s)} (2.10) 

where the ~i(s) are the matrices of ~ relative to s and hence elements of A(U)| M n. 

We will abbreviate ~(~, ~ ..... ~) i.e., the case all ~t equal, to ~((~)). Now given a con- 

nection D on E, and a q~EIk(Mn) we have well-determined forms ~((K[E, D])) and 

~((1 +iK[E, D]/2~)) in A(X), and our Chern form is clearly of the latter type. Indeed we 

need only take for ~0 the n-multilinear form det on M,  obtained by polarizing the poly- 

nomial function x->det  x on M~, to describe the Chern form in the present frame work: 

c(E, D) =de t  ((1 +iK[E, D]/2~)). (2.11) 

I t  is now also an easy matter to construct elements ~ E Ik(Mn) so that  

c(E, D)=~0k( (K[~  , D])). 

In short, the two properties of c(E, D) which we are after will follow from the more con- 

ceptual assertion that  for any ~ E Ik(Mn), the form ~((K[E, D])) is closed and its homology 

class independent of D. 

We will now derive both these properties from the invariance identity (2.8). Note 

first that  differentiation with respect to y leads to the identity 

k 

~(x I . . . . .  [x~, y] . . . .  xk) = 0, x~,yeMn (2.12) 
=1 
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and conversely--because GL(n, C) is connected--(2.12) implies (2.8). This identity now 

generalizes in a straight forward manner to the extension of ~u and takes the following 

form in matrix notation. An element x~EMn|  (called of deg p) is represented by 

a matrix of p-/orms. Matrix multiplication therefore gives rise to a pairing x|  A y, 

of elements of deg p and deg q to elements of deg (p+q).  In terms of this multiplica- 

tion one now defines the bracket Ix r, yq] by the usual formula for graded Lie-algebras: 

Ix p, yq] = x  A y - ( - 1)~qy A x. (2.13) 

In this terminology the following invarianee law for any ~ EIk(Mn)fol lows directly 

from (2.9) and (2.10) and (2.12): 

( - 1) qr(~) q~u(X 1 . . . . .  [x~, y/ . . . . .  xk) = 0 (2.14) 

whenever the x~ and y are homogeneous elements with q=deg  y, an d / ( a )  = ~ > ~  deg x~. 

From the derivation property of d it follows further that,  with the x~ as above: 

d q~v(x 1 . . . . .  xk) = ~ ( - 1)g(~)~)U(XI . . . . .  dx . . . . . .  xk) (2.15) 

where now g(~) = ~ < ~  deg x~. 

PROPOSITIO~ 2.16. Let D be a connection /or E over X ,  and let q~ be an invariant 

/orm on M~. Then ~0((K[E, D])) /s  closed. 

Proo/. This is a local matter. Hence it is sufficient to show that  if s is a frame over U, 

then ~u((K)), K = K ( s ,  D), is closed on U. From (2.14) we obtain 

k 
d~v((g))  = ~ ~ou(g . . . . .  d g  . . . .  , K).  

On the other hand the definition, (2.4), of K(s, D) immediately implies the "Bianehi- 

identity": 
dK(s, D ) =  - [ K ( s ,  D), O(s, D)]. (2.17) 

Substituting (2.17) and applying (2.14) now yields the desired result. 

PROPOSITIO~ 2.18. Let D t be'a smooth one parameter /amily  o/connections on E.  

Then the /unction s-->dDts/dt , sEF(E),  is A~ and hence determines an element 

i ) tEA~(X;  Hom (E, E)). 

Further 4/q~ e Ik(M~), then 

I: q~((K[E, Dt] ) )=d f i  ~ ' ((K[E,  Dt];i)t))dt (2.19) 

where ~'((~;~)) stands/or  ~qg(~ . . . .  ,~ . . . . . .  ~). (1) 

( i) l ab/(t) s t a n d s  for  ](b)-](a). 
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Proo/. We have d d d/s} d 
~ D J s  =~ t { /D t s+  =/~tDts .  

This proves the first part,  and so in particular tha t  ~ ' ((K[E,  Dt] , Dr)) is a well defined 

form. For the rest we may  work locally relative to a frame s over U. I t  is then easy to see 

tha t  the matr ix  of Dt relative to s is simply the t-derivative (denoted by  a dot) of t h e  

connection from 0 =O(s, Dr). Thus/) t (s )  = 0. Hence (2.19) will follow from the identi ty 

~((K))[U=d~cfv(K ..... K,O,K, ...,K); K=K(s ,  Dt). (2.20) 
(i) 

Consider now the right hand side (=R.H.S . )  of this expression. By (2.15) and (2.17) we 

obtain: 

R.H.S = - ~ ~.. ~u(K; ...; [K, 0]; . . . ;  0; .... K) 

+ ~ ~v(K; .... K; dO; K . . . . .  K) 
(~) 

+ ~ ~ ~u(K . . . . .  0 . . . . .  [K, 0], K). 
~>~ (~) 

Using (2.14) this simplifies to: 

R.H.S. = ~ ere(K,..., K, dO - [O, 0], K, ..., K). 
(O 

Finally we 

form: 

recall t ha t  K = dO - 0 A 0. Henee/~ = dO - [0, 0]. Thus the R.H.S. takes the 

k 

q~v(K . . . . .  g . . . . .  K) 
j=i (1) 

which manifestly is just the left hand side ~b((K)). Q.E.D. 

COROLLARY 2.21. The cohomology class o/q~((K[E, D])) is independent o/the connec- 

tion on E. 

Indeed if D 1 and D o are two connections on E then for each t, D t = t D l + ( 1 - t ) D  o 

is again a connection on E. Hence (2.19) implies the corollary. 

Remarks. This concludes our elementary and therefore necessarily rather  pedestrian 

account of the theory of characteristic classes for vector-bundles. A slightly more conceptual 

pa th  to the same results might run along these lines. 

One first notes the following general properties: 

(2.22). A pairing of bundles from E Q F  to G induces a pairing from 

AP(X; E)| F) 
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to A~+q(X; G) by combining the above pairing with exterior multiplication. All pairings 

of this type will be written as a multiplication, i.e., denoted by a dot. 

(2.23). I f  D is a connection for E, then the dual bundle E* has a unique connection 

- -a l so  denoted by  D--which  satisfies the equation 

d(8, 8"~ =(Ds, s*~ +(s ,  Ds*~, s~F(E) ,  8*~F(E*). 

(2.24). I f  D~ are connections on Et, i = 1, 2 then the formula 

D(sl | = Dl si" s2 + sl. D2s~ 

defines a connection on E 1 | E~, s t E F(Ei). 

(2.25). The connection D on E extends uniquely to an antiderivation of the A(X) 

module A(X; E), i.e., so as to satisfy the law: 

D(O.s)=dO.s+(-1)~O.Ds, OEA~(X), sEF(E) .  

Now, with these trivialities out of the way, one may  argue as follows. First one shows 

tha t  there is a unique element K[E, D]EA~(X; Hom (E, E)) such tha t  

D~s=K[E, D].s for any sEF(E).  

One next  observes (as we did) tha t  ~o e Ik(M~) defines a definite homomorphism 

~ : H o m ( E ,  E)(k)--~ 1, 

of the kth tensor power of Hom(E,  E) into the trivial bundle, and so induces a map 

cp:A(X, Horn (E, E)(k))--> A(X). 

Now, our earlier ~((K[E, D])) is defined simply as rf{K[E, D]~)}. 

One next  shows tha t  extension to A(X; Horn (E, E) (k)) of the connection which D 

induced on Hom(E,  E) k, by  (2.23) and (2.24) is compatible, with ~. That  is, 

d~ =~0. D. 

Then the proof of Proposition 2.21 follows directly from this compatibili ty and the 

Bianchi-identity : D K = O. 

3. Hermitian vector-bundles 

Let  E be a vector-bundie over X. Then a real-valued func t ion /Y:E-->R is said to 

define a hermitian structure on E - - o r  more briefly to be a norm for E if the restriction of 

N to any fiber is a Hermit ian norm on tha t  fiber. Thus for each xEX, the expression: 
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-~ {lV(u + v) - N(u) - N(v)} + i~ {2V(n + i v )  - N ( u )  - 2V(v)}, u, v e E~ 

is to define a positive definite Hermit ian form on Ex. This form will generally be denoted 

by  <u, v},, or simply <u, v>, and upon occasion by  <u, v>~. We of course have N(u) = <u, u}. 

When a complex analytic bundle is endowed with a norm, then the inter-play between 

these two structures gives rise to several interesting phenomena which will be reviewed 

in this section. 

Recall first of all tha t  on a complex manifold the complex valued differential forms 

A(X)  split into a direct sum ~ Av'q(X) where AP.q(X) is generated over A~ by  forms 

of the type d/1 A... A d/p/\ d[v+~ A... A d[v+q, the ], being local holomorphic functions on X. 

As a consequence d splits into d'+ d" where 

d':AP'q'->A € and d" :A"q-->A p'q+l. 

These two halves of d are then related by: 

d'2 =d"2 =0,  d'd"+d"d'=O. (3.1) 

I f  E is a vector-bundle over X, then this decomposition of A(X) induces a correspond- 

ing decomposition of A(X; E) into A"q(X,E)=AP'q(X)QA,(x)F(E),  and hence any 

connection D on E, splits canonically into the sum of 

D':F(E)-->AI'~ E) and D":F(E)-*A~ E). 

With these preliminaries out of the way we come to the first consequence of the simul- 

taneous existence of a holomorphic and Hermit ian structure on E. 

PROPOSITION 3.2. Let :Y be a Hermitian norm on the analytic bundle E. Then N 

induces a canonical connection D = D(N) on E which is characterized by the two conditions: 

(3.3) D preserves the norm ~Y. 

(3.4) I / s  is a holomorphic section o/ E I U then D"s=O on U. 

The first condition is expressed by the formula: 

d<s, s'>=<Ds, s '>+<s,  Ds'>, s, s ' e F ( E ) ,  (3.5) 

where we defined @, s'> as the function <s, s'> (x) = @(x), s'(x)> x and we have in general 

set <s| s' | equal to 0 AO'.(s, s'>. 

The proof of Proposition 3.2 is straightforward. I f  s is a frame for E, over U, we 

write N(s) for the matr ix  of functions: 

N(s) = II<~. s~>ll. (36)  
6--652932 Acta mathematica 114. Imprim6 le 11 ao~t 1965. 
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This is the  norm of the  frame.  Now, let s be a holomorphic  f rame  over  U, and  let  0 be a 

prospect ive  connection ma t r ix  for  E,  relat ive to s. Then  (3.5) applied to all the pairs 

(s  j, sk) implies the  relat ion 
OiV +NOt=d]V, N = N ( s ) .  (3.7) 

Hence  if 0 is to sat isfy this condition, and is also to be of type  (1, 0) so as to sat isfy (3.4), 

then  we mus t  have: 
O = d ' N . N  -1 on U. (3.8) 

Thus there  is a t  mos t  one connection with the  propert ies  (3.5) and  (3.6). 

Conversely, let s={s~} be a holomorphic f rame  over  U, and set  N(s)=H(s~, s j )  H as 

before. Then the  formula:  
D s i = ~  (d 'N 'N-1) i j sp  N = N ( s ) ,  (3.9) 

defines a connection over  U, which is seen to be independent  of the  holomorphic f rame  s 

chosen, and  hence induces a global connection D(N) on E which manifes t ly  satisfies the 

condit ion of our proposit ion.  The independence of D on s is p roved  as follows: 

Le t  s l = A s  be another  holomorphic f rame,  over  U. Then dA =d 'A ,  because A is a 

holomorphic  mat r ix .  Fu r the r  2V 1 = N(sl)  = A N,~ t. Hence 

d ' N  1 �9 N {  1 = dA . A-1 + A d ' N .  N-1A-1  

which shows t h a t  the matr ices  O(s, N) :=d 'N .  N -1, N = N ( s ) t r a n s f o r m  like the connection 

ma t r ix  of a connection�9 

CO~OLI, ARu 3.10. Let E be a holomorphic bundle with Hermitian norm N ,  and let 

O, K denote the connection and curvature matrices o] D(N)  relative to a holomorphic /rame over 

U. Then on U one has: 
0 is o / t ype  (1, 0), and d'O = 0  A 0. (3.11) 

K=d"O, whence K is o / type  (1, 1) and d " . K = O .  (3.12) 

d ' K  = - [K, 0]. (3.13) 

Proo/. The first line follows direct ly f rom 0 = d ' h r ' N - 1 ,  where N =N(s )  is the norm of s. 

Indeed  d'O = d 'd 'N .  N -1 - d ' N .  d ' N  -1 and d ' N  -1 = - N -1. d 'N .  N -1. The others are even more  

s t ra ightforward.  Note  t ha t  because K is of type  (1, 1), the characteristic classes ol the con- 

nection D(N)  always are o[ type (p, p). 

These formulae become especially simple when E is a line bundle. Then a holomorphic  

f rame is s imply a nonvanishing holomorphic  section s, so tha t ,  relat ive to s, 0 =d'  log At(s) 

and  K =d"d' log N(s).  Thus in part icular ,  if E admi ts  a global nonvanishing holomorphie  

section s, then  

c~(E) = ,*---_d"d' log At(s). (3.14) 
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The next  proposition is a refinement of the earlier homotopy formula (2.19). For 

simplicity, we will abbreviate K/E,  D(N)] to K/E,  N]. 

PROPOSITZO~ 3.15. Consider a smooth/amily o/norms Nt, on the holomorphic bundle 

E. Then the /unction (s, s') -->d(s, s'}NJdt is Hermitian linear over A~ and hence deter- 

mines a section LtEF Hom (E, E), by the /ormula 

, d 
<Lt" s, s )N~ = ~ <s, s )N~, s, s' e F(E).  

I /rp is any invariant [orm in Ik(M,); n = dim E, then 

l: q~((K[E, N t ] ) ) = d " d ' ; ~ '  ((K[E,N,];L~))dt, (3.16) 

where, as be/ore, ~'((~; ~)) = ~i ~(~, ..-, ~, ~, ~ . . . . .  ~). 
(i) 

d , ,  -, d , 
Proo[. We have ~ ( / s , /  s ~ =/] .~ t ( s , s  ~; 

so that  L is well defined. Hence ~'((K[E, N~]; Lt)) is a global form and it suffices to check 

the formula 
d 

~((K[E, Nt])) = d"d'q/((g[E, Nt]; Lt)) (3.17~ 

locally. We therefore choose a holomorphic frame s=(s~} over U, and set N=Nt(s) , :  

I~ =K(s,  D(N~)), 0 =O(s, D(Nt) ). Then the matrix of L relative to s, is easily computed t o  

be ~ N  -1, the dot denoting the t-derivative as before. Let  us denote this matrix by L also.. 

Finally, we will abbreviate ~'((K[E, Nt]; L~))] U to D. Then 

d ' D  = ~ ( g  . . . . .  -[K,O] . . . .  , L  . . . . .  K ) +  ~q~(g . . . . .  d 'L . . . . .  K).  (3.18)~ 

Applying the invariance identity one obtains 

d 'D  = ~ q~(K . . . . .  d ' L §  [L, 0] . . . . .  K). (3.19). 
i (j) 

FinaLly, one now computes directly from L = N N  -1 and 0 = d ' N . N  -1, that 

= d'L § [L, 0]. (3.20)~ 

Hence d'[~ is the form ~'((K[E, D(N~)],/)(N~))) of Proposition 2.18 so that  (2.19) implies. 

(3.16). Q.E.D. 
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This proposition now directly proves Proposition 1.2 of the Introduction. Indeed if 

•1 and IY~ are two Hermitian norms on E, then N t = ( 1 - t ) N I + t N  ~ defines a smooth 

family between these two Hermitian norms, so that  the formula of the proposition becomes 

a special case of (3.16). 

As another direct application we have: 

COROLLARY 3.21. Suppose E is an n-dimensional complex vector bundle over X ,  

with Hermitian norm N.  Suppose also that E admits n holomorphic sections which span the 

fiber at each point. Then the relined Chern classes ~i(E) are zero ]or i > 0  so that: 

d(E) = 1. (3.22) 

Proo]. Let  s be the global frame determined by the sections in question, and define 

a Hermitian norm on E, by setting Nl(s ) =identi ty.  For  this norm 0(s), K(s) and hence 

r hrl), i > 0  clearly vanish. Q.E.D. 

Remark. The deformation Dt = D(Nt) induced by the variation of N t is not the linear 

one encountered earlier. Rather, Dt satisfies the differential condition: 

JDt(s) =d'Lt(s)+[Lt(s), O(s, Dr)J, s any frame. (3.23) 

I n  other words / ) t  is the D'-derivative of L t, and it is clear that  much of the foregoing 

depends on just the existence of some L tEF  Hem (E, E) for which (3.23) is valid. 

In the remainder of this section we will formulate a generalization of (3.16) along these 

lines. 

DEFINITION 3.24. A connection D on the holornorphic bundle E over X ,  is called o/ 

,type (1, 1) i]: 

(3.25) For any holomorphic section 8 o] E l U, D" s =0. 

(3.26) The curvature matrix K(s, D) o / D  relative to a ]tame S over U, are o] type (1, 1), 

i.e., 

K[E, D] EALI(X; Hem (E, E)). 

This is then clearly an extension of the class of connections induced by Hermitian 

norms on E. 

Next  consider a family of connections D t of type (1, 1). Such a family will be called 

,bounded by LtEA~ Hem (E, E)) if the relation (3.23) holds between 

b~EAI(X;  Hem (E, E)) 

a n d  Lv Note that  the elements of F Hem (E, E) may be thought of as defining degree 
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zero differential operators on A(X; E) and on A(X; Horn (E, E)), the latter action being 

induced by the composition of endomorphisms. With this understood, the bounding 

condition (3.23) may quite equivalently be expressed by: 

[D~,Lt]s=Dts for seF(E) .  (3.27) 

In  any case it is now easy to check that  our earlier argument leading to (3.16) also proves 

the following more general homotopy lemma. 

PROrOSITION 3.28. Let Dt be a smooth/amily o/ connections o/ type (1, 1) on the 

holomorphic bundle E. Suppose/urther that D t is bounded by LtEA~ I tom (E, E)). Then 

]or any q~ E Ik(Mn), n = dim E, we have the relation: 

I~ ~o((K[~, D~])) = d"d' ~o'((g[E, Zh]; L~)) dr. (3.29) 

We note in conclusion that  if D, is related to LtEI?{Hom (E, E)} by (3.27), and if 

D o is of type (1, 1), then D t will be of type (1, 1) for all t. Indeed, Dt is of type (1, 1) if 

and only if O=O(s, Dr) satisfies the two conditions: 0ijEA x'~ d'O =0 A 0, whenever s is a 

holomorphis frame. 

Differentiating these conditions with respect to time one obtains: 

O~s e A 1"~ d'O = [0, 0]. (3.30) 

Now if (3.23) holds then--set t ing Lt(s ) equal to L- -we  have d'L + [L, 0] = 0. I t  follows 

that  d'O = [d'L, O] + [L, d'O] which by resubstituting (3.23) leads to d'O = [0, 0]. Thus (3.23) 

together with O,EA L~ imply the differentiated identities. Q.E.D. 

4. The duality formula  

Consider an exact sequence of holomorphic vector bundles: 

O--> E f +  E-> En'->O (4.1) 

over the base manifold X. We wish to prove the duality formula: d(E)=d(EI)d(En) for 

the refined Chern classes of these bundles. 

For this purpose consider a norm N on E. Such a norm then induces norms NI on 

Ez and Nn  on Eix in a natural manner: The restriction of N to E1 defines NI, and the 

restriction of N to the orthocomplement of EF-deno ted  by E~--determines Nn, via the 

C ~~ isomorphism of EH and E~ induced by (4.1). 

Thus (4.1) gives rise to three Chern forms in A(X):c(E)=c(E,  N), and c(E~, N~), 
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i = I, II;  and  the  dua l i t y  fo rmula  will be es tab l i shed  once we prove  the  following proposi-  

t ion.  

P R O P O S I T I O ~  4.2. There exists a/orm ~ in A(X)  such that 

c(E) - c(Ez)" c(E1~) = d"d'~. (4.3) 

The proof  of (4.3) is based  upon  a specific de fo rmat ion  of the  canonical  connect ion  

D = D ( N ) .  To descr ibe th is  de fo rma t ion  we need cer ta in  pre l iminar ies  concerning the  

geomet r ic  impl ica t ions  of the  exac t  sequence (4.1). 

F i r s t  we in t roduce  the  orthogonal projec t ions  

Pt:E-~E~,  i = I ,  II,(1) (4.2) 

which this  s i tua t ion  na tu r a l l y  defines. These are  then  e lements  of F Horn (E, E)  and  there-  

f o r e - - i n t e r p r e t e d  as degree zero opera tors ,  t hey  lead  to  a decompos i t ion  of D = D ( N )  

in to  four  par ts :  
D=~P~DPs ,  i j = I ,  I I .  

~J 

L••MA 4.3. In the decomposition just introduced, P~DP~ induces the connection 

.D( N ~) on El, while P ~ DP j, i ~: j, are degree zero operators o/ type (1, 0) and  (0, 1) respectively: 

PIID"Pz= O, PID'PII=O. (4.4) 

Proo]. W e  first  show t h a t  PtDPs, i 4 j  is A~ l inear.  Consider then  P~DPj(/s). Using 

t h e  de r iva t ion  p rope r ly  of D we get  P~DPj(/s)=d/.P~Pjs+/P~DP~s. Hence  as P~Pj=O 

if  i ~:?', i t  follows t h a t  P~ DPj is a degree zero opera tor .  We  nex t  show t h a t  PxlD"P x =0 .  

This  is c lear ly  also a degree zero opera tor .  Hence  i t  is sufficient to  show t h a t  g iven e E Ez, 

t he re  exists  some sect ion s of E near  x, such t h a t  s(x) = e and  PH D"Pjs = 0 a t  x. Now because 

E1 is a holomorphic sub-bundle  of E we m a y  choose a holomorphic  sect ion s 1 near  x such 

t h a t  the  two condit ions,  sl(x)=P~e; P~Sl=S 1 (i.e., s l E F ( E I )  ) hold  near  x. W e  m a y  also 

choose a C ~ sect ion su of E~ which satisfies the  two condi t ions s2(x ) =P11e; Piis2 =s~ near  x. 

:Now set t ing s = s  1 +se,  we clear ly  have  s(x)=e. F u r t h e r  PzD"PI(Sl+S2)=0 near  x because  

P~s~ =0 and  D"s 1 =0 there.  

The companion  s t a t e m e n t  of (4.4) now follows d i rec t ly  from the  fact  t h a t  D preserves  

t he  inner  p roduc t :  We  have  d(Pxs , PHs'~ = 0  whence 

(PHDP~ s, s') = - ( s ,  Px DP~ s') (4.5) 

so t h a t  in pa r t i cu l a r  PHD"Pz = 0 implies  P~D'PH = O. 

(1) Here as in what follows we use the natural projection E~--~EII to identify these two 
bundles. 
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I t  is now quite straightforward to check that  the P~ DP~ interpreted as differential 

operators on E~, satisfy the two conditions which characterize D(N~). We note tha t  one 

precisely needs (4.4) to show that  the connection induced by PtDP~ on E~ is of type (1, 0) 

- - t h a t  is satisfies (3.4). 

The deformation which we need for the duality theorem is now defined by: 

Dt=D+(et-1)5,  5=PxzDPv (4.6) 

By our lemma 5 is a degree zero operator and hence Dt a connection for every tER. We 

have further: 

LEMMA 4.7. The/amily Dt defined by (4.6) is "bounded" by the element 

P~eF Horn (E, E). 

Proo]. We have to show that  [D~, PI] = / ) t ,  or in other words, that  

[D', PI] + (e t -  1)[8, PI] =etS, 

where [A' B] stands for the commutator A B - B A .  Now it is clear that  [8, PI]=5. Hence 

we just have to show that  PnD'PI.PI-P:PxID'P~=PI1DP I and that  follows directly 

from (4.4). Q.E.D. 

We next  investigate the curvature form K[E, Dr], and its decompositions according 

to the P~. Using some obvious identifications the formulae take the following form: 

I~EMMA 4.8. Let P~K[E, Dt]P ~ be denoted by K:~[E, Dt]. Then, 

KI. z[E, Dr] = K[E~, D~] - et5 * A 5, 

KH. n[E, Dr] = K[En, Dn] - et5 A 8", 

KI. hiE, Dr] = e~Kt. n[E, Do]; Kzx. x[E, Dt] = K11. z[E, Do], 

(4.9) 

(4.10) 

(4.11) 

where 5* denotes the adjoint o/the/orm 5 EAI(X; Horn (E, E)), and hence by (4.5) represents 

the operator - P I  DP~I. 

These formulae clearly show the pertinence of our deformation Dt to the problem at 

hand. When t = - c ~ ,  we see that  Kz.n=0 and the K~.~[E, Dt] reduces to K[E~, Dt]. As 

the Chern form c(E, Dr) is defined by det((1 +i/2:~K[E, Dt])) it follows directly that  

lim c(E, Dr) = c(Ez, Dz)" c(E1z, D11). (4.12) 
t . . ~ -  00 

The proof of Lemma 4.8 is quite straightforward. If one interprets K as the operator 

D 2, the terms can be just read off. Alternately one may choose a frame s = (u, v) which is 
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naturally suited to the problem--namely of the following type: 1) The frame s is unitary, 

and its first k components, u, span El. (Hence the remaining components--v--span E~ .) 

For such a frame O(s, Dr) breaks into blocks O~j(s, Dt)--corresponding to the operators 

PjDPt--and then (4.8) follows directly from (2.4). 

We have now nearly completed our argument. Indeed, in view of (4.7) and the general 

homotopy lemma, one has the formula: 

I ~ f c(E, Dt)-=d"d ' det'((l +~K;~P~))dt, K=K[E ,  Dt],,~=i/2~ (4.13) 
t t 

valid for all tER.(1) Hence if we could simply put  t =  - c ~ ,  in (4.13), we would be done. 

However the integral will not converge in general. In fact, it follows from (4.8) tha t  

K[E, Dr] =K[E, D-oo] +et[~, (4.14) 

where []  eA~(X; Horn (E, E)) is independent of t. Therefore: 

n--1 

det'((l +~K[E, Dt];~Pz)) = ~ a~e ~t, a~eA(X) (4.15) 

with a o = det'  ((1 + ~K[E, D_ oo]; ~P~)). (4.16) 

Hence the integral will converge only if ao=0 , and that  is generally not the case. Note 

however that  by (4.7) a 0 can be re-expressed as 

deft ((1 +~K[E~, D~]; ~ l ) ) .de t  ((~K[EH, D~])). 

I t  then follows easily that  a o is a linear combination of the Chern forms c, (Ez, Ni) multiplied 

by  c~-k(EH, NH): 
k 

In any ease a o will be a closed form. 

Hence (4.13) will remain valid even when a o is deleted from under the integral sign. 

But  once this is done one may dear ly  integrate and pass to the limit t =  - ~ ,  in (4.13) to 

obtain: 

c(E)-c(E1).c(Ei1) =d~d ' ~-l.a~ ; a~ as in (4.15). (4.18) 
= 

This then completes the proof of the duality formula, and also gives us the explicit 

form ~2ol ~-l"a~ for ~:. In the proof of Theorem I we need to compute the highest compo- 

nent of ~ for the case, dim Ez= 1. Thus we want to expand ~ det((K[E, D_~] +at[];  P)) 

(1) det" is the function denoted by ~o', with ~ffidet, in Section 3; see also (4.19) below. 
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under tha t  assumption. Again using (4.7) we see tha t  because dim Ez = 1 this expression 

reduces to ~n det((K[Ezz, Nz~] +et[ZH)) where Dzz=Kzt.H[E, D] --K[EH, hrzz]. Hence if 

we define det ~ ((~; ~/)) by  the identity 

det ((~ +2~)) = 5~  ~ det ~ ((~; ~)), (4.19) 

then the coefficients a~ which we are after, are given by  ~ det "(K[EII, Nzl]; Dzx). We 

record this fact for later reference: 

PROPOSITION 4.20. Let O-->Ez--->E-->Ezz--+O be an exact sequence o/ holomorphic 

vector bundles, and let c(E), and c(E~), i = I ,  I I  denote the Chern /orms induced by a norm 

N on E. Then i / d i m  Ez = 1, 

c~(E) - c~(Ez) �9 c~-x(EH) = ~d'd '  { ~ :r det ~ ((~[Ezz]; -- Azz[E]))} (4.21) 

where ~[EH] = uK[Ezi, N~I], ~I~[E] = uKH.zz[E; N], and - A H = ~-~I I[E]  - ~ ~ [ E l I  ] .  Hence i/ 

E1 admits a nonvanishing holomorphic section s, then by 3.15, 

c~(E) = ~ d"d' (log N(s).  c~-~(E~z) + ~ cr -~" det ~ ((~[EH], -- AH[E]))). (4.22) 
Cr 

Note tha t  aside from the positivity assertion, (4.22) proves Theorem I.  Indeed con- 

sider the projection ~1: E--~X. The identity map of E into itself, then induces a holo- 

morphic section s of ~ ( E )  over E, which vanishes only on the zero section X c  E. Hence 

if ~ : B*(E) -->X is the restriction of 7~1 to the subset B*(E) = {e E E]0  </V(e) < 1} of E then 

the section s of ~*E =zt*(E)IB*(E) does not vanish. We may  therefore apply (4.22) to 

~*(E) and so obtain a formula of the type en(zt*(E)}=ud"d'~. Now by  the obvious func- 

tioriality of the Chern forms relative to holomorphic isomorphisms, cn{~t*(E)} =7t*c~(E), 

so tha t  we are done. In  the next  section we will discuss the positivity of the ~ given by  

(4.22). Let  us close this one with a direct consequence of the duality formula which gene- 

ralizes (4.22) but  in a less specific fashion. 

C OR 0 LLA~ Y. Let E be a holomorphic bundle over E, which admits k linearly independent 

holomorphie sections. Then 

d~(E)=0 for i > n - k .  

Proo/. Let  Ex be the bundle spanned by  the sections. Then by (3.22) ~(Ex) = 1. Hence 

by the duality formula ~(E)=d(E/Ez) and the bundle E/E1 has dimension ( n - k ) .  Q.E.D. 
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5. Remarks on Positivity. The proof of Theorem I completed 

As we have seen (4.22) already proves the combinatorial aspects of Theorem I and 

it remains only to discuss the "sign" of the ~ there constructed. 

We recall first of all tha t  A~'P(X) contains a well determined convex cone of positive 

( >7 0) elements. By  definition a form ~ is in the cone--noted by ~ ~> 0- - i f  and only if there 

exist forms 0~ E A ~'~ such tha t  

~=i~'~ O~ A ~,. 
o~ 

We may  extend this definition to matrix valued forms in the following fashion: 

D E r I ~ I T ~ O ~  5.1. Let ~ be an n x n matrix o] [orms o/ type (p, p). Then ~ is positive, 

i] there exist n x m raatrices Nr, o/type (p, O) such that 

r 

Note tha t  if A is any nonsingular n • n matrix of functions, then ~ is positive with 

A ~ / i  t. This enables us to define positivity in A~'~(X; Horn (E, E)) for any bundle E with 

a Hermit ian structure. Namely if ~EAP'~(X; Horn (E, E)) we define ~ >  0 to mean tha t  

the matrix of ~ relative to a unitary/rame s, be positive: ~(s) >/0. As unitary frames are 

related by unitary t ransformations--for  which therefore/ /~= A-1,-- this  concept is thereby 

well defined. 

Hence in particular, if E is a holomorphic bundle with Hermit ian norm i v - t h e n  it 

makes sense to ask whether the "real curvature/orm" ~[E,  iV] = uK[E; iV] is positive or not. 

To simpli/y the notation we will, in the sequel, call such a holomorphic bundle with a given 

Hermitian norm simply a Hermitian bundle, denote it by a single letter E,  and write K[E], 

~[E] ,  e(E) etc., instead o/ K[E; iV], ~[E,  iV], e(E) etc. Such a bundle is called positive 

if ~ [E]  ~> O. 

That  these notions of positivity on the form and the vector-bundle level are compat- 

ible follows readily from the following lemma: 

LEMMA 5.3. Let E be a Hermitian bundle o/dimension n, and let ~ be positive elements 

o/ A~'~(X; Hom (E, E)); r = 1 ..... n. Then i / p  is odd det (~1 ..... ~ )  EA~n'~(X) is positive. 

Proo/. We may  find forms iV~EA~'~ so tha t  with respect to some unitary frame 

s over U, 

~(s )= i . ' ~ iV~;~  r, l<~<fl~. 
~ r  

Hence det (~1 . . . . .  ~ )  is given by  the sum: 
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l ~ a  7%7T(1) ~'rv(1) AT~r(n) ~ v ( n )  i ~" n(n!-l) 7 ( - - j  ~, 1==~1~ ~' ~ . . . . . . .  ,cn~-' ~ 

where a and ~ v a r y  over the group of permutat ions  and ~ denotes independent  summat ion  

over the g/s .  

I f  we now take all the barred terms to  the r ight and reorder them in ascending order 

according to  their first lower index then, because p is odd ( -  1) ~ cancels out  and this ex- 

pression is seen to  take  the form: 

(n!)-~ i~n .  i~'~'-  ~ y~ 2VI~!l~ . . .  ~ ,  ~.~r~(~ .,,~.~ra(l~ . . .  ~x~ ~ 

where 2 = ~o a -1 and we have denoted the appropriate  ~-index by  a dot.  Hence 

det  (~1 . . . .  , ~ )  = (n!) -1 i ~ '  ~ 0~ h 0~ 
Gr 

hrar hr~r and  therefore dea r ly  >/0. Q.E.D.  where 0~ = / . z  x. ~ . . . .  n. 

As a n  immediate  corollary we have: 

(5.4) The forms det  ~ (($;~)) are positive if ~ ,u6AL~(X;  Horn (E, E)) are positive. 

Fur the r  if ~ >/~' ~> 0, U >~ ~' 1> 0 then det  ~ ((~, r/)) >I det  ~ (($'; ~')). 

Indeed,  det  ~ ($, U) is just  the sum ~ det  (~  .. . . .  Sn) where ~ of the $~ are set equal to  

~7 and the remaining ones are equal to ~. I n  part icular  then, we have: 

~ ( E )  >>- O :~ c(E) >~ O. (5.5) 

When  applied to the exact  sequence of Hermi t ian  vector  bundles (4.1): 

O --+ E z -+ E -+ E z z --+ O 

our lemma yields the following inequalities: I n  the nota t ion of t ha t  section, define f2~[E], 

i = I ,  I1 ,  to  be the form ~P~K[EJP~ interpreted as a section of A~(X; H o m  (E~, E~)). Then 

in view of (4.4) and (4.8) we immediately  obtain the inequalities: 

Az(E) = ~ [ E z ]  - ~ z [ E ]  ~< O (5.6) 

AH(E) =~[Ezz  ] - ~zz[E] >1 O. (5.7) 

P u t  differently, sub-bundles are less positive and quotient  bundles more positive, 

t han  the bundle itself. 

We next  re turn  to the formula (4.22): 

c~(E) = ~d"d'{log N(s).cn_~(EH) + ~} 

where ~ = ~ ~-a det  ~ ((~[EH]; ~z~[E] - ~2[E~z])). 
~>0 
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Assume now tha t  ~/[E]/> 0. Then ~/i~[E]/> 0 and hence by (5.6) ~-I[EH] >i AH[E ] >/0. 

From this it follows tha t  c,,_l(E1~ ) >10. The form ~ can be written as 

~. a - l (  - 1) ~ det ~ {~[En]; An(E)}. 
~t>0 

Hence ~ is an alternating sum of positive terms and therefore neither positive or negative. 

However, this is not serious. In  fact we can add to ~ a closed form ~o so as to make ~ +~0 I> 0 

and ~ - ~ 0 ~ 0 .  This is done as follows: Let  

~o = • ~- I  det ~ ((f/[En]; f/[Eir])). (5.8) 
6>0 

Then by  the definition of det ~, ~0=~-l(~)cn_l(E11),  and hence is a closed form. Further  

note tha t  in view of (5.4), we have 

det ~ ((g2[Ezz]; s ~> det~((~/[EH]; AH(E))), 

and so our assertion concerning ~o is correct. 

We next  replace ~ by ~ -  ~o in (4.1) and use the definition 

d c =i(d" - d ' ) .  

The formula (4.7) then takes the form: 

c,(E) = ,~-~ (log N-~(s) e n -  1 (J~ll) -~ (~0 --  ~) } "~ 7g 

(5.9) 

(5.10) 

with the bracketed term /> 0 wherever log ~V--l(8)>0, i.e., wherever N(s )<  1. Applied to 

B*(E), this formula therefore precisely proves Theorem I.  

6. The relative Gauss Bonnet theorem 

We already remarked in the introduction tha t  the first main inequality of the Nevan- 

linna theory may  be thought  of as a twice integrated version of the formula (1.2) in Theorem 

I.  The first integral of (1.2) leads to the generalized theorem of Gauss-Bonnet (for the 

complex case) and so serves to give a geometric interpretation of the Chern classes c~(E). 

In  this section we will, for the sake of completeness, briefly derive this development. 

The situation we wish to s tudy is the following one: let E be a holomorphic n-bundle 

with a Hermit ian norm N, over the complex n-manifold X with boundary aX = Y, and 

assume tha t  s~ is a nonvanishing section of E over Y. The question now arises when s~ 

may  be extended to all of X without vanishing, and Theorem I,  in the explicit form given 

by  (4.22) may  be interpreted as giving an answer to this question. 
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Indeed, let E0~ E, be the subset {e lN(e)>0 ~ complementary to the zero-section in 

E, and let ze0:E0-->E be the projection. As we already remarked, the identi ty inclusion 

Eo-->E then induces a nonvanishing section sx of g~X(E) over E0, so tha t  the formula 

(5.10) gives rise to a definite form ~ over Eo, for which 

dd c . 
e = ~o c , , (E) .  

At this stage we will actually only need the form 

d c 
~ ( E ) = ~ ,  

for which we therefore clearly have the identity 

~*cn(E) =dr (E) .  (6.1) 

In  terms of this form, the answer to our question is given by  the following proposition. 

PROPOSlTIO~ 6.2. The section sy o] Eol Y may be extended to all o / E  o i/and only i/ 

f :" on(E) - 8 ,  ~ ( E )  = O. 
X X 

The proof of this proposition follows directly from quite elementary obstruction 

theory, once it is established tha t  the expression r(X; Y; sy)= Sx cn(E) -.Its* rl(E), always 

measures the number  of times any extension of s~ to X has to vanish. To be more precise 

we need to rooM1 the topological definition of the order of vanishing of a section s of E 

at  a point p which is an isolated zero of s. This is an integer, denoted by  zero(a; p), which 

is defined as follows: 

Let  B~ be a disc of radius e > 0  about p, relative to local coordinates centered at  p. 

Also, let cfv:EIB o--->Ev, be a trivialization of E over B~, i.e., a retraction of E]B~ onto 

E~ which is an isomorphism on each fiber. For small enough r the map ~vos then maps 

~B~ into E v - 0 ,  for all 0<~<r The degree of this map is by  definition the number  

zero(s; p): 

zero(s; p ) = d e g ( ~ o s )  on OB~. (6.3) 

(The orientation of B~ is taken to be the one given by  positive forms; similarly we orient 

the unit disc of E~ by  the positive forms. There are canonical induced orientations on ~B~, 

and the unit sphere, S(Ep), in E,.  Using the retraction E~-O.-->S(E~) this class serves to 

orient E p - 0 ,  so tha t  deg(~os)  is well-defined.) 

With this understood, (6.2) becomes an easy consequence of the following theorem. 
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PROPOSITION 6.4. Let s be a smooth section o / E  with the/ollowing properties: 

~) s ~ = O o n a X = Y  

fl) s has isolated zeroes only. 

Under these circumstances one has the/ormula: 

Y zero(p;s)= f xC (E)- f (slY)*,7(E) 
where p ranges over the set o/zeroes Pt, i = 1, ..., m o/s .  

(6.5) 

Pro@ We first derive (6.5) from the following proposition: 

PROrOSITION 6.6. Let jp:S(Ep)--> E o be the inclusion o/the unit sphere o/Ep, into E o. 

Then, 
j* ~(E)  = - the  orientation class o/S(E~). (6.7) 

Granted (6.7) we proceed as follows. 

Let  X~ be obtained from X by  removing the interiors of little discs B~ of radius s 

about p~ from X. Then there is a ~ > 0  so tha t  s will not vanish on X~ for 0<s~<~. Also 

choose trivializations ~ of E I B~. We then have 

because s is a section of E 0 over X~. Now by Stokes formula it follows tha t  

~i ~pi~(E) when ~ is Using the ~ it is now clear tha t  ~0B~ s*~(E) is approximately ~on~ * "* 

small. Hence by (6.7) --'~0B~ s*~7(E)--~zero (s, p~). Thus (6.8) goes over directly into (6.5) 

as s-+0. Q.E.D. 

I t  is Proposition 6.6 which therefore lies at  the center of these formulae. To prove 

it one may  explicitly integrate the form described by (5.10). Alternatively one may  apply 

the argument  we just gave in reverse, to a situation where (6.5) can be established by  

some other means. We will follow the second alternative because many  of the concepts 

which are needed for this special example will also be used later. Note finally, tha t  because 

of the functorial definition of ~](E) ~*~(E) is a well determined/orm on $2~-1 modulo only 

unitary trans/ormations o/that  sphere. In  short, to prove (6.7) it will be sufficient to find 

an example of a Hermit ian bundle E over the complex manifold X with OX = 0 together 

with a section s of E, such that:  
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a) s has a single isolated zero at  p E X,  with zero(s, p) = 1 

fl)  n(E) 1. 
J X 

As we will now show, an example of this type  is furnished by  the complex projective 

space and the "quot ien t  bundle"  over it. 

Let  then V be a fixed complex vector  space, of dim ( n +  1), and let PI(V) be the 

projective space of 1-dimensional subspaces of V. (Note tha t  climc PI(V) =n . )  

Over PI(V) we have the canonical exact sequence 

0 -~$1(V) --> TI(V) -~QI(V) ->0  (6.9) 

of holomorphic vector-bundles,  defined in the following " tau to logous"  manner.  

(6.10) TI(V ) is the product  bundle PI(V) • V over PI(V) 

(6.11) Si(V ) is the subset of T(V) consisting of pairs (l, v ) - -where  IEPI (V  ) is a line 

in V, and vE V for which v El. 

(6.12) QI(V) is the quotient  bundle TI(V)/SI(V ). 

The bundle QI(V) over PI(V) is the one we called the quotient  bundle of the projective 

space PI(V)- Note  tha t  each v E V, determines a holomorphie section s v of QI(V), defined 

by  the projection of the constant  section: x--> (x, v), x EPI(V), of TI(V) into QI(V). Clearly, 

if v :~0 then s v vanishes at  only one point  1EPI(V) namely  at  the subspace, Iv], generated 

by  v. Fur the r  it is not  hard to  see tha t  zero[sv, Iv]] = 1. Thus a) is satisfied. 

To check the condition/~) we need a hermit ian structure on TI(V) which we of course 

take to be the trivial one induced by  a hermit ian s tructure on V. Thus the curvature  form 

of TI(V ) is equal to zero. Hence by  the inequali ty (5.7) we note t ha t  ~(Qx(V)} >~0. Thus 

in any  case 5o~(v)cn{Ql(V)}>~O. Hence it will be sufficient to  show tha t  cn{Ql(V)} is an 

orientat ion class for PI(V) to establish fl). 

Consider the case n = 1, first. Let  vl, v, be an or thonormal  base for V and let z--> [v I § zv2] 

be a local parameter  near [vl]. Also let s 1 be the section sv,, which is therefore holomorphic 

and ~:0 on PI (V)- [v l ] .  Hence on this set 

dd c 
{Q(V)} = In Is11-1, 

where ] 81 ] (l) is the norm of the section at  I. Thus near [vl] we have, 

isll2([vl+ v ]) = 1 12). 

I t  follows, again by  Stokes, t h a t  if B,  = ( I z [ < e) then 
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f d~ c l {Q(V)}=l im-  ~[ In l z l2§247  
P,(V) e-->O OB~ 

Clearly the second term tends to zero, while the first tends to + 1, as is seen directly if we 

write z=re ie, log z= log  r+iO and recall tha t  dC=id" - id ' .  Thus fl) is true for n = l .  

To get fl) in general one may  use the Whitney duality formula. In  the present instance 

this formula yields: 

c( S~( V) }. c(Ql( V) } = C( Tl( V) } = 1. 

Thus ca(Q(V)} = [ - Cl(SI(V)}] n. For n = 1, this implies tha t  Cl(SI(V~)} is an orientation 

class of PI(V~). Now under the inclusion V~--> V, SI(V ) clearly restricts to SI(V~). Hence 

clSI(V)} restricts to an orientation class of PI(V2). But  then cl(SI(V)} must  generate 

H~(X;Z), X = P I ( V  ) and hence ( - 1 ) n c I { S I ( V ) }  m u s t  be an orientation class for PI(V) 

in general. Q.E.D. 

An important  corollary of (6.5) is the following interpretation of c~(E): 

COROLLXRu 6.13. Let E be a holomorphic n-bundle over the complex n:mani/old X,  

and let s:X--> E be a smooth section o /E ,  which is ~=0 on 9X, and which is transversal to the 

zero section o / X  in E. Then zero(s) has a natural structure o /a  C ~ mani/old o/real codi- 

mension 2n in X,  and the proper orientation class o/zero(s) is the Poincard dual o/c~(E). 

Proo/. Let ? be a smooth singular n-cycle in the interior of X, which is transversal to 

zero(s), i.e., every singular simplex a which intersects zero(s), meets it in an isolated interior 

point. Jus t  as in the proof of (6.4) one now concludes from (6.7) tha t  

f cn(E)=intersection(~,zero(s))§ 

Hence summing over a in ?, we obtain: 

f cn(E) = intersection Q.E.D. (zero(s), 7). 

Remark I. I t  is of course artificial to bring in any assumption of complex analyticity 

when dealing with the Gauss-Bonnet theorem, and one could modify this account by  

defining ~ directly on any smooth hermitian bundle. However  as we are primarily interested 

in the complex analytic case here and the more general approach would have taken us even 

further afield, we only discussed tha t  case. In  the next integration the analytic structure 

plays a vital role. 

Remark I I .  There are two quite straightforward generalizations of the exact sequence 
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0 --> $1(V) --> TI(V) ->QI(V) -->0 

over Pi(V), for which we will have use later on. 

Namely, if Pn(V) denotes the Grassmanian of n-dimensional subspaces of V, we have 

the corresponding sequence 

O'-> Sn( V) --> Tn( V) -->Qn( V) -->0 

over P,~(V), with Tn(V ) =Pn(V) x V, and Sn(V) being the subset of pairs (A, v) with yEA. 
Finally this construction makes sense when V is replaced by  a vector bundle E over 

X. That  is, one defines Pn(E) as the pairs (A, x) consisting of a point xEX,  and an n- 

dimensional subspace A in E x. One lets Tn(E) be the bundle induced from E over Pn(E) 

by the projection Pn(E) -->X, and then obtains an exact sequence 

O-*S,~(E)-> Tn(E)-->Q,~(E)-->O over Pn(E) 

where Sn(E) consists of the triples (A, x, e) with e c A .  

7. The second integration; definition of the order function 

We are now in a position to discuss the generalized first inequality of the Nevanlinna 

theory. Jus t  as in Section 6, we will be dealing with a holomorphie hermitian vector bundle 

E over the complex manifold X, however instead of assuming tha t  X is compact we assume 

only tha t  X admits a "concave exhaust ion"/ .  By  definition, such an exhaustion is a smooth 

real valued function, / ,  on X such tha t  

(7.1) / maps X onto R + 

(7.2) / is proper, tha t  i s , / - I (K)  is compact whenever K is. 

(7.3) The (1, 1) form ddC/is ~< 0 for large values o f / .  

With respect to such an exhaustion of X, one defines the order-function of E, by  the 

formula 

frlf } T(r) = cn(E) dr; Xr = (x]/(x) <~r). (7.4) 
-- X r 

The behavior of T(r) as r- l>+ oo is then to be thought  of as the analogue of Sxcn(E) in 

the compact case. 

One next defines a corresponding order/unction for the number  of zeroes of a section 

s on E which is assumed to have only isolated zeroes, by the formula 

N(r,s): zero(s, Xrldr <7 

where zero(a, Xr) = ~  zero(s, p), p ranging over the zeroes of s interior to Xr. 

7--652932 A c t a  m a S h e m a $ i c a  114. Imprim6 le 11 aoflt 1965. 
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We note tha t  if the integral along the boundary of XT could be disregarded, the 

formula (6.5) would imply tha t  N(r, s) = T(r). This is of course false in general, however 

we do have the following estimate of this error term under certain circumstances. 

FIRST MAIN THEOREM. Let E be a positive Hermitian bundle over X where X has 

a concave exhaustion ]. LeA s be a holomorphic section of E with isolated zeroes, and let N(r, s) 

be the order function o/these zeroes. Then 

N (r, s) < T(r) +cons tan t  (7.6) 

where T(r) is the order function of E. 

In  particular if cn(E) > 0  at some point o / X ,  then lim {N(r, s)/T(r)} <~ 1. Hence the defi- 

ciency measure of s, defined by: ~ ( s ) = l - t i m  {N(r, s)/T(r)} satisfies the inequality 

0 <~(s) < 1. (7.7) 

Proof. Let  F c X • t t  be the graph o f / ,  and let W be the region in X • R, which is 

"above"  F and "below" the slice X • r: 

W={(x ,  t ) I f (x)<t<r;  x e X ,  teR} .  

T h e  natural  projection W--->XT will be denoted by a. 

I t  is then clear tha t  T(r) = ~ a* c~(E) dt 
J W 

with W the orientation induced by  the product orientation on X • It, and dt the volume 

element on R. 

Suppose now tha t  s 4 0  on XT. Because ] s ] < 1 we may  think of s as a section of B*(E) 

so tha t  on Xr 

c~(E) = 1 s,ddC# 

where Q =r is the form given by  Theorem I on B*(E). 

We may  therefore write a*(en(E) A dr) as d{a*s*dCQ A dt}/4g and apply Stokes' formula 

to obtain: 

1 fo a,s,dC ~ A dr. (7.8) T(r)= ~ w 

Now the boundary of W clearly falls into the top-face XT • r, and the bot tom face 

YT, which is the graph of/]XT: 

aW=(XT•  0 FT. 
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Further, the integrand in (7.8) clearly restricts to zero on the top-face, as dt does. 

Hence, keeping track of the orientation we obtain - 1/4gfrra*s*d~ A dt for this integral, 

so that  identifying F, with X~ one obtains: 

T(r )=4~  f x  - S*dC~ A d]" (7.9) 

We next use the fact that  s is holomorphic. This implies that  s*dCo = dCs*O and, further- 

more, that  s*~ EAn-I.~-I(X). 

Now a direct verification shows that  the following identity is valid: 

P R O P O S I T I O N  7.10.  

~ EA~-I'~-I(X), then 
I/  X is an n-dimensional complex mani/old, and /EA~ 

d/A dc~ =d(dC],~ ) - 2dd~/. (7.11) 

When this identity is substituted into (7.9) and the Stokes formula is used once more 

in the first term we obtain the relation: 

'f T(r) = de/�9 2 - ~ ]tddC/, ). = s *Q(E) (7.12) 
0 Xr  X r 

and this is the basic integral relation which lies behind the first main theorem when 

does not vanish on Xr. 

In  the case when s vanishes at isolated points p,, i = 1 ..... m, in Xr let X~ be obtained 

from Xr by deleting e discs D,(e) about the p~, and let W(e) be W with the solid cylin- 

ders C~(e) above these discs removed. Now 

T(r)=~---l im( a*s*ddC~Adt, 
7~ e->O d W(t) 

and on W(e) we may apply our earlier argument. However this time ~W(e) also contains: 

the boundaries of the cylinders C~(e), contributing the extra term 

41--- ~ foev~)a* s *dC e A dr, 

which by (6.5) is easily seen to tend to N(r, s) as e-->0. Hence (7.12) is modified to: 

4~r ~-~o ' " 

We next apply the following lemma which will be proved later by an estimate. 

(7.13~ 
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L~,M~A. In the situation just described; 

(7.14) lim ; Idr 21=0, 2=s*Q(E). 
~--~ ,] (~D(~) 

(7.15) The/orm ~dd c] is absolutely integrable on X ,  

(7.16) The/orm d c]/~ ~ is absolutely integrable on ~Xr. 

In  view of this good state of affairs we may  pass to the limit in (7.13) to obtain the 

fundamental  integral formula: 

1 1 
T(r)-2~(r,s)=~-~foxrdC/A~-~fxr~dd~/,  ~=s'~(E). (7.17) 

The inequality of the first main theorem now follows directly. Indeed, by  Theorem I,  

2~>0 on X~. By assumption dd~/<<.O on the complement of some Xro. Hence -)xldc/>~O 
there, and so the second term on the right hand side is greater than some constant. 

The term ~oxdC[ A ~ is actually non-negative, for the following reason. Recall first 

t ha t  Xr was oriented by  the positive (n, n)-forms on X. Recall also tha t  the orientation 

induced by  the Stokes formula ~x, doJ = ]oxi*r on ~X~ is characterized by the condition: 

A real (2n - 1) form ~ on X restricts to a positive form on OX, relative to the induced 

orientation, if and only if d/A ~ is positive on X, near X~. 

Hence the sign of ~ox, d~/A 2 is determined by the sign of d/A df  A 2 on X,. But  if / is any 

real valued function, then d/A d~/A 2 is also positive. Q.E.D. 

The inequality now follows as we have proved tha t  T(r)-N(r, s )>  constant. 

Proo] o/the lemma. We need to estimate the form X =s*~ near an isolated singularity, 

:p, of s. For  this purpose choose a holomorphic trivialization q):E-->Ep, of E near p. Then 

~*Q will be close to (~os)*~*~ near p, so tha t  it is sufficient to s tudy this form near p. Our 

~irst task is therefore to describe j*~. 

Let  7~:Ev-->p, and set E=7~-I(Ev) be the induced bundle over Ep. The identi ty map 

Ev-->Ev, then defines a section s of E, which does not vanish on Er.o= Ev-0, and so gene- 

ra tes  a sub-bundle El  of E there. Let  ]~:Ep.o--~E be the inclusion. The form ~*~ is then 

made out of the curvature forms of E1 and EH = E/Ez, according to the prescription (5.10). 

Now as E is clearly the trivial Hermit ian bundle over E p -  0, the curvature of E vanishes 

identically. Hence K(EIz) has the form ~/~ 6", where ~ is the degree zero operator PHDP1 
of Section 4, and may  be computed explicitly. Indeed let u~, ~ = 1 . . . .  , n, be an orthonormal 

=[rame for Ev, and let z~ be the corresponding local coordinates on Ev so tha t  

~z~(q)u~=q, qEE~, 
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and let r(q) = (~]z~(q)12) �89 I f  we interpret  the u~ as the  constant  sections of E then  the  

ident i ty  section s is given by  s(q)= ~.z~(q)u~, and so Ds(q)= ~dz~u~. I t  follows t h a t  

at  a point  q, with zl(q)= r(q), z~(q)=0, fl = 2, . . . ,n ,  the curvature  matr ix  relative t o  

the frame of EH determined b y  the  u~, fl = 2 . . . . .  n, is s imply given b y  

~dz~AdS~, :r = 2 . . . . .  n. (7.18) 

I n  part icular  then,  
const  

cn=-l(E~1) = r~-~_l)d% A dS~ A ... A dz~ A d~.  

With  the aid of (7.18) one m a y  estimate all the  terms of (5.10) and so conclude that :  

~* . - 2 (n -1 )  ~ = r log r .  o) 1 + ~. r -s~-~ o~ (7.19) 

where ~ is bounded on all of E~.0. 
The lemma now follows easily from (7.19). 

Assume first t ha t  s is t ransversal  to the zero section at  p. Then the Jacob ian  of q~os 

is no t  zero at p. For  our convergence questions ~os  may  therefore be replaced by  the ident i ty  

map.  Now let D(~) be the ball of radius e about  0 in Cn. Then  if Q is of the type  given by  

(7.19) we clearly have 

f 0A0-->0, and f ~AOA~-->0  
OD(e) D(e) 

for any  bounded 1-forms 0 and ~ because the volume of the sphere of radius r is of the order 

r ~-1  and so dominates r 2(~-1) log r. The lemma therefore is clear in t ha t  case. For  a general 

isolated zero of s, there exist arbitrari ly small per turbat ions  of s with only a finite number  

of nondegenerate  zeroes near p. Hence our lemma also holds in t ha t  case. 

8. Equidistribufion in measure 

I n  this section we derive the generalized first equidist ibution theorem from the first  

main  theorem with the aid of two essentially known but  hard  to  refer to  propositions which 

are then taken  up in later sections. 

We star t  with a s ta tement  of the theorem we are after: 

E Q U I D I S T R I B U T I O N  T H E O R E M .  Let E be a complex vector bundle o/fiber-dimension 

n, over the complex connected mani/old X,  and let V= F(E)  be a/ ini te  dimensional space of 

holomorphic sections o/ E. Assume /urther that, 

(8.1) X admits a concave exhaustion/, in the sense o/ Section 7. 

(8.2) V is su//iciently ample in the sense that: 
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0~) The map s-->s(x), maps V onto E x/or each x f iX .  

~) There is some sfi V, and some xoqX,  so that s:X--->E, is transversal to the 

zero-section o] E at x o. 

Under these circumstances nearly every section in V vanishes the same number o/times. 

Precisely, a hermitian structure on V de/ines a hermitian structure on E, and hence a 

de]iciency measure (~(s) on the generic sections o/ V. The assertion is that except/or a set o/ 

measure O, ~(s)=0. 

Pros/. We first of all remark  more explicitly on how the hermit ian s t ructure  on V 

defines T(r), N(r, s) etc. 

For  this purpose let m = dim V - n ,  and consider the exact  sequence 

O--> Sm( V) --> T,n( V) -->Qm( V) --> 0 over Prn(V)-(1) (8.3) 

B y  (8.2) par t  ~, the map  ex : V-+Ex which sends s into s(X) is onto. Hence, kx, the kernel of 

ex has dim m. Now it is clear f rom (8.3) t ha t  the induced map ev:X-+Pm(V),  defined by  

x-~kx ,  determines an isomorphism of Qm(V) with E:  That  is 

eT a {Qm(V)} ___ E. (8.4) 

A hermit ian s t ructure  on V induces one on TIn(V) and hence on Qm(V) and SIn(V) and hence 

b y  (8.4) also on E. 

Note  fur ther  tha t  Qm(V) is positive in this s t ructure as TIn(V) clearly has zero curva- 

tu re  and "quot ient  bundles are always more posit ive" (see Section 4). Hence E is also 

positive. Finally, the "height  of a section s"  in V at  any  point  x 6 X  is clearly bounded by  

the  length of s "qua  element"  in V. I n  short  we may,  after possibly mult iplying s by  a 

suitable constant ,  no t  only apply  the notions of Section 7 to E,  bu t  we also obtain the 

inequal i ty  of the f i rs t  main theorem: 

N(r, s) < T(r) + constant  

val id for sections with isolated signularities. 

Now condition fi, of (8.2) is seen to imply  by  an explicit check, t ha t  e*cn{Qn(V)} is 

strictly positive near x 0 (see remark at  end of Section 9). Hence T(r)-> + oo, so tha t  (8.4) 

impl ies  the inequality: 
- -  N ( r ,  s )  

O < lim ~ ~< 1. (8.5) 

We now need the following two propositions: 

PROPOSITION 8.6. Under the assumption (8.2) nearly all s c  V, have only isolated 

zeroes. In /ac t  nearly all sections s E V are t ransversal  to the zero section o / E .  

(1) See the remark at the end of Section 6. 
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PROPOSITION 8.7. Under the assumptions (8.2) we have the equality 

f N(r, s) a) = T(r), s E [s] E PI(V) (8.8) 
.PI(V) 

where eo is the volume on PI(V) invariant under the group o/isometrics o/ V and normalized 

by Sv,(v)~o = 1; while N(r, s) is the order/unction interpreted as a/unction on PI(V). 

The equidistribution theorem: ~(s)=0 almost everywhere now follows directly. Indeed 

by  (8.5) 04~(s)~<1. Hence Sv,(v)~(s)eo>~0. On the other hand by  (8.7) we have 

limf whence f lim{N(r,s)/T(r)}eo>~l, 
P,(V) Pt(V) 

and so finally f (~(s) o) >i 0. Q.E.D. 
Pt(V) 

9. The proof of Proposition 8.6 

This assertion is clearly a variant  of Bertini 's theorem, and is proved along the same 

lines. Briefly the argument  runs as follows. 

Let  K=e~,I{Sm(V)}, and consider the associated projective bundle Pi(K)  over X. 

(See the remark at  the end of Section 6 for these concepts.) There is a natural  imbedding of 

PI(K) in X x P I ( V  ) as the subset: 

PI(K) = {(x, l) with l=  k~} 

and we let r~:PI(K)-->PI(V ) be the projection on the second factor. Next  let ~,=PI(K) be 

the subset of those pairs (x, l) for which 1 is generated by a section s:X--> E, which is not 

transversal to the zero section at  x. 

This is the singular set in PI(K), and it is clear tha t  the complement in PI(V) of the 

image of Z under ~ consists of transversal sections. Now dim PI(K)=dim Pi(V) because 

dim X equals the fiber-dimension of E. Hence if we can show tha t  the codimension of 

Z in PI(K) is ~>1, then Z and ~(Z) will have measure zero and the proposition will be es- 

tablished. 

Our aim is therefore to show tha t  Z is the zero set of a not identically zero section of 

a certain line-bundie over PI(K). To see this, remark first tha t  if s Ek x and if U EX x is a 

tangent  vector to X at  x, then the derivative of s in the direction U, is a well determined 

element U.s of E~. (Recall tha t  sEkx~s(x)=O; to differentiate general sections one of 

course needs a connection, however at  the zeroes of s all connections on E define the same 

derivative.) 
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This operation therefore leads to a map 

jr: kx--> Hom (Xx, Ex) 

and it is easy to see tha t  Z = {(x, l ) e P l ( g )  Idet Jt(s)= 0, [s] = 1}. 

Now when lifted to PI(K), det j t  may  be interpreted as a section of the line bundle 

L = Hom {S(K), Hom (A ~ T, A n E} 

where A ~ denotes the nth  exterior power and T denotes the tangent bundle of X lifted 

to PI(K). Thus ~ =zero set of det JtEF(L). On the other hand condition (8.2) fl) demands 

precisely, tha t  det j t  be non-zero a t  some point of PI(K). Because X is connected it  follows 

tha t  c o d i m X = l .  Q.E.D. 

Remark. The transpose of j t  is given by  

J : X x - + H o m  (kz, Ex) 

and may  be identified with the Jacobian of ev at  x. Thus condition (8.2)/~) implies tha t  

ev is an immersion near %. From this it follows easily tha t  cn(E)>0 near %. 

10. Some remarks on integral geometry. The proof of Proposition 8.7 

Suppose ~r: Y--->X is a smooth fibering of compact manifolds with oriented fiber 2'. 

I n  tha t  situation there is a well-defined operation 

vr, :Ak(Y)--->Ak-r(X), / = d i m  F 

called integration over the fiber, which "realizes" the adjoint of ~r* in the sense tha t  if 

X and Y are oriented compatibly then for any ~0 E A(X), ~0 ~A(Y) we have the identity: 

f ry)~* q~= f x(Ze.~). % (10.1) 

The existence of ~ .  on the "form level", suggests the following definition. 

D E F I N I T I O ~  10.2. Let q~EAk(X). By an integral representation o/~ we mean a triple, 

(Y, Z, o9) where Y& X is an oriented ]ibering over X, with projection ze, and eoEAm(z) is 

a volume element(1) on the oriented m-mani[old Z, together with a map a: Y->Z, such that 

~0 = ~ , o  tr*to. (10.3) 

In  general the question whether a given closed form ~ on X admits an integral repre- 

(1) Volume element  means  a nonvanish ing  form of top dimemsion,  in the  or ientat ion class. 
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sentation seems quite difficult. Certainly ~ must  have integral periods and there are most 

probably much more subtle conditions which also have to be satisfied. For our purposes 

it will however be sufficient to show tha t  the characteristic class c,(E) of a hermitian 

bundle which is ample in the sense of (9.2) ~) always has an integral representation. Note 

tha t  if ~ has an integral representation, then any pull-back ]*~ also has an integral repre- 

sentation. Hence it will be sufficient to get a representation theorem for c,[Q,(V)] over 

P.(v). 
In  the next  proposition we describe a quite general representation theorem for the 

Grassmann-varieties Pn(V). We will first simplify the notation as follows: V will denote a 

fixed hermitian vector space of dimension d; and we write simply Pn, Q. etc., for P.(V), 

Q.(V) etc. The bundle Q. is always considered in the hermitian structure induced on Q. by 

the trivial structure on T.; so tha t  the Chern forms c(Q.) are well-defined. 

Now let 0 < n  < m < d be two integers and define P., m =Pn.m(V) as the "flagmanifold" 

of pairs ( A . c  Bin) of subspaces of dimension n and m respectively in V. Let  P . , m ~  P . ,  

and P.,m ~ Pm be the natural  projections, a(A, B) =A; ~(A, B) =B, and consider the dla- 

gram: 

Pn, m----2-a~ pn 
oi 
Pm 

(10.4) 

We then have the following proposition. 

REPRESENTATION THEOREM. In the diagram (10.4) one has the relation: 

cd-m {Qm} = = , "  a * ca_ . {Q . } .  (10.5) 

Proo]. One may  of course compute everything explicitly in these examples and so 

verify (10.5). There is also a much simpler global proof based on the corollary (6.13). The 

argument  runs as follows. 

Consider the action of the group of isometries of V, say I(V), on Pn. From the rather  

canonical definition of the bundles Qn it is then not hard to see tha t  their Chern forms 

v{Qn}, are invariant under I(V). 

I t  is also easy to see tha t  Pn is a symmetric space of I(V) whence every real cohomo- 

logy class of P~ contains a single invariant differential form. We may  therefore prove 

(10.5) by  checking it on the cohomology level. Alternately we may  pass to homology by  

Poincare duality. Then a* corresponds simply to inverse image of the dual cycle to c,-~(Qn} 

and g ,  corresponds to projection. 
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Now let v be a non-zero element of V, and consider the section sv it determines in 

Qn over Pn. This is clearly a transversal section and we have: zero(sv) = (An ~ v). Similarly 

v determines the section s~ of Qm over Pro, and, zero(s~) = (Bin ~ v). Thus we get the formula: 

zero(s~) =:~o a -1 o zero(sv). (10.6) 

Finally, by  Proposition 6.13 these zero-sets are duals of the corresponding Chern classes, 

so tha t  (10.6) proves (10.5) on the homology level. (Because our sections are holomorphic 

there is no problem with orientations.) 

We discuss next, the geometric implications of an integral representation. Consider 

then the diagram: 

Y - - - ~ Z  

Ix 
X 

(10.7) 

with ~c=g.o~'09. I f  z is not in the critical set a (a point p is critical if at some point of 

a-l(p), the differential de is not onto its tangent space Zp). Then a-l(z) is a well-defined 

oriented manifold, so tha t  the pair (a-l(z); g) determines a smooth oriented singular sub- 

manifold X which we denote by  c(z). As already remarked, each c(z) represents the homo- 

logy class dual to ~. However, we have more than  that;  the family c(z) determines not only 

the dual homology class of ~ but  also the value of q0 on any singular k-submanifolds/:  K-->X. 

PROPOSITION 10.8. Let the k-lotto ~oEAg(X) have an integral representation 09 on Z, 

in the sense o/ (10.1). Then/or  any compact singular submani/old /:K--> X o/dimension k; 

one has: 

(10.9) The intersection n(K, c(z)) o / K  with c(z) is weU-de/ined except/or a set o/measure 

zero in Z. 

f f z n(g,c(z))09. (10.10) 

Outline o/Proo/. Let Y(/) = / - l ( y )  be the bundle induced by  Y over K, unde r / ,  and 

let/ ' :Y(/)---> Y be the bundle map covering/ .  I f  ~K: Y(/)--->K is the projection we have: 

f f fr,r< o/')*09 (lO.11) 

where the first step follows from the ident i ty /*o~* = z * o / ' *  and the second one from the 

adjoint property (10.1) of z . .  

One next  considers the map ~=(ro/':  Y(/)--->Z. A count of dimension shows tha t  
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dim Y(/)= dim Z. Hence on the complement  of the critical value set of 2 the degree of 2 

at  z, is well-determined and computes  the algebraic number  of sheets with which some 

vicinity of z is covered. Thus 

f y(r)2*~'= f z deg(2;z) ~o. 
Final ly consider the points of 2-1(z), with z a regular (i.e., not  critical) value of 2. 

We see first of all t ha t  these points correspond precisely to the intersections of c(z) with 

](K) and fur thermore tha t  all these intersections are transversal  so t h a t  the intersection 

numbers  are well-defined and their algebraic sum, is precisely deg(2, z). The theorem now 

follows from the fact  t ha t  the critical set of smooth  maps have measure zero. 

The proposit ion (8.7) which mot iva ted  this excursion is a direct consequence of the 

formulae (10.5) and (10.10). Indeed,  let r=d-n ,  and consider the exact  sequence 

O-* Sr( V)--> Tr( V)-->Qr( V)-->O over Pr( V). 

Let  ev:X-->Pr(V) be the evaluat ion map, so tha t  evl[Qr(V)]=E. We now apply  (10.5) 

with n = 1, and m = r. Thus the diagram we need is 

Pl,r--~Pl(V) 
I 

P~( v) 

Applying (10.5) one obtains cn[Q~] =~z,o~*ca-1(Q1) and it is clear that ca_~(Q~) is a volume 

of measure I on P~(V)--because s v vanishes at a single point for instance! Now one applies 

(10.8) with Xr replacing K, and ev replacing/, to obtain: 

f xCn(w)= f vl,,)n(r,s)~ 
with  n(r, s) simply the number  of zeroes of s E V on X~ (s a generic section). In tegra t ing  

wi th  respect to r, we conclude tha t  

T(r)= f v,(v) N(r,s)oo. Q.E.D. 

11. The Nevanlinua Theorem 

We conclude this paper  with a short  account  of the classical Nevanl inna theorem. 

I n  part icular  we would like to show tha t  the second main theorem of the Nevanl inna theory  

is also a consequence of the integral formula which yields the first main  inequality. 
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We therefore specialize all our constructions as follows: 

(11.1) For X we take the plane C, with an exhaustion, /(z), for which/(z) =log [z[ 

when ]z]/>1. 

(11.2) E is the trivial line bundle over X, so that  F(E) is the space of holomorphic 

functions on C. 

(11.3) V c F ( E )  is a 2-dimensional sufficiently ample subspace of F(E), i.e., one 

generated by two functions s 1 and s2EF(E ) which are not proportional, and 

which do not have any common zeroes. 

Remarks. ~) The assumption that  E is the trivial bundle is really no restriction as all 

holomorphic bundles over C are known to be trivial. 

fl) The function log I z[, is harmonic for large ]z] and therefore has the property 

ddc/=0. Hence ] does define a "concave" exhaustion. On the other hand, the function 

[z] 2 would not do, because 
ddClzI2=2idz h dS >~O. 

~) By (11.3) every sE V is of the form asl+bs 2. Hence the zeroes of s correspond to the 

points where r(z)=sl(z)/s2(z)=-b/a. In short we are dealing precisely with the value 
t 

distribution of the meromorphic function r(z). 

The refinement of the equidistribution theory which is possible in this situation is in 

the first place a consequence of the fact tha t  our exhaustion function is harmonic, so tha t  

dd c/=0 for large values of I z[. I t  follows that  (7.16) specializes to the formula: 

T ( r ) - N ( r , s ) = l  f log{1/[sl~}.dC/§ (11.4) 
OXr 

Indeed, in the case of line bundles, the form ~ of Theorem I may simply be taken to be 

log (1/N(s)). The formula (11.4) is furthermore valid for all s E V - 0 ,  because all these 

sections vanish at isolated points. 

Consider then a set of q sections s t E V, no two of which are dependent. Our aim is the 

l~evanlinna inequality: 

where 

q 

~: ~(s,) < 2 (11.5) 
1=1 

(~(st) = 1 -- lira N(r, st) 
T(r) 

For this purpose observe first of all tha t  a repeated application of (11.4) yields, 

1 ( log#2.dC/+ const (11.6) q T(r) - ~ N(r, st) = 4-~ Jox, 
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with 1-I -1. (11.71 

Hence if M(r) denotes the term 1/4~Soxrlog#2dC], then we need to prove the ine- 

quality: 

hm" M(r) <2 (ll.S) 

to establish (11.5). 

The estimation of M(r) proceeds by first correcting M(r) for the singular points of our 

evaluation map 

ev : X--> Pl( V). (11.9) 

Let  ~(X) and ~[PI(V)] be the respective holomorphie tangent bundles of X and 

PI(V), so that  de v becomes a section of the line bundle: 

Horn [T(X), e~l. T[PI( V)]]. (11.10) 

We consider the global section O/az of X, and set t=dev(O/Oz)=dev/dz. Then t is a holo- 

morphic section of L = e51~[pl(v)] and the singular points of e v are precisely the zeroes of t. 

Now the fixed Hermitian structure on V which underlies all our constructions, induces 

a Hermitian structure on ~{PI(V)} through the well known isomorphism: 

z[Pn(V)] = H o m  [Sn(V), Qn( V)]. (11.11) 

One may therefore apply the first main integral formula to the section, t, of/~ = e~ioZ[Pl(V)], 

and so obtains: 

1 12" f ~ o d r f x r c l ( L ) - ~ V ( r , t ) = ~ f o x r l o g l / , t  dO/+ const. (11.12) 

Once one identifies the first integral in (11.12) with 2T(r), this formula becomes the so- 

called second main theorem of the Nevanlinna theory. Actually, that  identification follows 

directly from the following quite general proposition: 

PROPOSITION 11.13. In the natural Hermitian structure on z{P~(V)} induced by 
(11.11), one has the identity o/ Chern /orms: 

cl{z[P~( V)]} =dim V. Cl[Q~ (V)]. (11.14) 

We bring only the proof for n = 1, the general case being similar but involving some 

complicated identities about the determinant. Let  then n be 1, and consider the sequence 

(see Section 6) of bundles: 

O-->SI--> T1--->Q1--~O (11.15) 
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over PI(V)- Taking Hom(S, �9 ) of this sequence we get 

0-> 1 -> Hom(S1, T1) -->v{Pl(V) } -->0. (11.16) 

Now we again use the Whitney formula on the homology level, and invariance under 

the isometries of V to deduce a relation on the form-level. Namely, from (11.6) 

ci{Hom(Si, T1)}=cl{~[PI(V)]}, 

while from (11.15), Cl(S1):-Cl(Q1 ) and hence ci{Hom(S1, T1) } : d i m  V.cl(Q1 ) as was to 
be shown. 

The formula (11.12) may therefore be used to give the following estimate: 

2T(r)/> ~ fo rlog 1/Itl2d~ + const (11.17) 

and this is now precisely the second fundamental inequality of the subject. 

The proof of (11.8) now proceeds as follows: 

Choose 0 < ) . < 1  and write: 

i f  f oxr l~ {1/lt]2}dC/" 2M(r) = 0x log {~ltl~}dCl + 

Then if the two expressions on the right are denoted by A(r) and B(r) respectively, we get 

2 lim M(r)/T(r) <lim A(r)/T(r) +lim B(r)/T(r), 

whence by the second main theorem, 

2 lim M(r)/T(r) ~<lim A(r)/T(r) +2.  

Hence if it can be shown that  lim A(r)/T(r)=0 for every 0 <2 < 1 we will be done. 

For this estimate, one first uses the concavity of the logarithm: Namely, if z =re ~a are 

the usual coordinates in C, then for r large enough; r ~> ro; we have / =  lnr, whence de/= dO 

and d/=dr/r. In  particular, �89 SoxdC/= 1. I t  follows from the concavity of log that  for 

c > lnr o 
1 

[. 
A(c) < log ~ Joxo I u ]2~[tl2dO 

1 f u~ltl~dO" (11.18) or equivalently: e~(~) <~ ~ ox~ 

This last relation is now exploited to construct an integral inequality which in some sense 

relates e ~(~ with T(c). For this purpose one needs the following identity, which relates 

] t ] 2 to the Chern-form cl(E ) which occurs in the definition of T(c). The relation in question 

is the following one: 



HERM'ITIAI~ V E C T O R  B U N D L E S  111 

1 [t]~rdrdO. (11.19) c~(E)  = -~. 

To see this formula, consider a point  x EC, and choose a section s 1 in V, with I s ~ l =  1, 

and Sl(X ) =0 .  Thus s 1 spans k x and is of unit  length. Choose s 2 to  be orthogonal  to  s 1 and 

also of uni t  length. Then near x there is a well determined holomorphie funct ion a(z) 

such t h a t  sl(z ) - o~(z)s~(z) generates k 1 for 2: near  x. I t  follows immediately  from the formulae 

of Section 5 tha t  in terms of this ~, 

• ~ rd, A de. %(E)=  2 g  dz 
(11.20) 

Final ly not ing tha t  [ d~/dz [ ~ = I t I 2, and t h a t  idz A d2 = 2r dr dO one obtains (11.19). 

In tegra t ing  with respect to  c, one now deduces from (11.18) t ha t  

; e t2c+A(c)J de ~ Cl(E ) ~a 
co J X c - X c e  

and so finally t h a t  

co CO ~ "  2 J C O cJ X c - XCo 

The concluding steps of the proof are now expressed by  the following two lemmas: 

LEMMA 11.22. I n  the notation used above, 

fCdef cl (E) t~2a<K1T(c)+K~ 
C o XC - X c  o 

where the K~ are constants. 

L E ~ M A  11.23. The integral inequality 

f f  c d e  e [2c +A(c)] dc <~ K 1 T(c) + Kg. 
d C o  Co 

implies that the inequality 

2c § A (c) ~< k s log [KI(T(c))  § Ks] , k > 1, 

hold/or arbitrarily large values o /c .  

We can clearly conclude from (11.21) and these two lemmas tha t  li__m A(c)/T(c)=O, 

so tha t  the Nevanl inna theorem is a direct consequence of (11.22) and (11.23). 

Bo th  Lemmas  are well-known, see for instance [2]. The first one follows f rom an integral 

geometry  argument ,  while the second one is a purely real variable inequality.  
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