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terms, and conditions established under which these random variables are finite valued. 

Several types of stationarity are defined, and it is shown tha t  these (each requiring a 

kind of statistical uniformity over the entire real axis) are equivalent to one another. 

Stationarity does not  imply tha t  the intervals between points are either independently 

or identicaUy distributed. 

Convexity and absolute continuity properties are found for the forward recurrence 

times of the stat ionary point process (s.p.p.). The moments of the number  of points in an 

interval are described in terms of these distributions, which appear in series whose con- 

vergences are necessary and sufficient conditions for the finiteness of the moments. Local 

and global properties of the moments are related, and it is shown that  any existent moment  

is an absolutely continuous function of the interval length. The distribution functions 

of the forward recurrences are related to the statistics of the point sequence and the 

interval times. Moment properties are also determined in terms of the latter. An ergodie 

theorem relates the behavior of individual realizations of the number  of points to their 

statistical averages. 

Several classes of point processes are described, and stationarity verified where 

applicable, using the most  convenient of the (equivalent) criteria for each case. The pre- 

ceding theory is applied to the problem of calculating moments and other process statistics. 

1.0. Introduction and Sllmmary 

A stationary point process, like a recurrent or renewal process, may  be interpreted 

as an ordered sequence of points randomly located on the real line. The stationary point 

process (hereafter abbreviated s.p.p.) generalizes certain aspects of renewal processes; in 

particular, the intervals between points on the line need be neither independently nor 

identically distributed. On the other hand, the s.p.p, is required to retain a certain statis- 

tical uniformity over the entire open line, so tha t  it more properly becomes a generalization 

of the equilibrium renewal process (see Cox [3]). 

The s.p.p, is not only of interest for its own sake, but  also leads to applications for 

which the renewal process is an inadequate model. Included are the examination of ran- 

domly t imed modulations of random processes in communication theory, analyses of zero 

crossings of stochastic processes, and those problems in queue arrivals, traffic flow, etc., 

whose current behavior depends on past  history. 

Perhaps the most  direct motivation for this s tudy is a paper  by  McFadden [10], 

whose results are admittedly heuristic. Some of the properties to be demonstrated here 

have been stated by  McFadden for processes of similar nature, and by  others for renewal 
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processes (see Smith [14], Takacs [15], or Cox [3] for a summary).  An earlier paper by  

Wold [16] suggests the same s ta t ionary conditions later utilized by  McFadden, but  fails 

to develop the properties consequent to the definition. 

McFadden's work unfortunately incurs gaps tha t  make mandatory  the choice of a 

different structure than his for a rigorous t reatment .  He creates a process consisting of 

randomly located points tn whose indices are "floating"; the index n =  1 refers always to 

the point immediately to the right of various "arbitrari ly chosen" numbers t. Aside from 

the question of the meaning of "arbitrari ly chosen", we find that  o-sets such as [(o: tn(~o ) ~< x] 

cannot be specified as probabili ty sets in the accepted sense. Moreover, McFadden erro- 

neously draws the conclusion(1) (of which he makes frequent use) that  the intervals between 

points necessarily constitute a s tat ionary random process [10] [11]. 

Our program is as follows. We shall define point processes axiomatically, and establish 

forward and backward recurrence times as well as numbers of points in intervals in terms 

of the probabili ty space induced by  the process {tn}. Stationari ty is then introduced, using 

forward recurrence times. I t  is shown tha t  this implies a similar proper ty  for the back- 

ward recurrence times. Further,  McFadden's definition [10], as well as an apparent ly weaker 

version, are proved equivalent to the preceding stat ionari ty notions. 

In  the second chapter, we derive convexity and absolute continuity properties for 

the forward recurrence distributions time of the s.p.p. The moments  of the number  of 

points in an interval are described in terms of these distributions, which appear in series 

whose convergence is a necessary and sufficient condition for the finiteness of the moments. 

Local and global properties of the moments  are related; any existent moment  is an abso- 

lutely continuous function of the interval length. The distribution functions of forward 

recurrence times are used to obtain interval statistics, and certain results on statistics of 

the t n. The fina] portion of this chapter presents an ergodic theorem tha t  illustrates the 

rich structure of s.p.p. 

In  the fourth and final chapter, several classes of point processes are analyzed. Sta- 

t ionarity is verified for these, and more specialized results obtained. 

2.0. Stationary properties for point processes 

A stochastic point process can be intuitively described in terms of randomly located 

points on the real axis. Given such a process, one considers such random variables as 

•(t, x), the number of points falling in the interval (t, t + x], and L.(t), the t ime required 

(1) This was first pointed out to us by Prof. W. L. Root, who provided a counterexample 
that constitutes the basis for the generalization to be presented in Section 4.2. 
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for the nth point after t to occur, To be meaningful, however, the process must be enun- 

ciated in strictly mathematical terms that  translate these intuitive concepts into a rigorous 

structure. Here, the process is viewed as an ordered, non-decreasing sequence of random 

variables, {tn}, properly defined on a probability space. When this is done, N(t, x) and 

Ln(t) are specified in set-theoretic language consistent with their desired intuitive inter- 

pretation. 

To be a fruitful object of study, however, {tn} must be endowed with certain addi- 

tional properties. For example, in renewal theory only positive indices are considered, 

and {tn+l-t~} is assumed mutually independent and identically distributed (at least for 

n =  1, 2 .. . .  ) (see again Cox [3]). To us, these assumptions seem unnecessarily restrictive, 

and lead to an unacceptable model for many problems, including that  of random sampling 

of random processes, which initially motivated this study. 

McFadden [10] has suggested by his work that  the following intuitively appealing 

assumption should be made: {t~} is a stationary point process (s.p.p.) if the multivariate 

distribution functions of ~Y(tj, xj), ]=1 ,  2, ..., ~Y remains invariant if, with any number 

h, tj is replaced by tj + h. With only this hypothesis, and occasionally the added assump- 

tion that  the expected number of points in an interval is finite, we shall be able to obtain 

all the results which follow. 

Although our work makes little use of interval statistics [those of ~Y(t, x) and Ln(t ) 
generally being more convenient], it is advantageous to define the process by beginning 

with (the intuitive equivalent of) intervals. That is, we let {Vn}, n=O, + l ,  +2  ... .  be a 

discrete parameter stochastic process associated with a probability space (~, :~, P). We 

require that  each ~n be finite-valued and non-negative with probability one. 

De/inition 2.0.1. If {v~} is as specified above, and 

t~ = (2.0.1) 

[T0--~T~ if n ~ - - i ,  

{tn} is called a stochastic point process. 

I t  is clear from the definition that,  with probability 1, {t~} is an ordered nondeereasing 

sequence, each of whose members is finite-valued. There is no loss of generality in sup- 

posing that  these properties of {t~} hold for every o~ 6 ~,  and we shall so assume henceforth. 

We observe also that  the a-sub.fields induced on (~, 5, P) by {t=} and {~n} are identical; 

we may take :~ to be that  a-sub-field itself, and treat (s :~, P) as the basic probability 

space underlying both {tn) and {vn). 
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All sets and random variables to appear in this paper  will be expressed in terms of 

countable set operations on the "basic building block" sets B.(t), where n is any integer, 

and t any  real number. We define 

B~(t) = {co: tn(w)~<t}. (2.0.2) 

I t  is evident tha t  each Bn(t) is w-measurable, and tha t  these sets satisfy both B~+l(t)c B=(t) 
and (for s <~t) B~(s)c B~(t). 

2.1. Forward recurrence t imes and points in an  interval  

For each t, we wish to define a new (discrete parameter)  random process Lk(t) for 

positive integer k. Lk(t) is to be interpreted as the length of t ime required for the kth 

point after t to occur. For  this reason, Lk(t ) is called the kth forward recurrence t ime 

after t (compare Cox [3], p. 27 and elsewhere). To be precise, we let 

En(t, x) = U [B*+l(t) N Bm+n(t+x)], x~>0, n>~ 1, (2.1.1) 
In 

where Bk has been defined by  (2.0.2) and * denotes complement. Clearly, En(t, x) is the 

measurable set carrying the intuitive meaning "at least n of the tj fall in (t, t + x ] . "  We 

now take as the definition of L=(t) 

De]inition 2.1.1. L0(t ) = 0  for all o~ E ~.  For n >~ 1, L~(t) is the random variable satisfying 

{r L,(t) <~x} = E,(t, x), (2.1.2) 

with L~(t) = ~ on [~  -limx_.r162 En(t, x)]. 

The sets on the right of (2.1.2) are empty  for x~<0 and non-decreasing in x, so the 

definition makes sense. The interpretation of L~(t) as an nth recurrence time becomes 

more persuasive when we recall tha t  (2.1.2) implies L~(t)=inf~EE~(t,x)x. The set on which 

L=(t) = ~ appears to be bothersome, but  we shall find tha t  the stationarity condition 

renders the set void. 

For future reference, we give alternate expressions for E,(t, x), as these are more 

useful in certain derivations. 

LEMMA 2.1.1. For x>~0, En(t, x) may be represented by 

En(t,x) = { U  [Bin(t) fi B*+l(t) N Bin+n(t§ U [(A B~(t)) N (UBk(t +x))],  (2.1.3) 
m k k 

in which { } and [ ] are disioint, and the indicated union in { } is itsel] disjoint over m. 
Another expression ]or En(t, x) is 

E,(t, x) = { n [B*(t) u Bm+,(t + x)]} N [ U Bk(t + x)] N [ U B*(t)]. (2.1.4) 
In k k 
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Verification of these equalities is achieved by the usual method of showing that  

each side of (2.1.3) and (2.1.4) contains the other. That (2.1.3) is a disjoint union as claimed 

follows from Bm+k(t) n B*+l( t )=0 for k = l ,  2, .... Although (2.1.3) appears to be more 

complicated than (2.1.1), [ ] = 0  if (tn} is an s.p.p. (see Theorems 2.1.1 and 2.2.1), so that  

En(t, x) is simply represented as a disjoint union. The last form of E~(t, x), (2.1.4), is of 

interest chiefly because it enables one to use DeMorgan's relations to obtain 

E*(t,x)=([.J[Bm(t) N B*+n(t § U IN B~(t + x)] IJ [NBk(t)]. (2.1.5) 
m k k 

Let us next define sets having the intuitive significance "exactly n of the tk occur 

in (t, t+x]" .  We denote these sets by An(t, x), and define them for n>~0 by 

An(t, x) = En(t, x) * N En+l(t, x). (2.1.6) 

To complete the definition of the An, we adopt the convention E0(t, x)= ~.  

LEM~A 2.1.2. The An are disjoint (/or di//erent indices), and each An can be expressed 

as the disjoint union 

An(t ,x)= U[Bm(t) fl B*+l(t) flB,,+n(t+x) * N Bm+n+l(t + x)]. (2,1.7) 
m 

Proo/. From (2.1.1), En+lC En, so En+j N E*+I=O for j = l ,  2, ...; hence, the An given 

by (2.1.5) are disjoint as claimed. The rest of the lemma is proved by substituting (2.1.3) 

and (2.1.5) into (2.1.6), and eliminating intersections of disjoint terms from the multiple 

unions. 

We have earlier spoken of a random variable •(t, x) as the "number of points in 

(t, t § x]." This notion is given formal meaning by 

De/inition 2.1.2. N(t, x) is the random variable satisfying 

(oJ: N(t, x) = n} = An(t, x) (2.1.8) 
for n = 0 ,  1, 2, . . , and  

{~o: N(t, x) = oo } = ~ -  UAn(t, x). (2.1.9) 
0 

Most of our work will deal with finite-valued N(t, x), in fact with processes that  

guarantee N(t, x) to be finite for all t, x. As we would expect, the finiteness of N(t, x) 

is intimately related to the location of the limit points of {tn}. 

Since {tn} is non-decreasing, {t,} has exactly two limit points if we admit •  The 

~o-set such that  the upper limit point falls on (t, t+x] is denoted by C~(t, x), and is speci- 

fied by 
C~(t, x) = [ U B*(t)] n [ rl B~(t + x)]. (2.1.10) 
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We also define Cl (t, x) = [ n B* (t)] fl [ U Bk(t § x)] (2.1.11) 

which is associated with the lower limit point in the sense that  the set (2.1.11) contains 

{w: t~<lim . . . .  t n < t + x }  and is in turn contained in {r t<--.limn..,_ootn<'-.t+x}. Finally, 

the co-set "both  limit points lie in [t, t §  is the intersection of C, and q ,  viz., 

C(t, x) = C~(t, x) N Cu(t, x) = [nB*(t)]  N [nBk(t  § (2.1.12) 

T~EOREM 2.1.1. The/ollgwing are equivalent 

(i) N(t. x) is/ inite valued (probability 1); 

(if) l iEn-)~ P[En(t, x)] = 0; (2.1.13) 

(iii) P[C~(t, x)] = P[Cu(t, x)] = 0. (2.1.14) 

I / a n y  o/the above hold, (2.1.3) simpli/ies to 

En(t, x ) =  U [Bin(t) N B*+l(t) N B,,+n(t + x)] (2.1.15) 
r n  

which agrees with (2.1.3) to a zero probability equivalence. 

Proo/. We begin by noting that  U ~Ak(t, x) = E*+l(t, x), which follows from (2.1.6) and 

E *  * c En+l by induction. Now 

o a  

P[N(t, x) = oo ] = p[{ U An(t, x)}*] = P[lim En(t, x)]; (2.1.16) 
0 

since measures and monotone limits commute, we already have the asserted equivalence 

of (i) and (if). 

Next, if (if) holds, P[  n ~ E~(t, x)] = o. Applying this form of (if) to (2.1.3), and noting 

that  each term in the disjoint union must have zero probability, we obtain 

P{[ n B~(t)] N [U Bn(t + x)]} = 0 (2.1.17) 

and P{ [Bin(t) fl B*+l(t)] n Bn(t + x)} = 0 (2.1.18) 
- o o  

for every m. The first equation merely states that  P(C~)=0. For the proof of P(Cu)=0, 

it is sufficient to show P ( C , -  C)= 0. To this end, we write the easily proved set relations 

Cu(t, x) - C(t, x) = [ U B*(t) - n B~*(t)] n Bk(t + x) 
n n lc 

= U {IBm(t) N B~+l(t)] I"1Bk(t + x)}. (2.1.19) 
m k 
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Hence, (2.1.18) implies P(C~-C)=0.  Conversely, the validity of (iii) yields (2.1.17) from 

P(C~)=O and (2.1.18)from P(Cu-C)=O; this means P [ N F E n ] = 0 ,  whence (if)follows. 

Finally, (2.1.15) is obtained by  applying (2.1.17) to (2.1.3). 

The equality 
M - 1  

N (so, SM-- SO) = ~, N (sj, sj+ l - s~), (2.1.20) 
t=0  

valid for any s o <~s 1<~ ... <~SM, will find several applications later in the paper. Although 

it is intuitively evident tha t  the number  of points in an interval is equal to the sum of 

points over its subintervals, our development demands a rigorous proof. 

LXM~IA 2.1.3. (2.1.20) holds [or each wEf2. 

Proo]. I f  we can show tha t  N(t, y)=N(t ,  x )+N( t+x ,  y - x ) ,  O<.x<.y, the rest follows 

by  finite induction. On each set An(t, y), n = l ,  2 ... . .  the preceding equat ion may  be in- 

ferred from 

An(t, y) = lJ [Ak(t, x) fl A~_k(t +x, y--x)]. (2.1.21) 
k = O  

I t  is convenient to express the Aj by  the disjoint unions of Lemma 2.1.2, and to use the 

fact tha t  [ [.J 2'n] N [ [.J Gn] = [3 [Fn N Gn] whenever Fn n Gm= D for m 4 = n. A separate but  

simpler computation is applicable to Ao(t, y). Once (2.1.21) is proved for n=O, 1, 2 . . . .  

we may  show tha t  the sum proper ty  holds even if N(t, y) is infinite. By  taking unions 

over n in (2.1.21), and then transforming indices, 

U An(t, y)= [ ~J Ak(t, x)] fl [ U Aj(t + x, y--x)]. 
0 k = 0  iffiO 

(2.1.22) 

I f  we take complements in (2.1.22), we shall have 

(co: N(t, y ) =  oo} = {~: N(t, x)= oo} U {~o: N(t+x,  y - x ) =  oo}, 

which extends the proof of the lemma to infinite numbers of points. 

The discussion on the finiteness of N(t, x) has a counterpart  in tha t  of Ln(t): the set 

on which L~(t, x ) =  oo is related to the set on which the upper limit point is less than  t. 

THEOREM 2.1.2. For n = l ,  2 . . . .  

nm E,,(t, x)= UB*(t). 
x -,~ oo m 

(2.1.23) 

Proo/. If  for some/c eo E B~(t), t <tk+l <~tk+, < oo for this co. Then ~o E B*+l(t) fl Bk+n(t +x) 

for any  x/> [tk+~(eo) -- t], which is to say o~ e limx_, oo E~(f, x) from (2.1.1). Conversely, o~ E En(t, x) 
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for some x implies co 6B*(t)  for some m, again  b y  (2.1.1). Then  co6 (J B*(t),  as we wished 

to prove.  

COROLLARX 2.1.1. l im~_~  E~(t, x) is the same set/or each n = l ,  2 . . . . .  

Proo/. The r ight  side of (2.1.23) is the  same for each such n. 

COROLLARY 2.1.2. Ln(t ) is (/or any n = 0 ,  1, 2 . . . .  ) a finite-valued random variable 

ill P[  U ~B*(t)] = 1. 

Proo/. The result  follows direct ly f rom (2.1.23) and  Definit ion 2.1.1. 

2.2. Backward recurrence t imes and stationarity 

Although we have  deduced some e lementary  propert ies  of {tn} on the  basis of Defini- 

t ion 2.0.1 alone, much  s t ronger  propert ies  accrue f rom some sort  of s ta t ionar i ty  assump-  

tion. McFadden  [10] and  others [16] have  in t roduced such a notion: a process is s t a t ionary  

if all mul t ivar ia te  distr ibutions of N(tl,  xl) , /V(t2, x2) . . . . .  N(tn, x~) are invar ian t  under  all 

shifts t~-->t~+h. This definition is bo th  in tui t ively  appeal ing and  analyt ical ly  fruitful.  

Our definition, or iented as it is toward  forward  recurrence statistics,  seems somewhat  

different f rom the above,  bu t  will ac tual ly  tu rn  out  to be equivalent .  

Definition 2.2.1. The  process {tn} is said to be /orward [backward] stationary if for 

each posi t ive [negative] integer set /cl ,  k 2 . . . . .  k~, and  xl, x~ . . . . .  x~, and  any  h, 

n E n 
P [  [1 kj(t, x~)] = P [ N  Ekj(t + h, x~)], (2.2.1) 

1 1 

i.e., if the mul t iva r ia te  dis t r ibut ion for each set  Lk,(t), Lk,(t) . . . . .  Lk~(t) is invar ian t  under  

t ranslat ion.  

I n  the  above,  backwards  recurrence t imes L_n(t), n~> 1, are consistent ly specified b y  

Definit ion 2.1.1, ex tended to all n, with the  unders tanding  t h a t  

E-n( t  , x) = [J [B*+l(t - x) N'Bm+n(t)] , n = 1, 2 . . . . .  (2.2.2) 
m 

Thus,  L_,(t) becomes the  t ime in terval  between the  n th  point  before t and  t itself. I f  we 

combine (2.1.1) wi th  (2.2.2) we obta in  for n~> 1 

{co: L ,(t) <~x} = {co: L , ( t - x )  ~<x}; (2.2.3) 

thus,  L~ and L_~ have  the same dis t r ibut ion under  assumpt ions  of forward [backward]  

s ta t ionar i ty .  This p rope r ty  fails to ex tend  to  mul t ivar ia te  distributions.  However ,  forward  
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[backward] stat ionari ty will be shown to imply a stronger form of stationarity,  which is 

described by  

Definition 2.2.2. The process (t,} is strongly stationary if for each integer set k 1, k S, 

.... k,  (not necessarily of the same sign), each t 1, t2 ... . .  t,, each xl, x 2 ... .  , x~, and any h 

n 

P[ N Ekj(tj, xj)] = P[ N Ekj(t~ + h, xj)]. (2.2.4) 
1 1 

Note tha t  Definition 2.2.1 refers only to a single point of origin t, and to kj of the 

same sign; it is therefore immediate tha t  a strongly stat ionary process is both forward 

and backward stationary. Stationarity may  alternatively be defined by  the statistics of 

numbers of points in intervals. 

De/inition 2.2.3. The process (t ,)  is interval stationary if for each set of non-negative 

integers kl, k2, ..., k~, each sets t 1, t2 ... .  , tn and xl, x~, ..., x~ and each real h 

n 

P[ A Akj(tj, x~)] = P[ FI Akj(tj + h, xj)]. (2.2.5) 
1 1 

The above definition considers any  arbi trary (finite) collection of finite intervals. 

I f  we restrict these to be consecutive, we have 

De/inition 2.2.4. The process (t.} is consecutive interval stationary if (2.2.5) is satisfied 

whenever 
tk+xk =tk+l, k = 1, 2 ..... n - -1 .  (2.2.6) 

Evidently, interval stationarity implies consecutive interval stationarity. We shall 

see, however, tha t  each implies the other, both being necessary and sufficient conditions 

for strong stationarity. 

To prove the results at  which we have already hinted, certain preliminary work is 

required, viz. 

THeOReM 2.2.1. I /  (t ,)  is /orward stationary, there is a set A with P ( A ) = 0  and such 

that 
Cu(t, x) c A and Cz(t, x) c A (2.2.7) 

/or all t, x. 

Remark. This theorem is of interest in its own right, since it permits the simplification 

of (2.1.3) to (2.1.15). Moreover, A is the same for all t, x, so that  (without loss of generality) 

we may  take En(t, x) to be given by  (2.1.15) for all wE~ .  
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Proo]. I t  suffices to show tha t  P[C~(-n, 2n)]=0 for each positive integer n, and 

likewise for C u ( - n ,  2n). For Cz this is so because by  (2.1.11) Cl(t, x) = Cl(--n, 2n) when- 

ever -n<~t and t§ then every C~(t, x) is contained in a denumerable union of sets 

of null probability. An identical argument  applies to C~, and the same null set A (union 

of null set for Cl and Cu) taken for both. 

I f  P[Cz( - n ,  2n)] were not zero, there exists an integer m such tha t  P[Cz( - n ,  2n)] > m  -1. 

To show tha t  this supposition leads to a contradiction, consider tha t  

E t ( - n - 2 m n ,  2mn) fl E l ( - n - 2 m n ,  2[m + 1]n) 

contains Cz(-n,  2n); the latter is demonstrated by  representing E 1 and E* respectively 

by (2.1.3) and (2.1.5), eliminating terms having empty  intersection, and comparing with 

(2.1.11). Hence 

P [ E ~ ( - n + 2 ] n - 2 m n ,  2mn) N El(-n+2jn-2mn, 2[m+l]n)]>m -1, (2.2.8) 

in which the left-hand probabili ty is the same for any  ~ by  the forward stat ionari ty of 

{t~}. Further,  we argue tha t  the sets on the left side of (2.2.8) are disjoint for ] = 0, 1 . . . .  , 

m - 1 .  We use the set identity to be proved as Lemma 2.3.2 (with A o = E *  ). Then 

we need only show tha t  E ~ ( - n + 2 k n - 2 m n ,  2mn) N E l ( - n + 2 ] n  , 2 n ) = O  whenever 

0 ~<j < k ~< m -  1. To see tha t  this intersection is in fact disjoint, observe tha t  

E~( - n + 2kn - 2mn, 2mn) = E~( - n, 2kn) 

while El( - n  + 2in, 2n)= El( - n ,  2kn). The sets in (2.2.8) being disjoint as claimed, we have 

m--1 
P{ (J [ E ~ ( - n §  , 2 r a n ) N E i ( - n §  , 2 [ m +  1In)}> 1; (2.2.9) 

j=O 

this is the desired contradiction. 

To finish the proof, consider C,, -C as specified by  (2.I.19). I f  we write 

E ( - n ,  2 n ) =  [(J  {B in ( -n )  N B * + I ( - n ) } ]  [ ' )B~(n),  

we need to prove tha t  P I E ( - n ,  2n)] = 0. Now E( - n ,  2n) differs from the monotone limit 

of E j ( - n ,  2n) by  Cl(--n, 2n), which is contained in a set of probabil i ty zero. Under the 

assumption of forward stationarity, 

P [ E (  - n ,  2 n ) ]  = lim P[ Ej( - n ,  2 n ) ]  = lim P[ Ej( - n + h ,  2 n ) ]  = P [ E (  - n + h ,  2 n ) ] .  
t t 

Furthermore, if h>~2n, E ( - n ,  2n) N E ( - n + h ,  2 n ) = O  because E ( - n ,  2n)=B~(n) while 

E ( - n + h ,  2n)= B * ( - n + h )  for some index p. 
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Let  us assume that  there exists an integer r such that  P [ E ( - n ,  2n) ]>r  -1. From 

the arguments of the preceding paragraph 

r - 1  r - 1  

P[ U E ( - n  + 21n, 2n ) ]=  ~ P [ E ( - n  + 2~n, 2 n ) ] = r P [ E (  - n ,  2 n ) ] > ;  
t ~0 1 =0 

hence P[E(  - n ,  2n)] must be zero, and the proof is complete. 

(2.2.10) 

COROLLARY 2.2.1. I /  {tn} ks /orward stationary, Ln(t) and N(t,  x) are /inite-valued 

except on a set o/measure zero that does not depend on n, t, or x. More precisely, let A be the 

set specified in the theorem. Then /or any x>~O and any t, U~=oAk(t, x ) ~ - A ;  and /or 

n =0,  1, 2 ..... limy_~r y)~ ~ - A .  

Proo/. From the first statement in the proof of Theorem 2.1.1 [UAk(t, x)]*=E(t ,  x) 

which we have just shown to be a subset of A. 

By  (2.1.23), the second statement is equivalent to f3Bm(t)c A. Now 

C u ( t - x ,  x) = [ U B * ( t -  x)] n [nBk(t)] c A 

for all t and x. Taking (monotone) limits on this expression yields 

[ lim UB*(v)] n [nBk(t)]cA. 
V---~ - oo  n k 

But  lim~_,_~ B~(v) = ~ because t o is non-negative, whence n k Bk(t) c A. 

2.3. Equivalent stationarity conditions 

In  this section, we prove .that each of several stationarity conditions implies the 

others. To render the principal theorem more transparent, we mention two set relations 

that  are again intuitively obvious, but  require some manipulations for rigorous demon- 

stration. 

LwMMA 2.3.1. Let O = k o ~ k l  <~ks <~ ... <.kn be a set o/ integers, and O=xo<~X~ ~Xs < . ... 

<<-xn a set o/reals. De/ine m I = k t -  kj_ 1 and YJ = x t - X j - r  Then 

n 

Ak~(t, xj) =jN_I A,~(t + x1_1, y,). (2.3.1) 
t=1 

Proo/. For n = 2 ,  A~,(t, x~) is expressed as in (2.1.21). We then intersect both sides 

with Ak,(t, Xl) for the desired result. From what has been proved for n = 2 ,  it is possible 

to proceed by induction to complete the verification of the lemma. 
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L E M ~ i  2.3.2. 
Ar(t, x) N Ek(t + x, y) = At(t, x) n Ek+~(t, x +y). (2.3.2) 

Proo/. For k=0 ,  the result is obvious from E 0 = ~  and Er~Ar.  For positive k, 

we verify instead the equality with Ek+, and Ek replaced by  their complements. Now 

At(t, x) N A~(t + x, y) =Ar(t , x) N Aj+~(t, x + y) from the preceding lemma. If  we take the 

union of both sides on ?" from zero to k - 1  the desired equality is attained in view of 

A~(t, x) ~ Aj(t, x+y)  = 0  for j<r .  

The principal result comparing the various stationarity definitions introduced in 

Section 2.2 is the subject of the theorem below. By virtue of this theorem, the name 

"stationary point process" (hereafter abbreviated s.p.p.) can be indifferently applied to a 

process (t~) satisfying any of the conditions named. 

THEOREM 2.3.1. The/ollowing statements are equivalent: (tn} is 

(i) /orward stationary, 

(ii) consecutive interval stationary, 

(iii) interval stationary, 

(iv) strongly stationary, 

(v) backwards stationary. 

Proo]. If (i) is true, it follows from the eomplementation of sets and corresponding 

probabilities that  
n P n 

P[  N $'~(t, xj)] = [ [7 ~'kj(t + h, xj)], (2.3.3) 
1 1 

where each 2'~ may be chosen as either E~ or E~. In particular, 

n t PIN E~,(, xj) n E*~+i(t, xj)] 
1 

does not depend on t. This fact, together with (2.1.6) and Lemma 2.3.1 implies (ii). Con- 

versely, let (ii) hold; then P I N  '~Aks(t, xs)] does not depend on t from (2.3.1). This property 

is retained if we sum over each kj from zero to mj. By the disjointness of the A's, and 

because m * U o A j = E ~ + I ,  we have that  P [ N  n * lEa(t ,  xj)] does not  depend on t. This means  

that  (i) is valid, so we have shown that  (ii) implies (i). 

We prove (iv) from (i). From Lemma 2.3.2, At(t, t j -  t) n Ekj+r(t, tj -- t + xi) = At(t, t j -  t) A 

Ekj(ts, xj). By (i) and (2.3.3), the probability of the intersection of any such sets remain 

the same if t, t~ is replaced by t + h, tj + h. Thus also 

n ~ p  
P[ N A,(t, t j -  t) fi E~(t, z,)] = ~ [ N A~(t + h, t , -  t) fi Ekj(t, + h, x,)]. (2.3.4) 

=0 1=1 r =0 1=1 
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Because of Corollary 2.2.1 and the disjointness of the A r, (2.3.4) yields (2.2.4), but  only 

for positive kj. Since, however, E_k(t, x ) = E k ( t - - x ,  x), (2.2.4) holds for any combination 

of integer kj if only it holds for positive kj. From (iv) we obtain (iii), using combinations 

of the Ekj and their complements. 

That  (iv) implies both (i) and (v) is obvious, so the theorem is complete if we can 

prove any of the other conditions from (v). That  (ii) follows from (v) is easily shown by 

methods like those used above, and we omit that  proof. 

3.0. Distribution functions, moments, and sample averages of the s.p.p. 

In  renewal theory, the distribution function of the interval between renewals deter- 

mines the process, and is therefore basic to its study. Although s.p.p, could be investigated 

in a similar manner, it is not convenient to do so. In  the first place, the interval process 

{T~} need not be a stationary process; secondly, the recurrence statistics do not induce 

interval statistics uniquely. The statistics of {v~} are likewise unpromising objects of 

study (cf. Section 3.5). 

Our approach to s.p.p, will be through the forward recurrence times. Their distribu- 

tion functions have interesting convexity and differentiability properties. The moments 

of N(t, x) also find convenient expression in terms of recurrence time statistics, and these 

facilitate the calculation of global and asymptotic properties of the moments of N(t,  x). 

We shall use the following notation, which always refers to an s.p.p. 

G~(x) = P[Ln(t) <.x], (3.0.1) 

that  is, G~ is the distribution function for the nth forward recurrence time. I t  will be 

convenient to denote the sum of the first n Gk by Sn, i.e., 

S~(x) = ~ G~(x). (3.0.2) 

Particular derivatives (suitably chosen from the equivalence class of Radon-Nikodym 

derivates) of S~ and G= will be denoted by sn and g~, respectively. 

3.1. Convexity and absolute continuity 

There are many properties of S~ (and, afortiori ,  G1) that  depend only on the assump- 

tion that  {tn} is an s.p.p. These follow from the fact tha t  S~ is concave (upward convex). 

L E ~ M A 3.1.1. For each n, Sn is a concave function on [0, ~ ). 

Proof. Consider the set equality 
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m--1 

Era(t, x + h) - E,,(t, x) = (J {[Ak(t, x)] N [Em-k(t + x, h)]}, h > 0. (3.1.1) 
k - 0  

Since the sets in the indicated union are disjoint, we obtain the probabili ty on the right 

as a sum. I f  we then sum over m, and interchange (finite) summations, we have 

S~(x + h) - S~(x) = ~ ~. P([A,-k( t ,  x)] N [Ek(t + x, h)]}. (3.1.2) 
k = l  t = k  

But for z >~ y ~> 0, there is the set inequality 

[Aj_k(t, z) n Ek(t + z, h)] = U [Aj_k(t + (z -- y), y) n Ek(t + z, h)] (3.1.3) 
i = k  t = k  

from which (by stationarity and because the A's  are disjoint) 

P[Aj-k(t ,  z) N Ek(t + z, h)] ~< ~ P[Aj-k(t ,  y) fi Ek(t + y, h)]. (3.1.4) 
t = k  l = k  

I f  we sum (3.1.4) over/c as in (3.1.2), the result is Sn(Z § h) - Sn(z) < Sn(y + h) - Sn(y). This 

corresponds to the usual notion of concavity; take y = x l ,  z = ( x  1 +x~)/2, h = ( x ~ - x l ) / 2  with 

O <~ xl <<. x 2. 

Thus, Sn is for each n a monotone bounded concave function on [0, ~ ) ,  and its pro- 

perties are precisely those derived in Section 3.18 of Hardy,  Littlewood, Polya [7]. In  

particular, the right derivate s~ (x) =limh_~0+ [S~(x + h) - Sn(x)/h] exists for all x > 0, and 
+ if 0 < x < y < z, I S~(z) - Sn(y) l -.~ sn (z) [ z - y [ .  That  Sn meets this Lipschitz condition implies 

tha t  S~ is absolutely continuous on any interval [(~, ~ ) ,  5 >0,  whence 

S,(x)  = S,((~) + s,(u) du (3.1.5) 

in which s,  is any Radon-Nikodym derivative of S,. But  sn =s + almost everywhere, and 

we shall always mean s + when we speak of s~ as the derivative of S,. Then also s~ is mono- 

tone non-increasing. 

We may  take ~ -+0+  in (3.1.5), obtaining (since Sn is continuous from the right) 

THEOREM 3.1.1. S~ is absolutely continuous on any [~, r ~>0 ,  and its derivative 

s n may be taken to be monot)ne non-increasing. Further 

Sn(x) = S~(O + ) + s~(u) du. (3.1.6) 

Although Sn(O+) need not be finite, s~(x) < ~ for any  x > 0 .  Then G , = S n - S , _ I ,  n>~2, 

is absolutely continuous, and we may  take gn = s ~ -  sn-1 for x > 0. This formulation assures 



174 F .  J .  B E U T L E R  A N D  O.  A .  Z .  LENEMAI~T 

that  gn >/0, and that  gn(0 + ) makes sense whenever s,(0 +)  < oo. For future use, we state 

a relation between sums of g~(0 +)  and derivates of the Gn and Sn, viz. 

Lv.MMA 3.1.2. Let sn(O + ) < c~]or each n. Then g~(O + ) = ]]mh--~o+ [Gn(h) - G~(0 + )/h ] 

is weU-de[ined and ]inite, and 

o o  ~ h 
~. gn(0 + ) = lira [~gn( )] -- lim ~ [Gn(h) - Gn(O)/h], (3.1.7) 
1 h - ~ 0 +  1 h-->0+ 1 

where the limits are not required to be ]inite. 

Proof. From Section 3.18 of [7], [Sn(x+h ) -Sn(x)]/h is non-decreasing in x, h, and n 

as x '~ ,  h ~ ,  n/~.  Limits of these variables can then be freely interchanged. Moreover, 

the limits are finite for each n, so that  these quotients and their limits can be expressed 

in terms of partial sums of G~ and g~. 

Remarlr If  limx..o+Y~[Gn(x)/x] =8, 8 < ~ ,  Sn(O+ ) =0 and Gn(0+) =0  for each n. By 

an argument again based on interchanging monotone limits, s~(0+)~<fl for all n. Then 

from the lemma, limb ~o+~gn(h) =Y~gn(O +) =8. 

Added in proo]: I t  was left unsettled whether GI(0 + ) > 0 is possible. The answer is 

negative, and afort iori ,  S~(0 + ) = 0 and G~(0 + ) = 0 for each n. Consequently, Theorem 

3.1.1 and Lemma 3.1.2 (as well as the remark immediately following) may be simplified 

by  the omission of these terms, and Corollary 3.3.1 becomes vacuous. 

We show by contradiction that  G 1 (0 + ) = ~ > 0 is impossible. Indeed, G 1 (0 + ) = 

implies P[EI(t , x)]/> ~ for each x > 0, and hence P[limx~o+ El(t, x)] ~> ~ because measures 

are continuous from above ([6], p. 39). Now El(t, n -1) ~ lim~_.o+ El(t, x) for each positive 

integer n, so that  P [ N  ~--1 El(t, n-l)]  ~> ~. On the other hand, the limit point properties of 

the realizations {t,(o~)} of the s.p.p, permit us to conclude that  17 ~=1 El(t, n - l )  C Ol(t , x).  

But  P[Oz(t, x)] = 0  by Theorem 2.2.1, and the desired contradiction is attained. 

3.2. Existence and global properties of moments 

The number of points in time intervals is of equal interest with recurrence times, 

and should receive equal attention. The G~ introduced earlier turn out to provide the 

ideal tools for the study of N(t, x) also. We call p(n, x)=P[A~(t, x)]; this is simply the 

probability that  n occurrences fall in the interval (f, t + x]. I t  is then easy to deduce from 

the earlier set identities that  G~(x) =Z~=np(k, x) and the equivalent expression p(n, x )=  

G~(x)-G~+l(x ). Here all probabilities are zero for x < 0 ,  and Go(X ) is interpreted as unity. 

Our first theorem relates local moment properties of N(t, x) to global ones. 



T H E  T H E O R Y  O F  S T A T I O N A R Y  P O I N T  P R O C E S S E S  175 

TH~,OREM 3.2.1. Suppose E{[N(t, h)] k) is / ini te/or fixed k >~l and some h>0 .  Then 

E([N(t, x)] ~} is ]inite /or all positive x, and in/act 

E{[N(t, x)] ~} = 0(x ~) as x - ~ .  

Proo/. We may suppose from the hypothesis that  E{[N(t, h ) ] k } = M < ~ .  First, we 

recall that  N(t, x) is non-decreasing in x for every to whence E{[N(t, x)] ~} ~< E{[N(t, mh)] ~} 

where we choose m = Ix~h] + 1. Next, we write the identity N(t, mh) = ~ -  1N(t + kh, h) from 

Lemma 2.1.3. Combining these, and using the Minkowski inequality and stationarity, 

we obtain (E{[N(t, x)]k}) 1/k <<.m(E{[N(t, h)l~}) ~k. We now take both sides to the k power, 

and note that  m k = O(xk). 

The next  result characterizes finiteness of moments in terms of forward recurrence 

distributions, and even provides an explicit evaluation. 

THEOREM 3.2.2. For each k>~l, 

(i) ~{[N(t, x)] ~} 
(ii) ~. nk[G~(x) - Gn+l(x)] 

n 

(iii) ~ [n ~ -  ( n -  1) ~] Gn(x) 
n 

are equal, whether/inite or in/inite. 

Proo/. E([N(t, x)] k} =Y_,nkp(n, x), so that  (ii) and the series for (i) are equal term-by- 

term. Moreover, these series (and all others of the theorem) are composed of non-negative 

summands, so that  they converge, if only to infinity. 

To relate (ii) and (iii), consider their respective partial sums Un and Wn. For these 

Wn = nkGn+l + U~; (3.2.1) 

since Un ~< Wn, the proof is completed by showing that  

lim n k Gn +l(X) = 0 (3.2.2) 
n - - ~  

follows from the finiteness of (ii). To this end, we use the identity 

n + p  

nk[Gn-Gn+,+i]+{ ~ ~k-( i -1)k]Gj-[ (n+p)~-nk]Gn+,+i}=U~+,-U~.  (3.2.3) 
n + l  

The term in braces is non-negative because Gn+v+ 1 <~ G~ for j ~ n  +p.  Because U, converges, 

there is for each (~>0 an n o (not dependent on p) such that  n>n  o implies 0 4  

n~[Gn(x)-G~+p+l(x)] <(~. Then (3.2.2) follows by taking p-~o~, provided that  G~-~0. But  

the latter is precisely (2.1.13), which is a consequence of stationarity (of. Theorem 2.2.1). 
12 - 662901. A c t a  mathemat ica .  116. I m p r i m 6  le 19 s e p t e m b r e  1966. 
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A result of the above theorem is tha t  n~Gn --> 0 with n if the kth moment  is to be finite. 

However this condition is not sufficient, as is seen from the fact that  Znk-lGn< ~ is 

both necessary and sufficient. I t  is also easy to show tha t  moments of all orders exist iff, 

for some x > 0 ,  nkG~(x) is bounded for each k = l ,  2, ... as n ~ .  Finally, we note tha t  

each te rm of (ii) and (iii) is increasing in x, so tha t  convergence for any x > 0 implies uni- 

form convergence on every [0, x0]. The latter also shows that  any  existent moment  is 

continuous in x, but  we shall obtain stronger properties for these moments  later. 

3.3. First and second moments 

I t  is instructive to consider certain relations between the lower moments  and the Gn. 

Indeed, the existence of the first moment  already implies tha t  Gn(0 + ) = 0  for all n, and 

tha t  the gn are bounded and have a convergent sum. Knowing this, one returns to the 

higher moments and elicits properties of more general type. 

The first theorem of this section specifies completely the functional form of E[N(t, x)]. 

THWOR~M 3.3.1. I /  N(t, X) has a/inite/irst moment, 

E[N(t, x)] = f x  (3.3.1) 

/or all x >~ O, f being some non-negative constant. 

Proo/. From stationarity, E[N(t, x)] is a function only of x, say/(x).  Now take x, y 1> 0, 

and write N(t, x+y)=N(t,  x)+N(t+x, y) which follows from Lemma 2.1.3. Taking the 

expectation of both sides of (3.3.2) yields the functional equation /(x+y)=/(x)+/(y). 

Since ] is bounded on any subset of the positive real axis, there is only one solution (cf. 

[7], p. 96), namely /(x)=fix. Here fl is non-negative because N(t, x) is non-negative for 

every eo E ~.  

The theorem which follows asserts another condition from which the existence of 

the first moment  of N(t, x) can be deduced, and the parameter  f calculated. 

THEOREM 3.3.2. The conditions 

E[N(t, x)] < oo (3.3.2) 

and lira ~ [Gn(x)/x] < oo (3.3.3) 
x--~O+ 1 

each imply the other. In either event, Gn(O + ) =0,  n = 1, 2, ..., and 

an(0 + ) = 8, 
1 

where f is the parameter appearing in (3.3.1). 
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Proo/. If we combine Theorem 3.2.2 (iii) with (3.3.1) we have for each x > 0  that  

~[G~(x)/x] =fl; the conclusions of the theorem then follow from Lemma 3.1.2 and the 

subsequent remark. 

Conversely, let (3.3.3) be equal to ~ < ~ .  An interchange of (monotone) limits shows 

that  Gn(0 § )=  0, and that  (again by the concavity of S~ and an interchange of monotone 

limits) Y~[G,(x)/x] ~< cr < ~ for all x >0. Therefore, Y~G~(x) < ~ ,  and so (3.3.2) is applicable 

by virtue of Theorem 3.2.2 (iii). The proof is completed by retracing the steps of the 

preceding paragraph. 

The intrinsic interest of the above theorem is enhanced by one of its implications, 

which is useful in proving the absolute continuity of any existent moments (Theorem 

3.3.3). 

COROLLARY 3.3.1. Under the conditions o/the theorem, the S ,  and G n are absolutely 

continuous, and in/act  

S~(x) = I'sn(u) du. (3.3.5) 
J o  

Proo/. Since S~ (0+)=0  for each n, (3.1.6) becomes (3.3.5). 

COROLLARY 3.3.2. Let N(t, x) have a / in i te / i rs t  moment. Then/or  every x > 0  

g~(x) = ft. (3.3.6) 

Proo/. Zg n =Iimn_~s~ is non-increasing in x, and consequently from (3.3.4) Zg~(x)~< 

Zgn(0 § ) =ft. Suppose now that  at some x o we have Zg~(xo) = ~ where :r <ft. Then Zgn(x) ~ 

for all x >~ x o. But  for any such x 

Z G.(x)= z f2g.(u) du= f;[zg.(u)]du < flx, (3.3.7) 

the interchange of summation and integration being legitimate by the bounded conver- 

gence theorem. As (3.3.7) contradicts Y~Gn(x)=fix, the corollary is proved. 

THEOREM 3.3.3. I /  E([N(t,  x)]k}< c~ /or some x>O, the indicated expectation is an 

absolutely continuous/unction o / x  over the reals. 

Proo/. From Theorem 3.2.1 the ]cth moment exists for all x and we may write this 

moment as in Theorem 3.2.2. (iii). Using (3.3.5), together with G,=/~ , -S~_  1 and g ,= 

s ~ -  s~_ 1, puts the kth moment into the form 

E (IN[t, x)] k} = ~ fo Ink-  ( n -  1) ~] g~(u) du. (3.3.8) 
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Each term of the integrand is non-negative, so that  interchange of summation and inte- 

gration is admissible, i.e., 

Io E {[N(t, x)] ~} = ~ [n k - (n - 1) k] gn(u) du. (3.3.9) 

Since the integral of the non-negative sum is finite for every x, the desired conclusion 

follows. 

COROLLARY 3.3.3. Z[n k - - ( n -  1)k]gn(x) converges absolutely/or almost all x. 

Proo]. Because of (3.3.9) the sum cannot be infinite on a set of positive measure. 

Since each term of the sum is non-negative, convergence is absolute. 

3.4. I~terval statistics mad the computation of moments 

In  renewal theory, the starting point is the common distribution of the (mutually 

independent) intervals. We, on the other hand, have obtained our results from recurrence 

distributions G~; it would indeed be difficult to use v~ statistics, since these need be neither 

s tat ionary nor independent. 

This section treats the relationships between interval and forward occurrence statis- 

tics. The F n, defined by  (3.4.1) in terms of the sn, correspond to distributions of n succes- 

sive intervals, given tha t  any one of the t~ occurs at  the initial time. For equilibrium 

renewal processes, precisely the same equation relates forward recurrence times to interval 

distributions (Cox [3], p. 33). Moreover, Khinchin ([3], Chapter 3) has obtained functions 

like our Fn for onesided s.p.p, whose intervals need be neither independent nor identically 

distributed. His results in relating the Fn to conditional distributions are roughly equi- 

Valent to ours, and his methods more similar than those of the other authors cited [3], [10]. 

McFadden's work [10] should also be mentioned, although his interpretation of the Fn 

as unconditioned distributions is valid only in a highly restricted context. 

The Fn which appear  below will be defined as functions of sn. Only later, after we 

explore the moment  properties of N(t, x) relative to the Fn, will we interpret the signifi- 

cance of the Fn as conditional interval distributions. 

Let  {F.}, n=O, 1 .. . .  be functions on the reals, with Fn(x)=0 for x < 0 ,  and 

Fn(x)=l-fl-lsn(x) for x>~O. (3.4.1) 

Here s o is taken to be zero (as usual). We assume throughout this section that  E[N(t, x)] < ~ ,  

so tha t  fl is well-defined as in Section 3.3. Since the sn are each non-increasing, the Fn 
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are non-decreasing. Fur thermore,  the s a are integrable (j's a = n), so tha t  sn(x) ~ O as x-+ oo. 

Therefore, limx_,~ Fa(x)=l (all n), and the _F a are distr ibution functions. We also 

have $'n(x) <~ Fm(x ) for n >/m and lima_~ ~ Fa(x ) = 0 (all x); the former is t rue because s ,  Z 

with n, and the latter by  Corollary 3.3.2. 

I n  the theory  of renewal processes, H(x)=F~Fa(x ) is called the renewal function, 

where -~n is the distr ibution for the length of n adjacent  intervals. For  the equilibrium 

renewal process, not  only the first, but  also the second momen t  of N(t, x) appears in 

terms of H (cf. Cox [3], eq. 4.5.6). Precisely the same formula applies to the s.p.p.; this 

assertion is a special case of 

THEOREM 3.4.1. Let k > l  be an integer. I] either 

(i) E{[N(t,x}]k} < oo (3.4.2) 

r162 

or (ii) ~ [(n + 1) ~ -  2 n  k + (n - 1) ~] Fa(x) < ~ (3.4.3) 
1 

both are/inite. Moreover, lim nk-lFa(x)= 0 and 

E{[N(t ,x)]~}=fl{x+ ~ j 0 n~l [(n + 1) ~ - 2 n k + (n - 1) k] ~'n(u) du}. (3.4.4) 

The derivative 

and finally 

d(E{[N(t, x)]k})/dx is almost everywhere equal to a non-decreasing/unction, 

W{[N(t, x)] k} =O(x) as x~O.  (3.4.5) 

Pa r t  of the proof of the theorem hinges upon the following lemma, which follows 

from an a rgument  already used to prove Theorem 3.2.2. 

L E P T A  3.4.1. Let (an) , {ha) be sequences o/non-negative numbers with aa S and baxa O. 

Then 

(b j  - bjq 1) aj = a 0 b 1 § ~ (aj - ai_1) b t (3.4.6) 
1 1 

even i/ the values in (3.4.6) are not finite. I/either side is/inite, we also have lima.,r an ba = O. 

Proo/. I n  view of (i), E{[N(t, x)] k) is furnished by  (3.3.9). Subst i tut ing ga =fl[Fn-1 --"Fn] 
from (3.4.1) into this equation, and employing Lemma 3.4.1 with b~ as Fa-1, ao=O, a ,=  

n ~ -  (n - 1) k for n ~> 1, yields (3.4.4) as well as lima_,~r nk-lFa = O. Next,  we deduce f rom 

oo or 

[n k - (n - 1) k] gn(x) =/~(1 § ~ [(n + 1) k - 2 n  ~ + (n -- 1)~]Fn(x)} 
1 1 

(3.4.7) 
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and Corollary 3.3.2 that  (3.4.3) holds a.e. (almost everywhere). But  in fact, the summands 

on the right of (3.4.7) are non-negative and non-decreasing in x; hence (3.4.3) is every- 

where true, and (3.4.7) is non-decreasing, being bounded on each interval [0, x0]. The 

latter property implies (3.4.5), and we also obtain as one version of d(E{[N(t, x)]k})/dx 

d 
d--x (E{[N(t, x)]k)) =fl{1 + ~ [(n + 1) k -  2n  k + (n - 1) k] F~(x)) 

1 
(3.4.8) 

which is non-decreasing as required. 

To complete the proof, we show that  (ii) implies (i). Since the finiteness of (ii) for some 

x > 0  requires its boundedness on [0, x], the left side of (3.4.7) will likewise be bounded 

on the same interval. From this fact, together with the monotone convergence theorem, 

we have 

[n k -- (n -- 1) k] Gn(x) = (n - 1) k] gn(u) du < ~ .  (3.4.9) 
r t = l  

An application of Theorem 3.2.2 (iii) then verifies (3.4.2). 

Having examined moment properties of the Fn, we now turn to the meaning of these 

distribution functions themselves. In  order to provide an intuitively appealing result, 

we shall make an assumption that  means roughly "the probability that  there are two or 

more points in a sufficiently small interval is negligible when compared with the probability 

of one (or no) point".  

LEMMA 3.4.2. The ]ollowin 9 are equivalent: 

P[EI(t, h ) -  Al(t, h)] =o(h) as h~O + (3.4.10) 

P[E2(t, h)] = o(h) as h ~ O  + (3.4.11) 

lira [Gn(h)/h] = 0  n = 2 , 3  . . . .  (3.4.12) 
h - ~ O +  

lira [Gl(h)/h ] = ~. (3.4.13) 
h - ~ O +  

Proo]. Since E 1 - A I = E ~ ,  (3.4.11) is a consequence of (3.4.10), and conversely. In  

turn, (3.4.11) and (3.4.12) are the same for n = 2 ;  for n ~ 3 ,  (3.4.12) is true by virtue of 

Gn+I~Gn. Let  (3.4.12) hold, and consider limh_~0+ ~[Gn(h)/h]=t3, which then becomes 

(3.4.13) by the interchange of monotone limits. On the other hand, in the event (3.4.13) 

is true, the interchange yields (3.4.12) because each summand limh~o+[Gn(h)/h] is non, 

negative. 

The hypothesis of the lemma will be assumed for the remainder of this section. Con- 

sider next the set equality 
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E-I(t,  (~) I'l E*n(t, X) = ~.~ E_~(t + x, x-I-O) n Ak-l(l, x) (3.4.14) 
k = l  

in which the right side consists of disjoint sets. If we define 

Gn.-l(x, u) =P[En(t, x) fl E-1(t, u)] (3.4.15) 

we shall have from (3.4.14) 

0 , GI(0) - Gn.-l(X, ) = ~ ( P[Ek(t - 0, x + ~)] - P[Ek(t - ~, x + 0) fl {E~_l(t, x) U Ek(t, x)}]}. 
k=l  

(3.4.16) 

For n--1,  the second probability on the right side becomes merely Gl(x), and so Gx(0 ) - 

Gn, - I ( X ,  0)  = GI (X "~-~) - -  GI (X ). If n/> 2, E~ = O and Ek(t, x )c  Ek(t--5, x +0) permit this term 

to be evaluated as 
n 
Z P[Ek( t -  ~, x + 0) N E'~_z(t, x)] + Sn(x). (3.4.17) 

k=2 

Now each intersection term is dominated by E2(t-O, 0) [use E'k_1----- U~-2Aj  and Lemma 

2.3.2], so that  the sum in (3.4.17) can be no greater than ( n -  1)G2(0)=o(0). Thus the final 

form of (3.4.16) is 
GI(~ ) - Gn. -l(X, 0) = Sn(x +0) - S,(x) +o(0), (3.4.18) 

which holds also for n = l  with o(0)--0. I f  we divide by  0 and take 0 -+0+  in (3.4.18), 

the limits exist for every term except possibly Gn.-1. Then the latter limit must be 

well-defined also, and therefore 

Fn(X) =/~-x{ lira [O,._1(x, h)/h]}, (3.4.19) 
h -..*- 0 + 

with the aid of (3.4.13) and (3.4.1). By using inequalitiessimilar to those of Lemma 3.1.1, 

we verify that  Gn. -l(x, u) is concave in u for each fixed x. Indeed, the arguments of Sec- 

tion 3.1 are applicable to Gn. -1 without change, and so OGn. -l(x, u)/~u may be defined 

(for each fixed x) as a non-decreasing function with u ~ ,  u > 0 .  Moreover, monotonicity 

of the limiting operation shows as in Lemma 3.1.2 that  

0u Ju=o+ h-~o+ 

Here we note that  Gn. -I(X, 0-{-) = 0, as is deduced from Gn.-a(x, u)~< Gl(u ). 

An intuitive meaning may be abstracted from (3.4.19). We use the fact gl(h) =fib +o(h) 

to obtain the rigorous result 

Fn(x) = lira [qn._l(x, h)/fl(h)] (3.4.21) 
h-~O+ 
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having the intuitive meaning "probabil i ty of at  least n points in (t, t§  given tha t  

there was a point at  t". This theme is carried forward by  relating it to the corresponding 

conditional probabili ty distribution in the wide sense (cf. Doob [16], Section 1.9). To 

this end, let B be the Borel field generated by  the random variables L l(t), with t fixed. 

The conditional probabili ty P[En(t , x)[ B] is constant (up to a probabili ty 1 equivalence) 

on the elementary sets of B, tha t  is on the sets of constancy L l(t ) =a. On each such set, 

then, we can take the conditional probabili ty of En(t , x) in the wide sense relative to ~ as 

P[En(t, x) ]L_l(t) = a] - ~u (3.4.22i 
gl(a) 

We have already pointed out tha t  the derivative on the right is well-defined. The other 

requirements for a conditional distribution can be verified directly, but  we shall not do 

this. Such conditional distributions constitute an equivalence class (up to zero probabili ty 

sets), but  (3.4.22) is in a sense the "natural"  definition, which we may  suppose represents 

the conditional distribution for all a >~0. The interpretation at tached to (3.4.21) is then 

actually valid in the sense that  F~(x)=P[En(t, x)lL_l(t)=O+ ]. More generally, we may  

develop an alternative expression to (3.4.22) as follows: In  (3.4.18) with n = l ,  let (~ be 

successively u + h  and u, subtract  the second from the first, divide the equation by  h, 

and take the limit h - ~ 0 + .  Substituting the resulting form of ~Gx . - I (X ,  u ) / ~ u  in (3.4.22) 

yields(1) 
P[EI(t, x) I L_l(t) = a] = 1 - [gl(x + a)/gi (a)];  (3.4.23) 

here again the right side becomes Fl(X ) if a = 0  + ,  and n = 1 [recall gl(0 + ) =ill. The preced- 

ing discussion is summarized in 

THEOREM 3.4.2. The Fn are related to the recurrence times through equation (3.4.19). 

The derivative o/ G~.-l(X, ") exists and (3.4.20) permits the F~ to be expressed in terms o/ 

this derivative. Moreover, F n is one version o/ the conditional probability distribution o/ En 

in the wide sense relative to B, and evaluated on the set o/ constancy L_l(t)=O+. For the 

case n = 1, this conditional probability is also given by (3.4.23). 

3.5. Distribution of  the tn 

I t  would be convenient if the recurrence and (unconditioned) interval statistics were 

directly related, so tha t  one set of statistics could be calculated from the other. However, 

(x) W e  h a d  con jec tu red  t h a t  OGn. -1 (x, u)/Ou = gl(u) - Sn(X + u), whence  P[En(t ,  x) I L - I ( t )  = a] = 
1 -  [Sn(S + a)/gx(a)]. Mr. P.  M. Lee  showed  b y  m e a n s  of a n  e x a m p l e  t h a t  t he  con jec tu re  is false. 
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the probability structure of the t=--or even their univariate distributions~carmot be 

uniquely inferred from that  of the recurrence statistics. Consequently, we shall have little 

to say on the distribution of the t=, although we can determine their general character. 

The first result along these lines is 

THEORE~ 3.5.1. I /  E[N(t, x)] < co, the probability distribution/unctions o/the t~ are 

uni/ormly absolutely continuous. 

Proo]. We show that  H, ,  the distribution function of t,, meets a uniform Lipsehitz 

condition. In fact, {w: u<tn<~v} =B*(u) f3 B=(v)= El(U , v - u )  by (2.1.1). Therefore, since 

G~(x) <fix for x~>0 
0 <Hn(v ) -'Hn(u ) <r - u )  </~(v -u ) .  (3.5.1) 

The next  theorem demonstrates the essential lack of uniqueness of {tn} for specified 

recurrence statistics. 

THEORE~ 3.5.2. Let {t~} be a stationary point process. Then there exists another point 

process {t~} with the same statistics on (L,(t)} (and hence also stationary). 

Proo/. For the new s.p.p., we define 

�9 ~ = 3, +tom T, (3.5.2) 

in which (~ refers to the Kronecker delta, and T is any finite-valued random variable 

independent of {Vn}. To be precise, take (~1, :~1, pl) tO be the probability space on which 

{Tn} (and thus also {tn}) is defined, and similarly (~2, :~,, pu) as the probability space for 

T. For the new process, specify a probability space (~, :~, P), in which ~ =~1  • ~2, ~ is 

the a-algebra which is the completion of the extension of :~1 x ~2, and P is the extension 

of the product of p1 and p2 to ~:; see Halmos [9], Section 49. 

A consequence of (3.5.2) is that  

B~(t) = Bn( t -  T), (3.5.3) 

where B~ is defined in an obvious manner, and B n is a set in the product space that  re- 

sumes its previous connotation for every section determined by a w~ E ~ .  Because E~[E~] 

is an intersection of Bn[B~] sets, the relation (3.5.3) implies E~(t, x )=E~( t -T ,  x) in the 

same sense as (3.5.3). We have therefore 

n 
P [ N  E~j(ti, xl)] = p2 (p i [  N Ek~(t t -- T ,  xt)] }. (3.5.4) 

1 

in which Fubini's theorem provides assurance that  the integration can be undertaken in 
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the order indicated on the r ight-hand side. But for each w 2 E~  2 (always excepting a set 

of zero product measure) 
?t 7t 

pl [  13 E~( t j -  T, xj)] = P~[ N Ekj(tj, xj)] (3.5.5) 
1 1 

by the stationarity of {tn}. The right side of (3.5.5) is no longer a function of w 2, so that  

it remains unaffected by the application of p2. Thus we have shown that  P [  17 ~E~j(tj, xj)] = 

pl[ 17 ~Ekj(tj, xj)], which is the conclusion of the theorem. 

In addition to the theorems of this section, there are a number of negative results 

that  deserve mention. For instance, the multivariate distributions of the L~(t) fail to 

determine (uniquely) those of the v~. If it is assumed that  the vn are mutually independent, 

it need not follow that  they are also identically distributed (cf. Section 4.2). Alternatively, 

the ~n, n # 0, may be identically distributed without being independent (cf. Section 4.5). 

Finally, we note that  the phenomenon asserted by  Theorem 3.5.2 may occur in cases 

where {tn} and {t~} differ by other than a simple shift (cf. Section 4.3). 

3.6. An ergodic theorem 

In renewal theory, an argument based on the strong law of large numbers implies 

that  limx_,~[N(t, x)/x] =fl, except on a set of zero probability independent of t. The same 

need not be true for an s.p.p, with finite mean; in fact, the limit of N(t, x)/x may well be 

a random variable, which means that  the field of invariant sets generated by  the shift 

transformation is non-trivial (see Section 4.3 for examples). As would be expected, there 

is an ergodic theorem that  takes into account the circumstances just described. 

THV.OREM 3.6.1. Let E[N(t, x)]<cr  and let B be the/ield o/invariant sets under the 

trans/ormation T, de/ined by Tk[N(O, 1)] =N(k,  1). I /  E[N(0, 1)]B] is any (]ixed) version 

o/ the indicated conditional expectation, there is an m-set A (depending on neither a nor t), 

with P(A)=0 ,  such that when a~>0, 

lira [N[t, ax)/x]=aE[N[O, 1)]B], all wCA. (3.6.1) 

Proo]. By Theorem 2.3.1 (ii), N(n, 1), n=O, 1, 2 ..... is a stationary process whose 

mean (by assumption) is finite. The Birkoff ergodic theorem (of. Doob [4]) then states 

that  there is a set A, P (A)=0 ,  such that  

n N lV(0, n ) /n  = n  -1 Y ( j -  1, 1)~E[N(0,  1)IB ] (3.6.2) 
1 = 1  

whenever w ~A. T'o show that  the same result applies to N(t, n)ln, t >10, consider N(t, n ) =  
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N(0, n)-N(O, t )+N(n ,  t), which follows from Lemma 2.1.3 if hr(0, t )<  ~ .  The latter is 

true except on a set of zero probability that  does not depend on t (Corollary 2.2.1); hence 

we even have [N(0, t)/n]-~ 0 as n-~co, except on this fixed set. Moreover, [_hr(n, t)/n] ~ 0 
as n - ~  except on a null probability set that  applies to all t. To prove this claim, it suffices 

(on account of the monotonicity of h r for all w--see the remark following definition 

2.0.1) to show 

P[{ lim N(n, k)/n}/> m -z] = 0 (3.6.3) 

for each positive integer m and k. To this end, define 

C(n, m, k) = {co: N(n, k) >~ m-in}. (3.6.4) 

C(n, m, lc) c {co: Lc~m-'l (n) ~</c}, so that  from stationarity and Theorem 3.2.2 (iii) 

ZP[C(n, m, k)] ~<m Z Gn(k) < c~ (3.6.5) 
n n 

whence an application of the Borel-Cantelli lemma (cf. Doob [4]) verifies (3.6.3). For 

t < 0, the proof tha t  
llm IN(t, n)/n]--E[N(O, 1)1•], eo {~A, (3.6.6) 

is entirely analogous, and will be omitted. The A appearing in (3.6.6), although perhaps a 

larger zero probability set than that  denoted by  the same symbol in (3.6.1), fails to de- 

pend on t. 

If  a > 0 ,  N(t, [ax])/[ax] and N(t, [ax]+l)/[ax] both have (as x-~oo) the limit property 

ascribed to 1V(t, n)/n in (3.6.6). But  _N(t, [ax])<~_N(t, ax)<_N(t, [ ax ]+ l )  for an eo (see re- 

mark after Definition 2.0.1). Therefore, this limit property extends to N(t, ax)/[ax] and, 

since ax/[ax] ~1, to N(t, ax)[ax. This completes the proof. 

Since {t,} has no finite limits points, it is conjectured that  sample averages may be 

well-defined even if E[N(t, x)] = co. Indeed, Section 4.3 suggests the construction of a 

process for which N(t, x)]x converges (uniformly!) to a finite-valued random variable, 

but  whose mean is unbounded. 

4.0. Classes and examples of stationary point processes 

In this chapter, we study a number of classes of point processes, and examine their 

stationarity properties. Because most of these processes were motivated by applications, 

their analysis is doubly rewarding, particularly when explicit formulas are derived. The 

results obtained earlier are often adaptable to this purpose, furnishing relations that  facili- 

tate computation. 
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Several of the proofs tha t  certain processes are stationary are exceedingly tedious, 

and are therefore presented only in outline form. Fortunately,  Theorem 2.3.1 suggests 

tha t  stationarity may  be verified in any one of several forms, so tha t  a difficult proof 

can often be replaced by  an easier one. 

4.1. Poisson processes 

Among renewal processes, the Poisson process is the best known; it provides a plausi- 

ble probabili ty model for many  phenomena in reliability, queuing, insurance, etc., while 

possessing at tract ive mathematical  and computational properties. I t  might be expected 

tha t  there is an s.p.p, corresponding to the equilibrium Poisson renewal process, but  

this is unfortunately not the case. Such a process, with independent, identically distri. 

buted intervals and To independent of all these intervals, simply cannot exist according 

to Theorem 4.6.1. However, there is an s.p.p, subject to the following conditions (compare 

Parzen [12], p. 118 for the axioms of the Poisson renewal process): 

(i) The numbers of points in disjoint intervals are mutual ly independent. 

(ii) (3.4.13) is satisfied. 

From (i), Gn_l(x, h)=P[{N(t ,  x)>~n} N ( N ( t - h ,  h)>~l}] =Gn(x)Gl(h), so tha t  F~=Gn be- 

cause of (3.4.19) and (ii). This relationship, together with (3.4.1), yields (for positive 

argument), the sequence of differential equations 

fl-lS'~ +S~ = 1 +S~_1, Sn(0+) = 0 (4.1.1) 

which may  be solved recursively. We write the solutions as 

/,(x) = gn(x) = f l( f lx) ,- le-~(n - 1)!, (4.1.2) 

which corresponds to the classical result. 

In  place of the Poisson renewal process requirement tha t  the intervals be mutual ly 

independent and identically distributed (precluded for an s.p.p, by  Theorem 4.6.2), we 

substitute the weaker condition 

(iii) The Tk are mutual ly independent, ]c ~= 0. 

We shall construct a process meeting (i), (ii), and (iii); further, the intervals will be iden- 

tically distributed with the exception of T_I. Indeed, each v,, n ~= - 1, has probabili ty den- 

s i ty/1 as given in (4.1.2). Let  3 be a new random variable having this same density, with 

3 independent of 3~, n =~ 1. Then 3-1 shall be specified by  3-1 = 30 + 3. 

For the process just described tn=Z'~3 k for n>~0 and t ~ = - 3 - Z ~  ~ 3~ for n ~ < - 1 .  

The process on the positive half axis is thus a Poisson renewal process, and the one on 

the negative half axis is a reflection of such a process. Further,  the processes on the two 

half axes are independent, and have identical statistics for numbers of points in intervals: 
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To prove consecutive interval stat ionari ty it remains to consider N(t, x) such that  (t, x + t] 

contains the origin. Now N(t, x)=N(t, - t ) + N ( 0 ,  x+t) for this case, so that  {N(t,-t), 
1~(0, x+t ) ,  N ( t l ,  Xl) ,/V(t2, X2) . . . .  } is a collection of mutual ly independent random vari- 

ables if the (re, xr + ts] are not only all disjoint, but  also disjoint from (t, t + x]. Then 

{N(t, x), 2V(ti, xi) ,/Y(t2, x~)...} also constitute a mutual ly independent set. In  view of 

this, consecutive interval stationarity requires only that  the statistics of N(t, x) be the 

same as tha t  for any  other interval of length x. But  the latter follows from 

P[N(t, x) = n] P[N(t, - t) = k] P[N(0, x + t) = n - k] 
k=O 

=~ (-flt)ke+~t(fl[x+t])"-ke-~tx+t~/k!(n-k)!=(flx)"e-~/n! (4.1.3) 
k=0 

which is just  what it should be. 

One can generalize the Poisson s.p.p, by  relaxing (ii) and (iii). For example, one 

lets v-a, 3-1, ~0, v2 . . . .  remain as before, and takes the other vk as zero with probabili ty 

one, thus assuring t2~ = t~n+l. More complicated variations involve vk tha t  are either zero 

or exponentially distributed, the choice being subject to some (stationary) probabil i ty 

law; if the choices for successive 3k are mutual ly independent, we retain (iii) but not (ii). 

4.2. Periodic processes 

The class of s.p.p, includes some whose intervals are all determinate, and which 

manifest a periodically recurrent pattern.  We shall describe periodic processes, show them 

to be stationary, and calculate some of their statistical parameters.  I t  will be assumed 

throughout that  the period in question is unity; this is done for convenience, as changes 

to an arbi trary period are easy to make. 

Suppose that  we have non-negative numbers T1, v2 ..... vN with the additional proper ty  

N 
3~ = 1. (4 .2 .1 )  

1 

We then take Vk+~=3k to complete the definition of {3,,} for positive indices. For the 

negative indices k =  - 1 ,  - 2 ,  - N  let 3 Z -k-1 the definition again being com- -.., k ~ )=0 3N-J~ 

pleted by  vk+~=3~. The only t ruly random element in the process enters through 3 o. 

We identify ~ with [0, 1], :~ with the Lebesgue measurable sets on this interval, and P 

with Lebesgue measure. I f  {tn} is obtained from {vn} in the manner prescribed by  Deft- 

nition 2.0.1, the possibility tha t  {tn} is an s.p.p, hinges on the specification of 30. We 

shall choose v0(w ) =to, which is the simplest choice of the random variable 30 that  ensures 

the stat ionari ty of {t~}. 
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To prove  t h a t  {tn} is forward s ta t ionary ,  we introduce Ikj(t, xj), the funct ion uni ty  

on Eke(t, xj) and  zero otherwise. We need to show tha t  E[1-]j~llkj(t, xj)] does not  depend 

on t. I f  we can establish t h a t  each I~(t, xj) can be expressed as a funct ion of t - o )  periodic 

in its a rgumen t  (with period unity) ,  the  same will be t rue  of any  p roduc t  of characterist ic  

functions of this type.  For  fixed bu t  a rb i t r a ry  kj, xj we call the  p roduc t  f u n c t i o n / ;  then  

; ; f: E[ l-[ Ikj(t, xj)] = /($ - co) do) = / (t - o)) do) = /(w) dw. (4.2.2) 
i = 1  - 1  

Here  we have  used the fact  t h a t  P(do))=do) on [0, 1], and  t h a t  the  change in limits is 

val id  because of the periodici ty  o f / .  

To complete  the  a rgument ,  we re tu rn  to lk(t, x), and prove  t ha t  this r andom var iable  

is a periodic funct ion of t - o ) .  Le t  {t'n} be the  non- random quanti t ies  t'~ =tn-To(o)); these 

sat isfy the relat ions t'~+jN=t~ §  for all integer ~. Subst i tu t ion in (2.1.1) leads to 

Ek(t, x) = U {[t,,+l >t-vo(co)] N [tm+~--~t-vo(o)) +x] ) .  (4.2.3) 
rn 

Since T0(o) ) =o), it is seen tha t ,  for fixed k and  x, o) E Ek(t, x) iff t - co  satisfies the  inequalities 

s ta ted  in (4.2.3). Thus  Ik(t, x) is a funct ion of t - c o .  The  periodici ty  of this funct ion is a 
/ �9 �9 t 

consequence of t'~+~N=t~,+j. Indeed,  replacing tm+l b y  t,,+jN+l and  t~+k b y  t~+jN+k (any 

integer j) does not  al ter  the r ight  side of (4.2.3) for the  t ransla t ion of indices is immater ia l  

in view of the indicated union over  all indices. Finally,  we observe t h a t  {o): t ~ +~N+I > t --O)} = 

{O): t~n+~ > ( t -  i)--o)} (and likewise for the  other  set), so t h a t  Ek(t, x)= Ek( t - j ,  x); this com- 

pletes the proof. 

For  hr~>2, the  Tj, j = l ,  2 ..... N can be chosen to have  different lengths, so t h a t  the  

T~, n =P 0, are not  identically distr ibuted.  Since such a process is also in terval  s t a t ionary  

(cf. Theorem 2.3.1), i t  is s t a t ionary  b y  McFadden ' s  definit ion [10] bu t - - -con t ra ry  to 

MeFadden ' s  a s se r t ion~{~ ,}  does not  const i tute  a s t a t ionary  stochast ic  process. 

We shall now compute  some of the  statist ics of the  periodic s.p.p. Le t  Tk,, ~k . . . . . .  Vkz~ 

be a r ea r rangement  of Tj, j = 1, 2 . . . . .  h r such t h a t  0 <Vk. < ... <Tks, wi th  the  unders tanding  

t h a t  Tk~ = 0. B y  a simple calculation 

Gl(X) = ~ ~ ~kj + ( N -  n) x, ~k~ < x < ~k~+,, n = 0, 1 . . . . .  iV 1 (4.2.4) 

and  G,(x)= o(x). As is expected,  one obtains  f rom this E[N(t ,  x)] = N x  b y  appl icat ion of 

(3.3.4). We m a y  also calculate F , ,  which is 

F l ( x ) = n / N  for Vk~<X<T~+I (4.2.5) 

f rom (4.2.4) and  (3.4.1); the same result  is a t t a ined  b y  heurist ic reasoning. 



T H E  T H E O R Y  OF S T A T I O N A R Y  P O I N T  P R O C E S S E S  189 

The higher order distributions F2, F3 ....  and G 2, Ga .. . .  depend on the order in which 

the intervals of different lengths appear. In  general, it is easier to obtain the F 's ,  using 

the intuitive concept of counting "start ing from an occurrence". I t  is, however, possible 

to draw some conclusions on the F= and the higher moments of N(t, x) without explicit 

computation. Moments of all orders exist, and we may  obtain upper and lower bounds 

for these moments. All but (at most) N of the F ,  are either zero or one, and all but  

(at most) ( [ x ] + l ) N  of the F,(x) must  be zero. :For those whose values lie in (0, 1) the 

inequality 0 ~< F ,  ~< F 1 is useful if x < 1. In  any  case, this information m a y  be used in 

(3.4,4) to secure the aforesaid bounds. 

4.3. Compound processes 

The s.p.p, we have described thus far possess finite moments of all orders, and are 

ergodic in the sense of Section 3.6. Here, we shall sketch the structure of a class of pro- 

cesses which m a y - - b y  proper choice of a parameter  se t - -have  any desired moment  and 

ergodicity characteristics. 

Suppose that  ( ~ ,  ~ ,  P~) is a sequence of s.p.p, for i = 1, 2 . . . . .  Our compound process 

is then characterized by  ~ = U ~ (where the r ight-hand side is regarded a disjoint union), 

consisting of all sets of the type A = (.JA ~ with AtE ~ ,  and the probabil i ty measure 

specified by  P(A)=Ep~P~(A~). I t  is assumed, of course, tha t  the p~ ~>0, and tha t  Zp~ = 1. 

We omit the proof tha t  (~, ~, P) is a probabili ty space which generates a point process, 

and indeed an s.p.p. The individual s.p.p, and the p~ can be chosen to assure arbi trary 

moment  properties of N(t, x), subject only to the usual inequalities and stat ionari ty 

properties. As a specific example, we take p~ = 2  -~, and let the i th process be periodic, 
t - i  with uniform spacing t ~ - t ~ - i  =2  . Then N(t, x)/x converges uniformly to 2 ~ for some i, 

but E[N(t, x)] = ~ .  

4.4, The generalized skip process 

The so-called skip process is generated from an ordinary s.p.p, by  expunging certain 

of the points. An analogous process appears in renewal theory in connection with the 

s tudy of paralyzable counters (cf. Parzen [12]), in which formulas similar to ours have 

been derived. Such problems may  occur in queuing theory, where some of the queued 

customers do not, after all, require servicing. Our generalization will admit  not only the 

deletion of points (as suggested above), but  also the creation of several points where only 

one existed before. 

I t  is assumed tha t  {t~} is an s.p.p, associated with a probabil i ty space (~l, :~i, p1). 

There is also a space (~2, ~2, p2) which defines a s tat ionary process {y,}, with the yn 
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assuming only non-negat ive  integer values. The  p roduc t  space f21• ~ is generated,  :~ 

being the  complet ion of the  extension of 7x • ~z, with p robabi l i ty  measure  genera ted  b y  

P(A ~ • A ~) =p(Ai)p(A~),  A 1E ~1, A ~ E :~. Hence  {t~} and  {y~} are s ta t is t ical ly  independ- 

ent. Wi th  this terminology,  we define the  generalized skip process {t~} by  

p 

tn = min  tk (4.4.1) 
k 

~ . y l  > n 
e 

for n>~0, and  similarly for n < 0 .  This is clearly a point  process, bu t  one admi t t ing  the  

possibil i ty of certain pathologies.  To preclude these, we require t h a t  P [ y n > 0  for only a 

finite n u m b e r  of indices] = 0. 

We  assert  t h a t  the relat ion 

N(t,  x) = Y y~ I(t~) (4.4.2) 

is consistent wi th  bo th  (4.4.1) and  Defini t ion 2.1.2. Here  I(t'k) is (for fixed x and  t) the  

r andom variable  which is un i ty  ff t'~ E(t, t-t-x] and  zero otherwise. Suppose then  t h a t  

eoE[N(t, x ) = n ] ,  where N(t, x) is specified b y  (4.4.2). For  this co, there  is (since ($~} has 

�9 ~ t < t m + l " ~ -  no finite l imit  points) a largest  index m such tha t  tm <~ t, and  in fact  tm ' -<... 
t ~ t tm+r'~t+X<tm+r+l. Suppose Z ~ y j = s + l ;  then  ts<<-tm<~t. Also, if Ym+j is the  first  non- 

zero Yn whose index exceeds m, ~ + J y ~ = s + p + l ,  7"~<r, where ym+~=p, say.  Thus  

ts+~=tm+j>t, or eoEB*+I(t) N B~(t). Since ~m+lyt--n, y j = n + s + l  and so t ,+n~ < 

tm+r "~ t + x .  A similar a rgumen t  demons t ra tes  t h a t  ts+n+1 > t + x. I n  other  words, 

{~o:N( t , x )=n}c  U [B,(t) flB*+l(t) n B , §  0 B*+~+l(t+x)], (4.4.3) 
8 

where the  left  side refers to the  N(t, x) furnished b y  (4.4.2). 

Conversely, if ~o belongs to  the  r ight  side of (4.4.3), eo belongs to one and  only one 

t e rm  of the (disjoint) union. Then there  is an m such t h a t  ~ yj ~< s + 1, ~ +x yj ~> s + 2, 

whence t~ +~ = t~ +1 > t, and  yj = 0 or t~ ~< t if ~ ~< m. Actual ly ,  ~ yj = s + 1, for otherwise 

ts = ts +1, which is impossible.  The same a rgument  leads to  ~ +r yj = s + n + 1, ~.~ +r + 1 y~ >/ 

s + n + 2  for some r, wi th  tm+r<~t and, for ? ' ~ > m + r + l ,  $ / > t  or y j = 0 .  Then  

i m + r  m + T  m 

Z y~ I(t~) = Z y~ = ( Z - Y) yJ = n, (4.4.4) 
m + l  0 0 

and the proof is finished for n >~ 1 and  t >/0. The  cases of n = 0 and/or  negat ive  t are t rea ted  

analogously.  

For  the skip process, i t  seems more  convenient  to p rove  successive in terval  s ta t ionar i ty  

t han  any  of the other  criteria of Theorem 2.3.1. The  successive in terval  stat ist ics will 


