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w 1. Introduction 

In  this paper  we establish a var iety of facts  relating to analysis on a locally com- 

pact,  totally disconnected, non-discrete field, referred to hereafter as K. These fields, 

which include the p-adic number  fields and their finite algebraic extensions, have been 

studied in some detail in relation to algebraic number  theory and, more recently, in the 

subject of group representations ([2], [3], [5], [7]). 

In  these studies certain "special functions" arise as Fourier transforms of additive 

or multiplieative characters (and combinations of them). The usual approach has been 

to truncate the characters so as to produce L 1 functions on the additive structure (K +, dx), 
or the multiplicative structure (K*, d'x) of K and then work with the transforms of the 

t runcated characters. 

In  [3], however, the non-truncated characters are used in an essential way. I t  is 

our purpose to examine the transforms of the non-truncated characters in somewhat 

more detail than tha t  to be found in [3]. The "special functions" tha t  arise here are the 

gamma,  beta, and Bessel functions. These functions coincide with those introduced in 

[3]. We also t reat  the Hankel  transform which is not mentioned explicitly in [3]. The 

gamma,  beta, and Bessel functions are first introduced as complex valued functions on 

appropriate domains and these functions are then related to various distributions on 

(K +, dx), (K*, d'x) and (/~*, dR), the group of uni tary (multiplicative) characters on K*. 

This paper will be followed with applications to the representations of SL(2, K) by  

the former author, and to the s tudy of potential  spaces and Lipschitz spaces on the finite 

dimensional vector spaces over K by  the lat ter  author. 

In  w 2 basic harmonic analysis on K + and K* is treated, mostly without proof, but  in a 

form required in the later sections. The major  portion of the results stated are either well- 

known or may  be found in [3]. We supply the proof of a few of the less well-known results. 

(1) Work of this author supported by the U.S. Army Research Office (Durham), Contract No. 
DA-31-124-ARO(D)-58. 
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In  w 3 we present the gamma and beta functions. We show tha t  these functions can 

be computed explicitly. The gamma function turns out to be equal to the invariant factor 

Q(~z) (~z a multiplicative character) defined by  Tare (see [4], Ch. VII ,  w 3). 

In  w 4 the Bessel function is computed in terms of gamma functions and "trigono- 

metric polynomials". The properties of the Bessel function as a distribution are also detailed. 

We note tha t  Saito [6] has also defined a Bessel function for p-adic fields with certain 

restrictions. This arises in a somewhat different context from the Bessel function tha t  

we discuss here. These two Bessel functions are not the same, but  there seems to be a 

connection between them which is somewhat analogous to the connection between Bessel 

functions of different kinds in the classical case. 

In  w the Hankel  transform is treated and its properties as an operator on LV(K+), 

l~p~<2 ,  are developed. In  particular, it is shown to be a unitary operator on LS(K+). 

w 2. Prel iminaries 

Let  K be a locally compact, totally disconnected, non-discrete field. Such fields have 

been completely classified (see [1], p. 159). I f  K has characteristic zero, then K is either 

a p-adic field for some rational prime p or a finite algebraic extension of such a field. 

I f  K has characteristic p 40,  then K is isomorphic to a field of formal power series over a 

finite field of cl~aracteristic p. 

Let  K+ be the additive group and K* the multiplicative group of K, and let dx be 

a Haar  measure on K +. There is a natural  (non-arehimedean) norm on K satisfying the 

relations:d(ax)=]a]dx; I +Yl <max[l l, lYl]; and I +yl =max [1 1, lYl] if *IYl- 
A Haar  measure on K* is given by  d*x = Ix]-ldx. 

The set O = (x: Ix ]~< 1} is a subring of K, the ring of integers. We normalize dx so 

tha t  O has measure 1. The set ~ = {x: ] x ] < 1} is the unique maximal ideal in O ( ~  is also 

principal). O / ~  is a finite field and contains q elements, q a prime power. Let p be a gen- 

erator ot $ .  Then [ p I = q-l, and, for all x E K either Ix ] = 0 (when and only when x = 0) 

or ] x ] = q= for some integer n. I t  follows tha t  ~= has measure q-=, n >71, and the measure 

of (x: Ix ] =  q=) is qn/q, (1/q' = 1 -  i/q) for all integers n. By  an abuse of standard notation 

we define ~ = =  {x: Ix ] ~< q-=} for all integers n. The collection (~n}W=0 is a neighborhood 

basis for the identi ty in K +. 

There is a non-trivial character Z on K+ which is trivial on 0 = ~o but  is non-trivial 

on ~-1. Every  uni tary character on K+ has the form Z=(x)=X(ux) for some uEK.  The 

mapping u ~Zu is a topological isomorphism of K + onto -~+, so we identify K+ and its 

dual. The Fourier transform on K+ is initially defined on the complex-valued functions in 

Ll(g+)  as ](u) = S~/(x) g(ux) dx. 
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Let  S be the set of functions oll K which have compact support  and are constant on 

the cosets (in K +) of ~ for some n. $ is a linear space of continuous functions on K and 

a topology is induced in $ if we define a null sequence to be (~k) where the ~k all vanish 

outside a fixed compact set, are constant on the cosets of a fixed ~n, and tend uniformly 

to zero. In  this topology, $ is complete. S is called the space of testing functions on K+. 

$', the topological dual of $, with the weak topology is called the space of distributions 

on K +. S' is also a linear complete space. The action of / in $ '  on an element ~ in $ is denoted 

(/, ~). The Fourier transform is a topological isomorphism of $ onto itself. The following 

important  relations are used in an essential way in the sequel. 

LEMMA (A1). Suppose that ~E..q. q) is supported on ~n and is corestant on the cosets (in 

K+) o/~'~ i /and  only i / ~  is supported on ~-'~ and is constant on the cosets (in K +) o / ~ - ~ .  

Proo/. I f  ~ is supported on ~n and we take any h e K such tha t  I hl < qn, then 

r 4(u), 
J lxl <<- q -  '~ J lxl < a - ~  

since I xh I ~< 1 for x in the given range. Hence ~ is constant on the eosets of ~ -n .  On the 

other hand, if ~ is constant on the cosets of ~m, then 

= f X(xu) dx = f Kz(xu) + h) dx 

for any h E K such tha t  [h I ~< q-re. Changing variables we get 

= z( ' hu) f = 

I f  l u I > qm, then there is an element h in ~m so tha t  l uh I > 1 and ):(uh) =~ 1. Hence q~(u) = 0. 

Q.E.D. 

For every / e $', the Fourier transform of / is in $ '  and is defined by  ([, ~0) -- (/, ~). 

The Fourier transform is a topological isomorphism of $'. 

We define (I) n to be the characteristic function of ~ ' .  OwES and ~ = q - ~ q b _ n ,  so tha t  

�9 o is an eigenfunction of the Fourier transform on $cL~(K+).  We note that  {q"(I)~}~=0 

is an approximation to the identi ty on (K +, dx) which is non-negative; qnO n e $ for all n. 

I t  is easy to see tha t  $ is dense i n / 2 ( K  +, dx) =/2(K+),  1 ~<p < c~, and also in the continuous 

functions that  vanish a t  infinity. Locally integrable functions and measures on K + are 

identified with the elements in $'  which they induce. For example, if / is locally integrable 

we set ([, qJ)=fx/(x)q)(x)dx, q~e$. We single out one measure, the "delta function" 0, 

which has mass one a t  the origin, (~, ~)=r  ~ E $. 
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For  locally integrable / we define [/]n to be the funct ion which is equal  to / on the set  

(x:  q-n ~ ix ] ~ q~} and  zero otherwise. The  principal  value integral  of ] is defined b y  

P I  /(x)dx= lim fj [f]n(x)dx. 
d K n . . . . ~  �9 [ 

Plancherel ' s  theorem on K+ takes  the  following form: If /EL'(K+), then  {S K []]n(x) Z(ux) dx} 
converges in the L ' - n o r m  (as n + o o )  to L ] E L '  and  Iltll, = II/t1•. I f  PSKC/I,(x)~((ux)dx exists 

for a.e. ueK,  then t(")=PSK/(x)Z("~)d~ for a.e. ~ e K .  

Let  O* = O - ~ be the group of uni ts  in O. There is an e lement  e in O* of order  q - 1. 

The  set  (0, 1, e, e z . . . . .  s is a complete  set  of coset representa t ives  for  O / ~ .  The  set  

A = { x : l l - x l < l }  is a compact subgroup of K*, and even'  �9 in K* can be ~ i t t e n  

uniquely  in the form x = pneka, where [ x I = q-n, 0 ~< k ~< q - 2 and  a E A. Thus  K* is the direct  

p roduc t  of three groups,  K * =  Z x Zq_ 1 x A, where Z here denotes  the infinite cyclic group 

of e lements  {pn}~=_ ~ and  Zq_ x denotes  the  finite cyclic group of e lements  {e ~, 0 ~ k ~< q - 2 } .  

Define A o = 0", A~ =A = 1 + ~ ,  A n = 1 + ~3 n, n ~> 1. The  collection {An}~=0 is a neighborhood 

basis for the ident i ty  in K*. 

Le t  ~ E~*  be a (multiplieative) un i t a ry  charac ter  on K*. Since ~ is continuous we see 

t h a t  g is t r ivial  on some A n. I f  g is t r ivial  on A 0 = O*, we say t h a t  ~ is unramif ied  or has  

ramif icat ion degree 0. I f  ~ is t r ivial  on An, bu t  not  on A,_  x (n ~> 1), we say t ha t  g is ramif ied 

and  has ramif icat ion degree n. 

The  direct  p roduc t  representa t ion  for K* shows t h a t  K* is the direct  p roduc t  of the  

circle group (uni tary  characters  depending only on the  norm of x, ze(x) = Ix I ~, -zc/ ln  q < ~ < 

~/ ln q), the cyclic group of order q - 1  (uni tary  characters  depending only on e k, z~(e) a 

( q -  1)st root  of uni ty)  and  an  infinite discrete group ~ ,  the dual  of A (uni tary  characters  

de te rmined  b y  their  values on A). There  are only a finite n u m b e r  of characters  of A of 

each ramif icat ion degree, so t h a t  A is countable.  Wri t ing  ~E/~* as g = ~ * I x l  t~, ~ real, 

~* a character  on O * =  Zq_ 1 • A, we see t h a t  ~ *  can be viewed as a countable  discrete 

collection of circles, each circle T~. indexed b y  a charac ter  ~* on O*. H a a r  measure,  

d~, on/~* is then  given b y  integrat ing over  each circle T . .  with respect  to the  usual  measure  

dar and  then  summing  over  the  countable  collection {T~., ze* E O*}. 

I f  ] ELI(/~ *, d~) and  we choose a suitable normalizing factor  (to be de te rmined  below), 

then  

fk,/(z 0 dze= ~1  f,, /(ze) d~ = ~1  t.~q 
a eT , ,  ~ j_n/lnq/( IXI")d . 

The collection of tes t  functions,  $*, on K* is the  set of complex valued funct ions on 

K* with compac t  suppor t  (go E $* implies go(x) = 0 if Ix [ < q-n or Ix I > q* for some integer n) 
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and which are constant on the cosets (in K*) of some Am. A topology is induced in S* 

by  defining a null sequence to be {~%} where the ~k all vanish outside a fixed compact set 

in K*, are constant on the cosets of a fixed A n and tend uniformly to zero. The topological 

dual, S*', of S* is called the space of distributions on K*. 

The following lemmas give the exact relationship between the space S of test functions 

on K + and the space S* of test functions on K*. 

LEMMA (A2). Suppose q~E S and qJ is constant on the cosets o /~n .  Then qJ is constant on 

the cosets o/An-k in ?~k ]or all integers k <~n. In  particular, i] qJ(O) =0, then q~ ~ S*. 

Proo/. Assume that  aAn_~=bA~_~, [a[ ~ [b[ =q-k, k<~n. Then ab-iEAn_k, so that  

1 - ab -1 E ~n- k. Using the fact that  ] a - b ] = [ b ] ] 1 - ab-1 ], we see that  a -  b E ~n so that  

~(a) =~(b). :Furthermore, if ~v is supported on ~-m, - m  ~<n, then ~ is constant on the 

cosets of An+re. Hence, if ~(0)=0,  ~ES*. Q.E.D. 

LEMMA (M1). Suppose qJES* and q~ is constant on the cosets o/ An, n>~O. Then qv is 

constant on the cosets o/~n+k in K - ~k+l /or all integers k. In  particular, q) E S. 

Proo/. The first part  is essentially the reversal of the corresponding proof in Lemma 

(A2). If  q ( x ) ~ 0  on ~m+l, then q is constant on the cosets of ~m+n so t h a t q E S .  Q.E.D. 

The collection of test functions 3" on/~* is the set of complex valued functions on/~* 

with compact support (vanishing off a finite number of circles), and on each circle is a 

trigonometric polynomial ( hat is, ~(g) =q(g  [ x[ ) = ~y=_ m a~(~*) qt'~). A topology is induced 

in 3" by defining a null sequence to be {~k} where the qk all vanish outside a fixed com- 

pact set in/~*, the degrees of the restrictions of qk to T , .  have a common bound for each 

circle T , .  and tend uniformly to zero. The topological dual, S*', of S* is called the space of 

distributions on ~*. g* and S*' are complete linear spaces. As usual we identify the distri- 

butions induced by  locally integrable functions and measures on K* and R* with the 

respective functions or measures. 

Let  xF n be the characteristic function of An, An the characteristic function of those 

circles in/~* corresponding to the characters g* which are reamified of degree less than or 

equal to n. We denote this set of characters by A~. 

The Fourier transforms on K* and _~* are denoted Mellin transforms in this paper. 

They are initially defined on LI(K *, d'x) and Ll(/~ *, dg). I f / eL1 ,  the Mellin transform 

of / is denoted by  f. H / f i L I ( K  *, d'x) ,  

](~) = f~,l(x) zt(x) d* x. 
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I f  / E L I ( ~  *, dT~), ](x) = f k , / ( g  ) 7~ -1 (x) dTe. 

I t  is easily checked tha t  the Mellin transform is a topological isomorphism of S* onto 

5" and of S* onto S*. 

These Mellin transforms extend to L*(K *) and L2(I~ *) by the usual Plancherel argument.  

We may  select  the normalizing factor, a, so tha t  I I / l l~ ,x= l l f l l 2  d.  for /EL*(K*) and 

IIgIl~,d-= 11~112.~.~ for gEL2(~*). 
The following facts are used in an essential way in the sequel. 

L]~MMA (M~). oreS* and q~ is supported on the set {x:q -~< - ]x I <~q~} and is constant on 

the cosets (in K*) o/Am i/and only i/ ~)ES*, ~ is supported on A~ and the restriction o/ ~to 

each circle T•, is o/degree bounded by n. 

Proo/. Suppose ~0 E $* and ~ is constant on the cosets of Am. Take ~ E/~* such tha t  the 

ramification degree of g is greater than m. Then 

Since ~ is not trivial on Am, the integrals in the sum are all zero. Hence ~ (~ )=0  ff re,Am. 

Furthermore,  we see that,  if re(x)=~*(x)]x] ~, then 

~(~)=f~_.<..,< ~(~)~*(x)l~l ''d*~= ~ (r q~(x)~*(x)d*x)q 'k% 
k =  - n  \ J  lxl =qk 

I f  we restrict ~ to a fixed circle T=., then we get trigonometric polynomials of degree not 

greater than n. 

Now suppose ~ e S*, ~ restricted to T . .  has the form 

k 
~(~*l~l'~) = 7. ~,(~*)~'=. 

Y =  - -  ]C 

Suppose further tha t  ~ is supported on A ~ and tha t  the degrees of the trigonometric poly- 

nomials above are bounded uniformly by  n. We then have 

f" 1 k(~*) /'~/]n q 
r e ( x ) = / ^ . r  7. - Z .a.(~*)=*-'(~)J_,,~,#'=lx]-'=d=. 

J K  ~*eAm a , =  -k(. ) 

I t  is clear that, if I~1 <q-"  or I~l > q", each of the integrals in the last sum is zero. Hence 
is supported on the set {x:q-"<]x] <~q"}. Finally, if x and y are in the same coset of 

Am in K*, then g(x)=~e(y) for all g CA;,. Substituting into the formula above, we see tha t  

~(x) =of(y). Q.E.D. 
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We see easily that  q ~F0=Ao, q ~Fn=An, n~> 1. This shows that  the measure of Ao is 

q', and that  the measure of A~, n/> 1, is q~ (using Plancherel). We conclude that  the normal- 
t nltlJ* izing constant a is given by a = q' In q/2rt. I t  then follows that  the collection {q ~F o, q ~}~ =1 

is a non-negative approximation to the identity with each of its terms in S*. Also, it follows 

that  the number of characters on O* ramified of degree 0 is 1, of degree 1 is (q -q')/q' = q - 2 ,  
and of degree n ~>2 is (q'~-q~-l)/q' =q~-2(q_ 1)2. 

We no'~ note that  if ] ELI(K*), g ELI(/~*), then SK*/(x) ~(x) d*x = .~ ,  ](re) g(n) dre. If / is a 

distribution on K*(/~*), we denote the action on a test function ~v by </, ~>. We extend the 

Mellin transform to any distribution on K*(/~*) by defining for any / E S*'(S*') a correspond- 

ing fE S*'(S*') which satisfies <[, ~v> =</, (p> for ~ E S*($*). The Mellin transform is a topo- 

logical isomorphism of $*'(S*') onto S*'(S*'). 

n 
Let  D~ (x) = �89 + ~ cos vx = sin (n + 1/2) x 

~1 2sin(x/2) ' 

the Dirichlet kernel. Then let 
c O  

[ 0 , re* ~ 1. 

x f~ 1 

Each dn E S*, and {d~}n=0 ~ is an approximation to the identi ty but  is not non-negative. 

Let  
1 " 2 ( 

Ks(x) (~+~) .:0~ D'(~)=7~-~ i ~7;//27 J =1,:i_: ~ -  

the Fejer kernel. Then let 

~.(-)--k.(=" Ixl"):/7 K~(~lnq),  

[ 0 , :g* ~ l .  

Each In >1-0, In E ~3" for all n and {k,},%o is an approximation to the identity. 

Let  | be the characteristic function of 0".  We calculate and find that  a~, is the charac- 

teristic function of the set {x: q-= ~< Ixl < q~) so tha t  

~.(~)= i o(,,p"~). 
I , '=  --71 
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From our definition of the principal value integral we see that  

By an obvious analogy we define (C, 1) (Cesaro) summability of integrals on K by 

(C, 1) /(x) dx =n-~lim /(x) kn(x) dx =n~clim ~ ~=0 -'<tzl<q" 

�9 = ~ m  <( ]x ] / )  ~ ,  k~>. 
n - - ~  oo  

If g is any (mnltiplicative) character on K*, not necessarily unitary, we may write 

:7~(x) =~:l(X)Ix] B where ~!: l is a unitary character and fl is a complex number. We may also 

write ~(x) =~*(x) [xl v where u* is a character on O*. In  this case, g is unitary if and only if 

Re(~)=0.  Given two characters ul(x)=~(x)lx]~" and ~(x)  * =~2(x)lxlr ' ,  we see that  

x1 =g2 if and only if g* * 1 =7r2 and ~1 -~2 = (2kgi) In q for some integer k. In  the remainder of 

this paper we restrict ourselves to the range - ~ / l n  q < I m  (~)~<~/ln q. Thus, when we 

consider functions analytic in the parameter ~ we restrict ourselves to this strip. All the 

functions we consider may be extended to entire or meromorphic functions on the complex 

plane by  periodicity. 

w 3. Gamma functions and beta functions 

We define the gamma function, F(rt) = F(zt* [x[ ~) = F~,(~), for all characters ~ (not 

necessarily unitary) on K* except ~t_= 1. 

De/inition i) If ~ is ramified, F(~) =F, . (~)=P~Kx(x)~(x)]x[-~dx.  

ii) If Re(~)>0,  F(]xl~)=Fx(oO=P~z(x)lx]~-~dx. 
iii) If Re (a )=0 ,  a # 0 ,  FI(~)=(C, 1)~KZ(x)[x]~-ldx. 
iv) If Re(~)<0 ,  Fl(a) is the analytic continuation of F 1 into the left 

half-plane. 

In  our first theorem below we show that  this definition makes sense by  explicitly 

evaluating the integrals in the definition. The crucial details in the computation of the 

gamma function are contained in the following lemmas. 

LEMi~IA 1. Let ~ be rami/ied o/degree h>~l. Then, i/ [u[ #qh, ~l~l.~g(ux)zt(x)dx=O" 

Pro@ Let / (x)=zt (x)  if ]x] =1, /(x)=O otherwise. Then, by Lemma (M1) / e $  and i t 

is constant on the cosets (in K +) of ~a. Hence, by  Lemma (Ax), 

l(u) =f_Z(ux)re(x)dx=O,j, if lul >q~. 
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Now let g(~)~x(u~), I~] =1, g(~)=0 otherwise. Suppose lu I = r  Then, if k>~l, it follows 
from Lemma (A~) that  g E 5" and g is constant on the cosets (in K*) of A k. I t  follows from 

Lemma (M2) that  

= [  g(ux)n(x)dx=O if l < k < h .  
#(7"~) g lx[ : l  

Finally, if k < 1, the result is immediate. Q.E.D. 

LEMMA 2. [qk/q,, ]r 

f l  g(x)dx 1, =1, # 
x[ ~ qlr 

O, k> 1, 

Proo[. g(x)= 1 if I xl-<< 1 so the cases for k-<< 0 are immediate, g is a non-trivial 

character on the compact groups ~-~, k~> 1. Thus ~-~%(x)dx=O,  k~> 1. The result fol- 

lows by setting 

There is also a multiplicative analogue to Lemma 2. 

LV.MMA 3. I] ~ iS rami/ied o/degree h>~ 1, then 

I O, O<b<h-1 
f ~ r~(z)dz = _q-h, _ 1 k 

Proo/. The proof follows from the facts that  

f ~(x)dx=O if O<-gk<h, and fA ~ dx if k~>h. Q.E.D. :r(x) d x  = = q -k  
k 

THEORV.M 1. 

i) 1] ~ iS rami/ied o/degree h>~ l, F(~e) =F . . (~)  =C..qh(~-�89 ), where IC,.]=I, C..-,C~. = 

n * ( - 1 ) .  

ii) Fx(~)=(1--q~-~)/(I--q-~), ~ : 0 .  FI(~) has a simple pole at ~ = 0  with residue 1/q']n q. 

1/FI(~ ) has a simple pole at ~=1 with residue -1/q'  In q. o~=0 is the only singularity of 

Fa(oQ, o~ = 1 the only zero. 

iii) For all :~, 

r . . (~)  =~*( - 1) r . . - ,(a) ,  r~, (~) r.._,(1 - ~ )  = ~ * ( - 1 ) ,  a~d so r . . (~)  r . . (1  - ~ )  = 1 

with the obvious interpretation at ~(x) = [x[. 
19 - 662901 A c t a  m a S h e m a t i c a .  116. Imprim6 le  21 sop tembre  1966. 
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Proof. I f  ~ is ramified of'degree h i> 1, then Lemma 1 implies tha t  

Jk l  =qh 

= F . ,  (�89 qh<=-+> = C.,qh<=-+), where C. ,  = F . ,  (�89 

Now suppose that  ~ is unramified, ~(x)= Ix I=. From Lemma 2 we see that  

fK[X(x)lxl=-l],dx : __q=-I _~ 1/q' k : 0 ~ q I ~ : " 

If Re(a)>O, the limit is (1 -q=- l ) / (1-q-=) .  If Re(~)=O, #=t=0, the (C, 1) limit is also 

(1 -q : - l ) / ( 1 -q -= ) .  Continuing the function into the left half plane we see that  FI(# ) and 

l/F1(#) are meromorphic functions as stated. The calculation of the residues is left to the 

reader. 

Par t  iii) for unramified characters is immediate from the expression for FI(~), cr =4=0. 

Now suppose that  ~ is ramified of degree h >~ 1. The fact that  

F~,(=) = ~ * ( -  t)  r . . . .  (~) 

is easily seen by  changing variables in the defining integral. Let  f(x)=#(x)Ix 1-1, if Ix I : 1, 

f(x) =0 otherwise. T h e n / e S ,  and, using Lemma 1, we see that  ] (u )=F(n) r r i (u )  if lul =q~ 

and zero otherwise. Using Lemma 1 again, we see that  

F. ,  (o0 F . . . .  ( 1  - =) = r<=>f,=, =o/1_ (u)lul x(u)lul-'du 

= fl~l=qF(n)~-'(u)Z(u)du= fj(u)Z(u)du=/(-i)=:t(- I) 

since Fourier inversion holds on $. The relations for C=, in i) are an immediate consequence 

of iii). Q.E.D. 

For any two multiplicative characters, re =zr* Ix I% 2 =2*Ix I P, which are ramified, the 

constants C=,, CA, and C,,x, are related in a simple fashion. 

TH~.OR~.M 2. Suppose that ~* and 2" are characters on O* which are ramified of degree 

h x >~ 1, h 2 >1-1 respectively. Let h 3 be the ramification degree o/zt*2*. Then 

(a) C,,,Ca, = C~,x,q an'-h')/2 f zr*(1 - x )  Z*(x)dx, h l > h  2. 
Jlzl=q~=-h' 

(b) C..C~.=C..a.q (a~.-2h'>12 f ~r*(x)~,*(1-x)dx, hi=h2, O < h 3 < h  1. 
J lzl=qh~-~ 

(c) C~,C~,=C~,~.q~12flll~lfl~*(x)~*(1-x)dx, hl=h~=h3. 
I f  h3=O , then I* =7t *-1 and C=.C~. = z t * ( -  1) by Theorem l, i). 
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Proo/. I f  h 1 > h2, then  g*~t* is ramif ied of degree h x. We  then  have,  f rom L e m m a  I 

and  Theorem 1, 

C=.a. ( g*(1 -x)  2*(x)dx 
J lxl=q~-h" 

= ( f ru,=q,l~* 2* (u) )C(u) Ju'-' du) ( f  t~,fqh,_h ~* (1-x) 2* (x)dx ) 

- q-3hl" r.J l~l=q,l Z(u) f lx,=q,,~*(u-x) ]t * (x) dx du 

(f. 
= q-~,+h,J2C.. C~.. 

This proves  (a). The  o ther  relat ions are p roved  in exac t ly  the  same  fashion. Fo r  (e) we 

observe  t h a t  

f lli~:l:~ ~* (x) )'* (1-x) dx = f lx,=l~* (x) ~t * (1-  x) dx" 

We now proceed to show t h a t  the F-funct ion arises in a na tu ra l  w a y  as a fac tor  in the 

Fourier  t rans form of a certain distr ibution.  This is the original definit ion of the F-funct ion  

given in [3]. I f  g (x )=~*(x ) Ix [  a, Re (~)~>0, g . 0 ,  then  z ( x ) I x  I-1 induces an  e lement  of 

$ '  (which we denote b y  g Ix ]-z) as follows. For  ~0 e $, 

(=lxl-',~)=(C, 1)f2(x)lxl ~(x)dx(=f2(x)lxl l~(x)dx, Re(~)>O ). (3.1) 

I f  ~ is ramified and  ~0 is cons tant  on ~n and  suppor ted  on ~ -n ,  n >/1, we m a y  use L e m m a  1 

(with t u I ~< 1) to obta in  

(:~ Ix j-z, q) = fq_. < Ixl <<. q. ~* (x) cp(x) Ix ]0,-1 dx. (3.2) 

I f  ~ is unramified,  then  

<l �9 I=-'. ~ ) :  ~<o)<~. 1)/,~,.<._. I = I~-1 dx + fo_.< ,=,-<+)I = I'-' d= 

= q . : / +  <, q : ,  + f : .  +(:) l=l =-: (3.3) 

I n  ei ther  case we see tha t ,  if r E $, (g*[xJ=-z, ~) is an  analy t ic  funct ion of a, Re  (~) ~ 0 ,  

:r =4= 0 if ~ * - 1 .  This analyt ic  funct ion m a y  be ex tended  to an  entire funct ion of = if ~ is 

ramified,  and  to a meromorphic  funct ion with  a single pole a t  = - - 0  if g is unramified.  I n  

the  la t te r  case the  residue a t  ~ = 0  is ef(O)/q' ln q. We see f rom Theorem 1, ii), t h a t  
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l[Pl(~)(re*[x[a-1 , ~) has a removable singularity at ~--0, and is analytic at  ~ = 0  if we 

define its va]ue there to be ~(0)= (~, ~). I t  is therefore natural to make the following 

definition. 
1/Fl(0)[x] -1 =~, as a distribution. (3.4) 

T H ~ O R ~  3. I / r e ~  1, re[xl- leS ' ,  x/rl(0)l [- e s'. 

Proo/. We may assume re ~ 1. We shall show that, if {~0k} is a null sequence in S, then 

(re[x[ -1, ~0k) ~ 0  as k-~oa. For some fixed n, (re[x[ -1, ~g) is given by  (3.2) or (3.3) wi th~  

replaced by ~%. Since ~0k tends uniformly to zero as k-~oo, it follows that (relx[-1,~%)-~0 

as k -+~ .  Q.E.D. 

T ~ o R ~  4. (relx[-1) ^ = r ( ~ ) ~ - ~ .  

Proo/. For re ~_ 1 and re(x) = [ x [, the result follows from (3.4), Theorem 1, iii), and the 

fact that  (1]r~(0)Ix I-i) ̂  =~ = X. Now assume that re ~ 1, re(x) 4 Ix[. We saw above, using 

(3.2) and (3.3), that, for ~0e$, ((re]x]-1) ^, r  (re]x] -1, ~ ) =  (re*Ix[ ~-~, ~) is a meromorphic 

function of ~ with at most a pole at a = 0  (if re*=l). Thus it suffices to assume that 

0 < R e ( a ) <  1. Take ~0 E S such that ~0 is constant on the cosets of ~"  and is supported on 

~-n,  n >~ 1. Then, by Lemma (Ax), q~ is also constant on the cosets of ~'~ and is supported 

on ~-~. Then, using (3.2) and (3.3), we have 

(Fire) re-i, ~9) = r(re)~x[ ~<q~ ~9(X) re-i (X) dx 

el(O) q-,(1-~,)/q, (1 - q-~) + F(re)fq_,< I~l <q" ~0(x) re-1 (x) dx, re unramified, 

F(re)fq_,<l~l~<q ~v(x) re-1 (x) dx, re ramified. 

If  re is unramified, 

re(u)[u'-l (u)du= fl.l<.o_ re(u)lul-' dudx 

J q -  < x <~q J [ u l ~ q a  

A simple computation shows that 

fl,,<q_ ~v(0)f[~l<q re(u)[u[ -~ dudx =~(0)q-n(1-,)//q, (X-  q-') .  

In the second integral, we let y = ux, and this gives 
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fq-,~< ,xl <q q~(X)~-1 (X)flyl < r g(y) g(y)[y[-1 dy dx. 

Since qnlx I >~ q for Ix[ > q-n, the theorem is proved for uurami/ied characters. 

Now suppose g is ramified of degree h ~> 1. From Lemma (A2) we know that  ~0(x) is con- 

stant on the cosets of A,_ k in ~k, k~<n. Furthermore, ~0 is constant on the cosets os A2a 

throughout K*. If h > 2n, we can decompose Slxl- qkcP(X)X~-l(x) dx, - n < k. <~ n, into 

dx 

and each of the integrals in the sum is zero. If  h<<.2n, and q-n<q-k<q-n+h, then 

n -- k < h and we have 

Again each of the inf~grais in the sum is zero. Summarizing, we have 

F(~)~jq_.<lxl<q.cp(x)~-l(x) dx= { O,(h>2n 
F(z) ]q_.+h<lxl<q ~0(x ) g-l(x) dx, h <~ 2n. 

On the other hand, from (3.2) we have 

( lu[ r = du 

U[ -1  f . ~(u) l f, xi<~q q~(x) g(ux)dxdu dq- < [ul~qn 

"~- ~_n.~[u[<q.ag'~(u) 'ui-l~_a<lxl<~qn~)(x) g(ux) dxdu 

= f q_,<lxl<q.,cP(x) ~-l (x) f q_,,l~l<l,[<~q,,ixl X(Y) "(Y) l yI-I dy 

[ O, h>2n 

Remark. Theorem 4 shows that  our definition of the gamma function is equivalent to 

that  in [3], w 2.5. This theorem also shows that  our gamma function is precisely the in- 

variant factor Q(n) defined by Tate (see [4], Ch. VII, w 3). Tate considers the class of con- 

tinnous functions I in LI(K +) with the property that  ~ is continuous and in LI(K+), and 
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also t h a t / I x  I r f ix  I ~ are in LI(K* ) for all a > 0. This class of functions is strictly larger than 

$ as may  be seen from the example ](x)=0,  Ix/<~1; f (x)=e -~x~, ]x I >1.  For any character 

~, 0 < Re (~) < 1, and f as above, the local zeta function is defined by 

dx. 

I f  fe $, Theorem 3 shows that ~(-, ~)e $'. Defming ~=~-~ Ixl, Tare proves the local func- 
tional equation 

~(f, ~) ~(~, ~) = ~(f, ~) ((g, ~). 

In our case this follows directly (for f, g E $) from Theorem 4 and Plancherel's formula. 

The factor ~(g) is defined by  the formula ~(], g) =Q(g) ~(~, ~). Theorem 4 shows that  ~(g) = 

F(r0. In  this setting, the results of Theorem 1 are contained in Tate's local computations 

([4], eh. VII, w 4). 

Tate's approach suggests another method of proving Theorem 4. We first state the 

definition of homogeneous distributions (cf. [3], p. 45). 

Definition. f E $' is said to be homogeneous of degree ~ (~ a multiplicative character 

on K*) if, for all tEK*, ft=~(t)f, where (ft, q))=(f, It[-lq)l/t), qpE $; ~(x)=~(sx), sEK*. 

L~,M~A 4. (~lxl -1)  ^ is homogeneous of degree n -~, n *  l ,  n(x)~= I 1. 

LEMMX 5. fE $' is homogeneous of degree ~, z~(x) ~= [xl-~, i/and only if ]=c:~ /or some 

constant c. /=ca, /or some constant c, if and only if (], ~) =0  for all q~E$ such that ~(0) =0.  

For proofs of Lemma 4 and Lemma 5 see [3], w 2. 

Remark. The missing cases in Lemma 4 are filled in by  means of (3.4). I t  follows from 

the last two lemmas that  (~ [x[-X) ̂  = A ~ - L  If we take ~ E S such that  ~(0) =0,  then a simple 

computation shows (with the help of the Lebesque dominated convergence theorem) that  

A~ = r (g ) .  The proof of Theorem 4 given above is more in keeping with the spirit of proving 

results by direct computation providing the detail does not become too cumbersome. 

Definition. Let z~ and 2 be multiplicative characters, ~=n*l~l ~, ~=z*l~l a. Then the 

beta ]unction B(g, 2) is defined by 

B(n, 2) - r (n )  r(2)  _ (a) r .  (fl) 
r (n~)  r~.a. (~ + fl) ' 

where the various gamma functions are defined. 

Remark. B(~, 2) can be considered as a meromorphic function in two complex variables 

a, fl for fixed ~*, 2*. In a number of cases B(z~, 2) is constant as a function of one or both 
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of two variables. For example, i f  :n: is unramified and +1. is ramified of degree h/> 1, then 

B(g,2)=FI(~)q -a:. If ~ is ramified of degree hi~>l and 2 is ramified of degree h~>l ,  

hl < h 2, then 
B(z, 4) = (C,. Ca./C#.a.) qh,<=-+>-a,:. 

Finally, i f  g, 2 and ~ are all ramified of degree h ~> 1, 

B(:~, 2) = (C..  C . /C . .~ . )  q-~/~. 

I t  is clear that  B(~, 2) = B(2, g) for all ~, 4. 

Our aim is to obtain an integral representation of the beta function under suitable 

conditions. This is the method used to define the beta function in [3]. Let ~ and 2 be as in 

the definition of the beta function with 

0 < R e  (a), Re (fi), Re(:c-+fl) <1. (3.5) 

If u EK*, then the integral defining 

: (:Tg IX [--1 -X- 2 iX 1-1) (U) = fKX(X) IX [ - 1 2 ( 2  -- X) l U -- X ]-1 d x  (3.6) k(u) 

converges absolutely. Setting 

=fgx) lxl'X<:-x)l - l'dx, (3.7) b(:~, 4) 

and changing variables in (3.6), we see that  k(u)=:~t(u)[u[-lb(~, 4). Theorem 4 implies 

that  $=b(xc2)F(:~2)(~2) -1. We wish to show that  b(g, +~)=B(:~, 4) which will follow from 

the relation fc =F(:~)F(2)(xe2) -1. This is the substance of the following lemma. 

L ~ M A  6. I/g=:~*]xl=, 2=2*lx]Z satis/y (3.5), then (g]x]-l+e2[x[-1) ^ 

= (if/:] x I --1) ̂  (~tl x I --1) ̂  = I~(:7~) r( ,~) (3"~Jt) -1,  a n d  b(z~, 4) F(g2) = F(ze) 17(2). 

Proo/. For all n ~> 1, it is easy to see that  ([nlx I-1]n ~- 2lx 1-1)(u) represents an element 

of $' since it is dominated by l u ]~(~ +~'-1 b([x IRe (~)-', Ix IRES)-1), a locally integrable func- 

tion. Fix ~ e S, q(0) = 0, so that  ~ is supported on the set {x :q-k< Ix[ ~< q~}. We then have 

(([= I z l - 'x  + 2 lg-1) ", +)= ([.  izl-,]. + 2 ixl-1, ~) 

= f .+(u)~ ~(x) lx l -12(u-x) lu-x l -1dxdu 
Jlul<q Jq--<lxl<q ~ 

:f0 =<=)1=1 '( 2(=-=) lu-=l 1+<=) e=ex, 
- " < l x l < r  '= J l= l<@ 

by Fubini's theorem. We observe that  
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ul~qk~(U --X)I u - -Xl-I~(u)du = (~z~ lu] -1, r = ((Tx~ In I ) , ~0) 

= fl~l~it Z(ux ) ~-1 (u) P(~) ~(u) du, 

b y  Theorem 4. We then use the fact that  g(x) {x[-lg(ux) ~-l(u) ~(u) is absolutely inte. 

grable on (q-k< [u] ~<qk)• ( q - . <  Ix{ ~<q'). apply Fubini's theorem and obtain 

(([- I~l- ' ] .  ~ a H-i) ̂ , ~ ) =  f._it <,.,<,it F(a)M' (u)~(u) f ._ .< , . ,  < o ~ ( x ) M - i z ( u x ) d x d u  

= fq_it<,u,~qltr(~)(~7~) -1 (u)~(U)fq_./,ul~[x]~q.a]].u[~[.(x)Ixl-l~(x)dxdu. 

(~,~)-l(u)cp(u)ELl(K+,du) and the inner integral converges uniformly to F(~) on the 

support of ~ as n-~ oo. so that  

lira (([n]x]-l]. ~ ~]x[-1)^ ~) = ((n;~)-i F(=) F(~). ~). for ~ e $, ~(0) = 0. 
n - - ~  OO 

Lemma 5 implies that  

lim ( [ = l x l - ' ] . ~ l x l - ~ )  ^ = (~)-1C(~7~) C(~) -~ c1~. 
n. - ->  oo  

in the sense of convergence in $', for some constant c 1. 

On the other hand, if ~ E $, ~(0) --0, 

([2"~]Xl-1]~'-X')'{x{-i'~))= f It' "~ It~9(U) f . 7~(x)]xl-l~.(u-x){u-xl-ldxdu 
dq- <lUl~q Jq- ~N<~o 

= f._it~,=, ~.it ~(u)(.~)(u)I ul ~f._.,,=,.<l.,~,,= ~(~)I~1' z(1 - ~)11 - X[ -1 dxdu 

-~ f._it< ,~,.<.it~(u) (~2) (u) lul-~ b(=, Z) d~ = (b(., ~) n~ lu1-1, W) as n ~  ~ ,  

by arguments similar to those above. Thus 

l ~  ([=1~1-~]. ~ z I~1-1) = ~ ( . ,  z):t)~ lu1-1 + c ~  
71--->O0 

for some constant c~, and so 

lira ([~ I~l-~].~ ~ I~1-~) ̂  =b(n, ~) r ( ~ )  (~)-1 +e~ =r(~) r(~) (~)-~ +el~. 

A homogeneity argument shows that  c~ -- c~ = 0, b(zt, ~) F(st~) = F(st) F(~). Therefore 

(~ i~1 -~ ~ ;, i ~1- ' )  ^ = b(~, Z) r ( ~ z )  (~z ) - '  = ( r (~ )  ~-~) ( r (z) Iz1-1)  = (~ I~1-1) ^ (z l~l-~) ^.  

Q.E.D. 
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T ~ o ~ . M  5. La ~=~*I~P, ~=r l~ l  B. The,~ 

i) i /O<Re(a),  Re(fl), Re(o:+fl)<l ,  

B(~, ;t) = fE~(x) ]x]-~ ~.(1 - x) I1 - x ]  dx. 

Fu,th~r~o,-e, [=1=1-~3, x-;tl=l-~--,B(=,;t)=;tl=l-~ ~n S ' ~  n- - ,~ .  

ii) (a) I/~t, 2 and 7tA are rami/ied, 

=Pf2(~) I~l-~x(1 -x)  l l  -xl- ldx, B(~, 2) 

/or all o~, fl E C. 

(b) I] zt, ~ are rami/ied and ~t~ is unrami]ied, 

= P f  =(~)DI-Ut(1 -x) ll -x l - '  dx B(~, ~) 

/or Re(~ +fl) < 1. 

(c) I] ~ is ramified and ~ is unrami/ied, or 2 is ramified and ~t is unrami/ied, then 

= Pf ~(~)I~ I -x 2(1 - x )  I 1 - x ] - I  dx B(~, ~) 

/or Re (fl)>0 and ~EC, or Re(~)>0 and flEC respectively. 

Proo]. i) is an immediate consequence of Lemma 6. For ii) we consider 

fo. 
+ fl. ,~,.<j(~)r(a - ~) I~l'+'-~d* + f .  .<,x,.l='(~) r (1-*)  I~1 "-ldx 

f~ u*(1-x )Z*(x ) [x l~- ldx=II+I2+Ia+I4"  
+ -"<1~1<1 

11 converges absolutely and is independent of ~r and ft. Let h 2 be the degree of ramification 

of ~t. Then ~*(1-x)=X*(-1)2*(x)~t*(1-1/x)=a*(-1)Z*(x) if I~1 >--r Therefore 

I~ = f ~t*(x) ~*(1 - x) Ixl=+#-Zdx lira 
n - ~  ~ J 1  < IX] < qhl 

if :re2 is ramified (using Lemma 1 with ]u[ ~<1). Similarly, we see that 2 " ( 1 - x ) = 1  if 

[ x I ~< q-h, and zt*(1 - x ) =  1 if ix I ~< q-h' where h 1 is the degree of ramification of zt. Therefore 
20  -- 662901 Act, a mathcmat ica .  116. I m p r i m 6  | e  21 s e p S e m b r e  1966. 
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=f. ~*(*)~*(1-.)[xV -ld*, lim I s -h'<[x]<l 
n---> 00  

fq ~*(x) ~*(1 Ixl~-:dx llm I~ = -a'<lxl<l 
n - + o o  

if az and A respectively are ramified. Thus, if the conditions from part  ii) on the "size" of 

and/~ are satisfied along with the conditions of ramification on g and 5[, the principal 

value integral converges to an absolutely integrable function which is analytic in ~ and/~ 

in their appropriate ranges. Using part  i) and an analytic continuation argument, we have 

the desired result. 

Remarlc. In part  ii) of the last theorem, we can extend to the boundary cases 

(Re(~+f l )= l ,  ~+f l~: l ;  Re(a)=0,  a~=0; Re(fl)=0, fl~=0) by use of (C, 1) convergence at  

the respective singularities as we did in Theorem 1 for the gamma function. The verifica- 

tion is obvious and is left to the reader. 

COROLLARY. Let convolution be de/ined by the integral as in JLemma 6. Then 

[1/Fl(o~)]lx[a-l~e[1/Pl(fl)J]xlp-i=[1/Fl(ZC+fl)]lxla+p -1, 0 < R e  (~), Re (fl), Re ( a + f l ) < l .  

Proo/. An immediate consequence of Lemma 6. 

The results in part  ii) of Theorem 5 concerning the existence of the principal value 

integrals do not reveal the full story about the convolution of two multiplicative characters 

on the additive structure of K. 

TH~,OR~,~ 6. Suppose that ~ =~*l~ I ~, ;~ =;~* I* I p are mglliplica~ive cluzracters sat~/yi~l 

(3.5). Suppose that ~ is rami/ied ol degree h 1 > O, ~ is rami/ied o I degree h~ > 0 and a~g~ is ramified 

o/degree h a. Then, i/k(u)=(~zlxl-l+e21xl-~)(u) as in (3.6), we have 

d Ixl=lul 

= ~ .*(~) r ( u  - x) I* I =+'-=dx, h, = h 2 > h a > 1 iii) k(u) 
al xl=lulqa~-a* 

iv) k(u) =~ i=H.,=*(x);t*(u-~)Ixl=+~-=d~, hi=h= =h.~> 1; 
d lx-ul=lul 

v)  

vi) ]r ~ Ixl>~lul~t*(x)~*(u-x)lxl'+e-2dx, h l = h 2 = l ,  ha=O. 
d Ix-ul=lxl 
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Proo/. We give only the proof of i). The remaining statements can be proved in a 

similar fashion using the techniques developed in this section. 

We first write 

k(u) = ]u]P-~f~i<,~ ' ~*(x)~*(u-x)]x]~-'dx 

If ~ is uaramified (h2 =0), the result follows from Lemma 1. Now suppose h~ >0, and take 

qk < l ul .  Define Ix(X) =s*(x) if I xl = r  h(x) =0  otherwise; Is(x) =2*(x) if I xl = l u l ,  l~(~) =0 

otherwise. Then (11 ~ 12) (u) = ~1~1 = qk 7t*(x)~*(u - x )  dx. From Lemma 1 we see that  

Ix(V) = f j~=+z(v~) ~*(~) d~ =0 nnless Ivl 

z(v~) 2*(~) ~ = o  unless and /~(v) = zf=lul ivl=r 

I t  follows ]l(v)/~(v) = (/1 ~-/~) ̂  (v) = 0, and hence (h ~-/2) (u) = 0. This shows that  the first inte- 

gral in the above decomposition of k(u) is equal to zero. If  qk >lul  ' we take h(x) as above and 

define/2(x) =2*(x) if I x] =qk,/~(x) =0 otherwise. Then/1@) =0 unless Iv[ =qh,-k,/2(V ) =0 

unless Iv I =qa,-~. We conclude that  the second integral above is zero and the lemma is 

proved. Q.E.D. 

Remark. By using Theorem 1, Theorem 2, Theorem 6 and Lemma 3, one can prove by 

direct (rather laborious) computation that  k(1)= B(~, 2) for all characters rt, 2 satisfying 

(3,5). 

We now show that  the gamma function may also be considered (up to a O-function) as a 

Mellin transform for unitary characters g. The additive character X is bounded on K* and 

so represents an element of $*'. I t  follows tha~ ~ E S*'. We define (3.8) g = F*. The strue= 

tare of -~* is that  of a countable discrete collection of circles {T.,} indexed by the 

characters z~* on O*. Hence we may view F* as a collection 1 ~* ~ {F**} where each r~** is 

a distribution on T., ,  a copy of the circle. Observe that  PFI(i~ ) and F,,(ig), z~* ~ 1, where 

~ER, induce distributions on the circle. So the ordinary gamma function, restricted to uni. 

tary  characters, may be considered as a distribution on ~*, F ~ (PFI(i~), F~,(ia), z~* ~ 1}. 

Remark. By P/(ig) we mean the distribution (if it is one) defined by 

<p/, ~> = nm q ' lnq/2~ r l(ig) q;(oOdo:, 
e---~O+ J e~lal~t/raq 

where ~p is a trigonometric polynomial on the circle, ~p(a)--~=-karq ~'~. 
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Our last theorem of this section shows that,  up to a delta function, F and F* are the 

same distributions. 

THEORV.M 7. i) F * = P F I ( i g  ) +(g/q ' lnq)  O. 

if) r*.  = r . . ( i~) ,  ~* ~ 1. 

Proo]. Suppose that  ~ E $*, so that  ~ E $*. Without loss of generality we may assume 

that  ~ is supported on T . .  for each of the cases above. Then 

(p**, ~o) = ( L  (v5 = (z, r  = fK z(x) r 

= nm ~tz] .( ,~)r  = lim ([Z]n, ~)  = lim ([Z]~, ~o). 

Now [Z]n is compactly supported on K* and is constant on the cosets of A s. Thus 

and [Z]~'(g) -- f )r -ldx" [z] .~S* 
Jq 

<r . , ,  + )  = If ~* is ramified of degree h>~ 1, then [Z]~(~)=F(~),  n>~h, and we obtain * 

l im.- .~  ([Z]Y, ~)  = (F~., ~0). Now assume tha t  ~* is unramified so that  ~ is supported on 

T 1. Then, from Lemma 2, we see tha t  

~ ~ :  f~ g(x)lxl~:-Xdx=-r -~: 
= _ q~:-i + 1]2q' + 1/q' [D,(~ In q) - i / ) ,  (~ In q)], 

where Dn and / )n  are the Diriehlet and conjugate Diriehlet kernels respectively ([8], v. I, 

p. 49). 

I t  is well known that,  as distributions, D , ( a  In q) -~(g/ln q)0, and /~n(a In q) -+ 

P(1/2 cot (ccln q/2)). An elementary calculation shows that  _qt~-i + 1/2q'[1 - i  cot (aln q/2)] = 

Fl(ia ). Hence [g]~([ x] ~) -+PFI(i~ ) + (~/q' In q)(~ and F~ = PF~(i~) + (~/q' In q)~. Q.E.D. 

w 4. Bessel fmaetions 

The Bessel function is a complex valued function defined for each 7e E/~* and u, v in K*. 

De/inition. The Bessel /unction (of order ~), denoted J,,(u, v) is the value of the prin- 

cipal value integral. 

P l - g ( u x  + v/x) g(x)I~1-' d~. (4.1) 
JK 
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In Theorems 8 and 9 below we establish that  (4.1) exists for all characters reE/~* 

and u, v E K*. Using this fact we may find several elementary properties of the Bessel 

function by changing variables in (4.1). 

L~MMA 7. i) J~(u, v)=J~-,(v, u). 

ii) 7e(u)J=(u, v)=~(v)J~(v, u). 

iii) J~(u, v)=J=-l(-u,  - v ) = ~ ( - 1 ) J ~ , ( u ,  v). 

iv) I / g ( - 1 ) = 1 ,  J=(u, u) is real valued. 

I / g ( - 1 )  = - 1 ,  J,(u, u) is pure imaginary valued. 

For k a positive integer, gE/~* and vEK*, we set 

av~ (k, v) = f lxl-q~ %(x) )~(v/x) ~(x) Ix ]-1 dx. (4.2) 

L~.M~A 8. Suppose that Ivl =qm and l~<k<m. Then 

i) /or ~ unrami/ied, F,(]c, v)40 i/and only i] m is even and k=m/2. 

ii) For ~ ramified o/degree h >~ 1, F~ (]r v) 40 q and only q one o/the/ollowing is valid. 

a) m is even, m>~2h and k=m/2. 

b) m is even, m<2h<2m and ]r h or m - h .  

c) m is odd, m<2h<2m and k=h or m - h .  

Proo/. Set [l(Z)=~'g(x))~(x) if Ix] =q~, h(x)=O otherwise; /2(x)=g(x ) if Ix[ =qm-k, 

/a(x)=O otherwise. Then F,(k, v)=(/1-)e/2)(v), where convolution is taken with respect 

to the multiplicative structure (K*, d'x). The corresponding Mellin transforms are 

il(.7~')=j~x,=qk;Y~f~'I;(x)~(x)Ixl-ld~ and ~2(g')=~xl.~_r~'(x)Z(x)lx[-Idx. 
Since (h ~e is) ~ = ]1[~ (/1 and/2 are in $*), we see that  F,(k, v) =~0 if and only if ]~(~e')]u(=') ~-0 

for some ~'. From our calculations for the gamma function (Lemma 1, Lemma 2, Theorem 1) 

we see that  [1(~') 4 0  if and only if g 'g  is unramified and k = 1 or g 'g  is ramified of degree k. 

Similarly ]2(~')40 if and only if g '  is unramified and k = m - 1  or ~' is ramified of degree 

m - k. A straightforward check of the possibilities for g '  gives our result. These possibilities 

are: 

unramified, g '  and g~'  have the same ramification degree. 

ramified of degree h >~ 1 and 

i) g '  unramified, gg '  ramified of degree h. 

ii) g '  ramified of degree h, gg '  unramified. 
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iii) ~z' ramified of degree h, ~z~z' ramified of degree s, 1 < s ~ h .  

iv) ~' ramified of degree t =~h, t/> 1; ~wz' ramified of degree s =max  It, h].= 

The details are left to the reader. Q.E.D. 

LEMHX 9. IF=(]r V)I <~l/q'. 

Proo/. ]F,,(k,v)]< ( Ix]~ldx=l/q '. Q.E.D. 

We now give explicit formulas for J~(u, v) in terms of gamma functions and the 

functions F~(k, v). 

THEOREM 8. I /  ztE]~*, zt unrami/ied, zt~- l, and u, vEK*, 

[ =(v) r ( .  -~) +=-~(=) r(=), I=vl <q, 
J.(u,v)= ~ =-1(u)F.(m/2,  uv), luvl=q =, m >  Z, m even, 

/ 
[ 0 , ]uv]=q m, m > l ,  modd. 

I /  x t~ 1, the only change is that Jx(u, v) = (m + 1)/q' - 2/q = 1/q' [ln (1/ ] uv I )fin q + 1] - 2/q 
/or luv] =q-m <~q. 

Remark. Jz(1, v) is the natural analogue of the usual Bessel function of order zero. 

THEOREM 9. / /nE/~* ,  ~ rami/ied o/degree h>~l and u, vEK*, 

[~(v) F(7~ -1) +~- l (u )  r(~),  [uv I ~q~, 
! 

~- i (u) l~(m/2 ,  uv), ]uvl=qm , m>~2h, meven, 

0 , luv[=q m, m>2h,  m odd, 

J~(u, v) = l xCl (u ) [F~(h, uv) + F~(m - h ,  uv) + F,~(m/2, uv)], 

l luv l=q  m, ~<2h<2m, m even, 

~-~(u) [F,~(h, u v ) + F ~ ( m - h ,  uv)], [uv I =qm, m < 2 h < 2 m ,  m odd. 

Proo/ o/ Theorem 8. Set g(x)= Ixl = Vor I ~ l  =q-m ~<q we w~ite 

Lemma 2 implies that  

~-1 (u) P Jlxl ~ 1 g(x) Ix I~-1 dx = - =-2 (u) q=-i. 

:From this same Lemma, we also see that  

2g-I(')~X]~I)~('?)/X)]X "-idx=~(V)fq_m<< " x4q~'X) IX[-g-ldx:2"~'?.)){l/'t~o~km--'q-r~-I }" 
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I f  ~ 4 0, this last term can be written 

2~(V) {r(2~: -1) -1- g-1 (UV) qO: 1(1 -- q)/(1 - q~)} = u(v) F(~ -1) + ~-1 (u) (1 - 1/q)[(1 - q-~). 

The result" for [uv I <~ q and all ~ now follows immediately. I f  luvl > q, we w,ite 

J ,  (u, v) = ~-1 (u) P f lxl<l g(uv/x) I xI ~-l dx 

f, z(~) I~1 ~-1 d~ + ~,-'(u) f z(~) x(u~l~)1~1 ~-I d~. 
+ ~ - l ( u )  P xl>l,,,I Jl<l::l<l,,~l 

Lemma 2 shows tha t  the first two terms are zero. The result then follows from Lemma 8. 

Q.E.D. 

Remark. The proof of Theorem 8 shows that, for g unramified, 

~t(v) F(zt -1) + r t - l ( u )  F(zt) ~ 1/q'[ - ~  I uv I /~ q + 1]-21q as zt ~ 1 .  

Prool ol Theorem 9. We break up the integral exactly as in the proof of Theorem 8. 

A direct application of the results of Lemma 1, Lemma 8 and the definition of the gamma 

function gives the result. 

COROLLARY. i) For /ixed ~rEI~*, ~ 1, J~,(u, v) is bounded as a/unction o I u, vEK*. 

Jl(u, v) is bounded/or uv bounded away lrom zero. gl(u, v) "" - l n  l uv  I Iq' in q as l uv I -~ o. 

if) For/ixed u, v E K *, J~, ( u, v) is bounded as a/unction o I ~ E 1~ *. 

Prool. i) I f  g ~ 1, this follows from Lemma 9 and the expression for the gamma function 

in Theorem 1. For ze_--1, we use the representation for Jl(u, v) given in Theorem 8. This 

representation ~e lds  both the bounded~ess of Jl(u, v) for l u ,  I bounded away from ,ero, 

and the asymptot ic  formula. We observe here tha t  Jl(u, v) is a locally integrable function 

of u on (K+, du) for fixed v E K*. 

if) For ~ ramified, this is immediate from Lemma 9 and the expression for P(g). 

For ~ unramified and l uv l>  q, we again use Lemma 9. I f  l u v l=q  -m ~<q, the proof of 

Theorem 8 shows tha t  I J .  (u, v) l ~< (m + 1)/q' + 2/q for all unramified ~. Q.E.D. 

In  the next  three theorems we show tha t  J .  (u, v) can be regarded as the Mellin trans- 

form of a distribution on K*, the Fourier transform of a distribution on K +, and the Mellin 

transform of a distribution on ~*. 

T~V.ORV.M 10. Let / be the distribution induced by )~(ux+vlx) on (K*, d'x), u, vEK*. 

Then ~ is the distribution induced by J:, (u, v) on (1~*, d~). 

Proo I. F o r  fixed ~, v E K*, g(ux + vlx) is bounded on (K*, d'x) and J~ (u, v) is bounded 

on (/~*, dg) by  the corollary above. For ~0 E S*, we wish to show tha t  
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dm 

I f  u and v are fixed in K* and the ramification degree of ~ is bounded above by  h 0, then there 

is a fixed compact set A in K* depending only on [uv[ and h0 such tha t  J.,(u, v)= 
Sa g(ux+v/x)g(x)Ix[-adx. Since ~E $*, the set A may  be chosen so tha t  i t  contains the 

support  of ~. Also observe tha t  ~ E S* implies tha t  ~(~) = 0  if the ramification degree of ~ is 

large enough, say greater than h 0. Letting A~o denote the compact set (in/~*) of g such tha t  

the ramification degree of ~ h 0 ,  we see tha t  

f k.J,(u, v) d= = f f AX(ux + v/x) lxl-' dxd= 

by Fubini 's  theorem. Q.E.D. 

TH~OaEM 11. /=P(z(v/x)~(z)[x[-1), veg*, gelS*, i~ a distribution on (g+, dx). t is 
the distribution J ,  (u, v) on (K +, du). 

Proo/. Suppose ~ e $, ~ supported on ~ - k  and constant on the cosets (in K +) of ~ ,  

/r ~>1. Let  h be the maximum of 1 and the ramification degree of g. Let  1 be such tha t  

qt = max [qh/]v ], qk]. I f  n >l ,  then 

dx 

= t l-a + .,,-,-<1.1-<o, ( I 1-' dx. 

By means of Lemma 1 or Lemma 2 we see tha t  the first summand is zero since:l,/~l > r 

when q-n<~ [X] <q-;. I t  follows tha t  (*) is constant if n>l, so tha t  

(l,  ~ )  = f~_,<. N <- ~ ~(~) x(vlx) :,(x) I ~ l - '  dx, 
where k and l depend on % ~ and v. I f  (%} is a null sequence in $, there are fixed integers 

k and 1 such that ,  for all s, 

(/, ~,) = f~_,~< J~l <.,, ~, (x) X(qx) ~(x) I ~ I- ~ d~. 

Since ~8 tends uniformly to zero as s-~o% (/, %)-->0 as x-+ oo. This shows /E $'. Note tha t  

[g(v/x)g(x)[x ]-~]~ E $ for all n. Then, for n large enough, 
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(t, ,p) = (1, r  = f [x(~,/~)~(~)I �9 I-'],, r  

,/x" J q -  <1~1<~ 

I f  ~ ~ 1, the inner integral converges boundedly  to J~(u, v) as n - ~  ~ ,  so tha t  (f, ~) = 

SKJ~,(u, v)~(u)du, f=J~(u, v) on (K +, dx). 

Now suppose ~ r= l .  Wi thou t  loss of generali ty we m a y  choose k so tha t  ]vl~< q~+Z. 

We can write 

+ I" , ~r f . Z(u~+vl~)l~l-'d~d,,. 
j a -  ,tlU <q J a -  <l=l~<q,, 

Since l ul is bounded  away  from zero in the  second integral, this te rm converges to  

Thus, we mus t  prove tha t  

ul<q-~ . /q -  <1~1<~ Jl~'l<q -~ 

We first observe that ,  in this case, I u v  I <" q. If we take  n large enough, we m a y  write 

flul<~_~ f~_.<l.l<J (ux) x(v/x)lxl-l dxdu 

= flul<q-, [f~-.<l.l<.<~,x(vlx)lxl-' dx+ f~,<l.l<~'(ux)lxl-' dx] du 

=fl.l<~-~ f~-~l.l<l~l<~X(x)lxl-'dxdu + f.l<~,-, fo,.l~l~.lxl-'dxdu 

+f,-.<l.l<,-.f~<l~l<olul-. x(ux)lxl-zdxdu" 
l~Tow 

fl fq - k ~  - ' - n - k  -n Ixl-ldxdu =n 
' - ' l<q-" 1'<lxl<q" q' J~"q - (q-~ q ~ 0  as n-~ oo. 

Hence, as n--~ c~, 
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~u,<~q_. fq_.<~,x,<~q.. ~(ux) ~(v[x) IxI-l dx 

'~ f ]u]<<q_. {~_.,.,<,~,<qZ(x) lxl-i dx-b f q.<,~,<q,u,_.Z(ux) lxl-l dx} du 

- ~u,<~q_. { f q_.,v,<~j., ~q~(x) 'x'-l dx § f q.,u,<,x, <q~'(x) 'x'-l dxI du" 

The inner integrals may be summed directly as in the proof of Theorem 8. If  I vl = q~, 

u = Iql -z, we get 

(z~k - j +  2 §  , ' , 

T ~ O R E M  12. Let / be the distribution on (K*, d'v) ind~ed by the locally integrable 
Nnction J,~(u, v). Then ~ i8 the distrib~ion on (K*, d~l) given by [= (~el)-i(u)P*(. )F*(~-). 

Proo/. A change of variables shows that the distribution 

(J,,(u,.))~ = (7~1)-1 (2) (J=(1,.))~. 

So it will suffice to show that (J~ (1,.))~ =F*(.  )F*(g" ). We now let / be the distribution 

induced by  J , (1 ,  v). We will construct a sequence in $* that  converges to / in $*'. Let 

g.(V) = f,~ [~(X)~.(V/X)37j(X)]$g]-1]. dx = fK*~(VX)[~('/X) 7~-1 (X) 

Since [g(1/x)~-l(x)[xl-1], has compact support and is constant on the eosets of 

~ l . , / n = m a x  [2n, h+n], then g, ES and  g~(v)=0 when Ivl > qZ~, where h is the degree of 

ramification of g. If  r E S*, it can be checked that (/, r  = (g,, ~)  if ~ is supported on the set 

{x:q-k<~ Ixl ~<q~} and n~>k+l .  L e t / ,  =[g,]~+l. Clearly/ ,ES* for all n and (/, ~ =(/n, ~ 

for n~>k§ 

Choose ~o E S*. Then (~, ~0)= ([, ~ ) =  (In, ~ ) =  (/n, ~0) for n large enough. Thus it will 

suffice to determine the limiting value on S*' of 

~ ,.+,,.<,o,.<o.+, ~,, (~)I ~ I '~ _..<,.,.<, ~(~)~(~/~)~(~)H:' 
dx dv 

= fq_.<,,,~<, g (x )=(x )H -~ ( X(v/X)Zl(V)lVl-'dvdx 
J q-(a+l)~lvl<~qn+l 

= .~f _=<,=,.<== x(x):,~,,'(~)I~1-' J" ~(v) ~'1 (v)Ivl -= d , ,~ .  
J q-('~+Z)lxl<~lvl<~q"+z/l::l 
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Suppose gl,  ~tzrl are ramified of degrees hi, h 2 ~> 1. When  n + 1 >~max [h 2, I h l - h 2 ]  ] 

then Tn(Zrl) =r(xrgl)F(~rl) as we see from Lemma 1. I t  follows tha t  if iv is supported on a 

circle where zr 1 and  ~tg 1 are bo th  ramified <T, iv> =<F*( .  ) r * ( g .  ), iv>. 

The remainder of the proof is concerned with evaluat ing <~, iv> when iv is supported 

on a circle where either or bo th  of Ztl and ~t~t 1 are unramified. 

Define S_l(of ) = _ q ~ - l ,  Sn(of) = _ q ~ - i  + 1/q'(1 + q - ~  + ... + q-~n~). 

I f  7r is ramified of degree h >/1 and zt 1 is such tha t  ~t 1 and ~tzr 1 are no t  bo th  ramified then 

either i) g l  is unramified and  ztzt 1 is ramified of degree h or ii) ~t~t 1 is unramified and  zr 1 

is ramified of degree h. 

i) Set 
(*) =F(zrZtx)S,+h(of ), n>~h. The argument  of Theorem 7 shows tha t  S~+h(~)~F* as n - + ~  

so tha t  if iv is supported on T1, 

<], iv> = tim <r(z. ) Sn+~ ("), iv> = (F*(~') r*(. ), iv>. 
n --)- OO 

ii) ~1:~'/~1= [~gl |~r I n  (*) the inner integral is non-zero only if x satisfies the condition 

q-(~ +~+~)~<[x ] < q=+l-~ in which case it is F(~h). Thus if n >/h 

(*) = r(=l)fo_..< I'1 < q  %(x) ~t~ h (x) Ix ]-1 dx = r(;Tl~l) S n (of). 

As in case i) we see tha t  if iv is supported on the circle where ~ 1  is ramified, then 

<f, iv> = <r*(. ) r*(~. ), iv>. 
Gathering results, we see tha t  if 7r is ramified of degree h > 1, then 

<], iv> = <r*(. ) r*(~. ), iv> 
for  all iv E 3*. 

To complete  the proof we need to consider the case when zr is unramified so tha t  zrzt 1 

and  ~1 are unramified on T r Let  ~ = Ix l ~, : t ~  = Ix ]~(~+~. Then 

l=(=l) = dx, (**) Ixl 

n 

= - qi(~+l~-lS,+~(of) + 1/q' ~" ,-~k(~,+~)r i~~ ~ ,  "1 . U n _ k +  1 l uc).  
k=0 

I t  is easy to see that ,  when applied to iv supported on T 1, F*(~. ) F*(. ) depends 0nly on 

a finite number  of terms in the formal p roduc t  

( - -q '~- l+l[q 'k~oq- tk~ ' ) ( - -~("+'>-1+l]q '~_qr '~(=+~)) ,  
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and if n is large enough any fixed set of finite terms of that  product is contained in (**). 

Thus, if ~ is supported on T 1 and ~ is unramified, <[, ~) = <F*(. ) P*(re. ), ~). 

We have shown that  for any re and any ~0, <T, ~0) =<F*(. )F*(z~-), ~0), so ]=F*(.  )F*(re" ). 

Q.E.D. 

w 5. Hankel transforms 

Definition. For re6~* and ~06 $, we define the Hank, el trans/orm (o] order ze), H~q~, by 

H~o(v) = fK~o(u) J,,(u, v) du, ve  K*. (5.1) 

Remark`. H,, is well-defined on $ since J~ (u, v) is locally integrable on (K +, du). If ~ ~ 1, 

J~(u, v) is bounded so that  H~ can be directly defined on all of LI(K+). In particular, if 

]6LI(K +) and we let A~=IIJ,,(. ,  v)ll~, then 

= fKl(u) J .  (u, v) due L ~ (K+), H.f(v) 

and [[H,/[[~<~A,[[/[[ 1. We first establish a basic representation lemma for H~% ~0E$. 

LE~MA 10. I]  ~ e $, H,~(v) = (~z-l(x) lx I-~(1/x))"(v). H ,~  eL~(K +) and IIH,~II2 = I1~11~" 

Proof. Let ]=P(z(v/x)re(x)lxl-X ). Theorem 11 shows t h a t / E $ '  and that  ]=J~(. ,v) .  
Therefore 

H.~(v) = (g.( . , v), ~) = (f, ~) = P f EZ(v/x) re(x)[xl-X~(x) dx 

dx. 

Since ~(x)6L2(K+), we see that  re-i(x)]x]-*q~(1/x)ELk(K+), and that  

11411  = I1 -1(')1 �9 �9 

Since ~(1]x)=0 for Ix I small, and ~(1]x) is constant for Ix I large, it follows from Lemma 1 

and Lemma 2 that  P ~re-l(x) {x [ -~( l /x)  g(vx)dx converges for v 6 K*. An application of 

Plancherel's theorem shows that  this last integral converges to (re-l(x)]x[-ir 

and that  (re-x(x)[x[-a~(1/x))" 6LS(K+). Finally, since I[~o]]s = Hells, we have IIH II  = I[ ll,. 
Q.E.D. 

COROLLARy. iT/ ~.$* (equivalently q)65, ~ d x = O ) ,  then H=~65. 

Prool. ~(x) 6 S* if and only if ~(1/x) e $*. Therefore =-l(x)Ix]-1r 6 $*= $, so that  

H ,  ~0 = (re-l(x) [ z[-~(1/x)) ^ s $. Q.E.D. 
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THEOREM 13. I /  = ~ 1 ,  Hn is a bounded linear map /rein LI(K +) into L~(K +) 
with norm An. H,/(v), /ELI(K+), i8 continuous/or v:#O. Hn/(v)=F(=) Sx=-X(u)/(u)du + 

F(n -~) n(v) SKl(u)du+o(1) as Iv[ -->0, Hnl(v)--~O as Iv[ -->,~. 

Proo]. The remark above proves the first statement of the theorem. Since Jn (u, v) is a 

continuous function of v 4 0  for aU u =k0, and I Jn (u, v)/(u)l<<. An ]/(u) I , an application of 

the Lebesgue dominated convergence theorem shows that  H~,/(v) is continuous for v =k0. 

To determine the behavior of Hn/near zero we note that,  if l u [ <  ~/[v  I (h the rami- 

fication degree of =), Jn(U, V)=r(=)=-S(u)§ by Theorems 8 and 9. Then 

Hnl(v)=r(=)f . =-l(u)/(u)du+r(= l)=(v)f HO(X)l(u) u 
J lul<<.q Iiv] J luJ<<.aa/iv I 

/(u)du+o(1), 

To show that  Hn/(v)~O as Iv I - ~ ,  it will suffice to assume ]E$,  since $ is dense in 

LI(K+). Then, from the proof of Lemma 10, we have 

where ] is constant on ~n and supported on ~-n,  n >~ 1. I t  follows from Lemma 1 or Lemma 2, 

that  the second integral is zero for Ivl >q-n+a+1, h the ramification degree of =. Now 

observe that  ](l/x) is constant on the cosets of %an in the range q-n< ix I <qL Also, i f=  

is ramified of degree h >~ 1, it follows from Lemma (M1) that  =-X(x) is constant on the eosets 

of ~h+,  in the range q-"~< Ix] < q~. In any case, setting k=max[3n ,  h+n], we may write 

f.-"g IX[ <qn =-1 (~) Ixl'/(a/x) v( x),x = 5 =-1 (a,)l(1 Ins)f~,+ $1 x1-1 g(vx)dx, 

where a 8 runs through a complete set of eoset representatives of ~k in the given range. 

Lemma 2 shows that  each of the integrals in the sum is zero for Iv I large enough. Hence 

H j  has compact support and, a/ortiori, Hnl(v)-+0 as Ivl-~ oo. Q.E.D. 

The operator Hn defined by (5.1) for ~vE$ may be extended to an operator on all of 

L2(K +) as follows. By Lemma 10 we see that  Hn is a linear isometry on $, considered as a 

subspace of L 2. Since S is dense in L2(K+), HI,, may be extended to L2(K +) as a linear iso- 

metry. 

THV.OR~.M 14. Hn is a unitary map on L2(K+). I11, gEL2(K+), then 

(a) f KHn/(X) g(x) dx = f x/(x) dx, 
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dx. 

This shows that  re(- 1)H. is the adjoint of H, ,  and hence its inverse. 

Proo]. The remark before the  ~tatement shows that  H ,  is an isometry. If we show (a), 

then (b) follows~by a change of variables. If  (a) holds and H .  is not onto, there is a g EL2(K+), 

g m 0, such that  

0 =  f Hj(x)g(x)dx= f}(x)H.-lg(x)dx, for a l l / eL2(g+) .  

This shows that  H~-,g~O. But H~-, is an isometry so that  g--0. The proof will be complete 

if we show (a). Formally 

dv 

dv. 

These relations all hold if l, g, H,J, H~-,g are in $ which follows from the corollary to 

Lemma 10, if we take ], ~7E$*. Since the set of all such / and g is dense in L 2, the result 

extends to a l l / ,  gELS(K+). Q.E.D. 

THEOREM 15. I1 re$1 and q~GS, then H~EI2",  1 <~p<~2, l ip+l ip '  =1. We have 

(*) II H,,v Ib < II v II,. 

H,  can be extended to a linear operator on all IF, maintaining (*). For any I EI2( K + ), 1 <.p < 2, 

H j  is equal almost everywhere to FI + lv 2 where .F 1 is bounded and continuous on K* and 

F 2 EL~(K+). 

Proo/. If ~:~1, Theorem 13 shows that  [[H, VH~<~A,,IIq~II 1. Theorem 14 shows that  

IIH-vlI~ = ]l~H2- An application of the Riesz-Thorin interpolation theorem ([8], v. II,  p. 

95) shows that  (*) holds for ~ E $ and that  the operator extends t o /2 (K  +) maintaining (*). 

To obtain the decomposition H . / = F I + F 2 ,  we need only write /=]1+/2, /1 EL1, 

/2EL ~, and set H,,/~=F~, i=1 ,  2. A standard argument shows that  H,/I+H:~/2 agrees 

almost everywhere with H j  defined by extending H~ from its values on S. Q.E.D. 
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