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1. Intr~luetion 

The infinite-dimensional unitary representations of an arbi trary locally compact 

group G have been extensively studied since 1947. For some purposes, however, the unitary 

restriction is very undesirable--for example, if we wish to carry out "analytic continuation" 

of representations of G. This paper investigates some general concepts concerning non- 

unitary representations. Extending the ideas of [3], we define a "non-unitary dual space" 

of G. Roughly speaking, ~ is the space of all equivalence classes of irreducible (not neces- 

sarily either unitary or finite-dimensional) representations of G. I t  is not however a trivial 

mat te r  to decide what  we ought to mean by  'representation',  'irreducible', or 'equivalence 

class'. At first sight it might appear reasonable to restrict ourselves to representations 

living in a Banach space. We shall therefore begin with an example showing tha t  Banach 

spaces form too narrow a framework if we have in mind analytic continuation of representa- 

tions of general groups. 

Let  G be the Galilean group, tha t  is, the three-dimensional nilpotent Lie group of all 

triples of real numbers, multiplication being given by  <a, b, c} <a', b', c'} = <a + a', b + b', 

c + c ' - a b ' } .  The unitary representations of G are well known (see [15]). For each non-zero 

real number ~ there is a unique (infinite-dimensional) irreducible unitary representation T g 

of G with the property that,  for each real c, T a sends the central element <0, 0, c} of G into 

the scalar operator e ~c. 1. One would hope by a process of "analytic continuation" to 

obtain non-unitary irreducible representations T a having the same property for complex A. 

But we shall now show tha t  such a T x could not live in a Banach space. Indeed: Let  us 

write ~1(a)=<a,0,0}, ~(b)=<0,b ,0} ,  ~3(c) = <0, 0, c} (a,b,c real); and let us suppose tha t  T 

is a homomorphism of G into the group of bounded invertible operators on some Banach 

space H such tha t  T~,~(c) = e i~c" 1 for all real c, where 2 is a non-real complex number  (and 1 

is the identity operator on H). Since ~1(-1)~(b)~l(1) =Y3(b)~2(b), we have 
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for all real b. From this follows ]ei~b[ ItT~(b)ll< IIT~,<-I>II ]lT~<b)[I [IT~,<I)JI, or [ei~o I ~< 

tlT~<-I)II IlT~,<.II for all real b, which is impossible since ), is not real. Thus such a T 

cannot exist. 

Instead of merely Banach representations, therefore, we shall follow [5] and consider 

the more general objects called linear system representations. These were introduced by 

Mackey in [16], and amount to representations in a locally convex linear topological space 

where the only interesting property of the topology is its continuous linear functionals. 

Among their advantages is the fact that  the theory of non-unitary induced representations 

is most naturally formulated in terms of them (compare [16], w 8). 

Using linear system representations it will be very easy to construct the T x required 

in the preceding example for non-real 2 (see Appendix, Example 1). 

Apart from a few superficial generalities, the theory of linear system representations of 

quite general locally compact groups G is as yet a closed book. Only for a certain special 

class of groups will we be able to obtain non-trivial results, namely, those having a "large" 

compact subgroup K (see below). Indeed, the "largeness" of K will reduce the study of 

to the study of the finite-dimensional representations of certain subalgebras of the group 

algebra of G; and for these finite-dimensional representations we have available the results 

of [5]. 
Our paper is divided into thirteen sections and an appendix. In w 2 we recall the basic 

notions connected with linear system representations of an associative algebra A. The 

most useful concept of irreducibility for these seems to be that  of topological complete ir- 

reducibility. Denoting by if(A) the family of all topologically completely irreducible 

linear system representations of A, we topologize if(A) with the so-called functional topo- 

logy, and define two elements S and T of ~(A) to be functionally equivalent if they are 

not distinguished by the functional topology. The space of equivalence classes in if(A) 

under functional equivalence is called the (functional) dual space z{ of A. {This dual space 

is a larger object than the A defined in [5], which consisted of the algebraically completely 

irreducible linear system representations.) 

In  w 3 we mention commutative algebras, and in w 4 we show how A is related to l or 

(eAe) ̂ , I being a two-sided ideal of A and e an idempotent element of A. w 4 is a generaliza- 

tion of w 4 of [5]. 

Now let G be a locally compact group, and Mo(G ) the convolution algebra of measures 

on G with compact support. In w 5 we define linear system representations of G. These have 

"integrated forms" which are linear system representations of Mo(G ). Thus the definitions 
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in w 2 applied to A =M0(G ) can be pulled back to G; and we obtain the notion of the dual 

space 0 of G with its functional topology. This 0 is the main object of study in this paper. 

One asks such questions as the following: For what groups G is 0 locally compact? When 

does the functional topology of 0 coincide on unitary representations with the hull-kernel 

topology discussed (for example) in [3]? 

In  w 6 we digress somewhat to discuss a relation between representations which we call 

Naimark-relatedness. I t  was introduced by M. A. Naimark in his study of the Banach 

representations of the Lorentz group (see [17]), and is closely connected with functional 

equivalence. Unfortunately Naimark-relatedness is not in general an equivalence relation 

(see Appendix, Examples 3 and 4). I t  becomes one, however, if we restrict ourselves to 

what we call FDS representations, in which "enough" of the operators have finite-dimen- 

sional range. For FDS representations in 0, indeed, Naimark-relatedness turns out to be 

the same thing as functional equivalence. 

To answer the questions about 0 raised above, it appears necessary to make some kind 

of finiteness assumption about the representations in G; only then will the results in [5] on 

finite-dimensional representations of Banach algebras become available. Let  us refer to an 

idempotent element # of Mo(G ) as "small" if T(#) is of bounded finite rank for all T in G. 

The appropriate finiteness assumption seems to be roughly the existence of "enough" small 

idempotents in Mo(G ). If this holds, then of course all elements of 0 are FDS. In w 7 we 

show that  if "enough" small idempotents exist and if one further condition holds ("local 

boundedness" of G), then 0 is locally compact. 

If K is a compact subgroup of G such that,  for every irreducible representation D of K, 

the multiplicity of D in T is finite and bounded for all T in G, we say that  K is "large". 

(Our notion of "largeness" is a little stronger than that  of Godement [8], who requires only 

that  the multiplicity of D in T be finite for each T in 0.) If G has a large compact sub- 

group, Mo(G ) has enough small idempotents and hence 0 is locally compact. Further,  in 

this situation we can relate the topology of 0 to the subalgebras L~ of Godement ([8], 

w 10); this is done in w 8. In w 9 we show that,  if G has a large compact subgroup, the hull- 

kernel and the functional topologies coincide on irreducible unitary representations. 

Among the groups which have a large compact subgroup we find the connected semi- 

simple Lie groups with finite center [9] and the Euclidean groups [8]. We conjecture that  

the connected semisimple Lie groups G with infinite center, though they have no large 

compact subgroup, are nevertheless FDS (in the sense that  all elements of 0 arc FDS) and 

have locally compact duals. We do not know of any groups G without a large compact 

subgroup for which Mo(G ) has enough small idempotents. 
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w 10 gives the condition for local compactness and local boundedness of the duals of 

Abelian groups. 

Suppose now tha t  G is a Lie group. In  tha t  case the measure algebra of G can be en- 

larged to the distribution algebra Do(G ) (the algebra, under convolution, of all Schwartz 

distributions on G with compact support). I t  is shown in w 1 1 tha t  each element T of 

gives rise to a complex homomorphism 7T of the center Z of Do(G ), and tha t  the map 

T-~ 7r  is continuous. A very important  subalgebra of Do(G) is the enveloping algebra E of 

the Lie algebra of G. I f  G has a large compact subgroup, it is shown in w 12 tha t  each element 

T of G gives rise in a natural  way to an (algebraically) irreducible linear system representa- 

tion T of E, and tha t  the map T - + T  is one-to-one and continuous (in the functional topo- 

logies of 67 and ~). I t  would be very interesting to know whether it is a homeomorphism. 

In  w 13 we relate the topology of G (or rather, of the subset of G corresponding to a fixed 

idempotent measure and a fixed "norm-function") to the topology of uniform convergence 

on compact sets of "generalized spherical functions" on G. In  so doing we verify a conjecture 

of Godement. 

The Appendix contains four examples and counter-examples. 

The ideas of this paper  suggest two plausible and interesting conjectures. First, could 

it be tha t  for some classes of groups the generalization from Banach representations to 

linear system representations was unnecessary? To be more precise, let us say tha t  the 

group G is Banach-representable if every class in G contains some Banaeh space representa- 

tion of G. The Galilean group is certainly not Banaeh-representable (see Example 1 of the 

Appendix). However, we conjecture tha t  every group with a large compact subgroup 

(perhaps even every FDS group) is Banach-representable. 

As for the second conjecture, we notice from w 10 tha t  an Abelian group G which is 

compactly generated has a locally compact dual G. Could it be tha t  every compactly 

generated group having a large compact subgroup has a locally compact dual? 

Combining the results of [10] and [5] we can show tha t  for connected semisimple 

matr ix  groups both the above conjectures are correct. These results will be published later, 

along with other facts about the topology of G when G is semisimple or Euclidean. 

Here are a few words on notation. C denotes the complexes, and R the reals. ]]A means 

the restriction of the function / to A. I f  X is a complex linear space, X r is the space of all 

complex linear funetionals on X; if X is a Banaeh space, X* is the space of all continuous 

elements of X *. Dim(X) is the dimension of X. Pairs are denoted by angular brackets <, >. 

By a locally compact space we mean a (not necessarily Hausdorff) topological space in 

which every point has a basis of compact neighborhoods. 
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2. The functional dual space of  an algebra 

A linear system H is a pair of complex linear spaces Hi, H 2 together with a duality 

between them, that  is, a complex bilinear function ( ] ) on H 1 • H2 such tha t  (~ [ H2) = 0 only 

if ~ = 0  and (H 1 ]7) = 0  only if 7 =0.  An isomorphism F between two linear systems H and H' 

is a pair <F1,F2) , where F,  is a linear isomorphism of H,  onto H~ ( i=1,2) ,  and (~17)= 

(FI(~) ] F2(7) ) for all ~ E H 1, 7 E H~. I f  (H1,H2) is a linear system, the locally convex topology 

of H 1 generated by the functionals ~-+ (~17) (~ E H1), where 7 runs over  H~, is called the 

a(H)-topology o] H1; similarly we define the a(H)-topology o[ H 2. I f  K,= H, (i =1,2),  let 

K , l = { 7  e H e l ( K , [ 7 ) = 0 ) ,  K2• 

Then Kt  ~ = K  1 if and only if K t is a(H)-closed; similarly for K S. 

We write dim(H) for dim(H1) (=dim(H2)) if the latter is finite. 

I f  H and K are two linear systems, their direct sum H |  is defined as the pair 

( H  t | K 1, H~ | Ke), with the duality (~ | u 17 | v) = (~17) + (u Iv). 

Throughout this paper, A will be a fixed associative algebra over the complex field; .4 

will denote the "reverse algebra", having the same underlying linear space and with 

(xy) ~ = (yx)A. 

A representation o[ A is a homomorphism T of A into the algebra of all linear endo- 

morphisms of a complex linear space H = H ( T )  (the space o] T). By dim(T) we mean 

dim(H(T)).  Equivalence and irreducibility of T are to be understood in the purely alge- 

braic sense (the latter being taken to exclude the case of a zero- or one-dimensional zero 

representation). Suppose that  H ( T ) #  {0}; and that ,  for any  positive integer r and any 2r 

vectors ~1 .... ,~r, 71 ..... 7r such tha t  the ~1 ..... ~r are linearly independent, there is an a in A 

such tha t  T(a)~j=Tj (~= 1 ..... r); then T is called completely irreducible. 

A linear system representation o[ A in a linear system H = (H1, H~> is a pair T = (T1, T~}, 

where T 1 is a representation of A in Hi, Te is a representation of -~ in He, and (Tl(a)~ 17) = 

(~1T~(a)7) for all ~eH1,TEH ~. We shall frequently write H(T)=(HI(T),H~(T)> for the 

linear system H. Two linear system representations T and T '  of A, in H and H' respectively,. 

are equivalent (in symbols T ~ T ' )  if H and H '  are isomorphic under an isomorphism F 

satisfying F 1 o Tl(a ) = T~(a) o F 1 (and hence F,~ o Te(a ) = T~(a) o Fe) for all a in A. Let T 

be a linear system representation of A in H such that  Tl(a ) # 0 for some a. T is irreducible 

[resp. completely irreducible] if Tt is irreducible [resp. completely irreducible] for each i = 1,2. 

T is topologically irreducible if H 1 has no non-trivial a(H)-closed Tl-stable subspaces (and 

hence H~ has no non-trivial a(H)-closed T~-stable subspaces). T is topologically completely 

irreducible if, given any finite collection of linearly independent elements ~1 .... , ~ of H1, any 

1 8 -  6 5 2 9 3 3  Acta mathematica 114.  I m p r i m 6  le 15 oc tob re  1965 .  
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finite collection of linearly independent elements ~1, ...,~m of H 2, and any complex numbers 

ris (i=l,.. . ,n; j=l, . . . ,m),  there is an a in A such tha t  (Tl(a)~]~j)=ri j for all i and ?'. 

Equivalently, T is topologically completely irreducible if and only if, whenever ~1 .... ,~n, 

~ ,  . . . ,~  arc 2n veetom in H 1 such tha t  the ~x, .-.,~, are linearly independent, there is a net 

(av) of elements of A such tha t  T~(ar)~t-~[ (a(H)-wise) for each i = l  .... ,n. There is of 

course a similar equivalent condition in terms of H 2 and T 2. Topological complete irreduci- 

bility will be for us the most important  kind of irreducibility for linear system representa- 

tions. I t  obviously implies topological irreducibility. 

A finite-dimensional linear system representation T=(T1,  T2) is determined by  its 

first term T1; in this case we may  fail to distinguish between T 1 and T. 

If  T is a linear system representation of A, the kernels of T 1 and T 2 are the same; we 

call either one Ker(T),  the kernel of T. 

I f  X is a Banach space, the pair (X,  X*) with the obvious duality is called the linear 

system associated with X. I t  follows easily from the uniform boundedness principle tha t  the 

linear system (X,X*)  determines the norm of X to within equivalence. By a Banach 

representation of A on X, we mean a homomorphism S of A into the algebra of all bounded 

linear operators on X; X is called the space of S, and is denoted by X(S). Each Banach 

representation S of A on X gives rise in an obvious manner to an associated linear system 

representation T of A on the linear system H = (X,  X*): 

Tl(a ) =S(a), T2(a ) = (S(a))*. 

We shall say tha t  S is topologically irreducible (or topologically completely irreducible) if its 

associated linear system representation is so. Since norm-closure and weak closure of 

linear subspaces of X(S) are the same, the conditions of weak denseness and weak closure in 

these definitions can be replaced by  the corresponding norm-conditions, which we will not 

rewrite explicitly. 

We shall frequently fail to distinguish between a Banach representation of A and its 

associated linear system representation. 

Let  t (A)  denote the family of all equivalence classes of topologically completely ir- 

reducible linear system representations of A. We note that ,  if TE f(A),  HI(T ) and H2(T ) 

each contain a dense subset of cardinality no greater than tha t  of A, and hence the H,(T) 

(TE i (A);  i = l ,  2) are of bounded eardinality. I t  follows tha t  t (A)  is a set rather than  

merely a class, in the sense of yon Neumann's  set theory. 

When no ambiguity can arise we shall frequently confuse classes in if(A) with represen- 

tations in those classes. 
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Our next  goal is to topologize ~(A). Let  T be any linear system representation of A. 

As in [5] we define (I)(T) to be the linear span (in A ~ ) of the set of all functionals on A of the 

form a ~(Tl(a)~ 17), where ~6 HI(T ) and 76 H~(T), Since 

Ker(T) = {a 6 A ]r  for all r in (I)(T) }, 

the pair L = <A/Ker(T), @(T)> is a linear system under the natural duality; and one may 

define a linear system representation S = <$1,$2> on L of the tensor product algebra A | 

as follows: 
Sl(a| ) (c + Ker(T)) =acb § Ker(T),  (1) 

(S~(a|162 (c)=r (2) 

(a, b, v 6A; r 6 (I)(T)). 

LEMMA 1. I] TE if(A), then S is topologically irreducible. 

Proo/. Assume that  0 4 r E (I)(T), c E A, and that  r for all a, b in A; i t  suffices 

to deduce from this that  c E Ker(T).  Now r can be written in the form 

T 

where the ~ and the 7~ are linearly independent in HI (T  ) and H2(T ) respectively. By as- 

sumption 
r 

(T 1 (c) T 1 (b) $~ ] T 2 (a) 7,) = 0 (3) 
i = 1  

for all a, b in A. Suppose Tl(C ) ~: 0. Then by the topological complete irreducibility of T we 

can first choose b so that  ~ = TI(e)Tx(b)~I:~ O, and then choose a so that  (~t T*(a)71) ~: 0 and 

(Tl(c) Tl(b)~i]T~(a)Ti)= 0 for each i = 2 ..... r. But  these relations contradict (3). So Tl(C ) =0  

or c E Ker(T).  This proves the lemma. 

We shall always give to A ~ the topology of pointwise convergence on A. If  $ is a 

family of linear system representations of A we write (I)($) for [Js~sr By ((I)($))- we 

mean the closure of r  in A ~. 

COrOLLArY. Let $ be a ]amily o] linear system representations o /A and T an element 

o/if(A). ~/r n (r {0}, then r (r 

Proo/. Let S 2 be the representation of X |  on all of A ~ defined by (2). For each 

a in ~ |  $2(~) is continuous on A ~ and leaves (I)($) stable; hence S~(a) leaves ((I)($))- 

stable. Thus, if 0=~r E (P(T) N ((I)($))-, S2(A|162 c ((I)($))-. But,  by Lemma 1, S2(~|162 

is dense in (I)(T). So (I)(T)c ((I)($))-, and the corollary is proved. 
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If $ ~  i(A),  we define the closure of S to consist of all T in f (A)  such that  q)(T) ~ ((I)($))- 

(or equivalently, by the corollary, some non-zero r in (1)(T) belongs to (O(S))-). Because of 

the above corollary, this closure satisfies the Kuratowski axioms, and so defines a topology 

for i (A).  

De/inition. The topology for f (A)  defined by this closure operation is called the 

Junctional topology. 

De/inition. Two elements S and T of f (A)  which are not separated by the functional 

topology will be called/unctionally equivalent (in symbols, S ~  T). 

L ] ~ A  2. I] S, T are in i (A) ,  then S ~ _ T i /and only i /Ker(S)  =Ker(T) .  

This is easily checked. 

De/inition. By the (Junctional) dual space A of A we shall mean the quotient space 

i (A)/-~,  that  is, the space of all functional equivalence classes of elements of if(A). A will 

always be equipped with i ts/unctional topology, that  is, the functional topology of i (A)  

"lifted" to A. 

If ~ E A, we shall write Ker(v) for the common kernel of all members of ~ (see Lemma 2). 

One could of course identify T with Ker(~), and regard A as the space of all kernels of 

elements of i (A).  We shall not do this however. 

By definition A is always a T0-space. 

Our present dual space A differs from that  defined in [5]. The dual space of [5] con- 

sisted of the algebraically completely irreducible elements of i (A)  (with the same functional 

topology). 

3. Central characters and commutative algebras 

Let us denote by Z the center of A. If TE if(A), we have a complex homomorphism 

2T Of Z such that  T~(a) =~T(a)" 1~ for each a in Z and i = 1,2 (1~ being the identity operator 

on Ha(T)). This 2T is the central character of T. 

LEMMA 3. The map T'->2 r ( TE if(A)) is continuous in the junctional topology o/ if(A) 

.(the topology/or the it r being that o] pointwise convergence on Z). 

Proo/. Let TE if(A), and let 0 : ~  =lim v r d)(T), where Cr E ~P(Tv), T r E if(A). I t  will 

suffice to show that  2Tr ~ ~T in Z ~. Choose a in A so that  r 4 = 0. If bE Z, we have r = 

2r(b)r r162 ). Thus, from r162 and r162 it follows that  

2r,  (b)--> ]~r(b). This proves the lemma. 
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In  particular, if S ~_ T (S, TE if(A)), then 2s =2r .  So )~ can be considered as defined 

for classes w in 4 ,  and ~-+A, is continuous on Ji to Z ~. 

COI~OLT,ARY. I / A  is commutative, if(A) (or .~) can be identified with the space o/all non- 

zero homomorphisms o] A into C; and the/unctional topology o/[I(A) coincides with the topo- 

logy o/pointwise convergence on A.  

This corollary is the special case n = 1 of Theorem 1 of [6]. 

4. Restriction to ideals and subalgebras 

I f  I is a subalgebra of A, and T is a linear system representation of A, we write T ] I 

for the linear system representation <TI[I, T211 > of I .  Clearly, if I is a two-sided ideal of 

A, I C K e r ( T ) ,  and T is topologically irreducible, then T II  is topologically irreducible. 

In  fact we have: 

LEMMA 4. I /  TE if(A), I is a two-sided ideal o /A ,  and Idg Ker(T), then T I I E  if(I). 

Proo/. If  T is finite-dimensional the result is obvious by  Burnside's Theorem. Assume T 

is infinite-dimensional. 

Suppose tha t  n = max {rank(Tl(a)) [ a E I } < oo. Clearly there are linearly independent 

vectors ~0, ~1 . . . . .  ~n in Hi(T), hnearly independent vectors ~0, ~,.- . ,  ~ in Hi(T), and elements 

a, b of I ,  such tha t  Tx(a)~o=~o and Tx(b)~ i=~; for each i =  1 .... ,n. By the topological com- 

plete irreducibility of T there are nets {cv}, {dr} of elements of A such tha t  T~(cv)~o-+ ~o, 

Tl(dv)~0 -+ 0, and Tx(c~)~--->O and Tl(d~)~-+~ for each i = 1  ..... n. So T~(ac~+bdr)~--->~ ~ 

for all i = 0,1 ..... n. Thus, for large ~, Tl(ac ~ + bd,) has rank at  least n + 1, and acr + bd, E I. 

This contradicts our supposition about n. Thus we have shown tha t  rank(Tx(a))will  be 

arbitrarily large for suitable a in I .  

Now let ~1 ..... ~m be any finite number  of linearly independent elements of Hi(T),  and 

~l,-..,~n any other elements of HI(T  ). By the preceding paragraph and the topological 

complete irreducibility of T, there are elements c of I and a of A such tha t  the Tl(ca)~ ~ 

( i=1,  ...,m) are linearly independent. We may  then choose a net {bv} of elements of A so 

t h a t ' T  1 (b 7 ca) ~i --+ ~ for each i. Since by ca E I, our lemma is proved. 

Thus, if I is a two-sided ideal of A, the restriction map 

T-~Tll (4) 

carries (ff(A))z= {T E ff(A)lIr Ker(T)} into if(I), 

LEMMA 5. (if(A))1 is open in if(A); and the map (4) is a homeomorphism o/( i f (A))  
into if(I). 
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Proof. I t  is clear that  (~(A))x is open, and that  (4) is one-to-one. Since r  (I)(TI I ) 

whenever CE (I)(T), (4) is evidently continuous. 

Assume that  0 ~= r = lira v ~ E (I)(T I I),  where ~by E (I) (T v I I); here T, T r are in (fT(A)) i. The 

continuity of the inverse of (4) will be proved if we exhibit functionals ~0 and ~ such that  

04:~0=limr %ovE(I)(T), %ovE~(TV). Choose b in I so that  ~(b):~0. Then, by the topological 

complete irreducibility of T the functional~0: a-~ r on A is non-zero. Evidently %0 E (I)(T); 

similarly ~y: a-~r is in (I)(Tr). Since r on I ,  we have ~p~-+yJ on A, and our task 

is done. 

In  particular , if S, T are in (~(A))z, then S___ T if and only if S I I ~  T I I; and the map 

(4) lifts to a homeomorphism of -~z into ~f, where we have put  A t =  (v E Al ia= Ker(~)~. 

LEMMA 6. The range o/(4), considered as a homeomorphism o / ~ z  into J~, is all o~ 17. 

Proo/. Let S be an element of if(I), acting in a linear system H. Let  K~ be the linear 

span of (S~(a)~]a E I, ~E H~} (i = 1,2). Then K~ is S~-stable and non-zero, hence a(H)-dense 

in H~. By the same argument as in the proof of Lemma 5 of [5], there is a linear system 

representation T of A acting in K = ( K 1 , K ~  such that  Ti(a) =St(a)[Kt for i=~1,2 and all a 

in I.  Since S E if(I), T E if(A). Further T[ I and S have the same kernel. Thus the class of T 

in .4 is carried by (4) into the class of S in f .  

Summarizing Lemmas 4, 5, and 6, we have: 

THEOI~EM 1. Let I be a two-sided/deal o /A,  and/et  -~z = {v E . 4 1 I r  Ker(v)}. Then ~ 

is open in 4,  and (4) lilts to a homeomorphism o/-4z onto 1. 

Now suppose that  e is a fixed idempotent element (e ~ =e) of A. If T is a linear system 

representation of A satisfying Tx(e):#O , let H~(T) be the linear system 

<range(Tl(e )), range( T~(e))> 

(with the restricted duality of H(T)); and let T e be the linear system representation of eAe 

on He(T) defined by T~ (b) = T~(b) ]range(Tt(e)) (i = 1,2; b 6 eAe). A standard argument ([8], 

Lemma 3) shows that  if T 6 if(A) then T e 6 ~(eAe). Thus, putting 

(ff(A))~ = ( T  E f~(A)[T,(e) =~0}, 

we obtain a map T - ~ T  ~ (5) 

of ([/(A))~ into f~(eAe). If S,T  E ([/(A))~, we have Ker(T~)-=-Ker(T)N eAe and K e r ( T ) =  

{a E A iebace E Ker (T ~) for all b, c in A }, and similarly for S; hence S ~ T if and only 

if S e -  ~ T e. So (5) lifts to a one-to-one map of A~ into (eAe)", where we have put  Me= 

{~ e A l e r Ker(~) }. 
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L~MMA 7. ~e is open in .~; and the map-~e ~ (eAe) " li/ted /rom (5) is a homeomorphism. 

Proo/. Obviously . ~  is open in .~. The continuity of (5) results from the fact tha t  

r (eAe) E ~P(T e) whenever r E (I)(T) (T E A~). To prove tha t  the inverse of (5) is continuous, 

it suffices to show tha t  if $ is a subset of (ff(A))~ closed in (ff(A))~, then $~= (S~]Se $} 

is closed relative to ( T  e ] T e (ff(A))~}. Assume tha t  T e (ff(A))e, T e e ($~)-. Then there is a 

non-zero functional r in (I)(T ~) such tha t  r = l im r Cr, where Cr E (I)($e). Setting ~p(a) =r 

yJr(a)=r (aEA),  we have v2E(I)(T),~rE(P(S), and y~y-~yJ on A. So TE $% whence 

T ~ $, or T ~ ~ $~. I t  follows that  the inverse of (5) is continuous. The lemma is now proved. 

We do not know whether the map -~e ~ (eAe)^ lifted from (5) is always onto (eAe)". 

By Lemma 8 of [5], if the class ~ in (eAe)" contains an (algebraically) completely irreducible 

member,  then ~ belongs to the range of (5). In  particular all finite-dimensional elements of 

(eAe)" belong to the range of (5). 

5. The functional dual space of  a group 

Throughout the rest of this paper G is a fixed locally compact group with unit e; 

Mo(G ) is the algebra (under convolution ~- ) of all complex regular Borel measures on G 

with compact support; and 2 is a left I t aa r  measure on G. An element x of G will be identi- 

fied with the unit mass at x; thus GcMo(G ). The space L(G) of all continuous complex 

functions on G with compact support becomes a subspace (in fact a two-sided ideal) of 

Mo(G ) when we identify / with Ida. 

We now define a linear system representation T of G. We wish every such T to possess 

an "integrated form" (a representation of Mo(G)). Rather  than assume "completeness" of 

the underlying linear system, we shall put  this requirement into the definition itself. 

De/inition. By a linear system representation T o/G on a linear system H( T) = (H1, H2~, 

we mean a pair (T1, T2~ , where 

(i) T 1 [resp. T2] is a homomorphism [resp. anti-homomorphism] of G into the group 

of invertible linear endomorphisms of H 1 [resp. H~]; 

(if) (TI(X)~I~) =(~I T~(x)~) (x6 G, ~6 H 1, ~ 6 H2); 

(iii) x-+(Tl(x)~ I~) is continuous on G for each ~ in H 1 and ~ in H~; 

(iv) for each # in Mo(G), there exist (unique) linear endomorphisms TI(/~ ) and T2(#) of 

H I and H~ respectively such that,  if ~ e H 1 and ~ 6 H~, 

(T1 (/~) ~ I~) = [ ( T 1  (x) ~1 ~) dflx = (~1 T2 (fl) ~)" 
JG 
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One should remark that ,  if (H1, H~) is the linear system (X,X*)  associated with a 

Banach space X, the above definition tallies with the usual definition of a Banach represen- 

tat ion of G. Indeed, we define a Banach representation o/G on X as a homomorphism S of G 

into the group of invertible bounded linear operators on X such tha t  x-~Sx~ is norm- 

continuous on G for each ~ in X. Now it is a known but  anonymous theorem (see [2], 

Theorem 2.8) tha t  the definition is unchanged if we replace norm-continuity by  weak 

continuity of x-~Sz~, tha t  is, if we assume merely tha t  x-~(Sz~)  is continuous on G for 

each ~ in X and ~ in X*. Thus S is a Banach representation of G on X if and only if 

x->(S(x), (S(x))*~ (xE G) is a linear system representation of G on the associated linear 

system (X,X*~. We shall refer to x-+(S(x), (S(x))*) as the linear system representation of 

G associated with S. 
We shall frequently fail to distinguish between a Banach representation of G and the 

associated linear system representation of G. 

I f  T is a linear system representation of G, one easily checks tha t  # -->(Tl(~a), T2(ja)~ 
(see (iv) of the definition) is a linear system representation of Mo(G ) on H(T);  call it the 

integrated ]orm of T. We say tha t  T is topologically irreducible [resp. topologically completely 

irreducible] if its integrated form is so. Two linear system representations S and T of G 

are equivalent [resp./unctionally equivalent] if their integrated forms are so. We define ~(G) 

[resp. G] as the family of all equivalence classes [resp. functional equivalence classes] of 

topologically completely irreducible linear system representations of G. Thus we can regard 

~(G) and G as subspaces of i(Mo(G)) and (Mo(G)) ̂  respectively, and equip them with the 

relativized functional topology of t(Mo(G)) and (Mo(G)) ̂ . So equipped, G will be called the 

(/unetional) dual space of G. 

Recall tha t  L(G) is a two-sided ideal of Mo(G); and note that  the integrated form T of a 

non-zero linear system representation of G never vanishes on L(G). In  fact T is determined 

by T]L(G). By Lemma 4 T]L(G) is topologically completely irreducible whenever T is; and, 

by  Lemma 5, T~TIL (G  ) is a homeomorphism of •G) into i(L(G)). Thus i (G)  and 

(with their functional topologies) can also be regarded as topological subspaees of t(L(G)) 

and (L(G)) ̂  respectively. 

The functional topology of i(G),  as defined above, has certain drawbacks. For one 

thing, on the subfamily of unitary representations it does not always coincide with the 

"hnll-kernel" topology (studied in [3] and elsewhere). Consider for example the "ax +b"  

group G. This has precisely two distinct infinite-dimensional topologically completely 

irreducible unitary representations; call them S and T. Further  S and T are distinguished 

by the hull-kernel topology (see [4], p. 263). However, it is easy to check tha t  the integrated 

forms of S and T are both faithful on M0(G), and hence are not distinguished by  the func- 
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t ional  topology of if(G). For tuna te ly ,  for groups having large compac t  subgroups,  i t  will 

t u rn  out  t ha t  the  hull-kernel and functional  topologies coincide on the  un i t a ry  elements  of 

if(G) (see w 9). 

Natura l ly ,  the  elements  of if(G) which are Banach  representat ions  will be of par t icular  

interest  to  us. For  handling these we shall need the  idea of a norm-funct ion.  A norm- 

/unction on G is a posi t ive-real-valued lower semi-continuous funct ion a on G which is 

bounded  on compact  sets and satisfies a(xy) <~ ~(x)~(y) for all x ,y  in G. I f  a and  fi are norm-  

functions so is max(~,/~); thus  the  norm-funct ions  form an upward  directed set. I f  ~ is a 

norm-funct ion,  Mo(G ) is a normed  algebra under  the  no rm II II~ defined b y  

II  11o= f  (x)d X 

(]#1 being the to ta l  var ia t ion  of #). 

I f  T is a Banach  representa t ion of G, the  funct ion ~: x-+ llTx II is a norm-funct ion on G, 

and  the  in tegra ted  form of T is continuous on Mo(G ) with respect  to I1 H~. 

De/inition. Suppose t h a t  g is a norm-funct ion on G. Then (ff(G))~ will be the set con- 

sisting of those Banach  representat ions T in if(G) such tha t ,  for Some constant  k > 0, we 

have  f]Tx 11 ~<]c~(x) for all x in G. B y  G~ we shall mean  the  family  of classes T in G which 

contain some element  of (ff(G))~. 

6. Naimark-equivalence and FDS representations 

Closely connected with functional  equivalence is the idea of Naimark-re la tedness .  

Le t  T be a l inear sys tem representa t ion of A in H = (H1,H2);  suppose K~ is a a(H)-  

dense T~-stable subspace of H~ ( i=1 ,2) ;  then  K = ( K 1 , K 2 )  is a l inear sys tem (with the  

dual i ty  restr ic ted f rom H). Pu t t ing  S ~( a ) = T i( a ) I Kt  ( i = 1,2, a E A ), we shall refer to  S = 

($1,$2) , acting in K,  as a dense contraction of T. 

Note  t h a t  a dense contract ion of a dense contract ion of T need not  .be a dense contrac-  

t ion of T (see Appendix,  Example  2). 

The following l emma  is s ta ted  wi thout  proof in [16], w 8. We include the  proof for 

completeness '  sake. 

L~MMA 8. Let T and T'  be two linear system representations o / A ,  acting in linear systems 

H and H'  respectively. Then the/ollowing two conditions are equivalent: 

(i) T and T'  have equivalent dense contractions; 

(ii) There exists a a(H@H')-closed one-to-one linear map F o/ a a(H)-dense Tl-stable 

subspace D o / H  1 onto a a(H')-dense T~-stable subspace D' o /H i ,  such that FT l (a ) x  = 

T~(a)Fx /or all a in A and x in D. 
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Proo/. (I) Let  T and T'  have dense contractions S and S' acting in K and K'  respec- 

tively; and suppose S~-S ' under an equivalence G=(G1,G~). Let F be the a(H| 

closure of G 1 (considered as a subspace of HI| Now the equation (~1~)=(~']G,(~)) 

holds for all ~| in G1; hence it holds for all ~ ( ~ '  in F. Thus, if (0| F,  we have 

(~' ]~/') =0  for all ~/' in range(G2) =K~, and hence ~' =0. Similarly (~| E F only if ~=0.  So F 

is a a(H@H')-closed one-to-one linear map. Since G1 is stable under the a(H| 
uous endomorphism Tl(a)| T~(a) of HI| (for each a), so is its closure F. This implies 

the remaining conditions on F required in (ii). 

(II) Assume that  (li) holds. Let  F ~ {~ ' |  I~| F}, and put  

F* = F ~ = {(~/' |  H~| I (~I~/) = (F(~) IT') for all ~ in D}. 

If (0| E F*, then (D]~/) =0, so that  ~ =0. Similarly (~'| E F* only if ~ '=0 .  So F * i s a  

one-to-one function. If  ~'EH~ and ~'E (domain(F*)) • then (~' |  F*'=F ~ (the latter 

equality holding because F ~ is a(H'| whence ~' =0. So domain(F*) is a(H')- 
dense in Hi. Similarly range(F*) is a(H)-dense in H 2. Since F ~ is stable under T~(a)~ Tl(a), 
F*=F ~ is stable under T~(a)| ) for each a in A; consequently domain(F*) and 

range(F*) are stable under T~ and T,  respectively, and F* is an equivalence between the 

restrictions of T~ and T 2 to these subspaces. Thus, if we put  KI=D, Ks=range(F*), 
K~=D', K~=domain(F*), the dense contractions of T and T' on (K~,K~ and (K~,K~ 
respectively are equivalent under (F ,  F*-I) .  

Definition. Two linear system representations T and T'  of A will be said to be Nai. 

mark-related if conditions (i) and (ii) of Lemma 8 hold. 

Two linear system representations S and T of the locally compact group G are 

Naimark-re.lated if their integrated forms (on Mo(G)) are Naimark-related. Since L(G) is a 

two-sided ideal of Mo(G ) and contains an "approximate identity",  one verifies easily tha t  S 

and T are Naimark-related if and only if their integrated forms restricted to L(G) are Nai- 

mark-related. 

If S and T are Banach representations of A (or G), the conditions of weak denseness 

and weak closure in the definitions of Naimark-relatedness can be replaced by the corre- 

sponding norm-conditions. 

In general Naimark-relatedness is not transitive, hence not an equivalence relation 

(see Appendix, Examples 3 and 4). Two Naimark-related linear system representations S 

and T of A clearly have the same kernel and hence, if they are in ~Y(A), are functionally 

equivalent. I t  is conceivable (though quite unlikely) that,  on if(A), functional equivalence 

coincides with the smallest equivalence relation containing Naimark-relatedness. (In 
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Example  4 Of the Appendix we show tha t  the two functionally though not unitarily equiva- 

lent infinite-dimensional irreducible unitary representations of the "ax+b" group can 

indeed be joined by a chain of Naimark-related pairs.) 

The non-transitivity of Naimark-relatedness is due to the fact tha t  different dense 

contractions of the same linear system representation may  have small intersection. How- 

ever, if there exists a "smallest" dense contraction, this cannot happen. 

Definition. Let T be a linear system representation of A. A dense contraction of T 

acting in (K1,Ks> will be called the strictly smallest dense contraction of T if, given any dense 

contraction T' of a dense contraction of T, with T '  acting in <LI,L2>, we have K I ~ L  1 and 

K2 = L 2. 

I f  a strictly smallest dense contraction exists, it is unique. 

Let T and T '  be two linear system representations of A, having strictly smallest dense 

contractions S and S'  respectively. Then clearly T and T '  are Naimark-related if and 

only if S ~-S'. Thus, restricted to the family of linear system representations which possess 

strictly smallest dense contractions, Naimark-relatedness becomes an equivalence relation, 

which we shall call Naimark.equivalence. 

Our next job is to single out a useful class of linear system representations which possess 

strictly smallest dense contractions. 

Let  T be a linear system representation of A in H, and put  

I(T) = {a e A] Tl(a ) is of finite rank}. 

(Note tha t  Tl(a ) is of finite rank if and only if T~(a) is.) Let  H~ (i = 1,2) be the linear span 

of the ranges of the Tt(a) with a E I(T). Evidently H~ is Ti-stable. 

Definition. T is finite-dimensionally spanned (FDS for short) if H~ is a(H)-dense in 

Hi  for i = 1, 2. 

I f  T is FDS, then T restricted to H~ (H~ H~ is a dense contraction of T, 

which we shall in future always denote by  T o . 

L v,~MA 9. I / T  is FDS, T o is the strictly smallest dense contraction o/T.  

Proo]. Let T '  be a dense contraction of T acting in (K1,K~). Since K 1 is a(H)-dense 

in H 1 and Tl(a ) is a(H)-continuous, Tl(a ) (K1) is dense in range(Tl(a)) , hence equal to 

range(Tl(a)), for each a in I(T). I t  follows tha t  H~ and similarly H~ in 

particular T '  is FDS. Applying the same argument to a dense contraction of T' which 

acts in (L1,L~), we find tha t  H ~  H~ ') =Lt. This proves the Lemma. 
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Thus, as we have  observed,  Naimark-re la tedness  is an equivalence relat ion when 

restr ic ted to F D S  linear sys tem representa t ions  of A. 

Note  tha t ,  if T is topologically irreducible, it will be F D S  provided tha t  Tl (a  ) is of 

non-zero finite r ank  for a t  least  one a in A. 

I f  T is FDS,  any  dense contract ion of T is obviously FDS.  Bu t  the  converse is false; T 

m a y  have  an F D S  dense contract ion wi thout  itself being F D S  (see Appendix,  E x a m p l e  2). 

L E ~ M A  10. I /  T is FDS,  the ]ollowing five conditions are equivalent: 

(i) T is topologically irreducible, 

(ii) T is topologically completely irreducible, 

(iii) T o is irreducible, 

(iv) T o is irreducible, 

(v) T o is completely irreducible. 

Proo/. We shall first  show t h a t  (i) ~ (iii). Suppose T is topologically irreducible. Le t  K 1 

be a Tl-s table  non-zero subspace of H~ Then  K 1 is a(H)-dense in H1; so the restr ict ion 

of T to  <K1,H~) is a dense contract ion of T. Consequently H~ or H~ 

Thus  T O is irreducible. 

Nex t  we show t h a t  (hi) ~ (i). Le t  K 1 be a non-zero Tl-s table  subspace of H 1. For  a in 

I(T) we have  TI(a)K1cK1 N HO(T), and Tl(a)gl:# {0} for some a in I(T). So KI • HO(T) 

is a non-zero T~ subspace of HI~ and therefore, if T~I is irreducible, K~ ~ H ~ (T). 

So K 1 is a(H)-dense in H 1. Therefore  (iii) ~ (i). 

Similar ly (i) ~ (iv) ~ (i). Thus  (i)r  Nex t  we shall show t h a t  (i) ~ (v) ~ (ii). 

Since (ii) ~ (i) tr ivially,  the proof  will then  be complete.  

Assume (i). Since (iii) and (iv) then  hold, (v) will hold by  Jacobson ' s  Theorem ([13]), 

p. 28) if we show t h a t  the division algebra E~ of endomorphisms of H~ (T) commut ing  with  

all T~ is f ini te-dimensional  over  the  complexes,  and hence coincides wi th  the  complexes.  

Assume then  t h a t  E 1 is infinite-dimensional;  and pick an infinite sequence {Qn} of e lements  

of E 1 which are l inearly independent  over  the  complexes.  Choose ~ in/-/~I(T) and  a in I(T) 

so t h a t  ~ = Tl~ Then,  for each n, Qn~] = T~ range(T~ But  the la t te r  is 

f inite-dimensional,  so the  Q~] are not  l inearly independent;  t h a t  is, there exist  complex 

numbers  {X~} (some, bu t  only finitely many ,  of which are non-zero) such t ha t  ( ~  X~ Q~)~ =0 .  

Since E 1 is a division algebra,  the  last  equat ion implies ~n X ~ Q . = 0 ,  contradict ing the  

independence of the  Q~. So E 1 is f inite-dimensional,  and T O is complete ly  irreducible. Simi- 

lar ly T o is complete ly  irreducible. Thus  (i) ~ (v). 

We shall nex t  prove  t h a t  (v) ~ (ii). Assume (v); and let ~1 ..... ~ be l inearly independent  
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elements  of H 1. Since H~ is a(H)-dense in H~, there are elements  ~1 .... ,~n in H~ such 

t h a t  the ma t r ix  {(@~] ~ j) }~. j =1 ...... has non-zero de terminant .  Now it  follows f rom (v) t h a t  

the  restr ict ion T '  of T o to the  ideal I(T) is complete ly  irreducible. Indeed,  since (v) ~ (iii) 

t r ivial ly and  since I(T)r , T' must  be irreducible; hence, b y  the implicat ion 

(iii) ~ (v) applied to T ' ,  T '  is complete ly  irreducible. Thus  there exists an  element  a of I(T) 

such t h a t  T~(a)~j=~j  for all j; and  the ma t r ix  of numbers  (Tl(a)~il~;) =(~1T2(a)~]J)= 

(~i I~J) has non-zero de terminant .  Therefore the  Tl(a)~ ~ (i = 1, 2, ...,n) are l inearly indepen- 

dent  elements  of H~ Now suppose ~ ..... ~ are any  elements  of H 1. B y  (v) applied to the 

Tl(a)~i, we can find a net  (br} of elements  of A such t h a t  

T 1 (by a) ~i = T1 (by) T1 (a) ~ ~> ~i' 

for each i. B y  the  arbi trar iness of the ~ and the ~', this proves  t h a t  T is topologically 

complete ly  irreducible. So (v) ~ (ii). 

Note  t h a t  Theorem 6 of [8] and its consequences are a special case of the  construct ion 

of T o f rom T. 

L E M~A 11. Two topologically irreducible F DS linear system representations S and T o/A 

are Naimarlc-equivalent i/ and only i/ K e r ( S ) = K e r ( T ) .  

Proo/. Clearly Ker(S)  = Ker(S~ and likewise for T. Hence  b y  L e m m a  10 it  is sufficient 

to assume tha t  S and T are complete ly  irreducible, and to show t h a t  Ker(S)  = Ker (T)  if and  

only if S ~ T. 

Le t  aEA. I claim t h a t  Sl(a ) is of r ank  1 if and only if {bEAISl(aba)=O ~ is of co- 

dimension 1 in A. 

Indeed,  assume tha t  Sl(a ) has range C~ (0 #: ~ EHI(S)). Then  it is easy to see t h a t  there  

is a non-zero linear functional  2 on A such t h a t  Si(aba ) =2(b)Sl(a ) (bEA). I n  par t icular  

it  follows t h a t  {b IS~(aba)=0} has co-dimension 1. ~Iow assume t h a t  the  r ank  of S~(a) is 

greater  t han  1; and  let u and u '  be elements  of HI (S  ) such t h a t  ~ = Sl(a)u and ~' = Sl(a)u' are 

l inearly independent .  B y  the  complete irreducibil i ty of S 1, there  are elements  b, c of A such 

t h a t  Sl(b)~ =u, Sl(b)~' =0, Sl(c)~ =0, SI(e)~' =u'. I t  follows t h a t  Sl(aba)u =~, Sl(aba)u' =0 ,  

Sl(aca)u = 0, Sl(aea)u' = ~'. Thus  the operators  Sl(aba ) and Sl(aca ) are l inearly independent;  

and  therefore the  kernel  of the m a p  b -+S~(aba) (b EA) must  have  co-dimension greater  t h a n  

1. This proves  the  above  claim. 

To prove  the  l emma  we mus t  show t h a t  K e r ( S ) = K e r ( T )  only if S -~ T. Assume then  

t h a t  Ker(S)  = K e r ( T ) .  Since S is FDS,  there exists an a in A such t h a t  Sl(a) (and hence also 

S~(a)) has r ank  1. B y  the  preceding claim and the  fact  t h a t  K e r ( S ) = K e r ( T ) ,  this implies 

t h a t  Tx(a ) and T2(a ) likewise have  rank  1. Let  ~, ~, ~', ~ '  be non-zero vectors  in the  ranges 
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of Sl(a), S2(a), Tl(a), and T2(a ) respectively; and put  p(b)= (Sl(b)~[~), p'(b)= (Tl(b)~' IT') 

(b E A). I f  b E A, we have pl(b)=0~ 0 = (Si(ba)u[S2(a)v) = ( S  l ( a b a ) u [ v )  for all u in HI(S ) and 

v in H2(S)~Sl(aba) =0; tha t  is, p(b)=0~abaEKer(S). The same holds for p ' .  Thus p and 

p '  are non-zero and have the same kernel, whence p' =k .p  for some non-zero complex 

constant k. By Proposition 2 of [5], this implies that  S-~ T. The proof is now complete. 

COROLLARY 1. For FDS elements of if(A),/unctional equivalence and Naimark-eguival- 

ence are the same. 

COROLLAI~Y 2. I] S, T are /unctionaUy equivalent elements o/ if(A) and T is FDS, 

then S is also FDS. 

Proo/. By Lemma 10, S is FDS if and only if Sx(a) is of rank 1 for some a in A. Now 

it is easy to see tha t  the claim asserted in the second paragraph of the proof of Lemma 11 is 

true whenever SErf(A), regardless of whether S is initially assumed to be FDS or not. 

Thus, choosing a so tha t  Tl(a ) is of rank 1, we see that  Sl(a ) is also of rank 1, and hence 

tha t  S is FDS. 

In  view of Corollary 2, we can refer to a class ~ in A as FDS if some {hence all) of its 

members are FDS. 

A linear system representation T of G is FDS if its integrated form is FDS, or equiva- 

lently, if its integrated form restricted to L(G) is FDS. 

Definition. The locally compact  group G will be said to be FDS if every element of 

if(G) is FDS. 

By the above Corollary 1, for FDS groups functional equivalence in S(G) can always 

be replaced by  Naimark-equivalence. 

7. Groups with enough small idempotents 

Let ~t be an idempotent element of M0(G); we shall write If(G) for the subalgebra 

g+L(G)+~ of .L(G). I f  T is a linear system representation of G, form the linear system 

representation T" o f /x+Mo(G)+/s  on H~'(T) as in w 4 (identifying T with its integrated 

form). We shall denote the restriction of T" to I f (G)  by  T ~). By w 4, if T E if(G) and TI(/D # 

0, then T(")E ~(L~(G)). 

L ~ M A  12. Let /u be an idempotent element of Mo(G), and m a positive integer. The/ollow. 

ing conditions (i)-(iv) are equivalent: 

(i) Every topologically completely irreducible linear system representation o/If(G) is o/ 

finite dim~.nsion <~ m; 
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(if) There are enough representations o/L"(G) o/ finite dimension ~ m to distinguish 

points o/L'(G); 

(iii) i/ T is any topologically completely irreducible linear system representation o/ G, 

then dim(H'(T))  ~<m; 

(iv) there are enough linear system representations T o /G  satis/ying dim(Hg(T))<~m to 

separate points o/L(G). 

Proo/. That (if) implies (i) follows from Kaplansky's theory of polynomial identities 

(see [8], Lemma 1). T h e  remark preceding this lemma shows that  (i) implies (iii). That  

(iii) implies (iv) follows from the fact that  points of L(G) are separated by the topologically 

completely irreducible Banach representations of G (in fact by the unitary ones; see [7]). 

The construction of T (~) from T shows that  (iv) implies (if). 

Definition. An idempotent element # of Mo(G ) which for some m satisfies conditions 

(i)-(iv) of Lemma 12 will be said to be small. 

Notice that  if # is small, and 7 is an idempotent in Mo(G ) satisfying ~ < #  (that is, 

~-# =ju ~e~ =~), then by (iii) of Lemma 12 ~ is also small. This observation makes the term 

'small' appropriate. Likewise, if 7 and/~ are small idempotents with ~ ~e/~ =#  ~+~ = 0, then 

7 + #  is a small idempotent. 

Suppose now that  # is a fixed small idempotent in M0(G), and m is the positive integer 

of Lemma 12. Denoting by G(~) the set of all classes ~ in ~ such that  # ~ Ker(~), and noting 

tha t /2(G)  is an ideal of/~Mo(G)~e/~, we have by Lemmas 5 and 7: 

LEMMA 13. ~(~) is an open subset o /~;  and the map 

T -~ T (~) (6) 

is a homeomorphism o/G(~) into (/2(G))^. 

We recall from Lemma 12 (i) that  all elements of (/2(G)) ̂  are of dimension no greater 

than m. 

What  can we say about the range of the mapping (6)? 

LEMMA 14. I /  S is a /inite-dimeusional irreducible representation o/L~(G) which is 

continuous with respect to II ]l~ /or some norm-function ~, there is a topologically completely 

irreducible Banach representation T o/G such that 

(i) the integrated/orm o / T  on Mo(G ) is continuous with respect to H [1~; 

(if) T (~) ~ S. 

(Note that, in view o/ (if), T is FDS.) 
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This is proved in the course of the proof of sufficiency for Theorem 8 of [8]. 

Lemma 14 can be restated in the following form: 

LEMMA 15. For each norm-/unction ~, the image o/ G(~) N G~ under the mapping (6) 

consists precisely o[ those elements o/(LV(G)) ̂  which are continuous with respect to I1 I]~. 

De[inition. G is said to have enough small idempotents if, for each topologically comple- 

tely irreducible linear system representation T of G, there is a small idempotent element 

/~ of Mo(G ) such that  TI(#) ~= 0. 

If  this condition holds, G is FDS. 

LEMMA 16. I /  G has enough small idempotents, then G~ is a closed locally compact 

subspace o / G / o r  each norm-junction ~. 

Proo[. Let ~ be a norm-function. Let/~ be any small idempotent. Let L~(G) be the 

completion of L'(G) with respect to II I1~. Since every finite-dimensional irreducible repre- 

sentation of L~(G) is continuous ([5], Proposition 10), and hence determined by its (irredu- 

cible) restriction to L'(G), we may regard (L~(G)) ̂  as a subset of (L'(G))^. In fact, by Re- 

mark 2 of w 8 of [5], the embedding is topological. 

By Lemma 15, the mapping (6) carries G~ N G(~) onto (L~(G)) ̂ . Since (6) is a homeo- 

morphism (Lemma 13), and since (L~(G)) ̂  is a closed and locally compact subset of (L'(G)) " 

([5], Proposition 14 and Theorem 6), it follows that  G~ n G(~) is a closed and locally compact 

subset of G('). Now the G(') (# running over all small idempotents) form an open covering of 

(open by Lemma 13, a covering since G has enough small idempotents). Hence since 

G~ N G(~') is closed in G(~) for each such/~, ~ is closed in G; and since G~ N G(~) is locally 

compact for each such #, G~ is locally compact. 

LEMMA 17. I /  G satis/ies the second axiom o/countability and has enough small idem- 

potents, then G~ satis/ies the second axiom o/countability/or all norm-/unctions ~. 

Proo[. The hypothesis implies that  L~(G) (defined as in the preceding proof) is separable 

for each small idempotent # and each norm-function ~, and hence (by [5], Theorem 5) that  

L~(G)" satisfies the second axiom of countability. Thus, by the argument of the preceding 

proof, G~ N G(') satisfies the second axiom of countability for each such # and a. The proof 

will therefore be complete if we show that  G can be covered by countably many G(') (the # 

being small idempotents). 

Let {D~} be an increasing sequence of compact subsets of G such that  every compact 

set is contained in some D~. Let pn(/)=sup~n. [/(x)[ for each [ in the space C(G)of all 

continuous complex functions on G; and let 
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s~, q= (~ e Mo(G)[I/~(/) I < qP~(l) for all / in e(O)}. 

On each S~. q the topology of pointwise convergence on C(G) is metrizable and separable. 

Since the S~.q (n,q=l,  2, ...) form a countable covering of Mo(G), it follows that,  to every 

subset S of Mo(G ) there is a countable subset S '  of S which is pointwise dense in S (that is, 

in the topology of pointwise convergence on C(G)). 

In  particular there is a countable family W' of small idempotents which is pointwise 

dense in the set W of all small idempotents. I f  T is an element of G, then, since G has enough 

small idempotents, (Tl(~U)~l~7)=~ 0 for some ~u in W, some ~ i n / / I ( T ) ,  and some ~7 in H~(T). 

But then the denseness of W' in W implies that/~ may  be chosen to lie in W'. Thus TI(#) =4= 0 

for some ju in W', and we have U~e~.G C') =G. The proof of Lemma 17 is now complete. 

Now there is no a priori reason to suppose tha t  U ~ ~ = G. Even if U ~ G~ = G, the fact  

tha t  each G~ is locally compact (Lemma 16) does not imply that  G is locally compact, as we 

shall see for Abelian groups in w 10. Let  us make the following definitions. 

De/inition. G will be called Banach-representable if every class in ~ contains some 

Banaeh  representation. 

Definition, Assume that  G has enough small idempotents. We shall say tha t  G has a 

locally bounded dual (or, less logically, tha t  G is locally bounded) if, for each T in G, there 

exists a norm-function 0c such tha t  ~ is a neighborhood of T in G. 

If  G has a locally bounded dual it is obviously Banach-representable. The converse is 

false, since an Abelian group is Banaeh-representable but  need not have a locally bounded 

dual (see w 10). In  Example 1 of the Appendix we shall show tha t  the Galilean group (see: 

the Introduction) is not Banach-representable. 

We conjecture tha t  all FDS groups are Banach-representable, but we cannot prove it .  

THEOREM 2. Assume that G has enough small idempotents and a locally bounded dual  

Then G is locally compact. I] in addition G is comTactly generated and satisfies the second, 

axiom o/countability, then d satisfies the second axiom o/countability. 

Proo/. The first s tatement is evident from Lemma 16. The second s ta tement  will follow 

from Lemma 17 if we can show tha t  there exist countably many  norm-functions {~n} such 

tha t  
u oo+=o. 

To establish this, choose a compact neighborhood U of e such tha t  Uv%~ Uv=G. 

For  each positive integer n, define 0r to be the supremum of all the norm-functions fl on G 

satisfying f l (x)~n for all x in U. Since U ~ = I U P = G ,  an(X ) < oo for each x; and it is easy 

19 - 6 5 2 9 3 3  Acta mathematica 114. I m p r i m 6  le 15 oe tob re  1965.  
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to see tha t  gn is itself a norm-function. Clearly, to every norm-function ~, there is an n 

such tha t  ~ ~< ~n (take n ~> supx ~ ~(x)), and hence ~ c  ~%. I t  follows tha t  

U O~ = U 0~,=0. 
n ={ 

The proof is complete. 

Conjecture. Every  compactly generated locally compact group which has enough small 

idempotents has a locally bounded dual. 

8. Large compact subgroups 

Let us fix a compact subgroup K of G. Identifying each / in L(K) with the measure 

/(u)du on K (du being normalized Haar  measure on K) and hence with a measure in Mo(G ) 

(the "injection" of / (u)du  into G), we shall regard L(K) as a subalgebra of Mo(G ) under 

convolution. 

De/inition. K is a large compact subgroup of G if every idempotent element of L(K) 

is small (with respect to G). 

Since every idempotent in L(K) is contained in a central idempotent,  and every central 

idempotent is a finite sum of minimal central idempotents, K will be large if its minimal 

central idempotents are small in G (see the paragraphs preceding Lemma 13). 

B y / ~  we shall mean as usual the family of all equivalence classes of irreducible (finite- 

dimensional) Banach representations of K. I f  D E ~ ,  let 

yJD(U) = (dimD) (Trace(Du))- 

(u E K; - means complex conjugate). The YJD are precisely the minimal central idempotents 

of L(K). Further,  if T is a linear system representation of G in H, then the range of TI(~/D ) 

is the D-subspace o/ T1, tha t  is, the sum of all those Tl-stable subspaces of H 1 on which 

T1]K acts equivalently to D: I t  follows tha t  K is a large compact subgroup of G if and 

only if, for each D in /~, there is a positive integer m D such that ,  for any topologically 

completely irreducible linear system representation T of G, the multiplicity of D in T 11K is 

no greater than m D. 

From the last remark we deduce that,  if K is large and L is a compact subgroup of G 

containing K, then L is likewise large. This makes the term 'large' appropriate. 

Since, for every linear system representation T, T 11K contains some D in ~ ,  we have 

LEMMA 18. I /  G has a large compact subgroup K, then G has enough small idempotents. 

LEM~IA 19. I / K  is a large compact subgroup o/G, and K o is a closed subgroup o[ K such 

that K /K  o is/inite, then K o is a large compact subgroup o/G. 
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Proo/. By Frobenius' Reciprocity Theorem, there are only finitely many irreducible 

representations of K whose restrictions to K 0 contain a given irreducible representation of 

K 0. From this the lemma follows immediately. 

Suppose now that  K is a large compact subgroup of G. For each / in L(G) let/~ = 

~: / (uxu  -1) du (x E G). Thus / _~/0 is an idempotent linear map of L(G) onto the subalgebra 

I of L(G) consisting of all [ for which [(uxu -1) =/(x) (uEK, xEG). If DE/~, we write LD(G) 

instead of L (vv) (G), and put  I D = I N LD(G). One verifies easily that  {/o]/ELD(G) } = i D. We 

shall write ~(D) instead of ~(v~) (the subset of (~ consisting of those T such that  T I[K 
contains D); and, for each T in ~(D) we shall write T (D) for T (u the corresponding finite- 

dimensional irreducible representation of LD(G) on HD(T)=H~v(T).  

I t  has been observed by Godement ([8], Lemma 9) that ,  if DEJ~ and TEG (D), the 

restriction of T (D) to I D is a multiple of a (unique) irreducible representation of I D which 

we shall denote by ~(D). Thus we have a mapping 

T - ~ T  (D) (7) 
of ~(D) into (ID) ̂  . 

T ~ O R ~  3. Suppose that K is a large compact subgroup of G. Then,/or each D in I~, 

the map (7) is a homeomorphism o/~(D) into (I D) ~. In  particular, (7) is one-to-one. 

Proo/. Since the map T ~ T  (D) is already known (Lemma 13) to be a homeomorphism 

of ~(D) into (LD(G)) ̂ , it suffices to show that  T (D) _~(D) is a homeomorphism. 

Let T E ~(D), $C ~(D); and assume first that  T (D) belongs to the functional closure of 

$(D)= {S(D)]SE$}. Choose a functional ~ onLD(G) associated with T (D) (see [5], w 1) which 

does not  vanish on ID; then there exists a net {~} of funetionals on LD(G), each associated 

with some S(r D) (Sr E $), which converges pointwise to 4. But then the t r  I I v  and r I D are 

associated with S(~) and ~(D) respectively, and t r  ]ID - ~ ]  ID pointwise on I D. Thus ~(D) 

belongs to the functional closure of ~(D) = {~(D)[s E $}; and we have proved that  T (D) --> ~(D) 

is continuous. 

Conversely, assume that  ~(D) belongs to the functional closure of ~(D). Then there is a 

non-zero functional y) on I D associated with ~D), and a net {~ov} of functionals on I D each 

associated with some S(r D, in d (D), such that  Vr -* V pointwise on I D. Define r r on LD(G) 

as follows: 4(/)=~o(f~ r176 ([eLD(G)) �9 Clearly 4~-~4~=0 pointwise on LD(G). If  

[ELD(G) and T(/D)= O, then 

T(m = f r: T~'~ du = (f0) T u Ti" 0; 

and, since re(D) is a direct sum of copies of ~(I.), ~(I,) ~(D) this implies ,~(D) ~(i~ = 0, whence ~p(/0) = 0, or 
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r = 0. Thus r is associated with T(D); and likewise r is associated with S(~ D). I t  follows 

that  T (D) belongs to the closure of $(D). 

Since r was defined from ~(D), and in its turn determines T (n) ([5], Proposition 2), the 

map T (D) ..._~(D) is one-to-one. I t  follows from the preceding paragraph tha t  ~(D)_~ T(D)is 

continuous. So the proof of Theorem 3 is complete. 

I t  can be shown, though we shall not need it here, tha t  every finite-dimensional irredu- 

cible representation of I D which is continuous with respect to ][ I[~ for some norm-function 

~, is of the form ~(D) for some T in ~(D) N G~. 

9. Unitary representations 

A unitary representation of G is a Banach representation T such tha t  X(T)  is a Hilbert  

space and Tx is unitary for each x in G. Let 0 ~  be the family of all uni tary equivalence clas- 

ses of topologically irreducible unitary representations of G. By the von Neumann double 

commuter  theorem the elements of Gu~ are actually topologically completely irreducible; 

and by  Mackey's form of Schur's Lemma (see [12]) Naimark-relatedness is the same as 

unitary equivalence for elements of Gu~. I t  follows tha t  G~  may  be regarded as a subset of 

if(G). In  fact, if G is an FDS group, G~  may  be regarded as a subset of G (namely, the set 

of those classes in G which contain some unitary representation). 

Now in [3] we imposed a topology on G~  called the hull-kernel topology; it could be 

defined by means of uniform convergence on compact sets of functions of positive type 

associated with the representations (see [3], Theorem 1.5). For FDS groups it is natural  to 

ask (a) whether the hull-kernel topology of G~  coincides with the relativized functional 

topology of G~n considered as a subset of G, and (b) whether the functional topology of 

can also b e  defined in terms of uniform convergence on compact sets of functions on G 

associated with the representations. We do not know the answers to these questions in 

general. However, if G has a large compact subgroup, the answer to both questions is 'yes'.  

Question (a) in this case will be answered in the next lemma. Question (b) is treated in w 13. 

LEMMA 20. I[ G has a large compact subgroup K, the relativized junctional topology o/ 

Gun coincides with the hull-kernel topology. 

Proo/. Let C*(G) be the group C*-algebra of G (see for example w 3 of [3]); L(G) is of 

course a dense subalgebra of C*(G). The left and right action of Mo(G ) on L(G) is continuous 

with respect to the norm of C*(G), and so can be extended to C*(G). Thus, fixing D E/~, we 

may  form the closed *-subalgebra C*(G)=YJD -)e C*(G) -~ YJD of C*(G). I f  TEG~n N ~(n), T(D) 

extends to an irreducible finite-dimensional *-representation of C*D(G), which we shall 

identify with T (D). 
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Now, by an argument exactly similar to that  of [5], w 4, we can prove that  (a) Gu~ N d (D) 

is open in G~ in the hull-kernel topology, and (b) that  T ~ T  (D) is a homeomorphism of 

Gun ~ ~(D) into the set $ of all irreducible *-representations of C*D(G) with the hull-kernel 

topology. Comparing these facts with Lemma 13, we see that  Lemma 20 will be proved if 

we show that  the hull-kernel topology of $ coincides with the functional topology of 

(LD(G)) " relativized to S. But  this follows from [5], Proposition 15, and [5], Remark 2 of 

w 8, if we remember that  the elements of S are of bounded finite dimension. 

We remark that  Lemma 20 holds if we merely assume that  G has enough small sel/- 

adjoint idempotents. We do not know whether it holds if G merely has enough small 

idempotents. 

10. Abelian groups 

In  this section the group G is assumed to be Abelian. G consists of aI1 continuous ho- 

momorphisms of G into the multiplicative group of non-zero complex numbers. Setting 

Z(/) =S~Z(x)/(x)d,~x, we may regard each % in d as a multiplicative linear functional on 

L(G). By the corollary of Lemma 3 and the paragraph dealing with L(G) in w 5 we have: 

L ~ M A  21. The/unctional topology o/G is the topology o] pointwise convergence on L(G) 
o/the corresponding/unctionals on L(G). 

T H ~ O R ~  4. The/unctional topology o /G coincides with the topology o/uni/orm con- 
vergence on compact subsets o/G. 

Proo/. I t  is obvious from Lemma 21 that  the uniform-on-compacta topology contains 

the functional topology. 

To prove the converse we invoke a well-known structure theorem for locally com- 

pact Abelian groups ([12], p. 389), to write 

G=Rn• 

where R n is the additive group of real n-space and H is a locally compact Abelian group 

having a compact open subgroup K. Now suppose that  r r pointwise on L(G)(r r E G), 

and put  a = r  n, f l= r  ~ r = r  ~, f l ,=r  We have a(x)=e  (u'x), ~(x)=e(ur.x) 

(xERn), where u v, uEC ~, and (u,x)=~u~x~. Choose g in L(H) such that  fl(g)~=O, and a 

differentiable function / in L(R ~) such that  ~(/) 4 0. Integrating by parts, we find that  
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Hence 

for each ~; also (/) fir (g) = r  (t • g) ~ ~(! • g) = =(/) ~(g) # 0. 

(Here ( l •  xER", yEH, and similarly for (~l[~xj)• This implies tha t  

u~' -~ u~ for each ], whence u v ~ u in C n. Thus a~ -+ g uniformly on compacta.  

If  / is as before and h E L(H), we have 

~ ( l )  fir (h) = r (! • h ) -~  r215 h) = aft) fl(h). 

But  by  the preceding paragraph ~ ( / )  -~ a(/) # 0. Hence fir(h) -~fl(h); so fir -~fl pointwise on 

L(H). Since the fir ] K are characters of the compact  group K,  this implies that ,  for all large 

enough ?, fl,=--fl on K.  Hence to  prove t ha t  f l ~ f l  uniformly on compacta  in H,  we need 

only show tha t  fir(Y)--~fl(Y) for each y in H. Fix  y in H, and let 

/(yu)={flo(U ) for u E K ,  
for u E H - K .  

Then / E L(H);  and we check t ha t  fl(/) =fl(y), and fir(l) =fir(Y) for all large •. Bu t  fly(l) -~fl(/); 

so fl:,(y)-)-fl(y). Consequently fir-~ fl uniformly on compacta  in H.  

F rom the last two paragraphs it follows tha t  r -~ r uniformly on compacta  in G. Thus,  

for  elements of ~, pointwise convergence on L(G) implies uniform convergence on compacta  

in G; and the theorem is proved.  

THEOREM 5. Let G be a locally compact Abelian group. Then the/ollowing three condi- 

tiows are equivalent: 

(i) G is locally compact; 

(ii) G has a locally bounded dual; 

(iii) there exists a compact subset U o /G such that, /or every x in G, there is a positive 

integer n tor which x ~ belongs to the subgroup o I G generated by U. 

Pro@ We have already seen tha t  (ii) implies (i). 

Le t  U be as in (iii); and let k be any  positive number.  To prove (ii), it is enough (by 

Theorem 4) to  find a norm-funct ion ~ on G such that ,  if flEG and [fl(x)] ~<k for all x in U, 

then  ]fl(x) l ~<~(x) for all x in G. We may  assume without  cost t ha t  U is a neighborhood of e 

and tha t  U = U -1. For  each x in G pu t  ~(x) =sups  [fl(x)], where fl runs over those elements 

of G such tha t  Ifl(Y) t <~k for all y in U. F rom (iii) we deduce t ha t  ~(x) < ~ for all x, and t ha t  

in fact  ~ is a norm-funct ion with the required proper ty .  Thus (iii) implies (ii). 



I~OI~-UNITAEY DUAL SPACES OF G R O U P S  293 

Assume that  (iii) is false. Let  R', H, and K be as in the proof of Theorem 4, and put  

D = G/(R n • K). I t  is easy to see from the failure of (iii) that  the discrete group D has no 

finite maximal independent ([12], p. 441) subset. From this we shall now prove tha tD is 

not locally compact. Indeed: Let  F be any finite subset of D; since no subset of F is maximal 

independent, there exists a w in G - F  such that,  for all positive integers n, w = does not 

belong to the subgroup of D generated by F. Thus for each positive integer m there is a 

g~ in L (L being the subgroup of D generated by w and F) such that  Z~ ~ 1 on F and 

[g~(w)[> m. I t  is well known and easily proved that  Z~ can be extended to an element 

Zm of D; and {Zm} has no convergent subnet. By the arbitrariness of F this shows that  

/ )  is not locally compact. Now b is a closed topological subspace of G. I t  follows that  G is 

not locally compact; and we have shown that  (i) implies (iii). This completes the proof. 

11. Lie groups 

In this section G is assumed to be a Lie group. Let C~ (G) be the space of all infinitely 

differentiable complex functions on G with compact support; and let Do(G ) be the distribu- 
tion algebra of G, that  is, the associative algebra consisting of all distributions (in the sense 

of L. Schwartz) on G with compact support, with the operation of convolution defined by 

(~ + fl) (~) = fa for176 

(~,fl E D o (G); ~ E C~ (G); we use the integral notation for distributions acting on functions). 

Evidently C~(G)cL(G)CMo(G)c D0(G); C~(G) is a two-sided ideal of Do(G ). (See [8].) 

Let  T be a linear system representation of G on the linear system H(T) = <H1,H2>. We 

shall denote by H~(T)  (i = 1, 2) the linear span of the T~(])$ (/E C~ (G), ~ E Hi .  Since C~r 
contains an approximate identity for G, and H~C(T) is stable under the integrated form of 

T l, T restricted to H~(T)= <H~ r (T}, H~ (T)> is a dense contraction of (the integrated form 

of) T; call this dense contraction T'. By the argument of Lemma 5 of [5], T'  can be extended 

uniquely to a linear system representation T r162 of Do(G ) on H~(T) .  This T ~ will be called the 

distribution ]orm of T. The linear system H:r on which T ~ acts is the Ghrding system for T. 

One verifies without difficulty that,  if ~ED0(G), ~EH~(T) ,  and ~EHz(T),  then 

x-~ (Tl(x)~[~) is infinitely differentiable on G and 

(where '~x' means that ~ acts on the expression which follows it considered as a funetion 

of z). 
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LEM~A 22. I /  Ks is a a(H~(T))-dense subspace o/ H~(T)  which is stable under the 

restriction to C~ ( G) o/the integrated/orm o / T t  (i =1,  2), then Ks is a(H ( T) )-dense in Hi. 

Proo/. Without loss of generality take i = 1. Assume tha t  ~ 6 H 2 and tha t  (~l~)= 0 for 

all ~ in K1; we must  show tha t  ~ =0.  Now for each f in C~(G), T2(/)~6H~(T),  and, for all~ 

in K1, (~ I T~(f)~) = (TI(/)~ I~) = 0 (since TI(f)~ 6 K1). Since K 1 is a(H~(T))-dense, this implies 

tha t  T~(/)~ =0; and the lat ter  holds for all / in C~(G). Since C~(G) contains an approximate 

identity, this gives ~ =0.  

COROLLARY 1. T is topologically irreducible [resp. topologically completely irreducible, 

resp. FDS] i] and only i / T  ~ is topologically irreducible [resp. topologically completely irredu- 

cible, resp. FDS]. 

Proo]. I t  is evident tha t  if T has any one of these properties then so does T :r The con- 

verse follows easily from Lemma 22. 

COROLLARY 2. I /  S and T are linear system representations o~ G, then S and T are 

Naimark-related [resp. have the same kernel in M0(G)] i /and  only i/ S ~r and T r162 are Naimark- 

related [resp. have the same kernel in D0(G)]. 

Proo/. The statement about  Naimark-relatedness is a routine consequence of Lemma 

22. The statement  about  kernels is almost evident. 

By Corollaries 1 and 2, the map T - + T  ~ carries if(G) into if(D0(G)), and lifts to a one- 

to-one map of d into (Do(G))". 

LEMMA 23. The map li/ted /rom T ~ T  r is a homeomorphism o/ G into (Do(G))". 

Proo]. Since C~(G) is a two-sided ideal of both  Mo(G ) and Do(G), the lemma results 

from a double application of Theorem 1. 

Let  Z be the center of Do(G ). For each T in if(G), let ~, r be the central character (see w 3) 

of the element T ~r of if(Do(G)). We shall refer to 7 r a s  the central character of T. By Lemmas 

3 and 23 we have: 

L E ~Mx 24. The map T ~9' r (T  s if(G))is co~inuou8 with respect to the/unctional topo- 

logy o/if(G) and (/or Z ~) the topology o/pointwise convergence on Z. 

Since the hull-kernel topology of G~  (see w 9) contains the relativized functional topo- 

logy of ~ , ,  Lemma 24 strengthens and generalizes a result of Bernat  and Dixmier [1]. 

In  particular, it follows from Lemma 24 that  two functionally equivalent elements of 

if(G) have the same central character. Thus we may  speak of the central character 7, of a 

class v in G, and the map $-~ 7~ is continuous. 
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I t  is curious to observe that,  if G is the "ax + b" group (see Example 4 of the Appendix), 

Z is trivial (i.e. Z = C. 1). Indeed, let R be the regular representation of G. Then R is the direct 

sum of ~0 copies of S and ~0 copies of T, where S and T are the two infinite-dimensional 

irreducible unitary representations of G. Since S and T are functionally equivalent (see ~ 5), 

they have the same central character; and hence R~ is a scalar operator for each z in Z. 

Thus {Rz ~ [z EZ} is of dimension 1. Since R :r is faithful on Do(G ) it follows tha t  Z is of dimen- 

sion 1. We leave it to the reader to fill in the details of this argument.  

We conclude this section with a remark on Banach representations. Let  S be a Banach 

representation of G on a Banach space X. I t  is well known tha t  S gives rise in a canonical 

manner to a representation S ~ of Do(G ) not merely on the Ghrding subspace (the linear 

span of the Ss~ , ~EX, /EC~C(G)) but  on the larger space X 0 of all C :r vectors (that is, vec- 

tors ~ for which x-~ S ~  is infinitely differentiable on G). 

LEMMA 25. I / S  is a topologically completely irreducible Banach representation o/G on a 

Banach space X,  then/or each ~ in Z, S~ is the scalar operator ~s( ~) " 1 on the space X o o/all C r162 

vectors/or S. 

Note: 7s means the same as ~r, where T is the linear system representation associated 

with S. 

Proo]. By what we have already shown for T, S~  is the scalar operator 7s(~)" 1 on the 

G~rding subspace. Our result now follows by  a trivial generalization of the proof of Lemma 

32 of [9].  

12. The enveloping algebra and infinitesimal eqmivalence 

In  this section G will be a fixed connected Lie group with unit e, and K a fixed connected 

compact subgroup of G. Let  g be the (real) Lie algebra of G (consisting of the le/t-invariant 

vector fields) and E the enveloping algebra of the complexification gc of g. I t  is well known 

tha t  E may  be identified with the subalgebra of Do(G ) consisting of those distributions 

whose closed supports are contained in (e} (see [ l l ] ,  Chapter II) .  

L e t / ~  and the YJD (DE/~) be as in w 8. 

Definition. A linear system representation T of G will be called K-finite if TI(VD ) (and 

hence also T2(V2D)) is of finite rank for each D in/~.  

That  is, T is K-finite if and only if each D in /~  has finite multiplicity in T 1. 

A K-finite linear system representation T is certainly FDS. 

Throughout the rest of this section we shall denote range (T~(v.)) by HD(T) (for 

D e g ) ,  and shall put  H~(T)=  ~ D ~ H D ( T ) .  

2 0 - - 6 5 2 9 3 3  Acta mathematica 114.  I m p r l m 4  le 15 oc tob re  1965 .  
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LEMMA 26. I/  T is a K-/inite linear system representation o/G, then 

(i) H~(T)cH~'(T) ( /=1 ,2 ) ;  

(ii) H~(T) is stz]ole under T~(a) ]or each i= 1,2 and each a in E. 

Proo/. Since H~ (T) is a(H(T))-dense in Hi(T), and stable under Ti(V2D ), 

HF (T) n H D (T) 

is dense in H~ (T). But  the latter is finite-dimensional. Therefore H D (T) c H~ (T), and 

(i) is proved. 

(ii) is proved by the same argument as Lemma 26 of [8]. 

The H~(T) of Lemma 26 is evidently a(H(T))-dense in H~(T). Let us write Hr(T) 

for the linear system (Hit(T), Hr,(T)) with the restricted duality of H(T), and ~ for the 

linear system representation of E on Hf(T) given by ~t(a)= T~(a) Itt~(T). 

Definition. For each K-finite linear system representation T of G, T will be called the 

restricted in/initesimal /orm of T. 

Before embarking on the next  result we need the notion of an analytic vector in the 

space of a linear system representation. Of course, we shall not be able to generalize Nelson's 

result ([18]) and state that  analytic vectors are dense in the space of an arbitrary linear 

system representation. Nevertheless the weaker argument of Godement in [8] gives us the 

following definition and lemma which are sufficient for our purposes. 

De/inition. If T is a linear system representation of G, the vector ~ in HI(T ) is analytic 

(/or T) if the function x-~(Tl(X)~]~ ) is analytic on G for all ~ in H~(T). Similarly a vector 

in H2(T ) is analytic (/or T) if x-~(Tl(x)~l~) is analytic on G for all ~ in Hi(T). 

2~ote: 'Analytic on G' means of course with respect to the real analytic structure of G, 

even if G has a complex analytic structure. 

LEMMA 27. I f  T is a K-/inite linear system representation o/ G, then every vector in 

H~( T) (i = 1, 2) is analytic/or T. 

The proof is identical with that  of Lemma 17 of [8]. 

Definition. Two K-finite linear system representations S and T of G are in]initesimally 

equivalent if their restricted infinitesimal forms S and ~ are (algebraically) equivalent. 

The following lemma is proved for unitary representations in [8], w 23. 

L~M~A 28. Two K-/inite linear system representations S and T o/ G are in/initesimally 

equivalent i/ and only i/ they are Naimark-equivalent. 
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Proo/. (I). Assume that  S and T are equivalent under an isomorphism (I) = ((I ) l ,  (I)2~ of 

HI(S) onto Hr(T). 

First, I claim that  r =HD(T) for each D in/~.  Indeed, let ZK be the center 

of the enveloping algebra E K of the complexifieation kc of the Lie algebra k of K. Each D 

in _~ gives rise to the complex homomorphism 2D of ZK such that  D a =2D(a). 1 for all a in 

ZK. Since K is a compact connected Lie group, we know ([19], Expos6 18 ) tha t  2D=2D. 
D ~ D'. Thus, if D e/~, a vector ~ in H{ (S) belongs to H~ (S) if and only if 

T~ r (a) ~ = 2D (a) 

for all a in Zx; and similarly for H~ (T). Since Z~ = E and (Pl is an equivalence of $1 and 

T~, this implies that  qb~ (H D (S)) = H D (T). Similarly (I)~ (H D (S)) = H D (T). This proves the 

claim. (See also [8], just before the Appendix.) 

Now let F be the a(H(S) | H(T))-elosure of (P~ considered as a subspaee of HI(S ) | 111(T). 
I claim that  F is a one-to-one function; tha t  is, ( O ( ~ ' ) E F ~ ' = O  and ( ~ |  

Assume that  (0 |  That  means that  there is a net {~j} of elements of H~(S) such tha t  

~j-~ 0 (in a(H(S))) and qbl~ j -~ ~' (in (~(H(T))). Now let D be any element of/~. Since SI(~D ) 

is continuous, we have SI(VjD)~j~O. But  since HD(S) is finite-dimensional, qbI[HD(S)is 

continuous; hence the preceding limit statement implies that  (I)ISI(~D)~ j ~ 0. But  by the 

last paragraph (I)ISI(~)D) ~j= TI(~)D) (I) 1 ~ ;  SO T I ( ~ D  ) (I) 1 ~t--~0.  But ( b ~ - ~ ' ;  therefore 

T~(y~D)Cl)~TI(VJD)~', and we have T~(V2D)~' =0 for all D in R.  But this implies ~' =0;  and 

we have shown that  (0 | ~') ~ F ~ ~' = 0. Similarly (~ @ 0) E F ~ ~ = 0. This proves the claim. 

:Now let ~ ~H{(S), ~] EH~(S), ~' =qb~, ~' =(I)~. I claim that  (Sl(X)~ [~) = (Tx(x)~' ]~') for 

all x in G. Indeed, since G is connected and since by Lemma 27 these functions are analytic 

in x, it  will be enough to show that  all their derivatives at  e coincide, in other words that  

~=(Sl(X)~ [~) = ~z~:(Tl(X)~' I~') for all ~ in E. But  by the remark preceding Lemma 22 and the 

definition of (I), ~=(Sx(x)~ [~) = (SI((~)~ ]~) = ( T I ( ~ ) ~ '  [~ ' )  = ax(Tl(x)~']~'); and the claim is 

proved. 

Integrating the last claim we find that  (S~(/)~ ]~) = (Tl(/)(I)x~ ](I)~) (/~L(G), ~ e H{(S), 

eHf(S)). Let us temporarily denote by M the linear span of the v2,~e / (/~L(G), D e ~ } .  

Then SI(/) leaves H~(S) stable for each / in M; and so the last equation shows that  (PISx(/)~ = 

T~(Dr (I e M, ~ eH~(S)). Now, for an arbitrary / in L(G), we can clearly choose a net  {]~} 

of elements of M such that  

~(h) ~-*. s~(l) ~ and T~(h) %~:-~T~(I) r 

Since (I)~c F and 2' is closed we conclude that  Sl(/)~Edomain(F) whenever /EL(G) and 

EHf(S), and FSI(]) ~ = TI(/)F~. Again applying the continuity of SI(]) and TI(/) and the 
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closure of F, we find that,  for each / in L(G), the domain and range of F are stable under 

SI(/) and TI(/) respectively, and 

Eo  SI(/) = Tl(/)o F on domain(F). 

This proves that  S and T are Naimark-equivalent. 

(II). Now assume that  S and T are Naimark-equivalent. Then (see w 6) the strictly 

smallest dense contractions S O and T o of the integrated forms of S and T are eqlfivalent 

under an isomorphism F of H~ onto H~ Evidently F~(HD(S)) =HD(T) for each D in 

/~, and so F~(H~(S))=H~(T). Let dP~=F~[H~(S). I claim that  ~P sets up an equivalence 

of S and T. Indeed, if ~ E H~(S) and ~ E H~(S), we have (Sl(X)~l~) = (Tl(X) FI~ [ F2~ ) for all x 

in G. Both sides are C ~ in x; so, applying the element a of E to both sides, we find that  

(Sl(a)~ [7) = (TI(cC)FI~ [ F2~). But  S~(a) and ~1(~) leave H~(S) and Hf(T) respectively stable. 

Thus it follows from the last equation that  ~Plo $1(~)= TI(~)o~P 1 for all a in E. Similarly 

~oS~(~)  = ~2(a)oqb~. Thus S and T are equivalent. 

This completes the proof of the Lemma. 

The following lemma strengthens Theorem 16 of [8]. 

LEMMA 29. Let S be a K-/inite linear system representation o/ G. Then the/ollowing 

conditions are equivalent: 

(i) S is topologically irreducible; 

(ii) $1 is (algebraicaUy) irreducible; 

(iii) S~ is irreducible; 

(iv) S is (algebraically) completely irreducible. 

Proo]. We shall first show that  (ii) ~ (i). Assume that  S1 is irreducible, and let L be a 

closed non-zero Sl-stable subspace of HI(S ). Let 

L r= ~ SI(~PD)(L). 
DE~" 

By Lemma 26 i r is an S'l-stable subspace of H~ (S). Since $1 is irreducible, L r is either (0} 

or H~(S). The former is impossible, since L =~ (0} and therefore SI(~D)L ve (0} for some D. 

Hence I/=H~(S), which is dense in HI(S ). So L is dense in Hi(S), and therefore L =HI(S ). 

I t  follows that  (ii) ~ (i). Similarly (iii) ~ (i). 

Since obviously (iv) ~ (ii) and (iii), the proof will be complete if we show that  (i) ~ (iv). 

Let  us therefore assume that  S is topologically irreducible, and show that  S is completely 

irreducible. 
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We shall first prove that  S is irreducible. Let  L be a non-zero Sl-stable subspaee of 

H~(S). I claim that  
L = n L) .  

D e l f  

Indeed: I t  will be enough to show that,  if D1, ... , Dr are distinct elements of ~ ,  ~j E H Dj (S) for 

each ?', and ~ = ~ = 1  ~j ~ L,  then each ~j E L. Let ZK and ~D be as in (I) of the proof of Lemma 

28. Since ~D ...... ~D~ are all distinct, we may choose an element a of Z K such that  2D, (a) = 1 

and 2D~(a) =0  for all j >  I. Then ~I=~j2Dj(a)~j=SI(a)~EL. Similarly ~ jEL for all j, and 

the claim is proved. 

We shall next  show that  the a(H(S))-elosure/5 of L is Sl-stable, and hence equal to 

HI(S ). For this it is enough to take an element ~ of L and an element ~ of H~(S) such that  

(LI~) = 0, and to show that  (S~(x)~l~) =0  for all x in G. For  each ~r in the enveloping algebra 

E we have 0 (s ee Therefore all the derivatives of 

x~(Sl(x)~[~) at e are 0. Since G is connected and x-+(Sl(X)~[~) is analytic (Lemma 27), it 

follows that  (Sl(X)~ ]~) = 0 for all x. 

Assume that  L#H{(S).  Since L = ~ D ~  (H~ (S)f~ L), there must exist a D in /~  

and a non-zero ~ in H2(S) such that  (Z] ~/)= {0}. But  this contradicts the fact that  

15 = H~(S). Therefore L = H{ (S). Thus Sz is irreducible. Similarly S~ is irreducible. 

Hence S is irreducible. 

To show now that  S~ is completely irreducible, it will be sufficient to show that  the 

division algebra I4 of all endomorphisms A of Hrl(S) commuting with each Sl(a) (a E E) must 

be one-dimensional. Let  A be such an endomorphism. I claim that  each HID(S) is stable 

under A. Indeed, let ~EHD~(S), and suppose A ~ = ~ I + ~ + . . . + ~  . where $r162 the 

Dx .... , Dr being distinct. Let ZK and the ~ be as in (I) of the proof of Lemma 28, and choose 

a in Z~ so that  2~(a) =1 and 2~(a) =0  for ] >  1. Then 

~ +... + ~ = A~ = AS~(a) ~ = S~(a) A~ = S~(a) (~ +...  + ~,) = ~ 2v~(a) ~ = ~1. 
~=1 

Thus ~ = ... =~r =0, whence A~ ~H~'(S). I t  follows that  H~'(S) is stable under A, and the 

claim is proved. Let  0 # ~ e H~(S). The map A ~A~ (A fi t4) is linear and one-to-one (since M 

is a division algebra), and has finite-dimensional range by the above claim (since H~(S) is 

finite-dimensional). Therefore M is a finite-dimensional division algebra over the complexes, 

and so is one-dimensional. Thus S~ is completely irreducible; and similarly for $2. So S is 

completely irreducible and the lemma is proved. 

Let  us now suppose that  K is a fixed connected large compact subgroup of G. (We notice 

from Lemma 19 that  if G, being a Lie group, has a large compact subgroup, then it has a 
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large connected compact subgroup.) Then every topologically completely irreducible linear 

system representation T of G is K-finite; and by Lemmas 28 and 29 the equivalence class of 

belongs to ~ and depends only on the class in (~ to which T belongs. Thus, if T is a class 

in ~ we can unambiguously define ~ as the class in ~ to which the restricted infinitesimal 

form of any representative of T belongs. 

T H E 0 R v, ~ 6. The map T ~ ~ is a one-to.one continuous map o / ~  into ]~. 

Proo I. We have seen that  it is one-to-one. To prove its continuity, let W c  ~ and let T 

belong to the functional closure of W. We must show that  ~ belongs to the functional clo- 

sure of W = (S] S e W). 

Choose a D in _~ which occurs in T; and let ~EHD(T), 7 eH2(T), and/EC~(G)  be so 

chosen that  (i) ] =V/D-X-/, and (if) (TI(/) ~ 17) 4= 0; such a choice is clearly possible. We now set 

~(#) = (TI(#)~ [7) (# EMo(G)). Then ~ is a functional on Mo(G ) associated with the integrated 

form of T. Since TEW,  there is a net {S (~)} of elements of W, and for each ~ a functional 

r associated with S (j) such that  ~b~-~r pointwise on M 0 (G) (see w 2). 

Now C~(G) is an ideal of Do(G); hence for each a in E, V/D-x- a ~- / belongs to C~(G), and it  

makes sense to define the funetionals (I), (I)j on E as follows: 

r  =r (Pj(a) =~bj(v/D~ea~-l) (a E E). 

Note that  (I)=k0 (since (I)(1)=r and that  q)j-~(I) pointwise on E. 

Thus it  remains only to show that  (I) and (I)j are associated with ~ and (S (j)) - respectively. 

Consider the functional Cj. I t  must be of the form 

CJ(#)= ~ (S~J)(#)~[7~) (/~eM0(G)), 
k ~ l  

where the ~ and 7k belong to HI(S (~)) and H~(S (j)) respectively. Therefore, if a E E, 

Cj(a) = ~ (S(~J)(V/D~a~e/)~k 17~) = ~ ((S('))[ r (a)S(~J)(]) ~ ] S(2J)(V/o ) 7k)- 
k ~ l  k = l  

Since /=~VD~e/, S(~J)(/)~ k and S(2J)(V/D)Tk are in H{(S (j)) and H f ( S  (j)) respectively, so 

that  in the above formula (S(J))r(a) can be replaced by (S(J))~ (a); and we see that  (I)~ 

is associated with (S(J)) ~ . Similarly (I) is associated with ~. This completes the proof. 

Remark. I t  would be very interesting to know whether the map T -~ T of Theorem 6 is a 

homeomorphism. 
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13. Generalized spherical functions 

Once again let G be an arbitrary locally compact group. Let/U be a fixed small idempo- 

tent  element of M0(G), and ~ a fixed norm-function on G. As usual L~(G) is the completion 

of L(G) with respect to [[ []~, ]_2(G) =/U~L(G) ~-/U, and L~(G) is the closure of LI~(G) inL~(G). 

For  brevity we shall write A for L~(G). Since/U is small, ~(r) =~(,)  for some integer n (see 

Lemma 12; also [5], Proposition 10; recall that  ~(f)= { T E d  [dim(T) < ~ }). 

LEMMA 30. I / S e . ~  (I) and tE(I)(S) (see w 2), there exists a unique continuous complex 

/unction 7 on G such that r ~ /-)e /u) = ~aT(X)/(x) d2x /or all / in L(G). For some constant k > 0 

we have 17(x) l <<.ko~(x) /or all x in G. 

Proo/. The uniqueness of 7 is evident. To prove its existence, we invoke Lemma 15 

to obtain a Banaeh representation T in G(~)N ~ such that  Tc")~'-S and [[T~[l<<-k~(x) 

(xeG). If ~i .... ,~r is a basis of range(T~), with dual basis ~ ..... ~ ,  there will exist complex 

numbers ctj (i, ] = 1  .... ,r) such that  

r = ~ ~ ' 
= 

for all / in L~(G). Now the function 

|,1=1 

clearly has the required properties. 

The function y of Lemma 30 will be called a generalized spherical/unction o/ type/u  

associated with S (or with T if T (~) ~ S). If 7 ~= 0, 7 uniquely determines S and hence the 

l~aimark-equivalence class of T. 

Our goal in this section is to express the functional topology of ~("), so far as possible, 

in terms of the uniform-on-compacta convergence of generalized spherical functions 

associated with the elements of ~(~). Unfortunately we shall have to restrict our attention 

to G(') N ~ ,  where a is a norm-function fixed as before. 

If in Lemma 30 r =Zs (the character of S), the resulting 7 will be called ~s, the spherical 

/unction o/type/u associated with S (or with T if T (~) ~= S). 

LEMMA 31. Let (S~} be a net o/ elements o/.~(I) such that Xs ->r pointwise on A, where 

~= ~=1  mkgR~, the R1,...,Rr being pairwise inequivalent elements o/ ~(r) and the m~ being 

positive integers. Then there is a subnet (S~} o/ (S~}, and/or each e there are r + 1 generalized 

spherical/unctions fl~ ..... flq~, 7~ associated with S~ such that: 
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(i) 

(ii) 

(iii) 

~ . ~  +7~= r 
k = l  

--~ ~ (k= 1, r) uni/ormly on compact subsets o] G; ~  

f ~q(x)l(x)d~x-~O /or all / in L(G). 

Proo]. Passing to a subnet, we may as well assume (by [5], Proposition 10) tha t  the S~ 

are matrix representations of A all of the same dimension n, with 

I (z,(/)),jl < k  II1 I1~ (7) 

for all i, j, and r, and [ in A; and that,  for each / in A, 

S, (t) ~, Q(I), 

where Q is a matrix representation of A (of dimension n) in triangular block form. Along 

the diagonal Q contains just the R k (R~ occurring mk times), together with the zero repre- 

sentation occurring n - ~ f f i l  m~dim (R~) times. 

By the  Extended Burnside Theorem there are elements bk of L~(G) ( k = l  ..... r) such 

that,  if i, k = l  .... ,r, Rj(bk) is the zero matrix if ~ # k  and the unit matrix if ~=k. 

For each v and each k = l ,  ...,r we define the linear functional ~ on A: 

~ ( / ) = T r a c e  (S,(b~e/)) ( /EA).  

Then ~ is associated with S, ([5], Lemma 1), and is bounded in norm uniformly in v; for 

~ (])--> Trace Q(b~ ~e /) =mk )~a k (/). 

Thus, by Gelfand's Lemma, 

~->mkga~ uniformly on norm-compact subsets of A. (8) 

Now, if D is a compact subset of G and / E L(G), then {# ~- x-x- / ~e/~ I x E D} is a norm- 

compact subset of A; so by (8) 

~, (p ~- x-x- bk) -+ mk gRk (P ~- X ~- bk) 

uniformly in x on compact subsets of G. Let  Tk be a Banaeh representation of G in G~) N G~ 

with T(k ") =~ R k. Since Rk(bk) = 1, Tk(bkq+tt) = Tk(#) so that  

XR~ (# ~+ x ~- bk) = Trace (Tk (# ~e x ~e bk ~e #)) = Trace (Tk (/z ~- x ~- #)) = ~R~ (x). 
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Thus ~ (# ~e x ~- bk) --> mk ~R k (x) (9) 

uniformly in x on compact  sets. Now it is easy to  see tha t  the left side of (9), as a function 

of x, is a generalized spherical funct ion associated with S~. 

In  view of (9), defining 

y ~ (x) = ts, (x) - ~ ~ (# ~e x ~ bk), 
k = l  

we shall have completed the proof of the lemma if we prove t ha t  (iii) holds. B y  the definition 

of a generalized spherical function, 

fT ~ (x) l(x) d)cx = f~" ix) (/z ~e / ~(-/~) (x) d2x. 

Hence it is enough to  prove (iii) for all f in L~(G). For  such ] we have 

? r b 

-> ZQ(f)-- ~ gQ(bk ~ f-)ebk)=O. 
~' k = l  

This completes the proof. 

THEOREM 7. Let S c A  (r), T E*4 (r). Then the following three conditions are equivalent: 

(i) T belongs to the functional closure o /S ;  

(ii) every generalized spherical function on G o/type I~ associated with T can be approxi- 

mated uniformly on compact sets by generalized spherical functions o/type/~ associated with S 

(i.e., with some S in $); 

(iii) some non-zero generalized spherical function on G of type la associated with T can be 

approximated uniformly on compact sets by generalized spherical functions of type ~ associated 

with $. 

Proof. One sees immediate ly  tha t  (ii) ~ (iii) ~ (i). We shall prove tha t  (i) ~ (ii). Assume 

(i). Then  it  follows from Lemma  31 and [5], Theorem 3, t ha t  ~r is a uniform.on-compacta  

limit of generalized spherical functions associated with $. Now, if g E/_2(G), the generalized 

spherical function ~a of type  # corresponding to  the func t iona l / -~  Zr(]~-g) (] EA) is given by  

~'g(x)=Sa $r(xy)g(y)d2y (xEG). Since ~r  is a uniform-on-compacta limit of generalized 

spherical functions associated with $, so is ~o. But  every  generalized spherical function 

associated with T is a linear combination of such ~g. Therefore (ii) holds. This completes the 

proof. 
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If  S~ -~ S in .~(r), when can the spherical functoin of type/~ associated with S be approx- 

imated uniformly on compacta by  the spherical functions associated with the S~? The next  

theorem tells us that  this is the case when S and S, all have the same dimension. Thus it 

verifies a conjecture of Godement ([8], w 15). 

THEOREM 8. Let m be a/ixed positive integer. Then the map S ~ s  restricted to -4m 

(the subset o/ ~(I) consisting o/representations o/ dimension exactly m) is a home~norphism 

with respect to the/unctional topology o/-~m and the topology o/uni/orm convergence on compact 

sets/or the ~s. 

Proo/. The map Ss-~S is obviously continuous. To prove that  S ~ ~s is continuous, we 

choose an element T of . ~  and a subset $ of ~ containing T in its functional closure. We 

must show that  ~r can be approximated uniformly on compacta by the ~s (SE $). 

By [5], Proposition 10, we may choose a net (S~} of matrix representations belonging 

to $, and a constant k > 0, such that  

[ (S,(/)),jJ ~< k [J/1[~ (for all i, ], and all / in A), (10) 

and S, (/) -> T(/) (11) 

(where T is taken to be a matrix representation). By Burnside's Theorem there is an 

element b of/F(G) such that  
T(b) = 1. (12) 

Let  ~ ( / ) = T r a c e  (S,(b-x-/)) (lEA). By (11) and (12), if /EL~(G), 

~,(/~-~ l-~ #) ~ )~r(b-)(- /-~ /~)= Zr(/a ~ ]-~ /~). (13) 

Since the ~,  as functionals on A, are norm-bounded uniformly in v, Gelfand's Lemma 

applied to (13) shows that  

Trace (S~(b-)ex%b)) = ~(/u~ex~eb) ~ gr(/~/ex ~eb) =~T(X) (14) 

uniformly in x on compact subsets of G. 

Let  T~ be a Banach representation in ~(r N (7~ such that  (T~)(")~-Sv (see Lemma 15). 

We shah now prove that  

Trace (T~ (b -)(- x ~- b) - T, (ju ~ x ~- #)) --> 0 (15) 

uniformly in x on compact subsets of G. Since Trace (T~(/~ex-)e/~))=~s,(X) and Trace 

(T,(b-)ex~eb)) =Trace (S,(b~ex~b)), it win follow from (14) and (15) that  ~s-->~r uniformly 

on compact sets, and the theorem will be proved. 
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To prove (15) we observe tha t  

S~(b ~e x-)e b) - S~(#-)e x ~- #) = (S~(b) - 1)S~ (#-x-x ~-/x)+S~(ix-)ex~e/x ) (S~(b) - 1) 

+ (S,(b)- l)S, (/~ ~X-~la ) (S~(b)- i) (16) 

(S~(#~x~e#)  means tha t  we extend S~ to a matr ix  representation of #~eMo(G)~e/~, and 

evaluate at  #~ex~e#). Since S~(b )~T(b )=1 ,  (15) will follow from (16) if we show that ,  for 

each compact subset D of G, 

{ ~ ( ~ * x ~ g ) i a l l  v, all x in D} 

is a bounded set of matrices. Let  D'  be a compact neighborhood of D, and F the set of all 

non-negative elements / of L(G) with supports contained in D '  and with ~/d~ = 1. Since for 

x i nD  S~(#~ex~#)  can be approximated by  matrices S,(#~6/~-/~) w i t h / E F ,  it is sufficient 

to show tha t  
{S~(/.t-X-/-X-/t) I all v, all ] in F}  (17) 

is a bounded set of matrices. Let  l =  supx~D, ~(x). Then II]]]~l for all ] in F,  so tha t  

whence by  (10) <k~ll~ll  ~ for all v, all i, j, and all ] in F. Thus (17) is a 

bounded set, and the proof of the theorem is complete. 

Remark. In  the  context of Lemma 31, consider the statement tha t  

~s,--+ ~ m~R~ (18) 
k= l  

uniformly on compact sets. The only impediment to the validity of (18) is the presence of 

the 7 ~ in Lemma 31. I t  might be conjectured tha t  if all S, were of dimension n, and if 

~.~=1 mk dim(Rk) =n,  then the 7~ could be taken to be 0, so tha t  (18) would hold. We have 

seen of course in Theorem 8 tha t  this is true if r = 1, m 1 = 1. We do not know, however, if it 

is true in general. The only bar  to carrying through the proof of Theorem 8 in this more 

general situation is this: Unless the T of the proof of Theorem 8 is irreducible, we may  not 

be able to choose b in L"(G) to satisfy (12), but  only to be triangular with ones on the dia- 

gonal. But  there is one other case in which (12) can still be satisfied--namely, when S~ and 

T are matr ix  *-representations of the *-algebra L"(GI, i.e., they come from unitary represen- 

tations of G. In  tha t  case T is a diagonal block matr ix  representation, and so b can be 

chosen to satisfy (12). Then the proof of Theorem 8 goes through as before. 
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Appendix 

In  this Appendix we give four counter-examples. The first shows tha t  the Galilean 

group (defined in the Introduction) is not Banach-representable. In  the second we exhibit 

a linear system representation T of a group such that  T, although not FDS itself, has an 

FDS dense contraction. The third (essentially due to M. Tomita) consists of three (not topo- 

logically irreducible) Banach representations of a group for which Naimark-relatedness 

falls to be transitive. In  the fourth we show tha t  Naimark-relatedness fails to be transitive 

on arbi trary topologically completely irreducible linear system representations of groups. 

We do not know of an example of the non-transitivity of Naimark-relatedness involving 

only topologically completely irreducible Banach representations of a group. 

Example 1. Let  G be the Galllean group defined in the Introduction. Let  L(R) be 

the space of all continuous complex functions with compact support on the real line R, and 

H the linear system ~L(R),L(R))  with the duality (/Ig)=f~_~c/(t)g(t)dt. Take a "non- 

unitary character" Z of Re; tha t  is, for some complex 2,/~ we have I(b, c)=exp (]~b+luc) 

for all real b,c. We shall define a linear system representation U z of G on H as follows: 

(U~ (a, b, c)/) (t) = Z(b, c + bt) fit - a), 

(U~ (a, b, c) g) (t) = I(b, c -}- (t + a) b)/(t + a) 

((a,b,c)EG; / ,gEL(R); tER). One verifies tha t  U z is indeed a linear system representa- 

tion of G. 

I claim that ,  if # =~ O, U z is topologically completely irreducible. Indeed: Let /1 ..... /~ be 

linearly independent elements of L(R), and let gl ..... gn be elements of L(R) such tha t  

(U~(a,b,c) /jlgs)=O (1) 
t=1 

for all (a,b,c) in G. The claim will be proved if we show tha t  the gj must  all be O. Now let a 

be a fixed real number, and define 

L F(z)= e~t(2 g s ( O / j ( t - a ) ) e t .  (2) 
i=1 

F is complex analytic, and by  (1), F(l~b ) = 0 for all real b. Since/~ + 0, this implies that  F ~ 0, 

whence ~J~l g~(t)]j(t-a) = 0  for all real t and a. But  this amounts to saying tha t  

gj(t) /j(8) = o 

for all real t, s. From this and the linear independence of the / j  it follows tha t  gj~--O for all j. 

So the claim is proved. 



~O~-UIq lTA_RY D U A L  SPA(~ES OF GI~OIYPS 307 

On central elements <0,0,c> of G, U~ (0,0,c) and U z (0,0,c) are the scalar operators 

e "e. 1. Now we showed in the Introduction tha t  a Banaeh representation cannot have this 

property unless # is pure imaginary. Hence: 

If /~ is not pure imaginary, U z is a topologically completely irreducible linear system 

representation which is not functionally equivalent to any Banaeh representation of G. 

Thus G is not Banach-representable. 

Example 2. I t  is very simple to exhibit a linear system representation of an algebra 

which, though not FDS, has an FDS dense contraction. But  it is slightly less simple to 

exhibit such a representation of a group. Here is an example for groups. 

Let  K be a two-element group {e, u}, I an infinite cyclic group with generator g, and G 

the /ree product of K and I (considered as discrete). Let  X be the Banach space of all 

continuous complex functions on [0, ~r], with the supremum norm. Let  a be the function 

in X given by a(x)=sinx,  ~ the element of X* given by  

~.(1) = ~ [(x) sin x dx, 

and P the idempotent operator on X given by P[=2(]).~ (]EX). Let T be the Banach 

representation of G on X such tha t  T~ = 1 - 2P and (T~]) (x) = (exp(ix)) t(x) (] E X, 0 <~ x <~). 

If  Y is the weakly dense subset of X* consisting of all ~g (gEX), where Cg(/) =['~ [(x)g(x)dx, 

we note tha t  Y is stable under T*, and so the restriction T ~ of (T,  T*> to <X, Y)  is a dense 

contraction of the linear system representation T '  = ( T ,  T*> associated with T. 

Now T e -  Tu has one-dimensionM range Ca. Further  it is easily seen tha t  the linear 

span of the (Tg)n~ (n running over M1 integers) is weakly dense in X with respect to Y. 

Therefore T ~ is FDS. 

But  I claim tha t  T '  is not FDS. Indeed, let x o = {!  e x I / (0 )  = 0}. Since X o is not weakly 

dense in X (with respect to X*), it will be sufficient to show tha t  if ~EL(G) and T~ has finite- 

dimensional range, then range (T~,) c X o. Now clearly Tr = T~ +A, where ~o EL(I) and A is a 

linear combination of terms of the form B1PB2, where B 1 and B2 leave X 0 stable. Obviously 

A has finite-dimensional range contained in X o. Thus if T~ has finite-dimensional range, 

the same is true of T~; but  this clearly implies ~o =0.  So, if T~, has finite-dimensional range, 

we have range (T~) -- range (A) c X o. 

Hence T '  is not FDS, but  has an FDS dense contraction T". 

Example 3. Let  G be the additive group of integers, and S the unit circle {u E C I I u l = 1 }. 

Take two Borel measures ~1 and #~ on S whose closed support  is all of S but  which 

are not both absolutely continuous with respect to each other. Let  X be the Banach 
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space of all continuous complex functions on S, with the supremum norm. Consider 

the Banaeh representations S, T 1, and T 2 of G on the Banach spaces X, L2(Px ), and L2(/~2) 

respectively, all given by the formula 

(V~/) (u)=u~/(u) (ueS) 

(where V is S, T 1, or T 2, and / runs over X, L2(/~1), or L~(/12) ). Now the identity map of X 

into L2(/h ) is continuous and one-to-one, and intertwines S and TL Thus S and T 1 are 

Naimark-related. Simflary S and T 2 are Naimark-related. But  I claim tha t  T 1 and T 2 are 

not Naimark-related. Indeed T 1 and T ~ are unitary, and are not unitarily equivalent (since 

/~1 and/~2 have different null sets). Now it  is known that ,  for unitary representations of a 

group, Naimark-relatedness and unitary equivalence are the same ([14], Theorem 1.2; the 

latter is valid for closed unbounded intertwining operators). Therefore T ~ and T 2 are not 

Naimark-related. Thus S, T 1, and T 2 demonstrate the non-transit ivity of Naimark-related- 

ness for Banach representations. 

Example 4. Here is an example of the non-transitivity of Naimark-relatedness 

involving only topologically completely irreducible linear system representations. 

Let  G be the "ax + b" group, tha t  is, the group of all pairs (a, b} where a, b are real and 

a > 0 ,  with <a,b> <a',b'>=<aa',b+ab'>. I f  0 < o < r  0 < a < ~ / 4 ,  and 2 is any non-zero 

complex number, we shall define a linear system representation T = T ~" Q' ~ of G as follows: 

Let  K = K  Q" ~ be the family of all entire functions / on C with the following two properties: 

(i)/(0) =0,  (ii) there exist positive constants k, l (depending on / )  such tha t  I/(re~~ <~ le -kr' 

whenever r >~0 and - Q  ~< 0 ~<a. Clearly <K,K> is a linear system under the duality 

= ~ :  x-1/(x)g(x) dx. if]g) 
Now for each (a, b} in G let 

(T  1 (a, b)/) (z) = e ~z~ /(az), (3) 

(T~ (a, b) g) (z) -~ e ~za-' b/(a-1 z) (4) 

( /EK, z E C). Evidently T = T a' Q' ~ = (T1, T2} is a linear system representation of G on 

H ( T )  = ( K ,  K} .  By an argument  exactly analogous to tha t  of Example 1 of this Appendix 

we prove tha t  T a' Q'" is topologically completely irreducible. 

Now we verify that,  if - ~ < 0 < o, Q' = ~ + 0, o'  = a - 0, and 2' =2e i~ then 

T ~'~'~ and T ~''~176 are equivalent (5) 

under the isomorphism F: K q''.--~K q'' a, given by (F/) (z)=/(ef~ Furthermore, if 0 < ~0 ~< Q, 
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O<ao<~a, t hen  T ~'~'a is a dense con t rac t ion  of T ~'e .... . I n  fact ,  le t  L be the  H i lbe r t  space 

L~([0, co); x - : d x )  and,  for non-zero real  2, le t  U a be the  u n i t a r y  represen ta t ion  of G o n L  

def ined b y  the  formula  (3) (with U ~ in place of T:).  Then  i t  is easy  to  see t ha t ,  for real  2, 

Ta. 5., is a dense cont rac t ion  of U ~. (Here we iden t i fy  an  ent i re  funct ion  wi th  i ts  res t r ic t ion  

to  t he  posi t ive  real  axis.) I t  is known  t h a t  U a is topologica l ly  comple te ly  i r reducible  (this 

can be p roved  d i rec t ly  b y  the  a rgumen t  of E x a m p l e  1), and  t h a t  U:  and  U - :  are  un i t a r i ly  

inequiva len t .  

Thus,  if 0 < e < ~ / 8 ,  T 1 . . . .  +(~/s) a n d  T e~ (~/s).~+(./s)., are  dense cont rac t ions  of U 1 and  

T e~p(~'/8) . . . .  respect ively,  and  are  equ iva len t  b y  (5). Thus  U:  and  T € ~' 6 are  Na imark -  

re la ted.  Similar ly,  each consecut ive pa i r  in the  chain  

V 1, TeXp (~18). e. 8, Texp 0n/4), e, e, . . . ,  TeXD (7 in/8), e. $, U -  1 

is Na imark - re l a t ed .  B u t  we know t h a t  the  end  te rms  U 1 and  U - :  are  no t  un i t a r i l y  

equiva lent ,  hence no t  Na imark - r e l a t e d  (see E x a m p l e  3). Hence  Na imark- re la t edness  is no t  

t r ans i t ive  for topological ly  comple te ly  i r reducible  l inear  sys tem represen ta t ions  of G. 
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