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Abstract 

Two functions A and A~, of interest in combinatorial geometry and the theory of 

linear programming, are defined and studied. A(d, n) is the maximum diameter of convex 

polyhedra of dimension d with n faces of dimension d - 1; similarly, Ab(d, n) is the maximum 

diameter of bounded polyhedra of dimension d with n faces of dimension d - 1 .  The dia- 

meter  of a polyhedron P is the smallest integer 1 such tha t  any two vertices of P can be 

joined by  a pa th  of l or fewer edges of P. I t  is shown tha t  the bounded d-step conjecture, 

i.e. A6(d, 2d)=d,  is true for d~<5. I t  is also shown that  the general d-step conjecture, i.e. 

A (d, 2d) ~< d, of significance in linear programming, is false for d >i 4. A number  of other 

specific values and bounds for A and A~ are presented. 

Introduction 

In  this paper two functions, A and Ao, of interest in combinatorial geometry and the 

theory of linear programming, are introduced and studied. For 1 ~<d < n, A(d, n) is defined 

as the maximum diameter of polyhedra (i.e. convex polyhedra) of dimension d with n 

faces of dimension d -  1. Similarly, Ab(d , n) is the maximum diameter of bounded poly- 

hedra of dimension d with n faces of dimension d - 1 .  Here the diameter of a polyhedron 

P, denoted 5(P), is the smallest integer 1 such tha t  any two vertices of P can be joined by  

a pa th  consisting of l or fewer edges of P. The functions A and Ao provide a convenient 

notation for expressing a number  of so-called "s tep"  conjectures which have been circu- 

lated more or less informally in the fields of geometry and programming. One of the 

principal specific accomplishments of this paper  is the proof of a 5-step conjecture which 

implies tha t  Ab(d, n) < n - d whenever n < d + 5. 
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The function (5 can be related to the study of what might be called edge-following 

linear programming algorithms, which start  with a vertex of the feasible region and pro- 

ceed along successive edges of this region, according to some rule, until an optimum vertex 

is reached. The feasible region of any linear program (if not empty) is a polyhedron, and 

conversely, given a polyhedron P, it is always possible to construct a program with P as 

feasible region and specify an initial vertex so that  at least ($(P) iterations are required 

to solve the program regardless of the edge-following algorithm employed. Thus A(d, n) 

represents, in a sense, the number of iterations required to solve the "worst" linear program 

of n inequalities in d variables using the "best" edge-following algorithm. 

Discussing a general linear programming problem whose feasible region is determined 

by m linear equalities in n nonnegative variables, Dantzig writes (p. 160 of [2]): "It  has 

been conjectured that,  by  proper choice of the variables to enter the basic set, it is possible 

to pass from any basic feasible solution to any other in m or less pivot steps, where each 

basic solution generated along the way must be feasible. For the case m 4 4, the conjecture 

is known to be true [W. M. Hirsch, 1957, verbal communication]." Later (p. 168) he states 

essentially the same problem in geometric form: "In a convex region in n - m  dimensional 

space defined by n halfspaces, is m an upper bound for the minimum-length chain of 

vertices joining two given vertices?" 

We shall call the above quoted conjecture, namely that  A(d, n)~<n-d, the general 

Hirsch conjecture, and the assertion that  Ab(d, n)<~n-d, the bounded Hirseh conjecture. 

The reverse inequalities, A(d, n) >~n - d ,  and Ab(d, n) >~n - d  when n ~2d, are presumably 

well-known and will be established incidentally in Section 2. The widely kno~-a special 

cases of these conjectures, namely A(d, 2d) ~<d and Ao(d, 2d) ~<d, will be called respectively 

the general d-step conjecture and the bounded d-step conjecture. 

Two major results of this paper are the evaluations Ab(5 , 10)=5 and A(4, 8)=5,  

which prove the bounded 5-step conjecture alluded to in the first paragraph and disprove 
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the general 4-step conjecture. (1) I n  fact, it will be shown tha t  A(d, 2d)~>d+ [d/4], so t h a t  

excess of A(d, 2d) over the  conjectured value tends to  infinity with d. Some addit ional 

results to be developed here can be described in terms of Figs. 1 and 2, which give all the 

known values for A(d, n) and Ao(d, n). The asterisks indicate t ha t  each column is constant  

f rom the main  diagonal downwards.  Note  tha t  the  d-step conjectures are concerned pre- 

cisely with the values on the diagonal. 

The values for d = 2  are obvious. The values for A(3, n) were given in [12] and [13]. The 

values for A~(3, n), and for Ab(d, n) when n~d+4,  were established in [9]. The remaining 

entries are computed  in this paper.  I n  addit ion to these specific results, certain mono- 

tonei ty  properties of Figs. 1 and 2 will be proven. ~t will be shown tha t  the rows in Fig. 1 

and  the diagonals parallel to  the  main diagonals in bo th  figures are str ict ly increasing. 

I t  will also be shown t h a t  the rows in Fig. 2 and the columns in both  figures are nonde- 

creasing. 

1 .  D e f i n i t i o n s  a n d  P r e l i m i n a r y  r e s u l t s  

As the term is used here, a polyhedron is the  nonempty  intersection of a finite number  

of closed halfspaces in a finite-dimensionM real vector  space. A polytope is a bounded  

polyhedron.  1,1 addit ion to P itself, which is called the improper ]ace, t he /aces  of a poly- 

hedron P are the intersections of P with its various support ing hyperplanes. We shall no t  

consider the empty  set, O, a face of a polyhedron.  Two polyhedra are said to be .incident 
if one is a face of the  other. The dimension of a polyhedron P will be denoted by  d imP .  

Dimensions will also be indicated b y  prefixes, and the 0-faces, 1-faces, and (d -1 ) - faces  

(1) Thus Dantzig's statement "For the case m~< 4 ..." shouId be modified to read "... m< 4 ..2 
or should be restricted to bounded regions. 
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of a d-polyhedron P are called respectively the vertices, edges, and ]acets of P. A pointed poly- 

hedron is one which has at  least one vertex. A pointed d-polyhedron is said to be simple 

if each of its vertices is incident to exactly d edges. 

As we shall use the term, a (closed) complex is a finRe set ~ whose members are 

polyhedra situated in some finite-dimensional space such tha t  (a) every face of a 

member  of ~ is a member  of ~ and (b) the intersection of any two members  of 

is empty  or a face of both. Any two sets of polyhedra, ~1 and :K2, whether complexes or 

not, are said to be equivalent if there exists a one-to-one correspondence between ~1 and 

~2 which preserves dimension and incidence in both directions. For any polyhedron P,  

the complex of P,  written ~(P) ,  is the complex consisting of all faces of P including P 

itself. Two polyhedra P and Q are said to be (combinatoriaUy) equivalent if :K(P) is equi- 

valent to :~(Q). ~n general the set ~F(P) =:K(P),,~:K(F), where F is a face of the polyhedron 

P, is not a complex because certain faces of its members are not members. Nevertheless 

~F(P) may  be equivalent to the complex of a polyhedron Q, and when this happens we 

shall say the face F of P is removable and Q can be obtained from P by  removing F. I t  is 

easy to construct examples of polyhedra with removable and nonremovable faces and to 

show nonequivalent polyhedra may  give rise to equivalent polyhedra upon removal of a 

proper face from each. I t  is apparently a difficult task to characterize the removable 

faces of an arbi trary polyhedron. However, the following proposition and its immediate 

corollary will meet  the needs of this paper. 

1.1. PROPOSITIOn. I /  the polyhedron P is contained in the strip between two parallel 

supporting hyperplanes H and H', then the ]ace H N P is removable. 

.Proo/. The proof consists in constructing a projective transformation of P into a 

polyhedron Q such that  ~(Q) is equivalent to ~ n p ( P ) .  From E, the vector space in which 

P,  H, and H' are situated, construct E • R, the product of E with the real numbers. Let  

J = H  • R and J'  = H ' •  R, so that  E • {0}, J ,  and J '  are hyperplanes in E •  Choose 

a point u in J ~  (H • {0}), and for each point p in P..~H, let ~p denote the point at  which 

J '  is intersected by the ray issuing from u and passing through p • 0. Then T is a projective 

transformation, Q = ~ ( P ~ H )  is a polyhedron in J ' ,  and the faces of Q are exactly the sets 

of the form T(G,,.H), where G is a face of P not contained in H. Hence :~(Q) is equivalent 

to X.n~(P). 

of 

1.2. COROLLABY. Every proper/ace o/ a polytope is removable. 

For two vertices x and y of a polyhedron P, a path of length l from x to y is a sequence 

edges of P,  ([x0, xl] , Ix1, x2] , . . . ,  [Xl_l, 3~l]), where x o =x and xz =y.  The smallest 1 for 
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which such a pa th  exists is the distance 8~(x, y) between x and y in P .  More generally a 

/acial path, specifically a (k 1, k s . . . .  , kr)-path, from x to y in P is a sequence (K1, Ks, ..., Kr) 

of faces of P such t h a t  

x E K  1, 

y e Kr, 

dimK~ =]c~, l~i<~r, 

Kif lK~+140,  l <i<r.  

Note  tha t  a (1, 1, ..., 1)-path need not  be an (ordinary) path,  bu t  for the  type  of problem 

to  be considered here, this distinction will cause no difficulty. 

We shall say a polyhedron belongs to class (d, n) if it is a pointed d-polyhedron with 

n facets and 1 ~<d < n .  Note  tha t  if a polyhedron belongs to  a class, its diameter  is well- 

defined, and conversely, if a polyhedron does not  belong to any  class, its diameter  is un- 

defined or zero. We also introduce the concept of a triple, (P, x, y), consisting of a (neces- 

sarily pointed) polyhedron P and two vertices x and y of P .  We shall say (P, x, y) is bounded,  

simple, of class (d, n), etc. if P is. An  edge or facet  of P incident to a vertex v of P will 

be called a v-edge or v-/acet of P .  Thus an al ternate definition for A(d, n) (respectively, 

Ab(d, n)) is the m a x i m um  of (~p(x, y) as (P, x, y) ranges over all triples (respectively, boun- 

ded triples) of class (d, n). 

We tu rn  now to  two constructions, the product  and the wedge, which will be used 

repeatedly in the following sections. 

1.3. PROPOSITION. I] P1 is a all-polyhedron and P2 is a d~-polyhedron, then their 

product P1 • Ps is a (d 1 + ds)-polyhedron whose k-laces are precisely the sets o] the/orm K 1 • Ks, 

where each K,  is a k,-/ace o] P, and k = k l  +k s. In  particular, the vertices, edges, and/acets 

o/P1 • Ps are respectively products o] the vertices o] the/actors, products o] a vertex o] one 

/actor by an edge o/the other, and products o] one/actor by a/acet o] the other. Thus the number 

o]/acets o/the product is the sum o/the numbers o//acets o] the/actors. A path a on P1 • Ps 

corresponds to the locus traced out by the product o] two points which trace out paths fll and fls 

simultaneously on their respective/actors in such a way that at any time at most one o] the 

points is not at a vertex o] its/actor. The paths fll and fls are the projections o / ~  on P1 and 

Ps (it being understood that one-point pro~ections are deleted). Thus the diameter o/the product 

is the sum o] the diameters o] the/actors. I/both/actors are bounded or simple, so is the product. 

1.4. PROPOSITION. Suppose K is a b/ace o] a d-polyhedron P, O <~ k <d. Let C denote 

the product o] P with the hall-line L=[O, oo), and let each point p i n  P be identi/ied with the 

point p • 0 o] C. Let H be a hyperplane in the space spanned by C such that H N P = K and 
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H intersects the interior of C. Then C is divided by H into two (d + 1)-polyhedra, one of which, 

say W, contains P. Combinatorially, W is completely determined by P and the choice of K.  

We shall call W the wedge over P with foot K. The facets P and H N C, which will be called 

respectively the lower and upper base of W, are equivalent. I f  x is a vertex o / P  not in K,  

x* will denote the vertex o/ the  upper base over x, that is, the intersection o/ the upper base 

with the product of x and L. A n  s-face of W is either an s-face of one ol the bases, or the wedge 

over an (s - 1)-/ace T o / P  with foot T fl K,  or a/ace V o/ W intersecting both bases but not 

K;  in the last case V is equivalent to the product o/ V ~ P with an interval. Indeed, W may 

be obtained (combinatorially) from the product P • [0, 1] by collapsing K • [0, 1] into K.  

Thus the paths on W correspond to simultaneous paths on P and [0, 1] subject to the same 

restriction as in 1.3 except that when the point in P is at a vertex o / K  the point in [0, 1] may 

change endpoints without contributing an edge o/ W. The path in P is the projection parallel 

to Z o/the path on W. I] P is bounded, so is W. I f  P is simple and K is a facet o /P ,  then 

W is simple. 

Finally, we summarize some properties of simple polyhedra. We shall occasionally 

refer to this summary when in need of a result on simple polyhedra, even though the 

needed result may require some intermediate argument. 

1.5. PROrOSlmION. Suppose P is a simple pointed d-polyhedron, d >~ l . Then: 

(a) For any neighborhood N o / a  vertex o / P ,  there exists a closed hal/space J such that 

P fi J is a d-simplex contained in N.  Thus if r and s are any integers satisfying 

0 <~r<~s <~d, then every r-face of P is incident to exactly d - s  

(b) Each Z-face K o / P  is a simple Z-polyhedron. Moreover, if k <d, K is the intersection 

of d -  k facets o /P ,  and conversely, the intersection of any d -  k/acets o / P  is empty 

or a Z-face of P. 

(e) Suppose x o ..... xl are successive vertices o /a  path of length l on P. For each i, 0 <~ i < l, 

in passing from x~ to xi+ 1 exactly one facet of P is left behind and exactly one new 

facet o / P  is met. I f ,  in all, the vertices x o ... .  , xt are incident to n di//erent facets o/ 

P, then l >~ n - d. I f  1 < d, the path lies entirely in a/ace of P of dimension at most I. 

2. Some reductions 

The main results of this section are "reduction theorems" in various senses. A first 

group of three results may be summarized as follows: 

2.1. I t  is sufficient to consider simple polyhedra and simple polytopes when deter- 

mining A(d, n) and At(d, n). 
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2.2. I t  is sufficient to consider (Se(x , y) for vertices x and y not on any common facet 

of P when determining A(d, n) and Ab(d, n) if n>~2d. 

2.3. I t  is sufficient to consider vertices x and y which are incident to unbounded edges 

of P when determining A(d, n) if d>~2. 

From these results some recursive inequalities for A and A0 are developed, including: 

2.4. Figures 1 and 2 are constant from the main diagonal downwards; tha t  is, 

A(d+k,  2d+k)=A(d ,  2d) and Ab(d+k , 2d+k)=Ao(d, 2d) for all positive integers d and k. 

In  view of 2.2 and 2.4 we are led naturally to consider what we shall call a Dantzig 

]igure, specifically, a triple (P, x, y) of class (d, 2d) with exactly d facets incident to x and 

exactly d other facets incident to y. We shall also recall a conjecture of Wolfe and Klee 

[12, 13] that  any two vertices of a polytope can be joined by  a so-called Wv path--that  is, 

by  a pa th  which "visits" no facet more than  once. Despite an apparent  greater strength 

of this conjecture (which prompted its original formulation), we show: 

2.5. T I~]~ o R E •. The ]ollowing/our assertions are equivalent: 

(a) Any  two vertices o /a  simple polytope can be joined by a Wv path. 

(b) The bounded Hirsch conjecture is true/or all d and n, 1 <.d <n. 

(c) The bounded d-step conjecture is true ]or all d. 

(d) For any simple d-dimensional bounded Dantzig /igure (P, x, y), (Sp(x, y) = d. 

Our first goal is to show attention may  be restricted to simple polyhedra and poly- 

topes when computing A and Ab. This was shown for Ao in [9] by an argument which 

involved passing from a polytope P to the polar polytope and applying a "pushing process" 

in which the vertices of the polar were pushed inward. This pushing process was carried 

out in such a way as to produce a new polar polytope corresponding to a simple polytope 

Q with diameter at least as large as the diameter of P. A similar but  somewhat simpler 

"pulling process" was described in [4]. Had  the displacements of vertices of the polar been 

specified in [9] as along a line through the center of the polarity, r a the r  than  in an arbi trary 

direction into the interior of the polar, the modified polytope Q would have been precisely 

the result of parallel displacements of the hyperplanes determining the facets of P. A 

little thought  suggests tha t  a small parallel displacement of the facets of a nonsimple 

polyhedron, whether bounded or unbounded, can be made to produce a simple polyhedron 

of no smaller diameter. This and other more-or-less plausible results concerning parallel 

facet displacement will be proven in a separate paper  by  the second author. The re- 

sult we need here is the following: 
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2.6. LE~M.~. For any nonsimple polyhedron P of class (d, n) there exists a simple 

polyhedron Q o/the same class such that: 

(a) Q is bounded or unbounded according as P is. 

(b) There exists a mapping 0 of ~(Q) onto X(P)  such that i / F  and G are any/ace~ o/ 

X(Q), then 

(i) F~_ (7 implies O(F)~O(G); 

(ii) dim0(F) ~<dimF. 

Moreover every/ace o /~ (P )  is the image under 0 o/a/ace of :~(Q) of the same dimen. 

8ion. 

From this follows readily: 

2.7. LEMMA. Suppose d, n, r, and k1 .. . .  , k~ are positive integers with each ]~ equal to 

or less than d. I f  there exists a (kl, ..., k~)-path from x to y in every simple bounded triple 

(P, x, y) of the class (d, n), then there exists such a path in every bounded triple in that class. 

The foregoing statement is also true when "bounded" is replaced by "unbounded" or removed 

entirely. 

Proof. Suppose the "if" par t  of the statement is true for a particular set of values 

for d, n, r, and kl ... .  , /c ,  and let (P, x, y) be any bounded triple of class (d, n). By  2.6 

there exists a simple d-polytope Q, a mapping 0 of :~(Q) onto :~(P) as hi 2.6, and vertices 

x' and y'  of Q mapped by  0 into x and y respectively. Since we have supposed the "if" 
! 

par t  of the s ta tement  true, there is a (]~1 .... .  k~)-path, say (K1 .... .  K~), from x' to y' in Q. 

From property (i) of 2.6 it follows O(F) and O(G) intersect in P whenever the faces F and 

G intersect in Q. Thus (O(K~), .... O(K~)) is a pa th  from x to y in P.  In  fact, by  property 

(ii) of 2.6, it is a (]c~ .... , ]c*)-path with ]~* ~<]c~. But  of course we can replace each member  

O(K~) of the pa th  by  a face K~ of P which contains it, so tha t  (K 1 .. . . .  Kr) is a (kl, ..., lc~)- 

path  from x to y in P. This proves the lemma for polytopes. The same proof applies for 

unbounded or unrestricted polyhedra. 

I t  will be seen immediately tha t  2.7, applied in the special case of (1, 1 ..... 1)-paths, 

is sufficient to prove 2.1. In  the following theorem we shall show not only tha t  2.1, 2.2, 

and 2.3 hold, but  tha t  the reductions they represent may  be carried out simultaneously. 

2.8. T~]~OR]~M. The value Ab(d, n), 1 <~d <n, can be realized as the distance between 

vertices x and y of a simple d-polytope P with n facets. The value A(d, n), 2 <~d <n, can be 

realized as the distance between vertices x and y o / a  simple d-polyhedron P with n facets in 

such a way that both x and y are incident to unbounded edges o/ P.!When n >~ 2d the requirement 

may be added (/or A and A~) that x and y do not lie on the same facet o /P .  
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Proo]. The theorem is trivially true for d ~<2; hence we shall assume in what follows 

that  d >~3. The first sentence and the first part of the second have already been proven 

in 2.1 and 2.7. 

Now suppose n>~2d and consider A(d, n) as in the third sentence. From among the 

triples (P, x, y) such that  ~p(x, y)=A(d,  n) choose one which maximizes the dimension 

of the smallest face, G, of P incident to both x and y. We must show dim G = d. Suppose, 

to the contrary, G is contained in some facet F of P. Note that  

(~F(x, y) ~>Sp(x, y) = A(d, n) 

and that  F is a simple (d-1) :polyhedron with at most n - 1  facets of its own. We can 

construct f rom/~ a polyhedron F '  with exactly n - 1  facets by a suitable number of suc- 

cessive truncations of vertices other than x and y. (For such other vertices not to exist 

would lead to the conclusion G = Ix, y], an absurdity for d >--3. Each truncation, of course, 

increases the number of vertices by d - 2 . )  I t  may be verified that  F '  is simple, that  

(~.(x, y)>~F(x, y), that  G', the intersection of G with F ' ,  is the smallest face of F '  con- 

taining x and y, and that  dimG' =dimG. Since F '  is simple and n - 1  >~2(d- 1), there must 

be at least one facet K of F '  not incident to either x or y. (This is an immediate result 

of counting the number of facets incident to the simple vertices x and y. Similar compu- 

tations will be relied upon without comment in the proofs of other results in this paper.) 

Let W be a wedge over F '  with foot K, and let y* be the vertex over y in the upper base 

of W. Then W is a simple d-polyhedron with exactly n facets, and 

(~w(X, y*) >~(~y,(x, y) >~ A(d, n), 

where, by  the definition of A(d, n), equality must actually hold. Now what of the smallest 

face S of W containing both x and y*? Since S is not a face of either base of W, it follows 

from the characterization of faces of the wedge in 1.4 that  S ;~ F '  contains x and y and 

therefore G'. Since G' is not all of S, d imS>dimG.  But then the triple (W, x, y*) con- 

tradicts the choice of (P, x, y) so as to maximize the dimension of G. Thus dim G = d, and 

we have verified the third sentence of 2.8 for polyhedra. The same argument applies to 

polytopes. 

To complete the proof of 2.8, we must consider a triple (P,x, y) satisfying all the re- 

quirements of the theorem relative to A(d, n) except possibly for the existence of unbounded 

edges incident to x and y. We may as well suppose P unbounded for if P were bounded 

we could remove a vertex without affecting other essential properties of P. Let L be the 

line through x and y, let c be the midpoint of the segment Ix, y], and let C be the union 

of all rays in P which issue from c. Then C is a polyhedral cone and C n L = {c}. Let H 
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be a hyperplane which supports C at c and contains L, and let H '  be a translate of H 

intersecting the interior of C. P is divided by H '  into two polyhedra, and the one of these, 

P ' ,  which contains x and y is bounded. If H '  is chosen sufficiently close to H, then P '  

is a simple d-polytope with at most n + 1 facets such that  at least one edge incident to x 

intersects the facet P N H'  and at least one edge incident to y intersects P N H'.  Now 

let (P", x", y") be a triple obtained from (P', x, y) by removing P N H '  and truncating 

enough vertices to bring the number of facets up to n. I t  is not difficult to see that  

(P", x", y") satisfies all the requirements of the theorem relative to A(d, n). 

Using the foregoing general results, we shall next  establish some simple inductive 

inequalities for A(d, n) and Ab(d , n). These inequalities, interpreted in terms of l~igs. 1 

and 2, are exactly the monotoneity conditions mentioned in the introduction. 

2.9. PROI"OSI~ION. I / I < d < n ,  then 

(a) A(d, n + l )  >A(d, n), (b) Ab(d, n + l )  ~>Ab(d, n), 

(c) A(d§247 (d) Ab(d§ ni2)>Ab(d,n ). 

Proo/. Part  (b) is easily proved by the truncation process used in the proof of 2.8. 

Parts (e) and (d) follow from 1.3; if P is a d-polyhedron of diameter A(d, n) with n facets, 

then P • [0, 1] is a (d+ 1)-polyhedron of diameter A(d, n ) +  1 with n §  facets. For  part  

(a) let (P, x, y) be the triple of diameter A(d, n) described in 2.3, let g be an unbounded 

y-edge of P, form a new polyhedron P '  from P by  truncating y, and denote by  y' the 

new endpoint of g. Then P '  is a d-polyhedron with n +  1 facets and (~.(x, y')=A(d, n)+1 .  

2.10. PROPOSITION. I /  1 <d<n, then 

(a) A ( d §  n§ n), 

(b) Ab(d§ n§ n), 

with equality in both cases i/ n <~2d. 

Proo/. Consider (b); the proof for (a) is analogous. Let  P be a d-polytope of diameter 

Ab(d, n) with n facets, let K be any facet of P,  and let W be the wedge over P with foot 

K as constructed in 1.4. Then W is a (d+l)-polytope with n §  facets and its diameter 

is at least A~(d, n). This proves the inequality for (b). Now assume n ~<2d and let (Q, x, y) 

be a triple of class ( d + l ,  n §  such that  ~Q(x, y )=Ao(d+ l ,  n + l ) .  Since Q has fewer than 

2 (d§  facets, it must have a facet P incident to both x and y. P is itself a d-polytope 

with at most n facets, and clearly (~p(x, y)>~Q(x, y). The reverse inequality and hence 

equality in 2.10b now follow from 2.9b. 
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In  connection with the d-step conjectures and the values of A(d, 2d) and Ab(d, 2d), 

we are led to introduce some special terminology. As was mentioned earlier, a triple 

(P, x, y) is called a d-dimensional Dantzig figure if P is a d-polyhedron with 2d facets of 

which exactly d are incident to x and exactly d others are incident to y. The name is 

suggested by a problem posed by  Dantzig in [3], which asks for the maximum of ($p(x, y) 

as (P, x, y) ranges over all bounded d-dimensional Dantzig figures. From 2.3 it follows 

tha t  the answer, whatever its value may  be, is exactly Ab(d , 2d). In  this same connection, 

let us also recall a notion from [12] and [13]. A pa th  ([x0, Xl], ..., [xz-1, xz]) in a polyhedron 

P is said to be a W, path if for i<]<k ,  xj is incident to a facet whenever x~ and xk are. 

Less formally, a pa th  is a W, pa th  if it does not revisit any facet of P. The following propo- 

sition concerning W, paths is easily proven: 

2.11. PROPOSITION. 

(a) A path lying in a/ace iv o /a  polyhedron P is a W v path in F i /and  only i / i t  is a 

W, path in P. 

(b) A path in the product o/ two polyhedra is a W, path i/ and only i/  its projections in 

the/actors are W~ paths. 

(c) I / a  path in a wedge over P is a W~ path, then so is its projection in P. 

The final result of this section demonstrates the relationship among Dantzig figures, 

W v paths, and the step conjectures. 

2.12. LEMMA. Let m and d be positive integers, with d>~2 i/ m> l. Then each o~ the 

/ollowing statements implies the next: 

(a) The vertices x and y o /any  bounded simple m-dimensional Dantzig /igure (P, x, y) 

can be joined by a path o/length at most m. 

(b) Any two vertices o/ a simple polytope o/ class (d, d +m) can be joined by a W, path. 

(c) The bounded Hirsch conjecture is true/or class (d, d+m) ,  i.e. Ab(d, d +m) <<-m. 

Proo[. In  2.10 par t  (b) it was shown, though not  explicitly stated, tha t  the bounded 

d-step conjecture is true for some dimension m if and only if the bounded Hirsch conjecture 

is true for all classes (d, d + m). This is nothing more than  an observation tha t  the maximum 

entry in any column of Fig. 2 can be found on the diagonal. Thus, because of 2.8, s tatement  

(a) implies s ta tement  (c). In  fact, from an application of 2.8 and 1.5 c it follows (b) implies 

(c). To see tha t  (a)implies (b), let (P, x, y) be any bounded simple triple of class (d, d§  

Write Yo=Y and let F 0 be the smallest face of P incident to x and y. Then (2'0, x, Y0) is a 

bounded simple triple of class (d', d ' + m ' ) ,  where d'<~d and m'<~m. Indeed, since no 
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facet of F o is incident to both x and Yo, m' =d'+k, where k is the number  of facets of F0 

incident to neither x nor Y0. I f  k > 0, let G be any facet of F o missing x and y, and form 

the wedge F 1 over F o with foot G. The triple (F1, x, Yl), where Yl is the vertex over Y0, 

is a bounded simple triple of class (d '+  1, d'+m' § with k - 1  facets incident to neither 

x nor yl and none incident to both. Repeating the wedging process, we must  obtain in k 

steps a bounded simple triple (Fk, x, Yk) of class (d'+k, d'+m'+k)=(m',  2m') with no 

facets incident to both x and Yk- I f  we suppose s tatement  (a) true, then since (Fk, x, Yk) 

is a simple Dantzig figure, since m '  ~<m, and since 2.9d holds, we conclude there is a pa th  

of length at  most m'  from x to Yk in Fk. By  1.5 such a pa th  is of length exactly m'  and 

must  be a Wv path.  Now the projection of this Wv path  back  through the sequence of 

triples, (F~, x, Yt), produces a Wv path  in F from x to y. Since this is what is required in 

(b), the lemma is proven. 

The theorem, 2.5, now follows directly from the above lemma and 2.8. 

3. Facial paths in Dantzig figures 

In  the previous section it was shown tha t  the s tudy of the d-step conjecture leads 

naturally to the s tudy of d-dimensional simple Dantzig figures (P, x, y). And from 1.5 it 

follows tha t  ~e(x, y ) = d  if and only if P admits a (k I . . . .  , kr)-path from x to y for every 

sequence of positive integers (k 1 ... .  , kr) whose sum is d. Thus it seems natural  to study 

the existence of such paths for Dantzig figures, and this is the purpose of the present 

section. Our first results show tha t  any simple Dantzig figure admits a (k 1, 1, ka)-path 

and that ,  as a consequence of a general relationship between unbounded and bounded 

figures, any bounded simple Dantzig figure admits a (1, k 2, 1, k4)-path. The lat ter  result 

implies the existence of (1, d - 2 ,  1)-paths in the bounded case, a fact which is employed 

in the proof of the bounded 5-step conjecture in Section 4. The rest of the present section 

serves primarily as an introduction and supplement to Section 5, where the general 4-step 

conjecture is disproved by  constructing a 4-dimensional simple Dantzig figure (P, x, y) 

admitting no (1, 2, 1)-paths from x to y. 

I f  (P, x, y) is a d-dimensiongl Dantzig figure, then P is the intersection of simple 

polyhedral cones Px and P~ with vertices x and y respectively. Each cone contains the 

vertex of the  other in its interior, and the faces of P incident to (say) x are subsets of faces 

of Px of the same dimension Cut off by the cone P~. Employing a natural  correspondence, 

we say an x-facet F and an x-edge ] are complementary if ] is the only x-edge not lying in 

F or, equivalently, ]7 is the only x-facet not containing/.  The same term applies to y-facets 

and y-edges. 



T H E  d - S T E P  CO~TJE(]TURE F O R  P O L Y H E D R A  OX~ D I M E N S I O N  d < 6 65 

3.1. PROPOSITIOH. For any positive integers d, r, and ki, ..., k r such that k~ <<.d, the 

/oUowing are equivalent: 

(a) Given any d-dimensional simple Dantzig ]igure (P, x, y), the vertices x and y can 

be joined by a (k I . . . .  , k~)-path. 

(b) Given any simple d-polytope P '  with 2d + 1/aeets, two vertices x and y o / P '  not on 

the same ]acet, and a /ace t  F o/ P '  not incident to either x or y, then the vertices x 

and y can be joined by a (k i . . . .  , k~)-path, no member o /which  lies entirely within F.  

(c) Given any (d + 1)-dimensional bounded simple Dantzig /igure (Q, u, v) and any facet 

G o / Q  incident to u, the vertices u and v can be joined by a (1, ki, ..., kr)-path, no 

member o /which  lies entirely within G. 

Proo]. The proposition is easily verified when d = 1, hence we may  assume d ~>2 for 

the rest of the proof. 

(b) -+(a). Assume (b) and consider (P, x, y) as in (a). Construct from P a simple d- 

polytope P'  with 2d+  1 facets as follows: I f  P is bounded, form P '  by truncating a vertex 

of P other than  x or y (such a vertex exists if d~>2); if P is unbounded, " truncate the 

vertex at  infinity" by  intersecting P with a halfspace J such tha t  the interior of J contains 

all the vertices of P and the boundary of J intersects all the unbounded edges of P. The 

polytope P '  will satisfy the hypotheses of (b), with the facet added by  truncation as F. 

Let  (K1 ....  , K~) be one of the paths in P '  guaranteed by (b). Each K~ is the result of a 

(possibly trivial) truncation of a unique face K~ of P of the same dimension, and none of 

the intersections K[f] K[+ 1 is empty,  hence (K i ..... Kr) is a pa th  satisfying the requirements 

of (a). 

(a) -+(b). Assume (a) and consider (P', x, y) and F as in (b). The figure (P, x, y) ob- 

r from (P', x, y) by removing F satisfies the hypotheses of (a), hence there exists a 

(kl .. . . .  kr)-path, say (K 1 ... . .  Kr), joining x to y in P. I t  is easily checked that  (K~, ..., K~), 

where each K~ is the face of P '  corresponding to the face K~ of P,  is a pa th  satisfying the 

requirements of (b). 

(a) A (b)-+(c). Suppose (a) and (b) hold and consider (Q, u, v) and G as in (c). Let  

[u, x] be the u-edge complementary to G, and let P '  be the unique facet of Q incident to 

x but not u. Then P '  intersects v and is itself a simple d-polytope with d facets incident 

to x, d other facets incident to v, and at  most one additional facet, which, if it exists, is 

the intersection of P '  with G. I f  this extra facet is present, then (P', x, v) satisfies the 

conditions of (b), and the faces of the (k i . . . .  , k~)-path from x to v guaranteed by (b), 

together with [u, v], comprise a (1, k 1 ... . .  kr)-path in Q from u to v. I t  is easily seen tha t  

5 - 662903 .  Acta mathematica. 117. I m p r l m 6  le 7 f6vr ie r  1967. 
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none of the members  of this pa th  lies entirely in G, hence this pa th  satisfies the rquire- 

ments  in (c). I f  the extra facet  is missing, the  same result  follows from an application of (a). 

(c)-~(b). Assume (c) and consider (P ' ,  x, y) and F as in (b). Construct  the  wedge Q 

over P '  with foot F ,  and let u denote the ver tex of Q above x. Then (Q, u, y) and G, where 

G is the upper  base of Q, satisfy the hypotheses of (e). Let  (K0, K 1 .. . . .  K~) be a (1,/c 1 .. . . .  Icy)- 

pa th  from u to v as required by  (c). Since none of the K~ lies in G, it follows tha t  K 0 = 

[u, x], each K~ intersects P '  in a nonempty  face K[  of P '  which does not  lie in F ,  and 

each intersection K~' n K(+I is nonempty .  Now a face K[  m a y  fail to  have dimension k~, 

so we select faces K[ ' ,  1 ~<i ~<r, so tha t  K~" is a face of P '  of dimension/c containing lc[. The 

sequence (K~', .... Kr ' )  is a (]c I .... , kr)-path o I P '  from x to y satisfying the requirements in (b). 

A number  of special cases of 3.1 are of interest; we give here two corollaries which 

follow immediate ly  from 3.1 and 2.3. 

3.2. COROLLARY. For any positive integers d and l, the/ollowing are equivalent: 

(a) Given any d-dimensional simple Dantzig figure (P, x, y), x and y can be joined by 

a path o/length at most 1. 

(b) Given any simple d-polytope P '  with 2d + 1 ]acets, two vertices x and y o / P '  not on 

the same/acet ,  and a /ace t  F o / P '  not incident to either x or y, then x and y can be 

~oined by a path o] length at most l which does not intersect F.  

(c) Given any (d + 1)-dimensional bounded simple Dantzig figure (Q, u, v) and any/ace t  

G o /Q incident to u, then u and v can be joined by a path of length at most l + 1 which 

intersects G at u only. 

3.3. COROLLARr.  Ab(d+l  , 2d+2)<~A(d, 2 d ) + l .  

3.4. PROPOSITION. Let (P, x, y) be a d-dimensional simple Dantzig figure, and let 

Icl, ..., IQ be positive integers such that lc 1 + 1 + k 3 =d  = 1 + k 2 + 1 + IQ. Then: 

(a) P admits a (kl, 1, ks)-path from x to y. 

(b) IT] P is bounded it admits a (1, k2, 1, k4)-path ]rom x to y. 

Proo[. Consider an arbi t rary  pa th  in P from x to  y, let xs  denote the last ver tex on 

this pa th  incident to  k 1 or fewer y-facets, and let xt denote the ver tex following x~. F rom 

1.5 it will follow tha t  (K1, [xs, xt], K3) is a (kl, 1,/c3)-path from x to y, where K 1 and K 3 

are the intersections respectively of the x-facets incident to  xs and the y-facets incident 

to xt. This proves (a). An  application of 3.1 to  (a) proves (b). 

I t  is a consequence of 1.5 tha t  if a simple figure (P, x, y) admits  a (k 1 . . . . .  kr)-path 

from x to y then it also admits  a (k~, ...,/c~)-path from x to y, where the sequence (/c~, ..., k~) 
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Fig. 3. 

F, 
0 

/ 
0 

G1 

O O 

/ 
0 0 

G2 G3 

is obtained from (]Cl, . . . ,  /Or) by removing adjacent terms and replacing them by  a single 

term equal to their sum. Thus, for example, 3.5 implies tha t  bounded simple Dantzig 

figures (P, x, y) of dimension d possess (1, d - 2 ,  1)-paths from x to y. We do not know 

if such figures must  have (1, k~, ka, 1)- or (k 1, 1, 1, kd)-paths whenever l + k 2 + k a + l =  

k 1 + 1 + 1 + k  4 =d.  In  the rest of this section we will be concerned exclusively with (1, d -  1)- 

and (1, d - 2 ,  1)-paths. 

As a guide in making the construction in Section 5, we have relied not only on the 

well-known notion of the Schlegel diagram of a polyhedron, but  also on the notion of the 

el-diagram of a Dantzig figure, which is described in the next  paragraph. While these 

notions are not strictly necessary to present our results, both of them played an effective 

role in our investigations. 

The edge-/acet diagram (or el-diagram) of a d-dimensional I)antzig figure (P, x, y) is 

directed bipartite graph whose nodes are (identified with) the facets of P and whose arcs 

represent the (1, d - 1 ) - p a t h s  from x to y and y to x. The x- and y-facets of P are referred 

to as x- and y-nodes of the diagram. The diagram contains a directed arc (F, G), called 

an x-arc, from the x-node F to the y-node G if and only if (/, G) is a (1, d - 1 ) - p a t h  f rom 

x to y, where / is the x-edge complementary to F.  Similarly, (G, F) is a directed arc, called 

a y-arc, from G to F if and only if the y-edge complementary to G and the x-facet F con- 

stitute a (1, d - 1)-path from y to x. 

In  Fig, 3 above, the Schlegel diagram and the e/-diagram of a 3-dimensional non- 

simple unbounded I)antzig figure are shown. 

A considerable amount  of information about  a particular Dantzig figure (or Dantzig 

figures in general) can be extracted from the e/-diagram. As the following proposition 
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will show, the e/-diagram provides information about the (1, d - 2 ,  1)-paths as well as the 

(1, d -1) -pa ths .  Par t  (d) of the proposition will be used in analyzing the counterexample 

in Section 5. 

3.5. PROPOSITION. The el-diagram o/ a d-dimensional Dantzig /igure (P, x, y) pos- 

sesses the/ollowin9 properties: 

(a) There is at least one x.arc. 

(b) For every x-arc (F, G) there is a y-arc (G', F') such that G' #G. 

(c) I/ there is an x-arc (F, G) and a y-arc (G', F') such that F' # F  and G' #G, then P 

admits a (1, d - l ,  1)-path (1, Q, g') l rom x to y, where ] and g" are respectively the 

edges complementary to F and G'. I / P  is simple, the converse holds. 

(d) I /  P does not admit (1, d - 2 ,  1)-paths/rom x to y, then the el-diagram contains exactly 

two x-arcs, (F, G) and (F', G'), and exactly two y-ares, (G, F')  and (G', F), and 

moreover F'  :# F and G' #G. 11 P is simple, the converse holds. 

Proo 1. (a) P must have at least one bounded x-edge, and every bounded x-edge is the 

first member of a (l, d -  1)-path from x to y. 

(b) Suppose (F, G) is an x-arc. Since G intersects an x-edge, it  cannot be a cone and 

so must contain at least one bounded y-edge g'. Since g' is bounded there exists a y-arc 

(G', F ') ,  where G' is complementary to g', and since g' is not complementary to G, G' #G. 

(c) I t  is readily checked that,  if the hypotheses hold, then (1, F' N G, g') is a path  from 

x to y. If F '  f]G has dimension less than d - 2 ,  the deficiency is easily removed by replac- 

ing F '  N G by a face of dimension d - 2  containing it. Conversely, if P is simple and (/, Q, g') 

is a (1, d - 2 ,  1)-path from x to y, then there exist (actually unique) facets F '  and G such 

that  F '  D ] U Q and G D Q u g'. The facets F,  G', F ' ,  and G satisfy the desired relationships. 

(d) An application of (a), followed by repeated applications of (b) with care not to 

produce a pair of arcs as in (c), leads directly to the indicated diagram. The converse is 

a direct consequence of the converse to (e). 

4. Proof of the bounded 5-step conjecture 

The bounded d-step conjecture has been established elsewhere for d <5; it  will be 

proved here for d=5 .  As we saw in 2.8, to establish the bounded d-step conjecture it 

suffices to show that  ~p(x, y)~<d whenever (P, x, y) is a d-dimensional bounded simple 

Dantzig figure. By 3.4 there is always a (1, d - 2 ,  1)-path ( i  Q, g) from x to y in such a 

figure, and, of course, Q is a (d-2)-polytope with at least 2 d - 4  and at most 2 d - 2  facets. 

We shall first prove that  if Q has a certain property defined below, then ~p(x, y) ~<d. We 
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then prove the bounded 5-step conjecture by  showing that  this property is possessed 

by every simple 3-polytope with 6, 7 or 8 facets. 

A d-polytope Q will be said to have property A provided the number of facets of Q 

is between 2d and 2d+2,  and the following condition is satisfied: If the facets of Q are 

divided into two disjoint classes 1~ and ~J, each consisting of at most d + l  facets, if X 

(respectively Y) denotes the set of all vertices of Q which are entirely surrounded by 

members of ~ (respectively ~J), and if neither X nor Y is empty, then Q admits a path  

of length at most d joining a member of X to a member of Y. 

The proposition, "Proper ty  A is possessed by  every simple d-polytope with 2d, 2d + 1, 

or 2d +2  facets," would be a strengthened form of the d-step conjecture. The proposition 

is obviously true for d = 2, and we show below that  it is true for d = 3. That  it is false for 

d =4  may be seen by considering a wedge over the polytope shown in Fig. 4. Since the 

graph of Fig. 4 is planar, 3-valent, and 3-connected, Fig. 4 is at  least equivalent to the 

Sehlegel diagram of a simple 3-polytope T (el. [8], [11], [14]). Let  W be the wedge over 

T with foot F. Assign the lower base of W to the class ~,  the upper base to the class ~,  

and assign the lateral facets to :~ or ~ according to the labeling in Fig. 4 of their inter- 

sections with the lower base. Then X = {z}, Y = {y*}, and Ow(X, y*)= 5. Hence W lacks 

property A, although it is a simple polytope of class (4, 10). 

There is also an example of a simple 5-polytope with 11 facets which lacks property 

A. Take the triple (P, x, y) of class (4, 8) and diameter 5 constructed in 5.1. Truncate the 

vertex at infinity to produce a triple (Q, x, y) as in 5.2 and designate the new facet F.  

Let u and v denote the vertices of Q where the two unbounded x-edges of P intersect F.  
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The segment [u, v] will be an edge of Q. By intersecting Q with a halfspace J which misses 

u and v but contains all other vertices of Q in its interior, form a polytope Q' with facet 

iv' = iv N J ,  etc., and denote by  G the new facet. Label iv' and the x-facets of Q' as ~ facets 

and G and the y-facets as ~J facets. Thus Q' is a simple polytope of class (4, 10), X = (x}, 

Y =  {y}, and 6Q,(X, y)=5 ,  so tha t  Q' is an alternate to the example constructed from 

Fig. 4. Now let Q" be the wedge over Q' with foot G. Assign the lower base to ~,  the upper 

base to ~J and the lateral facets according to the labeling in Q'. We have X = {x}, Y = {y*}, 

and Q" is a simple polyCope of class (5, 11). Now suppose, as required for property A, 

tha t  a were a pa th  from x to y* of length 5. Consider the pa th  fi obtained by projecting c~ 

into Q'. Of course fi has length at  most 5. Since 6Q.(x, y)=5, by the characterization of 

paths in wedges in 1.4, fi must  visit G. But  G does not intersect any y-facets of Q ' - -on ly  

x-facets and iv'. Therefore when fi leaves G it either retraces to x or visits iv'. Either alter- 

native implies the length of fl is 6. The contradiction shows Q" does not have property A. 

These examples of polytopes of class (4, 10) and (5, 11) which fail to have proper ty  

A have suggested to us tha t  there might be a simple polytope of class (6, 12) lacking 

property A. Such an example would be nothing less than a counterexample to the 6-step 

conjecture. 

4.1. P ~ o P o s l T I O ~ .  I] a d-dimensional bounded simple Dantzig /igure (P, x, y) ad- 

mit8 a (1, d - 2 ,  1)-path (Ix, x'], Q, [y', y]) such that Q has property A, then (~p(x, y) <~d. 

Proo]. Note first tha t  Q is the intersection of an x-facet F with a y-facet G. Each facet 

K of Q is the intersection with Q of a unique facet H(K) of P distinct from F and G. Let  

the facet K be assigned to the class ~ or ~J according as H(K) is an x-facet or a y-facet 

of P ,  and let X and Y be defined as in the definition of property A. I t  is evident tha t  

x'  EX, y 'E Y, and each of the classes ~ and ~J includes at  most d - 1  facets of Q. Since 

Q has proper ty  A, there is a pa th  of length at  most d - 2  joining a member  x" of X to a 

member  y" of Y. But  from the definition of the class ~ and the fact Q = F N G, it follows 

x" is the intersection of d - 1  x-facets with G; therefore, x" is the endpoint of an x-edge. 

Since also y" is an endpoint of a y-edge, there is a pa th  of length d from x to y. 

4.2. LEMMA. Every simple 3-polytope with 6, 7, or 8/acets has property A. 

Proo]. I t  should be clear tha t  (if true) the lemma can be proved by exhaustion in 

one way or another; we give a proof by  contradiction. Suppose G is a simple 3-polytope 

with 6, 7, or 8 facets, and suppose ~,  ~J, X, and Y are as in the definition of property A, 

but suppose no members of X and Y can be joined by  a pa th  of length less t han  4. Select 

any vertices x and y from X and Y respectively. I f  v, e, and / denote respectively the 
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number  of vertices, edges, and facets of G, then v - e  + / = 2  (Euler's theorem) and, because 

G is simple, 3v=2e, so v = 2 / - 4 .  Now any two vertices of G, in particular x and y, can be 

joined by  three independent paths, tha t  is, paths which intersect only at  their common 

endpoints [1]. Such paths must  be of length at least 4, hence v>~ll.  But  since v =2/~-4  

we mus t  have / =  8 and v = 12. Accordingly, there are two cases to be considered: 

(1) For every choice of three independent paths from x to y, two of the paths are 

of length 4 and one is of length 5. (In this case, every vertex of G lies on one of the paths.) 

(2) The vertices x and y can be joined by  three independent paths of length exactly 4. 

(In this case exactly one vertex is not on a path.) 

Before we go on with the analysis of these two cases, let us consider an arbi trary 

pa th  of length 4 from x to y and note how the edges incident to the three intermediate 

vertices may  be distributed between the two sides of the path. They cannot all be on the 

same side because then a facet would be incident to both x and y, contrary to the con- 

struction of :~, %J, etc. They cannot alternate, as in Fig. 5a, because if WEX then x ' E X  

and ~(x', y )=3 ,  and if WE~J then y 'E Y and ~(x, y ' )=3 .  Therefore, except for symmetries, 

including a possible interchange of (:~, X, x) and (~J, Y, y), they must  appear as in Fig. 

5b, with WE%J because W E ~  would imply x"EX  and 5(x", y)=3 .  

Now consider case (1). Note tha t  no two vertices of the same path  can be connected 

by  an edge unless tha t  edge is already an edge of the path. Let  the sets of intermediate 

vertices of the three paths be A, B, and C, where B is the set consisting of four vertices. 

Then each member  of B is adjacent to a member  of A U C and, in fact, two are adjacent 

to A and two to C. Recalling the significance of Fig. 5b and observing the restriction 

~(x, y)>~4, we soon see tha t  the faces of G must  be disposed as in Fig. 6a  except for a 

possible interchange of (~, X, x) and (%J, 17, y). Comparing the top and bot tom paths 

from x to y in Fig. 6a  with Fig. 5b, we are led to the conclusion, contrary to hypothesis, 

tha t  ~J contains five facets. Thus case (1) cannot occur. 

Finally, consider case (2). Reasoning quite analogous to tha t  for case (1) shows that ,  

except for symmetries, the faces of G must  be disposed as in Fig. 6b. As in case (1) we 

X r  
x" 

w l 
- C y  X r  - 

X tp 

N 

Y 

a b 
Fig. 5. 

: y  

Y 
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x 

b 
Fig.  6. 

find, contrary to hypothesis, ~ must  have five members. This contradiction completes 

the proof of 4.2. 

We have now proven the major result of this section: 

4.3. T r r ~ o ~ M .  Ab(5 , 10)=5.  

5. Disproof of the general 4-step conjecture 

In  this section our first aim is to disprove the general 4-step conjecture. We rhea  

show that  A(4, 8)=5,  Ab(4, 9)=5,  and A(d, 2d)~>d + [d/4]. 

5.1. T ~  OR~M. There exists a g-dimensional unbounded simple Dantzig /igure (P, x, y) 

whose edge-]acet diagram is as/oUows: 

(x) i ji o o 

(J~) 0 0 0 0 

G G G G 

Thus P admits no (1, 2, 1)-path/rom x to y, and in particular ~e(x, y)>4 .  

Proo/. The second s ta tement  will follow from the first by  3.5 and the remarks follow- 

ing 3.4. 

The 4-polyhedron P of our example is defined by  means of a system of four linear 

equations in eight nonnegative variables. These are shown in the basic tableau S of Fig. 7 

below using the detached coefficient conventions of linear programming. Thus, for example, 

the third equation is 

35x 1 + 45x~ - 6x s - 3x 4 + Ya = 8. 
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S: 

xl xs xa x4 Yl Ys Ys Ya b 

6 3 - -1  1 1 

3 6 - -1  1 1 

35 45 - 6  - 3 1 8 

45 35 -- 3 -- 6 1 8 

x z x= x 8 x 4 Yz Y2 Y3 Yr b 

T :  1 3 6 - 1  1 

6 3 - 1  1 

45 35 -- 3 - 6 8 

35 45 - 6 - 3 8 

Fig. 7. 

In  verifying the important  properties of P we shall use the terminology and basic results 

of the simplex method. This will simplify the discussion, and it seems appropriate since 

the problems of this paper  were originally raised in connection with linear programming. 

I f  M denotes the set of all points of /~s which satisfy the four equality constraints, 

then it is evident tha t  M is a 4-dimensional flat in R s, and since M includes an interior 

point of the positive orthant, namely x~=yi= 1/9, it follows tha t  the intersection of M 

with the orthant is a polyhedron P of dimension 4. A second basic form of the tableau S 

is given in T. I t  is easily verified tha t  if the matr ix  of y-columns in T is applied as row 

operations (left multiplication) on S, the tableau T results. The basic solutions of S and 

T, namely 

x l = x 2 = x a = x 4 = 0 ,  Y l = Y 2 = I ,  Ys=Y4=8 ,  

and Y l = Y ~ = Y 3 = Y 4 = 0 ,  x l = x ~ = l ,  x 3 = x  4 = 8 ,  

are vertices of P which will be denoted by x and y respectively. The four x-facets F~ of P 

are given by  x~=0, and the four y-facets G~ are given by y~=0. Utilizing the symmetries 

in S properly, it is a mat te r  of only moderate labor to verify tha t  no positive linear com- 

bination of three or fewer of the first eight columns of S is equal to the constant column. 

This implies tha t  no point of P is on five or more facets, i.e. (P, x, y) is a simple Dantzig 

figure. 

The el-diagram of (P, x, y) can be constructed readily from S and T. For example, 

pivoting on Yx in T removes Yl from the non-basis and replaces it with x~. This corresponds 

to leaving the y-facet G 1 along the y-edge determined by  y2=ys=y4=O and terminating 

on the x-facet F 2. Thus the e/-diagram contains an arc (G1, F~). On the other hand the 
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y-edge complementary to G 3 is unbounded, as indicated by the nonpositivity of the col- 

umn for Y3, and no arc of the e/-diagram issues from the node G a. The completed e/-dia- 

gram is as required, and the proof of 5.1 is complete. 

Of course an alternate proof that  ~p(x, y ) > 4  could have been obtained by considering 

the various feasible pivot sequences on S. I t  can be checked, if desired, that  S can be 

transformed into T by successive feasible pivots on xl, x~, xs, x 4, and xl, in that  order, 

followed by a permutation of the rows of the resulting tableau. Hence Oe(x, y )=  5. 

5.2. THeOReM. A(4, 8)=A~(4, 9) =5.  

Proo/. The example (P, x, y) of 5.1 shows that  A(4, 8)>~5. To see that  Ab(4, 9 )~5 ,  

let Q be the simple 4-polytope with 9 facets obtained from P by truncating the vertex 

at infinity as described in the proof of 3.1. If  a path in Q from x to y intersects the added 

facet, then by 1.5 its length must be at least 5. If the path never intersects the added 

facet, it is a path in P and therefore a path of length at least 5. To see that  A(4, 8) ~<5 or 

Ab(4, 9) ~<5, consider an appropriate triple (P, x, y) as described in 2.3. By 3.4, P admits 

a (1, 3)-path (/, G) from x to y, where G is a 3-polyhedron with at most 7 facets or a 3- 

polytope with at most 8 facets. The desired conclusions follow from A(3, 7 ) = 4 =  A~(3, 8). 

An alternate proof of Ab(4 , 9)~<5 can be obtained from 4.3 and 2.10b. 

The example constructed in 5.1 not only disproves the d-step conjecture, it can be 

used to show that  the excess of A(d, n) over the value given by the general Hirsch con- 

jecture tends to infinity with rain(d, n - d ) .  

Proo/. Let  k=min([d/4], [(n-d)/4]), so that  d=4k+i and n-d=4k+j .  Let  Q be the 

product of k copies of the polyhedron of 5.1. By 1.3, Q is a polytope of class (4k, 8k) of 

diameter 5k; hence A(4k, 8k)~>5k. Then from j applications of 2.9a and i applications of 

2A0a, it follows 
A(d, n) = A(d, 8k+i+j)>~5k+j = n-d+k .  

6. Some rough bounds for A(d, n) and Ab(d , n) 

In  this section we collect a number of miscellaneous results on bounds for A(d, n) 

and Ab(d, n). I t  was proved in [9] through construction of specific polytopes that  

Ab(d,n)>~(d-1)[d]-d+2 , d > 3 ,  (6.1) 

and A b ( d , n ) = [ ~ _ n ] _ d + 2 ,  d<~3" 
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Combining these values with the special value Ab(4, 9 )=5  from Section 5, employing the 

monotoneity conditions of 2.9 and 2.10, and making occasional use of 1.3, we can obtain 

the lower bounds for A b tabulated in Fig. 8. 

t - -  

d 0 1 2 3 4 5 

n - 2d 
t , _  , , ,  

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

2 2 2 3 3 Z, 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 

3 3 3 4 5 5 6 7 7 8  9 9 10 11 11 12 1 3  13 14 15 15 16 17 17 18 19 

4 4 .5 5 6 7 7 8 8 10 1 0  10 11 13 13 13 14 16 16 16 16 19 19 19 19 22 

5 5 6 6 7 8 9 9 10 11 11 13 13 14 14 14 17 17 17 17 19 21 21 21 2 2  23 

6 6 7 7 8 9 10 11 11 12 13 14 14 16 16 17 18 18 18 21 21 22 22 22 23 26 

7 7 8 8 9 10 11 12 13 13 14 15 '16 17 17 19 19 19 21 22 22 23 25 25 26 27 

8 8 9 10 10 11 12 13 14 15 15 16 17 18 19 20 20 22 22 23 23 25 26 26 27 29 

? 9 10 11 11 12, 13 14 1.5 16 17 17 18 19 20 21 22 23 23 25 25 26 27 27 29 30 

10 10 11 12 12 13 14 15 16 17 18 19 19 20 21 22 23 24 25 26 26 28 82 29 30 31 

11 11 12 13 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 29 31 31 32 

12 12 13 14 1,5 15 16 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 31 32. 32 34 

Fig. 8. Lower  bounds  for Ab(d , n). 

Since the columns of Fig. 2 are constant from the main diagonal downwards, it is 

more efficient to tabulate A~, as in Fig. 8, in terms of d and n-2d.  For this arrangement 

the monotoneity conditions of 2.9 and 2.10 assert tha t  the rows and diagonals perpendicular 

to the main diagonal are monotone, while the columns are strictly monotone. 

A pair of results of general interest can be abstracted from Fig. 8: 

6.2. PROPOSITION. Ab(d,n)>~n-d-1 i/n<3d, 

A~(d, n)>~n-d i/n<~9d/4. 

Proo]. Substitution of n = 3d into 6.1 yields the entries 2d - 1 = n - d  - 1 on the diagonal 

in Fig. 8. The monotoneity conditions, in particular the strict monotoneity of columns, 

complete the proof of the first inequality. Similarly the entries 5k at  positions d=41c, 

n-2d=Ic in Fig. 8 follow from 1.3 and the value Ab(4 , 9)=5.  The second inequality then 

follows from the same monotoneity conditions. 

Provided n is not very much larger than d, the lower bounds given in Fig. 8 can fre- 

quently be realized as the diameters of polytopes dual to the cyclic polytopes considered 

by  Gale in [5]. For example, following Gale's presentation, we may  consider a cyclic 

6-polytope, Q, with 23 vertices arranged on the moment  curve in R e in the order: 

u u u u u u q q v v q q q v v q q q v v q q q .  
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The vert ices  ind ica ted  b y  "u" de te rmine  a facet  of Q and  hence a ve r t ex  x of the  6-poly tope  

P dua l  to  Q. Similar ly ,  the  ver t ices  ind ica t ed  b y  "v" de te rmine  a ve r t ex  y of P .  I t  is a 

s imple exercise to  verify,  using Gale ' s  charac te r iza t ion  of facets  of Q, t h a t  Oe(x, y) is 14, 

which is exac t l y  t he  bound  on A~(6, 23) g iven in Fig.  8.(1) We have  no t  found  a n y  poly-  

topes  of th is  t y p e  whose d iamete r s  exceed the  bounds  of Fig.  8, and  we do no t  know of 

a n y  b e t t e r  lower bounds  for A t h a n  those  given b y  5.3. 

W e  have  no reason to  bel ieve t h a t  our  lower bounds  come close to  represen t ing  the  

behav io r  of A or A~. F o r  uppe r  bounds  the  s i tua t ion  appears  to  be even worse. F o r  a 

l imi ted  range  of values  of d and  n we can der ive  compara t i ve ly  na r row l imi ts  for A and  Ab 

using the  following e l e m e n t a r y  inequal i t ies .  

6.3.  P R O P O S I T I O N .  

(a) A(d, 2 d + k ) < ~ A ( d - l , 2 d + k - 1 ) + k + l  i l k = O ,  1. 

(b) Ab(d, 2 d + k ) < ~ A b ( d - l , 2 d + k - 1 ) + [ k / 2 ] + l  i / k = 0 , 1 , 2 , 3 .  

_Proo/. Consider  a t r ip le  (P, x, y) of class (d, n). I f  n ~< 2d or if P is bounded  and  n ~< 2d + 1, 

t hen  P admi t s  a (1, d -  1)-path  f rom x to  y. The inequal i t ies ,  (a) for k = 0  and  (b) for k = 0, 1, 

follow immedia t e ly .  F o r  the  remain ing  inequal i t ies  i t  suffices to  show t h a t  if n ~ 2 d  + 1 

or if P is bounded  and  n~<2d+3 ,  then  P admi t s  a (1, d - l ,  1)-path f rom x to  y. Le t  us 

consider  t he  bounded  case only  as t he  a rgumen t  for the  unres t r i c ted  case is s imilar  b u t  

s impler .  Note  t h a t  we m a y  assume P does no t  a d m i t  a (1, d -  1)-path from x to  y or f rom 

y to  x since otherwise  t he  exis tence of a (1, d - 1 ,  1)-path  is au tomat i c .  We  are  lef t  wi th  

t he  conclusion t h a t  P has  a t  leas t  d facets  inc ident  to  x, a t  leas t  d facets  inc ident  to  y, 

a t  most  th ree  facets  inc iden t  to  ne i the r  x nor  y, and  t h a t  eve ry  x-edge and  every  y-edge 

t e rmina t e s  on one or more  of the  add i t iona l  facets.  F o r  all  the  x-edges or al l  the  y-edges 

to  t e rmina t e  on the  same one of the  add i t iona l  facets  would  l ead  to  the  c lear ly  contra-  

d i c to ry  conclusion t h a t  P is a p y r a m i d  over  t h a t  facet .  Thus  two of t he  add i t iona l  facets  

in tersec t  x-edges, two in tersec t  y-edges, and  hence one in tersects  a t  leas t  one x-edge and  

one y-edge,  i.e. P admi t s  a (1, d -  1, 1)-path f rom x to  y. 

6.4. COROLLARY. A(4, 9 ) = 6  or 7. A(5, 10 )=6 ,  7, or 8. 

6.5. COROLLARY. The values o] A~(d, n)/or certain d and n lie in the ranges indicated 

in the/ollowing table: 

(1) This method was followed in [9] to prove, if the d-polytope P is dual to a cyclic d-polytope 
with n vertices, theo (~(P)= n - d  for n~< 2d. I t  was suggested there that ($(P)= [n/2] for n > 2d, but 
this is not correct. 
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n.-d 

d 4 5 6 7 

4 4. 5 5-7 6-7 

S * 5 6-8 6--9 

6 * 6-9 7-10 

7 * 7-11 

l:'roo/s. A p p l y  6.3 a n d  the  k n o w n  values  given in  Figs.  1 and  2 for t h e  upper  bounds .  

Use Fig.  8 and  5.3 for the  lower bounds .  

I t  has  been  conjec tured  t h a t  for po lyhed ra  of class (d, n) the  m a x i m u m  n u m b e r  of 

ver t ices  is 

This conjecture  has  been  es tab l i shed  for n ~< d + 3 in [6] and  for n >~ (d/2) 2 - 1  in [10], hence 

for al l  n if d ~< 6. I t  is also known t h a t  for d -po lyhedra  wi th  v ver t ices  t he  m a x i m u m  dia- 

me te r  is v -  1, and  for d-poly topes  wi th  v ver t ices  the  m a x i m u m  d iame te r  is [ ( v - 2 ) / d ]  + 1 

[7]. These resul ts  can be combined  in an  obvious manne r  to  provide  some expl ic i t  b u t  

a p p a r e n t l y  ex t r eme ly  rough  uppe r  bounds  for A(d, n) and  Ab(d, n). 
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