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O. S u m m a r y  

We shall be concerned with the indicator p of an analytic functional # on a complex 

manifold U: 

p(v) = li--m 1 log I/~(et~)l, 

where V is an arbitrary analytic function on U. More specifically, we shall consider the 

smallest upper semicontinuous majorant p~ of the restriction of p to a subspace ~ of the 

analytic functions. An obvious problem is then to characterize the set of functions p~ which 

can occur as regularizations of indicators. In  the case when U =(~a and :~ is the space of all 

linear functions on 0 a, this set can be described more easily as the set of functions 

lira lira 1 log [u(tO)l 
0---'-~ t--~+r162 t 

(0.1) 

of n complex variables ~ 6C a where u is an entire function of exponential type in C a. We 

shall prove that a function in C a is of the form (0.1) for some entire function u of exponential 

type if and only if it is plurisubharmonic and positively homogeneous of order one (Theorem 

3.4). The proof is based on the characterization given by Fujita and Takeuchi of those 

open subsets of complex projective n-space which are Stein manifolds. 

Our objective in Sections 4 and 5 is to study the relation between properties o fp  ~ and 

existence and uniqueness of :~-supports of #, i.e. carriers of/~ which are convex with respect 

to :~ in a certain sense and which are minimal with this property (see Section 1 for defiai- 
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tions). An example is that under certain regularity conditions, io ~ is convex if and only if 

# has only one J-support. 

Section 2 contains a result on plurisubharmonic functions in infinite-dimensional linear 

spaces and approximation theorems for homogeneous plurisubharmonic functions in C =. 

The author's original proof of Theorem 3.1 was somewhat less direct than the present 

one (see the remark at the end of Section 3). I t  was suggested by Professor Lars HSrmander 

that  a straightforward calculation of the Levi form might be possible. I wish to thank 

him also for other valuable suggestions and several discussions on the subject. 

Notation. The complement of a set A with respect to some bigger set which is under- 

stood from the context is denoted by C A. We write A \ B  for Afl [J B. The Cartesian product 

of n copies of A is denoted by A =. 

The interior of a set A in a topological space is denoted by A ~ its closure by A, and its 

boundary by ~A. 1~, It, C stand for the set of non-negative integers, real numbers, and 

complex numbers, respectively. The sets [ - ~ ,  + ~ [ = R U { - ~ }  and [ - ~ ,  + ~ ] =  

It U { - ~ ,  + ~ }  shall be equipped with their natural topologies so that,  for instance, 

[ -  ~ ,  + ~ ]  is compact. We use a bar to denote complex conjugation of complex numbers 

and complex-valued functions. The differential operators ~/~z k and a/~2~ are defined for 

functions of n complex variables by 

where zz=xk+iyk; xk, yzEit,  k = l ,  ..., n. The space of complex-valued linear forms on (~n 

is denoted by E or C(t3 n) and the value of ~ E C at a point z E (~ is written ~(z) = <z, ~>. There 

is sometimes no advantage in identifying s with (~n; on other occasions, however, we shall 

do so by  means of the formula <z, ~> = ~ z j ~ j .  The norm in C n (and in C when we use coor- 

dinates there) will always be Euclidean: I zl = (~zt~)1/~. 

1. Basic definitions 

Let  U be a complex analytic manifold. We shall denote by A(U) the space of all ana- 

lytic functions in U equipped with the topology of uniform convergence on all compact 

subsets of U. A continuous complex-valued linear form/x on M(U) or, in other words, an 

element of the dual space M'(U), is called an analytic functional in U. If gEM'(U), the 

continuity means that  for some compact set K c  U and some constant C we have 

< c  sup (1.1) 
K 

for all ~ E A(U). 
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I t  is convenient to have a name for sets which are limits of decreasing sequences of 

compact sets for which (1.1) holds: 

De/inition 1.1. A carrier o /an  analytic/unctional I~E.4'(U) is a compact subset K o/ U 

such that/or every neighborhood L o / K  there is a constant C such that i/~(q~) l <~c supLIq~l/or 

all q) 6.4(U). 

In  Martineau [8] the word carrier is used with a different meaning. However, Marti- 

neau's definition and Definition 1.1 coincide if U is a Stein manifold and K is holomorph 

convex and this will usually be the case in what follows. 

The main par t  of this paper is devoted to a study of carriers of an analytic functional 

# which are minimM with respect to inclusion in the family of all those carriers of #~ which 

are convex in a certain sense. We proceed to define these convexity properties. 

De/inition 1.2. Let M be a subset o~ U. We de/ine the supporting/unction H M o / M  by 

HM(q~) = sup Re T(z), ~e .4 (U) .  
z e M  

(The supremum over the empty set is de/ined as - ~ . )  

With obvious conventions on infinite values, H ~  is convex and positively homogeneous 

in .4(U), tha t  is 

HM(tqJ) = tHM(q~), HM(q~ +~p) <HM(qJ) + H~(y~), t >O, T,~pe.4(U). 

I f  M is non-empty and relatively compact in U, /-/M is in addition real-valued and con- 

tinuous. In  the special case when U = C n, the restriction of H M to the linear functions ~: 

in (~n is the usual supporting function of M and it is well-known that  every convex and 

positively homogeneous real-valued function in s is such a restriction. In  general, however, 

the restrictions of the supporting functions to a subspace :~ of .4(U) form a proper subset 

of the convex and positively homogeneous functions in ~. 

Definition 1.3. Let ~ be an arbitrary subset o/.4(U). We de/ine the :~-hull h~M o /a  set 

M c U  by 
h~M = {z E U;/or all q~ 6 3, Re q~(z) <~ HM(~)}. 

I / h ~ M = M  we say that M is :~-convex. The mani/old U is called ~-convex i/ h~K is compact 

/or every compact set K c  U. 

In  other words, h~ M is the largest subset of U whose supporting function coincides in 

with that  of M. I f  ~ c  ~ . 4 ( U )  and M c N ~  U it is obvious that  h~Mch~N.  We also 

have h~hqM=h~M=hqhTM if ~ ~; in particular h~M is ~-convex. Another property of 
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the :~-hull is tha t  h~( f'l Ms)~ f3 h~Mi; this implies tha t  the intersection of a family of :~-con- 

vex sets is ~-convex. 

I f  U = C  ~ and ~ = s  the space of all linear functions on C ~, h~M=h:M is the closed 

convex hull of M. More generally, if :~ is a finite-dimensional complex linear subspace of 

A(U) we can choose a basis ~1 ..... zr in if, and then h~M is the inverse image under ~ =  

(~1, ..., ~m) of the closed convex hull of co(M). Another important  special case is when 

= A(U). Then the :~-hnll is the usual holomorph convex hull. In  fact, if z is in the holo- 

morph convex hull of M we have [~v(z)[ ~<supM[~[ for all of CA(U), in particular with 

r vj, eRe~(z)<~sllpM eRevJ SO that  zEh,4(u)M. On the other hand, if zEh~(v)M and ~ e A ( U ) ,  

It] = 1, we obtain Re @(z) <~ supMRe t~v ~< SUpMI~I and hence [q(z) I ~< SUpM[~ I which means 

that  z belongs to the holomorph convex hull of M. The same proof shows that  the real 

parts  in Definitions 1.2 and 1.3 can be replaced by  absolute values without affecting h~M 

if ~ is a subalgebra of j4(U) and in addition either ~ is closed or M is relatively compact 

in U. 

De/inition 1.4. A compact subset K o/ U is called an :~-support o] ttEz4'(U ) i / K  is an 

~.convex carrier o/# and K is minimal with respect to this property, that is, h~L~ K/or every 

carrier L o/tt such that L c K. 

By the Zorn lemma, tt has an J-suppor t  if (and only if) ft is carried by some J-convex 

compact set. This is always the case on an :~-convex manifold. 

The supporting functions of the J-supports  of a functional are closely connected with 

the growth properties of a generalized Laplace transform/2 of #. This relation is the subject 

of Section 5; we prefer, however, to define/2 now. 

Definition 1.5. Let ~teA'(U). The (generalized) Laplace trans/orm /2 o /#  is de/ined by 

fi@) =tt(e~), ~ e z4(U), and the indicator o/# (or o]/2) is p(cf )=limt_~+~ log ]/2(tq~) l l/t, t> O. 

I f  U = C ~, the restriction of/2 to E is the usual Laplace (or Fourier-Borel) transform 

of # which is an entire function of exponential type in s The name indicator or indicator 

function is also usually reserved for the restriction of p to s 

Now suppose that  K is a carrier of ft. I f  L is a neighborhood of K there is a constant C 

such that  for all ~ eA(U) ,  

I = l < c  sup exp R e  
,L 

hence if t > 0 ,  

1 ~< 1 log H z @). log I c + 

Taking the upper limit as t--> + ~ ,  we get 
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p(~) <H~(~). 

Since L is an arbitrary neighborhood of K we finally obtain 

p(~) ~< UK(cf) (1.2) 

for all ~ E ~4(U). In Section 5 we shall prove under certain assumptions on a linear subspace 

:~ of ~4(U) that conversely ju is carried by an :~-convex compact set K if (1.2) holds for 

all q~ E:~. 

2. Plurisubharmonic functions 

Let ~ be an open set in a linear topological space :~ over the complex field C. A function 

F in ~ with values in [ - 0 %  + oo[ is called plurisubharmonic (in symbols FE ~(~)) if F 

is upper semicontinuous (i.e., (TE~;  F (~)<c)  is open for every real c) and the function 

t-~F(qJ + t~p) is subharmonic for all ~, ~p E :~ in the open subset of C where it is defined. This 

means that  F E ~(~)  if and only if F is upper semicontinuous and 

F(q~) <~ 1 f D F(q~ + ty)) d~(t) (2.1) 

for all ~, ~pE:~ such that  q~+D~flc~, where D=( tEC;  ]t] ~<1~ and d~ is the Lebesgue mea- 

sure in C. 

In Section 5, :~ will always be a subspace of A(U) with the topology induced by the 

latter space (U is a complex analytic manifold). If #E,4'(U), then/2 is analytic in r 

(that is, ~(~+t~p)=#(e ~+t~) is analytic in tEC for all ~, ~pEA(U)) and also continuous; 

therefore log [/21 E 0(A(U)). From this basic example we can construct other plurisubhar- 

monic functions by means of the following theorem which extends a result of Ducateau 

[1, Proposition 11]. 

T H E 0 R E M 2.1. Let :~ be a complex linear topological space such that there exists a coun- 

table base/or the neighborhoods o/ the origin. Let ~ be an open set in ~ and (F~)~ I a /ami ly  

o/plurisubharmonic/unctions in ~ indexed by a directed set I which is co/inal with a sequence 

(in the applications I will be either the integers or the reals with their natural order). Suppose 

that (F~)~ z is bounded/rom above on every compact set in ~ .  Then the upper regularization 

F* o/ F = l i m ~ z F  t is plurisubharmonic in ~.  The analogous conclusion holds/or the upper 

regularization o / G  = sup~zF t without any restriction or structure on the index set. 

Here the upper regularization F* is the smallest upper semi-continuous majorant of 

F with values in [ - 0% + oo[, i.e., F*(q~) =limv_~r ). 
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Proo/ o/ Theorem 2.1. Let  ~v and ~v be fixed elements of ~ such that  ~ v + D v 2 ~ .  Take 

any Z~:~ so near the origin that  ~v+z+Dv2~s Since (F~) is bounded from above on 

the compact set ~v+z+D~,  Fatou's lemma can be applied to the family of functions 

t-->F~ (~v +)~ +t~v) on D which gives 

§ X) ~ ]im 1 [ F(~ 

:T~ Q) *D 
(2.2) 

where ~. denotes the Lebesgue lower integral. In view of our assumption on :~ there is a 

sequence (ZJ)JeN tending to 0 such that  limj_~+~F(~+Xj)=F*(~). Also F* is bounded from 

above on ~v + D~v, hence on a neighborhood of this set so that  the sequence of functions 

D gt--->F*(q~ § +t~v) is bounded from above. Applying Fatou's lemma to this sequence we 

obtain from (2.2) 

F*(cf)~ lim F(~v+ Zj)~< lim 1 fD 1 f 9  ~-~+~r J~+~ ~ Y*(q~+Zj+t~)d,~(t)<~ F*(~v+t~v)d2(t), 

i.e., we have proved that  (2.1) holds for F*. 

The proof for G* is similar except that the inequality corresponding to (2.2) is trivial: 

1 i 
The theorem is proved. 

If G is plurisubharmonic in a linear space :~ satisfying the assumptions of Theorem 2.1 

and if 
G(~) < C + q(~), ~ ~ :~, 

for some constant C and some continuous seminorm q in ~ we define 

F(~) = lira G(tcf)/t. 

The family of functions G(tq~)/t, t>~l, is bounded from above by ICI +q(~) so Theorem 2.1 

shows that  F*EO(~ ). In particular, if ~ is an arbitrary subspace of z4(U) where U is a 

complex manifold which is countable at infinity, then the upper regularization of the 

restriction to :~ of the indicator of an analytic functional/xEA'(U) is plurisubbarmonic 

and positively homogeneous of order one in :7. 
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We shall need the following result of Hardy  and Rogosinski [3, Theorem 5] concerning 

(pluri-)subharmonic functions in one variable which are positively homogeneous. 

T ~ E O ~  2.2. Let ~ 2 ~  be a connected open set such that O~g2 and t $ ~  i / $ ~ 2 ,  t>0 .  

Suppose that F ~ ~([2) is positively homogeneous o/order ~, i.e. 

F(t$) =t~F(~), S e ~ , t > 0 .  

Then F is convex with respect to the/unctions in ~ which are harmonic and positively homo- 

geneous o/ order ~ in the sense that i / b -  a <o*=in f  (2z~, z~[O I-1), the open set 

{Sen;  [r =~,  ~<arg  ~<b,  F($)<R($)}  (2.3) 

is connected/or every such harmonic/unction H de/ined in the sector a < arg ~ < b. I / ~  = 1, 

F is convex in the usual sense in ~.  

Proo/. The harmonic functions which are positively homogeneous of order ~@0 are 

given locally by  
H(~) = A Re ($/a) ~ = Ar  e cos ~(~v -~0),  

where ~ =rd ~, a =e  ir and we have defined Se e.g. when $ is not ~<0. I f  ~ =0,  we have 

H(~) = A?  + B. 

I t  is easy to see that  there is exactly one such function which assumes given real values 

at  two given points $1, ~ satisfying 0 < arg ~ z -  arg ~1 < ~*. 

Now suppose tha t  b -  a < 0* and tha t  (2.3) is not connected for some harmonic function 

H. This means that  we can find points ~1, $3 such that  a <a rg  ~1 <a rg  $8 <b, F($1)<H(~I), 

F(~a) <H(~3) and the set 

K .  = {~, I ~ [ = 1, arg ~1 < arg ~ < arg ~3, F(~) >f H(~)} 

is contained in ~ and not empty.  Let H~ be the harmonic function which is positively 

homogeneous of order Q and assumes the values H(~j)+e at  ~j, j = l ,  3. Choose e>~0 so 

that  KH~ is non-empty but  F(~)~<H~(~) for all ~ satisfying arg ~1<arg ~ < a r g  ~3- Let  ~ be 

the point in KH~ with least argument. Taking a small disk with center at  ~2 we conclude 

that  F - H  e is ~<0 in the whole disk, = 0  at  its center but  < 0  somewhere in the disk. Clearly 

this violates the mean value property (2.1). This proves the theorem. We have in particular 

proved that  F cannot assume the value - ~  without being - ~  everywhere in ~2. I t  is 

also obvious that  F is continuous. 
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Remark. If r =1 and f~ =s we can extend 2' to a function in ~((3). For the con- 

t inuity implies that  12"1-< on the unit circle, hence .< c l 0, which proves 

that  2" becomes continuous if we define 2"(0)=0. Moreover, if ~ # 0 we obtain 

0 = lim 2sF(i~) < lim (F(is~ + ~) + F ( i s ~ -  ~)) = F(~) + F(  - ~), 
s--~0+ s--)O + 

which means that  F is convex on every straight line through 0, hence everywhere. 

We note also that  the theorem gives a bound from below for the second differences of 

the functions considered. If 6 >0  is sufficiently small (how small depends only on 0) we 

obtain for all ~ E [ -(~, (~] 

A~ = 2,(1 + i ~ ) - 2 F ( 0 )  +F(1  - i~ )  ~> - C ~  2 sup ([ F(1 +i~1) [, IF(1 - i~ )  ]), 

where the constant C depends on @ and 6 but  not on F or ~?. To prove this estimate we let 

H(re ~) =Are  cos 0(T-~v0) be a harmonic function homogeneous of order Q#0. A calcula- 

tion shows that  when ~ = 1 + i~ 7 =re ~, 

where ~Vl=~(1 - 2/~). Hence 

~2H 
(rd~) _ 0(lr ~- Q) H(ret~) ' 

sup ~ H  i. <I (1-Q)I sup,  IHI, 

where Io={1 +i~; ~ e[ -U0 , ~o]} and 11 is the arc Ii={re~r re~VeIo} which occupies 

an angle I 1 - 2/~ I times that  of 10 viewed from the origin. Now it is easy to see that  when 

arg (1 +i~0 ) and [1-2/~[  arg (1 +i~o ) are smaller than s <e*/2, sup1 ,]HI can be estimated 

by the value of IHI at 1 +i~]0 and 1 -i~o: 

sup sup (IH(I +i o)l, I(H(1 
h 

where the constant is independent of H and 90. Hence 

I ~2 H 
sup1. ] ~  ~<C sup ((H(X+i~o)[, [H(1-iVo)[) 

if ~:~0 and ~1o is small. If ~ =0 it is easy to prove this inequality directly. We therefore 

have proved in particular that 

H(1 + i~o ) - 2H(1) + H(1 - i~o ) >~ - C~ sup (] H(1 + iWo) ], I H( 1 - i~o) ] ) 

and changing notation we obtain the desired estimate for A~. Now if F is only subharmonic 
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we choose H harmonic such that H(1 +i~) = F(1 § H(1 - i~ )  = F(1 - i~) .  Then H(1) ~> F(1) 

by the convexity so that  

A~ >~A~> - C ~  ~ sup (IH(1 +i~)], I H ( 1 - i ~ ) l ) =  - C~ ~ sup (iF(1 +i~)l,  IF(1 

which is the required conclusion. 

COROLLARY 2.3. Let FE p(3\{0}) be positively homogeneous o/order 1 where 3 is an 

arbitrary complex linear topological space and suppose that F is not identically - ~ .  Then F 

is finite everywhere. Moreover F is bounded in a neighborhood o/the origin i / 2 '  can be extended 

to a plurisubharmonic ]unction in 3. Conversely 2' admits such an extension i / F  is bounded 

/rom above near 0 E 3. 

Proo]. Suppose that  F ( ~ ) = - o o  for some y~E3\(0}. Since the restriction of F to 

(t~0; tEC, t~0}  is convex, we must also have F ( - y J ) = - o o .  The open set ~ = ( ~ E 3 ;  

_Y(~)<- l}  is therefore a neighborhood of (~o, -y~}. But if ~, -~Eg2 we obtain 

F(~) = - oo for otherwise 0 ~< F(~0) + F ( - ~ )  < - 2 ,  a contradiction. Therefore _Y = - oo in 

the open set ~ f] - ~ which means that 2' = - oo everywhere contrary to our assumption. 

We have proved that F assumes only real values. 

Now if F can be extended to a function in 0(3)  we must obviously have F(0)=0 ,  

hence F <  1 in a neighborhood co of the origin. When q~ E co N - o) we therefore obtain F(~) < 1 

and F(q~)~> - F ( - ~ ) >  - 1 ,  hence IF(~)] < 1. Conversely, if F(~)~<C when ~ is small we 

get an upper semicontinuous function if we define F (0 )=0  and the remark following the 

proof of Theorem 2.2 shows that F becomes a subharmonic function on every complex 

one-dimensional affine subspace. 

COROLLARY 2.4. Let F E 0 ( 3 \ ( 0 } )  be positively homogeneous o] order 1 in a finite- 

dimensional complex linear space 3. Then F can be extended to a plurisubharmonic /unction 

in 3. 

Proo/. By the preceding corollary it is sufficient to prove that F is bounded from 

above near 0. But by definition F is bounded from above on ~K if K is a compact neigh- 

borhood of 0E3; hence F is bounded from above on (t~; 0~<t~<l, qJE~K}DK in view of 

the homogeneity. 

In  Section 3 we will need an approximation theorem for functions which are either 

positively homogeneous of order one or complex homogeneous of order zero. We prefer, 

however, to prove the following result for arbitrary ~. 

THEORElV~ 2.5. Let ~2 be an open set in {in such that t$ E ~ i] ~ E ~ and t > O and suppose 

that F E 0 (~ )  is positively homogeneous o/order ~, i.e. 

1 -  662903 Acta mathematica. 117. I m p r l m ~  le 1 n o v e m b r e  1966. 
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F ( g )  = t~2~(r ~ ~ f~, t > 0, 

and that F is not identically - ~ in any component o/ ~.  Then there exists a sequence (Fr o/ 

/unctions in cn\{0} with the/ollowinff properties: 

(i) ~ j e r  

(ii) F~ is positively homogeneous o] order @ in cn\{o}; 

(iii) F~ E ~ ( ~ )  where ~ is an open subset o / ~  such that t$ E ~ i] ~ E Y2~, t > O, and every 

compact set K ~ ~ is contained in ~ when ] > ]K /or some index ]~; 

(iv) (F~) converges to F in the sense that/or every compact set K contained in ~ and every 

continuous ma~orant g o/ F, sup (F~, g) tends to g and inf (Fj, ~) tends to F 

uni/ormly on K, provided the ranges are given the natural uni/orm structure o/ 

[ - ~ ,  +~[. 

The corresponding conclusion holds i/ we replace everywhere "positively homogeneous" by 

"complex homogeneous", i.e. i/ we require instead that t~E~ and F(t~)= [ t l q F ( ~ ) i / ~ E ~ ,  

t E C\{0}, and similarly/or ~ and ~ .  

When F is complex homogeneous of order zero the theorem is most naturally regarded 

as an approximation theorem for plurisubharmonie functions in open subsets of projective 

(n - 1)-space. 

Note that  when Y2=(3 ~ or f2 =Cn\{0) the sets ~ j  are all equal to ~,  at least from some 

index on. When @=1, of course, the cases ~2=t3 ~ and f~=(3n\{O} are the same by  Corol- 

lary 2.4. 

The function [~1Q is plurisubharmonic if @ ~> 0 or n = 1. Therefore the approximation 

from below can be improved in these cases: by  adding ej[~[ e to Fj  we can arrange that  

~'j(~) ~>_F($) when ~ belongs to a given compact set K in f2 and ~(~)>~ - C ,  ]>~]K,c. 

Proo] o/ Theorem 2.5. Let F be the unitary group in C =, i.e. the group of all complex 

linear maps of C n onto itself which preserve I ~[" Since ~ E F is analytic, the function ~-1(~) 9 

$-->F(~($)) is also plurisubharmonie. Let co~ be the set of all points ~, ]~] = 1, with distance 

to {0 (~ ;  ]0] =1} greater than 6~>0, and let ~8={t~; t>0 ,  ~Eo~} (if ~D(3n\{0} we take 

all ~$ equal to ~). Obviously ~$ and ~ share the same homogeneity properties. Define 

F$(~) =F(~) when t E ~ ,  F~(~)=0 otherwise. We shall define regularizations of F by 

where d~ is the Haar measure on F, and k is infinitely differentiable on F with k ~> 0 and 
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Srk(F)dT=l.  (G~(0)=F(0) if 0E~.)  Then it follows that  G~ is C ~ on the unit sphere, hence 

in (3n\ {0}. Also G~ inherits the homogeneity of F. Note that  F$(F(~))= F(F(~)) if ~ E ~$+~,, 

E supp k, and the support of k is contained in 

{r r; II -ell (2.4) 

where e e l  ~ is the unit element of F, i.e., if k ( ? )=0  if ]~,($)-$[ >6 '  for some ~, Ill  =1.  i f  

+ DO E~s+,. we therefore obtain with the notation of (2.1) 

since the order of integration can always be inverted when the integrand is semicontinuous. 

This means that  G a is plurisubharmonie in ~s+~, (in fact in ~ for some s <~ +6').  

Now for every SE~+~,  and every ~>0  we have Fs (? (0) )<Fs(~)+s  if 0 is near ~ and 

the support of k lies near e. Choosing a sequence (kj) of functions on P with supports shrink- 

ing to {e} and a sequence (~s), OJ'~ 0, we obtain a sequence (Fj) = (G~j) such that  for arbitrary 

lim sup Fj(0) <F(~) .  
j ,  rn--~+~ I{}-~l<~l/m 

This proves that  sup (Fj, g) tends to g uniformly on every compact set which is contained 

in ~ if g is a continuous majorant  of F. 

I t  remains only to study the approximation from below. For this purpose we suppose 

in addition to the properties of k already mentioned that  k is a function of the trace of 

~, k@) = ko(tr ~), where k 0 E C~ (C) and ko(t ) = k0(~ ). Since the sets {~ E F; [n -- tr  ~ [ <~} form 

a fundamental system of neighborhoods of e E F it is still possible to find functions of this 

kind with supports arbitrarily close to e. We then have k(@) = k(fl~) and k(~) = k(~ -x) = k(a) 

for all ~, fl E F if ~ denotes the dement  of F obtained by  taking the complex conjugates of 

the entries of the matrix determined by a in any  given coordinate system. Choose coordi- 

naies in such a way that  ~=(0  ..... 0, 1), let H be the real hyperplane {0ECn; Re0n=0}  

and denote by  da the Lebesgue measure in H. Then if the support of k is sufficiently small 

(e.g. if when I (0)-01 > 101 for some 0) there is one and only one function h in H 

such that  

= f (2.5) 

for all continuous / which are homogeneous of order zero; in particular .~Hh(O)dc;(O)= 1. 
We denote the coordinates in i3 n by  0 = (0', On) where 0' E C n-l, 0n E C and in H by  0 = (0', i~), 
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~ER. We claim that  h(a(O))=h(O), OEH, for every aEF  of the form ~(0)=(s +0~), 

0EC ~, where a' is a unitary map in Cn-x; in other words, h(O', i~) depends only on ]0' l and 

I~l. In  fact, da is invariant under such maps r162 and if we assume in addition that  ~(~)=~ 

we obtain 

fr/(~ +O)h(ze(O))da(O) = fr/(~'-i~'(r f r/(~'(r 

by the left invariance of d 7, and then from k(:r by the right invariance of d 7, 

f r/(,(~))k(~r)dr= f r/(,~-~(~))k(,)a~'= f /(~ +O)h(O)da(O), 

where the last equality follows from the fact that  g - - l (~ )  = $. To prove the assertion for arbi- 

t rary  r162 of the indicated form it i s  now sufficient to consider only the map defined by 

~(0)=(0', -0n). Then h(~(O))=h(O), OEH, by what we have just proved, and we obtain 

since ~ is real in the coordinate system and k(7 ) = k@), 

fg/(  +O)h(a(O))da(O) = f , F  = f /(2(r 

= f,/(,(:))k@)d 7 = fill(: +O)h(O)da(O). 

This proves that h(O) =ho(lO'l, 1). 
We now apply (2.5) to the function [(~) = ] ~l -~2'(~) and get if ~ E ~+~. and the support 

of k is contained in (2.4) 

q/~.F(~+O)d2(O'), 

where d2(O') is the Lebesgue measure in C n-1. Now we can use the plurisubharmonieity of 

_F and the fact that  h(O) depends only on I0' I for fixed ~ to conclude tha t  

;2 G~(r ~> _ E(r +i~/)) h (l l) 

where hl(~) = f c n ,  ~ h(O) (1 + [0 I~)-e/2d2(O ') 

and _ hl(~) f+f d~= f,h(O)(l +lOl~)-~/2da(O). (2.6) 

We shall prove that  for given (~, e >0,  G~($)~> F ( ~ ) - e  when the support of k and thus of h 

is small. Moreover, we want this to hold uniformly when IF(t)] ~<C and tEeo$+~, for given 
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C, 6' > 0. I f  we take C s o  large that  F ~< C in r this will imply that  sup ( - C, G~) ~> 

sup ( - C ,  F ) - e  in w~+a, which is equivalent to the formulation given in (iv). Suppose, 

therefore, that  IF(t)]  <~C and that  ~E~o~+~,. Writ ing/(7)  =F(~(1 + 7)) we obtain 

G~(~)~_ /(7)hx(7)d7 (/(7) + / ( - 7 ) )  h1(7) d7 

= /(O) f ] :  h (7) aT + f ::c (/(7) - 2 /(O) + /( - 7) ) h (7) dT. 

The observation following the proof of Theorem 2.2 shows tha t  when the support of k lies 

in the set (2.4) and 7 .is in the support  of hi, the second difference occurring in this formula 

can be estimated by  /(7) -2 / (0)  + / (  - 7 )  >~ - C172 where C 1 is a constant which depends 

on C, Q and 6' but  not on ~ or F. Hence 

which proves the assertion since S_oohl(7)d7 tends to 1 when the support of h 1 shrinks to 

{0) in view of (2.6). The proof is complete. 

I f  Q = 1 it is clear that  the second difference is non-negative so the proof can be some- 

what shortened in this case. 

3. An existence theorem for entire functions of exponential type 

We have seen that  the upper regularization of the function 

1log (3.1) 
s-~ -I- r 8 

defined for all linear forms ~ on C n is plurisubharmonic if # E A'(C n) (Theorem 2.1). Through- 

out this section we identify the space of linear functions on C = with C" itself by  the formula 

~(z) = <z, ~> = ~z j~ j .  We shall now prove that,  conversely, given a positively homogeneous 

function F E p(C"), there exists an analytic functional/~ in C ~ such that  the upper regulari- 

zation of the function (3.1) is F. This will generalize a result of Lelong [7] who has proved 

Theorem 3.4 under the extra assumption that  F is complex homogeneous, i.e., F(t~) = [ t] F(~) 
for all ~EC ", tEC. 

A crucial step in the proof is Theorem 3.3 which is a consequence of the following result. 
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THEOR~,M 3.1. Let F be a positively homogeneous and plurisubharmonic /unction in 

C n. Then the open set 
[~p = {~ E Cn; /or some t E C, F(t~) < Re t} (3.2) 

is connected and pseudo-convex. 

Note that  it is trivial that  ~p  is pseudo-convex if F is complex homogeneous for then 

~F={~ecn; F(~)<I}. 

Proo/ o/ Theorem 3.1. We first prove that  ~F is connected by joining an arbi trary point 

in/s  to the origin by  means of a curve in ~F. Let ~ E/2F and take a non-real t such tha t  

F(t~) < R e  t. This is possible because the set {t E C; F ( t~ )<Re  t} is open and not void. I f  

s ~>0 we then have F(t~) < R e  t(1 +s~) which means that  ~/(1 +si) E~F. The continuous curve 

{~/(1 +s~); s E [0, + ~ ] }  fulfills our requirements. 

Next  we shall prove that  ~p  is pseudo-convex if F is sufficiently regular. Later  the 

extra hypothesis will be removed. 

Thus suppose that  F is three times continuously differentiable outside the origin and 

that  F ( ~ ) - e I ~  [ is plurisubharmonic for some s > 0 .  Define G ( T , ~ ) = F ( ~ ) - R e T ,  TEC 

~EC n and g(~)=infM=lG(v,~). Then GECa({(~, ~)~C~+n; ~$=~0}) is plurisubharmonic in 

C ~+n and, by  Theorem 2.2 and the remark following its proof, convex in ~ for fixed ~. More- 

over, g is obviously continuous in C ~ a n d / ~  = {~ ~ cn; g($) < 0). We claim that  g is also twice 

continuously differentiable in the set co~={~ECn; r  and g(~)<el~l} where e > 0  is so 

small tha t  F(~) -~[~[  is plurisubharmonic. I t  is clear that  co~ is a neighborhood of ~ 

for 0 E~r.  

Let  $ Eco~. This means tha t  ~-->G(v, r  which is a convex and positively homo- 

geneous function has a negative minimum on the unit circle. But  such a function can attain 

its minimum on the unit circle more than once only if it is ~> 0. Thus there is a unique point 

such tha t  ]~] =1  and G(~, $)=g($); we define a continuous function a in w~ by  means of 

the equation a(~)= ~. 

Since G is positively homogeneous in ~ for fixed ~ we have the Euler identity 

and, taking ~ / ~  of this equation, 

~G _~G 
~ ~-}-  ~ ~ = G (3.3) 

~2G - a~G (3.4) ~ + ~ = 0 .  

We also note that when for is 

plurisubharmonic in T by  assumption. 
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When ~ G(~, ~) attains its minimum on the unit circle, that  is, when ~ = ~(~), we get 

~G _~G 
~ - -  ~ -  = 0. (3.5) 

Define H(~, ~)=Im (~G(v, ~)/~). To prove tha t  ~ is smooth we shall apply the implicit 

function theorem to the C 2 function h(s, ~)=H(e ~, ~), s 6R. Obviously one of the solutions 

s of h(s, ~)=0 satisfies a(~) =e% From (3.3) and (3.4) we get 

~h ~ [ .  ~ G  ~ G ~  1 8 2G 1 

when $ Ewe. This proves that  each solution s of h(s, ~)=0 is locally a C ~ function of $, hence 

that  ~6C~(0)~). As a consequence, g(~)=G(~($),$) is twice continuously differentiable 

i n  0 )  8 . 

Furthermore, the gradient of g never vanishes when g =0.  For we have in view of 

(3.3) and (3.5) 
~g ~Ga~ a G ~  ~G ~G ~F 
~$~ ~:  ~ + ~ -  ~ + ~$~ - ~ - a~ ~$. (3.6) 

~G ~F 1 (3.7) Also O= ~-v = ~ ~j ~ 2 

when T = ~($) which proves that  ~j~g/O$j =�89 in particular the gradient is non-zero. 

Now an open set ~ = {~ 6 Cn; g($)< 0} where g is twice continuously differentiable and 

has a non-vanishing gradient whenever g = 0  is pseudo-convex if and only if the Levi form 

L(g) of g satisfies 
~ g  

.L(g)- ~ -  sjk>~O (3.8) 

Hence 

which can be written 

for all points on the boundary of ~ (which is {~; g(~) = 0}) and for all s 6 G n such tha t  

s j ~  = 0. (3.9) 
i=1 or 

(See Theorem 2.6.12 in H6rmander [5].) 

We shall express the Levi form of g in terms of that  of 2'. First note tha t  the homo- 

geneity of F gives 
~F ~F 
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H(F; s, ~) +L(F;  s, ~) = 0 (3.1o) 

where H and L are, respectively, bilinear and sesquiliaear forms: 

~F ~ ~F 

and the argument for the derivatives is ~. Taking ~ / ~  of ~g(~)/~= ~2/'(~r we get 

with this notation 

~a H (F; s, ~ )  Z ~ ~ L(g; s) = ~ s~ ~ ~ ~ ~;~ + L(F; s) + ~L(F; s, ~)  5 ~ ~;=~ + ~--~, 

where the argumen~ for the derivatives of F is ~ .  (L(F; s ) = L ( F ;  s, s) and analogously for 

H(F; s).) In  view of (3.6) and (3.9), the first term on the right-hand side is zero. Also a~ = 1 

implies 

~$ ~-~ = 0 ( 3 . 1 1 )  ~ ' ~ +  ~ ~-,~ 

so that  we obtain L(g; s)=L(F; s)+2go~2L(F; s, a~) (3.12) 

if S o = ~ sj O~/O~'j. I t  remains to express s o in terms of F only. If  we operate with O/~k on 

(3.7) we get using (3.11) 

-~oH(F;  :r +~oL(F; :r + ~2L(F; ~ ,  s) = O, 

the argument for the derivatives being ~ .  Hence by  (3.10) 

2~oL(F; :r + ~2L( F; a$, s) = O. 

This gives an expression for s o which inserted into (3.12) yields 

L(g; s) L(F; s) L(F; ~ )  - L(F; s, ~ )  L(F; cr s) 
L(F; ~)  

(Note that  L(F;  ~ )  ~> ~ [$] > 0.) Thus the Cauehy-Schwarz inequality shows that  L(g; s) >~ 0 

when (3.9) is fulfilled; we have proved that  g/F is pseudo-convex in the special case we 

have treated so far. 

Now suppose that  F satisfies the assumptions in the theorem and let (F~) be a sequence 

of smooth positively homogeneous and plurisubharmonic functions converging to F in the 

sense of Theorem 2.5. (If F = - o o  there is nothing to prove.) I t  is of course no restriction 

to assume that  F~ ~> F and that  F~(~)-~j[$[ is plurisubharmonie for some ~ >0  so by what 

we have just proved it follows that  
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~e~ = {~ 6 Cn; for some t 6 C, F~(t~) < Re t} 

is pseudo-convex for every ]. ~Iow a pseudo-convex set ~ is characterized by  the fact that  

- l o g  d(~, Cfl) is plurisubharmonie where it is < + c~. (We use the notation d(~, ~f2)= 

inf0r 0 -$1") If  therefore ~2~ are pseudo-convex open sets the function 

f(~) = - l i m  log d($, ~ ~2j) 

is plurisubharmonic wherever it is < + ~ and continuous in C n ff its range is given the 

usual topology of [ -  ~ ,  § co]. Hence the set where/($) < + c~ is pseudo-convex (see e.g. 

HSrmander [5, Theorem 2.6.7]). 

To prove that  s F is pseudo-convex it is thus sufficient to prove that  limj_~+~ d(~,C~F~) > 0 

if and only if ~ 6 ~2 v. Suppose ~ 6 ~F. Then F(t~) < Re t for some t 6 C, hence, keeping t fixed, 

we find e > 0  such that  F(tO)~Re t - s  for all 0 in a bounded neighborhood co of $. By the 

properties of the sequence (Fj-) there is an index ?'0 such that  Fj(tO)<Re t for all ]>~]o and 

all 0 6w. This proves that  co c f~Fj when ?'>~?'0, hence limj_)+~d($, C f25)>0. On the other 

hand, / ~ < F j  for all ] so that  f2F~ ~ j ,  therefore ~ F  implies limj_~+:~d(~, ~ F t  ) =0. We 

have proved that  lip is pseudo-convex. 

We shall now consider open subsets of the complex projective n-space Pn(C). We 

denote by  7e the canonical projection cn+I\{0}-->Pn(C) and define a hyperplane Ha = {~ 6 Cn+l; 

ZSr =1 )  for every a 6 C ~+x, ]a] = 1. If  F '  is a function in co 'c  P~(C), F($) =~*F'(~) = F'(~(~)) 

defines a function F = ~ * F '  in x~-l(co'). Conversely, if F is given in ~-l(oJ') and is complex 

homogeneous of order zero, F'(ze(~)) = F(~) defines a function F '  in co'. 

THEOREM 3.2. Let co' be an open set in P~(C), co'~=P~(C), and de]ins CO=7/:--I(CO')C 

Cn+X\(0}. Then co' is a Stein manifold i/ and only i /Ha  N co is a pseudo-convex open subset o/ 

Ha/or every a E C n+l, In] = 1. 

Proo/. I f  co' is a Stein manifold there exists a continuous plurisubharmonic function 

G' in co' such that  {$6co'; G'(~)<c} is relatively compact in co' for every real c (see e.g. 

Theorem 5:1.6 in HSrmander [5]). Then G=z~*G' is plurisubharmonic in co and {~6H a N co; 

G(~) +l~] ~ <c} is relatively compact in Ha N co for every c. Hence Ha N co is pseudo-convex 

in any of the senses of this word, see Theorem 2.6.7 in HSrmander [5]. 

To prove the converse we shall use the solution of the Levi problem given by  Grauert, 

see Theorem 5.2.10 in HSrmander [5]. We shall thus construct a function G'6 C~(co ') which 

is strictly plurisubharmonic and tends to infinity at  the boundary of co', i.e. {~ rico'; G'(~) <c} 

is relatively compact in co' for every real c. 

2 -  662903 Acta mathematica. 117. Imprim6 le 1 novembre 1966. 
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By our assumption on H a N o), the function - l o g  d a is plurisubharmonic in H a n co if 

d a denotes the distance to the boundary of co in Ha: 

da(~)=inf (I~-Ol;OeHa\o)), ~eHano), 

(it may happen that da = + o~). Let 

Da(r =da(r Ir - ' ' ,  Ce~a no), 

and extend da and D a to points in o)a = {r Co); 5a~r by 

da(~) =da(~/Zaj~j), Da(~) = Da(~/Zhjfj), Ceo)a. 

Then - l o g  da and - l o g  Da are plurisubharmonie and complex homogeneous of order zero 

in o)a. Define D and d in o) as the infimum ol Da and d~, respectively: 

D($)=in_f(Da(~); [a[ =l,o)ag~), d(~)=irff(d,~(~): [a[ = l ,o)ag~ ). 

We claim that - l o g  D is continuous and plurisubharmonic in o). 

First of all, let us note that D($) is never + oo. For if SE~o we take a 0r U {0} which 

exists by assumption and choose a so that [a[ = 1, Y~hj~j ~0, ZhjOj =4=0. Then ~/Zhj~j E H a no) ,  

O /ZhjO j E Ha\O) and ] :  0 
< -t- c~. D(r162 Z~r 2-SjOj 

I t  is also easy to see that D(~) is always >0. Let A, 0 < A  <~/2, be the angular distance 

between a point feo) and go). Using the notation x = Ir >11 we obtain d~(~) >~x sin A 

if ~ Eo)a and hence 

Da(r = d~(~)(1 +x~) -1/r >~x(1 +x2) -1~r sin A ~> 2 -114 sin A, 

wkich proves the assertion. 

We shall now describe D(~)locally as an infimum of D~(~) where a varies over a set 

independent of ~. To this end we shall first prove that 

da(r >I Ir162 when r e Ha n o). 
2 

If da($)= + oo there is nothing to prove so we suppose that d~(~) = [ $ - 0 I  for some OeHa\o). 

Let B be the angle between the rays determined by $ and O, 0 < B < m  Obviously d~(~)= 

] $ - 0 ]  ~> ];] sin B. Now define b=(~ +O)/]$ +O] if 0<B~<zr/2 and b=(~-O)/[~-O[ if 

~r/2 < B < m  Then in view of the fact that 0 and - 0  both belong to C o) 
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d(~)<db($)--<2 inf ( tan B, cot-B2). 

Hence da(~)>~ ' ~ l s i n B  = [ ~ [ s u p ( c o s 2 B  s i n ~ B ) > l ~ ,  
d(~) 2inf  ( tan B, cot B )  2 '  2-" 

We therefore obtain if ~ E Ha f3 eo 

Da(~)>~Da(~)>~ ~-~ i  -2d~ 2(1+1 ~[2) 1/4' 

Since the right hand side is ~>s > 1 when [~l ~> 5 and since D(~)>0 we find that 

D~($) < 
D($)=inf  D~(~); lal=l, ~(~- e ) = i n f  (D~(~); ]al=l, I$1<clEa,r sew, 

for any constant C ~> 5. Hence 

D(O) =inf (D~(0); la] =], ]~] <6]~3a,$,1) a 

for points 0 near ~. This proves that - l o g  D is continuous and plurisubharmonic since it 

is locally a supremum of plurisubharmonic functions 

log (1 + Ir a, - l o g  da (~'). 

I t  is also obvious that - l o g  D tends to + ~ at the boundary of w except at 0. 

Let us also note that the function - l o g  D' which is induced by - l o g  D is strictly 

plurisubharmonic in ~o'. For /a(~) = } log (1 + [$/'ZSj~jl2 ) is strictly plurisubharmonic in 

Hb 0o~ since it is the composition of the strictly plurisubharmonic function (~n+190-> 

} log (1 + ]012 ) and the regular analytic map Hb N r ~-->$/ESi~jE C n+l. We can even choose a 

strictly plurisubharmonic function g in a neighborhood UbcHb of b such that /~-g  is 
plurisubharmonic in Ub for all a satisfying ]ESjbj]>~ 1/6. This implies that for ~ E H~ f3 w. 

near b, 
- l o g  D(~) -g($) = sup ( - l o g  da(~) +/a(~) -- g(~); [ a ] = 1 ~< 6 ] ESjbj[ ), 

t~ 

where the right hand side is a supremum of plurisubharmonic functions, hence - l o g  D 

is strictly plurisubharmonic in Hb near b which means that - l o g  D' is strictly plurisub- 

harmonic in w'. 

We have thus seen that - l o g  D' has all the properties we require except that we only 

know that it is continuous. We shall now regularize it by means of a construction which 
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is patterned after the proof of Theorem 2.6.11 in H6rmander [5]. Let F =  - l o g  D in o) 

and choose a sequence (F~) of C ~0 functions in Cn+l\{0} with the properties mentioned in 

Theorem 2.5. Define ~ot = {~ ew; F(~) <j}. By relabeling the functions F~ and adding a smali 

constant we may suppose that  F~ ~ ~(o~) and that 

~'~ (~) = f r  F(r(~)) ~ (~) dr + ~ 

when ~Emj. Here ej may be chosen so that  F ~ F j < ~ F §  1 in oj  which is possible by the re- 

mark preceding the proof of Theorem 2.5 since F is continuous. This shows that  F~ (which 

is defined by F~(Te(~))=Fj(~)) is strictly plurisubharmonic in o)~=ze(~oj). If therefore 

zEC~176 satisfies g ( t ) = 0  when t~<0 and Z'(t), Z"( t )>0  when t>0 ,  the function 

--> ajz(F'j(~) , ~  +2), a j>0,  is plurisubharmonic in a)~, strictly plurisubharmonie in o )~ \~  2 

which is an open neighborhood of eo~\oJ~_l; it is zero when F] ($ )<? ' -2  in particular 

when SEo~ 3. Hence 
k 

~i  (~) = F~ (~) + ~ aj Z(F~ (~) - j + 2) 
1=1 

defines an infinitely differentiable function in Cn+~\(0} and G'k=G'~ in eo~ if/c, m > ? ' + l .  

Moreover, the constants aj can be recursively determined to make G~ strictly phirisubhar- 

monic and ~> F '  in o)~. The limit G' =limk_.+:r G~ is defined in o~' and has all desired prope- 

ties so the proof is finished. 

THEOREM 3.3. 11 F E O(C n) is positively homogeneous o I order 1, the open set eo'p =7~(eo~) 

in projective n-space delined by 

me = (~ e Cn+l; ]or some t e C, F(t~ 1 ..... t~)  < l~e  t~n+l } 

is a connected Stein manilold i I (and only i/) F is not identically - co. Moreover ~O'F determines 

iv uniquely: i I F, G e ~)(C ~) are positively homogeneous o t order 1 we have F • G i I and only 

i~ ~'~=co'~. 

Proo/. Let Ha be as defined before Theorem 3.2. We shall prove that  Ha f] o)F is pseudo- 

convex in Ha. First suppose that  an+ 1 =~=0. Then 

n+l  
Ha N eop={~6 Cn+l; ~ 5j~j= 1 and for some t6C, 

1 

1 

is isomorphic to ~ where we have defined G(~)= F(5~+1~ ) + R e  Z~hj~j, ~eC ~, and g/~ is 
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given by (3.2) with F replaced by G. Since ~ c  is pseudo-convex by Theorem 3.1 the same is 

true of H a N co F. Also, since ~G is connected, H~ N toy and ~o~ are connected. We shall now 

consider aEC n+l, a~+l=0. If  Ha N eoF=Ha there is nothing more to prove. If, on the other 

hand, H~ \ wF #O the distance function da($) defined in the proof of Theorem 3.2 is ob- 

viously a uniform limit of distance functions d0(~), b=+l#0, hence - l o g  d~ is plurisubhar- 

aortic which is equivalent to pseudo-convexity. The first par t  of the theorem now follows 

from Theorem 3.2. 

I f  F ~ G it is obvious that  o)~o)~.  Conversely, suppose that  F, G~ ~ ( ~ )  are positively 

homogeneous of order one and that  F(~)> G(~) for some ~ E G ~. Choose a complex number  

$=+x such that  for all t E (3 

Re ~+~t < F(t$), Re ~=+~ = F(~) > G(~). 

This means that  ($1 .. . .  , $~, ~+1)Ewo\~oy. Hence the inclusion coa~co: is impossible unless 

F < G. The proof is complete. 

T H ]~ 0 R ~ M 3.4. Suppose F E ~(t3 n) is positively homogeneous o/order one. Then there is 

an entire ]unction u el exponential type such that/or all ~ E C n 

lira lira l l o g  [u(sO)] =F(~);  (3.13) 
O-~  s-->+r162 8 

equivalently, there exists an analytic/unctional/x EA'(C ~) such that the upper regularization 

o/the restriction to F~ o] its indicator is F. 

Proo/. I f  F = - c~ we take u =0,  # =0. Otherwise r defined in Theorem 3.3, is a proper 

subset of P~(C), hence a Stein manifold. Therefore there is a function/16A(eOF) which cannot 

be continued across the boundary of ~o~, more precisely, we shall require that  for e v e r y  

connected open neighborhood V of an arbi trary point on the boundary of e0F, each component 

of V N co~ contains zeros of ]~ of arbitrarily high order (the construction is given e.g. in 

H6rmander  [5, Theorem 2.5.5] for sets in C n but can obviously be extended to Stein mani- 

folds in P~((~)). The set i=z{~ 'EeoF;  ~n+l =0} is a closed submanifold of co~, thus there is a 

function ]~ EM(eo~) which is zero on this set without being zero identically in ~o~ (a conse- 

quence of Cartan's Theorem A, see [5, Theorem 7.2.11]). I t  follows t h a t / '  =]~]~ is zero on 

the submanifold M and cannot be continued beyond o)~. Let  ] =zt*]'. Since 0 E~F, the func- 

tion g(~1 ..... ~ )  =]($1 .. . .  , $~, 1) which is analytic in ~p has a power series expansion 

which converges near the origin (k=(k  I ..... k~), ~z=$~1, .... $~). I t  is then easy to see tl~at 
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u(~) = ~ a  k i]ci ! 

is entire and of 'exponential type ( ] k I = kl +""  + ]~n)" (The relation between g and u has been 

studied before by Paris [9].) Define/~CA'(C") by #(e<Z' r that is,/~(~)=Eakbk/]kl! 

if ~(z) =Eb~:zk/Ic! where It! = k l !  . . .  ]~n !. Let p be the indicator of # restricted to the linear 

functions, i.e. p(~) =lims~+~ log l u(s~)]l/~. 

We recall that  the Borel transform of an entire function U of exponential type in one 

complex variable is given for large ] t ibY 

r162 r162 3]  H(t)= y A~t if u(3)= 2 A, ~.. 

The corresponding integral representation is 

H(t) = U(sr) e st~ 3ds, 

where T E C has to be chosen suitably for every t. I t  follows from this formula that  H can 

be analytically continued into the complement of the convex compact set 

K={ tE@;  for all 3E@, lim l-log [U(s3)l>~ge tz}. 

Conversely we have 

U(3)= 2---l~i frH(t) e" dt, 

where F is some large circle. This integral representation of U shows immediately that  for 

all e > 0 we have 
I V(3)l E C, exp (sup Re t3 + s I TI) 

t e l  

if H is analytic outside a compact convex set L ~  @(e -~  =0). 

Now let hr ... . .  $n, t) for some fixed ~E@ ". Then he is the Borel 

transform of 3-+u(35) so that  

In view of our choice of /, h~ can be analytically continued to every point t such that  

(~, t) Go)F; in particular there is no singularity at the origin if (~, 0) ~oF. We can therefore 

choose F in any neighborhood of the convex set {t E @; for all T E @, F(T~) ~> Re t3} and esti- 

mate u by  
lu(3~) ] <c~ exp (F(3~)+el 31) 

for every s >0  (~ is fixed). Hence p(~)4 Y(~) and, since ~" is arbitrary, p* 4 F. 
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On the  other hand, the integral 

=fo h~(0 u ( s ~ )  e -~t~ ~ds 

converges absolutely and uniformly for all (~, t) satisfying p(v$) < R e  t v - e .  I t  follows that  

h:(~n+l) is an analytic function of (~, $~+x) in r in particular ~+xh:(~n+x) =/(~x ..... ~n, ~'~+1) 

can be anMytically continued to a function in ~4(eop.). But  since co~, is connected by  Theorem 

3.3 this is possible only if o)~, c eo~, therefore, by the last part  of the same theorem, p*>~ F. 

The proof is complete. 

Remark. When F is sufficiently regular, Theorem 3.4 can be proved more directly. 

For example, if F is Lipschitz continuous we can use Theorem 4.4.3 in H6rmander  [5] to 

find an entire function of exponential type such that  the left hand side p*(~) of (3.13) is 

~< F(~) for all ~ E C n with equality at  any given point. A category argument then shows that  

there exist functions u E ~4(C n) of exponential type such that  p* ~< F and equality holds in a 

dense set in C ~, hence everywhere since F is continuous and p* is semicontinuous. 

This can be used to give an alternative proof of Theorems 3.3 and 3.4 even for general F. 

For by  tracing the argument in the proof of Theorem 3.4 backwards we can establish that  

o)~ is a Stein manifold if Fj  is a regularization of F found by means of Theorem 2.5. Then, 

using Theorem 3.2 together with the discussion in the two last paragraphs of the proof of 

Theorem 3.1, we conclude that  eo~ itself is a Stein manifold, that  is, we have obtained 

Theorem 3.3. We therefore have to employ the Borel transformation a second time in order 

to arrive at  the conclusion of Theorem 3.4. 

4. Properties of supports of analytic functlonals 

In  the first part  of this section we shall s tudy how the supports of an analytic functional 

behave under analytic mappings. Later  on this will be used to prove various properties of 

the family of all J -supports  of a functional and then, in Section 5, to relate the :~-supports 

to the indicator. (For definitions of these notions we refer to Section 1.) 

Let  U and V be complex analytic manifolds and ~. an analytic map of U into V. We 

call ~ regular if its rank is everywhere equal to the dimension of U, that  is, if for all choices 

of local coordinates z 1 ..... zn in U and w 1 ..... Wm in V the matr ix  (~j/~zk) has rank n where 

it  is defined. The map ~ is called proper if a- l (K) is compact in U for every compact subset 

K of V. Finally, a proper, one-to-one and regular map is called an embedding of U into V. 

Throughout the rest Of the paper we shall use the notation ~* for the map ~4(V)E~p-+ 

~o~Ejd(U).  I t  is also convenient to denote its adjoint by  a again, thus ~#(~0)=/t(a*v?)= 
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#(y~oa) if/u E A'(U). I n  particular this notat ion will be employed when U is an open subset 

of V and t:U--~V is the canonical injection. 

For  the purposes of this section and the next  a Stein manifold m a y  be defined as a 

complex manifold which can be embedded into C m for some m. 

We will need the following result which is a consequence of Cartan 's  theorems A and ]3. 

T ~ o ~  4.1. Let ~t be an embedding o / a  complex mani/old U into a Stein mani/old 

V (U is o/course Stein, too). Then a*:A(V)-->A(U) is onto, i.e. every q~EA(U) is o/ the/orm 

~p o ~ /or some y~ E. 4( V). Moreover, the value o/ ~ at a point z r ~( U) can be arbitrarily prescribed. 

It/oUows also that o:: .4'(U)-~.4'(V) is an injection. 

I t  was shown in Section 1 tha t  Y-convexity has a simple geometric meaning if ~7 is a 

finite-dimensional subspace of the analytic functions. The following approximat ion theorem 

will therefore be useful. 

LEMMA 4.2. Let U be a complex mani/old and ~ a complex linear subspace o/ .4(U) 

such that ~m contains a proper map (~x ..... ~m) o/ U into C m/or some m. Then every ~-eonvex 

compact set K c U has a ]undamental system o/ neighborhoods, each o/ which is compact and 

convex with respect to a/inite-dimensional subspace o/ ~. 

Proo]. Let  L be an arbi t rary  compact  neighborhood of K and let ~ be the subspace of 

spanned by  gl . . . . .  a m. Then hqL is compact  for it is the inverse image of the compact  set 

h:a(L) in C m. Now for any  z E h ~ \ L  ~ there is by  assumption an  element ~zE~ such tha t  

Re ~z(z)> sups:Re ~z. Let  a z be real numbers  satisfying Re qJz(Z)>az > suprRe  qOz and denote 

by  to z the neighborhood of z where Re q0~>a~. Finitely m a n y  of the coz cover hqL\L ~ We 

denote the corresponding functions ~z and numbers  az by  ~j and a j, j = 1 .. . . .  k, respectively. 

Then we have 
K c A c L ~ U ChccL, 

where A = (z E U; Re ~j(z) ~<aj, ] = 1 ..... k). I f  ~/ is  the space spanned by  ~1 ..... ~m, 991 ..... ~k 

we have proved tha t  A 0 huL~ A N hqLc_L ~ and hence hu(A N L ) ~  h~A N huL=A N huL~ L ~ 

so tha t  hu(A N L) is a neighborhood of K contained in L ~ This proves the theorem. 

For  later reference we list also the following result where both  hypothesis and con- 

clusion are weaker than  in Lemma 4.2. Recall tha t  we have called U ~-convex if the ~7-hull 

of a ny  compact  set is compact.  Obviously U is ~7-convex if ~7 m contains a proper map  of 

U into C m for some m. 

L~MMA 4.2'. Let U be an ~-convex complex mani]old where ~ is an arbitrary subset o/ 

.,4(U). Then every ~-convex compact set K in U has a/undamental system o/~-convex neigh- 

borhoods. 
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Proo/. Let  L be an arbi t rary  compact  neighborhood of K. Then h~L is compact  by  as- 

sumption. We can therefore proceed as in the last proof, replacing both Q and 74 by  :~. 

The next  two lemmas describe the behavior of :~-convexity under analytic mappings. 

L ~ M ~ A  4.3. Let U, V be complex mani]olds and Q a subset o/ A(V),  a an analytic map 

o / U  into V. Define ~ = a*Q. Then 

~-~(h~o~(M) ) = h~M (4.1) 
/or every subset M o / U  and 

a-~(hqN) ~ h~-~(N) (4.2) 

/or every set IYc  V. In  particular, g--l(~) i8 :~-convex i/ N is Q-convex. Furthermore, M is 

:~-convex i/ a(M) is Q-convex and ~r is one-to-one. 

Proo/. I f  a r there is a function ~v E:~ such tha t  Re ~v(a) >supM Re ~0. B y  assumption 

~v =~vo :r for some ~v E Q so tha t  Re ~v(:e(a)) > SUpM Re ~vo a = sups(M) Re ~v. Hence a(a) ~ hqa(M), 

i.e. a ~ a-l(h0a(M)). 

Suppose now, on the other hand,  tha t  a(a) ~ho~(M ). Then for some yJ E Q, Re ~(a(a)) > 

SUpa(M ) Re ~v = SUpM Re yJo ~. Since y~o a E :~ this proves tha t  a r h~M. This completes the 

proof of (4.1). 

To prove (4.2), finally, it is sufficient to apply (4.1) to M = a- l (N)  and use the obvious 

inclusion ~ ( g - I ( ~ V ) ) C  N .  

Lemma 4.3 shows in particular tha t  if a is a one-to-one map of U into V, a set M c  U 

is holomorph convex if there exists a holomorph convex set 2Vc V such tha t  M = a - ~ ( N ) ,  

i.e., a ( U ) n  N = a(M). We shall now s tudy  the converse of this statement.  

L ~ M ~ A  4.4. Let ~ be an embedding o /a  Stein mani/old U into another V. Then 

o~(hA(v)M) = h,4(v)~(M) (4.3) 

/or all subsets M o/ U; in particular M is .,4(U)-convex i/ and only i /~ (M)  is .,4(V)-convex. 

Proo/. B y  Theorem 4.1, A ( U ) =  ~*A(V) so tha t  Lemma 4.3 gives 

~-l(h~(v)~(M)) = h,4(u)M. 

Hence ~(h,4(u)M) = a(a-l(hA(v)~(M))) = h,4(v)a( M) N ~( U) 

so tha t  it suffices to prove tha t  h,4(v)~(M)c o~(U). But  by  Theorem 4.1 again, we can to each 

b~o~(U) find ~oEA(V) such tha t  ~o(b)>0, ~0=0 on ~(U), hence b~h~(v)a(M). 

Next  we s tudy how a mapping affects a carrier of an  analytic functional. 
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L ~ i ~  4.5. Let U, V be complex mani /olds and ~ : U---> V an analytic map. I//~ E A '  ( U ) 

is carried by a compact set K ~  U, ~/~ is carried by g(K). 

Proo/. Suppose tha t  ~o is a neighborhood of ~(K). Then ~-~(~o) is a neighborhood of K 

so tha t  for some constant C we have I S(~) ] ~< C sup~_x(~)I~ [" Hence [ ~#(V) [ ~< C s u p _  ~(~)[V o ~[ 

~<C sup~{~I. This proves tha t  ~(K) carries ~u. 

I t  is not  equally trivial to t reat  the inverse image of a carrier. We first need an auxil iary 

result. 

L ~ A  4.6. Let V be a Stein mani/old and ~ an embedding o / a  complex mani/old U 

into V. Then/or any analytic/unctional vE A'(V) such that ~,(~f) ~0  i/y~=0 on ~(U) there is 

a unique analytic junctional/u ~ A'(U) such that ~ = c~ya. 

Proo/. We can define # by/~(~) =v(yJ) if ~=v2o~. Indeed, every ~ is of the form ~ o ~  

by  Theorem 4.1, and if ~ loa=yJ~o~ we have Y~I-Y~=0 on ~(U) so tha t  v(y~l)=v(v2~). This 

defines/~ as a linear form on A(U). To prove the continui ty of ~u we note tha t  A(U) and 

A(V) are Fr4chet  spaces, hence ~*:A(V)-~A(U) is an open map since it is onto by  Theo- 

rem 4.1. For  any  compact  set L c  V we can therefore find a compact  set K ~  U and a con- 

s tant  B such tha t  for every cfEA(U) there is a ~pEA(V) with ~=~*~0 and sup~l~p[ ~<B 

sup lvI. Hence if l (w)l <c  sup lvl we get 1~(~)[ <BC supd~l so tha t /~  is continuous. 

We can now prove tha t  the inverse image of a ho]omorph convex carrier of ~/~ is a 

carrier of #. This is a theorem of Martineau [8, Ch. I ,  Thdorbme 2.6] but  we prefer to for- 

mulate  a complete proof here. 

LEMMA 4.7. Let ~ be an embedding o / a  complex mani/old U into a Stein mani/old V, 

let ~E A'(U) and suppose that ~/~ is carried by an A(V)-convex compact set L c  V. Then/~ 

is carried by the A(U)-convex set ~-I(L)= ~-I(L N ~(U)). 

Proo]. Pu t  K = ~ - I ( L )  so tha t  ~ ( K ) = L  N ~(U) and let eo be an  arbi t rary  open neigh- 

borhood of K. Now take b y  Lemma 4.2' an  A(V)-eonvex compact  neighborhood L 1 of L 

such tha t  ~-1(L1)c ~o. B y  assumption there is a constant  C such tha t  I~/~(w) l ~< c supz, I~0[ 

for all ~ E A(V). Let  1/1c V be a Stein manifold containing L 1 but  so small tha t  U1 = ~-1(V1) 

ceo  (Lemma 4.2') and let t: UI--~U and z :  V1--->V be the inclusion maps. Now a function 

which is analytic in a neighborhood of L1 can be approximated uniformly on L~ by  functions 

in A(V) so tha t  we m a y  extend ~# by  continui ty into an  analytic functional v o n  V 1 such 

tha t  Iv(V1) I ~<Csup~,IvlI ,VlEA(V1).  We thus have ~v=~u .  But  we know even more: 

B y  e.g. Theorem 7.2.7 in HSrmander  [5] a function ~Pl E A(1/1) such tha t  YJl = 0 on a(U) N V 1 = 

~(U1) can be approximated uniformly on 51 by  functions ~0 E A(V) satisfying ~ = 0 on ~(U). 
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Since ~#(~o)=0 for such functions y~, we get ~(~01)=0 for all ~)1 which are analytic in V~ 

and zero on a(U1). We can therefore apply Lemma 4,6 to prove that v = a ~  for some ~ ~ ~'(U~) 

for the restriction ~1 of :r to U 1 is an embedding of U~ into V 1. Thus ~ u = ~ v = ~ l ~ = ~ e  ~. 

In view of Theorem 4.1 the map ~:A'(U)-->A'(V) is injective so that ~ # = ~  implies 

~u =w. Hence # is continuous for the topology in ~(U) induced by  ~(U~) which proves the 

lemma. 

We can now prove the following result on the image of :~-supports. 

THEOREM 4.8. Let U and V be Stein mani/olds, ~ an embedding o/ U into V, and O 

a subset o] .,4(V). De/ine :~=~*0 =(~o~;  Y~0} and suppose that K c  U is an :~-convex com- 

pact set such that ho:c(K) is compact. Then K is an ~-support o/an analytic/unctional # ~ . 4' ( U) 

i] and only i/h~a(K) is a O-support o/~/~. 

Proo]. Suppose that K is an :~-support of #. Then hq~(K) is by Lemma 4.5 a 0-convex 

carrier of ~# and we must show that it is minimal among these sets. Thus let Lchq~(K)  

be a G-convex Carrier of ~ju. Then ~-I(L) carries ~u by Lemma 4.7. But we also obtain from 

Lemma 4.3 tha t  a - i ( / ) ~  a~-l(ho~(K))=h~K = K  and that ~-l(L) is :~-convex. Hence :r 

must be equal to K, in particular ~(K)=~(~- I (L ) )cL  so that h q ~ ( K ) c h ~ = L .  We have 

thus proved that h~a(K) is a minimal 0-convex carrier of a#. 

Now assume that conversely hqa(K) is a G-support of :r Then K = h ~ K  = :r 

carries ~u (Lemma 4.7). Next let M ~  K be an :~-convex carrier of ~u. Then hqo~(M) is included 

in hoa(K ) and carries ~# (Lemma 4.5) so it must be equal to h~(K) .  Hence we have proved 

that M =h~M =~-X(h~a(M))=a-~(hq~(K))=h~K=K which means that K is an :~-support. 

COROLLARY 4.9. Under the assumptions o/the theorem, i] L ~  V is a G-support o/~]a, 

then ~-I(L) is an :~-support o//~. 

Proo[. Put  K = ~-I(L). Then K is by Lemma 4.7 a carrier of #, so that  hoo~(K) is a 

0-convex carrier of ~u according to Lemma 4.5. Since/LDhqg(K) and L is a 0-support, 

L =h0a(K) and we can apply Theorem 4.8 to get the desired conslusion. 

COROLLARY 4.10. We keep the hypotheses in the theorem. Denote by K~(L~) the inter- 

section o/all ~-supports o/[~ (all G-supports o] ~#). Then :r = K~. In  particular, # has 

a unique ~-support i /and  only i/o~/~ has a unique O-support. 

Proo/. If  K is an :~-support of i~, hq~(K) is a G-support of :r so we get h ~ ( K ) ~ L q ,  

hence K = h~K = ~-l(hq~(K)) D ~-1 (Lq) and K~ D ~-1 (L~). 



2 8  C. O. KISELMA~ 

On the other hand, if L is a ~-support  of :c/x, ~-I(L) is an :~-support of/x, hence cr 
K~ and L ~  h~zc(~-~(L)) ~ ho~(K~) which implies Lq~ hq~(K~) so that  ~-~(Lo) ~ ~-i(h~at(K:~)) = 

h,K~ = K~. 

Finally, if K~ carries /x, ho~(K~)=L o carries ~fl so that  :r has a unique ~-support  

(and then of course hqa(K~) =Lq). Conversely, if L~ carries a~/~, a-l(Lq) =K~ carries/x. 

T~EOl~W~ 4.11. Let U be a complex mani/old and ~ a linear subspace o/M(U) such that 

:~'~ contains a proper map ( ~  ..... am) o/ U into C rn. Then an analytic junctional tx~.,4'(U) 

has a unique ~-support i/ and only i] ~t has a unique ~-support /or every ]inite-dimensional 

subspace ~ o~ :~ such that a~ ..... am ~ ~. 

Proo/. First suppose that  # has a unique :~-support K and let ~ be any subset of :~ 

such that  h~K is compact. Then it is clear that  the ~-hull of K is contained in every ~-con- 

vex carrier of # since every ~-convex set is ~-convex. This proves one half of our assertion. 

Next  assume that  # has two different :~-supports K 1 and K s and let L1, L~ be compact 

neighborhoods of K 1 and K2, respectively, such that  KI\JLs~=O and K~\LI~=O. In  addi- 

tion we may  choose L 1 and L s so small that /~ is not carried by L 1 N L s. In  fact, since # is 

not carried by  K 1 n K s the same is true of some compact neighborhood L of K 1 N Ks and 

then it is sufficient to take L1, L s such that  L 1 n L2=L. Now choose finite-dimensional 

subspaces ~i  and ~2 of :~ such that  hqjKj~L~, ]=1, 2, (Lemma 4.2). Then hqKj=Lj if 

= ~1 + ~s so tha t  ~ has two ~-eonvex carriers hqK1, hqK~ but  is not carried by  their 

intersection. Hence/~ cannot have a unique ~-support. 

With the help of this theorem it follows from Corollary 4.10 that,  for example, if/~ 

is an analytic functional on a Stein manifold U with more than  one A(U)-support,  then 

U can be embedded into C m for some m in such a way that  the image of/~ has several 1:- 

supports. 

The following result will be useful later when we shall s tudy the restriction of a func- 

tional #EA ' (U)  to ,,4(V) where V is another manifold containing U as an open subset. 

T ~ I E O R ~  4.12. Let U be a Stein mani/old and ~= •(U) a convex cone such that U is 

:~-convex. Suppose that/~e.,4'(U) has two di]]erent :~-supports K o and K 1. Then ]or any 

neighborhood o) o] K o there exists an ~-support Ks=w,  K ~ K  o. In  particular, i~ has 

in]initely many ~-supports. 

The proof will be divided into a few lemmas. 

:L]~MM.~ 4.13. Let ~ be a convex cone in .,4(U), let K0, K 1 be subsets o/ U and 

z eh~(K o U K1) a/ixed point. De/ine/or t = (to, tl) e R  s 
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g(t) =g(to, tl) = sup (Re ~(z); ~E:~ and Re ~ ~<tj in Kj ,  ~=0,  1). 

Then g has values in [ -  ~ ,  + ~ [ ,  is positively homogeneous and concave, i.e., 

g(2t) = 2g(t), 2 > 0 ,  t = (t o, ta)ER 2, (4.4) 

g(s+t)>~g(s)+g(t), s, t e R  2. (4.5) 

Pro@ The homogenei ty  is trivial.  I t  is sufficient to prove  (4.5) when bo th  g(s) and 

g(t) are > - c o .  Take  a rb i t r a ry  real numbers  a<g(s)  and b<g(t) and choose functions 

~, yJE:~ such t ha t  Re~(z)>~a,  Re~o(z)~>b and Re~<~sj ,  Re~0~<tj on Kj,  ] = 0 ,  1. Then 

+~o E :~ and g(s + t) >~ Re (~ +~)  (z) >~ a + b which proves  (4.5). 

L ~ i  4.14. With the notation o] the previous lemma, suppose in addition that z~h~K o, 

Then there is a constant q > 0 such that/or t 1 < to, 

g(to, t~) <~ t o - q ( t  o-t1).  

Pro@ From (4.4) and (4.5) we obtain  

(s~ - So)g(t) + ( t o -  t l)g(s) < g ( t 0 s l -  t~s0, tos~ - tlSo) (4.6) 

provided s0<Sl, t l < t  o. Now since zEh~(K o U K1) we mus t  have  g( t )~sup  (to, tl) which to- 

gether with (4.6) implies 
(s 1 - so)g(t ) § (to - tl)g(s ) < toS 1 - tls o. 

This can be wri t ten  as g(t) <~t o - q ( t  o - t ! )  where q = (g(s) --80)/(81 --80). Since we have assumed 

tha t  z Ch~K o there is a funct ion ~E:~ such tha t  Re  ~ ( z ) > s u p r ,  Re  ~, thus g(so, s l )>s  o if 

sj = supKj Re  ~. This proves  t ha t  q is > 0 if s is conveniently chosen. 

We need also the following result  to prove  Theorem 4.12. 

T H E O R E ~  4.15. Let # E  A ' (U)  where U is a Stein mani]old and let Ko, K 1 be carriers 

o]la, L =h~(v)(K 0 U K1). Suppose that K is a compact set in U and that there exist two disjoint 

sets M o and M 1 which are closed in L \ K  and satis/y L \ K = M  o U M1, K j \ K =  Mj ,  ]=O,  1. 

Then [~ is carried by K.  

The proof has been given in [6] when U is (an open subset  of) (Jm. The general ease 

follows easily f rom this if we embed  U into (~m for some m and use L e m m a s  4.4, 4.5 and  4.7. 

The theorem can also be deduced f rom Thdor~me 2.2, Ch. I ,  in Mart ineau [8] (using the 

open case) in the same way  as Theorem 2.4 was obtained f rom Corollary 2.5 in a r emark  

in [6]. I t  has been pointed  out b y  A. Mart ineau in a personal  communicat ion  to the au thor  
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that  either proof of Theorem 4.15 remains valid if the assumption on L is replaced by the 

weaker condition that L ~  K 0 U K l, Hi(L; O) =0  and L has the Runge property. 

Proo/ o/ Theorem 4.12. By Lemma 4.2' we can find an :~-convex compact neighborhood 

M of K 0 contained in co. Also, since Ko\KI=~O , there is a function ~e:~ such that 

supK1 Re ~ = t  1 < t  o =supKo Re q% Put  K = {z E M; Re q~(z)<~a}, where a is determined later, 

M o = {z EL\K;  Re ~(z) >~ a}, and MI = {z EL \K;  Re ~(z) < a}. Here we have written L for 

hA(v)(K o U K1). We shall check the assumptions of Theorem 4.15. I t  is clear that M 0 U M1 = 

L \ K  and that M 0 and M 1 are closed in L \ Z .  Furthermore M o ~ K o \ K  and M l ~ K l \ g  

if t 1 ~<a. I t  remains only to verify that M o and M 1 are disjoint if a is conveniently chosen. 

If  zeMo A M~ we have in particular Re ~(z)=a so that with the notation of Lemma 4.13, 

g(to, tl) ~>a. On the other hand, Lemma 4.14 shows that g(to, tl) <to-q( to- t l )  for some con- 

stant q > 0  since z~h ,K o. This proves that M 0 fl M 1 is empty if (1 -q) t0+qt l<a .  Applying 

Theorem 4.15 we find that K ~ M  carries /~, and since K is ~-convex it contains an :~- 

support K~. Obviously K ~ = K  o if we take a in the interval (1 -q ) to+q t l<a<to .  This com- 

pletes the proof of Theorem 4.12. 

We conclude this section with a result which relates the property of an analytic func- 

tional/~ of having a unique :~-support with the same property of the restriction of # to the 

space of functions which are analytic in a larger manifold. 

L]~MMA 4.16. Let V be a Stein mani]old, U an open set in V and L a compact subset o] 

U which is .,4(V)-convex as a subset o/ V. Suppose that f l eA ' (U)  is carried by L. Then an 

.,4( V)-convex set K ~ L carries/~ i / (and  only i/) K carries t# E A'(V) where t is the inclusion 

map o/ U into V. In  particular, if U has the Runge property with respect to V, the .,4(U)- 

convex carriers o//~ are the same as the .4([/)-convex carriers o] q~ which are contained in U. 

Proo]. Let ~oc U be an arbitrary neighborhood of an A(V)-convex set K ~ L c  U. We 

shall prove that there is a constant C such that 

< c sup 
co 

for all ~ e A(U) under the assumption that K carries t#. First take by means of Lemma 4.2' 

an A(V)-eonvex compact neighborhood L 1 of L, L1c  U. Then for arbitrary ~eA(U)  and 

y) e A(V) we have 

< c  sup + c  sup 
wnLx  Lx 

for some constant C. Hence 
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I (v)l<c sup [v[+2c  sup Iv-v,[. 
~o Z, 1 

But q~ is analytic in a neighborhood of the ,,4(V)-convex set L 1 s o  the infimum of the last 

term as ~pEA(V) varies is zero by the Oka-Weil approximation theorem. This proves (4.7). 

T ~ E O ~  4.17. Let V be a Stein manifold and O a convex cone in A(V)  such that V 

is O-convex. Let ~ e A'(U), where U is an open subset el V, be carried by some O-convex com- 

pact set L which is contained in U. Let t: U-~ V be the inclusion map. Then q~ has a unique 

O-support i] and only i//~ has a unique F~-support. 

Proof. Define :~ = t* 0. First suppose that  t# has a unique 0-support  K 0. Clearly K e e l  

so that  K 0 carries # by  Lemma 4.16. On the other hand, if K r  U carries/~ it also carries 

q~ so that  hqKDKo, therefore hTK =hqK 0 U D K  o. Hence the intersection of all :~-convex 

carriers of # contains K 0 which, as we have seen, itself is a carrier. This means that  K o is 

the only :~-support of #. 

Next  assume that  t# has at  least two 0-supports. Since q~ is carried by  L we can find 

one 0-support  K e e L .  Let L 1 be a 0-convex compact neighborhood of L contained in U 

(Lemma 4.2'). Then t# has also a 0-support  K I c L  1, Kvd=K o, by Theorem 4.12. But  Lemma 

4.16 shows that  both K o and K 1 carry/~ whereas their intersection does not even carry q~. 

Since K 0 and K:  are also :~-convcx,/~ cannot have a unique ~-support. 

5. The indicator of  an analytic functional 

The results in the previous section will now be used to generalize a theorem of Mar- 

tineau (Theorem 5.1 below). We shall also characterize the set of analytic functionals which 

have a unique :~-support under certain conditions concerning 9:. 

T H E o R E ~ 5.1. Let # E ,'4' (C n) and suppose that 

p(~) <H~(~), ~ : ,  (5.1) 

where p is the indicator of ~ (Definition 1.5) and Hg is the supporting function of a compact 

set K c  C n, I: being the space of linear/unctions on ~n. Then/~ is carried by hcK. Conversely, 

(5.1) holds if /~ is carried by h:K. 

This is Thdor~me 4.1, Ch. I I ,  in Martineau [8]. Other proofs have been given by Ehren- 

preis [2] and HSrmander [4], [5]. 

Before we extend this theorem to more general subspaces of the analytic functions 

than I~ we draw some immediate conclusions. 
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T~EOR]~M 5.2. Let #EA'(C~). Then/or every ~ E C, we have 

pC(~) = inf (H~(~); K carries i~) 
K 

where pc is the upper regularization o/the restriction o /p  to ~. 

Proo/. We write P for pC and introduce complex coordinates in i:. Let 0 be a fixed 

element of i: with I 0 ] = 1 and let a be any real number greater than P(O). We have to prove 

that  HK(O ) <~a for some carrier K of ~u. Put  q~(~)=a Re Z~ jOj+s ( ]~ ] -  Re ]~j0j) and let 

i ~  be the compact set (~Ei:;I~] =1,  q~(~)<~P(~)}. We claim that  f ')s~oi~=O. Indeed, 

q~(O)=a>P(O) so that  O~M~. If ~=~0, I$] =1,  we have q~(~)-++oo when s-->+oo so that  

~M~ when s is large. This implies that  Ms = 0 for some s > 0, in particular q~($)>~P(~) for 

all ~EE. Let K s be the ball with supporting function q~. Then by  Theorem 5.1, Ks carries 

ju and we have seen that  H~, (0)=a.  Since a was an arbi trary number >P(0) this proves 

that  the infimum is everywhere ~<P. Conversely we trivially have P ~<H~ for every carrier 

K of/~ (see the end of Section 1). 

COROLLARY 5.3. I//uE.,4'(G~), /~ has a unique E-support i / a n d  only i / pc  is convex. 

Proo/. Suppose that  pC is convex and let K 0 be the convex compact set such that  

HK ~ =pC. Then Theorem 5.1 shows that  a convex compact set K carries ju if and only if 

K ~  K 0 so that  K 0 is the smallest convex carrier, hence the only i:-support. 

If, on the other hand, # has a unique i:-support K0, t h e n p  c =inf  (HK; K carries ~u) =He0 

by  the preceding theorem. 

I t  can easily be proved that  if pC is not convex, all minimal convex majorants of pC 

must be linear in some open set. Hence, according to the corollary, the l:-supports of a 

functional with several I:-supports must all have edges. This gives a new proof of Theorem 

3.1 in [6]. 

The conclusion of Theorem 5.2 is false in general for I~E.,4'(U), U a proper subset of 

(~. The corollary, on the other hand, can be generalized by  means of Theorem 4.17. We 

shall not do so now, however, since more general statements will follow from the next  

theorem. 

THeOReM 5.4. Let V be a Stein mani/old, U an open subset o/ V and denote by t the 

canonical injection U-~V. Suppose that the linear subspace ~ o/ A(V)  contains elements 

~1 ..... ~m such that (al .... , am) is an embedding o/ V into C "~. Further, let [~E,,4'(U) be carried 

by s)me G-convex set L ~  U, and let K c  L. Then # is carried by hqK i / (and only i/) 

p(t*w) <<- HK(W), ~ ~ 6. 
In  particular, we have 
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COROLLARY 5.5. I / /*EA' (V) ,  where V is a Stein mani/old, then i z is carried by h~(v)K 

i / and  only i/p(~p)~HK(~) /or all ~p~ A(V).  

Another special case is of course Theorem 5.1. 

Proo/o] Theorem 5.4. By Lemma 4.16 it is sufficient to prove that  t# is carried by  an 

arbi trary neighborhood/i71 of K. Choose a finite-dimensional subspace ~ of ~ such that  

h u K ~ K  1 (Lemma 4.2). We may  of course assume that  ~1 ..... ~mE~. Let  ~1 ....  , ~k generate 

and define ~--  (~1 ..... ~) .  Then the hypotheses imply that  the indicator q of at# satisfies 

q(~) ~H~(K)(~) if ~ is a linear function on C g. Hence by  Theorem 5.1, hc~(K) carries ~l/* 

and therefore, in view of Lemma 4.7, ~ - i ( h c a ( K ) ) = h u K c K  1 carries t/~. This proves the 

theorem. 

Our next  goal is to generalize similarly Theorem 5.2 and Corollary 5.3. We first need 

a simple lemma on the operation of taking the upper regularization. 

LEMMA 5.6. Let U and V be complex mani/olds which are countable unions el compact 

sets and let ~: U-->V be an analytic map. Further, let ~ and :~=~*~ be closed subspaces o/ 

A(V)  and A(U), respectively. Then i/ #EA ' (U)  we have p~(y~) =p~(y~o~)/or all ~fe~ where 

29 and p~ denote, respectively, the indicators o/tt  and ~tt, and p~ is the upper regularization of 

the restriction of p to ~, p~ being de/ined similarly. 

Proo]. I t  is clear tha t  p~(~)=p(~po~), y J ~ .  Let  p~(~po~)<c. Then p(T1)<e for all 

~1E :~ near y~o ~, in l)artieular P~(~I) =P(YJ1 ~ g) <c  for ~1 near y~. This implies that  p~(y~) ~<c, 

hence p~(~o) ~<p~(~v o ~). 

Conversely, if p~(~p)<c we have p(~p~o~)=p~(~p~)<c for all ~p~ in a neighborhood o~ 

of ~o. But  the restriction of ~* to ~ is an open map by  Banach's theorem since it  maps a 

Frdchet space ~ continuously onto another, ~. Hence ~*~o is a neighborhood of ~po~ in 

so tha t  p~(~ o ~) ~< sup~ . . . .  ~p(~0~) ~< c. This means tha t  p~(~vo ~) -<<p~(y~). 

We will use this lemma only when ~ and ~ have finite dimension so that  the hypothesis 

that  they be closed is automatically fulfilled. 

T~EOREI~ 5.7. Let V be a complex mani/old and ~ A(V)  a linear subspace such that 

~'* contains an embedding o / V  into C rn /or some m. Then/or every # ~ A '  ( V) and every ~p ~ ~ 

we have 
p~(~v) ~ inf (Hg(~p); K carries t~), 

K 

where pq denotes the upper regularization el the restriction to ~ o/the indicator o/ix. 

Proo/. We need only prove that  the left-hand side is not less than the right- 

hand side. Let  g = ( g i  .... , am) be an embedding of V into (3 ~ and let ~ be fixed. Then 

3 -  662903 .  Acta mathematica. 117. I m p r l m 6  le 16 f6vr ie r  1967. 
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fl = (~  ..... ~m, Y~) embeds V into (~m+l and we denote by ~ the subspace of ~ spanned by 

~r ..... ~m, Y~. I t  is obviously sufficient to prove that  

pn(~p) ~> in/(H~(y)); K carries/t) 

for pn -~<p~ in ~4. Let $ be the linear function z-->Zm+~ in C ~+~. Then H~(y 0 =H~(K)(~) and, 

by Lemma 5.6, pU(y~)=p~(~) so what we have to prove is 

p~(~)/> in/(Hz(~)(~); K carries/t). (52) 

Suppose that L c C  m+~ is a convex carrier of fl/t. Then K=fl-~(L) is in view of Lemma 4.7 

a carrier of ~u and f l (K)cL which proves that  

in/(H~(K>(~); K carries tt) ~< inf (HL($); L carries fl/t). 

But Theorem 5.2 shows that  the right-hand side of this inequality is p~($) which proves 

(5.2). 

COROLLARY 5.8. Under the assumptions ol Theorem 5.7 we lgtve p,~(v)~pO in ~. 

Proo/. If K carries tt we obtain p(~)~HK(~p), ~p6A(V), and therefore pA(v)(~p)~<H~(%o) 

so that,  by the theorem, p~(v)(y~)~pq(~f) for ~fi~.  I t  is trivial that, conversely, pq~p,4(~,) 

in ~. 
We finally extend Corollary 5.3. 

TH]~o~E~ 5.9. Let V, U, ~ and/~ 6j4'(U) satis/y the hypotheses o/Theorem 5.4. Let Pc 

denote the indicator o/t/~ 6.,4'(V). Then p? is convex i] and only i] /~ has a unique e*~-support. 

A special case is, of course, 

COROLLARY 5.10. :Let/~ be an analytic Junctional on a Stein mani]old V. Then/z has 

a unique .,4(V)-support i] and only i/p~(v) is convex. 

Proo/ o/ Theorem 5.9. In view of Theorems 4.11 and 4.17, tt has a unique t*~-support 

if and only if t# has a unique ~-support  for all finite dimensional subspaces ~ of ~ such 

that  ~1 .... , am e ~4. On the other hand, p,q is obviously convex if and only if its restriction 

to every such ~ is convex, and by Corollary 5.8, ~,~-~,-~(v) -~,-~ in ~ so that  p,~ is convex 

if and only if p,~ is convex for all ~ of the described kind. 

I t  wilt thus be sufficient to prove that  t~ has a unique :~-support if and only if p,~ is 

convex where ~ is a finite dimensional space containing ~1 ..... am. Let ~x, "., ~k span :~ 
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and define ~---(al, ..., ak), an embedding of V into C ~. Now Corollary 4.10 shows that t~u 

has a unique W-support if and only if ~t/~ has a unique s and by Lemma 5.6 the 

indicator q of ~t/~ satisfies gc(~)=:p,~(~o~), ~Es so our assertion is finally reduced to Co- 

rollary 5.3. 

Added in proo]. Theorem 3.4 has been proved independently by A. Martineau (see 

Sdminaire Lelong June 6, 1966). His proof is the same as that  sketched in the remark at 

the end of Section 3 except that  a careful adoption of Theorem 4.4.3 in [5] allows him to 

work without any regularity assumption on iV. I am indebted to him for pointing out 

that  Theorem 3.2 is not new; it is due to R. Fujita and A. Takeuchi (J. Math. Soe. Japan,  

vols. 15 and 16 respectively). 
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