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§ 1. Introduction

In this paper we establish a variety of facts relating to analysis on a locally com-
pact, totally disconnected, non-discrete field, referred to hereafter as K. These fields,
which include the p-adic number fields and their finite algebraic extensions, have been
studied in some detail in relation to algebraic number theory and, more recently, in the
subject of group representations ([2], [3], [5], [7]).

In these studies certain “‘special functions” arise as Fourier transforms of additive
or multiplicative characters (and combinations of them). The usual approach has been
to truncate the characters so as to produce L functions on the additive structure (K+, dx),
or the multiplicative structure (K*, d*z) of K and then work with the transforms of the
truncated characters.

In [3], however, the non-truncated characters are used in an essential way. It is
our purpose to examine the transforms of the non-truncated characters in somewhat
more detail than that to be found in [3]. The “special functions’ that arise here are the
gamma, beta, and Bessel functions. These functions coincide with those introduced in
[3]. We also treat the Hankel transform which is not mentioned explicitly in [3]. The
gamma, beta, and Bessel functions are first introduced as complex valued functions on
appropriate domains and these functions are then related to various distributions on
(K+, dx), (K*, d*r) and (K*, dn), the group of unitary (multiplicative) characters on K*.

This paper will be followed with applications to the representations of SL(2, K) by
the former author, and to the study of potential spaces and Lipschitz spaces on the finite
dimensional vector spaces over K by the latter author.

In § 2 basic harmonic analysis on K+ and K* is treated, mostly without proof, but in a
form required in the later sections. The major portion of the results stated are either well-
known or may be found in [3]. We supply the proof of a few of the less well-known results.

() Work of this author supported by the U.S. Army Research Office (Durham), Contract No.
DA-31-124-ARO(D)-58.
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In § 3 we present the gamma and beta functions. We show that these functions can
be computed explicitly. The gamma function turns out to be equal to the invariant factor
o(7) (m a multiplicative character) defined by Tate (see [4], Ch. VIL, § 3).

In §4 the Bessel function is computed in terms of gamma functions and “trigono-
metric polynomials”’. The properties of the Bessel function as a distribution are also detailed.
We note that Saito [6] has also defined a Bessel function for p-adic fields with certain
restrictions. This arises in a somewhat different context from the Bessel function that
we discuss here. These two Bessel functions are not the same, but there seems to be a
connection between them which is somewhat analogous to the connection between Bessel
functions of different kinds in the classical case.

In §>5 the Hankel transform is treated and its properties as an operator on LP(K¥),

1<p<2, are developed. In particular, it is shown to be a unitary operator on L*(K*).

§ 2. Preliminaries

Let K be a locally compact, totally disconnected, non-discrete field. Such fields have
been completely classified (see [1], p. 159). If K has characteristic zero, then K is either
a p-adic field for some rational prime p or a finite algebraic extension of such a field.
If K has characteristic p 40, then K is isomorphic to a field of formal power series over a
finite field of characteristic P.

Let K+ be the additive group and K* the multiplicative group of K, and let dx be
a Haar measure on K+*. There is a natural (non-archimedean) norm on K satisfying the
relations: d(ax) = |a|de; |2+y| <max[|z|, |y|]; and |z +y| =max [|z|, |y|]if || +=]y].
A Haar measure on K* is given by d*z = |z|1d.

The set O ={x:|x| <1} is a subring of K, the ring of integers. We normalize dx so
that O has measure 1. The set = {x:|#| <1} is the unique maximal ideal in O (% is also
principal). O/B is a finite field and contains ¢ elements, ¢ a prime power. Let p be a gen-
erator ot . Then |p| =g, and, for all €K either || =0 (when and only when z=0)
or |z| =g" for some integer n. It follows that 3 has measure ¢ ™", n>1, and the measure
of {x:|z| =¢"} is ¢"/¢’ ()¢’ =1 —1/g) for all integers n. By an abuse of standard notation
we define "= {x:|z| <¢™"} for all integers n. The collection {§"};_, is a neighborhood
basis for the identity in K+.

There is a non-trivial character y on K+ which is trivial on O =’ but is non-trivial
on P-1. Every unitary character on K+ has the form y,(x) = y(uz) for some #€K. The
mapping % -y, is a topological isomorphism of K+ onto K+, so we identify K+ and its
dual. The Fourier transform on K+ is initially defined on the complex-valued functions in
LVK*) as f(u)=J ¢ f(2) y(ue) do.
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Let § be the set of functions on K which have compact support and are constant on
the cosets (in K+) of 3" for some n. § is a linear space of continuous functions on K and
a topology is induced in § if we define a null sequence to be {¢,} where the ¢, all vanish
outside a fixed compact set, are constant on the cosets of a fixed P*, and tend uniformly
to zero. In this topology, § is complete. § is called the space of testing functions on K+,
§’, the topological dual of §, with the weak topology is called the space of distributions
on K*. §'is also a linear complete space. The action of fin §” on an element ¢ in § is denoted
(f, ). The Fourier transform is a topological isomorphism of § onto itself. The following

important relations are used in an essential way in the sequel.

LeEMMA (A,)). Suppose that ¢ € S. @ is supported on L and is constant on the cosets (in
K+) of B™ if and only if § is supported on R and is constant on the cosets (in K+) of P~ ".

Proof. If ¢ is supported on " and we take any & €K such that [h| <g", then

Plu+h)= X(zu + zh) p(z) de = f X(au) g(z) dz = §(u),

jzl<qg—» lzl<a-n

since |xh| <1 for z in the given range. Hence ¢ is constant on the cosets of $~". On the

other hand, if ¢ is constant on the cosets of ", then
Plu) = f L{ru) p(x) de = f Z(xu) p(x + ) dr
K K

for any h€K such that k| <q™ Changing variables we get

F(u) = 7~ f xiple)ds = 1~ )i,

If [u| > ¢", then there is an element A in ™ so that |uk| >1 and y(wk) +1. Hence ¢(u) =0.
Q.E.D.

For every f€S§’, the Fourier transform of f is in §’ and is defined by (/, @) =(f, ¢).
The Fourier transform is a topological isomorphism of §'.

We define @, to be the characteristic function of P". ®,€ § and (iDn =q "®_,, so that
®, is an eigenfunction of the Fourier transform on §<L?( K+). We note that {¢"®,}:>,
is an approximation to the identity on (K*, dx) which is non-negative; ¢"®,€$ for all n.
It is easy to see that § is dense in LP(K+, dz) =L?(K+), 1 <p < o, and also in the continuous
functions that vanish at infinity. Locally integrable functions and measures on K+ are
identified with the elements in §’ which they induce. For example, if f is locally integrable
we set (f, p)=J f(x)p(x)dz, p€S. We single out one measure, the “delta function” &,
which has mass one at the origin, (d, ¢) =¢(0), p€S.
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For locally integrable f we define [f], to be the function which is equal to f on the set

{2:97"<|2| < ¢"} and zero otherwise. The principal value integral of f is defined by

Pf f(z) dx= lim {f1n (x) d.
K n—>o0 JK

Plancherel’s theorem on K+ takes the fo]loWing form: If fEL3(K+), then {[ & [fl.(x) x(ux)dx}
converges in the L2-norm (as n—~co) to f, f€L2 and ||f||s =||lle- If PJ [flu(2) g(ua)de exists
for a.e. wEK, then f(u) =P f(x) y(ux)dzx for a.e. wEK.

Let 0*=0—P be the group of units in (. There is an element ¢ in O* of order ¢ —1.
The set {0, 1, ¢, €2, ..., £%2} is a complete set of coset representatives for O/%. The set
A={z:|1-z|<1} is a compact subgroup of K* and every x in K* can be written
uniquely in the form & =yp"e*a, where |z| =¢™",0<k<g—2 and a € 4. Thus K* is the direct
product of three groups, K*=2 x Z,_, x 4, where Z here denotes the infinite cyclic group
of elements {p"};>_., and Z,_, denotes the finite cyclic group of elements {¢*, 0 <k <q—2}.
Define Ag=0* 4,=4=1+%R, 4,=1+P" n>1. The collection {4,}7-o is a neighborhood
basis for the identity in K*.

Let € K* be a (multiplicative) unitary character on K*. Since 7 is continuous we see
that 7 is trivial on some A,. If & is trivial on 4,= (0%, we say that s is unramified or has
ramification degree 0. If 77 is trivial on 4, but not on 4,_, (r >1), we say that  is ramified
and has ramification degree n.

The direct product representation for K* shows that K* is the direct product of the
circle group (unitary characters depending only on the norm of , 7(z) = |z |'*, ~z/In g<a<
7/In g), the cyclic group of order ¢—1 (unitary characters depending only on &, z(¢) a
(g —1)st root of unity) and an infinite discrete group A, the dual of A (unitary characters
determined by their values on A). There are only a finite number of characters of 4 of
each ramification degree, so that A is countable. Writing 7€ K* as mw=n*|z|", « real,
z* a character on O0*=Z, ; x4, we see that K* can be viewed as a countable discrete
collection of circles, each circle 7,. indexed by a character z* on O*. Haar measure,
dn, on K* is then given by integrating over each circle T« with respect to the usual measure
da, and then summing over the countable collection {7, 7t*€ (j*}

If fe LY(R*, d) and we choose a suitable normalizing factor (to be determined below),

then
7/ln ¢

(m)dm=> 1 fMT f(z) da=g i fz* |z |*) dex.

i» a*t @ ) —ajng

The collection of test functions, $*, on K* is the set of complex valued functions on
K* with compact support (@ € $* implies ¢(x) =0 if |x| <g" or |z| > ¢" for some integer n)
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and which are constant on the cosets (in K*) of some 4,. A topology is induced in §*
by defining a null sequence to be {g,} where the g, all vanish outside a fixed compact set
in K*, are constant on the cosets of a fixed 4, and tend uniformly to zero. The topological
dual, §*, of §* is called the space of distributions on K*.

The following lemmas give the exact relationship between the space § of test functions
on K+ and the space $* of test functions on K*.

LEMMA (A,). Suppose p€ S and @ is constant on the cosets of B". Then ¢ is constant on
the cosets of A,_, in B* for all integers k<n. In particular, if p(0) =0, then ¢ € §*.

Proof. Assume that ad, ,=bA4, ;, |a|=|b|=¢7%, k<n. Then ab1€ 4, ,, so that
1 —ab-1€P"*. Using the fact that |a—b| =|b]||1—ab-'|, we see that a —b€P" so that
@(a)=p(b). Furthermore, if ¢ is supported on ™™, —m<n, then ¢ is constant on the
cosets of 4,,,. Hence, if ¢(0)=0, p€S§*. Q.E.D.

LeMMA (M,). Suppose p€S* and ¢ is constant on the cosets of A,, n=0. Then ¢ is
constant on the cosets of L% in K — R**! for all integers k. In particular, p€S.

Proof. The first part is essentially the reversal of the corresponding proof in Lemma
(A,). If p(x)=0 on P™*', then @ is constant on the cosets of P"*" so that € S. Q.E.D.

The collection of test functions §* on K* is the set of complex valued functions on K*
with compact support {vanishing off a finite number of circles), and on each circle is a
trigonometric polynomial (that is, p(n) =p(a*|z[*) = SJ% - na,(7*)¢"**). A topology is induced
in §* by defining a null sequence to be {g,} where the g, all vanish outside a fixed com-
pact set in K*, the degrees of the restrictions of g, to 7' have a common bound for each
circle 7'+ and tend uniformly to zero. The topological dual, §*', of §* is called the space of
distributions on K*. $* and §* are complete linear spaces. As usual we identify the distri-
butions induced by locally integrable functions and measures on K* and K* with the
respective functions or measures.

Let W', be the characteristic function of 4,, A, the characteristic function of those
circles in K* corresponding to the characters z* which are reamified of degree less than or
equal to n. We denote this set of characters by 4,.

The Fourier transforms on K* and K* are denoted Mellin transforms in this paper.
They are initially defined on LY(K*, d*r) and LY(K*, dn). If f€L, the Mellin transform
of f is denoted by f. If fEL}(K*, d*z),

) = fmf(x) (@) d*z.
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If feLY(K*, dn), fx)= fA.f(n) 7 Y x) dn.

It is easily checked that the Mellin transform is a topological isomorphism of §* onto
$* and of §* onto §*.

These Mellin transforms extend to L2(K*) and L2(K*) by the usual Plancherel argument.
We may select the normalizing factor, a, so that ||f||z,ax:=||fl|2.cx for fELA(K*) and
l9llz.an=11g]ls.0v for gEL(R).

The following facts are used in an essential way in the sequel.

LemMma (M,). g €$* and ¢ is supported on the set {x:q""<|x| <q"} and is constant on
the cosets (in K*) of A,, if and only if € §*, & s supported on A, and the restriction of ¢ to
each circle T'ox is of degree bounded by n.

Proof. Suppose p€ $* and ¢ is constant on the cosets of 4,,. Take 7€ K* such that the

ramification degree of x is greater than m. Then

s Am

Since n is not trivial on 4, the integrals in the sum are all zero. Hence @(z) =0 if n§Anm.
Furthermore, we see that, if m(z) =a*(x)|x|", then

@(7) =f p(@) 7" (2) || *d*z = i ( f p(x) 7" (2) d*w) ¢*=.
g-n<zl<an K |z| =a®

--n

If we restrict ¢ to a fixed circle 7'+, then we get trigonometric polynomials of degree not
greater than =.
Now suppose ¢ € $*, ¢ restricted to 7'y has the form
K
Pt lal = 2 "),

Suppose further that @ is supported on A, and that the degrees of the trigonometric poly-
nomials above are bounded uniformly by n. We then have

k(z*) 7/ln g

"”‘”’:f,e.‘f”(ﬂ)n“(x)dﬁ s 13 (") 7" @) f ¢"*|a]| = do.

n‘eA;n @y~ _K(n* —zn/lng

It is clear that, if [« <¢™™ or |z| > g¢", each of the integrals in the last sum is zero. Hence
@ is supported on the set {x:¢™"<|z| <¢"}. Finally, if z and y are in the same coset of
A, in K*, then n(x) =n(y) for all zEA;,. Substituting into the formula above, we see that
¢(@)=p(y). QE.D.
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We see easily that q"i"0=Ao, q"‘i’n=A,,, n>1. This shows that the measure of 4, is
¢', and that the measure of 4,, n>1, is ¢ (using Plancherel). We conclude that the normal-
izing constant a is given by a =¢’ In ¢/27. It then follows that the collection {¢"Vy, ¢"¥ ', }n-1
is a non-negative approximation to the identity with each of its terms in §*. Also, it follows
that the number of characters on O* ramified of degree 0 is 1, of degree 1 is (¢ —¢')/9" =9 —2,
and of degree n>2 is (¢"—¢" 1)/¢' =q" (g —1)2.

We noW note that if fELY(K*), g €LY(R*), then [ g f(x)§(x)d*c = [ 2+ f(n)g(rr)dm. If fis &
distribution on K*(K*), we denote the action on a test function ¢ by {f, >. We extend the
Mellin transform to any distribution on K*(K*) by defining for any f € $*'($*') a correspond-
ing fe §*’($*’) which satisfies (f, p> ={f, @) for ¢€§*(S*). The Mellin transform is a topo-
logical isomorphism of S*’(§*') onto §*’(S*’).

1. _sin(n+1/2)x
Let D,(x)=1+ Zlcos W= @p)

the Dirichlet kernel. Then let
2

) D, (alng), n*=1
dn(n)=dn(n*|x|’“)={q (aing)

0 , it £l

d(ol=1 3 ¢

q/ y=—n
Each d,€ §*, and {dn};’f:o is an approximation to the identity but is not non-negative.
Let
n 2 [sin(n+1)2/2]2 2 ( lv| ) ;
K (x)=—— , (x) = =1 — vz
@=G0rn . 2P® = [ 2 sin (2/2) ] b2 \l-557)¢

the Fejer kernel. Then let

2
2 K, (xlng), n*=1
0 , a**1.

; 1 = :
kn(lxlm)=é_’ Z (1_%) qu.

v=—n
Each k,>0, k,€ $* for all n and {kn}-0 is an approximation to the identity.
Let © be the characteristic function of O*. We calculate and find that Jn is the charac-
teristic function of the set {z:¢ " <|x|<¢"} so that

d2)= 3 0.

y=—n

Similarly, () = ;n_: . (1 - nlil l) O(p’).



286 P. J. SALLY, JR. AND M. H. TAIBLESON

From our definition of the principal value integral we see that
Pfo(x) dz = lim fxf(-’v) d, (@) dz = lim ((|z| )™, d,>.

By an obvious analogy we define (C, 1) (Cesaro) summability of integrals on K by
n

(€, 1) f f(x)dz=lim | f(x)%,(2)de=lim L S f f(z) de
K ¢ "<zl

n—-o0 Jg n—>o0 n+ly=0

=nlillil°<(|w|f)~, kn.

If » is any (multiplicative) character on K*, not necessarily unitary, we may write
st(x) =m,(x) | x| # where m, is a unitary character and § is a complex number. We may also
write 7(x) =a*(x) |#| 7 where #* is a character on O*. In this case, 7z is unitary if and only if
Re(y)=0. Given two characters m(z)=n7(z)|2|” and m,(x)=n3(x)|x|”, we see that
7ty =71, if and only if 27 =73 and y; —y,=(2kni) In ¢ for some integer k. In the remainder of
this paper we restrict ourselves to the range -z/ln ¢<Im (p)<sm/lng. Thus, when we
consider functions analytic in the parameter y we restrict ourselves to this strip. All the
functions we consider may be extended to entire or meromorphic functions on the complex

plane by periodicity.

§ 3. Gamma functions and beta functions

We define the gamma function, I'(%) =T'(n*|2|%) =T'ss(«), for all characters z (not
necessarily unitary) on K* except w=1.
Definition i) If m is ramified, I'(7r) = (o) =P f ¢ y(2)70(z) | x| ' da.
ii) If Re()>0, D(Jz|®)=Ty(a)=P fgy(x)|z|>1dz.
iii) If Re(a)=0, a 40, T'y(a)=(C, 1)[ry(@)|z|*1dz.
iv) If Re{x)<0, T'j(e«) is the analytic continuation of I'; into the left
half-plane.

In our first theorem below we show that this definition makes sense by explicitly
evaluating the integrals in the definition. The crucial details in the computation of the

gamma function are contained in the following lemmas.
LeMMA 1. Let 7t be ramified of degree h>1. Then, if |u| +¢", fiz-1 g(ux)o(x)dx=0.
Proof. Let f(x)=n(x) if || =1, f(x)=0 otherwise. Then, by Lemma (M;) f€S and f

is constant on the cosets (in K+) of 8 Hence, by Lemma (A,),

f(u)=f K(ux) n(z) dxr =0, if |u]|>q"
lzl=1
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Now let g(z) =y(uz), || =1, g(x) =0 otherwise. Suppose |u|=¢*. Then, if £>1, it follows
from Lemma (A,) that g€ §* and g is constant on the cosets (in K*) of 4,. It follows from
Lemma (M,) that

§(7t)=f X(ux) m(x)dr =0 if 1<k<h.
lzl=1

Finally, if k<1, the result is immediate. Q.E.D.

LeEMMA 2. ld, k<0,
J X(x)de=4{ =1, k=1,

|z} =a*
0, k>1,

Proof. %(x)=1 if |2|<1 so the cases for k<0 are immediate. X is a non-trivial
character on the compact groups 7%, k> 1. Thus |, p-+X(z) dz=0, k> 1. The result fol-
lows by setting

f X(x) dx=f x(x)dx—f X(x)dz, k=1. QE.D.
lel=g* " :
There is also 2 multiplicative analogue to Lemma, 2.

LeEmMmA 3. If n is ramified of degree h>1, then

0, 0<k<h-1
j a(x)dx =3 —q® k=h-—1
Ar—Ak+1
g, k>h.

Proof. The proof follows from the facts that
f nfz)dx=0 if 0<k<h, and f n(z)dz =f de=qg% if k=h. QE.D.
Az Ax B

THEOREM 1.
i) If & is ramified of degree h>1, T'(7) ='ne (@) = Casg"“ P, where |Cns| =1, Cra:1Cpe=
a*(—1).
ii) I'y(a)=(1—¢*1)/(1~¢7%), a=0. T'\(«) kas a simple pole at a=0 with residue 1/¢’ In q.
1/T' () has a simple pole at o.=1 with residue —1/q’' In q. x=0 is the only singularity of
T')(a), a=1 the only zero.

iii) For all n,
P,,t(d) =7Z*( - 1) F,,tﬂ(&,), Fﬂv(d) Pns—l(l -oc) =:rz*( ‘1), and so Pn‘(d) Pnc(l _0_() =1

with the obvious interpretation at n(x) =|z|.
19— 662901 Acta mathematica. 116, Imprimé le 21 septembre 1966.
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Proof. If 7 is ramified of-degree h>1, then Lemma 1 implies that

Doe(2) = flzl ==thc(.%') 7t(x) |x|-1 dx= qn(a—i)f A(x) " (x) |x|‘% dx

|z]=g»

=T (3) " P =Creq"® P, where Cre =T (3).

Now suppose that 7 is unramified, 7z(z) = |#|*. From Lemma 2 we see that
n
j (@) |2 hde= - +1/¢' 3 ¢ 7"
K k=0

If Re(ar) >0, the limit is (1 —g*-1)/(1 —g—2). If Re(x)=0, «=+0, the (C, 1) limit is also
(1 —¢>1)/(1 —g~). Continuing the function into the left half plane we see that I',(«) and
1/T'y(e) are meromorphic functions as stated. The calculation of the residues is left to the
reader.

Part iii) for unramified characters is immediate from the expression for I';(e), « +0.
Now suppose that 7 is ramified of degree » >1. The fact that

F,-,t ((X) = 75* ( - ].) Fnt—l (&.)

is easily seen by changing variables in the defining integral. Let f(z) =n(x)|x| %, if |z| =1,
f(x) =0 otherwise. Then f€ §, and, using Lemma 1, we see that f(u) =[(m)n(x) if |u| =¢"

and zero otherwise. Using Lemma 1 again, we see that
Prs (o) Tpas(1 — ) =l"(7'z)J-I | hn‘l(u) || x(w)|w|  du
Uj=gq

=f| I- ,,F(n)n-l(u)x(u)du=f flu) 2(u) du=f(— 1) =m(—1)

since Fourier inversion holds on §. The relations for C,. in i) are an immediate consequence
of iii). Q.E.D.
For any two multiplicative characters, 7w =n*|z|*, A=2*|x|#, which are ramified, the

constants Cre, Cis and Cree are related in a simple fashion.

. THEOREM 2. Suppose that n* and A* are characters on O* which are ramified of degree
h, =1, hy>1 respectively. Let hy be the ramification degree of w*A*. Then

(a) Cgﬁ Cjt = Cnt}.t q(2h1—h,)/2f ﬂ* (1 - .’U) }.* (1’) dx, hl > h2'

|z|=ah~"h

(b) Ont Cja = O,,t;,* q(3h3—2h1)/2J‘ 75* (x) }u* (1 - x) da:, hl = h2, 0< h3 < hl'

. Iz)=gh P
(C) O,;t C,u = Cnt;,*thmf Izi=1 7'5* (.’L‘) 2.* (1 - x) dx, hl = h2 = h3.
1-z}=1

If hy=0, then A* =7* ' and CpaCie =7*(—1) by Theorem 1, i).
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Proof. If hy>h,, then 7*A* is ramified of degree k,. We then have, from Lemma 1
and Theorem 1,

anaf 7'6* (1 — .’E) l*(x) dx
) =gt~

= (f 7 A% (u) X(uw) |u| "t du) (f " (1—z)A* (x)dx)
Jzf=g™ 1z]=g" M

_ q—3h1/2f x(u)f 7t (u—x) A* (x) dx du
luj=g™ 21=q"

ot el ([ 2wl )
Izl=th |u|=0hl
= q—h‘+h’/20,,t Cis.

This proves (a). The other relations are proved in exactly the same fashion. For (c) we
observe that

fm|=1n*(w)l*(1—x)dx=f 7 (x) A* (1 — a) da.
|1-2]=1 lz]=1

We now proceed to show that the I'-function arises in a natural way as a factor in the
Fourier transform of a certain distribution. This is the original definition of the I'-function
given in [3]. If n(x) =n*(z)|x|%, Re («) >0, «+0, then n(z)|z|* induces an element of

§’ (which we denote by z|z|-*) as follows. For ¢ € 8§,

(m|=|™ @)= (C, l)f a(x) || p(x) dx (=f n(z) | 2| p(x) dz, Re («) >0). (3.1)
K K

If 7 is ramified and ¢ is constant on 3" and supported on -, n>1, we may use Lemma 1
(with |u] <1) to obtain
(=]|x| ™, @) =f 7* (z) p(x) |z[* " da. (3.2)
g-n<|z|<qn
If n is unramified, then

let =g @1 fofder [ gl

g-n<jzlgon

=(0)g /¢ (1—q*)+ f p(2)|2[* da. (3.3)

g-n<lr|gen

In either case we see that, if p € §, (n*| 2|21, ) is an analytic function of a, Re (&) >0,
a=0 if 7*=1. This analytic function may be extended to an entire function of o if 7 is
ramified, and to a meromorphic function with a single pole at o =0 if x is unramified. In
the latter case the residue at =0 is ¢(0)/¢’'Ing. We see from Theorem 1, ii), that
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1/Ty(a)(z*|2|*"1, @) has a removable singularity at a=0, and is analytic at a=0 if we
define its value there to be @(0)=(d, ¢). It is therefore natural to make the following

definition.
1)T',(0)| x| -1 =94, as a distribution. (3.4)

TrreoreEM 3. If n=1, z|z|1€S". 1/T4(0)|x]|1€S".

Proof. We may assume 7z = 1. We shall show that, if {g,} is a null sequence in §, then
(7|=|~2, @) >0 as k—oo. For some fixed =, (n|z[L, @) is given by (3.2) or (3.3) with ¢
replaced by g,. Since @, tends uniformly to zero as k—oo, it follows that (z|z[~2, ¢,) >0
as k—-oco. QE.D.

TaHEoREM 4. (7|z]|Y)” =[(=)z1.

Proof. For z=1 and 7(x) = x|, the result follows from (3.4), Theorem 1, iii), and the
fact that (1/T,(0)]x[-?)" =6=1. Now assume that 7% 1, n(z) & |z|. We saw above, using
(8.2) and (3.3), that, for p €S, ((z|z]|)", ¢)=(z|z]-L, ) =(n*|2|*, ¢) is a meromorphic
function of « with at most a pole at «=0 (if 2*=1). Thus it suffices to assume that
0 <Re(x)<1. Take @€ § such that ¢ is constant on the cosets of " and is supported on
B7", n>1. Then, by Lemma (A,), ¢ is also constant on the cosets of ™ and is supported
on P" Then, using (3.2) and (3.3), we have

L) a™, @)= I‘(y‘c)fI | mtp(x) a(x) dx

53

P(0)g " ?/¢' (1 —¢g"%) +T(n) @(x)n ' (x)dz, m unramified,

a-r<fzi<er

I'(n) @(x)n () dz, x ramified.

g-n<|rigan

If = is unramified,

(|, ) = f

lul<an

wtulgede= [ g0 atwlulduds
Jel<a-n Jul<an

+f qv(x)f a(u) |u] ¥ (ux) dudz.
a-n<lr|<en Jul<qn

A simple computation shows that

J’Mq_nqv(())fl < nﬂ(u)lul"ldudx=¢(0) g/ (1 —q7%).

In the second integral, we let y =ux, and this gives
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f p(z) 7 () 2(y) 7(y) ly| 7 dy de.
g—n<lz|<en lvl <an|z|

Since ¢"|z| >¢ for |z| >¢~", the theorem is proved for unramified characters.
Now suppose 7 is ramified of degree 2:>1. From Lemma (A,) we know that ¢(x) is con-
stant on the cosets of 4,_; in iB", k<n. Furthermore, @ is constant on the cosets of 4,

throughout K*. If k>2n, we can decompose f|s|-a@(x)nYz)dx, —n<k<n, into

> ‘P(ﬂs)f 7t (z)dw
s Bs A2n

and each of the integrals in the sum is zero. If A<2n, and ¢ "<g*<g™™*", then

n—k<h and we have

J Ple) w7 (x) dz =2 p(B,) f 7 (2) da.
|z|=a—% s Behn—k

Again each of the integrals in the sum is zero. Summarizing, we have

0, h>2n

-1 _
P(R)Ja—n<lzl<w¢(x)n () dr = I‘(n)f o DT @ s, h<n
g—n+hg|z|<qgn

On the other hand, from (3.2) we have
(w|ul™, ¢)= f a(w) [u]™ G(u) du
g-n<|ul<am
| alel [ otz dude
g-—n<lul<qn lrl<an
=f n(u)lul‘lf () X(ux) dzdu
g-r<ul<en a—n<lrl<an )

= f I E (x)f 1) =(y) |y dy
a-r<|zi<an a—njz| < |y|< ez}

0, h>2n

() f ¢@) 7 (z)dzr, h<2n. Q.E.D.
g-nthglz|<on

I

Remark. Theorem 4 shows that our definition of the gamma function is equivalent to
that in [3], § 2.5. This theorem also shows that our gamma function is precisely the in-
variant factor g(x) defined by Tate (see [4], Ch. VII, § 3). Tate considers the class of con-
tinuous functions f in L,(K+) with the property that f is continuous and in L,(K*), and
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also that f|z|, f|x|” are in L,(K*) for all ¢>0. This class of functions is strictly larger than
§ as may be seen from the example f(z) =0, || <1; f(z)=¢ !, |z] >1. For any character
7, 0 <Re (n) <1, and f as above, the local zeta function is defined by

8 m) = f o) ool

If f€§, Theorem 3 shows that (-, 7)€ §'. Defining #=n-1|x|, Tate proves the local func-
tional equation
L(f, ) (g, #) =L (f, %) £ (g, 7).

In our case this follows directly (for f, g€ §) from Theorem 4 and Plancherel’s formula.
The factor g(n) is defined by the formula {(f, 7) =g(n) £(f, #). Theorem 4 shows that o(7) =
I'(7). In this setting, the results of Theorem 1 are contained in Tate’s local computations
(4], Ch. VII, § 4).

Tate’s approach suggests another method of proving Theorem 4. We first state the
definition of homogeneous distributions (cf. [3], p. 45).

Definition. f€§' is said to be homogeneous of degree m (x a multiplicative character
on K*) if, for all t€K*, f,=xn(t)f, where (f,, @) =(f, |t] '@1/), Q€ S; @s(x) =p(sx), sEK*.

LEMMA 4. (z|2|)" is homogeneous of degree n-1, m=1, n(x) = |z|.

Leuma 5. f€S’ is homogeneous of degree m, w(x) % ||, if and only if f=cn for some
constant c. f=cd, for some constant ¢, if and only if (f, ¢) =0 for all p € § such that ¢(0) =0.

For prootfs of Lemma 4 and Lemma 5 see [3], § 2.

Remark. The missing cases in Lemma 4 are filled in by means of (3.4). It follows from
the last two lemmas that (z|z|1)" = 4,1, If we take ¢ € § such that ¢(0) =0, then a simple
computation shows (with the help of the Lebesque dominated convergence theorem) that
A,=I'(n). The proof of Theorem 4 given above is more in keeping with the spirit of proving
results by direct computation providing the detail does not become too cumbersome.

Definition. Let 7 and A be multiplicative characters, # =a*|z|*, A=2*|2|4. Then the
beta function B(zw, A) is defined by
@) T(A)  Tas(o) Tre(B)

B(ﬂ’ A) - F(ﬂl) B P,,t).a (ac +[3) ’

where the various gamma functions are defined.

Remark. B(r, ) can be considered as a meromorphic function in two complex variables

o, B for fixed =¥, 2*. In a number of cases B(x, 1) is constant as a function of one or both
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of two variables. For example, if & is unramified and A is ramified of degree 4 >1, then
B(m,A)=T(x)qg"**. If n is ramified of degree %, >1 and A is ramified of degree h,>1,

hy <h,, then
B(ﬂ, ﬂ.) = (Ont Ojt/Cnt}.t) th(z—-})—h.a.

Finally, if 7, 1 and 7 are all ramified of degree 2>1,
B(ﬂ, }.) = (Cnt O’p/O’,,.;,.) q—hIZ.

It is clear that B(n, A)=B(4, xn) for all =, 4.

Our aim is to obtain an integral representation of the beta function under suitable
conditions. This is the method used to define the beta function in [3]. Let 7z and 4 be as in
the definition of the beta function with

0<Re («), Re (8), Re(a+p)<1. (3.5)
If w€K*, then the integral defining
o) = (] 2] ¢ A o] ) () = fxn(x)lxl‘ll(u—x) u—al e (36)
converges absolutely. Setting
b(z, l)=fxﬂ(z)|x]_ll(l —2)|1 —z| da, (3.7
and changing variables in (3.6), we see that k(u)=nA(u)|u|-b(x, ). Theorem 4 implies

that £ =b(zx, A)T(7r4) (wA)~1. We wish to show that b(r, 1) = B(n, 4) which will follow from
the relation k£ =I'(7)['(A) (wA)~1. This is the substance of the following lemma.

LEmMMA 6. If m=n*|x|*, A=2*|x|# satisfy (3.5), then (z|z|2%A|z]|")"
=(z]|x| 1) A]z| )" =T@TA) (7)™, and b(m, )T(7A) =T(=)(A).

Proof. For all n>1, it is easy to see that ([|x| 1], % A|x|*)(u) represents an element
of §' since it is dominated by |u|®@*P-1p(|x|Fe@ 1, |z |R®~1), a locally integrable func-

tion. Fix ¢ €S§, ¢(0) =0, so that ¢ is supported on the set {z:¢™* < || <¢*}. We then have

([ 2|1 * Al2|™)", @) = ([z|2| ") % A|2| ™, ¢)

=f ¢(u)f (@) |2 Au —z) |u —z|  dzdu
|u|<a* a-n<|z|<an

=f :7t(azc)|av|'1Jv A —2) |u—z| P(u) du dz,
g-nglzrl<em |u[<a®

by Fubini’s theorem. We observe that
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flukqﬂ““”) |u—a| glu) du = (.||, §) = ((w:d[u] ™), @)
- fl I< k%(ux) 27 (w) D) p(w) du,

by Theorem 4. We then use the fact that z(x) |2| ™ X(ux) A7 (w) p(u) is absolutely inte-
grable on (7% <|u|<¢*) x (¢7"<|z| <g"), apply Fubini’s theorem and obtain

T(A) A7 (u) p(u) f nu(x) | x| x(ux) dx du

-nglz|<en

(]| T % Al2| ), @) = f

a—k<|u|<ak
- O G ) 9t | (@) || 2(e) dwdu.
a-k<|ul<er a-*flul<lz|<enlu

(7A) ! (u) p(w) € LM(K*,du) and the inner integral converges uniformly to I'(x) on the

support of @ as n— oo, so that

Tim ([ |2| 1, % A]21™)", @) = (@A) T T@), @), for g€S, 9(0)=0.

Lemma 5 implies that
im ([ |2, % A]2|™)" = (#d) 7 T(x) T(A) + ¢, 6,

in the sense of convergence in §’, for some constant c,.
On the other hand, if g€ S, ¢(0) =0,

(nle| % Mal )= | ) () 2] Au—z) [u—2| dodu
a-k<|u|ggk a-ng|z|<an
= f p(u) (7wA) (u) |u|‘1f a(x)|z| A1 —2) |1 —z| ' dxdu
- *<|uf<ar a—n/lul < x| < anflu|

»f_k " k(p(u) (7A) (u) |w| ™ b(m, A) du = (b(n, A) A |u|™", @) as n—> oo,

by arguments similar to those above. Thus
lim ([|| ], % A]2|™) =b(m, A) wh|u| ™ +c,8
for some constant c,, and so
lim ([7|z| ], % A|2|™)" =b(m, 1) T(#A) (7A) "t + ¢, = T'(7w) T(4) (wd)™* +¢, 6.

A homogeneity argument shows that ¢, =c¢, =0, b(z, ) I'(nA) = I'(w) I'(1). Therefore

(|2|™* % 2]2| ™) =b(x, 2) T(wd) (d) ™! = (D(m) % 7") (TA) [A] ) = (= ]=|™) " (A]=]| )",
Q.E.D.
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THEOREM 5. Let w=n*|x|*, A=2*|x|2. Then
i) if 0<Re(x), Re(f), Re(x+p) <1,

Bla, 2) = f @l M1 -2 |1 =2 .

Furthermore, [r|x|~11,% A|2z| 1> B(zm, A)md|z| -t in §' as n—>co.
ii) (a) If =, A and 7k are ramified,
B(n,z)=Pf a(z) x| A1 — =) |1 —=z| ' dz,
.4

for all &, BEC.

(b) If n, A are ramified and A is unramified,
B, 1) =Pfxn(x) |2]"* A1 ——‘x) [1—-2|dx
for Re(ec+f)<1.
(¢) If m is ramified and A is unramified, or A is ramified and 7 is unramified, then
Blw,2)=P fxﬂ(x) l2|" AL - 2) |1 — | de

for Re (8)>0 and «€C, or Re(a) >0 and BE€C respectively.

Proof. i) is an immediate consequence of Lemma 6. For ii) we consider

[ En@lel v -l -atae- |
k-4 [}

* —

a* (@) A*(1 —x)dx

+f y 7t (x) A1 — ) |x|°‘+ﬂ'2dx+f () A* (L —2) |=]* dx
1<|z|<en

¢-nglrl <1

+f | (L —2) A% ) |a)f de =1, + I, + I+ 1,
e-n<jrj<1

I, converges absolutely and is independent of « and 8. Let &, be the degree of ramification
of . Then A*(1 —x) =A*(—1)A*(x) A*(1 —1/x) =A*(—1)AMx) if |z| >¢™. Therefore

lim Iz=f a* (@) A*(1 —z) |»|**P 2 dx
1<|z] <ahs

n— 00

if #A is ramified (using Lemma 1 with |u|<1). Similarly, we see that A*(1—z)=1 if
|¢| <¢~"*and #*(1 —2)=1if |x| <q"* where h, is the degree of ramification of . Therefore
20 — 662901 Acta mathematica. 116. Imprimé le 21 septembre 1966.
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lim I3=f_k . l7t"‘(:t:)}~*(1—9e)|a:|"“1dx,
q <)<

n— o0

lim I, = @)t (l—z) |zt de
¢ M<z)<1

n-—»oe

if 7 and A respectively are ramified. Thus, if the conditions from part ii) on the “size” of
« and B are satisfied along with the conditions of ramification on zz and A, the principal
value integral converges to an absolutely integrable function which is analytic in « and
in their appropriate ranges. Using part i) and an analytic continuation argument, we have

the desired result.

Remark. In part ii) of the last theorem, we can extend to the boundary cases
(Re{x+8) =1, a+8+1; Re(a) =0, a=+0; Re(f)=0, f40) by use of (C, 1) convergence at
the respective singularities as we did in Theorem 1 for the gamma function. The verifica-

tion is obvious and is left to the reader.

CoRrROLLARY. Let convolution be defined by the integral as in Lemma 6. Then
[/T'y()]] 2|21 % [1Ty(A1]2| £ =[1/Ty(a+p)]|x[*+#-!, 0<Re («), Re(f), Re (x+p)<l.

Proof. An immediate consequence of Lemma 6.
The results in part ii) of Theorem 5 concerning the existence of the principal value
integrals do not reveal the full story about the convolution of two multiplicative characters

on the additive structure of K.

THEOREM 6. Suppose that n=n*|x|2, A=2*|2|# are multiplicative characters satisfying
(3.5). Suppose that 7v is ramified of degree hy >0, A is ramified of degree hy>0 and wAis ramified
of degree hy. Then, if k(u)=(m|z|-2 % A|z| 1) (u) as in (3.6), we have

i) Ic(u)=|u|°‘_1J~ at@) A u—2) |u—=zfdx, h >hy=>0;
lzi=]ul
i) k(u)=|u|°"1f atu—2) |22 @) de, By >hy>1;
o] =lulqts~M
iii) k(u)=f at @) A (u—2z) |z 2de, hy=hy,>h3>1;
Iz =]ulq™ %
iv) k(u) = |z|=|u|n*(x)l"(u—x)|x|°‘+ﬂ"2dx, hi=hy=hg=1;
lz—ul=|ul
v) k(u)=f at @) A (u—=) || 2dx, hy=h,>1, h3=0;
Jzl=lulgh?

vi) E(u) =f lzistu 72t (2) A% (u — ) | % |*P~2dw, Ry =h,=1, hy=0.
|

z—ul=|z|
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Proof. We give only the proof of i). The remaining statements can be proved in a
similar fashion using the techniques developed in this section.
We first write

k(u)=|u|ﬁ"1f 7 (x) A*(u— ) |z|* ' dx

lzl<lul
+f ¥ (x) A (u— z) |2 |** P2 dx +|ul“‘1f 7t (x) A*(u— ) |u — x| dx.
lz|>ul Jz)=|ul
If A is unramified (h,=0), the result follows from Lemma 1. Now suppose h; >0, and take
¢ <|u|. Define f,(z) =a*(=) if |2| =", f,(x) =0 otherwise; f,(z) =A*(z) if |&| = |u], fy(z) =0
otherwise. Then (f, % f5) (%) = [ |z = ¢t w*(%) A*(u — 2)d2. From Lemma 1 we see that

hw)= f A(vx) 7*(x) de =0 unless |v| =g ¥,
|z|~d*

and fo(0)= - lJc(vac) A*(w)de =0 unless |v]|=g"|u|™".

It follows f,(v) f3(v) = (f, % f2) " (v) =0, and hence (f; % f,) () =0. This shows that the first inte-
gral in the above decomposition of k(u) is equal to zero. If ¢* >|u|, we take f,(z) as above and
define fy(x)=A*x) if |z| =g, fo(x)=0 otherwise. Then f,(v)=0 unless |v| =¢"*"%, fy(v) =0
unless [v| =¢""*. We conclude that the second integral above is zero and the lemma is
proved. Q.E.D.

Remark. By using Theorem 1, Theorem 2, Theorem 6 and Lemma 3, one can prove by
direct (rather laborious) computation that %(1)=B(x, A) for all characters 7, A satisfying
(3.5).

We now show that the gamma function may also be considered (up to a §-function) as a
Mellin transform for unitary characters sv. The additive character y is bounded on K* and
so represents an element of §*. It follows that %€ $*'. We define (3.8) ¥ =I'*. The struc-
ture of K* is that of a countable discrete collection of circles {Tr} indexed by the
characters ©* on O*. Hence we may view I'* as a collection I™* ~ {I'7:} where each I is
a distribution on 7., a copy of the circle. Observe that PI', (i) and Tos(ter), m* %=1, where
a€R, induce distributions on the circle. So the ordinary gamma function, restricted to uni-
tary characters, may be considered as a distribution on RK*, T'~ {PT(iar), Tae(icr), n*=1}.

Remark. By Pf(ix) we mean the distribution (if it is one) defined by

<Pf,p>= el_iglj Ing/27% f f(ier) p(ax)de,

eglal<n/lng

where g is a trigonometric polynomial on the circle, () =>%._,a,q"*
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Our last theorem of this section shows that, up to a delta function, I" and I'* are the
same distributions.
TaeEoREM 7. i) I'f =Pl (ix) + (n/q Ing) é.
ii) I"*'t = Fna (7:“), n* *1.

Proof. Suppose that ¢ € §*, so that §€ $*. Without loss of generality we may assume
that ¢ is supported on 7. for each of the cases above. Then

Tae, @) =<X, > =<H, > = fxx(x) pl2)|z| " dz
= lim fx[x]n(xW(z) |2|™ dz = lim ([£], §> = lim I, 9)-
Now [1], is compactly supported on K* and is constant on the cosets of 4,. Thus
(est and pF@=[ | x@atleld

If »* is ramified of degree %>1, then [X]: () =I'(w), n>h, and we obtain (T'a, @) =
limn s o0 [X]7, @) = {T'rs, pp. Now assume that z* is unramified so that ¢ is supported on
T,. Then, from Lemma 2, we see that

17 (|=1™) =f )| al* T de=—g* +1Yg 3 g7
e-rgfrigon k=0
= —¢* ' +1/2¢ +1/¢'[Da(xIng) —iDy(xln @),
where D, and D, are the Dirichlet and conjugate Dirichlet kernels respectively ([8), v. I,
p. 49).
It is well known that, as distributions, D,(« ln ¢)->(n/ln ¢)d, and D,(xlngq) —~

P(1/2 cot (2 In g/2)). An elementary calculation shows that —g'*~ +1/2¢'[1 —i cot {xIng/2)] =
TI'y(¢). Hence [y]a (J#]*)=PT\(ia) + (7/¢’ In ¢)d and I'f =PI';(ix) +(n/g’ In g¢)6. Q.E.D.

§ 4. Bessel functions
The Bessel function is a complex valued function defined for each 7z € K* and u, v in K*.

Definition. The Bessel function (of order &), denoted J,(u, v) is the value of the prin-

cipal value integral.

Pf A (uz +v[z) n(z) | 2| dx. (4.1)
K
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In Theorems 8 and ‘9 below we establish that (4.1) exists for all characters 7€ K*
and u, v€K*. Using this fact we may find several elementary properties of the Bessel
function by changing variables in (4.1).

LEMMA 7. i) J,(u, v) =Jra (v, u).
ii) z(u)J,(u, v) =n(v)J, (v, u).
i) T (1, 0) =T (=, —0) =70( 1) T (4, 0).
iv) If n(—1)=1, J,(u, ) is real valued.
If p(—1)= —1, J,(u, u) is pure imaginary valued.

For k a positive integer, w € K* and v€ K*, we set
F,(k,v)= fl | kl(x) X(v[x) m(z) |z|* da. 4.2)
| = ¢ .

LeMma 8. Suppose that |v| =q™ and 1 <k <m. Then

1) for ;w unramified, F,(k, v) +0 if and only if m is even and k=m/2.

i) For m ramified of degree h>1, F,(k, v) +0 if and only if one of the following is valid.
a) m s even, m =2k and k=m/2.
b) m is even, m <2h<2m and k=m/2, h or m —h.
c) m is odd, m <2h<2m and k=h or m —h.

Proof. Set fy(z)=n(x)y(x) if |2|=q¢" f,(x)=0 otherwise; fy(x)=y(z) if |z|=¢""F,
faox) =0 otherwise. Then F,(k, v)=(f,% f,)(v), where convolution is taken with respect
to the multiplicative structure (K*, d*z). The corresponding Mellin transforms are

fu(a') = fl T A@ 2| dr and f(x) = fl g 1@ 2] .
7| =gk z| =qm -k

Since (fy % f,)~ =}1f2 (f, and f, are in §*), we see that F,(k,v) +0if and only if },(z')f,(n’) +0
for some #". From our calculations for the gamma function (Lemma 1, Lemma 2, Theorem 1)
we see that f (') +0 if and only if 7'z is unramified and k=1 or '~ is ramified of degree k.
Similarly fy(z') +0 if and only if #’ is unramified and k=m —1 or #’ is ramified of degree
m —k. A straightforward check of the possibilities for 7’ gives our result. These possibilities
are:

7 unramified, " and 7" have the same ramification degree.
x ramified of degree 2>1 and
i) &' unramified, 7z’ ramified of degree .

ii) n’ ramified of degree A, nn’ unramified.
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iii) 7’ ramified of degrée h, '’ ramified of degree s, 1 <s<h.
iv) n’ ramified of degree ¢t +h, £ > 1; ax’ ramified of degree s =max [t, h]..

The details are left to the reader. Q.E.D.
LEMMA 9. | F,(k,v)| <1/q'.

Proof. |17',,(k,'v)|<fI l-‘qk|x]“1d:::=1/q’. Q.E.D.

We now give explicit formulas for J,(, v) in terms of gamma functions and the
functions F,(k, v).

THEOREM 8. If n€ K*, & unramified, n %=1, and u, vEK*,
[#) D) +a @) D), |uv|<g,
Ia(u,v) = { w7 (w) Fr(m[2, uv), |uv|=g", m>1, m even,
0 , |uv|=¢", m>1, m odd.
If n=1, the only change is that Jy(u,v)=(m+1)/g'—2/g=1/¢’ [In (1/|uv|)/In ¢+1]—2/q
for |wv| =¢""<q.
Remark. J,(1, v) is the natural analogue of the usual Bessel function of order zero.
THEOREM 9. If n€K*, 7 ramified of degree h>1 and u, vEK*,
7(@) D) +7 7 (u) (), |wo|<g*,
77 (u) Fr(m)2, wv), |uv|=q™, m>2h, m even,
0 , |uww|=¢™ m>2h, m odd,
() [Fr (b, wv) + Fyp(m— b, uv) + Fr(mf2, wo)],
Iuv| =q", m<2h<2m, m even,

| 727 () [Fx (b, uwv) + Frp(m— b, uv)], |uv|=¢", m<2h<2m, m odd.

Ialu,v) =

Proof of Theorem 8. Set ni(x) = |z |=. For |uv| =¢~™ <q we write

Iulu,0) =" (u) P fl Awo[z) x| dx + 77 (u) P fl | H@) |l e
o<1 x| >
Lemma 2 implies that

7w (u) Pﬁ I L) |z|[*dr= — M (u) "

From this same Lemma, we also see that

az‘l(u)PfI |<1x(uv/x)]x|°“1dx=n(v)f el x(x)|x|_“"dx=7z(v){1/q'§oq"“——q‘“’l}.
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If a==0, this last term can be written

)L™ +a7 (w) ¢* 1= @)/(L - )} =a() T + 27 () (1 - 1/g)[(L—q7).

The result for |uv| <g¢ and all « now follows immediately. If |uv| > g, we write

I, v) =71 (u) Pfl l K(uv[z) |z dx

<

+ 77 (u) Pf

Ie1 > |uv]

x(x) |x|°“1dx+n‘l(u)f I 1(z) X (uv/z) |z | da.

2| < juv|

Lemma 2 shows that the first two terms are zero. The result then follows from Lemma 8.
Q.E.D. /

Remark. The proof of Theorem 8 shows that, for & unramified,
aw)L(#t) +7a-Yu)['(7) > 1/¢'[ —In|uv|/In ¢ +1]—2/q as = >1.

Proof of Theorem 9. We break up the integral exactly as in the proof of Theorem 8.
A direct application of the results of Lemma 1, Lemma 8 and the definition of the gamma
function gives the result.

COROLLARY. i) For fized n€K* nE1, J,(u, v) is bounded as a function of u, v€ K*.
J1(u, v) is bounded for wv bounded away from zero. Jy(u, v)~ —In|uv|/q’ In q as juv| ~0.
ii) For fixed w, vEK*, J ,(u, v) is bounded as a function of € K*.

Proof. i) If =1, this follows from Lemma 9 and the expression for the gamma function
in Theorem 1. For w=1, we use the representation for J,(u, v) given in Theorem 8. This
representation yields both the boundedness of J,(u, v) for |uv| bounded away from zero,
and the asymptotic formula. We observe here that J,(u, v) is a locally integrable function
of  on (K+, du) for fixed v € K*.

ii) For s ramified, this is immediate from Lemma 9 and the expression for I'(x).
For m unramified and |uv|>gq, we again use Lemma 9. If |uv|=¢ " <gq, the proof of
Theorem 8 shows that |J,(u, v)| <(m+1)/¢’ +2/q for all unramified =. Q.E.D.

In the next three theorems we show that J,(u, v) can be regarded as the Mellin trans-
form of a distribution on K*, the Fourier transform of a distribution on K+, and the Mellin

transform of a distribution on K*.

TaEoREM 10. Let f be the distribution induced by y(ux+vfz) on (K*, d*x), u, vEK*.
Then f is the distribution induced by J,(u, v) on (K*, dr).

Proof. For fixed u, v€ K*, y(ux +v/x) is bounded on (K*, d*z) and J,(u, v) is bounded
on (K*, dr) by the corollary above. For ¢ € §*, we wish to show that
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fx‘x(ux +v/z) px) || 1dz = fk‘ I (%, v) @(7) do.

If w and v are fixed in K* and the ramification degree of 7 is bounded above by hy, then there
is a fixed compact set 4 in K* depending only on [uw| and h, such that J,(u,v) =
§ 4 2(uzx +v/2)70(x) |z [-1dz. Since $€ §*, the set 4 may be chosen so that it contains the
support of @. Also observe that ¢ € §* implies that ¢(r) =0 if the ramification degree of 7 is
large enough, say greater than h,. Letting 4, denote the compact set (in K*) of z such that
the ramification degree of 7z <h;, we see that

fk‘J,, (w, v) @(z) dm = fA, <p(7t)fA A (uz +v/z) n(z) | x| dwdn

= f X(uz +v/z) G(x) | x| dzw = f X(ux +ofz) §(x) |z| " du,
A K*
by Fubini’s theorem. Q.E.D.

THEOREM 11. f=P(y(v/z)n(z)|2| ), vEK*, n€K*, is a distribution on (K*, dx). fis
the distribution J,(u, v) on (K, du).

Proof. Suppose @€ S, ¢ supported on 7% and constant on the cosets (in K+) of R,
k>1. Let b be the maximum of 1 and the ramification degree of . Let ! be such that
¢'=max [¢"/|v], ¢"]. If n>1, then

® f [X(v]2) () |2] ], () deo
K

o0 remaaletat [ i

—igr| <

By means of Lemma 1 or Lemma 2 we see that the first summand is zero since |v/z| > ¢"
when ¢7" < |z] <g~%. It follows that (*) is constant if »>1, so that

(f,9)= fq—l<|z|<qk¢(x) 1(v/x) n(x) |=| d,

where k and ! depend on ¢, 7 and v. If {p,} is a null sequence in §, there are fixed integers
k and I such that, for all s,

Gwr=[ ., P Lol ato) el e

Since @, tends uniformly to zero as s >oo, (f, ¢,) >0 as & —>oco. This shows f€§'. Note that
[x(v/x)n(zx) | %] 2], €S for all n. Then, for n large enough,
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o) =(.6)= f (K012) @) | 0)

L (uz +vjx) 7(x) |z| dx du.
P

= ‘L[x(v/x) n(@) || 'In () p(u)du = fx¢(u)fq_n<|z|<

If m£1, the inner integral converges boundedly to J,(u, v) as n oo, so that o) =

S I (u, v)p(u)du, f=J(u, v) on (K+, da).
Now suppose z=1. Without loss of generality we may choose k so that |v| <g**'.

We can write

(/. 9) =<;v(0)f f X(uz +vfz)|z| dzdu
lul<e=* Ja—2gle|<on

+f (p(u)f A (uz +v[z) | 2|~ dz du.
e-keluj<ak g-rglzl<an

Since |u| is bounded away from zero in the second integral, this term converges to
J‘ o(u) J, (u,v)du as n-> oo,
a-k<|uj<qr

Thus, we must prove that

f f X(ux+v/x)|x|‘1dx->f J;i(u,v)du as n—>oo.
ul<a=% Ja-ng|z|<an [ul<a-%
We first observe that, in this case, |uv|<gq. If we take n large enough, we may write
f f X(uz) X(v/z) || dzdu
lul<e~% Ja-nglz|gan
f [f x(v/x)lxl‘ldx+f X (uzx) |x|”1dx] du
lul<e-%* LJa—rngr|<ar gk <|z|<an
f f 1(x) || dzdu + f ||~ dow du
lul<a—% Ja—k|v|<|zi<a [ulsa—n Jak<|z|<an

+f f A(uz) | x| dzdu.
a-n<lul<a—* Jak<|z|<alu|

i

Now

—_ o0 —
n ,kZ =T kq"”—>0 as m—> oo,

“dydu= ,
flum—nfaklnsmlxl v q 1=nq (¢)

Hence, as n—> co,
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Jo] Hua) Uofa) || de
lul<e—* Ja—r<glz|<an
- {f Z(x)|x|‘1dx+f x(ux)|x|‘1dx}du
Jul<a—% |Ja-*v|<|z]|<a ak<fzi<aful™

=f {f x(x)|x|‘1dx+f x(x)|x|"1dx}du.
jul<a—k LJ a-*|v|<|sl <a aklul <|z| <a

The inner integrals may be summed directly as in the proof of Theorem 8. If |v|=¢/,

u=|g|™, we get
E—j+1 _1) (z~k _1) I—j+1 2
-t + —— = ———. .E.D.
( q ! ¢ ! ¢ ¢ 9

THEOREM 12. Let f be the distribution on (K*, d*v) induced by the locally integrable
function J,(u, v). Then f is the distribution on (K*, dm,) given by f=(mm,)2(w)T*(-)[*(x-).

Proof. A change of variables shows that the distribution
(a(u,*))™ = ()~ () (Tx(1,))".

So it will suffice to show that (J,(1,-))” =I"*(-)I"™*(=-). We now let { be the distribution
induced by J,(1, v). We will construct a sequence in §* that converges to f in §*. Let

ga(v) = f W@ 2ol (o) | da= me) DKL) 7 (&) || 0, d.

Since [y(1/z)m(x) |x| ~1], has compact support and is constant on the cosets of
B, 1, =max [2n, h+n], then ¢,€$ and g,(v) =0 when |v| > ¢, where & is the degree of
ramification of 7. If ¢ € §*, it can be checked that {f, ¢> =<g,, ¢) if ¢ is supported on the set
{z:q7*<|z| <¢*} and n>k+1. Let f,=[g,],4;. Clearly f,€§* for all n and <{f, p> ={fn, >
forn=k+1.

Choose (p€§*. Then <f, > =<{f, §> =fn, §> =<{fn, p> for n large enough. Thus it will
suffice to determine the limiting value on §*' of

*)  falm) = Lfn (v) 7y (v) |v] M do
=f e O f o O H01) () | 2]

= -1 -1
fa‘"slxlsa" He) () |-’IJ| k fq‘““’élvl@l"” Hofe)m () Ivl dvdz

X(x) e, (x) |2 ‘lf 2(v) 7, (v) |v| ! dvda.
fq""<|x|<a“ 1)l a~ Dz pvi<a x| ! o
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Suppose 7, 7w, are ramified of degrees hy, hy>1. When n+1>max [hy, |h;—hy|]
then f,(m;) =T(nm,) [(7r,) as we see from Lemma 1. It follows that if ¢ is supported on a
circle where 7, and nz, are both ramified (f, > =<T*(:)I™(7*), ¢>.

The remainder of the proof is concerned with evaluating <{f, > when g is supported
on a circle where either or both of 77, and iz, are unramified.

Define S_j(a)=—¢"*"!, Sp(a)=—¢*  +1/g’(1+¢ *+...4-¢").

If 7 is ramified of degree h > 1 and z, is such that 7, and nzx, are not both ramified then
either i) z, is unramified and sz, is ramified of degree k or ii) s, is unramified and 7,
is ramified of degree h. '

i) Set 7, =|x|™.

(*) =T(77,) S+ (), n>h. The argument of Theorem 7 shows that S,.,(x) >I'T asn—>oco
so that if ¢ is supported on T';,

<> = lim (D) Spen(- ) 9> =@ ) T ), 9.

i) am = [z|**. In (*) the inner integral is non-zero only if z satisfies the condition
q "< |a] <¢**'" in which case it is ['(z,). Thus if n>%

*)= F(nl)fq—mm ax(x) 7ty () Iac|':l dz =T'(7;) 8, ().

<

As in case i) we see that if ¢ is supported on the circle where nzw, is ramified, then
<f’ ‘P> =<F*( : )F*(ﬂ° )’ ¢P>

Gathering results, we see that if 7 is ramified of degree h>1, then

. gy =<T*()T*z), >
for all p€ §*.

To complete the proof we need to consider the case when 7 is unramified so that 7z,
and 7, are unramified on 7. Let &, = |2|**, nmy = |2|*®*P. Then

(**) falm) = fq_KlIqu(x)ml(z) Surnsa(@)|2] M dz, |2| =¢*

= qi(¢+ﬁ)-1Sn+2(“) + llq,kzoq_ik(a+ﬂ)sn—k+l ().

It is easy to see that, when applied to ¢ supported on 7', I'*(n-)I'*(-) depends 6nly on
a finite number of terms in the formal product '

( _ qinx—l + I/q'kéoq—tka) ( _ qi(az+ﬁ)—l + llqr kzoq—ik(au—ﬁ)) s
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and if » is large enough any fixed set of finite terms of that product is contained in (**).
Thus, if @ is supported on T, and 7 is unramified, <{f, ¢ =<T*(-)T*(x"), ).

We have shown that for any z and any ¢, <f, p> =T*(- ) T*(x-), 9D, so f=T*(- ) [*(x*).
Q.E.D.

§ 5. Hankel transforms -
Definition. For € K* and @ €S, we define the Hankel transform (of order n), H,@, by

H,p(v) = J-Ktp(u) Ja(u,v)du, vEK®. 6.1

Remark. H, is well-defined on § since J,(u, v) is locally integrable on (K+,du). I £1,
J.(u, v) is bounded so that H, can be directly defined on all of L(K+). In particular, if
feLYK*) and we let A, =||J5(, v)]|«» then

H,f(v) = fo(u) Ja(u, v)du€ L™ (K*),

and ||Haf||lo<Aalf|[;. We first establish a basic representation lemma for H,p, €S.
LeMMA 10. If € S, Hap(v) = (a~2(2) || ¢ (1/2)) " (v). Hap €LY E+) and || Hap||o=||p]]-

Proof. Let f=P(y(v[e)n(x)|x|). Theorem 11 shows that €S’ and that f=d.(-,v).
Therefore

Hop) = al-,0), )= (o §) = P f H(oje) @) ol o) da

=PJ. a () | 2| P(1/z) X(vx) da.
K
Since ¢(x) ELA(K+), we see that m~(x)|z]|-1¢(1/z) EL}K+), and that

I 8lle = lla=2C)] - 7@/ ) e

Since ¢(1/x) =0 for |«| small, and ¢(1/x) is constant for || large, it follows from Lemma 1
and Lemma 2 that P [zn-1(z)|=|-¢(1/x) X(vz)dz converges for v€K*. An application of
Plancherel’s theorem shows that this last integral converges to (w(x)|z|~'¢(1 [x))” (),
and that (m~(x)|«|-¢(1/2))" €L3(K+). Finally, since ||p||s =||§]ls, we have |[Hpl|, =|l@]|.
QE.D.

CoroLLARY. If $€§* (equivalently p€S, fxpdx=0), then H,p€ES.

Proof. ¢(x)€ $* if and only if ¢(1/x) € §*. Therefore n~1(x)]x|'¢(1/x) € S*< §, so that
H,p=(n")|2|¢(1/z))" €§. QE.D.



SPECIAL FUNCTIONS ON LOCALLY COMPAOT FIELDS 307

ToeorEM 13. If nn=xl, H, is a bounded linear map from L' (K+) into L®(K)
with norm A,. H.f(v), fELY(K™), is continuous for v=+0. H,f(v) =I(n) f g2 (u) f(u)du +
D) 7(v) f ¢ f(w)du+o(1) as |v| >0, H, f(v) >0 as |[v] = co.

Proof. The remark above proves the first statement of the theorem. Since J,(u, v) is a
continuous function of v +0 for all u=0, and |J,(u, v)f(u)| < 4,|f(u)|, an application of
the Lebesgue dominated convergence theorem shows that H, f(v) is continuous for v +0.

To determine the behavior of H.,f near zero we note that, if |u| <¢"/|v| (b the rami-
fication degree of ), J, (4, v) =I(@)n—1(u) + '(w1)7(v), by Theorems 8 and 9. Then

Hofv) = T f

ful<ar|v]

f(u) du + f O(1) f(u)du

-1 -1
" (w) f(u)du +T'(x )“(”)fl Jul > a/Jo]

ul<ah/o|
=D(n) f 7 (u) flu) du +T(nY) n(u)f fluydu+o(l), |v]-0.
K K

To show that H,f(v) >0 as [v]| >oo, it will suffice to assume f€§, since § is dense in
LY(K+). Then, from the proof of Lemma 10, we have

H,f(v) = fq—n<p|<qnn_l (x) |a:|‘1f(l/x) Z(vz)dx + £(0) Pf 7 (@) || 2(v) da,

lzl>am

where f is constant on 3" and supported on B, n>1. It follows from Lemma 1 or Lemma 2,
that the second integral is zero for |v|>¢ "***1, h the ramification degree of 7. Now
observe that f(1/z) is constant on the cosets of 3" in the range ¢ "< |z| <g™. Also, if =
is ramified of degree h>1, it follows from Lemma (M,) that 7-1(x) is constant on the cosets

of B"*" in the range ¢ "< |x| < ¢ In any case, setting k —max [3n, h+n], we may write
f (@) | U o) 2y do =3 77 (a) (1) f |2[™* 2(v) d,
-zl <qn s ag + Pk

where a; runs through a complete set of coset representatives of J3* in the given range.
Lemma 2 shows that each of the integrals in the sum is zero for |v| large enough. Hence
H,f has compact support and, a fortiori, H,f(v) >0 as |v| = c0. Q.E.D.

The operator H, defined by (5.1) for ¢ €§ may be extended to an operator on all of
L*(K+) as follows. By Lemma 10 we see that H, is a linear isometry on §, considered as a
subspace of L% Since § is dense in L*K+), H may be extended to L2(K+) as a linear iso-

metry.

THEOREM 14. H, is a unitary map on L2 K+). If f, g ELX(K+), then

(a) f Hal(@) g(@) dz = fxf(x) H, 1g(z) de,
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(b) [ Bt @ de - [ Hor -1 Fagto)d
This shows that =(—1) H, is the adjoint of H,, and hence its inverse.

Proof. The remark before the gtatement shows that H, is an isometry. If we show (a),
then (b) follows'by a change of variables. If (a) holds and H, is not onto, there is a g €L2(K*),
g =0, such that

0 =f H,f(x)g(x) dx = f f(x) Hy—1g(x)dx, for all f€ L*(K™).
b3 4

This shows that H,-.g=0. But H, is an isometry so that g=0. The proof will be complete
if we show (a). Formally

fxﬂnﬂv) g(v) dv = L(n“‘(w)le“f(l/x))A(v) g(v) do
- [ a@lelfja) ) do = [ ferae)lel g o
K K

= fxl’(v) (wl@) [x] " g(1]x))" (v) dv = Lf(v) H—1g(v) dv.

These relations all hold if f, g, H.f, H,g are in § which follows from the corollary to
Lemma 10, if we take f, §€ §*. Since the set of all such f and ¢ is dense in L2, the result
extends to all f, g€L2(K*). Q.E.D.

TrEOREM 15. If n£1 and ¢€S, then Hap €LY, 1<p<2, 1/p+1/p’'=1. We have

*) - | Hapllr < A2 |l

H,, can be extended to a linear operator on all LP, maintaining (*). For any fELP(K+),1<p<2,
H.f is equal almost everywhere to F,+ F, where F, is bounded and continuous on K* and
F,eL3(K+).

Proof. If #=1, Theorem 13 shows that [[H,|,<4.|¢|,- Theorem 14 shows that
|H,¢||z =]|jp]le- An application of the Riesz-Thorin interpolation theorem ([8], v. II, p.
95) shows that (*) holds for ¢ € § and that the operator extends to L(K+) maintaining (*).

To obtain the decomposition H,f=F,+ F,; we need only write f=f,+f, f,€L,
f,€L? and set H,f,=F;, ¢=1,2. A standard argument shows that H,.f, +H,f, agrees
almost everywhere with H,f defined by extending H, from its values on §. Q.E.D.
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