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Introduction 

In  this paper  we wish to exhibit the utility of differentials of half integer order in the 

theory of Riemann surfaces. We have found tha t  differentials of order �89 and order - � 8 9  

have been involved implicitly in numerous earlier investigations, e.g., Poincar~'s work 

on Fuchsian functions and differential equations on Riemann surfaces. But  the explicit 

recognition of these differentials as entities to be studied for their own worth seems to be 

new. We believe tha t  such a s tudy will have a considerable unifying effect on various 

aspects of the theory of Riemarm surfaces, and we wish to show, by  means of examples 

and applications, how some parts  of this theory are clarified and brought together through 

investigating these half-order differentials. 

A strong underlying reason for dealing with half-order differentials comes from the 

general technique of contour integration; already introduced by  Riemann. In  the standard 

theory one integrates a differential (linear) against an Abelian integral (additive function) 

and uses period relations and the residue theorem to arrive a t  identities. As we shall 

demonstrate, one can do an analogous thing by  multiplying two differentials of order �89 and 

using the same techniques of contour integration. 

As often happens, when one discovers a new (at least to him) enti ty and starts looking 

around to see where it occurs naturally, one is stunned to find so many  of its hiding places 

- - a n d  all so near the surface. 

Our current point of view concerning the s tudy of Riemann surfaces has evolved from 

an earlier one in which we introduced the notion of a meromorphic connection in analogy 

with classical notions in real differential geometry; we now view the theory of connections 
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on Riemaun surfaces as being the theory of first order linear differential equations. The 

present paper is concerned with the next  step--second order linear differential equations. 

The remarkable difference between first and second order linear differential equations on 

a closed Riemann surface of genus greater than one is tha t  there exist everywhere regular 

second order equations, although each first order equation must be singular. 

I. The Sehwarzian differential parameter and related connections 

1. In the theory of conformal mappings and univalent functions the following expres- 

sion plays a central role. If /(z)  is an analytic function in the plane domain D, the function 

[5, 8, 15, 20] 
f(z) - / ( ~ )  (1) 

F ( z , ~ ) = l o g  z -  

is analytic in the Cartesian product domain D • D except for logarithmic poles. A necessary 

and sufficient condition for/(z) to be univalent in D is the regularity of F(z, ~) in D • D. 

Since a linear transformation 

a/(z) + b 
/*(z) = c l ( z ) + d  (2) 

does not affect the univalence of the function, it is to be expected that  the corresponding 

function in two variables F*(z, ~) stands in a simple relation to F(z, ~). Indeed, we find 

F*(z, ~) = F(z, ~) + log 

Thus it seems useful to define 

~ - bc 

(el(z) + d) (cl(~) + d)" (3)  

~ r(z)/'(r 1 
U(z, ~) = ~ ~,(z, ~) [l(z) -/(~)]~ (z-  ~)~ (4) 

which is in view of (3) invariant under linear transformation. Clearly, the univalence of 

[(z) in D is still equivalent to the regularity of U(z, ~) in D • D. 

Let  w=/(z) and co=/(~) and define 

/ '(z)r(~) 1 
[w, o~; z, ; ]  = [/(z) - 1(;)]~ (~_ ;)~. (5)  

I f  we consider z = g(t), ~ = 9(~), we can form the analogous expression 

g'(O g'(.c) 1 
[z, ~; t, z-] - -  [.q(t) - g(-O] ~ ( t -  T) ~" (6)  
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I t  is easy to verify that  for w =/{g(t)}, o~--/{g(~)} we have 

[w, oo; z, ~]dzd~ +[z, ~; t, ~]dtd~=[w, o; t, ~]dtdv. 
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(7) 

This additive law for [w, co; z, ~]dzd~ under composition of mappings is of significant value 

in the theory of eonformal mappings. 

If we identify the two arguments in U(z, ~), we obtain 

v( , ,  = [w, w;  'r'(w1 (8) 
= - 6 L \ l ( z ) ]  2 U ' ( z ) / J "  

We arc thus led in a natural way to the Sehwarz differential parameter 

(9) 
\ l '  (z) / 2 \ / ( z ) /  

in terms of which (8) can be expressed as 

V(z, z) = [w, w; z, z! = - ~ {w, z}. (s') 

From the preceding properties of U(z, ~) follow then the well-known properties of the 

Sehwarzian differential parameter: 

(a) {w, z) is invariant under a linear transformation of w. 

(b) Under the composition w--/(z) and z =g(t) we have 

{w, z} dz' + {z, t} at' = {w, t} dt 2. (10) 

From (a) follows that  for the linear transformation 

~+# 
z = ( l l )  

holds identically (z, t}--0. Hence we infer from (b) in this case: 

{w, t}dt ,  = { w ,  z}d~' (me) 

that  is, the Sehwarzian differential parameter  transforms like a quadratic differential 

under a linear transformation of the independent variable. 

Finally, let in (10) t = w  and use the fact tha t  in this case again {w, t} =0.  Thus 

{w, z}dz'  = - {~, w}dw'  (13) 

which determines the Schwarzian differential parameter of inverse functions. 
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We may  consider w as a function on the domain D and the independent variable z 

as local coordinate. Then the mapping z =g(t) can be conceived as a change of coordinates 

and the transformation law (10) shows tha t  the Schwarzian differential parameter  (w, z} 

transforms under such change of coordinates according to a linear inhomogeneons law of 

transformations. The expression behaves almost like a quadratic differential; however, 

we have to add the inhomogeneity {z, t}dt ~ which does not depend on the function w 

considered, but  only on the transformation law from z to t. We may  call {w, z} a connec- 

tion in analogy to the corresponding concept in differential geometry [18]. 

2. Natural ly we are now led to consider connections analogous to the Schwarzian 

differential parameter  on Riemann surfaces. We ask for quantities S~ defined in terms of 

the local uniformizer z, which transform under a change of uniformizer z =g(t) according 

to the law 
,~(t) dt~ = S~(z)az~ + {z, t}dt~ (14) 

Clearly, it is enough to construct on a given Riemann surface only one such Schwarzian 

connection. For, if S~ and ~z are two such expressions with the law of transformation (14), 

their difference would be a quadratic differential on the surface and this class is well 

known and completely understood. 

I t  is now remarkable tha t  on every Riemann surface ~ there does indeed exist a 

regular analytic Schwarzian connection S. In  order to construct it, we introduce the 

Abelian integral of the third kind [10, 14, 22] w(p; r, 8) which is analytic in T, has logarith- 

mic poles with residues + 1 and - 1 ,  respectively, at  the two given points r E ~ and s E 

and which is normalized to have the periods zero with respect to the cross cuts ~v of a canon- 

ical cut system {9~v, ~v}. The analytic dependence of the Abelian integral so defined upon 

its parameters  is best understood by  means of the fundamental  theorem tha t  for every 

quadruple T, q; r, s on ~ the combination 

W(p, q; r, 8) =w(p; r, s) -w(q;  r, s) (15) 

is symmetric in the pair p, q of arguments and r, s of parameters.  In  particular, we see tha t  

0~ w(p; r, s) = 02w(r; p ,  q) _ O~W(p, q; r, s) (16) 
Op ~r Or O1a Op Or 

depends analytically on p and r, is symmetric in p and r and is independent of s and q. 

This expression has a singularity if p =r ,  and to s tudy it we introduce a local uniformizer 

z such tha t  p has the coordinate z and r has the coordinate ~. We then find tha t  
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~2W(p,q; r,s) 1 
~z ~ (z - ~)~+ lz(z, ~), (17) 

where l~(z, ~) is symmetric in both variables and regular analytic in the uniformizer neigh- 

borhood. If  we change uniformizers by the analytic relations z =g(t), ~ =g(v), we find by 

use of (6) 
It(t, ~)dtd~=l~(z, ~)dzd~ +[z, C; t, ~]dtdv. (18) 

Let  us then define the expression 

(19) 

This is an analytic function in each uniformizer neigborhood which depends, however, 

upon the choice of uniformizer. In  view of (8') and (18) we have 

S~(t)dt~ =S~(z)dz~ + {z, t}dt2. (20) 

A comparison of this transformation law with (14) shows that  S satisfies the proper trans- 

formation rule of a connection. 

We obtain all Sehwarzian connections on ~ by adding to the expression Sz(z ) con- 

structed explicitly any quadratic differential on ~.  However, we may construct another 

Sehwarzian connection in a different way and arrive at a remarkable identity. Let  T(p) 

be the analytic function which is defined on the universal covering surface ~u of ~ and 

maps ~ onto the unit disk. I t  is well known that  the ~(p) is polymorphic on ~,  tha t  is, 

at points of ~ over the same point of ~ the function ~0(p) has different determinations 

which are related by a linear transformation. Thus, if ~(p) and ~(p) are two such determina- 

tions, then 
~(p) =L[~(p)], (21) 

where L transforms the unit disk onto itself. If  we introduce a local uniformizer z at  p, 

we see that  in view of (21) 
{~o, z} = {~, z} (22) 

that  is, the Schwarzian differential parameter of the polymorphic function ~(p) is the 

same for all branches of this function; it is single-valued and analytic in each uniformizer 

neighborhood on ~.  I t  depends, however, on the choice of the uniformizer; if we replace 

z by t through the analytic relation z=g(t), we find by  (10) 

{el, t}dt 2 = {el, z}dz ~ + {z, t}dt ~. (23) 
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Thus {~, z} has the same transformation law of a Sehwarzian connection as S~(z). Hence 

we have 
{q, z} = -61~(z, z) +Q(z), (24) 

where Q(z) is a regular quadratic differential on ~.  

Since the Abelian integrals and quadratic differentials of a surface ~ are of a more 

elementary character than  the uniformizing transcendatal function ~(z), we may  consider 

(24) as a useful differential equation for ~(z) in terms of the easier accessible expressions 

l~(z, z) and Q(z). 

H. Sehwarz' dlfFerential equation and half-order differentials 

1. We return to the ease of planar domains D. Suppose tha t  a function S(z) is given 

in D and tha t  we wish to find the solution of the differential equation of the third order 

in w(z), 
{w, z} = S(z). (1) 

Sehwarz showed tha t  the solution of this nonlinear differential equation can be reduced 

to the simpler problem of finding two independent solutions of the linear second order 

equation 
u"(z) + �89 S(z)  u(z)  = 0.  (2) 

Indeed, if ul(z ) and us(z) are independent solutions of (2), their Wronskian 

uxCz) u~Cz) - us(z) u~(z) = WCz) (3) 

will be not identically zero. On the other hand, we see from (2) at  once tha t  W(z) must  be 

a constant; thus we may  choose W(z) = 1. I n  any case, as a simple calculation shows, the 

ratio 

w(z) = ul(z)  (4) 
%Cz) 

will satisfy the differential equation (1). 

Let  us now change the independent variable by  a eonformal mapping z =g(t) and refer 

to the independent variable t in a domain A. @early, w =wig(t)] is defined in A by  composi- 

tion and we have 
{w, t}dt~ =S(z)dz ~- + {z, t}dt 2. (5) 

To find w as a function of t, we might also consider the corresponding linear second order 

equation 
v'(t) + �89 {w, t} v(t) = 0 (6) 

and express w as the ratio of two independent solutions of this equation. 
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However ,  the  na tu ra l  question arises whether  there  is any  relat ion between the  solutions 

uv(z) of (2) and  v~(t) of (6). An easy  calculation shows t h a t  

v~(t) =u~(g(t))[f(t)]-~, v = 1, 2 (7) 

yields a sys tem of two independent  solutions of (6) whose Wronsk ian  has also the  value 1. 

We have  thus  the remarkab le  fact: I f  S t rans forms  like a Schwarzian connection 

St(t) dt 2 =S~(z)  dz 2 + {z, t } d t  ~ 

the  solutions of the  differential  equat ion  

(8) 

u"(z) + �89 Sz(z) u(z) = 0 (9) 

t r ans form like differentials of order - � 8 9  i.e., 

ut(t) dr-�89 = uz(z) dz-~. (10) 

2. To  show the usefulness of this covariance of the  auxi l iary  funct ions u~(z), we 

rederive an  interesting theorem of Nehar i  [13] which connects the  univalence of a funct ion 

/(z) analyt ic  in the  uni t  disk wi th  the  growth  of its Sehwarzian differential p a r a m e t e r  

s ( z )  = {/, z}. 
Suppose t h a t / ( z )  is not  univa lent  in I zl < 1. There would be two different points  in 

the  disk, say a and  b, such t h a t / ( a )  =/(b).  B y  a linear t r ans format ion  of the  independent  

var iable  we can achieve t h a t  a = 0, b = r > 0, and  b y  a l inear t r ans fo rmat ion  of ](z) we can 

achieve t ha t / ( 0 )  =/(r)  =0.  We introduce now the  solutions u1(z ) and Uz(Z ) of the  differential  

equat ion (2) and  express /(z) as the i r  ra t io  

/(z) = ul(z) u2(z ). (11) 

The non-univalence o f / ( z )  leads to  the  conclusion 

ul(O ) = u l ( r  ) =0 .  (12) 

To  utilize this equat ion we m a p  the  uni t  disk onto the  s t r ip  

- � 8 8  {t} < �88 (13) 
b y  means  of the  funct ion 

1 + z (14) z = g(t) = t anh  t, t = �89 log 1 - z" 

The  points  z = 0 and  z = r go into the  points  t = 0, t = �89 log ((1 + r ) / (1  - r)) = ~ > 0 on the  

real  axis.  B y  vi r tue  of (10) we know t h a t  the  funct ions 
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v~(t) = ~[g(t)] g'(t)-  j (15) 

are defined in the strip (13) and satisfy the differential equation 

v~(t) + �89 St(t) v,(t) = O, (16) 

where St(t  ) is obtained from S(z) by the transformation (8). Equation (12) implies 

?)1(0 ) = V l ( e )  = 0 .  (17) 

Consider equation (16) for v = 1, multiply it by vx(t) and integrate the result along the 

real t-axis from 0 to Q. Integration by parts and the boundary conditions (17) lead to 

ill fl, _ , 2 d t > ~ O .  2 d t  ( t)  l (18) -~ St(t) [Vl(t)[ -- vl 

We compute now the factor St(t  ) by means of (8) and (14). We find by an easy compu- 

tation 
St(t  ) =S(z)" (1 --z2) ~ -2 .  (19) 

In particular, if on the real axis 
2 

]S(z) I < (1 - z2) u (20) 

we clearly have Re{St(t)} <0  for real t and the inequality (18) is impossible. On the other 

hand, the inequality 
21dzi ~ is(z)] I d~ ] s < ( 1 -  l ~ )  ~ (21) 

is invariant under linear transformations in view of (1.12) and the invariance of the non- 

Euclidean line element in the unit disk. Thus, if the Schwarzian differential parameter 

S(z) = {], z) satisfies the inequality 

2 
I{/,~)I< 0_i~i,),, I=I<1 (21') 

we can assert tha t  ](z) cannot take the same value at two different points in the unit  disk 

and [(z) must be univalent. 

(21') is Nehari's sufficient condition for the univalence of ](z). I t  is also known that  

the inequality [5, 13] 
6 

I{[, ~}I ~< (1 -I~ I~) - '  (22) 

is necessary for univalenee. However, the gap between the two conditions (21') and (22) 

cannot be narrowed since Hille showed that  [11] 
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( 1  - z] ~ 2 (1 - a s) 
l(z)=A \ l+z /  ' {l,z}= (l_zS)~. (23) 

is univalent for real (~, but  non-univalent for arbitrarily small imaginary ~. Thus, the con- 

stant 2 in the sufficient condition (21') cannot be replaced by any larger one. 

We gave the above derivation of (21') to show how useful the covariance of the auxiliary 

functions uJz) can be. I t  allows us a great freedom in simplifying transformations and a 

clear understanding of the meaning of (21'). The reader may deduce from (18) many other 

(though not so elegant) conditions on {[, z} which would ensure the univalence of / (z) .  

3. As we have shown in Section 1.2, we have Schwarzian conections on every Riemann 

surface ~.  We may thus consider the second order differential equation 

d s uz 1 
dz~ ~- ~ S~(z) u / z )  = 0 (24) 

in each neighborhood with a uniformizing parameter z and continue the differential equa- 

tion into adjacent neighborhoods with z =g(t) through the transformation laws 

u~(O = ~[g(t)] Lv'(t)]- ~, 
8 # )  dt s = ~Xz) dz ~ + {z, t} dts. 1 

(25) 

Thus we can express the differential equation (24) in an invariant manner as 

d~u(p) "1 

t- 2 S(p) u(p) = 0 (24') dp ~ 
for all points p e ~. 

We start  with an arbitrary but  fixed pair u,,(p), v = l ,  2, of independent solutions of 

(24') and continue them analytically along a closed path F on the surface. By  the principle 

of permanence of analytic relations the functions will remain solutions of (24') under 

this continuation, and on returning to the starting point on F we will arrive with new 

solution functions u(~r)(p). However, these new determinations must be linear combinations 

of the original solution set u~,(p). Thus we have 

u(~r)(p) = A~I(F) ul(p) + A~s(F) us(p). (26) 

The matr ix A (r) = (All(r)  Als(r)~ (26') 
\Asx(F) Ass(F)/ 

is complex-valued and depends on the cycle F described. 
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We consider the Wronskian 

W(p) = ul(p)  u~(p) - us(p) u;(p). (27) 

I t  is easily seen tha t  in view of the law of transformation (25) this expression is independent 

of the choice of unfformizers and tha t  because of the differential equation (24) it is a 

constant. We may  assume without loss of generality tha t  W(p)~ 1. I t  then follows from 

(26) and (27) tha t  
w(r ' (p)  = IlA(r)l[. w(p ) ,  ]]A(r)ll = 1. (2s) 

The transformation matrices for the fundamental  system u~(p) are unimodular for every 

cycle r .  Thus there exists one constraint among the four elements of the matr ix  A(r) ,  

and we find tha t  each such matr ix  depends on three independent complex parameters.  

I f  ~{ is of genus g, we can select a canonical set of cross cuts { ~ ,  ~v) ,  v = 1 . . . .  , g, 

and express each homotopy class of curves on ~ in terms of the homotopy classes of these 

cross cuts, i.e., we take the homotopy classes of the cross cuts as generators of the funda- 

mental  group of ~ .  I f  1 ~ is a closed curve on ~{, then A( r )  depends only on the homotopy 

class of F and not on F itself. I t  is therefore sufficient to study the 2g unimodular matrices 

A(9~) and A(~p). We note tha t  the transformation matrices of different cross cuts do not 

necessarily commute, and the matr ix  A(F) of curve F depends on the homotopy c/ass of 

F and not merely on the homo/ogy c/ass of the cycle which F gives rise to. The s tudy of the 

various matrices A(F) leads therefore to a deeper theory of the moduli of a Riemann 

surface than  tha t  of the period matrices of Abelian integrals. 

The 2g matrices A(9~), A ( ~ )  depend on 6g complex parameters.  However, we have 

a certain freedom in the choice of the solutions uv(p) whose transformations they represent. 

A change of the fundamental  system up(p) leads to a similarity transformation 

A(F) -~M-1A(F)M (29) 

of the corresponding matrices. I t  is easily seen tha t  M contains three essential complex 

parameters  such tha t  the 2g matrices depend on 6 y - 3  complex numbers. 

We may  count, on the other hand, the freedom in the choice of Sehwarzian connec- 

tions. Let  S(p) be the specific connection constructed in (1.19) from the Abelian integral 

of the third kind. Then the most  general Schwarzian connection which is regular on 

is of the form 
$ r  

S(p; )~) = S(p) + ~. )~ Q,(p), (30) 

where the Q~,(p) are a base for all quadratic differentials, regular on ~ .  We see tha t  the 

Schwarzian connections form a linear manifold depending on 317-3 complex parameters.  
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I t  would be more precise to denote the matrices A as A(F; X~) to describe the cycle as well 

as the specific differential equation from which they arise. Finally, it should be observed 

that  the transformation matrices A(F; 2~) depend also on the moduli of the Riemann sur- 

face ~ considered. The number of these moduli is well known to be 3 g - 3 .  Thus the 6 g -  3 

complex parameters which determine the transformation matrices depend on the following 

6 g - 6  complex parameters: The 3 g -  3 moduli of the surface and the 3 g - 3  accessory para- 

meters 2v. 

One would therefore expect that  three further relations should hold between the 

parameters determining the 2g matrices A(F; X~). This is indeed the ease since the totali ty 

of cross cuts transforms ~ into a simply-connected domain and the continuation of each 

u~(p) along the boundary of this domain must return each function to its initial value. 

Thus, under proper numeration of the cross cuts, we must have the relation 

g 

A(?I=; 2,)A(~=; 2v)A-*(g[=; 2v)A-~(!~=; ~ ) =  I (2S') 

which represents the sought additional three constraints on the elements of the uni- 

modular matrices. 

The enumeration of parameters at our disposal and of the essential parameters in the 

transformation matrix set shows that  the set A ( ~ ;  2g), A(!3v; 2g) may be considered as a 

possible set of moduli for the surface ~.  On the other hand, we are led to the interesting 

problem of determining those coefficient vectors 2~ which lead to important classes of 

transformation groups. For  example, the question arises how to determine those 2~ whose 

corresponding solution set u~(p) has as ratio the polymorphic function ~(p), discussed in 

Section 1.2, which maps the universal covering surface of ~ onto the unit disk. 

4. Let  us consider a domain D in the complex plane and let g(z, ~) be its Green's 

function. We form the analytic kernel [5, 8, 20] 

2 ~g(z, ~) 1 L(z,~) ~z~  ~(z-~)  ~-l(z'~) (31) 

which plays a central role in the theory of the Bergman kernel function, l(z, ~) is regular 

analytic in D and L(z, ~) has a double pole at z =$, as is explicitly displayed in (31). 

From the conformal invariance of the Green's function follows that  under a mapping 

z =9(t), $=9(~) holds 
L(z, ~)dzd~=L(t, v)dtdv. (32) 

In terms of l(z, ~) this leads to the transformation law 
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l(z, ~)gzd~=l(t ,  ~)dtdv + 1 [z, ~; t, ~]dtdr, (33) 
Y~ 

where [z, ~; t, v] is defined in (1.6). In  particular, by  (1.8') we have 

1 {z, $} dt 2. (34) l(z, z) az ~ = l(t, t) dt ~ - -~n 

We recognize tha t  S(z) = 6 zt l(z, z) (35) 

transforms as a Sehwarzian connection. 

Let  us suppose that  the boundary of the domain is analytic and admits a parametri- 

zation z-=z(s). Denoting 
dz 

= - -  (36) 
ds 

we can easily derive from the boundary behavior of the Green's function that  

L(z ,~)~r  z , ~ e ~ D ,  z # ~ .  (37) 

l i r a {  ~ } Hence, Im {l(z, r162 = ~ ~ . (38) 

The right-hand side depends here in an elementary way on the geometry of OD, while the 

left-hand term is an expression involving the much deeper Green's function of the domain. 

In  particular, letting z = ~ and making an elementary computation, we find 

1 d 
Im {l(z, z) ~2} = _ ~  dss ~(s), z = z(s), (39) 

where ~(8) is the curvature of the boundary curve at z(8). 

We are now able to understand the significance of the differential equation 

u" (z) + [3 ~ l(z, z) + Y ~ Q~(z)] u(z) = 0 (40) 

with real ~ and where the Qr(z) are a basis for all real quadratic differentials of D, i.e., 

of all Q(z) which satisfy on 0D the condition 

Q(z) ~ = real. (41) 

Indeed, let C~ be a component curve of 01). We may assume without loss of generality 

tha t  C~ is the real axis since this can always be achieved by  a eonformal mapping and 
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since the covariance of the solutions u(z) of (40) is given by  (25). By  virtue of (39) and 

(41) we see tha t  u(z) satisfies on the real axis a second-order differential equation with 

real coefficients. We m a y  therefore choose a basic solution set u~(z) which is real on the 

real axis and find as the general solution 

u(z)=Aul(z)+Bu~(z) (42) 

with arbi t rary complex constants A and B. The ratio of two independent solutions of 

(40) is by (25) a conformal invariant.  I f  we denote 

ul(z) 
- r ~ ( z ) = r e a l  for zeC~ (43) u~(z) 

we find for any  two solutions u(z) and v(z) of (40) the ratio 

R(z)  = u(z )  A ~  r~(z) + B ~  
v (z)  - C ~  r~(z) + D ~  on C~. (44) 

The values of the ratio R(z) on G~ lie therefore always on a circle. 

There are various canonical mappings of a domain D which transform boundary 

curves into circles. All of them may  be obtained by  solving the second-order differential 

equation (40). We are led again to the problem of determining those 2~ which lead to a 

univalent mapping of D on the canonical circular domain. The significance of differentials 

of order - �89 in the theory of such canonical mappings is evident. 

5. I t  should be pointed out tha t  the concept of differentials of half-integer order is 

implicit in the general theory of the Schwarzian derivative. Indeed, let us consider the 

third-order nonlinear differential equation 

{w, z} = S(z) (45) 

for given S(z) and unknown w =/(z). I f  ](z) solves (45), one defines 

•I(Z) = if(Z) -�89 U2(Z ) = I(Z)if(Z) -�89 (46) 

and proves tha t  both functions u~(z) satisfy the same linear second-order differential equa- 

tion [2, p. 311] 
u"(z) + ~ S(z) u(z) = 0. (47) 

Likewise our considerations regarding the group of linear transformations of the ur(z ) 
under homotopy classes of paths of the Riemarm surface ~R considered are closely related 

to the approach of Poincard and Klein in the s tudy of the uniformization problem. The 
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coefficients 2~ in the Sehwarzian connection (30) are the well-known accessory parameters 

in this theory. Instead of dealing with the linear differential equation (24), one considers 

usually the equivalent nonlinear differential equation of the third order for the unlformizing 

function/(p).  The parameters ~t v in the Sehwarzian connection must then be adjusted in 

such a way that  the linear transformations of the uniformizing function under the various 

cycles form a Fuchsian group. 

I t  is of interest to show that  this requirement simplifies if we use the half-order dif- 

ferentials u~(p). Indeed, the condition on the linear transformations is that  they preserve 

the unit circle, and this engenders the requirement tha t  the non-Euclidean line element 

l dwl _ d8 (48) 
1 -1wl  

be unchanged if w=/(p)  undergoes its linear transformations for any closed trajectory. 

Since by  (4) we may express w(p) as the ratio of the u~(p), we find 

I4pl 
lu,(p) l s -  lul(p)l 2 (49) 

if we assume the system of solutions normalized by the condition that  its Wronskian have 

the value 1. Thus, the group of linear transformations must have the invariant 

Q(u,, us) = l ul Is _ [us [ s. (50) 

The use of the u~(p) leads to a very short proof of a theorem of Poinear~'s which we 

may paraphrase: The groups of linear transformations engendered by  the solution vectors 

u~(p) and v~(p) of the differential equations 

u"-t-�89 v"+�89 (51) 

coincide only if the Schwa1~ian connections S and T are identical. 

Indeed, suppose that  for given Schwarzian connections S and T we have solution 

systems u~,(p) and v~(p) with the same unimodnlar transformation matrices A ( ~ ) ,  A(~a). 

We form the determinant 
~(p) =ulv,-u~vl (52) 

which is a reciprocal differential on ~.  Under any cycle F on ~ we find ~(p) unchanged 

since the vectors uv(p) and v~(p) transform eogrediently and since the determinant of each 

linear transformation is by  construction exactly 1. Hence we have constructed a regular 

and single-valued reciprocal differential on ~.  This is clearly impossible by the Riemann- 
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Roeh theorem if the genus g is > 1. Thus, necessarily ~(p)=0,  the vectors u~(p) and vv(p) 

are linearly dependent and the Schwarzian derivatives of their ratios are equal. This 

proves S ~  T as asserted. 

A proof can also be given for the case 9 = 1. We omit this step since our main purpose 

was to show the usefulness of the uv(p). Again we have only paraphrased a standard 

proof of the Poincar6 theorem [2], but  a comparison of the arguments will show how the 

explicit use of half-order differentials has been illuminating. 

6. The limitation of our consideration to second-order equations of the form of (24) 

or, as invariantly expressed, (24 ' ) - -may seem at  first to be an arbi trary restriction. This 

is not the case, as we shall show. In  fact any  second-order, linear, homogeneous, differential 

equation wMch is invariantly defined and everywhere regular on a compact Riemann surface 

must  be of the form 
d~u 1 
alp- z + ~ S(p)  u = 0, (53) 

where S(p) transforms as St = S~ \dt] + {z, t}; (54) 

here, as before, S t is the representation of S(p) in terms of the local uniformizer t, and 

S~ is the representation of S(p) in terms of the local uniformizer z. 

To be more specific, consider a general second-order, linear, homogeneous, differential 

equation on the Riemann surface. Let  its representation in terms of t be 

v" +yv' +qv=O, (55) 

and its representation in terms of z be 

u" +Pu'  +Qu =0 (55') 

where ' denotes differentiation with respect to the obvious argument. We require tha t  the 

coefficients in the differential equation transform according to a linear inhomogeneous 

law under change of uniformizer 

p = o:P § q =yQ § ~ (56) 

with coefficients which depend on the relation between z and t only. The dependent vari- 

able shall transform according to a linear homogeneous rule 

v(t) = r u[z(t)]. (57) 

Thus v' = (I)u" z' + r  u (58) 

14  -- 662945 Acta mathematlca. 115. I m p r i m 6  le  11 m a r s  1966. 
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dr(t) r du(z) dz t-r (58') 
which means  dt = dz dt 

We also have  v" = (I)z'2u" + (2(I)'z' + (I)z") u '  + (I)"u. (59) 

Upon  subst i tu t ing f rom (58) and  (59) in to  (55) we get  

Oz'ht" + (2r  + (Pz" +/~I~z')u' + (0" + r  + Cq) u = O. (60) 

Since the  differential  equat ion is invar iant ,  we can immedia te ly  conclude, upon  compar ing  

(56) and  (60), t h a t  
r + ~ '  p + r = r (61) 

and  2(I)'z' + (I)z" + p(I)z' = r (62) 

Since Q(z) depends on t and  q, bu t  cer ta inly not  on p, we m a y  conclude f rom (61) t h a t  

ei ther  

(i) (P- -cons tan t  (so(I) ' --O) 

or (ii) p - O .  

Le t  us examine  the consequences of (i) first. I n  this case (61) reduces to  

q(t) =Q(z) z'~; (61i) 

thus  q, i.e., the  last  coefficient in the  differential  equat ion,  is a quadratic di]]erential. Also, 

equat ion  (62) becomes 
Z # 

p(t)=P(z)z '  z'" (62i) 

This means  t h a t  p, i.e., the  coefficient of the  first  order te rm,  is a connection, see [18, p. 251]. 

Bu t  it is known (see [18, p. 252]) t h a t  the  sum of the  residues of a connection on a 

compac t  R i emann  surface of genus g is 2 - 2 g ;  therefore,  if g 3  1 the  connection mus t  have  

singularities. Thus  the  differential  equat ion  (55) mus t  be singular unless ei ther  g =  1, 

the  case of elliptic funct ion theory,  or p =0 ,  which brings us to  case (ii). Before we consider 

case (ii), let us ment ion  t h a t  since ( I ) - cons t ,  we can take  ( I )= l ,  which means  t h a t  the 

solutions of (55) are ]unct/ons, a t  least  locally, i.e., t hey  t rans form like functions. 

I n  considering case (ii) we again re tu rn  to  equat ion (61) which now becomes 

And equat ion (62) becomes 

I)n 
-~ + q = Qz '2. (61 ii) 

2(I)'z' + (I)z" =0 .  (62ii) 
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This means tha t  ~P--=kz'-�89 (63) 

where k is a constant which we choose to be 1. In  this case an easy calculation shows tha t  

~ 1 
- t }  

r 2 

so tha t  (61ii) becomes 
q = Q .  z '~ + �89 {~, t},  (61 ~') 

and setting q = �89 St and  Q = �89 S~ 

we have established our assertion. In  case the equation (55) is regular, i.e., p - 0  (in all 

coordinates), then r = (z') -�89 so the solutions of (55) transform like reciprocal half-order 

differentials, i.e., differentials of order - ~ .  

Finally, we should mention tha t  the case g = 1 has not been overlooked (in fact, we 

consider it a very important  testing ground for general theories--as it has been for more 

than  a century!). Although one nonsingular connection does exist in this case, we may  use 

a unfformizer on the surface which makes it equal to zero everywhere, which brings us 

back to the case (ii) again. All other connections in the case g = 1 are singular, so our 

assertion is established with complete generality. 

7. In  this section we wish to make precise the concept of analytic continuation of 

differentials of order ~ �89 over the Riemann surface. This consideration is necessary in 

order to define dear ly  the meaning of the transformation matrices ,4(1") introduced in 

Section 3 of this chapter. 

I f  we consider the Riemann surface ~ realized as a covering over the complex z-plane, 

we might define the half-order differentials locally as analytic functions of z and their 

continuation over ~ as explicit analytic continuation. However, for the general theory 

of abstract  Riemann surfaces the following argument  may  be more appropriate.  

In  order to save space, we adopt the notations and definitions given in [18, pp. 249-51]. 

Thus, by  a differential of order �89 we mean a collection of variables ( ~ }  which satisfy the 

transformation laws 

v2~ = YJz \dz~] in U~ N Up. (64) 

By (dzp/d%)i we mean an analytic function in U a N Up whose square is dzp/dz a. Of course, 

this function is not unique (there are two choices in each case) and we must  show tha t  we 

can choose them consistently, i.e., such tha t  

( d+] + in n vp n <65) 
dz~] \dz~/ \dzT] 
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In  order to show tha t  we can make such a choice, let 0~p be any  collection of analytic 

functions chosen on the sets Ua N Up such tha t  

O~ dz~ 
-dzz~ inU~f iUp.  

Then O~BOpvOva-----sapv= ___ 1 for Ua N Up N Uv~=O. (66) 

Let  N(II) be the nerve of covering II={U~},  and 1I chosen as in [18, p. 255]. Then s~p v 

determines a 2-cocycle on N(II) given by  

s[aapv] =sap v (67) 

which in turn determines an element of H2(~, G), the two-dimensional cohomology group 

of ~ with coefficients in G, the multipllcative group consisting of the two elements 1 

and - 1. 

Clearly, we have YI 8[o ~] = 1, (68) 
aJ 

where the product is taken over all the positively oriented a a in N(U). Indeed YZ~s[a] as 

given in (68) represents the product of all the s~B v. But  each aap occurs as the face of 

exact ly two two-simplexes, say aap v and ap~8 (see illustration [18, p. 255]). Since 0~p and 

0p~ = 1/0~p each occurs once in the product, equation (68) holds. But  this equation means 

tha t  s is eohomologous to the identity (upon using the fact tha t  ~ is an orientable, two- 

dimensional manifold), i.e., 

s~p v =sapsB~sv~, U~ N Up N U~,=4 = O, (69) 

where sap = _ 1, etc. 

Now define \ d z J  = s~z Oap' 

then clearly \ d z J  \dzp] \dz:,] - -1  in U~ N U B N U v 

since s~# 0~# s p~ O pv s~a O ~ - -  s~# v aaB 7 = 1. 

We have thus defined a coherent set of expressions (dzp/dz~) �89 By defining 

u: = up (dz ']  �89 
\azj  

we can now give an unambiguous definition to differentials of order ~ on ~.  

The differentials of order - � 8 9  can be defined by  the same procedure. 

(65) 

(70) 
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III. The Szegii kernel of a Riemann surface 

1. Let  D be a planar domain bounded by a finite set of analytic cm.~es. In  the boundary 

value problems for analytic functions in D, as well as in the theory of conformal mapping, 

one can very successfully apply the theory of orthogonal analytic functions and their 

kernels. The most important norms used in such theories are those involving area integrals 

(~,~)= f f  ~(z)~,(z)dxdy, z=x+iy, (1) 

and boundary line integrals 

((~' ~)) = J0.  ~(z) vvCz) ds. (2) 

If we have a complete orthonormal set of analytic functions ~.(z) in D, we can form their 

kernel [3, 4, 8, 20] 
Oo 

K(z, ~) = ~ r ~.(r (3) 

which converges in both cases almost uniformly in D and is independent of the particular 

choice of the complete orthonormal set. For normalization (1) one obtains the Bergman 

kernel which is closely related to the Green's function of D and which has many  applications 

in the theory of eonformal mapping. In  the case of normalization (2) one obtains a kernel 

which was first introduced by Szeg6 [21]. Garabedian [9] showed the close connection be- 

tween the Bergman and the Szeg6 kernels in the case of planar domains. 

We can characterize the Bergman kernel by  the reproducing property 

f f K.(z, r dxdy =/(z) (4) 

and the Szeg6 kernel by  the analogous equation 

In order to study the behavior of the kernels under eonformal mapping and with the 

aim of extending the theory to domains on Riemaun surfaces we shall write (4) and (5) 

in the form 

ffDK.(z, /'(~) dxdy /'(z) (4') $) 

and fad KsCz, ~) V/'(r ds = ~ ,  (5') 



2 1 8  ~ .  s .  H A W L E Y  AND M. S C H I F F E R  

where we assume tha t  V/'(z) is a single-valued analytic function in D. I f  we now define 

the transformation laws 
~B(w, ~) dw dCo = KB(z, ~) dzd$ (6) 

and -gs(W, ~)) dw t deS�89 = Ks(z, ~) dz t d~ t (7) 

it can easily be seen tha t  the reproducing properties (4') and (5') are preserved under con- 

formal mapping. We see, in particular, tha t  a more penetrating theory of the Szeg6 kernel 

leads necessarily to the consideration of differentials of half-integer order. 

2. I t  is well known tha t  the function theory of planar domains can be easier under- 

stood if we complete them to compact Riemann surfaces by  adding to them their double. 

In  particular, the Green's function and the Bergman kernel can be expressed in terms of 

certain Abelian integrals and differentials of the symmetric Riemann surface so obtained. 

We therefore shall s tar t  with an arbi trary closed Riemann surface ~ and consider there 

such expressions which for the case of symmetric surfaces will reduce to differentials like 

the Bergman and the Szeg5 kernel. 

We star t  with the symmetric Abelian integral W(p, r; q, s) of the surface ~ ,  as we 

defined in Section 1.2, and form the double differential 

e2W(p,r; q, s) 
L (p, q) = (S) ~p0q 

which is independent of r, s and symmetric in p, q. I t  is regular for p, q E ~{, except for the 

case p = q  when we have a double pole as indicated in (1.17). This double differential is 

closely related to the Bergman kernel in the case of planar domains; we may  therefore 

refer to it as the Bergman kernel of ~ .  

We wish now to construct correspondingly a Szeg5 kernel for the Riemann surface 

which shall be a half-order differential in each variable, have a simple pole if both argu- 

ments coincide and which is anti-symmetric in p and q. Let  us denote it by  A(p, q). Clearly, 

A(p, q)~ will be a double differential on ~ with all the regularity and symmetry  properties 

of the Bergman kernel L(p, q). If  it exists at  all, it must  have the form 

g 

A(p, q)2 = L(p, q) + ~ a~k w~ (p) w'k(q), (9) 
t, k ~ l  

where the w~(p) are the normalized Abelian differentials of the first kind of ~ and where the 

ai~ form a symmetric matrix. Since L(p, q) and the Abelian differentials w~(p) are well 

studied, we are led to the algebraic problem to form a combination of L(p, q) and the g 

differential w~(p), which has only double zeros on ~.  
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An algebraic approach to this problem is as follows. Let  p~ (]r 2 . . . .  , g) be a set of 

points on ~ and form the determinant 

II L(p, q) w; (p) ] (10) 
D(p; q; p,)=HL(p,; q) w; (pk) ll 

of g + 1 rows and g + 1 columns. This expression represents for fixed q and Pk a differential 

of the first order on ~ with the g zeros Pk and the double pole a t  q. Since a differential of 

the first order with a double pole has precisely 2g zeros,  we see tha t  D(p; q, p~) has 

another set of g zeros on 2 .  But  we have still the freedom in the choice of the pj  to 

achieve tha t  each zero pj is a double zero. For  this purpose, we must  fnlfin the g conditions 

' ]1L'(pq;q) w;(Pq)l]-O, - , Q=I, ...,g. 
D (p~; q, pj)= Z(pk; q) w~(pk)ll (11) 

We thus have g equations for the g zeros p~, which shows tha t  the problem is hopeful. 

B u t  in order to avoid the theory of elimination for algebraic functions, we shall construct 

A(p, q) through the deeper theory of Abelian integrals and by  use of the classical results on 

the Jacobi  inversion problem. We follow here an analogous approach as was used by  

Garabedian in constructing the Szeg5 kernel of plane domains. We use the Abelian integral 

of the third kind w(p; r, s) defined in Section 1.2. Since it  is normalized to have the periods 

zero around each cross cut 9~ of an arbi trary but  fixed system of canonical cross cuts, we 

know tha t  i t  has the following periods along a cross cut !~ :  

f~ dw(p; r s) = 2 gi[w~(r) - w~(s)]. (12) 

The integrals of the first kind wv(P) are normalized with respect to the same canonical 

cut system such tha t  

f~dw~ = (13) ~,~. 

We select an arbi trary but  fixed differential of the first kind v'(p) on ~ and denote its 

zeros by  Pl, P2 .... .  pp; Q = 2 g - 2 .  We pick another set of g points ql . . . .  , qg on ~ and form 

the expression 
g - 1  

E(p; q, q~) = log v'(p) + ~ [w(p; q~, p2~-1) + w(p; q~, P2,)] 

g 

+ 2 w ( p ;  qg, q)+4gi  ~ a~wc,(p). (14) 
~=1 
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On the fight-hand side we have cancelled out all logarithmic poles at the zeros Pr (v = 1 . . . . .  

2 g - 2 )  of the given differential v'(p). We have, however, logarithmic poles at  the points 

q~ (v= l ,  ..., g) with the residue +2  and a logarithmic pole at q with the residue - 2 .  

The expression E(p; q, qv) is not single valued on ~.  If we describe a cycle 9~p, the 

w(p; q~, Pt,) do not change, but  logv'(p) may change by 2zdmp (rap = integer) and the last 

sum increases by 4zdap. Under a cycle !~z we have in view of (12) the period 

f ~pdE(p; q, q~) = { g-' 2 g i  n# + ~ [2 w#(q~,) - wp(p2,-z) - wp(p2,)] 

} + 2(wp(qo) - wp(q)) 4- 2 ~ a~ P~B (25) 

if we introduce the Riemann matrix of periods for the normalized Abelian integrals of the 

first kind, 

= dw " (16) 

n B is again an integer. 

We apply now the existence theorem for the Jacobi inversion problem. Given any set 

of g complex numbers ~p, we can always find g points q~ on ~ such that  

g g 

wB(q~)=~p+k#+ ~l,,Pa# , f l = l , 2  . . . .  ,g, (17) 
I ,=1 ~ = 1  

with integers k# and la. That  is, the left-hand sum differs from the ~# only by a period of 

wp(p) [12]. 

Given an arbitrary but fixed qE~, we determine q~ in such a way that 

g 2 g - 2  g 

2 wp(q,)=wp(q)+�89 2 wp(p~)+kp+ 2 l~P~. 
~ff i l  Q = I  g = l  

(18) 

This is always possible by the inversion theorem. Finally, we determine the coefficients 

aa as the integers 
a~ = -l~.  (19) 

With these choices of parameters we find that  

f dE(p; = 2  + 2  (20) q, q~) kB) 
P 

and f dE(p; q, qv) = 2 gi(m? - 2 lp). (21) 
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All periods of E(p; q, q~) on ~ are integer multiples of 2~d. Hence 

;~(p, q)=exp {E(p; q, q~)} (22) 

is single valued on ~ and has a double pole at  the chosen point q and double zeros at the 

points q~ determined by it. Since ,~(p, q) has the factor v'(p) and is else expressed in terms 

of Abelian integrals only, it is a differential of the first order on ~R with a double pole and g 

double zeros. 

Finally, we construct the expression 

A(p, q) = ~/2(p~, q). (23) 

I t  is a half-order differential in p which is regular everywhere on ~,  except for a simple pole 

at q. I t  is determined only up to a + sign and can change its determination if we continue 

it over a dosed cycle on ~.  I t  therefore will, in general, be single valued only on a proper 

two-sheeted covering of the surfaee. I t  is easily seen that  the indeterminacy of sign comes 

solely from the behavior of V~v'(p). Indeed, the change of argument of A(p, q) over 9/p and 

! ~  is �89 and �89 + kp, respectively, as can  be seen from (20) and (21). Thus, only the 

pari ty of the periods rap, np depending on v'(p) decides the changes of sign in A(p, q). 

Hence, if we construct A(p, q) for different values of q but  with the same differential 

of the first kind v'(p), the two-sheeted covering of ~ will always be the same. 

3. We normalize the half-order differential A(p, q) by the requirement tha t  in a uni- 

formizer neighborhood of q we have 

A(p,  q) dp ~ dq~ = ]/d~d~ + regular differential. (24) $ - ~  

I t  is easily seen that  this normalization is independent of the specific parameter used. 

Let  now A(p, q) and A(p, ql) be any two half-order differentials on ~ with simple 

poles at q and ql, respectively, the normalization (24) and both single valued on the same 

two-sheeted covering of ~.  In this case the product A(p, q) A(p, ql) is a single-valued 

differential on ~ with two simple poles at q and ql. Hence the sum of its residues must 

equal to zero and we find 
A(ql, q) +A(q, ql) =0. (25) 

We thus proved A(q, ql)= -A(ql ,  q). (25') 

The half-order differential A(p, q) in p is antisymmetric in both its arguments. I t  is there- 

fore also a half-order differential in q. I t  is single valued in dependence on q on the same 
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two-sheeted covering of ~.  Our argument shows further that  A(p, q) is uniquely deter- 

mined by the fact that  it is a half-order differential in p with a simple pole at  q and the 

normalization (24), provided that  its sign changes on cycles on ~ are prescribed. We shall 

call A(p, q) the Szeg6 kernel of ~ with respect to the two-sheeted covering considered. 

We can construct interesting combinations of Szeg5 kernels which are single valued 

on ~.  Consider, for example, the expression 

A(p,  r) A(p,  s) 
U(p; r ,s)  = A(r,s) , r4:a.  (26) 

I t  is a single-valued differential of first order in p and a single-valued function in r and s 

on the surface ~.  Indeed, if any variable changes on ~,  the corresponding sign changes 

occur always in pairs in the product (26). The differential in p has two simple poles at r 

and s with the residues + 1 and - 1, respectively. I t  is thus an Abelian differential of the 

third kind, analogous to w'(p; r, s) used before. The new differential has, however, a 

remarkable factorization. The identity (26) indicates the significance of the half-order 

differentials as building blocks for the classical single-valued differentials on a Riemann 

surface. 

4. Given a Szeg5 kernel A(p, q), which is single valued on a specified two-sheeted 

covering of ~,  we shall call two points m and n on ~ associated if they satisfy the equation 

A(m, n )=0 .  (27) 

Because of the antlsymmetry of the Szeg6 kernel this relation is a symmetric one. Each 

given point q E ~  has precisely g associated points q~ (~=1, 2, ..., g) if we count them by 

their multiplicity. 

The construction of A(p, q) suggests a close relation between the set of associated 

points q~ and the Jacobi inversion problem. This relation can be made more explicit by the 

following consideration. Let  u'(p) and v'(p) be two differentials of the first kind on ~ .  

Then their ratio will be a function on ~ and the integral 

_ _  f ,  d['lo u'(p)] 

will be defined for every normalized integral of the first kind wk(p). The standard method 

of contour integration shows that  I~ is a period of wk(p): 

0 
I~ = nk + ~ m, P,~, n~, m, integers. (29) 
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On the other hand, let ~p be the set of zeros of u'(p) and ~p the corresponding set of v'(p). 

Then the residue theorem yields 

2 g - 2  2 g - 2  

Ik = ~ wk(~o)- ~ Wk(flQ), k= 1, 2,.. . ,g. (29') 
@=I q = l  

Thus the sum of each wk(p) extended over the set of zeros of any differential of the first 

kind is the same except for a period of wk(p). 
Each integral of the~first kind wk(p) is defined only up to an additive constant. We 

may  normalize these integrals further as follows. Let  v'(p) be the special integral of the 

first kind used in Section 2 to construct the Szeg6 kernel; we demand 

2 g - 2  

wk(Io~) = 0, (30) 
q=l  

where the sum is extended over all zeros pQ of v'(p). This implies 

2 g - 2  

Wk(~Q)~0 (rood. period of wk(p)), (30') 

where ~p is the set of zeros of any  differential of the first kind. 

In  view of (18) we find the following characterization of the set qv of points associated 

to q: 
g 

wp(q,)~wp(q) (mod. period of wp(la)). (31) 
~=1 

The associated point set qv of q solves a special Jacobi inversion probleml 

The normalization (30) is obviously only possible if the genus of ~ satisfies g > 1 

since for g = 1 the differential of the first kind has no zeros. We shall consider this special 

case briefly in the following section. 

We may  use the  concept of associated points to construct the following differentials; 

let qv be one point associated to q and form 

v~(p) = A(p,  q) A(p,  q~). (32) 

I t  is easily seen tha t  v'~(p) is a differential of first order in p, single valued on ~ and regular 

everywhere. Indeed, the poles of the factors are just cancelled out because of the relation 

A(q, q~)=0. Thus we can construct g differentials of the first lclnd on ~ by  choosing v = l ,  

2, ..., ft. Since v~(p) vanishes at  all associated points qg of q except for qr, we see tha t  the 9 

differentials of the first kind are linearly independent and form a basis for all differentials 

of the first kind. I f  w'(p) is a differential of the first kind, we have the development 

w'(p) = i A(p,  q~) A(p ,  q) w'(q,). (33) 
,_~ A ' ( q ,  q) 
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4. Let  us illustrate the general theory of the Szeg5 kernel by  considering the special 

case of genus 1. Here we may  visualize the Riemann surface in the complex u-plane in the 

form of a parallelogram generated by  the vectors 2to 1 and 2eoz in which opposite sides are 

identified. We interpret the effect of a closed cycle ~ as a parallel displacement by  the 

vector 2to 1 and interpret a parallel displacement by  the vector 2to 2 as the outcome of a 

!~-cycle. We have a t  our disposal the elliptic functions with the periods 2o~1, 2~o~ in order 

to construct the various Abelian integrals, and we shall use the notations of the Weierstrass 

theory. 

We find at  once tha t  
1 

w ( p )  = 2 to 1 u (34) 

is the normalized integral of the first kind and tha t  the Riemann matr ix  reduces to 

f ~ "  - (35) p = 'aww - --,e~ 
,J 0 0)1 

the modulus of the parallelogram. The function 

t (p;  q) = ~(u - v ) -  ~h u,  v = u(q),  (36) 
(D 1 

is clearly a normalized integral of the second kind since it has a simple pole a t  p =q  and 

the period zero over the 9~-cyele. The expression 

d 
L ( p ,  q) = - ~p  t(p;  q) = $)(u - v) + 71tol (37) 

is a differential in p; since it  is symmetric in p and q, it is a double differential in both 

variables. I t  has a double pole for p =q  and has the residue zero. We verify tha t  

f L(p, q) dp = 0 (3S) 

from which it follows tha t  this kernel coincides with the Bergman kernel (8) of the Riemann 

surface. 

According to (9) and because of (34) we find for the Szcg5 kernel the representation 

A ( p , q ) ~ = O ( u _ v ) +  ~ l + a .  1 o)~ 4o)~" (39) 

The constant a has to be chosen such tha t  the right-hand side has a double zero. Since 



~ IALF -ORDER D I F F E R E N T I A L S  ON R I E M A N N  SURFACES 225 

~ ' ( u )  2 = 4 ( ~ ( u )  - e l )  ( ~ ( u )  - e , )  ( ~ ( u )  - e3) (40) 

we may choose a in three different ways: 

A(p, q)2 = ~(u - v) - %, Q = 1, 2, 3, 

and a ~ = -  4o~1~[eo + ~ ]  . 

(41) 

(41') 

~ . ( u )  
The functions ~ eq - (42) ~(u) 

are very familiar in the theory of elliptic functions and of theta functions. Their signi- 

ficance is now explained by the role as the Szeg6 kernels of the surface. We have three 

different Szcg6 kernels for the surface ~ since it possesses precisely three different two- 

sheeted covering surfaces. These are obtained by assigning independently the sign + 1 or 

- 1 to the effect of a cycle ?I or ~ and omitting the combination + 1, + 1 which corresponds 

to the original Riemann surface itself. 

Since ~(wq) =% (43) 

we see that  the condition for associated points A(q*, q )=0  leads to the equation 

The well-known equation 
v* = v + %.  (44) 

( 4 5 )  

is therefore nothing but  the special case of (32) since the only differential of the first kind 

is a constant in our choice of uniformizer. 

In the following chapter we shall discuss some relations between the Riemann period 

matrix ((P~p)) and the matrix ((a~p)) which connects the Bergman and the Szeg5 kernel 

through the identity (9). While some interesting results will be obtained, the explicit form 

of the coefficient ap given in (41') shows already that  the relation between the two g • g 

matrices is by no means elementary. 

IV. The variational formula for the Szeg~i kernel 

1. In the preceding chapter we have shown that  the Szeg6 kernel A(p, q) is uniquely 

determined by the Riemann surface ~ and the two-sheeted covering on which it is single 

valued. If we change ~ continuously, we can deform simultaneously the covering in a 
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corresponding fashion and are thus led to a continuous variation of the Szeg5 kernel. A 

study of this variation will then disclose the functional dependence of A(p, q) upon the 

Riemann surface ~ and its moduli. 

Since there exist many ways of describing ~ in terms of meduli, we shall use a some- 

what special but  very intuitive kinematics to deform ~. We select an arbitrary but  fixed 

point rofi~ and introduce at  r o the uniformizer z(p) such that  z(r0)~0. A neighborhood 

~ ~ of r o corresponds to a domain A in the complex z-plane which contains the origin. 

Consider now the conformal mapping [14, 17, 19, 20] 

e21~ ~2 
z * = z + - - ,  ~>0 ,  ~=rea l ,  (1) 

Z 

in the entire z-plane. We assume tha t  the disk Izl < ~ lies in A. Outside of this disk the 

mapping z -> z* is one-to-one and regular analytic for all finite values z. The circumference 

I zl = e  is mapped onto the rectilinear segment < -2~e  '~, 2eg~> such that  the points z 1 = e e  '~ 

and z~ =~e q~-r go into the same point z* = 2~d ~ cos ( ~ - a ) .  If we divide the circumference 

I zl = ~ into two arcs by drawing the diameter z = r e  t~, - ~  < ~  <~, we see that  points on this 

circumference and symmetric to the diameter go into the same points z*. 

We are now able to define a rather radical deformation of the complex z-plane. We 

cut from it the disk [z I <~  and identify points zl=~e t~ and z~=~e q2~-r which removes 

all boundary points of the cut domain and makes it to a new Riemann domain. We may 

still use the parameter z as a unfformizer on the new Riemann domain, but  a function in 

this domain will be considered analytic only if it is an analytic function of z* = z  + e 2 ~ 2 / z .  

The deformation of the complex z-plane just defined determines a deformation of the 

Riemann surface ~ as follows. We delete from ~ all points in ~ which correspond to the 

disk [z] < ~ in the nnlformlzer neighborhood of z and identify points Pl and p~ which 

correspond to points z 1 and z~ with the same value z*. This leaves us with a new Riemann 

surface ~* of the same genus as ~.  If  ~ is small, the Riemann surface ~* is near to ~.  This 

means that  corresponding normalized Abelian integrals differ numerically arbitrarily 

little at  corresponding points if ~ is small enough. 

We now wish to give an asymptotic formula for the Szeg5 kernel A*(p, q) of the de- 

formed surface ~* in terms of the Szeg5 kernel A(T, q) of the original surface ~.  For  this 

purpose we introduce a canonical set of cross cuts {9~, ~v} for ~ and take care tha t  none 

of its loops passes through the neighborhood ~ of the point r 0 at which we perform the 

variation. Under this assumption the same set may also serve as canonical cross-cut 

system for 9l*. We construct the Szeg5 kernel A*(p, q) of ~* by the procedure of Section 

III.2, using the corresponding differential of the first kind v*'(p) on ~*. Clearly, the kernel 
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A*(p, q) so obtained will be single valued on the corresponding two-sheeted covering of 

~*. In particular, we come to the fundamental conclusion that  

H(p; qx, q~)=A*(p, q~)A(p, q2) (2) 

is a differential of order 1 for p E ~ - ~  which is single valued on the residual Riemann 

surface. I t  has simple poles with the residues A(ql, q~) at ql and A*(q2, ql) at q~ if we assume 

that  ql and q2 lie also in ~ - ~.  Let  [ z ] = r (~ < r) be a fixed circumference in the umformizer 

neighborhood ~ and let F be its corresponding image in ~.  We apply the residue theorem 

to II(p; ql, q2) with respect to the part  of ~ outside of F. Using further the antisymmetry 

(III.25) of the Szeg5 kernel, we find 

1 ~ A.(z, ql)A(z,q~)dz=A.(ql, q~)_A(ql, q2) 
2~i Izl = r  

(3) 

if we run over the circumference in the positive sense. 

Observe that  A(z, q~) may be developed into a convergent power series in z since it is 

analytic on ~.  This is not the case for the Szeg5 kernel A*(z, ql) of ~* whose development 

proceeds in powers of z*. Since A*(p, q) is a differential of order �89 we have 

[dz *~ ~ 
A*(z, ql) -- ~(z*, ql) \dz-] ' (4) 

where ~(z*, ql) is a power series in z*. Using the relation (1) between z and z*, we thus obtain 

] [ z 
(5) 

Inserting (5) into (3), we may now apply the residue theorem with respect to Iz] < r  since 

~(z, ql)is analytic there. We find the asymptotic formula 

A*(ql, q2)-  A(ql, q2)-- �89 0, ql)A(0, q2)-A'(0,  q2) ~(0, ql)] + 0(~4) �9 (6) 

Since A*(z, ql) depends on ~ so does ~(z*, ql). But  it is evident tha t  this analytic function 

remains bounded as ~-~0; we therefore infer from (6) tha t  A*(ql, q~)-A(ql, q2)=O(o ~) 
uniformly in each closed region in ~ which does not contain the point r 0 at which we 

deform the surface. From this fact and (5) we can obtain 

A(z, ql)-~(z, ql)=0(~ ~) for ]z] = r. (7) 

Since the left hand of (7) is analytic for Izl < r, we infer the same asymptotic formula for 

all I z [ <  r and, in particular, 
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A(0, q , )=~(0 ,  q~)+O(e2), A'(0, q l )=~ ' (0 ,  ~1)"~0(e$)" (s) 

Hence, finally (6) takes the symmetric form 

A*(ql, q2) - A(ql, q2) = �89 e~'' e2[A'( 0' ql) A(0, q2) - A'(0, q2) A(0, ql)] + O(e'). (9) 

This formula allows an asymptotic estimate of the new Szeg5 kernel A*(p, q) in terms of the 

original known Szeg5 kernel A(p, q) and its first derivative. The error term can be estimated 

uniformly in each closed region of ~ which does not contain r 0. 

We summarize the result of this section as follows. If  we perform a variation of 9t at a 

point ro, which in terms of the local uniformizer z has the form (1), we have 

(~A(p, q) = �89 e ~'~ ~[A'( r  0, p) A(r o, q) - A(r o, p) A'(ro, q)], (10) 

where A' (r o, q) -- ~z A(r, q)[~=o. (10') 

In  the case of plane domains the variational formula for the Szeg5 kernel was derived in [16]. 

2. The variational formula for the Szeg5 kernel A(p, q) leads us to the interesting 

combination 
Ho(r; p, q) =A'(r ,  p)A(r, q ) - A ( r ,  p)A'(r, q). (11) 

I t  is antisymmetric in p and q and clearly a differential of order �89 in each variable. I t  is 

easily verified that  it is a quadratic differential in r; indeed, we can write 

Ho(r;p,  q) = A(r, q)2 ~ \A(r,  q)] (12) 

which displays clearly the eovariant character of H o. 

I t  is clear tha t  H 0 in dependence on r has two singularities, namely at points p and q. 

If  we introduce a~ p a local uniformizer $(r) such that  ~(p)=0, we find by (III.24) 

1 A 2 , Ho(r; p, q) = - ~ (p, q) - ~ A (p, q) + regular terms (13) 

as the series development near p. 

We construct next  the expression 

Hi(r; p, q)= - A ( p ,  q)(A'(r, p)A(r, q ) -A ( r ,  p)h ' ( r ,  q)}. (14) 

I t  is now symmetric in p and q and is a quadratic differential in r, a linear differential in 

p and q. We have thus succeeded in constructing a differential of integer order in all three 
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variables. For r near p, we have by (13) the development in terms of the local uniformi~er 

~(r): 

H 1 (r; p, q) = ~ A (p, q)S + ~ 2 A'(p, q) A(p, q) + . . . .  (15) 

We observe that  the simpler expression AS(r, p)AS(r, q) is also symmetric in p and q, is 

a quadratic differential in r, and a linear differential in p and q and has for r near q precisely 

the same principal part (15), Indeed, by (III.24) we have for A(r, p) the series development 

(r, T) = ~ + ~1 ~ + aa ~a + ... (16) A 

since it is antisymmetric in r and p and must be an odd power series. Thus we can assert 

that  
Hi(r; p, q) -AS(r, p)A~(r,  q) =Hs(r; p, q) (17) 

is symmetric in p, q, a linear differential in each of them, a quadratic differential in r, and 

regular analytic on ~ in all its variables. 

To understand more clearly the significance of this term 

-A(p ,  q)(A' (r ,  p)A(r, q ) -A(r ,  p)A'(r, q)} -AS(r, p)A~(r, q) (18) 

we shall identify it as the limit case of a more general expression which involves four 

variables but is of particularly simple structure. We define 

N(r, s; p, q)=A(r, s)A(p, q)(A(r, p)A(s, q) -A(r ,  q)A(s, p)} 

+A(r, p)A(r, q)A(s, p)A(s, q) (19) 

This is a linear differential in all ~our variables. I t  has the symmetries 

s s; p, q) =/V(s, r; p, q) =/V(r, s; q, p)=N(p,  q; r, s) = N ( p ,  s; r, q). (20) 

We easily verify that  it remains finite in each variable on ~.  Hence we can express it in 

terms of the Abelian differentials of the first kind and obtain the multflinear representation 

g 

N ( r , s ; p , q )  = ~ c~kzmw~(r)w'~(s)w~(p)w'~(q). (21) 
~,k , l .m=l  

The symmetries (20) express themselves in terms of the coefficients as 

cikzm = ck~zm = C~kmz = Clm~k = Czk~m. (22) 

The coefficients are thus completely symmetric in all four indices. 
1 5 -  662945 Acta mathematica. I15.  I m p r i m 6  l o l l  m a r s  1966. 
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Let us write the identity (21) by means of the definition (19) in the form 

- A(r, s) A(p,  q) (A(r, p) A(s, q) - A(r, q) A(s, p)} 

= A(r, p) A(r, q) A(s, p) A(s, q) - 
O 

C,klm W; (r) w~ (s) w; (p) w~ (q). 
t . k , l . m = l  

(23) 

Pass here to the limit s =  r and find Hl(r;p, q): 

- A(p, q) (A'(r, p) A(r, q) - A'(r, q) A(r,p)} 
g 

=A(r,p)ZA(r,q) 2 -  ~ c,ktmw[(r)w'k(r)w;(p)w~(q). (24) 
t. k, l . m ~ l  

We have thus found a simple and highly symmetric expression for the important  variational 

terms (11), (14), and (18) by means of differentials of the first kind. The coefficient set 

c~kzm is a set of possible moduli for the surface 3 .  We shall show its importance in the 

general theory of moduli on a Riemann surface. 

3. We have derived in Section I a variational formula for the Szeg5 kernel and ob- 

tained in Section 2 remarkable identities for the variational expressions which will facilitate 

its applications. We wish to show now to what use the entire variational theory can be put. 

We return to the identity (II.9) which must be fulfilled by the Szeg5 kernel 

g 

A(p, q)2 = L(p, q) + ~ a,~ w; (P) w'k (q). (25) 
t. kffil 

The coefficient matrix ((aik)) is symmetric and uniquely determined by the Riemann sur- 

face 3 and the two-sheeted covering on which A(p, q) is single valued. The a~k may thus 

be considered as a set of moduli for 3 .  A very similar symmetric g • g matrix of moduli is 

given by the period matrix ((P~)) of the integrals of the first kind as defined in (III.16). 

This matrix has been extensively studied and its importance in the moduli problem is 

well known. The question arises whether the two matrices ((atk)) and ((P~)) stand in any 

simple relation. 

Let  P1 and F~ be two closed curves on 3 .  Integrating the identity (25)with pEF1, 

q E F2, we obtain the equation 

fr, fr A(P, qfdpdq=/r, fr L(P,q)dpdq + .~=la,~ fr dw, fr dW,~. (26) 

By definition (III: 8) of the L-kernel and in view of (I: 15) we have 

frL(p,q)dP= fr~W(p;q,s). O ~ ~P ~q ap = ~q Jr  dw(p; q, s). (27) 
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Because of the normalization of the Abelian integrals of the third kind we then obtain 

L(p,q)ep:0, (28) 
gf 

and consequently 

fu. f~ L(p,q)dpdq= f~,~ f~ L(p,q)dpdq=O, (29) 

f~,~L(p,q)dpdq=2~i(~:,p (29') 

and f~, fs L(p,q)dpdq= 2~iPap. (29") 

Observe the asymmetry of the integrals extended over 9~a and ~ .  It  is due to the fact 

that the integral is in this case improper and therefore, in spite of the symmetry of its kernel, 

takes different values for a different order of integration. 

The equations (26), (29), (29') and (29 ") lead to the period formulas 

~ A ( p , q ) ~ d p d q = a ~ B ,  (30) 

A(p, q)~ dp dq = Y. P~k a~, (30') 
k = l  

A(p, q)~dp&l = 2~i d~p + ~ a~k Pkr (30") 
k= l  

f~,f~A(p,q)2dpdq=2giP~p§ kPk~. (30'") 

The symmetric matrix ((a~p)) of coefficients in (25) has thus been identified as the period 

matrix of  A(p, q)~ with respect to the cycles 9~: 

A= ((a~#)) = (( fu~, ~A (p,q)~ dpdq)). (31) 

It  is therefore very analogous to the Riemann matrix ((Pap)) which is the period matrix 

of the L-kernel with respect to the cycles ~a: 
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We define next  the matrices 

K= ((k=p))= f.  A(p,q)' apd )) (33) 

and f=(($~p))=((~.~A(p,q)~dpd~)). (33') 

While A and P are symmetric matrices, K and ~ are not. By {30') and (30") we have 

1~ = 2 zd I + K r, (33") 

where I is the unit matrix and K r is the transposed matrix of K. We can now bring the 

equations (30') and (30"') into matr ix  form if we also define the period matrix of A(p, q)~ 

with respect to the Q-cycles: 

B = ( (b~p) ) = ( ( f ~, ~ A(p, q)2 dp ~)  ) . (34) 

We find K=2~iP.A; B = P - 4 ~ P A P .  (35) 

We can condense the matrix relations into one single equation if we introduce the symmetric 

matr ix  

which depends only on the periods of AS(p, q) and the matr ix 

~ =  I 

which depends only on the periods of L(p, q). The equations (35) can then be combined in 

the matrix equation 

4. After these formal considerations we are now ready to study the dependence of the 

various period matrices upon the Riemann surface ~ for which they are defined. By virtue 

of the identities (35) or (38) it is sufficient to know how the matrices P and A change 

under a deformation of the surface ~ in order to compute the change of the remaining 

periods under the same variation. 



HALF-ORDER DIFFERENTIALS ON RIEMANN SURFACES 2 3 3  

I t  is known that  under a variation of ~ at r o according to (1) we have the asymptotic 

formula [14. 20] 

(~P,, = - 2 ~ti e 2'~ ~2 w~ (ro) w~ (r0). (39) 

To find the variation of the matrix A we have to use the identity (30) and the known 

variational formula for the Szeg5 kernel. By use of (10) and (14) we find 

Oa~,~=-e~'=e'f%,f~Hl(ro;p,q)dpdq. (40) 

We simplify considerably by representing Hi(to; p, q) by means of {24). Indeed, 

Oag~=--ee'~~ A(r~ ~, A(r~ ,. k:l~cJk"vw't(r~176 ' (41) 

We reduce the formulas further  by  use of (25) and (28) which yield 

A(ro, p)~ dp = ~ aj, w'j (%). (42) 
J 2 ~  1=1 

We therefore arrive at  the final result: 

~ a ~ = e ~  O~ cjk,,w~ (ro)wk (ro)~ aj~,a~,w~ (ro)wk(ro) . (43) 
1, 1 / . k= l  

If we combine the variational formulas (39) and (43), we obtain the elegant equation 

g 

2~i~a~ = ~ (a~l.ak, - cjk~)~Pjk. (44) 
j , lc=l 

Let  us introduce a set of moduli m a of which the Pjk and aj~ are real analytic functions. 

We then find 

2 zti ~a,~,' = - -  ~ (aj~ak, - cjk,~) ~P,k. (45) 
ama 1. k = 1 ama 

Observe that  because of (22) we have 

aj, a~  - cjk,~ = a~j a,~ - % , ~ .  (46) 

Thisimplies ~ ~a~,~P~, ~a~,~P~,~ 
/~.y~i \Om~ ~m~ ~m~ ~m~] = 0 (47) 

for any pair of indices ~ and ft. But  (47) is the well-known integrabllity condition which 

guarantees tha t  the integral 
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f 0 ~ 1 a~,v dP~, = J (48) 

is unchanged under continuous deformation of the path in the space of moduli provided 

the end points are kept fixed. Thus we can define a function J(m~) in the space of moduli 

such that  
g 

dJ  = ,. ~1 at'~ dP  ~ .  (48') 

These identities and theorems illustrate the value and the significance of the variational 

formulas for the various differentials on a Riemann surface 3 .  The amount of new identities 

and suggestive relations involving the Szeg5 kernel show the usefulness of the new concept 

for the general theory of Abelian integrals. 

5. We introduced the coefficient scheme cjk~ by the definition (21), and we may also 

characterize them in view of (44) as differential coefficients of the matrix ((asp)) with 

respect to the matrix ((Psk))- Another interesting role for this set of coefficients can be 

deduced from identity (23) if we specialize the point p in this formula to be a point q~ 

associated to q according to the relation 

A(q~, q) = 0. (49) 
In this case, (23) reduces to 

ff 
c~z~ w; (r) w~ (s) w; (q~) w~ (q) = A(r, q~) A(r, q) A(s, q~) A(s, q). (50) 

t . k . l . r n f l  

On the other hand, we showed in Section III .3 that  v:(p)=A(p,  q)A(p, q~) is a differential 

of the first kind if q and qv are associated points. We may express each v:(p) in terms of the 

canonical basis for such differentials and write 

g 
v:(p) = A ( p ,  q) A(p, q~) = ~ c,q(q) w~(p). (51) 

Qffil 

With the coefficient matrix ((c~q(q))) so defined and in view of the linear independence of 

all w:(p) we derive from (50) the identity 

ff 
c,kzm w'z (q~) W'm (q) = C,, (q) C,~ (q). (52) 

l . m ~ l  

We can eliminate from this identity the c~p(q) entirely and bring (52) into the form 

g 
(c,~,., c,~,. - c,,,,, c ~ . )  w'~ (q.) w'~ (q~) w',. (q) w'~ (q) = o. (53) 

l . rn~ 
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I t  is convenient to introduce the bilinear forms of quadratic differentials 

B,k(p,q)= ~ (Cik, mC, kx~--CmmCkgx~,)w;(p)wi(p)w'm(q)w'~(q) 
/,m,)i, g = l  

(54) 

which is based on the coefficient scheme c~kzm. We then see by (53) that  

B~k(q~, q)=O, l<.i<k<~g, (55) 

for any pair of associated points q~, q on ~. 

We may also express the property (55) by writing 

B~k(p, q) =A(p, q) T~(p, q), (56) 

where the kernels T~k(p, q) are antisymmetrie in p and q and 3/2-order differentials in 

each variable. To represent the T~k(p, q) in a simple manner, we have to investigate the 

class of all regular 3/2-order differentials on ~ which are single valued on the same two- 

sheeted covering of ~ as A(p, q). 

We easily see that  

T(p)=A(p,q) ~.. C~w'(p; q,,q.)+ c,w;(p) (57) 
(v=l 

will be the most general, regular 3/2-order differential if the coefficients C~ and c~ satisfy 

the two linear, homogeneous conditions 

C~=0, Z C~w'(q; q~,qo)+ ~_, c~w:(q)=O. (57') 
v = l  v = l  v = l  

The point q0 E~ can be chosen arbitrarily except for being different from q. There are 

precisely 2 ( g - l )  linearly independent regular 3/2-order differentials on ~. We choose a 

basis Ta(p) (~ = 1 . . . .  2(9-1)) of such differentials and can then write 

2 g - 2  

T~k(P,q) = Z d~k.~T~(p)Tp(q) (58) 
~.f l=l  

with d~k, ap being antisymmetrie in the last pair of indices. 

Observe now that  there are 3 g - 3  linearly independent quadratic differentials. Hence 

the most general symmetric bilinear form of quadratic differentials depends on (392-2) 

independent coefficients. On the other hand, the antisymmetrie bflinear forms of dif- 

3/2 depend only upon ( 2 7 2 )  independent parameters. Thus, ferentials o f  order each 

of the coefficient sets of the forms Bi~(p , q) has to satisfy a large number of constraints. 
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These set  up  numerous  condi t ions  in the  m a t r i x  ((c~kzm)) which m a y  be in t e rp re t ed  as dif- 

fe rent ia l  re la t ions  for the  ((a~k)) in  the i r  dependence  on the  ((Plm)). 

The  significance of t h e  va r i a t iona l  fo rmula  for  t he  Szeg5 kernel  in t he  p rob lem of 

the  modul i  of a l~ iemann surface and  the  Teichmii l ler  spaces is evident .  These p rob lems  

have  been t r e a t ed  ex tens ive ly  and  successfully in recent  years  [1, 6, 7]. W e  hope to  be able 

to  con t r ibu te  to  these  quest ions b y  the  p resen t  deve lopment s  and  techniques .  
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