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1. Introduction 

We consider finitely generated Fuchsian groups G. For such groups Fricke defined 

a class of fundamental  polygons which he called canonical. The two most important  

distinguishing properties of these polygons are that  they are strictly convex and have 

the smallest possible number of sides. A canonical polygon P in Fricke's sense de- 

pends on a choice of a certain "s tandard"  system of generators S for G. Fricke proved 

that  for a given G and S canonical polygons always exist. His proof is rather com- 

plicated. Also, Fricke's polygons are not canonical in the technical sense; there are 

infinitely many  P for a given G and S. 

In  this paper, we shall construct a uniquely determined fundamental  polygon P 

which satisfies all of Fricke's conditions for every given G of positive genus and for 

every given S. We call this P a canonical Fricke polygon. 

For every given G of genus zero, and S, we shall define a uniquely determined 

fundamental  polygon P which we call a canonical polygon without accidental vertices. 

From this P,  one can obtain in infinitely many ways polygons satisfying l~'ricke's 

conditions. 

Our canonical polygons are invariant under similarity transformations of the group 

G if G is of the first kind. I f  G is of the second kind, this s tatement remains true 

after a suitable modification which will be clear from the construction. 

The proof involves elementary explicit constructions, and continuity arguments 

which use quasiconformal mappings, as developed by  Ahlfors and Bers. 

We give a geometric interpretation of the canonical polygons in the last section. 

This interpretation provided the heuristic idea for the formulation of the main theorem. 
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2. Definitions 

We say that  S is a Riemann surface of finite type (g; n; m) if it is conformally 

equivalent to ~ -  ((Pl, P2 . . . . .  Pn) U (d l, d~ . . . . .  din)} where ~ is a closed Riemann sur- 

face of genus g, the p~ are points and the d s are closed conformal discs (p~:~pj, 

d~ N dj=O for i:~j, p ~ d j ,  n>~0, m~>0). Suppose that to each "removed" point pj, 

~= 1, 2, ..., n, there is assigned an "integer" vj, rs = 2, 3, ..., co, ~1 ~<u~ ~< ... ~<r~. Then 

we say that S has signature (g; n; r 1 . . . . .  v.; m). A surface's type is preserved under 

conformal equivalence, hence this definition is meaningful. 

A surface S with signature (g; n; ~1 . . . . .  u~; m) is represented by a Fuchsian 

group G if: 

1) G is a properly discontinous group of MSbius transformations leaving the unit 

disc U fixed. 

2) If  Ua denotes U- (e l l ip t i c  fixed points of G} then 

2a) U/G is conformally equivalent to ~ - ((p . . . . .  , p,)  U (d 1 . . . . .  din)} where rr = rr+l = 

... = co. Ua/G is eonformally equivalent to ~ - ( ( P l  . . . . .  p~) U (d 1 . . . . .  d~)}. 

2b) The map ga:U--> U/G is locally 1 to 1 in the neighborhood of every point 

of Ua, and is ~s to 1 at  the pre-images of the points Pl, .--,P~-I. 

3. Preliminaries 

From now on we consider only Riemann surfaces of finite type. 

The following three classical theorems are basic to the theory we are discussing. 

T~  E O RE M 1. Given a Riemann sur/ace with a signature, a Fuchsian group representing 

it is finitely generated and is determined up to conjugation by a MSbius trans/ormation. 

The proof may be found in Appell-Goursat [4]. 

THEO~.M 2. All /initely generated Fuchsian groups represent sur/aces o//inite type. 

A direct proof will appear in a forthcoming paper by Bers [7], and can also be 

found as a special case of a theorem of Ahlfors [2]. 



C A N O N I C A L  P O L Y G O N S  F O R  F I N I T E L Y  G E N E R A T E D  F U C H S I A N  G R O U P S  

THE ORE M 3. There exists a / i n i t e l y  generated Fuchsian group representing every sur- 

]ace o/ /inite type with a given signature provided that 3 g -  3 + n + m > 0 and i/  g = 0, 

m = O, n = 4 then ~=1 vj > 8. 

Note  tha t  we omit any  discussion of the triangle groups in this paper.  

Proof  of this m a y  be found in Ford  [9] and  Bers [5]. However,  the statemen~ 

also follows from the construct ion we will give later. We will sketch the proof at  

the appropriate  place. 

4. Fr ieke polygons  

I f  (g; n; v 1 . . . . .  vn; m) is the signature of S, and  if G is the group representing 

S, we call (g; n; Vl . . . .  , Vn; m) the signature of G. We remark  tha t  the signature of G 

is preserved under  conjugation.  

Let  G be a finitely generated Fuchsian group with signature (g; n; vl . . . .  , vn; m) 

and suppose R is a fundamenta l  region for G. R is called a standard [undamental 

region for G if it satisfies the following conditions: 

1) R is bounded by  4g + 2n + 2m J o r d a n  arcs in U and  m arcs on the boundary  

of U, forming a J o r d a n  curve oriented so tha t  the interior of R is on the left. 

2) I f  the sides of R are suitably labelled in order: 

I 
' b" b~, a~, b~, ag bg, cl, c~, " dl, el, d;, d,n, era, d,n, al, 51, al, 1~ a s ,  . . . ,  ' " . . . ,  On ,  e n ,  . . . ,  

there exist hyperbolic elements As, B~ and DjEG,  i =  1, 2 . . . . .  g, j =  l,  2 . . . . .  m, such 

tha t  A~(a~)= -a'~, B~(b;)= - b ~  and Dj(dj)= - d ; ,  and  elliptic elements C k e G  of order 

vk (parabolic if vk = oo) k = 1, 2 . . . . .  n, such tha t  Ck(c~)= -c 'k .  These elements satisfy 

the relation: 

D~ ... DI C~ ... C1B~I A~I  BgA~ ... B11A11Bs A1 = 1. (1) 

(Note: I n  this paper  the nota t ion A B  means first apply  B and  then a p p l y  A.) The 

ej, j =  1, 2 . . . . .  ra are arcs on the uni t  circle. 

I t  is known tha t  the elements of 

S = {A 1, B 1 . . . .  Ao, Bo, C~ . . . .  Cn, Dl  . . . . .  D,n} 

with the single relation (I), generate G. ~re will call S a standard sequence o/genera- 

tors. R is said to belong to S. 

Two s tandard  fundamenta l  regions are equivalent if they give rise to the same 

s tandard  sequence of generators. 
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I t  follows easily from Theorem 2 that  standard fundamental  regions exist for 

all finitely generated Fuchsian groups. However, this will also follow from the main 

theorem of this paper; an explicit proof using this theorem will be given later (see 

Section 7). 

I f  the boundary arcs of a standard fundamental  region R belonging to $ (except 

for the arcs on the unit circle) are non-Euclidean straight segments, R will be called 

a Fricke polygon belonging to S. 

5. Fricke's theorem 

Let  $ be a standard sequence of generators and let P0 be a point in U. We 

will construct a closed "polygonal" curve P(P0; ~) such that  if this curve has no 

self-intersections, it is the boundary of a Fricke polygon belonging to $. 

Let  Po be given. Find the points: 

P~ = Af  * Bf  ~ (P0), P~ = A f  ~ (P0), Pg = B f  1 (P0), 

Pl = A21B~A~(p~), .p~ = BeA~(pl) ,  p~ = A~(pl), 

A P~=A~IBaAa(p~) ,  p~=BaAz(p~) ,  P~= a(P~), 

P~ = Pl = B f  l A f l (Po) 

P~ =P2 = B~I A~I B~A~(pl) 

P~ =Pa = B31Aa1BaAa(Pu), 

P~-I = A~IBg Ag (Pg-1), P2a-1 = Bg Ag (Pg-1), P~-~ = Ao (Pg-1), P ~ - I  = P g  = B ~ A ~  1Bg Ag(pg_~) 

Pg+I = Cl (p~), P~+2 = C2(p~+~) . . . . .  p~+, = C,  (p~+~-l), 

Pg+~+l=Dl(pg+,),  pg+~+~=D2(pg+~+l) . . . . .  pa+,+m-po-Dm(Pg+,+m) ,  

and label the fixed points of C1, C~ . . . . .  C, by  ql, q2 . . . . .  q~. 

I f  I j  is the isometric circle (see Ford [9]) of Dj, I j  intersects the axis of Dj. 

This axis has a direction in which it is moved by  the translation D s. Let  r~ be the 

endpoint of I j  on the left side of the axis of Ds. Then r~=Dj(rj) is also to the left 

of the axis of D s. 

Join by non-Euclidean straight segments (see Figure 1): 

pl to p~, p~ to p0, po to p~, p~ to p~ =pl  

pl to pl, pl to p~, p~ to p~, p~ to pl =p~ 

P2 to p~, ... 

�9 .. P~-I to P$-1 =Pg 

pg to ql, ql topo+l ,  Pa+l to q2 . . . . .  qn topg+n 

Pg+n to rl, r~ to Pg+.+l, Po+n+l to r2, r~ to Pg+n+u . . . . .  r~ to Po+n+m =pl .  
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Fig. 1 Fig. 2 
Fig. 1. R is a s t anda rd  fundamen ta l  region belonging to S = {Ax, B1, A, ,  B2, e l, C2, D x, D2} where  S 
generates  the  group G wi th  s ignature  (2; 2; k, oo; 2). R is in fact  a Fr icke polygon.  

Fig.  2. G has  s ignature  (2; 2; k, co ; 0). 

We call the resulting polygonal curve P(190; S). I f  it bounds a fundamental  re- 

gion for G (and hence is a Fricke polygon) we call 190 suitable. I f  P(19o; $) is also 

strictly convex (i. e. all the interior angles are strictly less than 7e, except for those 

a t  vertices which are fixed points of elliptic transformations of order 2) we call P0 

very suitable. 

Remark: I f  P0 is suitable, the sum of the angles a t  the vertices composing the 

accidental cycle (i. e. the cycle containing all the vertices which are images of 190) is 2n. 

THEOREM 4. (Fricke) Let G be a ]initely generated Fuchsian group with signature 

(g; n; ~1 . . . . .  ~n; m) and assume 3 g -  3 + n + m > O. Then very suitable points exist /or any 

standard sequence o] generators $. 

Remark: Fricke calls polygons corresponding to very suitable points canonical 

polygons. This paper originated from an a t tempt  to find a new proof of Fricke's 

theorem. However, we were able to prove a stronger theorem involving a polygon 

which is uniquely determined and hence "more canonical". Therefore we reserve the 

name "canonical" for this new polygon. The proof of Fricke's theorem is contained 

in the proofs of the main theorems below. 

6. Main Theorem, Part I 

THEOREM 5. (Main Theorem, Part I.) Let G be a finitely generated group o/ the /irst 

kind with signature (g; n; v 1 . . . . .  vn) and assume g > 0 ,  3 g - 3 §  Then, given any 

standard sequence o/ generators $ = (A1, B 1 . . . . .  A o, Bg, C1 . . . . .  Cn} the axes o / A  1 and B 1 

intersect; their intersection point p* is very suitable. 

We will call P(p*; $) a canonical Fricke 19olygon belonging to $. 
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Proo/. We will first give the construction of a canonical Fricke polygon for a 

particular group G o which has the prescribed signature. The theorem will then follow 

by  a continuity argument.  

Consider the unit circle and mark  off the non-Euclidean lengths Q on the posi- 

tive real and positive imaginary axes. At these points erect non-Euclidean perpen- 

diculars and mark  off the non-Euclidean lengths Q on the segments in the first quad- 

rant.  These perpendiculars do not intersect. I f  they did, their angle of intersection 

would be greater than or equal to g/2. This is true because in a non-Euclidean 

triangle the bigger angle is opposite the bigger side. The sum of the interior angles 

of the resulting non-Euclidean quadrilateral would be a t  least 2ze--an impossible 

situation. 

Join these new points (the endpoints of the perpendiculars) by  a circular arc 

concentric with the unit circle (see Figure 2). Parti t ion this arc into 4 ( g - 1 ) + 2 n  

equal subarcs and label the subdivision points successively pl,  P2, ...,p4(g-1)+~n+l. Join 

Pl to P2, P2 to Pa . . . . .  P4(g-1) to P4(g-1)+l by  non-Euclidean straight segments. Draw 

rays from the origin through P4g-2,P4v . . . . .  p4(g-1)+2n. 

I f  n >  0, find the point ql on the ray through P4g-~ such that  the angle formed 

by  the non-Euclidean segment joining this point to P4(g-1)+l and the ray is ~/v 1. Join 

this point with Pa(v-1)*l; again the angle formed will be ~/Vl, and the total  vertex 

angle P~g-sP4g-2p4g-1 will be 2ze/v~. Repeat  the construction to find the points q2 . . . .  qn. 

I f  vj = oo, q~ will lie on the unit  circle. 

l~ote that  the sum of the angles a t  the accidental vertices (i. e. pj, j =  1, .. . ,  

4 ( g -  1) + 1, 4g - 1, 4g + 1 . . . . .  4g + 2n + 1, and 0, Q and iQ) is a continuous function of 

Q. We will show tha t  the limit of this sum as Q tends to 1 is 3z~/2. We break up 

the polygon in the following manner.  Join P4g-3 to P4g-1, P4g-1 to ~o4r , . . . ,  and 

P4g+2n-1 to P4g+2"+l by  non-Euclidean straight segments. The sum of the interior 

angles of this t runcated polygon tends to 3ze/2 as ~ tends to 1. The original polygon 

consists of this t runcated one plus n triangles. As ~ tends to 1, all the vertices of 

these triangles tend to the horizon of the non-Euclidean plane and therefore the sum 

of their interior angles tends to 2g/v~. When Q is close to zero, the truncated polygon 

is almost Euclidean. I t  is a convex figure with 4 g + n  sides. Since the sum of the 

interior angles of a Euclidean polygon is (S-2)z~,  where S is the number  of sides, 

the sum of the angles of the original non-Euclidean polygon definitely exceeds 2g 

for small ~. We conclude tha t  for some ~ it is exactly 2z~. 

Performing our construction for this ~, we obtain a polygon R o satisfying all 

the conditions of Poincar~'s theorem (see Appell-Goursat  [4]). Therefore the group G O 
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generated by the sequence S O of non-Euclidean motions indicated on Figure 2 is 

Fuchsian and of the desired signature. Moreover, R 0 is a Fricke polygon for G O be- 

longing to the standard sequence of generators S 0. We note that  A ~ and B~I are hy- 

perbolic motions whose axes are the real and imaginary axes respectively, so that  R 0 

also satisfies the conditions of Theorem 5. 

7. A lemma 

The following lemma is obvious. 

L E ~ M A  1. For any / in i t e l y  generated Fuchsian group G, with signature, there exisls a 

standard /undamental region R such that each bounding arc is C r162 and such that the angles 

at the accidental vertices are never 0 or ~. 

8. Continuity argument 

We now return to the proof of the main theorem. 

Let R be a given standard fundamental region for the given group G satisfying 

the conditions of Lemma 1. Since G O and G have the same signature, R o and R have 

the same number of sides. We can define a continuous mapping w: Ro--~R by de- 

fining it first on the boundaries of R 0 and R respecting the identifications, and then 

extending it quasieonformally inside (see Ahlfors-Bers [3]). Since the identifications 

are respected, we have that for every A 0 E S O there is an A E $ such that  

w(Ao(z)) = A(w(z)) (2) 

on the boundary of R 0. The mapping Ao--~-A gives us an isomorphism of G O onto G 

by which we may now extend w to the rest of the unit disk so that  (2)holds. w is 

now a homeomorphism of U onto itself and, since it is quasiconformal inside R0, it 

is quasiconformal everywhere. Since it is a quasiconformal map of the whole disk it 

can be extended to the closed disk. 

Define /u(z)=w~/Wz and note that I/~(z)[ ~ k <  1 in U and 

/~(A(z))A'(z)=la(z)A'(z)  for A EG. (3) 

Without loss of generality we may assume that w(O)=O, w(1)= l ,  because if B is a 

MSbius transformation such that  B(w(O))=0,  B(w(1))= 1, we can replace G by B-1GB.  

Consider the functions t#(z), 0~< t~ l .  Define w t~' as the solution of the Beltrami 

equation W~z = t/.~Wz which maps the closed unit disk onto itself leaving 0 and 1 fixed. 
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w ~" is then quasieonformal by  definition and is a continuous funct ion of t. I n  fact, 

when t = 0, w t" = identity,  while when t = 1, w t~ = w. Define 

At"=(wt~) - l  o A  o w  t~' for A EG. 

B y  Bers [5], A t" is a M6bius t ransformation.  Then S t~' = (wt") -1 Sow t~' is a s tandard  se- 

quence of generators  of a group Gt"; G t~' will be Fuchsian since G O is. 

Let  p* be the intersection point  of the axes of A~" and Bi g. We see tha t  these 

axes always intersect,, because the fixed points  of A~ ~ and B~ ~ separate each other  

for t = 0, and since w t" is a homeomorphism of the closed disk, they  must  always 

separate each other. 

Set Pt = P(P*; St"). We claim tha t  the set of t 's  for which p* is ve ry  suitable 

is non-empty,  open and closed and hence consists of all t, 0 ~<t ~< 1. The set is non- 

empty  since it contains t = 0  and  P0 =P~  is very  suitable by  construction. Let  P*0 be 

very  suitable and I t - t o [  be small. The curve Pt lies very  close to the curve Pro and  

since -Pt. is simple and in fact  strictly convex, Pt  must  also be simple and  strictly 

convex. Since the elements of S ti' satisfy (1), the sum of the angles a t  the accidental 

vertices is a multiple of 2st. Since Pt is close to Pt,, the sum is close to 2st and 

therefore exact ly 2st. B y  Poincard's  theorem, Pt is a fundamenta l  region for G t~' and  

therefore is a Fricke polygon belonging to S t~'. 

* [Pt~z-Pt [ is Let  tj--->t and let pq  be very  suitable for all j. Then for N large, * * 

small. The limit of a sequence of str ict ly convex polygons is either a convex polygon, 

or is a straight  line. I n  our  case, ff the limit were a straight line, the axes of A~" and  

B~" would coincide. This is impossible since the fixed points of At" and B~" separate 

each other. Hence the limit polygon is a convex polygon and reasoning as we did 

before we see tha t  it is a fundamenta l  polygon for G t". Hence p~ is suitable. 

To see tha t  this Pt  is str ict ly convex, suppose the angle at  p~ is g, (0 < :r <st).  

The sides emanat ing  from p~ lie along the axes of At" and B t ' .  Applying either of 

these t ransformations to P t  yields a polygon, A~"(Pt) or B~ ~ (Pt), which is adjacent  to 

t * the original polygon. Moreover, since the axes are invariant,  the angle a .Pt in either 

A~ u (Pt) or B~ ~' (Pt) is s t -  a; hence both the angle at  A t'-l '~*~ ~,t j and the angle at  B~'-~(p~) 

is s t - g .  Now the sum of the angles at  the three vertices p~, A t" - l~*x  l ~_pt j and B~' - l (p  *) 

is 2 s t - ~ .  Since the sum of the angles at  all the accidental vertices is just  2st, all 

the other  angles mus t  be str ict ly less than  st. Therefore the set is closed and  p~ is 

very  suitable for all t, 0 ~< t ~< 1, q .e .d .  
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9. Main Theorem, Part II 

THEOREM 6. (Main  Theorem, P a ~  I I . )  Let G be a / i n i t e l y  generated Fuchsian group 

o/ the second kind with signature (g; n; Ul . . . . .  rn; m) and assume g > O, 3g - 3 § m § n > O. 

Then given any standard sequence o/generators, $ = {Ai, B 1 . . . .  , D~}, the axes o / A  1 and B 1 

intersect. Their  intersection point  p* is very suitable and leads to a unique strictly convex 

Fric]ce polygon P(p*,  $). We again call this polygon a canonical Fricke polygon. 

Proo/. The proof, as in Theorem 5, is by  continuity.  However,  we must  modify  

our construction as follows. Again draw the real and imaginary axes and mark  the 

non-Euclidean lengths Q on the positive halves. Again erect perpendiculars and mark  

the length Q in the first quadran t  on them, Again join these points by  a circular are 

concentric with the unit  circle. Bu t  now part i t ion it into 4 ( g - 1 ) + 2 n + d m  equal sub- 

arcs and  label the subdivision points Pl . . . . .  Pd(g-1)+2n+dm+l. Find the points ql . . . . .  q~ 

as before and join by  non-Eucl idean straight  segments: 

Pl  to P2, P2 to P3, ..., Pdg-4 to Pdg-a, Pdg-3 to ql, 

ql to  Pad-l, Pad-1 to q2, q~ to Pdg+l . . . .  , qn tO Pda-4+~n. 

Draw rays  from the origin through Pl(g-1)+2n+2,  Pd(0-1)§ . . . .  Pd(0-1)§247 Call the 

endpoints of these rays  ~1 . . . . .  r~m. Draw non-Eucl idean segments f rom pa(g-1)+2n+l to 

~1, ~2 to Pa(g-1)+2n+5, Pa(g-1)+2n+5 to ~a . . . . .  r~m to Pd(g-1)+2n+am+l. (See Figure 3.) 

We use the same argument  as we used before to fix the value of ~ and  to apply 

Poincar6's  theorem. Hence we obtain a group G O generated by  a s tandard  sequence 

of generators So = {A ~ B ~ . . . . .  C o . . . . .  D o . . . . .  D'~} for which the constructed region R 0 

is a Fricke polygon belonging to $0" 

Recall tha t  in defining P(P0; $) we fixed the non-parabolic vertices lying on the 

boundary  of U as endpoints of isometric circles. We can alter R 0 by  replacing rl . . . . .  

~ by  a ny  set ~ of pairs of points related by  D 1 . . . . .  Dm and  again obtain a Fricke 

polygon. Therefore, in order to make R 0 a canonical Fricke polygon, we replace 

~i, r3 . . . . .  r2~-1 by  the endpoints r I . . . . .  rm, of the isometric circles of D1 . . . . .  Dm lying 

to the left of their axes. We then set 

r I = Dl(rl) . . . . .  rim = Dm(r,~). 

The resulting polygon is now the required canonical polygon for the group G o . 

We now prove Lemma 1 for the case g > 0, m > 0. All the arguments  go through 

as they  did before since the isometric circles change continuously,  q.e.  d, 
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10. Canonical polygons without accidental vertices 

I f  g = 0  we have  no conjugate  pai rs  of hyperbol ic  genera tors  (A 1 a n d  B1) a n d  

hence can no longer  t ake  the  in tersec t ion  po in t  of thei r  axes as a s ta r t ing  po in t  for 

our  canonical  polygon.  I n  fact ,  we make  use of a different  k ind  of polygon,  suggested 

b y  a const ruct ion  of Fr ieke ,  to  get  an  analogous  resul t .  W e  call the  new polygon  a 

canonical polygon without accidental vertices a n d  ob ta in  i t  as follows. 

Le t  G be a Fuehs ian  group with  s ignature  (0; n; v I . . . . .  v~; m) a n d  let  

$ = {C1, . . . ,  Ca, D 1 . . . . .  Din} 

be a s t a n d a r d  sequence of genera tors  for  G. Labe l  the  f ixed po in ts  of C 1 . . . . .  C~ b y  

ql . . . . .  q~. Labe l  the  endpoin t s  of the  isometr ic  circles of D 1 . . . . .  Dm lying to the  left  

of thei r  axes,  r 1 . . . . .  rm respect ively .  

Let :  

q~ = Ci1(q~), qs ~ = (C~C1) -1 (qa) . . . . .  q~-i  = (Cn_l . . .  C1 ) l(q~), 

~1 = Dl(rl),  ~ = D~(r~) . . . . .  ~m = Dm(rm), 

r~ = (Cn . . .  C 1 ) - 1 ( r l ) =  ( n l C n  . . .  G 1 ) - l ( r 1 ) = ~ + 1  

r~ +1 = (D 1Cn. . .  C1) -~ (r~) = (D~D~C . . . .  C~)-1 (~.~) = ~+2  

C 1) ( r m - 1 ) - r m - 1  n+m-2_ (Din_ 2 DICn C1)-l(rm-i)  = (Din-1 DICn -1 - _ -n+m-I Win_ 1 - -  . . . . . . . . . . . .  

_ -n-l-m _ 
n + m - l _ _  ( D i n _  1 . . .  D 1  C . . . .  C l ) - l ( r m )  ( D i n  D 1 C n  C 1 ) - l ( r m ) - r m  - - r r a  r m  - -  ~ . . . . . .  

J o i n  b y  non-Euc l idean  s t ra igh t  segments:  

ql to q~, q~ to qa . . . . .  qn to rl, r l  to r 2, r2 to  r 3 . . . . .  rm-1 to  rm, 

~m t o  n + m - 2 _ _  - n + m - 1  n + m - 2  t o  n + m - 3 _ _ ~ n + m - 2  
r m - 1  - -  T m - 1  ~ ~ ' m - I  r m - 2  - -  m - 2  ~ �9 . ' ,  

7"~ to n - 1  q ~ - I  n - 2  q,  , to  . . . .  q~ to  q~-l ,  ql- 

Call the  resul t ing polygonal  curve Q($). A special  case is shown on F igure  4. 

LEMMA 2. I /  Q(S) is not sel/-intersecting, it is the boundary o/ a /undamental 

region /or G. 

Proo/. Q($) satisfies all  the  condi t ions  of Poineard ' s  theorem.  

LV.MMA 3. I[  Q($) is not sel].intersecting, it is strictly convex. 
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rz 
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P 

1 
q2 q2 

r2 r2 

Fig. 3 Fig. 4 

Fig. 3. G has signature (2; 2; k, ~ ;  2). Similar shading indicates congruency under D~ (i~ 1, 2). 

Fig. 4. G is generated by S = {C 1, C s, D z, D~}, signature (0; 2; k, ~ ;  2). 

Proo[. E a c h  ve r t ex  is e i ther  pa r t  of an  el l ipt ic or  pa rabo l ic  cycle, or is the  in- 

tersect ion of the  un i t  circle wi th  a non-Euc l idean  s t ra igh t  line, or  is a cusp on the  

un i t  circle so t h a t  i ts  angle  is zero. 

11. Main Theorem, Part I I I  

THEOREM 7. (Main Theorem, Part I I I . )  Q($) is a strictly convex /undamental 

polygon /or G. We call Q($) the canonical  po lygon  wi thou t  acc iden ta l  ver t ices  deter- 

mined by S. 

Reca l l  t h a t  if m = 0, n = 4, we requi re  ~ v ~  > 8. 

Proo/. We mus t  only  show t h a t  Q($) i t  no t  self- intersecting.  W e  need on ly  con- 

s t ruc t  a pa r t i cu l a r  canonical  po lygon  wi thou t  acc iden ta l  ver t ices  since the  con t inu i ty  

a r g u m e n t  is comple te ly  analogous  to  the  one g iven  before.  

Consider  the  regula r  non-Euc l idean  n +  m-gon N wi th  rad ius  0 <  1 centered  a t  

the  origin. Suppose t h a t  the  po in t  (0, 0) is a ver tex .  Then  proceeding in a counter-  

clockwise direct ion,  label  the  sides s 1 . . . . .  sn+m. Using st, i =  1 . . . . .  n, as a base,  erect  

an  isosceles t r iangle  T~ outs ide  N,  wi th  ve r tex  angle  2g/v~. Call the  ve r t ex  q~. Tr isect  

the  angles sub tend ing  the  sides ss, ] = 1 . . . . .  m, b y  r ays  f rom the  origin whose end- 

poin ts  we call ~j, i = 1, 2, ] = n + 1 . . . . .  n + m. Then  d r a w  non-Euc l idean  s t ra igh t  seg- 

men t s  [ij, i = 1, 2, 1"= 1 . . . . .  m, f rom the endpo in t s  of the  sides to the  corresponding ~j. 

Call the  region bounded  b y  [lj, sj, [2j, a n d  an  arc  of the  un i t  circle, Mj.  Now let  

i = 1  ] = 1  
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Fig. 5. First step of the construction of 
P for G with signature (0; 2; k, cx~; 2). 

We are now concerned with the sum of those interior angles of P lying at  the 

vertices which are common to both J s and N. (We call these the accidental vertices 

of P.) We call this sum ~ and note that  it depends continuously on Q. For Q close 

to 1 it is nearly equal to the sum ~N of the interior angles of N, and ~N is close 

to zero. :For Q close to zero, ~ > ~ n  and ~N is nearly (N-2)zt>~2zt  since n~>4, and 

h r is nearly Euclidean. Hence for some ~, ~b  is exactly equal to 2zt. 

By Poincar6's theorem, there exists for this Q, a Fuchsian group Go, generated 

by the identifications indicated in the figure, with the relations 

D o o o . . .Die  . . . .  C~ C~jJ=I, j= l  ..... n. (1') 

To make our constructed polygon the canonical polygon without accidental ver- 

tices for Go, we proceed as follows. I f  I j  is the isometric circle of Dj, let rj be the 

endpoint of I j  which lies to the left of the axis of Dj. Let ~j=Dj(rj). Draw the non- 

Euclidean straight segments lij from the endpoints of the sides sj to the corresponding 

rj and ~j. The region Mj bounded by  llj, sj, 12j is congruent to ~fj so that  the polygon 

Po($o)=NU b T~U 5 Mj 
~=I t=1  

is again a Fricke polygon for G 0. 

:For the sake of simplicity in drawing the figure, consider the transformation B 

which maps r onto 0 and the fixed points of C I onto the positive half of the real axis. 

The image B(Po) we again call P0" B will give us an isomorphism of Go--->BGo B-1 
generated by BCjB -1, BDkB -1, j = 1 . . . . .  n, k = 1 . . . . .  m which we again call G 0, Cj 

and D~ respectively. 

Using this construction, we complete the proof of Lemma 1. 
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Now consider the polygons: 

Cll(Po), (C2Cl) - I (P0)  . . . . .  (Din-1 . . .  DIC~ ... GI)- I (P0) .  

They all have the origin as a vertex. Find the points ql, ..., qnn-1, r~, ..., rmn+m-1 de- 

defined by  the relations on page 10. Join them in the order given there. Let: 

e l (0 )  = P l ,  C2(P1)=P2 . . . . .  Cn(]3n-1) =Pn, Di(Pn)  = P n + l  . . . . .  Dm(Pn+m-2) =Pn+m-1-  

Then the following regions are congruent in pairs: 

Y 1 = (0, qt, q~) 

T ,  = (0, q~, q~) 

T n - l =  (0, n-2 qn-1, q~-l)  

T ~ =  (0, ~-1 q~ , r'~) 

Tn+l = (0, r~, r~ +~) 

T~+~ = (0, r ~+12 , r~ § 

Tn+m_l = (0, rm_ ln+m-'~, rnm+m-1) 

~1 = (PI, qi, q2) 

~P~ = (P~, q~, q3) 

~i~n-I = (Pn- l ,  qn-1, qn) 

~n = (Pn, qn, r i )  

Tn+l = (Pn+l, rl, ra) 

~n+m-1 = (Pn+m-l ,  rm- l ,  rm) 

Subtract U~ + m - l ~  from Po($) and add U~t+m-lTi. Call the resulting region Qo(S). 

This region is what we have called the canonical polygon without accidental vertices 

for this group. 

The argument that  Q($) is in general not self-intersecting is just the same con- 

t inuity argument we used previously. 

This completes the proof of the main theorem. 

12. Fricke polygons for genus zero 

From a canonical polygon without accidental vertices we may obtain many 

standard Fricke polygons. To find one, draw the non-Euclidean straight segment join- 

ing qt to rm. (If m = 0 join qx to qn.) Pick a point inside the convex polygon O whose 

vertices are ql, ql . . . . .  rm. Call it P0- Join it to each of the vertices of 0 by non- 

Euclidean straight segments. The following pairs of triangles are congruent: 
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~ r2 

ql 

z "% iz 

rl r, rz 

2 ql 

Fig. 6 Fig. 7 

Fig. 6. Q(So) is the inner polygon. 

Fig. 7. Construction of ~ Frieke polygon from a canonical polygon without accidental vertices. 

T1 : (ql, Po, q~) 

T~ : (qi, Po, ql) 

T~ : (qm- l, pO, r~) 

T n + l  : (r'~, p o, r~ +1) 

n+m-1 
Tn+rn-1 : (rm , rio, rm) 

~x : (ql, CI(Po), q~) 

~2 : (q~, C~CI(Po), q3) 

~n : (qn, Cn ... Cl(p0), rl) 

~n+l : (rl, DICn "'" CI(P0)' r~) 

~n+m-1  ". (rm-1, Din-1  . . .  Cl(PO), rm) 

Subtract  Un_-+l m-1 T i from Q($) and add U~--~ ra-1 ~t" Call the resulting polygon P(Po : $)" 

Since the sum of the angles at  P0 is 2~, the sum of the angles a t  the accidental 

vertices of P(p0:  $) is 2z~. Each  angle is str ict ly less than  z~ because it is an  angle 

of a non-Eucl idean triangle and the sum of the angles of a non-Eucl idean triangle is 

strictly less than  z~. Hence P(P0: $) is strictly convex and  is therefore a Fricke polygon. 

Fricke 's  theorem is now completely proved. 

i f  we chose our  start ing point  P0 in Q ( S ) -  (9, the above construct ion would not  

lead to a convex polygon. However,  a similar construct ion works unless m = O  and  

j0 0 is on the line joining ql and  qn. I n  this case a convex polygon will result, bu t  it 

will not  be strictly convex. 
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13. Geometric interpretation 

For  the sake of simplicity we consider the case g = 2, n = 0, m = 0. We can in- 

terpret  the main theorem geometrically by  looking at  the Riemann  surface S which 

G represents. We consider on S the Riemannian  metric induced by  the hyperbolic 

metric of the disk. On S we are given a set F of 4 curves, F = {:r ill, ~2, f12} which 

intersect in only one point  p and  which are oriented as in figure 8. Cutt ing S along 

F will yield a simply connected surface. F is t radit ionally called a canonical dissection 

of S. There is an  obvious natura l  correspondence between F and  a s tandard  sequence 

of generators $ of G. The canonical Fricke polygon belonging to $ corresponds to a 

part icular  set of curves F* obtained from F as follows. 

Consider all curves freely homotopic  to zr and  let the unique shortest  be called 

a r Consider all curves freely homotopic  to fll and  let the unique shortest  be called 

b r a 1 and  b I intersect in a unique point  p*. I n  the disk a 1 and b 1 correspond to  

segments 5~ and bl of the axes of A 1 and  B I. This s ta tement  needs proof.  

Consider z, A(z) and A2(z) where A is an hyperbolic transformation.  Then, 

min {c$(z, A(z))+ (~(A(z), A2(z))}, 
z E U  

J 

where (~(P, Q) is non-Eucl idean distance will occur when the  three points are co-linear; 

they  will be co-linear only when z is on the axis (see Bers [8]). 

I f  p is the intersection point  of the original canonical dissection we need to de- 

fine a curve a I f rom p to p* which has the properties 

- t  

Fig. 8 Fig. 9 

Fig. 8. Canonical dissection of S of the type (2; 0; 0). 

7 
bz 
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where -~ denotes free homotopy and a s or b~ is the shortest geodesic in the (bounded) 

homotopy class of al or fl~. a 1 (whose existence will be discussed below)is unique up 

to a homotopy. To see this, assume another such curve 51 existed. Then 5 i 1 ~ 5 1 ~ a 2 ,  

511fl2 51 ~" b2 and consequently 

51Gil a20"1511 ~ 0~2' 51Gl1~20"1 511 ~f12" 

Hence 5 la~ 1 commutes with both a s and fls and so is homotopic to the identity. We 

now take a 1 as the shortest geodesic in its homotopy class. 

The existence of a 1 is equivalent to the existence of a deformation mapping / 

of F into F * =  {al, bl, as, bs}. We can prove the existence of / by the same kind of 

continuity argument  used in the proof of the main theorem of this paper. 

We must  now verify that  this new dissection has as one of its images in the 

disk, the canonical Fricke polygon P(p*) belonging to $. In  the disk, draw P(p*)and  

draw a Frieke polygon P corresponding to F and containing p* as an interior or 

boundary point. From figure 9, we then see tha t  5, is homotopic to 511535. Since 

5, is a geodesic and there is a unique geodesic in any homotopy class of curves through 

a given point on S, 5, projects into a 2. 

A similar interpretation can be given for all other surfaces of finite type and 

positive genus. 

I f  S has type (0; n; 0) join by  geodesics the first distinguished point to the 

second, the second to third and so on until we reach the nth. This dissection will 

correspond to the canonical polygon without accidental vertices. This is the dissection 

originally used by  Fricke in the case g ~-0. 
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