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In  [2, 3] R. Baer proved tha t  two homotopie simple closed curves, on an orientable 

closed 2-manifold M of genus greater than one, are isotopic. He applied this theorem to 

show that  a homeomorphism of M, which is homotopie to the identity, is isotopic to the 

identity. There have been investigations of the same theorems by W. Brodel [4] and 

W. Mangler [8]. 

This paper  is a detailed and exhaustive investigation into the theorems of Baer. We 

shall assume throughout that  M is a triangulated connected 2-manifold. But  we shall not 

require M to be compact, nor to be without boundary. The paper  is as self-contained as 

possible. In  particular it does not depend on the work cited above. 

An essentially new feature is tha t  we treat  the case where a basepoint is held fixed. 

In  Theorem 6.3 it is proved that  if h ~  1 :M, -)e ~ M ,  -)e, where M is a closed 2-manifold and 

h is a homeomorphism, then h is isotopic to the identity, keeping the basepoint fixed. 

This can be regarded as a first step towards proving the conjecture tha t  the space of all 

such homeomorphisms is contractible, provided M is not a 2-sphere or a projective plane. 

In  the main par t  of the paper, we deal with the case where the maps are piecewise 

linear. In  the Appendix we show how to deduce the corresponding topological theorems, 

by proving that  topological imbeddings or homeomorphisms can be approximated by  

piecewise linear imbeddings or homeomorphisms. In  w 5 we prove a number  of results for 

combinatorial manifolds of arbi trary dimension, all of which are more or less already known, 

but appear not to be in print. 

In  preparing this paper I have been helped by  conversations with a number  of people, 

in particular W. Browder, E. C. Zeeman, H. Ziesehang and M. W. Hirsch. Dr. Zieschang 

pointed out a mistake in my  first proof of Theorem 4.1, collaborated with me in finding the 

crucial counterexample, published in [5], and has proved a number  of the results in this 

paper indepedently. Professor Hirsch told me how to prove the results in the Appendix 

and discussed with me at  great length some early a t tempts  to prove Theorem 4.1. 
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w l .  Definitions and some standard theorems 

1.1. Let N be an n-dimensional manifold and P a submanifold of dimension n - 1 .  

If  there is an imbedding h:P x [ -  1, 1]-~/V, which is the identity on P x O, and such that  

h-i~N =OP x [ -  I, 1], 

then we say that  P is two sided in N. 

1.2. L e t P  be a two sided submanifold of N. If  N - P  is connected, we form a covering 

57, called the cyclic P-covering o/iV as follows. 

When we cut N along P, we obtain a connected manifold At0 with two copies of P 

in its boundary. We denote these copies by Po and P~'. Let po:N0 ~ N  be the map which 

identifies P0 and P0'. For each integer r, let N~ be a copy of/V0, and let P~ correspond to 

P~ and P~' to P'o'. Let p~ :/Vr-+N be a copy of P0. The covering N is obtained by taking 

(J-~<r<~N~ and identifying P~' to P~+I for each r. 

The covering map p :57-+N is the map induced by using pr on N~ for each r. Such a 

covering is illustrated in Diagram 1. 

We have the exact sequence 

0 --> ~ri 572--" ~rl N --> Z --> 0 , 1.3 

where Z is the cyclic infinite group of coverings translations of N. 

1.4. We say that  the imbeddings /0, /i : X -~ Y are isotopic, if there is a level-preserving 

imbedding F :  X x I ~ Y x I which agrees with ]o on X x 0 and with ]l on X x 1. We say 

t ha t / o  and/1  are ambient isotopic if there is a level-preserving homeomorphism 

G : Y x I ~ Y x I ,  

which is the identity on Y x 0 and g: Y--> Y on Y x 1, and such t h a t / i  = g/o" The maps 

F and G are called isotopies. 

The following results will be used repeatedly. 

1.5. PROPOSITIOn. Let p:X'--->X be an r-shee~ed covering, where r is finite and X is a 

/inite complex. Then the Euler characteristics satisfy z(X')=rg(X).  

Proo/. For each simplex in X there are r simplexes lying over it in X'.  

1.6. LEMMA. Let p :M' ->M be a covering o/the 2-mani/old M, and let M'  be non-com- 

pact. Let D c  M be a 2-dimensional disk, with plaD 1-1. Then Pl D is 1.1. 

Proof. By lifting D to the universal cover of M', we see that  we may assume without 

loss of generality that M '  is the universal cover of M. Let x, y E D, with px =py. We shall 

assume x # y and deduce a contradiction. 
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Let ~:M'  ~ M '  be a covering translation such that  vx = y. D U ~D is therefore compact 

and connected. Since aD N ~aD=O,  we easily check that D U ~D is a submanifold of M'. 

The boundary of this submanifold is either aD or vaD. (It cannot be aD U TaD, since aD is 

contractible in D U yD.) So we have either v D c  D or D c T D .  Without loss of generality 

let T D c i n t D .  Then ~ D c  i n t ~ - l D  for all k. But in tD Op-lpaD contains only a finite 

number of components, so this is a contradiction. 

1.7. T~EOREM. I] a simple closed curve S c  M is homotopic to zero, it bounds a disk. 

Proo/. If  M is a two-sphere, then this is the Sehoenflies Theorem [9, p. 169]. 

If  M is a projective plane, then S 2 is its universal cover. The inverse image of S con- 

sists of two disjoint circles S' and S" in S 2, which bound disjoint disks D' and D". The 

covering translation interchanges D' and D". Therefore each disk is mapped homeo- 

morphically into M, which proves the theorem when M is a projective plane. 

Now suppose M is not a two-sphere or a projective plane. By glueing on aM • [0, 1) 

to M (identifying aM • 0 with aM), we can assume M has no boundary. By 1.6 we only 

need to prove the theorem when M is simply connected. 

By the Appendix we may assume S is a subcomplex of some triangulation of M. 

S is homologous to zero, mod 2. Let C be the chain such that  aC =S.  The union of the 2- 

simplexes in C is a compact submanifold N of M and a N = S .  

N cannot be a MSbius band, for then we could construct a double covering of M 

by taking two copies of M - N  and glueing them to the double cover of N. So N must be 

a disk. :For otherwise there would be a non-separating two-sided simple closed curve T in 

h r, and we could construct a covering of M by taking the cyclic T-covering (see 1.2). 

1.8. COROLLARY. A non-compact simply connected 2-mani/old M without boundary is 

a plane. 

Proo]. Let M1, M s .... be a sequence of compact submanifolds of M with the following 

properties: 
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1) Mt=in tMt+l .  

2) Each component of M - i n t M ~  is non-compact. 

3) U~M~=M.  

Applying 1.7 to ~M~, we see that  for each i, M~ is a disk. Therefore M~+ 1 - i n t  M~ is homeo- 

morphie to $1• I .  We can now construct a homeomorphism of M with the plane, by 

mapping M~ onto the circle with radius i, and extending this map by  induction. 

w 2. Two-sided imheddings of curves without basepoint 

2.1. THEOREM. I//o and/1 are homotopic (piecewise linear) imbeddings o / S  1 in in tM,  

such that /oS 1 is two-sided and does not bound a disk, then/o is (piecewise linear) ambient 

isotopic to/1, by an isotopy which is/ ixed outside a compact subset o~ int M. 

Remarks. 1) If  M is orientable and /o  S1 bounds a disk, then the theorem is false. For 

we can define/1S 1 to bound a disk with the opposite orientation. We have/0~/1 ,  but  since 

an ambient isotopy preserves orientations,/0 is not isotpie to ]1. If  M is non-orientable the 

theorem remains true even i f /0  $1 bounds a disk. 

2) I f  los 1 or ]1S 1 meets ~M we can push it off ~M using an isotopy (not ambient). So 

this type of imbedding can be included if we delete the word "ambient"  from the theorem. 

Before tackling Theorem 2.1, we prove some lemmas. 

2.2. LEM•A. Let X be a compact subset o / i n t M  and let G be a/initely generated sub- 

group o/ ~I(M, • ), where the basepoint is in in tM.  Then there is a compact connected 2-dimen- 

sional submani/old N o/ i n tM with X = i n t N ,  such that gl(N, -)e) Ogl(M, -)(-) is one.one 

and contains G in its image. Each component o/ i n t M - i n t N  can be assumed non-compact 

and to have only one boundary component in common with N. 

Proo]. We can represent the generators of G by  a finite number of simple closed curves 

in in tM.  We take a finite connected subcomplex of in tM,  which contains X and these 

curves, and then take a regular neighbourhood in in tM.  We enlarge this submanifold N 

so tha t  each component of i n t M - i n t N  is non-compact. We further enlarge N so tha t  

every component of i n t M - i n t N  has only one boundary component in common with N. 

The result now follows from van Kampen ' s  Theorem. 

2.3. LEMMA. Let o: and ~ be elements o/ ~1 M, where M is not a projective plane. I /  

~ e  and fl-l~fl=o~-l, then M is a Klein bottle. 

Proo/. Let ~1I be the covering space of M corresponding to the subgroup of ~ I M  

generated by  a and 8. If  ~r  is not closed, then by  2.2, 7e 1 Ill is free. Since fl-Iafl = a -I,  we 
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obta in  the same word when we cyclically reduce ~ as when we cyclically reduce c~ -1. 

This can be seen to lead to a contradict ion and  we deduce t ha t  ~ / i s  closed. Since H 1 ~ / h a s  

a t  most  two generators,  M is a sphere, a project ive plane, a torus  or Klein  bottle.  Therefore 

is a Kle in  bottle,  which covers M a finite n u m b e r  of t imes. Hence  M has Euler  charac- 

teristic zero and  is non-orientable.  I t  follows tha t  M is a Klein  bottle.  

There  is a one-one correspondence between eonjugacy classes in 7h(M, ~ )  and  homo- 

t o p y  classes of maps  S 1 -~ M.  

2.4. LEMMA. Let /o, /1 :$1 -~M be disjoint (piecewise linear) imbeddinqs and le t /0S 1 be 

two-sided. Suppose that the con]ugacy class represented by/1 is not (e} and is contained in the 

normal subgroup generated by {/0}. Then either: 

(i) There is a cylinder S 1 • I in M, whose boundaries are/o $1 and ]1 $1; or 

(ii) There is a submani/old N o] M,  which is homeomorphic to a Klein bottle with a disk 

removed or to a torus with a disk removed. ~N =/1 $1 and/oS 1 is a non-separating curve on N.  

(See Diagram 2.) 

I] ]o and ]~ represent the same conjugacy class then (ii) cannot occur, and the (piecewise 

linear) imbedding F : S  1 • I ~ M o] (i) can be chosen so that F(x, O) =/o(x) and F(x, 1) =/l(x). 

Proo/. Let  h : S l •  l J - - > i n t M - / 1 S  1 be an imbedding such tha t  h(x, 0)=/0(x).  

We take  M - h ( S  1 • ( - 1, 1)) and  ident i fy h(S 1 • - 1) to a poin t  P-1  and h(S 1 • 1) to a poin t  

P1. I f  /oS ~ separates  M,  this gives us two 2-dimensional manifolds, M _  1 and  M 1 with  

P - 1 E M - 1  and P1EM1 (see Diagram 3). I f / o S  1 does not  separa te  M,  we obta in  a single 

connected 2-manifold, which we call M1, and  we pu t  M _  1 = O. Le t  

p : M - h ( S  1 • ( - 1 ,  1)) - ~ M  1 0 M _  1 

be the identification. Wi thou t  loss of general i ty  l e t / i S l c p - l M 1 .  

We define F : M  -+M1, agreeing with p on p - l M  1. If  los  1 separates  M,  we define 

F ( M - p - I M 1 )  =P1 (see Diagram 3). I f  los  ~ does not  separa te  M,  we define Fh(x, t) =w(t)  
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Diagram 3. 

where w is a path in MI joining P-1 to P1 (see Diagram 4). Then F[0 represents the trivial 

conjugacy class in ~1 M1. I t  follows from the hypothesis that  F]I "~ 0: S 1 ~ M1. 

Therefore F]IS1 bounds a disk in M1. Case (i) arises when the disk contains only one 

of the points P1 and P-l-  Case (ii) arises when the disk contains both points. If ]o and ]1 

represent the same conjugacy class, they are homotopic and case (ii) cannot occur, for in 

case (ii) f l S  I bounds rood 2 in M, while f0 does not bound mod2. (To see that  f0 does not 

bound, map M onto a torus or Klein bottle by pinching M - i n t N  to a point.) If the cylinder 

of (i) does not give the required map F, it gives us a homotopy between ]o and ]lg, where 

g is a rotation of S 1 about a diameter. (We are using 5.3 when n = 1.) We deduce that  

]o~_]og. We choose a fixed point of g as the basepoint in S 1, and let its image under 

]0 be the basepoint in M. Let  ]0 represent ~E~I(M, ~-). The homotopy ]0-~/0g gives us an 

element fl such that  f l - . ~  = ~-1. I t  follows from the hypotheses that  M is not the projec- 

tive plane. By 2.3, M is a Klein bottle. 

Now ]o S~ does not separate, for if it did, ~ would be in the centre of ~IM. Therefore 

the complement of the cylinder given by (i) is another cylinder. This second cylinder is the 

one which satisfies the lemma. 

i,(s'~i) 

M 
F ~ ~11"1~ 
F$~ 

Diagram 4. 
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Proo/ o/ 2.1. Without loss of generality [o and/1  can be assumed pieeewise linear (see 

the Appendix), By  an ambient  isotopy of ] I '  w e  can assume tha t  los 1 O ]1S 1 consists of a 

finite number of points, and that  at  each such point los  1 and /1S  1 actually cross. 

2.5. LEM~A. Suppose tha t /oS l f l /1S:~0 .  Then there is a disk in M, whose boundary 

consists o /an  arc in /o  $1 and an arc in/1 $I. 

This lemma shows that  there is an ambient isotopy of ]1 which makes ]0S1 and/1  $1 

disjoint. Applying the last par t  of Lemma 2.4 then completes the proof of Theorem 2.1. 

Proo/ o /Lemma 2.5. Let p : _ ~ - ~ M  be a covering with cyclic fundamental  group 

generated by  [0: $1 -+M, a lifting of ]0. Therefore M is orientable. I t  follows from Lemma 2.2 

that  i n t M  is homeomorphic to the open cylinder S 1 • R. Let [1~[1 be the lifting of /1~/o .  

Both [oS 1 and/1  $1 separate M,  for otherwise they would be homotopic to zero. 

If  ]0S10 ]1 $14=0, there must  be an are A in p-111S1 such that  A N [o $1 =~A. (To see 

this, we examine separately the cases [~S ~ 0 los 1 =r and [1S ~ 0 los ~ 4 0 .  Remember  tha t  

the components of p-1/xS~ are not necessarily circles.) Then A together with an arc B in 

]0 $1 bounds a disk D in ~r:  All the components of D ~ p-*]lS 1 are arcs with their endpoints 

on B. Without loss of generality we may  replace A by an innermost such arc. Then 

i n t D  Op-l/1S 1 = 0 .  Similarly we find an are C in p-I/oS 1, so tha t  a subarc of A together 

with C bounds a disk E c  D and i n t E  does not meet p-l]oS1 or p - r i S k  {See Diagram 5.) 

N o w / 0 S 1 0 / 1 S  1 contains more than one point, since it contains pOA. Therefore p [0E is 

one-one and so by 1.6 p i E  is one-one. This completes the proof of Lemma 2.5 and of 

Theorem 2.1. 

w 3. Arcs and one-sided imbeddings 

3.1. THEOREM. Let A and B be two (piecewise linear) arcs in M such that OM N A =  

OA =aB =OM N B, and which are homotopic keeping the endpoints fixed. Then they are (piece- 

wise linearly) ambient isotopic by an isotopy which is fixed on OM and outside a compact 

subset o] M.  
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Prool. By the Appendix, we can assume the arcs are piecewise linear. Then we assume 

that they meet in only a finite number of points, and that  at each intercsetion point in 

int M, the arcs actually cross. 

Theorem 3.1 follows from the next lemma. 

3.2.. L E p t A .  There is a disk in M whose boundary consists o I an arc in A and an arc 

in B. 

Proo t. We look at the universal cover of M and notice that each component of the 

inverse image of A separates, and similarly for B. The lemma follows by a similar argument 

to that  of 2.5. 

3.3. THEOREM.Let fo and [1 be homotopic (piecewise linear) imbeddings o / S  1 in intM. 

11] ]oS 1 is one-sided, there is a (piecewise linear) ambient isotopy o/]o to ]1, which is ]ixed outside 

a compact subset o / in tM.  

Proof. By the Appendix, we can assume ]0 and/1 are piecewise linear. A regular neigh- 

bourhood of/0S 1 is a MSbius band. Since ]0 does not lift to the orientable double cover of M, 

neither does/1- Hence a neighbourhood of [1S 1 is a MSbius band. 

Let P be an abstract MSbius band, with central curve SL We have imbeddings 

h 0, h 1 :P--> intM, which agree with ]0,/1 respectively on the central curve. 

Let F : S  1 • I -~ M be the homotopy between [0 and [ r  If  we cut S 1 • I along x • I ,  

we obtain a square. We glue two such squares together and obtain a homotopy between 

the loop traversing ]0 $1 twice and the loop traversing ]1S1 twice. Therefore h 0 } 0P ~ hi ] ~P. 

If  M is a projective plane, then Remark 1) after the statement of Theorem 2.1 shows 

that  there is an ambient isotopy throwing holOP onto h 110P. If  M is not a projective 

plane, this follows from Theorem 2.1 itself. If  M is not a Klein bottle, the isotopy obviously 

throws hoP onto h~P. If M is a Klein bottle, this is still true but not obvious. I t  follows 

since/oS ~ and/1 $1 are homologous mod 2. 

To complete the proof of Theorem 3.3, we need only the following theorem. 

3.4. TH~OR]~M. I] P is a MSbius band and F is a (piecewise linear) homeomorphism o] 

P onto itsel/which is the identity on OP, then F is (piecewise linearly) isotopic to the identity 

by an isotopy which is ]ixed on OM. 

Proo]. Let A be an arc such that  A N ~P =0A and such that  A does not separate P. 

Let 2 / b e  the universal cover of P and let a lifting B of A start at X and end at Y (see 

Diagram 6). Let a be a generator for the group of covering translations. Without loss of 

generality Y lies between :r and ~2r+lX (r >~ 0). We claim that r = 0. For if r > 0, then B 
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separates ~X from o~2rx, and hence B separates :r from gY. But  gB joins ~X to zeY in 

the complement of B, so this is a contradicition. 

I t  follows that  any  arc satisfying the same conditions as A, and with the same end- 

points, is homotopic to A without moving the endpoints. I t  follows from Theorem 3.1 that  

the two arcs are isotopic, and so we can assume tha t  F is the identity on A (see 5.2). We 

cut P along A and apply Alexander's Theorem (see 5.2) to complete the proof. 

w 4. Curves with basepoint 

We wish to prove the following theorem. 

4.1. T H E O R ~ .  Let ]0, ]1 be (piecewise linear) imbeddings o/ S 1 in in tM,  such that 

/o~-]1:S 1, ~ ~ M ,  ~e. I / l o s  1 does not bound a disk or M6bius band in M,  then there is a 

(piecewise linear) ambient isotopy between/o and/1 keeping the basepoint /ixed and which is 

]ixed outside a compact subset o] in tM.  

Remarks. 1) If  ]0 $1 bounds a disk, we obtain a counterexample by  letting ]1 $1 bound 

a disk with the opposite orientation. (Recall tha t  an isotopy keeping the basepoint fixed 

will preserve orientations in a neighbourhood of the basepoint.) 

2) In  the case los 1 bounds a MSbius band, a counterexample is presented in [5]. 

In  order to prove Theorem 4.1, we need some in/ormation about  the fundamental 

group of a 2-dimensional manifold. 

4.2. THEOREm. Let S be a simple closed curve in M,  which does not bound a MSbius band 

or a disk..Let ~ETq(M, ~ ) be represented by a single circuit o / S  and let ~=flk where k >~O. 

Then (~ =ft. 

Pro@ We at tach ~M x [0, 1) to M by  identifying ~M x 0  with ~M. In  this way we 

can assume without loss of generality tha t  OM = 0 .  The theorem is obviously true for a 

projective plane, so we assume that  M is some other 2-manifold. 
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The following will be used in the proof. There are three distinct types of simple closed 

curves in a MSbius band: those which bound disks, those which bound MSbius bands, and 

those which are homotopic to the central curve of the MSbius band. 

First we suppose that  fl generates ~t 1M. We apply 2.2 to obtain a compact submanifold 

2V of M with S c i n t M  and Zrl(N, ~e)-+~I(M, ~ )  an isomorphism. I t  follows tha t  N is 

a cylinder or MSbius band. I f  N is a cylinder, then ($ generates :71~1 ~7 and so (~ =ft. I f  M 

is a MSbius band, then S must  be homotopic to the central curve, ~ generates ~tlN and 

again (5 =ft. 

I f  fl does not generate ztlM , we assume ~ :~fl, and deduce a contradiction. We take the 

covering space .~ ,  whose fundamental  group is generated by ft. S lifts to T c 2 ] l .  Now T 

cannot bound a disk in 21I, for then we would have T ~ 0  and so S ~ 0  and then by  1.7 S 

would bound a disk in M. I t  follows from the preceding paragraph that  T bounds a 

M6bius band in 21I. Then T is orientation preserving. Therefore so is S and so is every 

conjugate of 8. Therefore every component of the inverse image of S, which lies in the 

M6bius band, must  bound a M6bius band. We look at  the innermost such M6bius band P.  

The image of P in M is a compact 2-manifold Q with boundary S, which is covered by  P.  

By 1.5 the Euler characteristic of Q is zero and it is non-orientable. Therefore Q is a M6bius 

band, which contradicts our hypothesis. 

4.3. L~MMA. ~tiM has no elements o / / in i te  order unless M i~ a projective plane. I f  cr 

and fi are elements of u 1M which commute and do not lie in the same cyclic subgroup, then M 

is a torus or a Klein bottle, and both ot and fl are orientation preserving. 

Proof. Suppose aEztlM has finite order. Let  21~ be a covering space of M whose funda- 

metal  group is cyclic of prime order p. Then Hi(M; Z)=Zp and so, by  the Universal 

Coefficient Theorem, H2(M; Z~) is non-zero. Therefore M is a closed manifold with Euler 

characteristic 1. I t  follows from 1.5 that  M is a closed manifold with Euler characteris- 

tic one. So M is a projective plane. 

Let a and fl commute, and suppose they do not lie in a cyclic subgroup. Then they 

generate a free abelian subgroup of rank two. Let  _~/be the covering space with this funda- 

mental group. Then M is homotopy equivalent to a toms.  Therefore it is closed orientable 

and has Euler characteristic zero. I t  follows tha t  a and fl preserve orientation, and that  M 

has Euler characteristic zero. This proves the lemma. 

Proof of 4.1. Without  loss of generality, ]0 and/1  can be assumed piecewise linear. 

4.1.1. We first assume M is not a torus and tha t  if M is a Klein bottle, then ]oS 1 is 

one-sided. 
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By Theorems 2.1 and 3.3, there is a piecewise linear isotopy ht:M ~ M ,  which is con- 

stant  outside a compact subset of i n t M ,  and such tha t  h 0 = l  and h l / o = / r  Then 

{h,~e )0 ~<t ~< 1} is a piecewise linear pa th  in M, which represents an element fl in z~(M, ~e). 

Let (/0} = {h} = a exl(M, ~+). We have fl-lafl = a from the homotopy hJo. By 4.3, fl and 

are in the same cyclic subgroup. By  4.2 and the hypotheses of 4.1, a generates this subgroup. 

Hence fl is a power of a. Applying an isotopy which rotates ]o $1 within itself, we see tha t  

without loss of generality we can assume fl = e. 

We triangulate M so that  {h t ~r } is a simplicial loop. Since it is homotopic to zero, 

the loop can be changed to a constant pa th  by a sequence of moves of the following form. 

I f  x, y, z, ar three vertices lying in the same simplex, and the loop has xyz occurring as 

three consecutive vertices, we can replace this par t  of the loop by xz. Conversely we can 

replace xz by xyz. 

We already have an isotopy H :  M • I o M  • I which moves the basepoint. In  Diagram 

7, we show the product of a 1-simplex of M with part  of I ,  and the product of a 2-simplex 

of M with par t  of I .  We put  F ( A B )  = A C D B  or F ( A C D B )  = A B .  Using such maps F, we 

change H to an isotopy which preserves basepoints. 

4.1.2. We now assume that  M is a torus or a Klein bottle, and ]oS 1 is two-sided but  

does not bound a M6bius band. 

]o Sx does not separate M. Let  M be the cyclic ]0Sl-eovering of M (see 1.2). Let l0 be 

a lifting of /0- There is a homeomorphism ~1I = l o s  1 • R, such tha t  l o s  1 corresponds to 

/o $1 • and every covering translation ~ satisfies p 2 • ( z , x ) = x + n ,  for some integer n 

depending only on ~. 

By an isotopy of M keeping the basepoint fixed, we can assume t h a t / i S  ~ meet s /oS  1 

in a finite number  of points, and that  where they meet they actually cross, except possibly 

at  the basepoint. We assume tha t  there are intersection points other than the basepoint 

and we will show how to reduce their number, so tha t  f inal ly/oS 1 A /1S  1 = %. 

Let T0 ~+ be the basepoint of 21I, and let T~ :S~, ~- -~ ~]I, ~e be the lifting of/1. Without  

loss of generality, we suppose that  for every neighbourhood U of the basepoint in S 1, 
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PsTi U contains points which are str ict ly positive. Let  :r be the covering translat ion such 

t h a t  P2 ~(z,x) = x + 1, so tha t  ~ generates the group of covering translations. Let  n >~ 0 be the 

largest integer such tha t /1  S1 R an]0 S 1 :i: 0 .  Let  A be an  arc in ]~ S 1 whose endpoints  are in 

~n]oSi and such tha t  p ,  A c  {x; x~n}.  Then A and an arc B in a ' ]0S  1 bound a disk D in ~;/. 

Let  A' cp-1]iSi be an innermost  arc in D, so tha t  A' together  with a subarc B' of B bounds 

a disk D '  in M.  (See Diagram 8.) We have 

i n t D '  N p-1/1Si = i n t  D '  N p-i/oS1 =0. 

Therefore ~nflS i I1 int D '  = ~ and so a n ~- is no t  in the interior of B' .  (The last s ta tement  

is the subtle pa r t  of this proof, and does not  go through except in the special circumstances 

of 4.1.2.) B y  1.6, pD' is a disk in M, bounded by  the arcs pA' and pB'. The basepoint  in 

M is either disjoint f rom pD', or it is one of the common endpoints of p A '  and pB'. We can 

therefore perform an isotpy keeping the basepoint  fixed, and reducing the number  of  inter- 

section points by  either two or one. 

Final ly we have /0  Si N/iS1 = ~-. Also ]0 $1 U/ iS i  bounds the interior of a disk (whose 

closure is a disk with two points  on the boundary  identified to the basepoint). We perform 

an isotopy which moves fi across this disk to/0.  

w 5. Some special results 

5.1. T ~ . O R ~ M .  Let N be a closed, combinatorial mani{old o{ any dimensional and let 

h : N x [ 0 ,  c~) - + N x  [0, oo) 
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be a piecewise linear homeomorphism which is the identity on N x O. Then h is piecewise 

linearly isotopic to the identity by an isotopy which is ]ixed on N x O. 

Proo/. By [6, Theorem 4], we can assume h is the identi ty on N x [0, 1]. 

We shall define a piecewise linear homeomorphism 

O:[0, ~) x[0, ~) -~[0, ~) x[0, ~). 

We triangulate the domain by  taking as 1-skeleton all lines through integer points which 

are parallel to the co-ordinate axes or  have slope 1. If  m and n are integers, we put  

~ P ( n , m ) = ( n - m , m )  if 0~<m~<n-1 

= (2n-m-l, m) if 0 ~ n - l - ~ < m  

=(0, m) if n = 0 .  

We extend (D linearly to each 2-simplex. 

We now define a piecewise linear homeomorphism 

W:Nx[O, ~)  x [0, ~)  ~ N x  [0, ~)  x [0, o~). 

We put  iF(x, s, t )=  (1 x (I) -1) {h(x, plcb(s, t)), t}. 

We have tF(x, s, 0 )=  (h(x, s), 0), tF(x, O, t)= (x, O, t) and if t ~> s - I ,  ~z(x, s, t )=  (x, s, t). 

L e t  ~:[0, 1) ~ [0, c~) be a piecewise linear homeomorphism. We define 

by  
H : N  x [0, ~ )  x[0, 1] -~N x [0, oo)x [0, 1] 

H ( x , s , t ) = ( l x l x a - 1 ) v t Z ( x , s ,  at) if t < l  and H(x,s ,  1)=(x,s ,  1). 

H is a pieeewise linear isotopy of h to the identity which is fixed on h r x 0. 

We next  prove a version of Alexander's Theorem [1]. 

5.2. T H e O r e M .  I /h:D,- )e  ~ D, ~+ is a (pieeewise linear) homeomorphism o /an  n-disk, 

which i8 the identity on the boundary sphere, then there is a (piecewise linear) isotopy o/ h to the 

identity, which is/ ixed on ~ D and on the basepoint. 

Proo/. I f  the basepoint is in ~D, we choose x to be any  point in int D. I f  the basepoint is 

not in OD, we choose x to be the basepoint. Let r  -~A n be a piecewise linear equivalence 

of D with an n-simplex. We triangulate D so that  x is a vertex and so that  Ch is linear on 

every simplex of D. (The latter condition is of course only imposed if h is pieeewise linear.) 

We triangulate D x I by  taking the triangulation of D on D x 1, the product triangulation 
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of 0D x I and  then regarding D x I as the cone on (D • 1)O (aD • I)  with x x 0  as the 

conepo~nt. (See Diagram 9.) We define a level preserving homeomorphism H :  D x I ~ D • I 

as follows. H I ~ D x I  is the identity; H I D x l  is h; H(xxO)=(xxO) ;  and 

(9~ x l ) H : D x I  ~ A n x  I 

is linear on each rectilinear arc in D x I ,  such t h a t  one end of the arc is x x 0 and  the other  

lies on (D x 1) 0 (OD x I). 

5.3. THEOR~,M. Let h:S% ~s - ,S% ~ be an orientation pre~serving piecewise linear 

homeomorphism. Then there is a piecewise linear isotopy of h to the identity, which is fixed 

on the basepoint. 

Proo/. The result is proved by  induct ion on n. Let  D be a piecewise linear disk in S ~, 

with the basepoint  in its interior. Then b y  an isotopy we can assume h D c i n t  D. Since 

D - i n t h D  is piecewise linearly equivalent  to S ~-1 x I [10], there is an  isotopy changing 

h so tha t  h D = D .  By the theorem in dimension ( n - l ) ,  we can assume tha t  hlaD is the 

identi ty.  By  Alexander 's  Theorem (see Theorem 5.2) we have our  result. 

5.4. THEOREM. Let h : R ~ , ~  ~R~,~e be an orientation preserving piecewise linear 

homeomorphism o[ Euclidean n-space. Then there is a piecewise linear isotopy, which is fixed 

on the basepoint, o /h  to the identity. 

Proo/. As above we can assume h is the ident i ty  on a disk D containing the basepoint  

in its interior. The result follows f rom Theorem 5.1. 

5.5. THEOREM. There are two (piecewise linear) @otopy classes o/ (piecewise linear) 

homeomorphisms P~, -)e ~P~, ~ .  I[ the basepoint is allowed to move, there is only one isototry 

class. 

Proo]. Given a homeomorphism h :P~, ~e _~p2, ~_, we can, wi thout  loss of generality, 
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assume it  is piecewise linear (see the Appendix).  A basepoint  preserving homeomorphism 

can be pu t  into one of two classes, depending on whether  it preserves or reverses the orienta- 

t ion of a neighbourhood of the basepoint.  Suppoxe it preserves the orientation. Then  we 

can assume it is the ident i ty  on a disk containing the basepoint  in its interior. The first 

pa r t  of 5.5 now follows f rom Theorem 3.4. 

I f  we rota te  S 2 through an angle z ,  keeping the nor th  and south poles fixed, then we 

induce an  isotopy of p2. I f  we take the basepoint  of p2 to be the image of a point  in the 

equator  of S 2, we have an  isotopy of the ident i ty  on P~ to  a homeomorphism p2, ~e ~ p 2 ,  ~e 

which reverses orientations near the basepoint. This proves the second par t  of 5.5. 

5.6. T H ~ O I ~ M .  Let h:S 1 x I,  ~ ~ S  1 x I,  ~e be a (piecewise linear) orientation pre- 

serving homeomorphism. Then there is a (piecewise linear) isotopy o /h  to the identity, which 

preserves the basepoint 

Proof. h(S 1 x O) =S  1 x 0 and  h(S 1 x 1) = S  1 x 1. Applying Theorem 4.1 to the circle 

S I x t which contains the basepoint, we see tha t  wi thout  loss of generality, we can assume 

the basepoint  is in S 1 x 1. B y  5.3 we can assume tha t  h i s  1 x 0 U 5 a x 1 is the identity.  

Le t  the basepoint  be x x 1. B y  rota t ing S i x  0 through a multiple of 2 z  and keeping 

S 1 x 1 fixed, we can assume tha t  h(x x I) is homotopic  to x x I with the endpoints  

fixed. B y  Theorem 3.1, we can assume tha t  h is t h e  ident i ty  on S 1 x 0 U S 1 x I U x x I .  To 

complete the proof, we cut the cylinder along x x I and apply  Alexander 's  Theorem 

(see 5.2). 

5.7. T ~ O R E M .  Let  h : S t x  ( - c ~ ,  c~), -)e ->S t x ( - ~ ,  ~ ) , *  be a (piecewise linear) 

orientation preserving homeomorphism. Then there is a (piecewise linear) isotopy of h to the 

identity which preserves the basepoint. 

Proof. B y  Theorem 4.1, we can assume tha t  h is the ident i ty  on the circle S 1 x t  con- 

raining the basepoint. The result follows from Theorem 5.1. 

5.8. T ~  o ~ .  Let M be a (closed or open) MSbius band and let h be a (peicewise linear) 

homeomorphism of M, which is homotopic to the identity. Then h is (piecewise linearly} isotopic 

to the identity. 

Proof. First  let M be a closed )/iSbius band. Then, since aM represents twice the 

generator  of HI(M; Z), we have h[OM ~ _ 1 :aM ~ M .  B y  Theorem 5.3 there is an  isotopy 

changing h[~M to  the identity.  We can then apply  Theorem 3.4. 

Now let M be an  open M6bius band  and let P be a closed M6bius band  in M.  Then 

7 -  652944 Acta mathematica. 115. Imprimd le janvier 1966 
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h P c Q  where Q is a closed MSbius band concentric with P. Now Q - i n t P = S  1 x I,  so we 

can change h by an isotopy so that  hP =Q, and then by a further isotopy so that  hP =P.  

The result already proved for P, together with Theorem 5.1. gives the desired conclusion. 

w 6. Homeomorphisms 

In  this section we shall prove that  (under appropriate hypotheses), if a homeomorphism 

of a 2-manifold is homotopic to the identity, it is isotopic to the identity. In  the course 

of the proofs, we need to change various homeomorphisms and homotopies. We show how 

to make these changes in the next two lemmas. 

6.1. LEMMA. Let M be a 2.mani/old other than P~ or S 2. Let C be a piecewise linear circle 

in int M or in ~M. Let H : M x I ~ M be a pieceurise linear homotopy o/ the identity to a piece- 

wise linear homeomorphism h such that hC = C. I f  H(C x I)  r C, we assume that C does not 

bound a disk or a MSbius band. I f  M is a Klein bottle or torus, we assume that H keeps a 

basepoint in C/ixed.  Let U be a regular neighbourhood o /C.  

Then there exists a piecewise linear ambient isotopy ~ : M x I ~ M x I o / the  identity to 

a homeomorphism r and a homotopy H '  : M z I -~ M such that: 

a. �9 is the identity outside U x I and O(C • I)  = C  x I.  

b. H '  is a homotopy o I the identity to Ch. H'  is the identity on C x t lor each t E I and 

H ' ( U  x I ) c  H ( U  x I).  

c. H ' = H  on C I ( M - U )  x I .  

d. I / H  keeps a basepoint ]ixed, so do H" and O. 

Proo 1. I f  the basepoint is in C, we choose x E C to be the basepoint. Otherwise we 

choose x E C arbitrarily and without loss of generality we assume that  the basepoint (if 

there is one) is not in U. One can check that  there is no loss of generality in assuming 

hx =x. Let N be a regular neighbourhood of H(C x I).  

During the homotopy H, x moves through a loop in H(C x I)  which represents 

E~i(/V, x). Let C represent ~ Erq(/V, x). Then ~-1:r = ~ ,  where e = +_ 1. Now ~ =e if M is a 

torus or a Klein bottle, because then x is the basepoint which does not move during the 

homotopy H. If  M is not a torus or a Klein bottle, then by 2.3 e = 1 and by 4.3, ~ and 

are in the same cyclic subgroup of gi(N, x). By 4.2 or by H(C • I) c C, ~ = ~" for some 

integer n. I t  follows that  there is no loss of generality in assuming 

~, = e e ~ ( N ,  x) ~n~(H(C x 1), x), 

and if H(C x I ) c C  that  ? =eeu~(C, x). By 5.3 we can assume h[C is the identity. 
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We construct a map K : M  x I x I -~ M as follows; 

for all y ~ M ,  K(y, s, O) =H(y,  s), H(y, O, t) =y, H(y, 1, t)=by; 

for all yEC, K(y, s, 1)=y;  

for all y E C I ( M - U ) ,  K(y, s, t )=H(y ,  s); 

if there is a basepoint preserved by H, then K ( ~ ,  s, t )=  ~ .  

We extend K to x x l x I .  (If x =  ~-, this has already been done.) We extend to a map 

from x x I x I into t t (C x I). We now define K on C x I x 1. Since ~/=~pz, S ~, we have 

N~=P2,S 2 and so ~ I ( C x I ) = ~ 2 N = O .  So we can extend to a map from C x l x I  into 

H(C x I). Using the homotopy extension theorem, we extend to a map from U x I x I into 

H(U x I). 

H'(y, s) =K(y,  s, 1) satisfies the lemma. 

6.2. L~M~A. Let M be a 2-mani]old other than 1)2 or S 2. Let A be a piecewise linear arc, 

with int A c i n t  M. Let H: M x I ~ M be a piecewise linear homotopy el the identity to a piece- 

wise linear homeomorphism h such that hA ~ A.  Suppose L is a subcomplex el M,  such that 

A h L =~zt and H is a constant homotopy on L. Let U be a regular neighbourhood o / A .  

Then there exists a piecewise linear ambient isotopy (I) : M x I ~ M x I el the identity to a 

homeomorphism r and a homotopy H'  : M x I -~ M such that: 

a. (I) is the identity on L x I and outside U x I .  ~P(A x I) = A x I .  

b. H '  is a homotopy o/ the identity to Ch. H" is the identity on A x t /or each t E I ,  

H ' (U  x I ) c  H ( U  x I) and H '  is a constant homotopy on L. 

c. H'  = H  on C l ( M -  U) x I .  

d. I / H  keeps a basepoint /ixed, so do H'  and r 

Proo/. The proof is similar to  that of 6.1, but is considerably less complicated. 

6.3. TH]~OREM. Let h ~ l :M, ~M -> M,  ~M be a proper (piecewise linear) homotopy H. 

Then there is a (piecewise linear) isotopy el h to the identity. I] the homotopy preserves a base- 

point, then so does the isotopy. 

Proo/. We first prove the theorem when H is pieeewise linear. 

By 5.3 and 5.4 we may assume that h l S M  is the identity. By 6.1 we may assume that  

the homotopy is constant on each compact component of ~M. 6.1 b and 6.1 c show that the 

new homotopy is also proper. A non-compact component of 8M is piecewise linearly 

homeomorphic to the real line R. We change the homotopy to the constant homotopy on 

each non-compact component of ~M by using the linear structure on R. We extend this 
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constant homotopy to a proper homotopy defined on the whole of M, by  taking the same 

homotopy as before outside a neighbourhood of the non-compact components of M, and 

using the homotopy extension theorem for homotopies of maps M • I -+M to define the 

homotopy on the neighbourhood. 

So we have reduced the problem to considering a proper homotopy H:M • I ~ M  of 

the identity to h, such tha t  H(y, t) =y if yEOM. We continue the proof assuming tha t  H 

keeps a basepoint in int M fixed. We construct by  induction compact, connected, piecewise 

linear submanifolds M~ ( i=1 ,  2 . . . .  ) of M with the following properties: 

(1) I f  M 1 is a disk then M 1 N OM4 0.  (By 5.4 the theorem we are trying to prove is 

true if M is a plane. So we are assuming tha t  M is not  a plane.) 

(2) The inverse image of the basepoint under H is contained in $~/1 • I .  (We distinguish 

between ~ = M -  C1 ( M -  X) and in tX  which is the subset of X consisting of those points 

with a neighbourhood in X homeomorphic to the Euclidean plane.) 

(3) I f  M 1 is not a disk or a 2-sphere, we choose an essential simple closed curve S in 

i n t M  1 containing the basepoint and not bounding a MSbins band. By 4.1 we can find an 

ambient  isotopy of M, fixed outside a compact subset X of in tM,  which changes his  to 

the identi ty on S. We insist tha t  X =  in tM s. 

(4) H-1H(Mt • I) ~ M~+, • I. 

(5) Each component of M - ~ r ,  is non-compact. 

(6) I, JM,=M.  

Since HIM • 0 is the identity, (3) implies tha t  

H-1Mi=.~It+l • I and H(Mt • I)= J~l~+r 

Therefore H(3M~ • I)=l~li+l-Mt_l for each i. We apply 2.1 and 3.1 to each component 

of ~Ms~-OM and we find an isotopy of ~/~+l-Ms~_l ,  which is fixed outside a compact 

subset of ~/~t+1-M~t-1 and also on ~(~I~st+l-M~t-1), and which changes h to the identity 

on aM~t. We do all these isotopies simultaneously (i >~ 1). Then M1, and hence the base- 

point, is not moved by  the isotopy. By 6.1 and 6.2 we may  without loss of generality assume 

tha t  the homotopy is constant on 0Mg.t for each i ~> 1. 

I f  M s is a disk or a 2-sphere, we may  assume tha t  the homotopy h ~  1 is constant 

on M s by  5.2 and 5.3. I f  Ms is not a disk or a 2-sphere, then by  condition (3), satisfied 

by  M 2, we can assume his  is the identity. By 6.1 we can assume the homotopy h _ l  is 

constant on S. 

Let  A,  ..... An(t) be disjoint piecewise linear arcs in M S with Aj N aMscOAjcS  U OMs 

and such tha t  cutting M along S and along the arcs, cuts M2 into disks. By induction on 
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i (i~>2), we construct disjoint piecewise linear arcs An(~-l)+l ..... An(i) in N~ =M2~-~12~-2, 

such that  Ajn~N~=~Aj  (n( i -1)<j<.n( i ) ) ,  and such that  cutting along the arcs cuts 

N~ into disks. 

Suppose that  the homotopy is constant on A 1 U ... U A~_ 1. Without loss of generality, 

we may assume hAj meets Aj in a finite number of points. Examining the universal cover 

of M, we see that  each component of the inverse image of S, Aj or ~N~ - ~ M  is an are or a 

homeomorphic copy of the real line. Therefore each component of the inverse image of 

~ - S -  (J~2~ Ak is simply connected. Lifting hAj and Aj to such a component, we see that  

hAj is homotopic to Aj in the manifold obtained from N~ by cutting along S and A 1 ..... A j_ 1 

( n ( i -  1) < ] < n(i)), the homotopy keeping the endpoints fixed. By 3.1, there is an ambient 

isotopy of N~-O~L~lAk, fixed outside a compact subset, on the boundary and on S, and 

taking hAj to A s, So without loss of generality, we may assume that  h lA j is the identi ty 

and by  6.2 that  the homotopy is constant on A s. 

Finally, by Alexander's Theorem (see 5.2), we find an isotopy of h to the identity. 

If  H is not pieeewise linear, we change h by an isotopy (keeping the basepoint fixed) 

to a piecewise linear homoemorphism (see Appendix). We then approximate the homotopy 

by a piecewise linear homotopy which keeps ~M within aM [14]. 

If  H is does not preserve a basepoint, we pick an arbitrary point ~- in int M. During 

the homotopy ~ moves along a path ~ from ~ to h/e.  We perform an isotopy which 

moves h ~r to ~-, along a path homotopic to the inverse of ~. Changing h by  this isotopy, 

we have h~e = ~- and during the homotopy ~e moves through a contractible loop. I t  is 

now easy to replace H by a homotopy which keeps ~e fixed, by  using the homotopy ex- 

tension theorem for homotopies of maps M • I -~M. (The only thing to check is tha t  the 

new homotopy is a proper map.) 

6.4. THEOREm. Let M be a 2.mani/old such that every component o / ~ M  is compact. 

Let h be a (piecewise linear) homeomorphism o / M  onto itsel/. I / M  is a plane, a closed cylinder, 

or an open cylinder, let h preserve orientations. 

a) I / h  is homotopic to the identity, it is (piecewise linearly) isotopic to the identity. 

b) Let h~_l:M, ~e ~ M ,  ~e, and i / M  is an open or closed MSbius band, let h preserve 

orientations near the basepoint. Then there is a (piecewise linear) isotopy o / h  to the identity, 

keeping the basepoint /ixed. 

Proo[. We deal first with the special cases of a plane, open and closed cylinders and 

open and closed MSbius bands. Because of the results of w 5, we have only to prove the 

following lemma. 



102 D.B. 4. EPSTEIN 

6.5. LEMM~. Let M be an open or closed MSbius band. Then Theorem 6.4b is true. 

Proo/. We start  with the case where M is compact. I f  the basepoint is in aM then the 

result follows as in the proof of 5.8. Otherwise we take an orientation reversing curve S in 

in tM,  which contains the basepoint. By 4.1 we may  assume h i s  is the identity, and by  6.1 

tha t  the homotopy h ~ 1 is constant on S. As in 5.8 we can assume tha t  h l aM is the identity. 

We take an arc A in M such tha t  A N aM =aA, A N S = ~e, and such tha t  A does not 

separate M. S separates A into two subarcs A 1 and A 2. The universal cover U of M is a 

strip with two boundary components. We choose a basepeint in U and lift h:M, ~e ~ M ,  -~ 

to a homeomorphism k: U, * -+ U, ~-. Since h preserves orientations near the basepoint, 

/~ sends each component of a U into itself. I t  follows tha t  we can change h by  an isotopy 

keeping the basepoint fixed, so tha t  k laU becomes the identity. Then by  examining the 

universal cover we see that  A 1 is homotopic to hA1, keeping the endpoints fixed, in the 

cylinder obtained from M by  cutting along S. I t  follows from 3.1 tha t  there is an isotopy 

on M fixed on aM and on S, of h lA 1 to the identity. The isotopy required in the lemma is 

obtained by  applying Alexander's Theorem (see 5.2) to the disk obtained by  cutting M 

along S and along A r 

Now let M be an open M6bins band. Let  P be a closed MSbius band in M with the 

basepoint in int P. As in 5.8, we can assume that  hP =P. By the result for closed MSbins 

bands, we can assume hiP is the identity and the required result follows from 5.1 since 

M - i n t P = S  1 • oo). 

We now prove 6.4, assuming tha t  M is not a plane, an open or closed cylinder, or an 

open or closed MSbins band. By 6.3 we can assume tha t  a M  4= 0 or tha t  M is not compact. 

I f  C is a component of aM, then hC=C by 2.4. By 6.1 there is no loss of generality in 

supposing tha t  the homotopy h ~_ 1 is constant on aM. 

We first deal with the case where the homotopy preserves a basepoint in in tM.  We 

choose an essential simple closed curve S in int M containing the basepoint and not bounding 

a MSbins band. By 4.1, we may  assume tha t  h I S is the identity. By 6.1 we may  assume tha t  

the homotopy h ~ 1 is constant on S. 

We construct compact, connected, piecewise linear submanifolds Mi (i= I, 2 . . . .  ) of 

M with the following properties. 

(1) I f  a component of aM meets M~, then the component is contained in/f/ t .  Mi c ~/~+1. 

UM~=M. 

(2) S c  i n tM 1. I f  aM # O, then M 1 (1 aM :~ O. 

(3) M1 is not a cylinder or a MSbins band. 

(4) Each component of M - ~ / t  is non-compact. 
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(5) If P is a component of M,+ 1-2~/, which is homeomorphic to $1• I,  then the 

component of M -2~/, containing P is homeomorphic to S 1 • [0, o~). 

Suppose that  we have constructed an isotopy which is fixed on 9M and on the basepoint 

and which changes h i M  ~ to the identity. We shall construct an isotopy which is fixed on 

~M and on M, and changes h IMp+ 1 to the identity. Glueing all these isotopies together, 

we obtain a piecewise linear level preserving homeomorphism 

M • [0, oo) -~M • [0, oo) 

which is constant on Mi when t>.i. Using a piecewise linear homeomorphism of [0, oo) 

with [0, 1), this gives a level preserving piecewise linear homeomorphism 

M x [ 0 ,  1) -~M • [0, 1). 

We can extend this to a piecewise linear, level preserving homeomorphism 

M •  1] -~M • [0, 1] 

by using the identity on M • 1. This will complete the proof. 

We now perform the induction step. We suppose h i M ~ U ~M is the identity and the 

homotopy h_~ 1 is constant on M, U ~M. Using 5.1, we can change h to the identity on each 

component of M-.fv/~ which is homeomorphic to S 1 • [0, cr 

Let  C be any component of ~M,+ 1 -~M~ not lyin6 in such a component of M - M , .  

We now examine the covering space of M with cyclic fundamental group, generated by  C. 

Each component of the inverse image of OM, U aMt+ 1 except for a single component of the 

inverse image of C, is homeomorphic to the real line. (By 2.3, 4.3 and 4.2, no conjugate of 

the element represented by C is in the cyclic subgroup of the fundamental group generated 

by C.) 

Let  components of ~M,+I be C1, C2 ..... C~. Suppose that  the homotopy h_~ 1 is constant 

on C 1 U ... U Cj_I. Putt ing Cj = C in the preceding paragraph, we see that  Cj is homotopic 

to hCj in M ' M i -  U ~-~ Ck. By 2.1 there is an isotopy changing h IC j to the identity, and 

the isotopy is fixed outside a compact subset of M - M , -  U~L~Ck. By 6.1 we can assume 

that  the homotopy h_~ 1 is constant on Cj. So after n steps, the homotopy is constant on 

M~ O aM~+v 

In order to make the homotopy constant on M~+ 1 we cut M~+~-21~/~ into disks with 

arcs and proceed as in the proof of 6.3. This proves the theorem when there is a basepoint 

in intM. 

To prove the theorem when there is no basepoint in in tM,  we apply the argument in 

the last paragraph of the proof of 6.3. This gives us the isotopy we want. 
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w 7. Appl icat ions  to fibre bundles  

In  [11] and [12], 3-dimensional manifolds which are fibre bundles over a circle, with 

fibre a 2-manifold, are discussed. 

T~.Ol~I~M. Let E ~ S 1 be a fibre bundle, with fibre M,  where M is a connected 2-mani]old 

with each boundary component compact. 

a) 1[ M is not a plane, an open or closed cylinder, then the fibre bundle is determined 

up to equivalence [13], by the homeomorphism vr 1E ~ ~1 $1. 

b) I / M  is a plane, an open or closed cylinder, the fibre bundle is determined up to equiva- 

lence by whether E is orientable and by the homeomorphism zr x E ~ r x  S 1. 

Proo/. We take as co-ordinate neighbourhoods two overlapping open intervals U and 

V in S 1. Then U N V = P  U Q where P and Q are disjoint open intervals. Let  the co-ordinate 

transformation be g : P  -~G and h:Q -~G, where G is the group of the bundle. Let  U' and 

V' be smaller open intervals in U and V respectively, such tha t  U' U V' = S  1, and let 

U' N V' =P '  U Q', where P '  c p  and Q' c Q. We extend g I P '  to g' : U' -~ G by  making g I U' - P '  

constant. We extend hlQ' to h ' :  V' -~G by  making h i V ' - Q '  constant. Using g' and h' to 

alter the co-ordinate transformations as in [13, p. 12], we find tha t  we have a fibre bundle 

where the co-ordinate transformations are constant. We can then assume tha t  the co- 

ordinate transformation P '  -~ G maps to the identity and  the co-ordinate transformation 

Q' -~G maps to a homeomorph i sm/ :M ~ M .  I f  M is the projective plane, [ is isotopic to 1. 

I f  M is not a 2-sphere, a plane, an open or closed cylinder, then the isotopy class of / is 

determined by  its homotopy class. Since the higher homotopy groups of M are zero, / is 

determined up to isotopy by  the outer automorphism 1~- of ~1M. We have an exact 

sequence 

O -~ gl  M -~ gl  E -~ rq S1 -~ 0. 

Let  ~ E g I E  map onto a chosen generator of ~rl Sx. Conjugation by  a induces [~- on 7elM. 

Therefore the outer automorphism is determined by  the homeomorphism ~r 1 E -~ ~r 1S 1. 

I f  M is a 2-sphere, a plane, an open or closed cylinder, then the isotopy class of / is 

fixed by  its orientation class and the map  [~-:ZrlM ~ ~1M of the fundamental  group. 

The result follows in each case, because the isotopy of / to some standard map F gives a 

level preserving homeomorphism M • Q' ~ M x Q' where we have / at  each level near one 

end of Q' and F a t  each level near the other end of Q'. 
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Appendix 
We now refine some results of Baer [1, 2], which show how to approximate a homeo. 

morphism of a 2-manifold by a pieeewise linear homeomorphism. The method used here 

was suggested by NI. W. Hirsch. 

A1. THEOREM. Let / :S  1, s-+intM, m be an imbedding. Then there is an ambient 

isotopy o] M, which is fixed on m and outside a compact subset o] intM, and which changes ] 

to a piecewise linear imbedding. 

Pro@ Let D be a small pieeewise linear disk in intM, which is a neighbourhood of m. 

T h e n / - l i n t D  consists of a disjoint union of open intervals. Let the closure of the open 

interval containing m be I0 and let its endpoints be x and y. We draw pieeewise linear 

arcs X and Y in D, so that X f) :Y=m and X n OD=/x, Y N OD=/y (see Diagram 10). 

There is a homeomorphism 

lJZo, /X, ly, m ~ X U r ,  lx,  ly, m. 

According to the Schoenflies Theorem [9, p. 169] we can extend this to a homeomorphism 

of D onto itself which is the identity on ~D. By 5.2, there is an isotopy of M which is fixed 

on m and on M -  D, and which changes / 11 to a piecewise linear map. 

Diagram 10. 

Let D 1 .... ,D~ be disks in i n t M - M ,  such that  / ( S l - i n t Io )  is covered by 

in tD  1 ..... intDk. /-lintD~ is a countable union of open intervals. So S I - i n t  I o is covered 

by a finite number of such open intervals i n t I  1 ..... intI~, with closures I s, .,., In. For 

convenience we put I0=I~+1. Without loss of generality, we assume Ir N I8=~0 if and 

only if I r - s [  ~< 1. For each i, we choose a subare J i  of intI~, in such a manner that  

i n t J  0 0 ... U intJn covers S 1. 

For each r we shall t ry  to find a homeomorphism fr  of M, which is isotopic to the 

identity by an isotopy which is fixed on m and outside a compact subset of intM, and 

such that  VT/is piecewise linear on Jo U ... U Jr" We have already defined q%. Suppose that  

we have defined ~o ..... ~r. I f  r < n, we t ry to define ~r+x" 
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D i a g r a m  11. 

Let intI~+ x be a component of / -a in tD~.  Now ~rintD~ inherits the piecewise linear 

structure of M and is piecewise linearly homeomorphic to a plane. 

K = ~vr/(S 1 - i n t  It+l) fi ~ i n t  D~ 

is a closed subspace of ~0~int D t. We choose a compact piecewise linear submanifold E of 

~ , in tDl ,  which contains q~r/J,+l in its interior, and which is disjoint from K. Without  loss 

of generality, we can assume E is a disk. 

Let  J r+xc J c  Ir+l where J is the closure of a component o f / - l~ r - l i n t  E. 

There is a piecewise linear ambient  isotopy of M, which is fixed on M - i n t ~ ,  D~ and J ,  

of the identity to a homeomorphism v 2, such tha t  E n y~rJ(Jo U ... U Jr) is an arc in E, 

meeting OE only at  an endpoint. (If r =n,  we have two arcs instead of one.) Now we apply 

Alexander's Theorem to E as in the first paragraph of this proof to obtain an isotopy which 

is fixed outside E, of the identity to a homeomorphism 7, such tha t  ~v2%/[J is piecewise 

linear. We put  ~v~+ 1 =~]y~,. 

12. TH ~. OR ~ ~. Let F : I ~ M be an imbeddinq with ]-IOM =81. Then there is an ambient 

isotopy o] M,  which is fixed on OM and outside a compac$ subset o/ M.  

Prop/. We first make ] piecewise linear near 0I ,  by  a method similar to tha t  used in 

the first paragraph of the proof of A1. After this the proof is identical with tha t  of A1. 

A3. L~M~A. Let g, h : X  -~ Y be ambient isotopic maps and let H : X  • I --~ Y • I be such 

that H(x,  O) = (hx, 0). Then there is an ambient isotopy ol H to a map G: X x I --> Y • I ,  such 

that G(x, O) = (gx, 0). The isot~py is fixed on Y x 1 and is the given isotopy on Y • O. 

Prop/. Le t  ~ P : Y •  ~ Y  •  be the ambient  isotopy with (I)0=l r and eblh=g. We 

define ~F: Y • 2 1 5  Y • 2 1 5  by 
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~F(y, s ,  t) = (y ,  s ,  t) if t ~< 2s 

=((P~-28Y, s, t) if t~2s .  

We pu t  (G(x, s), 1) =~F(H(x, s), 1). 

A4. THEOREM. Let h : M,  ~e -+ M,  ~e be a homeomorphism. There is an ambient isotopy 

which is fixed on the basepoint and which changes h to a piecewise linear homeomorphism. 

Proo/. h lOM is a homeomorphism of OM onto itself. This homeomorphism is isotopic 

to a piecewise linear homeomorphism. B y  A3 we can extend this to an  isotopy of M, using 

a collar neighbourhood of OM. So we can assume h]OM is pieeewise linear. 

Let  M =  [.JM~, where ~ e~M1, each M~ is a compact  pieeewise linear submanifold of 

M and M~ c 2~/~+1. B y  Theorem A1, we can assume tha t  h is piecewise linear on each circle 

in M,  D C I ( M - M ~ ) .  B y  Theorem A2 we can assume h is pieeewise linear on each arc in 

M~ tq C1 (M -M~). 
This reduces the problem to  the case where M is a compact  manifold with boundary  

and h I 0M is piecewise linear. We cut M into disks with piecewise linear arcs. We can assume 

h is piecewise linear on each are b y  Theorem A2. Final ly we make h piecewise linear on 

each disk by  using Alexander 's  Theorem (see 5.2). 
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