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Introduction 

1. T h e  s t a r t i n g  p o i n t  of th is  s t u d y  was  a p r o b l e m  of K u g a  on  t h e  d e t e r m i n a t i o n  of  

al l  s y m p l e c t i e  r e p r e s e n t a t i o n s  of a semi - s imple  (algebraic)  g r o u p  of h e r m i t i a n  t y p e  sat is-  

f y i n g  a c e r t a i n  a n a l y t i e i t y  c o n d i t i o n  ([8]; fo r  a m o r e  prec ise  f o r m u l a t i o n ,  see 6.1). I n  m y  

p r e v i o u s  p a p e r  [9] ([9 a]), I h a v e  s o l v e d  th i s  p r o b l e m  f r o m  t h e  g e o m e t r i c a l  p o i n t  of v i ew,  

o r  in  o t h e r  words ,  o v e r  t h e  f ie ld  of rea l  n u m b e r s  R(2). B u t ,  t h e  a i m  of t h e  p r o b l e m  ly ing  

(i) Partly supported by NSF grant GP 3903. 
(3) Mumford and Tate have considered a similar problem from a somewhat different point of view 

and obtained a similar classification independently (at least, for absolutely irreducible representations 
satisfying the condition (I-12)), see Mumford, Families of abelian varieties, Proceedings of the Sym- 
posia in -Pure Mathematics, Vol. 9, 1966, 347-351. Meanwhile, in some special cases, holomorphie ira- 
beddings of a symmetric domain into another symmetric domain have been studied by several mathe- 
maticians in connection with the theory of automorphie functions. Cf. [4], [7]; and also Eiehler's 
Nancy note. 
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primarily in the construction of families of (polarized) abelian varieties, the problem should 

be considered over the field of rational numbers Q, rather than R. This requires naturally 

a more systematic treatment of symplectic representations of an algebraic group, on the 

one hand, and considerations of certain "k-forms" (e.g. /c-forms of a Clifford algebra and 

of a spin group(i)), on the other. The main purpose of this paper  is to achieve these points. 

In  Part  I, we shall develop a generality on symplectic representations of a (reductive) 

algebraic group G defined over a field k 0 of characteristic zero. We shall see that  the deter- 

mination of all symplectic representations of G can be reduced to that  of all bilinear or 

hermitian invariants for the absolutely irreducible representations of G in a division 

algebra with involution (3.6, Th. 1). Part  I I  is devoted to the determination of this division 

algebra (denoted by ~1), and this will be done by determining a certain invariant of G 

(denoted by ~(G)EH~(k0, Z), Z: the center of  G) which generalizes the Hasse-Minkowski 

invariant(2). Combining these results with our earlier ones, we shall be able to obtain, 

in Part  I I I ,  an almost complete classification over Q of the symplectic representations 

of the described type. Namely, let G be a Zariski-connected semi-simple algebraic group 

defined over Q of hermitian type and Q a Q-rational symplectie representation of G satis- 

fying t h e  condition (H1). Then, by the general theory, the problem can first be reduced 

to the case where the representation ~ is Q-primary (i.e. a direct sum of mutually equiva- 

lent Q-irreducible representations). In  this paper, we shall make an additional assumption 

on Q that  ~ comes essentially from an absolutely irreducible representation, of just one 

absolutely simple factor of G (7.1, (9)); then we may assume without any loss of generality 

that G is Q-simple (and so Q to be almost faithful). Under these assumptions, it turns out 

(w 8) that, besides the "standard solutions" (coming from the identical representation) for 

the groups of type (I), (II), (III.1), (III.2), investigated already by Shimura [12], [13] 

from the other direction(a), we have also non-standard solutions for the groups of type 

(I'), (IV.l), (IV.2) (and for the groups of the mixed type (II-IV.2) if the number of the 

quaternion variables is four). These solutions give rise to analytic families of polarized 

abelian varieties over symmetric domains of type (I), (IV), which are contained in Shimura's 

families as "subfamilies" (in the sense specified in Appendix). One notes that  the above- 

(I) The /c-forms of an (even) Clifford algebra have been studied recently by Jacobson [6] and 
others. 

(2) In his first manuscript, the author treated only those cases which are needed in Part I I I  
by a more direct method. The generalization as presented here, especially the introduction of ?(G), 
was suggested to him by the Referee, to whom the author is very grateful. 

(a) In the notation of [12], [13], these correspond to the Types IV, III, I, II, respectively. In 
Shimura's theory, the group GR has no compact factor except for Type (I) (whic h is an essential 
consequence of his construction) and the representatio n Q is Q-irreducible (which is merely a conventional 
assumption). 
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mentioned additional condition on @ is automatically satisfied, if the group GR has no 

compact factor ([9]). Without  this assumption, the conclusion would become much more 

complicated, for one would then have to consider various "mixed types",  including the 

type (II-IV.2)  in ~he Q-simple case (9.2). 

2. Notation. Following the general convention in algebraic geometry, we shall fix a 

universal domain ~ (of characteristic zero) and consider all algebraic groups, vector-spaces, 

... etc. as having coordinates in ~ .  (For our purpose, it is enough to assume ~ to be just 

an algebraically closed field, which contains the field of complex numbers 0, in Par t  I I I . )  

Thus, for instance, a vector-space V defined over k means a vector-space over ~ containing 

a distinguished vector-space Vk over k such that  V =  V k |  then, for any K ~ k ,  we can 

speak of the set of K-rational points VK which is a vector-space over K and is identified 

with V~| A (linear) algebraic group G defined over k acting on V is a subgroup of 

GL(V) defined by  polynomial equations in the matr ix  entries (with respect  to any basis 

of Vk) with: coefficients in k. For any K ~ k, one puts GK = G ~ GL(VK). 

For the convenience of the reader, we recall here briefly the notion of k-form of an 

algebraic group. Let  K D k, and let G o be a (linear) algebraic group defined over K. A 

k-/orm (or more precisely a K/k-/orm) of Go is a pair (G, ]) formed of an algebraic group 

G defined over k and an isomorphism ] defined over  K (or, as we shall call more briefly, 

a K-isomorphism) of G onto G 0. Now suppose tha t  k is perfect and K/k is finite; we 

denote by  O(k) the Galois group of S/k, k denoting the algebraic closure of k. I f  (G,/) 

is a k-form of Go, then, for every aeO(k), q~=/~o/-~ is a S-isomorphism of G o onto G~ 

(depending only on a lK ) satisfying the condition ? ~ o ~ , = ~ ,  for all a, ~EO(k); this last 

condition is equivalent to saying that,  if one puts gto]=~;~(gr g e (G0)~, a e@(k), then 

one has (g:"~)~*~ =g:~*~. Conversely, it is known ([11], [15]) that,  given a collection oI iso- 

morphisms {~}  satisfying this condition, one can construct a k-form (G,/) such tha t  

~r162 Moreover, let (G ' , / ' )  be another K/k-form of G o with ~ j= / ' r  I f  there 

is a k,isomorphism ~ of G onto G', then yJ = ] '  o~0o] -~ is a K-automorphism of Go satisfying 

~j=~0r162 -1 for all aE~(k) ,  and vice versa. In  particular, if K/k is a Galois extension 

with the Galois group O(K/k) and if Go is defined over k, then the k-isomorphism-classes 

of K/k-forms of G o are in a one-to-one correspondence with the elements of first cohomology 

set HI(~(K/k), Auto(G0)), where AutK(G0) is the group of all K-automorphisms of G 0. 

These considerations apply, of course, to other kinds of algebraic systems, too .  For 

instance, any central simple algebra 9~ of dimension m 2 defined over k (and splitting over 

K), together with its unique absolutely irreducible representation 01 (defined over K), 

can be considered as a k-form (K/k-form) of a total  matric algebra ~ (defined over the 
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prime field). Since all automorphisms of ~ m  are inner, one may  identify Aut(~m) with 

PL(m)=GL(m)/Gm, Gm denoting the mnltiplicative group of the universal domain. I f  

{(P~} is a system of representatives in GL(m, ~) of the (continuous) 1-cocycle corresponding 

to 9X, one has (I)~(I4=X,.~(P,~ with 2,.~E(k)*, where {~,.~} is a (continuous) 2-cocycle of 

O(k) in (Gm)~ = (k)*. The mapping ~/-+ (2,.~)EH2(k, G~)(=H2((j(k), (k)*)) is clearly multi- 

plicative and gives rise to (the inverse of) the well-known isomorphism of the Brauer group 

B(k) and H2(k, Gin) ([11]). Replacing GL(m) by SL(m), one may  also obtain a canonical 

isomorphism B(k)~-- H2(k, H), where H denotes the multiplieative group of all roots of 

uni ty in k. We shall denote by  c(2) the inverse of the 2-eohomology class (or, by  abuse 

of notation, a 2-coeycle representing it) in H2(k, E) corresponding to the algebra-class of ~. 

Returning to an algebraic group G~ defined over a finite extension K of k, one defines 

the group Rx/k(G1) defined over k as follows ([15]). Let  {al(=id.)  ..... a~) ( d = [ K  : k]) be a 

complete set of representatives of ~(K)\~(k). Then RK/k(G1) is defined as a k-form (G,/) 

of Go=l-I~=~ G7 ~ such that,  denoting by  p~ the projection of G o onto the i th factor G~ ~, 

one has p~ o/~ =p j  01 if O(K)a~ a = ~(K)aj ;  this last condition is equivalent to saying tha t  

putt ing p=p~o/, one has/(g)=(p"~,(g)) for gEG. The pair (G, p) is uniquely characterized 

by  the following universality: Whenever one has an algebraic group G' defined over k 

and a K-homorphism ~v I of G' into G1, there exists (uniquely) a k-homomorphism ~ of G' 

into G such tha t  ~ = po~ v .  For the groups of rational points one has the canonical isomor- 

phism (RK/k(G1))k~_G~: (induced by  p). I f  G 1 has any  additional algebraic structure (e.g. 

vector-space, associative algebra, etc.), then so does also RK/k(G~). 

Part I. Symplectie representations of algebraic groups 

Throughout Par t  I ,  we fix once and for all a field k 0 of characteristic zero and a re- 

duetive algebraic group G defined over k 0. As is wen-known, for any field K containing k0, 

a representation of G defined over K is completely reducible in K, namely, it is K-equiva- 

lent to a direct sum of a certain number  of K-irreducible representations, which are uni- 

quely determined up to the order and K-equivalence. I t  is only this proper ty  of G tha t  

will be used essentially in the following considerations. 

w 1. Primary representations 

1.1. Let  (V, ~) be a representation defined over k o of G, where V is a (finite-dimen- 

sional) vector-space defined over k 0 and ~ is a ko-homomorphism of G into GL(V). (Some- 

times ~ alone is called a representation, while V is referred to as a representation-space.) 

Let  (V1, ~1) be an absolutely irreducible representation defined over ko ( = t h e  algebraic 
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closure of /co) contained in (V, e), i.e., V 1 is a ~(G)-invariant subspace of V, defined over 

ko, such that  the restriction ~1 =el  V1 is ~0-irreducible. Denote by 6 the Galois group of 

ko//co. Then, for every a E 6, we have a "conjugate" representation (V~, e~), also contained 

in (V, e); namely, V~ is again a ~(G)-invariant subspace of V, defined over k0, and we have 

e ~ e ]  V~. Now we define two subgroups of 6 as follows: 

={oe6le  
(1) 

Then it is clear that  6 '  c 6~. Denote further by Ke, and K'  the subfields of k0 correspond- 

ing to Gs, and G', respectively; K '  is then the smallest field containing k o over which the 

subspace V1 (and hence e~) is defined. Therefore, K'  is a finite extension of /co, and we 

have K'~Ke~/co. Put  [KQ~ :/co] =d  and fix once and for all a system of representatives 

{v, ..... va} of 6~,\6, i.e., one puts 
d 

6 = U (2) 
~=1 

I t  should be noted that  the definition of 65, (and hence KeI ) depends only on the (ko-) 

equivalence-class of el, while that  of G' (and hence /C) does depend essentially on the 

imbedding of (V1, el) in (V, e)- 

Now we denote by 171 (resp. I?1) the sum of all e(G)-invariant subspaces W of V, 

defined over ko, such that  e[ W ~ e l  (resp. ~[ W~e[  with some ~E6). Then, ]21 (resp. ]?~), 

being invariant under all aE6e ~ (resp. 6), is a subspace of V defined over KQ~ (resp. /co). 

(Actually, KQ~ is the smallest field containing /co over which 171 is defined.) Clearly one 

has an isomorphism (of respresentation-spaces) 

?l~mWl ( o v e r  k0), (3) 

A or, in other notation, el =el VI'~ me1, where m is a positive integer, called the "multiplicity" 

of el in e. Since, for every T E 6, l?~ is the sum of all e(G)-invariant subspaces W of V, 

defined over k0, such that  e] W~e[,  one sees at once that  ~1 is decomposed into the direct 

sum of the following form: 
d 

i=1  

d 

Thus one has e[]~l Nm ~ e~ ~ (over /~o). (5) 
i=1  

According to a general notation in algebraic geometry (see Introduction, 2), one may also 

write (4) in the form 
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?1 = RKoJk.  (~1)" (4') 

If  one starts from another absolutely irreducible ~(G)-invariant subspace F 2 of V 

defined over k0, which is not contained in [71, and forms 172, 17~ in a similar way, then one 

has 17~ n lY2 = {0}. Repeating this process, one finally obtains, by virtue of the complete 

reducibility of V (over k0), a direct decomposition of V: 

v = ~ ?, ,  (6) 

De/inition. A (completely reducible) representation (V, 0) defined over k 0 of G is 

called ko-primary I if for any  two absolutely irreducible ~(G)-invariant subspaces W and 

W' of V, both defined over k0, one has (01W)~"01W' with some ve~=~(k0) .  

From the above construction, ~] V~'s are all k0-primary a n d  V~'s are maximal with 

respect to this property; and clearly the decomposition (6) is uniquely characterized by 

these properties. (l~, 01 l~) 's are called ko-primary components of (V, e). ((~1, ~1) may be 

called an absolutely primary component of (V, 0).) 

1.2. I t  is obvious that,  for a given absolutely irreducible representation (111, 01) de- 

fined over k0, there exists always a ko-primary representation (V, 0) containing (V1, 01). 

(For instance, let K' be a finite extension of k o over which (111, 01) is defined, and take  

Rg./k,( V1, 01)-) As we have seen above, such a representation (V, 0) can be written uniquely 

in the following form: 
g = RKQ1/ka(~I) , ~I--~rEVi (over k0), 

Now the ]c0-equivalence-class of 0 depends only on the multiplicity m. This will follow 

immediately from the following (wen-known)/emma: 

LEM~IA 1. Let (V, 0) and ( V', p') be two representations o/ G defined over ko. I / there 

exists a monomorphism o/ V into V' (viewed as representation-spaces), then there exists a 

ko-monomorphism o/ V into V'. 

Proof (after Ono). Let s be the vector-space formed of all linear mappings of V into 

V', and let ~/be  the subspace of s formed of all homomorphisms of V into V' viewed as 

representation-spaces, i.e., all ~ s  such that  Q'(g)oq=~o0(g ) for all gEG. Then, s is a 

vector-space defined over k 0 and ://is a linear subspace of s also defined over k 0, so that  

~/k,, the set of all k0-rational points in ~/, is everywhere dense ia ~/ in  the sense of Zariski 

topology. On the other hand, from the assumption, the subset ~/(0) of ~/formed of all 

monomorphisms (=injeetive homomorphisms)of V into V' is clearly a non-empty Za/~iski 

(ko-)open set in ~/. Therefore, one has ~/(~ ~/k~ # 0 ,  q.e.d. 



SYMPLECTIC R E P R E S E N T A T I O N S  OF ALGEBRAIC GROUPS 221 

We denote by  m(~, ko) the smallest possible multiplicity of ~1 in the representations 

defined over k o. I t  follows from the above Lemma tha t  a ko-primary representation 

containing ~1 is k0-irreducible if and on ly  if m=m(~l ,  k0), and the (k0-)equivalence-class 

of such ~ is unique. In  general, for a k0-primary representation ~ containing ~1, the multi- 

plicity m is a multiple of m(~l, ko) and ~ is (k0-)equivalent to the direct sum of m/m(~, ko) 
copies of the (unique) ko-irreducible representation containing ~ .  Thus a k0-primary 

representation can also be defined as a representation defined over k 0 of G which is a 
direct sum of a certain number of mutual ly (k0-)equivalent ko-irreducible representations. 

1.3. We shall now explain how the structure of a ko-primary representation can be 

described in terms of Galois cohomology. To start  with, let (V1, Q1) be an absolutely irre- 

ducible representation of G defined over ko. For every a e ~1, denote by  ~ a k0-isomor- 

phism of V 1 onto V~ (viewed as representation-spaces), i.e., a linear isomorphism defined 

over ~0 such that  
~(g) =~%o01(g)o~ 1 for all gaG. (7) 

By Schur's lemma, such a ~r is uniquely determined up to a scalar multiple. I t  follows, 

in particular, that ,  for every a, ~ e ~e,, one has 

~ o ~ = 1~, ~ ~ (8) 

with I~.~E~ o. {to,~} then becomes a 2-cocycle of ~Q~ in (~0)* ' = t h e  multiplieative group 

of non-zero elements in ~o), whose eohomology class is uniquely determined. I f  one takes 

a finite Galois extension K" of Ke, over which (V1, ~1) is defined, then the system {~}  

can be chosen in such a way that  all the ~ ' s  are defined over K" (Lemma 1) and tha t  ~r 

depends only on the restriction of a on K"; then one has )~.~EK". Thus we may  assume, 

whenever necessary, tha t  (1~.~) is actually a 2-coeycle of the Galois group ~(K"/Kq,) in 

K"*. (Without specifying K", one sometimes says that  (1,.~) is a "continuous" 2-cocycle.) 

Now, as we have seen in 1.1, the structure of a k0-primary representation (V, ~) 

containing (VD ~1) is uniquely determined by  tha t  of the absolutely pr imary  component 

Pl,  which can be considered as a "Ko~-form" of mV1. For our purpose, it will be more 

convenient to regard it as a Kq~-form of VI@V2, where V2 is an m-dimensional row-vector 

space (defined over the prime field) on which G operates trivially. Let  W be a ko-isomor- 

phism of V~@V2 onto l?t (viewed as representation-spaces) which we write in the follow- 

ing form: 

~(x• (u~)) = ~ ~(x) u~, (9) 
i= l  

where ~ (1 < i ~< m) is a ~o-monomorphism of V 1 into l? r Then one has Q (g) =~p = ~p o (~(9) @1 ), 

or what is the same, 
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~(g)oy~, =~o~z(g) (1 <.i dm). 

Applying ~ e 0~ on the both sides of this equality, one obtains 

~ ( g ) o ~  = ~)~o r = ~)7 o ( ~ o  ~)i(g) o (~a 1. 

I t  then follows by Schur's lemma that  ~vToqr is a linear combination of ~v~ (1 <<.i<~m), 
so that  one may write 

i = r  0 0 )  

\ ~  o ~ , /  

with a non-singular m x m matrix (I)~ with entries in k0. The system {(I)~} satisfies clearly 

the relation 

I t  follows that  one has 

~fl-~174 =q~o.(x)| 1 for xE V1, uE V~, 

or in other words (cf. Introduction, 3), (I? 1, ~p-x) is a Ke~-form of VI| V2 corresponding to 

the operation of the Galois group defined by 

(x| C~] = cf~l(x ~) | (u~O~). (11) 

Conversely, it is easy to see that,  given a system {(I)~} in GL(m, k0) satisfying (8'), 

one can define a Ke~-form (171, V -1) of V 1 | V 2 (viewed as a representation-space) by the 

operation of the Galois group given by (11). I t  is also trivial that  if {O~} is another system 

satisfying the same conditions as {O~}, two Ke~-forms corresponding to {O~} and {(P~} 

are Ke~-isomorphic, if and only if the two systems are "cohomologous" in the sense that  

one has r =~Fr -1 with ~F 6 GL(m, k0)- But, as we have already seen in 1.2, there 

exists only one Ke~-isomorphism class of ]7~ of the given dimension, so that  there is also 

only one cohomology class of such {(P~}. (In this form, our result is a special case of the 

well-known theorem in Galois cohomology: Theorem 900 of Hilbert. Cf., e.g., [11].) 

Example 1. Let K '  be a finite extension of K0, over which (V1, ~1) is defined, and 

put  VI=R~:.I%,(V1). Let m=[K' : K~,], ~ '=~(ko/K' ) ,  and let {al . . . .  , am} be a system of 

representatives of ~'\~Q,. Then 171~ ~n~l V~*~mV 1 (over k0), so that  ~1 is an absolutely 

primary representation-space with multiplicity m. In  the above notation, the monomor- 

phism ~i: Vl-+~l can be taken to be equal to ~oq~ (l~<i<m). Then, if ~ ' ~ a = ~ ' ~ j ,  

one has ~ o ~ = ~ , . r  , i.e., (I)~ is an m •  matrix whose (i, ?')-th entry is equal to ~%,, 

if (1~ aa~lE ~', and zero otherwise. We shall see later (3.3, Ex. 2) that,  in case all central 
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division algebras over Ko, are represented by a crossed product (e.g., in the case/co = Q), 

all absolutely primary, Ko~-irreducible representation-spaces l?~ can be obtained in this 

manner. 

w 2. Invariant alternating forms 

2.1. By a "symplectic" representation defined over ]c o of G, we understand a triple 

(V, A, ~), where (V, ~) is a representation of G defined over/c o and A is a non-degenerate 

Q(G)-invariant alternating form defined over k o on V • V or, as we shall call more briefly, 

an invariant alternating form on V defined over/c o. The notions of equivalence (or isomor- 

phism), direct sum, etc., of symplectic representations are defined in the obvious way. 

Let (V, A, ~) be a symplectie representation of G defined over/co, and let 

v ?, 

be the decomposition of V into the direct sum of /c0-primary components. Let (Va, ~1) 
be, as before, an absolutely irreducible representation contained in lyl. Then, since t~-l~ ~, 

an absolutely irreducible representation equivalent to the "contagredient" representation 

(V~, tQ;1) (V~" denoting the dual space of V 0 is also contained in (V, ~). Now we shall 

distinguish the following three cases: 

(a )  t o l l r ~  e l  , 

(b) t~1+~1, but ~ ~  with some goES, 

(c) ~ 1 + ~  for all ~E~. 

I t  should be noted that  these conditions, being invariant under the operation of the Galois 

group, depend only on the /co-primary component V1 containing (V 1, ~0. The absolutely 

irreducibIe representation Q1 (or the/co-primary representation containing Qx) will be called 

o/type (a), (b), (c) (over/co) according to the cases. 

In the case (c), a representation equivalent to t~1-1 is contained in a/co-primary com- 

ponent different from V1, say lYe. Then, it is clear that  the restrictions A I lyl • lY~ for i :~2 

are all identically zero, so that  A I 171 • 172 must be non-degenerate, and I71 + lY2 is a direct 

summand of the symplectic representation-space V. Moreover, 172 may be identified with 

the dual representation-space I7~ of lYl by the bilinear form A ] 171 • 172, so that  one has 

d 
Q I I72 ~ t(Q ]lyi)-x ~ m Z (t~;~)~. 

i = t  

Conversely, if (17~, el ITe) is equivalent to (I?~, t(el I71)-~), then one can define an invariant 
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alternating form defined over/c o on ]Yl + IY~ in a natural way. Thus, in this case, to have a 

symplectic representation-space V1 + V2 defined over/c o is essentially the same as to have 

a (/c0-primary) representation-space 171 (without alternating form) defined over /co. Inci- 

dentally, in our later considerations (Part III),  this case will not occur at all. 

In the cases (a), (b), a representation equivalent to tQ~l is again contained in I71. 

I t  is then clear that  A[ I?~ • ]Y~(i~:l) are all identically zero, while A IV 1 • ]~1 is non- 

degenerate; in Other words, ]71 becomes a direct summand of the symplectic representation- 

space V. From these, one concludes that  a symplectie representation (V, A,  ~) can be 

decomposed into a direct sum of the symplectic representations defined over /co, each 

one of which is either of the form (l~, A] ?9, ~[ IY~) (cases (a), (b)) or of the form (lY~ + IY,,, 

A [(lY~ + lye.), ~[ IY~ +el  IYl ') (case (c)), and that  this decomposition is unique in an obvious 

sense. Since the case (c) is of no further interest to us, we shall restrict ourselves to the 

case where V is/co-primary; such a symplectic representation (V, A, ~) will also be called 

/c0-primary. 

2.2. Let (V, A, ~) be a/c0-primary symplectic representation of type (a). Then it is 

clear that  the restrictions A [ ( l ~  • ~J) are all identically zero except for i = ]  and that, 

if one puts 41 = A [ ~  1 • ]~1, AI is an invariant alternating form defined over KQ, on ~1 and 

one has A [ ()ff~ ~ • ~?~) =_~'. Thus one obtains 

d 
A (~ ~,, ~ y,) = Z A~, (x,, y,) (12) 

t=1 

for all x~, y~ E ]~.  We shall express this simply by writing 

A = tr%/k~ (~1)- (12') 

Now, from the assumption, there is a non-degenerate o~(G)-invariant bilinear form 

B 1 on V1 • V1, determined uniquely up to a scalar multiple (Schur's lemma). If (V1, ~1) 

is defined over K',  B1 may also be taken to be defined over the same field K'  (Lemma 1). 

In the notation in 1.3, it follows that  one has 

A~{~(x), ~fj(y)) =.Bl(x,y)fl , for all x, y e  V 1 

with /~ij e k0. Putting Be = (flo) and B~(u, v) = (u,) B~t(v,) for all u = (u,), v = (v,) e Va, one 

has from (9) 
.~(~o(x| ~(y| = B~(x, y)B~(u, v). (I3) 

Clearly this relation, in turn, determines B 1 and  B~ uniquely up to scMar multiples. Since 

~ is alternating, it follows first that  one of the bilinear forms Bt and B~ is symmetric 
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and the  other  is al ternat ing.  Secondly , apply ing  h e r e ,  on the  bo th  sides of (13) and  in 

view of (11), one obtains  the  relations: 

B~ ( ~  (x), ~ ,  (y)) = 2, B 1 (x, y), (14) 

j~s(u(pji, vdgj1) = ~j1 Be(u ' v) or (I) ,B~(I)o=~t,B~. (14') 

Conversely, it is easy  to see tha t ,  if one has non-degenerate  bil inear forms B i on Vi and  

B 2 on V~ satisfying these conditions and  if B 1 is ~l(G)-invariant,  then  b y  (13) one can 

define an  invar ian t  a l ternat ing fo rm ~z~ 1 o n  ~1 defined over  Ke~, and  then  b y  (12) an  in- 

va r ian t  a l ternat ing fo rm A on V defined over  /c 0. I t  should be  noted  t h a t  f rom (14) or 

(14') one obtains  the  relat ion 
2 v -1  

2.3. Le t  us now consider the  case (b), where one has t ~ i  ~ ,  wi th  s o m e ~ 0 E ~ ,  ~ e , .  

Since Q~~~(~~  , one has a~E~e~, l~ext, for every  ~E~e~, one has 

e~ '"'-~ ~ (~e;~) ~"'-~ ~ (~e;1) "~ ~ e l ,  

so tha t ,  pu t t ing  5=aoaa~ l, one has  5EOe,. This means  t h a t  ~q~U Oe, a 0 is a subgroup of 

containing ~Q, as a normal  subgroup of index 2. We  denote b y  K o the  subfield of ko 

corresponding to Oe, 0 ~e~a o. Then,  i t  follows t h a t  K~[ =Kq~ and  Ke~ is a quadrat ic  ex- 

tension of K 0 with  the  Galois group ~(KeJKo)= (1, a0[Ke~ }. I n  the  following, we shall 

f ix once and  for all an  e lement  a in K 0 such t h a t  K=Ko(V~ ). Also, we shall t ake  a sys tem 

of representat ives  {T 1 . . . . .  Td} of Qe,\~ in such a w a y  tha t  va/2+~=aov ~ (1 <~i<~d/2); t hen  

one has  
d/2 

G = O  (~.  u (~o. 0~ ~. 
~=1 

Under  these assumptions,  i t  is clear t h a t  A I ([?~ x VI j) are all identically zero except  

for j----d/2 +i (mod d), and,  if one puts  

E(x, y) = V~A(x ~~ y) for  x, y, E 71, (16) 

E is a non-degenerate  ~(G)-invariant  hermi t ian  fo rm on Vi wi th  respect  to 00, i.e., i t  is 

l inear in the  var iable  y and  satisfies the  relat ion 

F(x, y)"~ = F(y, x ~) for all x, y e ~i. (17) 

(For simplicity,  we shall hencefor th  suppose t h a t  o o is ex tended  to an  au tomorph i sm of 

the  "universal  domain" . )  Therefore,  pu t t ing  

15 -- 662903. Acta mathematica. 117. I m p r i m 6  le 15 f 6 v r l e r  1967. 
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one has 

A~(x + x' ,  y + y')  = V~ -~ {F(x '";x, y) - F(y  ''~;~, x)} 

= V~-~{F(x'~176 for all x, y e ~ , x ' , y ' e  ]9~~ (16') 

On the  other  hand,  as A[ Vx =A1 ~ (1 < i  <d/2), one may  write 

A = tr~~ (A1). (18) 

Remark. I t  might  have  been more  na tu ra l  to consider a hermi t ian  form F '  defined b y  

F ' ( x + x ' , y + y  - Y ~ A ( x , y ' ) )  forx ,  yE?~ ,x ' ,  y' E]?[~ 

which is a hermi t ian  form on V1 = R%jK~ t ak ing  values in RKu~~ with  respec t  

to the  involut ion (~, y)~(~],  ~). But ,  if we consider F and  F '  restr ic ted on (I?I)Ko = (I~I)K ' 

which take  values in Ke,=(R%,/K~ then  they  reduce essentially to the  same 

thing, as is seen f rom the relat ion 

F'(x  + x ~~ y + y"~ = (F(x, y), F(x, y)~176 for x, y E (~I)K@,. 

Thus,  one m a y  write (16') symbol ical ly  as A1=tr%I/Ko(V~-lF). For  instance,  in the  case 

K e l c  (3 , cr - 1 ,  one has A l = 2  I m  F.  

Now, f rom the assumpt ion,  there  exists a non-degenerate  ~l(G)-invariant  sesqui- 

l inear form (with respect  to g0) -F1 on Vx • VI, determined uniquely  up  to a scalar multiple.  

I f  (V1, ~1) is defined over  K',  F 1 m a y  be t aken  to be defined over  K '  U K '"~ I t  follows t h a t  

(u, j_~ ~ (v~) one has  F (~(x ) ,  ~ j (y) )=  Fl(x, y)fl~j with flij ~ ko. Pu t t ing  F2 = (rio) and  F2(u, v)= ~~ v t 

for u = (u~), v = (v~) e V2, one has f rom (9) 

F(~(x|  ~(y|  = Fl(x,  y)F2(u, v). (19) 

Again this relat ion determines  F 1 and  F 2 up to scalar multiples.  I t  follows f rom (17) and  

(11) t h a t  
Fl  (x , y )"  = 2Fl (y , cf :, 1 (x"~) ) for all x, y E V1, (20) 

tF~~ = ~ - I F  2 t(I).~, (20 ' )  

with 2 E ko; and,  for every  a E ~e,, one has  

F~ (q~ (x), ~,(y)) = ~ F1 (x, y) for all x, y E V x , (21) 
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o~' F~Oo = ~o Fg. (2 ~') 

with ),, e k0. Conversely, it is also trivial that,  if one has non-degenerate sesqui-linear forms 

F 1 o n  ]71 and F~ on V~ satisfying these cohditions and if F 1 is ~l(G)-invariant, then (19), 

(16'), (18) define an invariant alternating form A on V defined over k 0. One notes that  

from (20), (21), or (20'), (21') one obtains the relations 

~ ~  �9 = X~X~) 1 .,~ 1. (22a) 

~o,~ = F ~ (22 b) 

~o ~-1 _ ~ - 1 ~  ~-~ (22 e) 

w 3. Formulat ions  in terms of  division algebras 

3.1. We shall now translate the results so far obtained into the terminology of the 

theory of algebras. The notation being as before, let (9~1, 01) and (9~2, 02) be Kq,-forms 

of E(V1) ( = t h e  algebra of all linear endomorphisms of V1) and of E(V2) (=  7/~m) defined, 

respectively, by the operations of the Galois group given as follows: 

~to~ =~io~o~ ~ for ~E ~(V1)~ 0, (23) 

(I) C~1 = O j  1 (I) ~ (I)~ for (I) E ~m(]~0)" (23') 

i~ 1 and i~ 2 are then central simple algebras defined over K~I such that  c(9/1),~ (Xg. 1) and 

c(~/~)~(~,,~) (see Introduction, 2). Since (71,~ -1) is a Kql-form of VI| with respect 

to the operation of the Galois group given by  (11), it follows that  E(V1) may be identified 

with 9X1 | 22 as a KQ,-form of E(V1 | V2) = E(V1) | E(V2). More precisely, the identification 

is made in such a way that  one has 

~vo (ql | q2) ~ -1 = 0i 1@1) | 0 ~ ( ~ )  for all ~ E ~(V~). (24) 

Now, from (7) and (23), one has 

~l(g) E"3 = Ql(g r for all g E G;~ a E ~Q~; 

this means that  the rational mapping: G E g ~Pl(g)= 0;1~ 911 is defined over Kq,. I t  

follows that  ~l(Ggo~) is contained in 01((9/1)~,); but, since ~1 is absolutely irreducible, the 

latter is the Ke,-linear closure of the former. Since ~1 -- ~ o (~1 | 1) o ~o -x = P1 | 1, it follows that  

(9/I)~ | is the K~,-linear closure of ~l(G~q,), or what amounts to the same, 1 |  

is the centralizer of ~1(G%,) in ~(l?l)~q ,. 
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:Now, let ~ ,  be a division algebra defined over Kq, (i.e., an algebra defined over K~, 

such that  (~,)%~ is division) representing the Brauer class of ~ .  Then, one has 9X ~ ~-~ 

I t  follows, in particular, that,  if ~ is of dimension r 2, then r divides both dim V~ and 

dim V2 = m; hence we shall put  

dim V~ = nr, dim V~ = m = n'r. (25) 

As is well-known, ~ is K0,-irreducible, if and only if the centralizer of ~(G%,) in ~(171)~, 

is division, i.e., n ' =  1. Thus one concludes that  

m ( e .  k0) = r = (dim ~ , )~2  (26) 

3.2. (In this paragraph, we shall abbreviate KQ,, ~ ,  as K, ~. We shall need only the 

relations ~f~/?/~(~),  9X2~//l~.(~-~), where ~ is not necessarily assumed to be division.) 

Let  Yx be an n-dimensional right vector-space over ~, or as we shall say more briefly, a 

right ~-space defined over K. By definition, Yx is an nr2-dimensional vector-space defined 

over K, provided with the right multiplication: Vx x ~ E (x, ~) -->x~ EYe, also defined over 

K, such that  u has a basis over ~ consisting of n vectors. Then ~ may be identified with 

E(u ( = t h e  algebra of all ~-linear endomorphisms of u in the following way. 

Let  us fix once and for all a k0-isomorphism M of ~ onto the total matric algebra 

/11, or, what amounts to the same, a system of matrix-units s~j (1 <~i, ]<~r) in ~L.  Then 

for each a E ~0. there exists an element ~ E ~L, determined uniquely up to a scalar multiple, 

such that  
Mr = i ( ~ j ~ )  for all ~e~ ,  

or, what is the same, 
6 ~ 6 --i ~ = ~  ~ (1 ~ i , ~ r ) .  

For  a, ~ ~ Go,, one has clearly 

with g,.~Ek o, and (#~.~) s 

(27) 

(27') 

(2s) 

On the other hand, one obtains a direct decomposition: 

r 
Vi = ~ Vi s~, (29) 

where every Yls~ is an nr-dimensional vector-subspace defined over ~o, invariant under 

E(Vi/~). Therefore, any one of u say V1 =Yls11, gives a (unique) absolutely irreducible 

representation of E(V1/~). In view of (27'), for each a E ~el, the right multiplication 

R,~I : x - - - -  x ~  1 (30) 

induces an isomorphism ~ of V~ onto V~ =u (viewed as E(Y1/~)-spaces). I t  follows 
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that  E(V1/~) (together with the restriction map on V~) is a K-form of s defined by 

the operation of the Galois group: ~'~"] = ~ - ~ ' ~ .  Therefore, identifying 9~1 with g(u 

is equivalent to fixing an isomorphism between E(V~) and E(V~) which gives rise to a 

K-isomorphism between the corresponding K-forms 9~ 1 and E(u By Skolem-Noether's 

theorem, such an isomorphism of ~(V~) onto E(V~) comes from a k0-isomorphism [1 of 

V~ onto V~ (determined uniquely up to a scalar multiple) satisfying the relation 

~ = ~ / ~ o ~ o h  -~ for all ~ e 0 ~  (3~) 

with ~Ek0,  and the identification of 9~ 1 and ~(u is made in such a way that  one has 

X] V1 =/lo01(X)oh -~ for XE9~ 1 = ~(u (32) 

I t  follows from (31) that  one has 

/t~.~ = - -  ~a. ~ ~ ~ . . . .  (33) 

Quite similarly, let V2 be an n'-dimensional left ~-space defined over K and put  V2 = 

ellVz. For each a E ~e~, the left multiplication L ~  : x ~ ~7ox induces an isomorphism of V~ 

onto V~=s[lu (viewed as ~(~\u One identifies ~Is with ~(~\u ( = t h e  algebra 

of all ~-linear endomorphisms of u in such a way that  one has 

X[V~=/2o (02(X))o/21 for all X69~3=E(~\V3), (32') 

where [2 is a k0-isomorphism of V 3 onto V~ satisfying the relation 

]~oL~o/3=~O~ 1 for every ~e ~a  (31') 

with ~ E ko. I t  follows that  /~. ~ _ x~ x~ ~.~ �9 �9 

Comparing this with (33), one sees that  { ; ~ }  is a (continuous) 1.cocycle of ~ ,  in (k0)*, 

so that  by  Hflbert's lemma (Th. 90) there exists an element 0 E~ 0 such that  one has 

~ =0 ~-1. Therefore, replacing ]3 by  0]3, one may assume that  u~=u/1. 

We can now form a tensor-product u |165 of u and V3 over ~, which is an nn'r 3- 

dimensional vector-space defined over K, obtained from the ordinary tensor-product 

u174 by  identifying (xlcc)| ~ with xl| for x~Eu ~E~.  We shall show that  171 

is actually K-isomorphic to u |165 (as representation-spaces) by the mapping ([1 | o~ -1. 

First of all, one has 
' � 9  �9 V' V l e ~ V 2  = (~.  V1Sli  ) | Etl V2) 1| 2, 

which can be identified with the ordinary tensor-product V~ | V~. Hence it is enough to 

show that  one has 
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(h(x)| ~= (h|  1~) ((x| t"~) for all x e  (V1) L,  u e (V2)L, aE Oq,. 

~'rom (11), (31), (31'), the right-hand side is equal to 

11(~;1(x~ | (u~ (Po) = z.l~(x ~) ~ |  x~v; l l i (u  ~) = (/~(~)|176 

which proves our assertion. From (24), (32), (32'), i t  is easy to see that  this isomorphism 

of ]?~ and V1|165 is compatible with the identification of ~(]71) and ~1 ~ 2  mentioned 

in 3.1. In  particular, one has ~l(g) =P~(g)| for g~G. 

3.3. As the results of the above considerations, we obtain the following propositions. 

PROPOSITIO~ 1. Let G be an algebraic group de]ined over a field ]~o (o~ characteristic 

zero) and let ( V1, 51) be an absolutely irreducible representation defined over 7~o o] G. Let Kq, 

be a finite extension o/ k o de/ined in 1.1. Then there exists a uniquely determined central 

division algebra ~ ,  a (/inite-dimensional) right Rq,-space u both de]ined over KQ~, and a 

Ke,-h~176 P1 o /G into GL(V1/~e, ) (=the group o/ all non.singular Rq,-linear auto- 

morphisms o/~T1) such that 51 is/actorized in the/ollowing ]orm: 

51(g) = 01(Pl(g)) /or all gEG, (34) 

where (V1, 01) is a (unique) absolutely irreducible representation defined over ~o o~ ~(Vi /~ , , )  

( =the algebra o/all RQ,-linear endomorphisms o/V1). 

Here KQ, is also uniquely characterized as the smallest extension of ]c o over which 

such a (non-commutative) representation (V1/~Q,, P1) can be constructed. In  fact, if one 

has (34) over K, it follows that  5~=O~oP~..~OloPl=51 for all aE~(K),  which shows that  

K should contain the field defined in 1.1. As for the uniqueness of Re,, it is enough to note 

that,  if one has (34) with ~, then one has 

O~(X)  = Q?qo01(X)o~pa I for all XeE(V1/~) 

and for all a E 0(Kql), which shows that  the Brauer class of ~(V1/~), i.e., that  of ~, is just 

(~. ~). A (non-commutative) representa. the one corresponding to the cohomology class of -1 

tion (V1/~q~, P1) given above will sometimes be called an "absolutely irreducible represen- 

tat ion" of G in Rq~. 

PROPOSITIO~ 2. The notation being as in Proposition 1, let V2 be a/inite-dimensional 

left ~Q,-space de/ined over Ke, and put 

~1 = V1 | Vu, ~i = PI| (triv.), ] 
(35) 

(V, 5) = RK~,/k. (I~1, ~1). 
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Then (V, ~) is a ko.primary representation o/ G containing (V~, ~1); and conversely all such 

representations o] G are obtained in this manner. The ko-equivalence-class o/ ( V, ~) depends 

only on dimV~; in particular, (V~, ~) is ko-irreducible i/ and only i] dimV~=l .  

Denote by R~e,/Ke,(V1, Px) the representation defined over Kq, (of degree nr 2) obtained 

from (Vl, Pl)- Then the representation (17~, ~1) defined by (35) is equivalent to the direct 

sum of n' (=d im V2) copies of R~q,/EQ,(u P~), which in turn is equivalent to the direct 

sum of r copies of (V1, ~1); thus (~1, ~ )  is absolutely primary and so (V, ~) is k0-primary. 

This proves the first assertion. The rest is clear from what we have seen already. (One 

may note that,  to obtain Proposition 2, we do not need the results stated at  the end of 

1.2 and in (26), so that  these results can also be considered as consequences of Proposi- 

tion 2.) 

Example 2. Consider the case of a "crossed product" R = (K"/K,/xr ~) (not necessarily 

division), where K" is a finite Galois extension of K with Galois group 

q(g"/K) = {a~(=1) ..... at} 

and where (/x~.~) is a 2-cocyele of ~(K"/K) in K"*. By definition, there exist, for every 

( ~ ( K " / K ) ,  an element ugE~K and a monomorphism (of fields) i of K" into ~ such 

that  one has 

j = l  

Uo u~ = u,fi(/~,. 7), (36) 

[u ; l i ( ~ ) u , = i (~ )  for all (~, v e q ( K " / K ) ,  ~eK".  

An isomorphism M of R onto ~/r, defined over K", can be given by the relation 

x(u~ . . . . . .  u~r) (u~ . . . . . .  u,,r) i(M(x)) for all x E ~K- 

Then, for every (~E~(K"/K), one has Mo'(x)=M(~jlx~) with ~ given by 

r 

~ a  ~ = l / ~ ( ~ , ,  ~ (~ ,~ ,  (~ i , 
(37) 

where (and in the following) ~,, ~j stands for eL j. I t  follows that  

e" = " (37') 
a~, a I ~Aa i, a 8a ,  a ~ a, 

and ~ ] ~ = ~ . ~ ] ~ .  Conversely, it is easy to see that,  if ~]~ can be written in the form (37), 

or equivalently, if one has (37'), then R becomes a crossed product. 
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Let  us also remark  that ,  in case ~q~ is a crossed product, the matrices @~ (defined in 

1.3) can be written in the form as given in Example  1. To see this, take a basis (e 1 ..... %,) 

of V~ over ~q,; then  ~ne~ (I <i<~r, 1 <~]<~n') form a basis of V~. Define a linear isomor- 

phism/2 of V~ onto V~ by  

V~ ~ u = (u~j)--~ /~(u) = ~ u~je~ e~ e VL 

Then, from (31)' and (37) one obtains a t  once that  

~f-l~ -1  (~ @~,= ,, ~,,u%,, or174 (Ao,.~,~d,,~j)@l,~,. 
Thus one has 

~l~n'RK,, t%,  (V~), i.e., V~=n'R~:..I~o(V~). 

3.4. We shall now consider a k0-primary symplectic representagion (V, A, ~) of type (a). 

We first contend tha t  9~ is then a simple algebra with an involution of the first kind 

defined over Ks ,  I n  fact, since Bx is symmetric or alternating, one can define an "involu- 

t ion" (i.e., involutorial anti-automorphism) t of E(V1) by  

Bl(x, T'y) = B~(~x, y) for all x, yE V1, ~EE(V1). (38) 

Then, applying aE~e  , on the both sides of (38) and in view of (14), (23), one sees imme- 

diately that  
(~0')E ~J = (~J) ' ,  

which shows tha t  the involution 0~-1oto01 of 9~ l, denoted again by t, is defined over K~. 

Now, since 9~ 1N ~e,, ~ =~q, has also an involution of the first kind, denoted by  to, 

defined over K=Ke, ,  by a theorem of Albert ([1], [2]). (In this and the next  paragraphs, 

we shall again omit  the subscript ~r) Then one has 

M(~ '~ = J-I~M(~)J for ~ e ~  (39) 

with a matr ix  JEGL(r, ~o), uniquely determined up to a scalar multiple, satisfying the 

relation 
t j  = eoj,  ~o = - 1. (40) 

Applying ~6~q, on (39), and in view of (27), one gets 

tM (~lo. ) J M (~lo. ) =,u,~ jo- (41) 

with/@ 6 k0, whence it follows tha t  

2 ~ -1 (42) /to. ~ = /~ /~#o~ .  

Comparing this with (15), (33), one sees tha t  the system {u~ / t~}  becomes a (continuous) 
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1-eocycle of 0e, in (k0)*, so t h a t  b y  Hi lber t ' s  l emma  one can find 0 E (~0)* such t ha t  one 

has ~ r  = 0 ~-1. Therefore,  replacing J b y  OJ (or B i b y  0-1B1), one m a y  assume t h a t  

~ r 1 6 2  = 1. (4~) 

Next ,  we shall establish a one-to-one correspondence between the  symmet r i c  or 

a l ternat ing forms ~ 1  o n  V 1 satisfying (14) and  the  e-hermit ian forms F 1 on u with respect  

to (~, t0) defined over  K.  B y  the  lat ter ,  we mean  bil inear mappings  F 1 f rom u •  into 

defined over  K,  (V 1 and  ~ being considered as vector .spaces  defined over  K),  sat isfying 

the  conditions 
{ Fl(x~, Yfl) = g~0Fl(X, y) fl, 

(44) 
F l ( y , x ) = e F l ( X , y )  '~ ~= ! l,  

for all x, y ~V1, :r fl ~ ~.  To  begin with,  suppose such an  F 1 is given, and  p u t  

J .  M(FI(x  , y)) = (B~j(x, y)), 

where B~/s are bil inear forms on )~1 X'VI" F r o m  (44), (39), one sees a t  once t h a t  

B l l  ]Vl Ek~ X ~ l ~ l !  

is identical ly zero except  for /c  = l = 1, and one has  

B~j(x, y) = Bn(xea,  yen) for all x, y EV 1. 

Thus,  pu t t ing  B~ = Bll  [ V~ • V~ one has  

J "  M(FI(x,  y)) = (B;(xs~l, yen)). (45) 

I n  the  second place, f rom (40), (44), one sees t h a t  B~ is e0e-symmetric (i.e., symmet r i c  or 

a l te rnat ing  according as 80~ = § 1 or - 1 ) .  Finally,  f rom the fact  t h a t  F 1 is defined over  

K and f rom (41), (27), one obtains  the  relat ion 

~a - I  - I  - I  �9 �9 B~ (x~]. , y~]. ) = / ~  B1(x, y) for all x, y E V~. 
Therefore,  pu t t ing  

Bl(x, Y) --- B~(/l(x),/I(Y)) for x, yE V1, (46) 

one gets, in view of (31) and  (43), an  s0s-symmetr ic  bflinear fo rm B 1 on V1 satisfying the  

relat ion (14). Conversely, i t  is easy to see tha t ,  given such a form B 1 on V1, one can define 

an  s -hermi t ian  fo rm F 1 on Vl wi th  respect  to (~, t0) defined over  K b y  (45), (46). 

One notes t h a t  f rom (32) one has 

J"  M(Fx(Xx  , :Yy)) = (BI(OI(X)/;l(xe~l), 01(Y)/1-1(yej1))) 
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for all x, YEVl, X, YE~.~I=~(V1/~ ). I t  follows that  B i is ~l(G)-invariant if and only if 

F i is Pi(G)-invariant. I t  follows also that,  for an involution of the first kind t of 9/1, B 1 

satisfies (38), if and only if the corresponding F i satisfies 

Fi(Xx , y) =FI(X , X~y) for all x, y~Vi, X e ~ l .  (38') 

Quite similarly, one can establish a one-to-one correspondence between the e-hermi- 

tian forms F~ on u with respect to (~, to) defined over K and the e0e-symmetric bilinear 

forms (or matrices) B~ on V~ satisfying (14') by the relations: 

M(F~(x, y)) " j - i  = (B.~(si~y, sl~x)) for x, y~V~, (45') 

B~(x, y) = B~(f~(x), f~(y)) for x, y~ Vs. (46') 

(Of course, in the definition of an s.hermitian form F~ on V3 with respect to (~, to), one 

should replace the first condition in (44) by 

F~(~x, fly) = aFt(x, y)fl" 
for all x, yeV~, ~, f l ~ . )  

Combining these with the results obtained in 2.2, we get the following: 

PROrOSlTIO~ 3. The notation being as in Propositions 1, 2, suppose that (V1, @1) i8 Of 
type (a). Then ~ ,  has an involution t o o/the first kind defined over Ke, , and there exists a 

non.degenerate Pi(G).invariant e-hermitian form F i on u with respect to ( ~ ,  to) defined 

over Ke,  determined uniquely up to a scalar multiple. Let F~ be any non.degenerate ( -e ) -  

hermitian form on V~ with respect to ( ~ ,  Lo) defined over Kq,, and put 

{ -~l(Xi| Yi | tr~e~ (Fi(xi, Yi)F2(Y2, x2)) for all xi, Yi E Vi, x2, y~E V~, 

A = trKq~/k. (z41), (47) 

tr~e, denoting the reduced trace of ~Q,. Then A is a non-degenerate ~( G).invariant alternating 

form on V defined over ]Co; and conversely all such forms A are obtained in this manner. 

Rests to prove the last assertion. I t  suffices to show that,  if F i and F~ are correspond- 

ing to B 1 and B~, respectively, in the above sense, then the first relation in (47) is equiva- 

lent to (13). In  fact, one has 

tr~ (Fl(Xi, Yl) F2(Y~, x~)) = t r  (J" M(Fi(x 1, Yi))" M(F~(Y2, x~))" j - i )  

= ~ B1(x18~l, y1~t1) B~(~l~X2, 811y~). i,]~1 

But,  since x i | x2 = ~ =  1 X1815 ~ 81t X2, the element iR ]~l corresponding to x i | ~ x~ under 
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the isomorphism ~1 ~ Vl| ~ Vs given in 3.2 is ~ (~=1 (/11(x1~]) | (sl~ x~)) and similarly 

for YlQ~Yu. This proves our assertion. 

Example 3. As is well,known, in the case ]c o = Q, the quaternion algebras are the only 

division algebras with an involution of the first kind. A quaternion algebra ~{ = (~, ?) is 

a crossed product (K"/K,/~o-~), where K"=K(Vf i )  is a quadratic extension of K with 

Galois group {1, 00} and where ju ..... = ?  and all the other/~,.~'s are =1. Putt ing e~ =i()/~), 

e2 =/~,  in the notation of Example 2, one has a basis (1, ~1, e2, ele2) of ~ satisfying the rela- 

tion 
~=~, s~=r, s ~ = - ~ .  

If one takes the representation M as given in Example 2, i.e. 

\ ~ -  ~ Y~ ~0- ~ V~ / 

one has ~o~ On the other hand, for the canonical involution: 

to : ~o + ~1el  + ~2e2 § ~ 3 e l e 2 - - ~  ~o - ~1s l  - ~2e2 - ~3ele2 

one has in (39) j = ( 0 1  - ~ ) ,  (49) 

so that  one has t o = - 1  and/t ,~ = - ? .  

3.5. :For a k0-primary sympleetie representation (V, A, ~) of type (b), one can prove 

quite similarly as above, that  9~ has an "involution of the second kind" t (with respect 

to 00) defined over K. By this, we mean a semi-linear anti-automorphism t of ~ (with 

respect to %) defined over K satisfying the relation 

X '~ = X"~ for all X ~ ~[~. (50) 

In fact, defining a semi-linear anti-automorphism t of ~(V1) by 

F~(x, el'y) = Fl(~X, y) for all x, y e  V~, ~e3(V~), (51) 

one verifies at once by  (20), (21), (23) that  

~o" = ~0 [~1, (~o,)to] = (q~t~), for all o e Q~,, 

which proves our assertion. (We denote O;xto~ again by t.) 
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Now, since 9~ 1 ~ ~, ~ has a lso an involution of the second kind (with respect to ao) 

defined over K, denoted by % by a theorem of Albert (lot. cir.). Then, one has 

M(~,~ = j -1  tM(~)~. J (52) 

with J EGL(r, ko), uniquely determined up to a scalar multiple. Applying this equality 

twice on M@'=) and in view of the relation e e to=a0 and (27), one has 

tj~,o = ~u- ~ J M  (~]o~) (53) 

with # E k0. On the other hand, applying a E ~ql on (52) and in view of the relation t0a = &0 

and (27), one has 
tM(~]~)~~ =/u~J ~ for aE ~Q, (54) 

with j% E ko" 

From (54), it follows that  
Go __ T - 1  / ~ .  j ~ ,  ~ - ~ #~/~. (55 a)  

Furthermore, easy calculations from (53), (54), combined with (27), (28), give the relat]ons 

~u~,= = #o0+1, (55 b) 

~ a .  / ~ - 1  __ / ~ a - 1 / ~  - 1  ( 5 5  C)  

O" 0 
First, comparing (55a) with (22a) and (33), one sees that  { ~ : 2 ~ t : }  becomes a (contin- 

ao ~ ~ a - 1  uous) 1-cocycle of ~ in (ko)*, so that  by Hilbert 's lemma one has ~ + t ~ # ~ = ~ i  for 

all aEQQ, with a 0iEk0 . Hence, replacing J by OiJ (or F 1 by O{1Fi), one may assume 

~~ = 1. (56 a) 

Next, from (55b) and (22b), one has 

~ ~ao+l  __ ao 

On the other hand, from (55c) and (33), one has 

~,-a ~t~ ,% -~ ~,ao ,~ =1  for all aE~q,. 
(z.~/~)"-~ %: ~/~. Z.o~z~. z~ zo~./~ 

which implies that  ~o ~ ~/~ ~ K. Therefore, again by Hilbert 's lemma one may write x~ ~F = 

0~ ~ with OzqK. Thus, replacing J by O~J, (or F 1 by 02iF1) o n e  may assume (without 

changing ~t, and hence the relation (56 a)) that  
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u,,~ 2/~ = 1. (56 b) 

Remark. I t  is known (Albert [1]) that ,  in case the Hilbert 's  irreducibility theorem 

holds for/Co, (which is surely the case for /c o = Q), K has a finite Galois splitting field K" 

over K such tha t  K""~ ", (~[K"=I  and 5 [ K " = a l g "  for all a6~e,;  in other words, 

K"/K  o is a Galois extension whose Galois group ~(K"/Ko) is the direct product of ~(K"/K) 

and {1, ao]K"}. Under this assumption, in taking M, To, J ,  etc., to be K"-rational, one 

may  assume tha t  U,~=I, # = 1 ,  which reduces (53) to a simpler form: t j , o= j .  But, in 

this paper, we shall never need this simplification. 

We can again establish a one-to-one correspondence between the sesqui-linear forms 

F 1 on V1 (with respect to ~o) satisfying (20), (21) and the hermitian forms F~ on V1 with 

respect to (~, to) defined o v e r  K. By the latter, we mean sesqui-linear mapings F~ from 

u • V1 into ~ defined over K satisfying the conditions 

{ Fl(X~, Yfl) = a~0 Fl(x , Y) fi, 
(57) 

Fl(x , y)~~ = Fl(y, x "~) for all x, y 6 u :r ~ 6 ~. 

In  fact, given such a hermitian form F1 on u one can prove, quite similarly as in 3.4, 

that  there exists a sesqui-linear form F1 on V~ such tha t  one has 

J . M ( F i ( x  , y)) = ( ~ l ( X ~ i i  , yen) ) for all x, yEV1, (58) 

and satisfying the relations 

F;  (x, y)"~ = #-IF~ (y, x "~ ~ ) ,  

.FlO(X~l, y ~ l ) = u ~ i F ~ ( x ,  y) for all x, yEV~. 

Then putt ing Fl(X, y) = F~(/l(X),/i(Y)) for x, yE V1, (59) 

one concludes from (31), (56a), (56b) that  F 1 becomes a sesqui-linear form on V1 satisfying 

(20), (21). The converse is also immediate. Moreover, it is clear tha t  _F 1 is ~l(G)-invariant, 

if and only if the corresponding F 1 is Pl(G)-invariant. 

Quite similarly, one sees tha t  there is a one-to-one correspondence between the her- 

mitian forms F s on u with respect to (~, to) defined over K and the sesqui-linear forms 

(or matrices) Fz on V2 satisfying (20'), (21') by  the relations analogous to (45'), (46'). 

Combining these with the results obtained in 2.3, we get the following: 

PROPOSITION 4. The notation being as in Propositions 1, 2, suppose that (V1, @l) is 

o/ type (b) with respect to (~o. Then ~1  has an involution t o o/the second kind (with respect 

to 00) de/ined over KeI, and there exists a non-degenerate Pl(G)-invariant hermitian /orm F 1 
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on V 1 with respect to ( ~ , ,  eo) defined over Kq,. Let F 2 be any non-degenerate hermitian /orm 

on u with respect to (~e~, eo) defined over Ke,, and put 

I 
F(x,  y) = tr~e~(Fl(xl, Yl) F2(y~, x2)) /or x = xl| x2, y = yl| 1 = u174  u 

A~(x + x' ,  y + y') = ~/~-1 (F(x,~o ~, y) _ F(y,~; ~, x)} /or x, y e ~ ,  x', y'eP~ ~ (60) 

where K o is the fixed subfields of a o I KQ, in Ke, and ~ is an element in K o such that KQ, = K o ( ~ ) .  

Then A is a non-degenerate ~(G)-invariant alternating/orm on V defined over/co; and con- 

versely all such ]orms A are obtained in this manner. 

3.6. Le t  (V, A, ~) be a /c0-primary symplect ic  representa t ion  of G defined over  ]c 0. 

Then  Q is a ko-homomorphism of G into Sp(V, A), the  symplect ic  group of (V, A), viewed 

as an  algebraic group defined over  /c o. The  nota t ion  being as before, we denote  b y  G~ = 

U(u F1) the  "un i t a ry  g roup"  of ( u  F1), i.e., the  group of all ~Q,-linear t rans-  

format ions  of V~ leaving F 1 invar iant .  I n  the  case (a), G~ is a l inear algebraic group defined 

over  K e ,  operat ing on the  under lying vector-space of Vl, and  P1 is a Kq, -homomorphism 

of G into G~. I n  the  case (b), G1 can be viewed as a l inear algebraic group defined over  

K o, operat ing on the  underlying vector-space  of RKej~~ and R~q~/K~ is a Ko-homo- 

morph i sm of G into G~. Quite similarly, the  un i t a ry  group G~ = U(~e,\u F2) can be viewed 

as a linear algebraic group defined over  Ke, or K o. Our results m a y  then  be summar ized  

as follows: 

T ~ E O ~ M  1. Let G be an algebraic group defined over a field ]c o (o] characteristic O) 

and let Q : G--> G' =Sp( V, A) be a (completely reducible)ko-primary sympleetic representation. 

Let Kel be a finite extension o//co defined in 1A, i.e., the smallest field over which an absolutely 

primary component (~1, ~1) o/(V,  ~) is defined. Then: 

(i) In  case (a), there exist a central division algebra ~q~ with an involution of the first 

/cind to, a right ~Q~.space u with a non-degenerate ~-hermitian form F 1 with respect to (~o~, to), 

a left ~Q,-space u with a non-degenerate (-~)-hermitian form F2 with respect to ( ~ ,  to), 

all defined over KQ, and a Ke~.homomorphism Pi o/G into U(Y1/~Q1 , 1~1) , which is absolutely 

irreducible as a representation of G in ~ ,  (in the sense o/ 3.3), such that Q is factorized in 

the/ollowing manner: 

G' P 1  U(Vl/~Q1, F1) l |  SP(~I,~I)RKQ1]ko 
Sp(V,A) ,  

! 
u(~,\V2, F2) J 
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where A1 = tr~el (F1 | = tr~rojk~ (-~1). 

(ii) In  case (b) (with respect to ~ro) let K o be the fixed subfield o/~olK~, in Ko~ and let o: 

be an element in K o such that Kq: =Ko(V~). Then there exist a central division algebra ~e~ 

with an involution o/the second/Cind t o inducing ~o on the center, a right (resp. left) ~e~-space 

Yl  (resp. u with a non-degenerate hermi~ian /orm F 1 (resp. F2) with respect to (~q~, to), all 

defined over Kq,, and a Ko-homomorphism RKe~/~o(P1) o/ G into U(V1/~q, , F1), P~ being an 

absolutely irreducible representation o/ G into GL(V~/~e,), such that ~ is /actorized in the 

/ollowing manner: 

G RKq~/K~ (PI! 

where 

U (Vl /~q ,  , F 1 )  
x 

F = tr~q, (F 1 ~) tF 2), 

| ' U(] [~ I ,_~)c~p(V1 ,A1) l~K ' Ik~  Sp(V,A), 

A1 : trKe,/x o (IG-1F), trgo/~~ (A1). 

In  either case ~ i ,  u u P1 and the multiplicative equivalence-classes ot ~1' ~2 are deter. 

mined uniquely. Conversely, any symplectic representation Q constructed in these manners is 

ko-primary and o] type (a), (b), respectively. 

In  case G is a connected semi-simple algebraic group, one may replace each unitary 

group in Theorem 1 by the corresponding special unitary group, i.e., the subgroup of the 

unitary group consisting of all elements with the reduced norm 1. 

3.7. Finally, we add some remarks about how these data describing a symplectic 

representation behave under the extension of the ground field k 0. Let ~1 be, as before, 

an absolutely irreducible representation of G defined over ~o. Let ko be any extension of 

k o (contained in the same universal domain), and we denote the data relative to k0 by 

the same symbols with a prime (e.g., K~,, ~g,, u ...) as those denoting the corresponding 

data relative to k 0 (e.g., KQ1, ~el, V1, .-.). Then, from the definitions, it is clear that  Kgl = 

koK~ and ~gl~Q~ over gg,; therefore, putting r=r't  (dim ~ =r'2), one has ~ e ~  ~t(~g,) 

over Kg,. By means of this matrix expression, one obtains, as in 3.2, a K~,-isomorphism 

O:  8(Vl/~QI)--->8(Vl/~i), (61) 

where Y~ is an nt-dimensional right ~,-space defined over K~,. Then one has a factorization 

~1 =0~o P1 of ~1 relative to/Co (as given in Proposition 1) with 
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01 = 01 O0-1, P~ =|  (62) 

A ]co-primary representation (V, 9) (containing 91) decomposes into a direct sum of a 

certain number  of ]c0-primary components; let (V', ~') be the one containing 91. Then, 

since the absolutely pr imary component ~1 containing 91 is determined independently of 

the choice of the ground field, one has 

V' = RK~,/k'o(r/1), VI~V1Q~IV~ (over Kg,), 

where Y~ is an n't-dimensional left ~g,-space defined over K~, on which G is supposed to 

operate trivially. (We have to excuse the exceptional use of the notation n' against the 

general convention settled above.) 

Now, it is clear that,  if 91 is of type (a) (resp. (c)) over ]co, so is it also over ]co; if ~1 

is of type (b) over ]co, then 91 is of type (b) or (c) over ]co. Here we shall be interested only 

in those cases where 91 is of type (a) or (b) over both ]co and ]co, for only such cases will 

occur in Par t  I I I ,  where we shall apply our theory with ]co = Q, ]co = R. 

In  the case (a) (over both ]co and ]co), one obtains an e '-hermitian form F~ on V~ with 

respect to (~;~, to) defined over gg, (where e0e =e0e'), either from F 1 on V 1 or from B 1 on 

[/1 as explained in 3.4, and | induces a Kg~-isomorphism of the unitary groups: 

U(V1/~, ,  F1)~ U(V;/~'q,, F;); (63) 

and similarly for F~ on V~. In  the case (b) (over both ]c o and ]co), the Galois automorphism 

a o can be taken in common for ]co and ]co, so tha t  one has Ko=]coK o, Ko=K~ n Ko. The 

relation between F~ a n d F [  ( i=1 ,  2) is the same as above except tha t  this t ime one has 

in place of (63) a K0-isomorphism induced by  RK~/~:I(@ ). 

Part II. Determination of KQ1 and ~1  

w 4. Comparison with the quasi-split group 

4.1. In  the following, let G be a connected semi-simple algebraic group defined over 

]c o. Let  T be a maximal  torus in G defined over ]co and let X be the character module of 

T. We shall fix once and for all a linear order in X and let A be the corresponding funda- 

mental  system of roots. For a given absolutely irreducible representation 91 of G we denote 

by  ,~, the corresponding highest weight relative to T. 

The Galois group ~ operates on X in a natural  manner and permutes the fundamental  

systems among themselves. Hence, for every a E ~ ,  there exists a uniquely determined 

element we in the Weyl group W (relative to T) such that  one has A~ = w~A. For Z E X, 

we put  
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Z[(~] = w a l  zcr (1) 

Then clearly one has L t~J = s  I t  follows tha t  

(~,)c~ = ~ .~ .  (2) 
This implies the  following 

PROPOSITION 5. In  the above notation, one has 

COROLLX~Y 1. I / G  is o/Chevalley type over lc o, then one has Kq,=Ic o /or all absolutely 

irreducible representations ~1. 

C O r O L L A r Y  2. I] G is absolutely simple and not o] type Ai(l>~2), D1 or Es, then one 

has Ko, = k o/or all absolutely irreducible representations ~1. 

I n  fact, under  the assumption of Corollary 1 or 2, the operat ion [a] of the Galois 

group on X is trivial, so tha t  one has Oel = ~. 

4.2. A connected semi-simple algebraic group G is called lc0-quasi-split (or "of Stein- 

berg type") ,  if there exists a Borel subgroup B of G defined over k0. I f  the maximal  torus 

T and the fundamenta l  system A are so chosen as to determine such a B, then one has 

A~ = A for all a E ~. (As is well-known, to get such T, A, it suffices to take T containing 

a maximal  /c0-trivial torus A and  define A with respect to a linear order compatible with 

X o c X ,  X o denoting the annihilator of A in X.) Hence in this case one has 

A0~ = (Aq,) r for a e ~. (2') 

P~O~OSITION 6. I] G is ko-quasi-split, then ~Q,,..1 /or all absolutely irreducible 

representation ~1. 

Proo]. Take T and A as above. Let  V1 be the representation-space of ~1 and  let x 1 

be an eigen-vector corresponding to the highest weight ha, which is ~0-rational; x 1 is then 

uniquely determined up to a scalar multiple. Then it is clear that ,  for each a E 0e~, x~ is an  

eigen-vector in V~ corresponding to the weight A~I, which is the highest one by  (2'). There- 

fore one can normalize the isomorphism ~ : V~ -~V~ in such a way  tha t  one has ~(x~) =x~ 

for all a E Oe,. Then it follows tha t  Ao.~: 1, so tha t  one has ~e, '~ 1. 

4.3. Let  G be a connected semi-simple algebraic group defined over k 0. I t  is known 

tha t  there exists a/Co-quasi-split group G 1 f rom which G is obtained by  twisting with respect 

to inner automorphisms (see e.g. [17]); this means tha t  there exists a ~0-isomorphism 

of G 1 onto G such that ,  for every a e O ,  /~o] -1 is an  inner au tomorphism of G. Such G 1 

is unique up to a k0-isomorphism (see e.g. [19]). P u t  ]~o/-l=Ig,  with g~EG, Igo denoting 

1 6 -  662903. Acta mathematica. 117. Impr im~ le 15 f~vrier 1967. 
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the inner au tomorphism:  g -+ go.ggj 1 of G. Since gr is uniquely  de te rmined  modulo  the center  

C -r - 1  Z of G, o.~=g~g~g~ is a 2-cocycle of 6 in Z, whose coh0mology class is uniquely  deter- 

mined.  We shall now show t h a t  this cohomology class does not  depend on the  choice 

of ] either. Le t  / '  be another  k0-isomorphism of G 1 onto G such t h a t / ' ( * o / ' - l = I g  b with 

g[,EG for every  aE 6.  I t  is known (see e.g. [17]) t h a t  Aut(G 1) splits into a semi-direct  

p roduc t  of Inn(G 1) and a finite subgroup U 1 which is invar ian t  under  6.  Hence  we can 

p u t / - l o / '  =Ig ou with glEG 1 and uE U 1. Then  one has 

lob = 1r ~oaO uo'ou-lo Ig;-1 o ] -1 =/f(Ol)~Io~ o (/our -1) o 1/(ol ) ,. 

This shows t h a t  u r  -x is inner and  so u ~ = u .  I t  follows tha t  g~=/(gl)~ L1 (mod. Z), 

whence our assertion. We shall denote  the cohomology class of (cr ~) b y  yk,(G), or s imply  

b y  y(G).(1) For  any/cD/%, yk(G) is the e lement  in H2(/c, Z) obta ined  f rom y(G) b y  restr ict ing 

the  Galois group. 

Now let Q~ be an absolute ly  irreducible representa t ion  of G defined over  ~0. For  every  

E 6,  one has (~1 o/)r = Q~o (/r o / ~  ~ o / ,  so t h a t  one has 

e~ ~e1r162 (elO/)r  ~ e l  O / �9 

Thus one concludes t h a t  6e,=Qo,or, Ko,=Ko,o~. Since ~ o , o I ~ l  (Proposit ion 6), one m a y  

assume tha t  ~1~  defined over  Kol. Then  one has 

el(g) (elO/)O/-~(g) - 1  = = e~(g~  g g ~ ) ,  (4) 

which shows t h a t  one can take  Qi(g~) -1 as qp~. I t  then  r tha t ,  for a, T E 6~,  one has  

~). ~0~ ~0Gv --  e l  ( g a )  e l ( g ;  1) el(gay) = el(Ca, l )  �9 

Since Z is of finite order, ~,.~'s are all in E ( = t h e  group of all roots  of un i ty  in ~o). I n  

view of (4), the  restr ict ion of ~1 on Z is a 6q , -homomorphism of Z into E, so t h a t  it induces 

a canonical homomorph ism:  
H~(Ke,, Z) -->H2(KoI, s 

which we shall denote b y  ~e*. We have  thus  obta ined  the  following 

T ~ E O R n ~  2. Let G be a connected semi-simple algebraic group defined over ko, and 

let y(G) be the element el H2(]Co, Z) de/ined above, Z denoting the center el G. Then,/or every 

absolutely irreducible representation ~1 o] G, one has 

c ( ~ )  = ~*(~ , (o ) ) .  (5) 

Thus,  for the  de te rmina t ion  of ~q,, i t  is enough to de termine  ~(G) for s imply  connec- 

ted G. 

(1) For a p-adic field k0, the canonical map HI(G1/ZI)--+H~(Z1) is bijective, so that the /c0-isomor- 
phism class of G is uniquely determined byf*-l(~(G)) EH2(/%, Z1). Cf. M. Kneser [17]. 
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w 5. Determination of 7(G) 

5.1. Suppose first  G is decomposed into the  d i r e c t  p roduc t  of /c0-simple factors: 

G =]-[  G (i). Then  it is clear t ha t  one has 

~(G) = YI r(G(~)) 

Therefore one m a y  assume G to be/c0-simple. Suppose fur ther  t ha t  G is decomposable  into 

the  direct p roduc t  of absolutely simple factors.  Then  one m a y  pu t  

G = l~I G~ = R~/k0 (G~), (6) 
i = l  

where /c is a finite extension of ]co, G 1 is an absolutely simple group defined over/c ,  and  

(~; . . . . .  T~} is a sys tem of representa t ives  of 6(/C)\6. I f  (GI,/1) is a quasi-split  /c-form of 

G 1 such t h a t  ]~o/~ ~ is an  inner au tomorph i sm of G 1 for every  ae6( /c) ,  t hen  it is clear 

t ha t  ~ ~" (Rk/k,(G1), 1-~/1 ~) is a quasi-split /c0-form of G satisfying the similar condit ion over/c o. 

Le t  Z 1 be the  center of G 1. Then Z = Rk/ko(Z1) is the  center  of G and one has the  canonical 

i somorphism (see [11]): 
H 2 ( / c ,  Z l ) ~ H 2 ( / C 0 ,  Rk/ko(Zi)), ( 7 )  

which we shall denote, b y  abuse of notat ion,  b y  Rk/ko*. (More precisely, for each a E 6 ,  
/ . t $ / 

put  ~ a  =a(~)T~ with  a(i)C 6(/C)') Then one has  Rk/k, (co. ~,)= (%.v) wi th  

co.~ = (c~(i~ '--').~c~-1)) for all a, z e  6 .  

I n  these notat ions,  i t  is easy to see t ha t  

~ko(G) = Rk/ko*(yk(G1)). (8) 

Thus the  de te rmina t ion  of y(G) is reduced to the  case where G is absolute ly  simple. 

5.2. The  case G=SL(n, ~), ~ being a central  simple division a lgebra  of dimension 

r 2 defined over  k. I n  this case G 1 =SL(nr), and the  center Z of G can be identified cano- 

nically wi th  s ( = t h e  group of nrth roots of un i ty  in ~0) as a group with  operators  6(/C)- 

I n  the  no ta t ion  of 3.2, one m a y  p u t / = M  -1, g~=~o.ln, and C~.T=[~,~I n. Therefore,  

th rough the na tu ra l  injection H2(/C, Z) ~H2(/c, E), one has 

y(G) = c(~). (9) 

5.3. The case G=SU(V/~ ,  F), where ~ is a central  division algebra of dimension r 2 

defined over  a quadrat ic  extension /C' of /c wi th  a non-tr ivial  Galois au tomorph i sm a0, 

having an involut ion t 0 of the  second k ind  (with respect  to %), V is an n-dimensional  
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r ight  ~-space,  and  F is a hermi t ian  form on V wi th  respect  to  (~,  t0), bo th  defined over  

k'. Regarding  F as a linear mapp ing  f rom V onto the dual  of V "~ (which is tola0-semi-linear 

if the dual  of W ~ is regarded as a left ~~176 we regard G as a k-closed subgroup of 

G'= Rk,/k(GL(u GL(u • GL(u176 ~~ defined as follows: 

G = {(g .  g2) ea '  In(g0 = 1 ,  ig2~gl = ~}, 

n denot ing the  reduced norm of E(V/~). We pu t  G 1 = S U ( V ,  F0), where V is an nr-dimen-  

sional vector-space  and  F 0 is a hermi t ian  fo rm on V (with respect  to a0) wi th  the  max ima l  

index [nr/2], both  defined over  k'; in the similar w a y  as above,  G ~ is regarded as a k-closed 

subgroup  of G ' I =  Rk,/~:(GL (V)). The nota t ion  (s~j), ~ . . . . .  being as in 3.2, 3.5, p u t  

J .  M(F(x,  y)) = (F(xe~l, ySj l ) )  

with  a sesqui-linear form F on Vs11 • V~11 (with respect  to ~0), which will also be regarded 

as a l inear mapp ing  f rom Yen onto the dual  of u  Let  h 1 be a n y  linear i somorphism 

of V onto Yell and  pu t  
h~ = tF-~ oth~l otFo . (10) 

Then  we have  an isomorphism / = (/1,/2) : G'I  -'~ G' defined by  

f / l ( g l )  [V ~11 = h lg lh l  1 
ao ao h -1  

for gl E GL(V), 
(11) 

for g2E GL(V~176 

I t  is then  clear t ha t  one h a s / ( G  1) = G. 

Now to calculate ]'~o/-z, we first  observe t h a t  1~o/; 1 =Igo  with  g~ = / l ( h ; l o  R,7,oh~ ), R,7, 

denoting the  r ight  mul t ip l icat ion b y  ~/~. I t  follows tha t ,  if one puts  / ' =  (/1,/~~ one has 

/ ,~o/ , -1  = I ~  w i th  

| (g . ,  g~.) for aeO(k ' ) ,  

g" = ~ [(g . . . .  g~- ,)  for a ~ 0(k ' ) .  

F 

On the other  hand,  one has  / 'o / - l=I(1,  ho) with ho=/2(h~lh~'). I t  follows t h a t  / ~ o / - 1 =  

,(1' o 1-~)-~ o (1'r o 1'-~) o (1' o 1-~) = I ~  with 

,, I(g,,ho~ g~Oho) for a E O ( k ' ) ,  

g~'=l(ho" g . . . .  g~;lho) for a~ /O(k ' ) .  

I t  is easy to see t h a t  g~ is a simili tude of the hermi t ian  form F with  the  mult ipl icator:  

~. for a e  q(k ' ) ,  
~(g~)  = _~ ~0 /~ /~0.#~:,~0~ for a r  
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Now normalizing ~ and J in such a way tha t  n(~r 1, det ( J ) =  1, we may  assume 

that  #~. ~, #~, # are all r th roots of unity. Moreover, taking hx suitably, one has g~ E SL(V/~)  

for all aEG(k').  To have this, it suffices to take a k'-rational ~-basis (e~ ..... e~) of V and 

a k'-rational basis (el .. . . .  e~) of V and to take h i in such a way that  the matr ix  of h~ with 

respect to the basis (e~') and (e,sn)~<,<~ ' 1<r has the determinant one. Then it follows also 

that  one has 
n(ho) = n(F). det(F0) -~, 

where n(F)=det(M(F(e~, %))) and det(F0)=det(Fo(e[,  e/)). Taking _F 0 in the usual normal 

form, one has det(F0) = ( - -  1 )  [nr/~] = ( - -  1 )  n r ( n v - l ) / 2 .  

Now we put  
fi : n(ho) lint = ( - 1)(nr-1)12n(F)l/nr, (12) 

~(1, ~u.) for aEO(k ' ) ,  
a n d  - 1  -(~ a o for c~=l( ~ ~ ~.~o.,~2,/~) ~r 

C-I  ,, (co g~) Then one has o g. E G, and/~o/-z= Ic~,d~. Therefore calculating the coboundary of -~ " 

which is the same as that of (c~'g~)), one obtains the following result 

Ca, ~ = l f J z ' - - ]  Oo - 
/ p /~#~'~,~ 

Ly t,ool ,joo  

for a, ~EO(k'), 

for qEO(k') ,  T@O(k'), 

for aEO(k') ,  ~EO(k'), 

for a, zEO(k'),  

(13) 

where we identify the center Z of G with E~r (by the projection to the first factor). Note 

that  the Galois group ~(k) then operates on Z by  the following rule: zC~J=z ~ for aE~(k ' ) ,  

=z  -r for a~O(k') .  I f  we put  S U ( ~ ,  to)={~e~tln(~)=l, ~'~ one may  write 

~(a)  = ~ ' (F) .~(SU(R,  to)), (14) 

where ?'(F) denotes the class of 2-cocycle defined as follows: 

I 1 

where fl' = ( - 1) (n - 1 ) r / 2 n ( F ) l / n r .  

for aE~(k ' ) ,  

for a(~O(k'), ~EO(k'), 

for ~, v ~ ( k ' ) ,  

Remark 1. In  case r = 2 ,  ~ has a k-form ~,0 defined by the operation of the Galois 

group: ~ ' ]  = ~'~ % h denoting the canonical involution of the quaternion algebra ~ (cf. [2], 

p. 161, Th. 21). I t  is not hard to see tha t  one has 
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y ( s u ( ~ ,  to)) = c(~,.), 

where  b o t h  sides a r e  cons ide red  as e l e m e n t s  of  H~(k, t:2). 

Remark  2. I n  t h e  s imi la r  sense as above ,  if nr is even ,  (y '(F))  ~r/2 can  be  i den t i f i ed  w i t h  

c(~1), whe re  ~1 is a q u a t e r n i o n  a lgeb ra  de f ined  b y  t h e  crossed  p r o d u c t  (k'/k, ( -1 )~ ' /2n(F) ) .  

L e t  {wl, -.., o~nr-1} be  t h e  f u n d a m e n t a l  we igh t s  of G ( re la t ive  to  T a n d  A) a r r a n g e d  

in  t h e  usua l  order ,  a n d  p u t  2Q~ = ~ m~o~. S ince  ~'0] = o ~ _ ~ ,  one  has  b y  P r o p o s i t i o n  5 

k k if m=~_~=m~ for  all  i, 

KQ, = , o the rwi se  
(15) 

I n  case K~, = k ' ,  one  has  b y  T h e o r e m  2 

~e~ ~ ~ z ~ .  (16) 

I n  case K ~  = k, ~e~ is (at mos t )  a q u a t e r n i o n  a lgeb ra  d e t e r m i n e d  b y  

if nr=--O (rood. 2), (16') 

o the rwise ,  

whe re  b o t h  sides a r e  cons ide red  as e l e m e n t s  of H2(k ', E2). 

5.4. T h e  case G = S U ( V / R ,  F),  R be ing  a c en t r a l  d iv i s ion  a lgeb ra  of d i m e n s i o n  r ~ 

w i t h  a n  i n v o l u t i o n  t o of t h e  f i r s t  k ind ,  V is a n  n - d i m e n s i o n a l  r i gh t  G-space,  a n d  F is a 

n o n - d e g e n e r a t e  s - h e r m i t i a n  f o r m  on  u w i t h  r e spec t  to  (R, to), al l  de f ined  o v e r  k. L e t  V 

be  a n  n r - d i m e n s i o n a l  v e c t o r - s p a c e  de f ined  o v e r  k a n d  le t  B = S  or  14 be  a su i t ab l e  s0s- 

s y m m e t r i c  b i l inear  f o r m  o n  V de f ined  o v e r  k such  t h a t  G I is g i v e n  b y  SO(V,  S) or  Sp  (V, A),  

where  we  wr i te  B = S  or  A acco rd ing  as e 0 e = l  or  - 1 . ( 1 )  L e t  h be  a l inear  i s o m o r p h i s m  

of V o n t o  u  de f ined  o v e r  k such  t h a t  one  has  

(1) As is well known and also as will be seen from the following arguments, it suffices to take B of 
the maximal index except for the case v0e = 1 and nr -= 0 (rood. 2), in which case B = S is given as follows: 
If r = l ,  put  ~ = 1. If r > 1, then r is even; taking J in such a way that  det (J) = 1, one can find (~ Ek such 

. . 1 / ~ a - 1  r /2  that  ntis) = v o I.ta . Then B = S will be any symmetric bilinear form of index nr[2-1 with the deter- 
minant det ( S ) ~ n n ( F )  (mod. (k*)~), for instance, 

l n r J 2 - 1  

0 

( - 1 pr/2-  l~n(l~)J " 

Note that ,  in case ~ is a quaternion algebra, one can put 6 = 1. 
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J" M (F(x, y) ) = B(h-l(xs,l), h-l(yejl) ), 

and define an isomorphism / of GL(V) onto GL(V/~) by the relation 

/ ( g )  [V~l l  = hogoh-1. 

Then it is clear that  ](G1)=G. For each aE~(k),  one has /~o / - l= Ig~  with 

g~ =/(h-lo R,  oh~) E GL(u 

By what we have seen in 3.4, g~ is a similitude of F with the multiplicator ~u~, which is 

"proper" in the case where CoS = 1 and nr is even by  our choice of S. So putting g~ = • �89 

one has g~EG and /~o/-1=I~,. Therefore, through the natural  injection Z-+E2, one has 

y(G) = c(~). (17) 

5.5. In the case e0e=l  (i.e. B = S  : symmetric), the group G in the preceding para- 

graph is not simply connected, so that  one has to consider the universal covering group 

(5, ~) of G. The corresponding quasi-split k-form is given by  the universal covering group 

(51, ~1) of G 1. Let  us first recall briefly the construction of the "spin group" 51 and its 

twisted form 5 after Jaeobson [6]. 

Let  C=  C(V, S) be the Clifford algebra of (V, S), i.e. an associative algebra (over 

the universal domain) with the unit element 1 generated by all x E V with the defining 

relations x2=S(x, x); and let C + denote its even part, i.e. the subalgebra of C spanned 

by  all products of an even number of vectors in V. Let  further t be the canonical involu- 

tion of C, i.e. the involution of C defined by (x 1 ... x~)'=x~ ... x 1 (x,E V). Then (51, ~1) 

is given as follows (cf. [3]): 

{ 51 ={gec§ g g= 1, gvg-l= v}, 
(18) 

cpl(g) (x) =gxg -1 for gEG, x~V.  

Next, we define a k-form (~, [-1) of C + by the following (well-defined) operation of 

the Galois group: 

(xy)[~] = ~-1] l(ga) X a ./-l(ga) ya =/-:(g~) X a ./-l(g~) yO for x, y E V, (19) 

where g~, g~ are as defined in 5.4. Then it is immediate that  the k-isomorphism class of 

is uniquely determined only by  (V, F) (independently of the choice of s~j, h, etc.) and 

that,  when ~ ~ 1, this ~ can be identified with the ordinary even Clifford algebra of (V, F). 

Moreover it is clear that  one has 
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(x~) t"3 = (xt~3) ~ for all x~C +, 

tha t  means tha t  the corresponding involution of ~, denoted again by  t, is defined over k. 

Now, as is well known (cf. [3], I I ,  3.4), the group (g~C+lgVg-~= V} is generated 

by  the products  of two vectors x, y in V with S(x, x) =4= 0, S(y, y) =4=0. I t  follows tha t  ~x 

is invariant  under  all In] ( a ~ ( k ) ) ,  and therefore ~ = ] ( ~ )  is defined over k. To prove 

tha t  the covering homomorphism of ~ onto G is also defined over k, we need the following 

characterizat ion of ~v~: 

L E p t A  2. Let y~ be a homomorphism o / ~  into G ~ satis/ying the relation 

g(xy ) g-1 = ~(g) x. ~)(g ) y (20) 

/or all g~G~, x, y~ V. Then one has ~ =q~*. 

Proo/. P u t  z(g)=~v(g)q~l(g)-L Then one has z(g)x .z(g)y=xy for all x, yE V, so tha t  

the orthogonat  t ransformat ion X(g) can be extended to  an  au tomorphism of C which is 

trivial on C +. Applying this au tomorphism on the second formula of (18), one obtains 

g.z(g)(x).g-l=z(g)orf(g)(x), i.e. qv(g)oz(g ) =g(g)o~(g) for all g E~  ~, whence follows tha t  

g(g) is in the center of G 1 and  so = • 1. Since G ~ is connected, Z mus t  be trivial, q.e.d. 

:Now applying In] on (20) with ~0=~v ~, one has 

gE~ = ~ ) l ( ~ ) [ a ] ( z ) . ( v l ( g ) C ~  

where 9)l(g)[o]=/-lo/r I t  follows from the Lemma tha t  ~l(g)EO3=?l(gEo])= 

~d( / - lop  (g")), whence follows tha t  ~v = ] o ~ o  (~-~ I~) is defined over k.0) Thus one obtains 

the  following commuta t ive  diagram: 

C+ ~ ~1 ~1 ~ G 1 

5.6. (1) The case n r ~ l  (rood. 2). The  center of G being trivial, one has 7(G)=c(~:) = 1  

(i.e. r = l ) .  On the other hand,  one has C + ~  7//2�89 over k and so Gig a central simple 

algebra (with involution of the first kind). Taking ~r E~  in such a way  tha t  ~(r =g~, one 

has f rom (19) fr = I ~ .  Therefore, identifying the center Z of ~ with Es, one has 

(x) This can be proven more directly as follows: Denote by ~a the (inner) automorphism of C 
extending the proper orthogonal transformation ]-l(g~)-l; then one has 7-ao] = ~al U+. Put further 
9a=]-%y=IF'(g'o)-L It suffices to show that 9Xo(~a{6x)=g%og0 x. For geG one has~0Xo~a(g)= 

I~(~) [ V= (~aoI~ o~;  1) [V=t-l(g~)-locpX(g)o]-l(g~) = (~%oq0 x) (g), which proves our assertion. The fact 

that G is defind over k can also be given a similar proof. 
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y(~) = c(~). (22) 

Let {m I ..... r189 be the fundamental weights of ~ ordered in the usual way (i.e. 

r189 (n_ 1) corresponding to the spin representation) and put  ~e, = ~ mic% Then ~1 is a represen- 

tation of G if and only if m�89 is even. One has Kq,=k for all ffl and 

~el~m�89 (over k), (23) 

for the spin representation is, by definition, the restriction on G of the (unique) absolutely 

irreducible representation of (~. 

(2) The case n r - -O  (mod. 2). In  this case, one has 

C + ~ :t/t2�89 | ~2~,-~ over k' = k(~/( - 1) �89 det (S)). 

Let  ~ = ~1| ~ (24) 

be the corresponding direct decomposition of ~. Again taking ~ E ~  such that  ~p(~)=go, 

one has p o [  -1 = I ~ .  This implies in the first place that  the decomposition (24) is also de- 

fined over k'. Now we have to distinguish the following two eases: 

(2.1) The  case nr=~O (mod. 4). In  this case, t leaves ~1 and ~2 invariant and induces 

an involution of the first kind in each of them. I t  follows that,  if one denotes by  1', 1" 

the unit elements of ~ and ~ ,  respectively, the center Z of G is given by {_+1'• 

If  k ' =  k, the Galois group operates trivially on Z and so, through the identification Z = 

E 2 • E2, one has 
r(~)  = (c(~0, c (~) ) .  (25) 

If  k' ~k ,  One may write @=Rk'/k(~l) and identify Z with R~,/k(E2). Then one has 

r~(G) = R~,/k*(c~,(~)), (25') 

where Rk./~* denotes the canonical isomorphism H2(k ', E2)-+H2(k, R~./~(~)).  

(2.2) The  case n r ~ 2  (mod. 4). In  this case, t interchanges ~1 and ~z each other. I t  

follows that,  in the same notation as above, Z is a cyclic group of order 4 generated b y  

~/-  1(1 ' -1") .  If k '=  k, the projection on the ith factor (i = 1, 2) gives a ~(k)-isomorphism 

of Z onto ~ ,  and through this one has 

proj* (y(~)) = c(~). (26) 

I t  follows that  q~ and ~ are of exponent 2~(v ~<2). If k ' ~  k, let ao be an element of ~(k) 

which induces a non-trivial automorphism of k ' /k .  Then ta 0 induces on each ~ an involu- 
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tion of the second kind (in the sense of 3.5), which we denote by t~. Pu t  G~=SU(~ 1, tl). 
Then the projection on the first factor gives an injection of Z into the center of G~ (with 

the operation of the Galois group Q(k)), and through this one has 

proj* (yk(~)) = ~2k(SU(~I ,  tl)).  (26') 
I t  follows, in particular, 

proj~ (Tk'(~)) = %'(~1), 

so that  ~1 and ~ are again of exponent 2" (v ~< 2). 

Returning to the general case n r ~ 0  (rood. 2), let {~ol . . . .  , (O�89 be the fundamental 

weights of 0, where ~ _ ~  and (o�89 correspond to the spin representations ~(~) and ~(2) 

given by ~1 and ~2, respectively. Pu t  ~e~ = ~  m~o)~. Then one has 

{:  if m�89 
Ke~ = (27) 

' otherwise, 

~nr-2 
Z ml 

~ , ~  ' |189174189 ." over k'. (28) 

On the other hand, ~ is a representation of G if and only if m�89189 (rood. 2), and 

for such a representation one has 

~nr--2 
~J mi+(~nr)m�89189 r 

~ e ~ - ~  1 over Ke~. (28') 

Comparing these two expressions, one obtains the following relations due to Jacobson 

([6]): (1) 
When nr~O (rood. 4), ~ 1 |  over k'; (29) 

~l ~ ~ ~ over (30) When nr~2 (mod. 4), ~1 |  1, ~ e It'. 

(These relations can also be obtained by comparing the restrictions of % ~(1), ~(~) onZ.)  

Note that,  in case ~ ~ 1, one has ~ , . ,~ , , ,  C', C' denoting the (full) Clifford algebra of 

(V, F) in the ordinary sense. 

5.7. For the exceptional groups, our result being still incomplete, we shall restrict 

ourselves to the case where k is a local field or a number-field. Let G be a simply connected 

absolutely simple group of exceptional type defined over k and let Z be the center of G; 

(1) I n  [16], p. 173, Car tan  wri tes  "I1 an est  de mSme pour  10 groupe g2, qui adme t  done, ainsi qua 

gl, d ' indice 1." B u t  th is  clearly contradicts  Jacobson ' s  result.  I n  Car tan 's  nota t ion,  one should  say 

t h a t  one of gl andg~ is of index 1, while the  other  is of index - 1. 
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,- O . �9 0 0 

we may  assume G to be of type D4, E 6 or E r, for otherwise Z is trivial. In  case k is a local 

field, one Obtains the following results (cf. [16], [1717. I f  G 1 is not of Chevalley t y p e  over k 

(i.e. the cases 3Da, 6Da, SEe) , one has H2(k, Z ) =  1 and so a /ortiori y(G)= 1. (The same 

is also true over number-fields.) Hence suppose Qi to be of Chevalley type. In  case G is 

of type (Eo) , Z is Q(k)-isomorphic to E3, so tha t  H2(k, Z)~_H2(k, E~) is cyclic of order 3. 

When k is a p-adic field and G has the diagram as indicated, G contains a k-closed sub- 

group k-isomorphic to SL(2, ~3) where ~3 is a central division algebra of dimension 9 

defined over k; in this case, one has y(G)=c(~3). Otherwise one has ~ (G)=I .  In  case G 

is of type  (E7), Z is isomorphic to E 2 and so H~(k, Z) is of order 2. When G has the diagram 

as indicated, or when G~ is compact (k =R),  one has ~(G)=c(~2), where ~z is the (unique) 

quaternion algebra defined over k. In  all other cases, one has 7(G)= 1. For the group G 

defined over an algebraic number-field k, 7k(G) can be determined in virtue of Hasse 

principle for H2(k, Z). (See T. One, On the relative theory of T~m~gawa numbers, Ann. 

el Math., 82 (1965), 88-111, especially p. 107.) 

~.8. We shall add here few remarks on the determination, of F1, which is also indis- 

pensable for the description of symplectic representations. We use the notation introduced 

in w 

(i) Let  w 0 be the (unique) element in the Weyl group W such tha t  w o A = --A. T h e n  

an absolutely irreducible representation r of G is of type (a) if and only if one has 

-w0(~e,)=~Q,. (For instance, if G has no simple factors of type A~ (l>~2), Dl (1 : odd) or 

E~, one has w 0 = - 1, so that  r is always of type (a).) In  tha t  case, putt ing A -- {ai, .,., at}, 

one may  write 22e. = ~  n,a,  with n, E Z, n, >/0. Then, in the notation of Par t  I, one has 

eo~ = ( -  1) ~ '  ([18]).(~) 

(ii) I n  the same notation, ~1 is of type (b), i~ and only if 

(1) D. N. Verma gave recently a simpler proof for this formula independent of the classification 
theory. Iwahori has also gotten another formula determining s0e. 
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_wo(~e~ ) _ ~Eoo] ,_~ for some (roe ~. 

In  both cases (a), (b), the determination of F~ can easily be reduced to the case where 

G is ko-simple (el. 9.2). 

Part III. Symplectic representations of semi-simple algebraic groups of hermltian type 
satisfying the condition (Hi) 

w 6. Observations over R 

6.1. Let  G be a (Zariski-)connected semi-simple algebraic group defined over Q. 

GR is then a senti-simple Lie group with a finite number of connected components (in 

the usual topology). One denotes by G~ the identity component of GR. We assume G to 

be "of hermitian type",  i.e., denoting by ~ a maximal compact subgroup of Gm we assume 

that  the associated symmetric space ~ - -  GR/~ has a G~-invariant complex structure and 

thus becomes a symmetric (bounded) domain. This implies, as is well-known, that  all simple 

factors of GR (viewed as a Lie group) are either non-compact and corresponding to irre- 

ducible symmetric domains, or compact; thus all absolutely simple factors of G (viewed 

as an algebraic group) are defined over R. 

As explained in the Introduction, our main problem is the following: for a given maxi- 

mal compact subgroups ~ of Gm determine all symplectic representations (V, A, ~) of 

G defined over Q (or R) together with a maximal compact subgroup ~ '  of G~ =Sp (V, A)a 

containing Q(~), such that  the induced mapping from ~ = GR/~ into ~ ' =  G~/~' is holo- 

morphic with respect to the given complex structures on ~ and ~ '  (Condition (Hi)). 

In terms of Lie algebras, this condition is expressed as follows ([9]). Let  g, g', ~, ~' be the 

Lie algebras of GR, G R, ~ ,  ~ ' ,  respectively. Then there exists a (uniquely determined) 

element H 0 in the center of ~ such that  ad(H0) induces on the factor space ~/~, identified 

with the tangent vector-space to ~ at the origin, the given complex structure of it. For 

brevity, we shall call such an element H 0 in ~ an H-element for GR (or G). Let  Ho be an 

H-element for G~ determining the maximal compact subgroup ~ '  and the given complex 

structure on ~ ' .  Then, the condition (Hi) may be expressed as 

de([H o, X]) = [H0, d~(X)] for all X eg, (H~) 

d e denoting the homomorphism of ~ into ~' induced by Q. (This condition clearly implies 

tha t  d~( ~)c ~' and so ~ ( ~ ) c  ~ ' ,  for ~ and ~ '  are Zariski-connected algebraic subgroups 

of Gn and G~ corresponding to ~ and ~', respectively.) We shall also consider the following 

stronger condition: 
de(H o) = Ho. (H 2) 
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As is well known, the maximal compact subgroups ~ '  of G~=Sp (V, A)R ( =  G~) are 

corresponding (in a one-to-one way) to the complex structures I on VR such tha t  

A(x, J[y) (x, yE VR) is symmetric and positive-definite, (1) 

by  the relation that  I is ~ ' - invar iant ;  and, if H0 is an H-element determining ~ ' ,  one has 

H0 = • 1I.  In  this paper, we shall always choose the complex structure on ~ '  in such a 

way tha t  we have the plus sign here. Then the condition (H1) may  also be written as 

de([H 0, X)] = �89 dg(X)] for all XeG. (2) 

Thus, given a maximal compact subgroup :K o/GR and a G~ complex structure on 

(or, what amounts to the same, given an H-element H o/or GR), our problem is to determine 

all symplectic representations (V, A, 9) o/ G defined over Q (or R) together with a complex 

structure I on VR satis/ying the conditions (1), (2). 

6.2. Considering the above problem over R, we shall show in the first place tha t  a 

solution (V, A, 9; I )  can be decomposed into a direct sum of R-pr imary solutions. (Cf. 

[9], Th. 1.) 

We first assert tha t  all R-primary components of V are invariant under the complex 

structure I .  In  fact, let W be any  R-irreducible 9(G)-invariant subspace of V. Since G 

is Zariski-connected, the condition (2) implies tha t  I-2dg(Ho) commutes with all 9(g) 

(g E G); or, in other words, the linear transformation I - 2 d g ( H 0 )  is an endomorphism of V 

viewed as a representation-space. Hence the image (Z-2dg(Ho))(W) of W is contained 

in the same R-primary component of V as W, and therefore so does also 

I (W)c  (I-2dg(Ho)) (W) § W. 
This proves our assertion. 

Combining this with the condition (1), we see that ,  in the notat ion of 2.1, the case (c) 

does not occur for any  R-primary component of V. Therefore, denoting by  (V (~), 9 (i)) the 

R-pr imary components of (V, 9) and putt ing A (~) =A]  V (~), 9 (~ =9] V(i~, I(~) = I I  V(~, we 

conclude tha t  a solution (V, A, 9; I )  decomposes into the direct sum as follows: 

(V, 9 ) = 2  (V(~),9~)), A = ~  A (~), I = ~  I I~), 

where each (V (~), A (~), 9(0; I (~) satisfies again the conditions (1), (2). Thus, the problem 

over Q (rasp. R) is reduced to the case when (V, 9) is Q- (rasp. R-) primary. 

By 3.7, the above consideration also implies that,  when one has a Q-primary solution 

(V, A, 9; I) ,  9 is of type (a) or (b) over Q and in either case all the R-primary components 

of 9 are of the same type over R. Moreover, in the case (b), one can take as o" 0 (an extension 

of) the usual complex conjugation, so that  one has a0 2 = 1 in C. 
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There is a "tr ivial" solution of our problem over {~ (resp. R), i.e., the one obtained 

by taking (V, ~) to be a trivial representation of G (of any  degree) defined over Q (resp. 

It) and A and I arbitrarily under the only condition (1). The associated mapping of the 

symmetric domain ~ into a Siegel space is also trivial in the sense tha t  the image of the 

mapping reduces to a point. Such a solution is, of course, of no interest at  all f rom our 

point of view. Therefore, in the following, we shall assume that  the representation ~ is Q- 

(rasp. R-) primary and non-trivial. 

6.3. Applying the main results of Par t  I to the case ]c o = R, we shall now study non- 

trivial, I t -pr imary solutions (V, A, Q; 1) more closely. We first assume that  d~(Ho)=~0; 

as we shall see, this condition is equivalent to saying tha t  the associated mapping of the 

symmetric domain ~ is non-trivial. Moreover, it will also imply that  the complex structure 

I is uniquely determined only by  (V, ~) and H 0 (under the condition (H1)). In  this and 

the next  paragraphs, to simplify the notation, we shall consider the real vector-space 

Vn instead of the vector-space V over the universal domain: 

In  the notation of Par t  I ,  we have the following four possibilities (where ~el stands 

for (~1)K~1): 

(al) 
(as) 
(a3) 
(b) 

K o, = R, ~o, = K ( = the real quaternion algebra), 

As we shall see, the case (an) does not occur; in other words, in the ease (a) ~ is always 

absolutely primary.  

The case (al). One has (Proposition 2) 

VR (3 al) VI~RV2, 
= ~1 | tr iv. ,  

where V 1 and V~ are vector-spaces over t t  and ~1 is an absolutely irreducible representation 

of GR in It. 

Moreover (under the conditions (H1) and d~(Ho) :~0) one has 

A = A1| (4 al) 

I = Ix |  l v ,  (5 al) 

where A 1 (resp. $2) is a non-degenerate, real, Ql(Ga)-invariant alternating (resp. symmetric) 

bilinear form on V 1 (resp. V2) and 11 is a (~l(~)-invariant) complex structure on V1, 

satisfying the following conditions: 
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A (x, 11 y) (x, y E V1) is symmetric and (positive) definite, 

S 2 is (positive) definite, (1 al) 

d~l(Ho ) = 1 I1 . (2 al) 

1,~ denotes the identity transformation of the vector-space V2. 

In  fact, since the centralizer of ~(G)=~I(G)| in E(VR) is equal to 1,,| 

the condition (2) implies that  

I = 2d~l(H0) |  + 1,,| 

~2 being an endomorphism of V 2. As 12= - 1 ,  one has 

4(d~1(H0))2 | 1 +4  d~l(Ho) | + 1 | (~2 2 + 1) = 0. 

Since del(Ho)(~:0 ) and lv, are linearly independent, (for tr(d~i(Ho) ) =0), one obtains the 

relations 
(d~l(Ho)) 2 = 2 lvl +/~ d~l(Ho), 
(p2 = - -~t  1v2, X= -- }(#2+ 1). 

But, the trace of I being also equal to zero, one must have ~t=0, and so ~02=0 , which 

proves (5al) and (2al).  Then, by Proposition 3, (4al)  and ( l a l )  follow from (1) immediately. 

(Replacing A1, $2 by -A1,  -$2 ,  if necessary, one may assume that  Al(x, Iy) and S 2 

are positive-definite.) 

The case (%). One has 

VR (3 %) ~ V I ~ K V 2 ~  

= P1 | triv., 

where Vl (resp. Y2) is a right (resp. left) K-space and P1 is an absolutely irreducible reore- 

sentation of GR in K. In this case, by  a similar argument as above, one has 

A = trK/R(FI| (4 %) 

I = I1| lv~, (5 %) 

where F 1 (resp. F2) is a non-degenerate, quaternionic, Pl(GR)-invariant skew-hermitian 

(resp. hermitian) form on V 1 (resp. V2) and I 1 is a K-linear complex structure on V1, satis- 

fying the following conditions: 

Fl(x 11 y) (x, y E V i )  is quaternionic hermitian and (posititive) definite, 

F 2 is (positive) definite, (1%) 

dP~ (H0) = �89 I1. (2 %) 
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(Note that  the multiplicative equivalence-class of the quaternionie skew-hermitian forms 

on V1 is unique.) 

The case (b). One has 

{ Vg= VI| (viewed as a vector-space over R), 

@ = @i | triv., 
(3 b) 

where V 1 and V2 are vector-spaces over C and @1 is an absolutely irreducible representa- 

tion of GR in C. Moreover one has 

A = 2 Im (FI| (4 b) 

I=(V  ~- 1 T1) |  ., (5b) 

where Fi's are non-degenerate, hermitian forms on V~ (i = 1, 2), F 1 being @l(GR)-invariant, 

and T 1 is a C-linear transformation on V1 with T12 = I, satisfying the following conditions: 

{ F1 (x, T 1 y) (x, y E V1) is hermitian and (positive) definite, 

F 2 is (positive) definite, 
(1 b) 

d@l(Ho) = ~ (T1 § #lye), (2 b) 

where/~ is a rational number, uniquely determined by the property that  T 1 +/~lvl is of 

trace zero. (If F 1 is of signature (p, q) and if Fl(x, T~, y) is positive-definite, one has 

#=(q-p)/(p+q).  Note also tha t  the condition d@(Ho)~0 implies that  F 1 is indefinite.) 

In the case (a3) , one would again have (3b). But, proceeding just as above, one has 

A = BI| I =  (~---1 T1)| , where B / s  are symmetric or alternating bilinear forms 

on V, (i = 1, 2) and T 1 is a C-linear transformation on V 1 with T12 =1. Then, clearly, 

condition (1) can never be satisfied. 

In  the notation of Theorem 1, the corresponding special unitary groups G~ and G~ 

the are given as follows: 

I (aD 
t 

Gla= Sp ( V 1, A 1) 

G2R= SO(V2, $2) 

(a2) I (b) 

SU(VI/K, F1) { SU(V1, F1) 
I 

Thus, one sees that,  in every case, the group G~R is non-compact and of hermitian type 

(type (III), (II), (I), respectively) and the group G' ~R is compact. (Actually, by the classi- 
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fication-theory, the above table exhausts all the possibilities of such pairs (G~, G~).) An 

H-element for G~R is given by 
. f  

Hol=�89 �89 ~ - ~ ( T ~ §  (6) 

respectively, and the condition (2*) means that  the absolutely irreducible representation 

~1 or ~1 o~ GR into G1R satisfies the condition (tt~) with respect to the H-elements H 0 and 

H01. (In the cases (al), (a~), ~ itself satisfies (H~) with respect to H 0 and H0.) Thus, summing 

up, we obtain (the "only if" parts of) the following theorem. (The "if" part is trivial.) 

THeOReM 3. Let G be a connected semi-simple algebraic group, defined over R, o/her- 

mitian type with an H-element 1to (see 4.1), and let (V, A,  Q) be a (non-trivial) It-primary 

symplectic representation o/ G de/ined over It. Then, Q satis/ies the conditions (I-I1) and 

d~(Ho) =~0, i/ and only i/, in the notation o/ Theorem 1, the special unitary group G~R = 

SU(u F1)R is non-compact and o~ hermitian type, G~R=SU(~\u 2. F2)R is compact and 

the representation Pi(~) o/GR into G~R satisfies the condition (H~). More precisely, Q satisfies 
' 1 (H~) with respect to the H-elements H o and Ho = ~I, I being a complex structure on Va satis- 

]ying (1), i / and  ony i/there exists an H-element Hol /or G~R such that one has 

dP1 (Ho) = Hol (condition (H2)), (2*) 

I H01 | Iv, in case (a), 
Hg = .  , ~ - -  (5*) [ Hol |  V - 1 I v  in case(b), 

where [~ is a (uniquely determined) rational number. Thus, in this case, I is uniquely deter- 

mined by (V, Q) and H o. 

(1) The in te rpre ta t ion  given here for H-e lements  in t he  case (a~) is s l ightly different  f rom the  one 
given in [9]. The relat ion be tween  t h e m  is as follows. F ix  an  i somorphism M :  K(~t t  C-->~2(C), as given 
in 3.4, E x a m p l e  3, and  p u t  V1 = (V1QR C)~n (2n-dimensional  complex vector-space) .  Then,  as expla ined 
in 3.4, there  corresponds,  to F1, a complex  symmet r ic  bil inear form S on V1 satisfying the  re la t ion 

3(xe~, ysD = - 7S(x, y). 

Therefore,  if one pu t s  F(x,  y) = ~ - ~  S(&e~, y) (x, y E V1), F becomes a usual  he rmi t i an  form on V 1 and  
one has  by  (45) 

- ~ F(x, y) - r s(x, y) 

for x, y EV 1. I f  one pu t s  I~[ V1 = V - ~  T, t h e n  the  condi t ions for 11 s t a t ed  in the  t e x t  is equivalent  to  

saying t h a t  T 2 = 1, S(x, Ty) is a l te rna t ing  and  F(x, Ty) is he rml t i an  and  posi t ive-deflni te .  Thus  � 8 9  T 
is an  H-e l emen t  in the  sense given in [9]. 

(~) W h e n  considered as a h o m o m o r p h i s m  of an  algebraic group,  th is  P1 should be  replaced b y  
RC/R(PI) in t he  case (b). 

17 -- 662903. Acta mathema$ica. 117. Impr im4  le 15 f4vrler 1967. 
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6.4. In the case dg(Ho) =0, the roles of Vl and V3 (in the formulas (4), (5)) are inter- 

changed. For instance, in the c a s e  (al) , one sees immediately that  one has (3al) with 

A = S I |  2, (4' al) 

I = lv1| (5 '  a l )  

where $1 (resp. Az) is a non-degenerate, real, ~i(GR)-invariant symmetric (resp. alternating) 

bilinear form on Vx (resp. V3) and 13 is a complex structure on Vz, satisfying the following 

relations: 
$1 is (positive) definite, 

A 3 (x, 13 y) (x, y E V3) is symmetric and (positive) definite. (1' al) 

Similar results are also obtained in the other cases (as) , (b), (the case (a3) again missing); 

in the case (b), one has (3b), (4b) with 

I = ( V  - 1 lv~)| (5'b) 

and the condition (l'b) says that  F 1 and F3(x, T2y ) are (positive) definite. In this last 

case the signature of 2' 3 can be arbitrary, and it may happen that  F 2 itself is definite 

and T 3 = -~ 1 v~. 

Thus one obtains the following supplement to Theorem 3. 

THEOI~EM 3'. The notation being as in Theorem 3, 9 satisfies the conditions (H1) with 

respect to the H-element H o and Ho and dg(Ho)=0, i/ and only i/ G~R is compact. In that 

case, G2R is o] hermitian type with an H-element Ho2 satis/ying the relation: 

Ix ' v1| i ~  case (a), 

H ~ 1 7 4  ~ ~-- 1 lv in case (b), (5'*) 

where ~t is a rational number (depending only on the signature o/ E2); in particular, in ease 

(a), G2R is non-compact. 

Contrary to the case dg(Ho)#0, the H-element Ho2 in (5'*) (as well as the signature 

of F3 in case (b)) can be taken arbitrarily. One should also note that,  in case d~ is faithful, 

one has dg(Ho) =0 if and only if GR is compact. 

w 7. Observations over q 

7.1. Let G be a connected semi-simple algebraic group, defined over Q, of hermitian 

type, and let (V, A, 9; I) be a non-trivial Q-primary solution of our problem. First of all, 
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it is clear tha t  we may  assume, without any loss of generality, tha t  G is simply connected 

(as an algebraic group); then G is decomposed into the direct product of absolutely simple 

factors defined over Q as follows: 

a = a I • ... • a s. (7) 

Let  (V1, ~1) be an absolutely irreducible representation of a defined over Q, contained 

in (V, ~). Then by  a well-known theorem in the representation-theory Q1 is decomposed 

in the following fo rm:  
8 

01 = | (8) 
~=1 

where p~ denotes the projection of G onto a~ and ~li is an absolutely irreducible represen- 

tation of G~ defined over Q. In  the following, we shall restrict ourselves to the case where 

0 1 i ' S  a r e  all triviM except one of them, say ~11; i.e., we shall assume that ~1 is o/the [orm 

QI = ~n~ (9) 

By virtue of [9], Th. 2, this is surely the case, if GR has no compact factor. 

Now, let ~ be the Galois group of Q/Q, put  

and denote by  k the subfield of Q corresponding to ~vl; then k is the smallest field over 

which tile subgroup G 1 is defined. Since the conjugates of G 1 are all defined over R, k is 

a totally real number-field (of finite degree). I f  one puts 

80 

t = 1  

then one has s o distinct conjugates a~  in the decomposition (7), and for each ae~a~T~ 
G G r~ ' one has ~1 = ~ n o p l  where p[~ is the projection of G onto GI ~ and Q~I is a representation 

of G[;. Thus ~ is essentially a representation of YIf~l G[1 ~ ~ Re/Q (al), which is nothing else 

than a Q-simple factor of G containing a 1. Therefore, in the following, we shall [urther 

assume that G is Q-simple, i.e., a is o/the [orm: 

8 T ,  

= ~ G1 = R~/~ (G~), (11) 

where G 1 is a connected (simply connected) absolutely simple algebraic group de/ined over k. 

I t  then follows tha t  0 is almost faithful (i.e., has a finite kernel) and so d~ is faithful. 

Remark. When we consider discrete subgroups in GR, the above argument should be 

supplemented by the following observation. Suppose one has a discrete subgroup F in 
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GR such that  F\GR is of finite volume and tha t  9(1 ~) is contained in F '  =Sp(L, A), L being 

a lattice in VQ (see Introduction, 2). Put  G (1) = Rk/Q(G1) and let G (2) be the complementary 

partial  product in the decomposition (7), which is also defined over Q. Then, by  the assump- 

tion (9), 9 (1) =~]G (1) is almost faithful and 9[G (2) is trivial. I t  follows tha t  the projection 

of F on G~ ) is also discrete, for it is contained in the discrete subgroup 9(1)-'(F ') of G~ ). 

Therefore, denoting by  F (~) the projections of F on G~ (i = 1, 2), one can conclude tha t  

P is commensurable with p(1) • 1-(2). (See e .g .H.  Shimizu, On Discontinuous groups operat- 

ing on the product of the upper half planes, Ann. o/Math., 77 (1963), p. 40) Consequently, 

the considerations on the quotient space F \ O  is essentially reduced to tha t  on the direct 

product of the quotient spaces ]~(1)\~11) and F(2)\~ I~), ~)(~) denoting the symmetric domains 

associated with G~ (i = 1, 2), and we have a family of abelian varieties only on the first 

factor F(1)\O(1). Thus, for the s tudy of families of abelian varieties, we may  restrict our- 

selves to the case G=G (1). 

One should also note that ,  under the assumption (11), the commensurabili ty class 

of F is uniquely determined, i.e., F is automatically commensurable with Gz. 

7.2. We shall note here that,  under the above assumptions, one has Kq, =Kql,, Re, = ~qH 

and if 
9n = 01 ~ Pn (12) 

is a factorization of 911 as given in Proposition l ,  then 

91 = 010 (~11Opl) (13) 

is the corresponding factorization of 91. In  fact, for r one has 9~=9~1oP~, so tha t  one 

has 9 ~ 9 1 ,  if and only if P~=Pl and " 911 " 911, and the condition p~ =Pl  is equivalent to 

(~ 6 ~a,. Therefore one has ~Q~ = ~1~ ~ ~al, namely Kel =Ke~, D/c. Moreover, if ~11 is a repre- 

sentation of G 1 into GL(V1/~e,~) satisfying (12), then one has also (13). This implies, by  

the  uniqueness of the factorization in Proposition 1, tha t  ~q, = ~e~,, and our last assertion 

follows. 

7.3. The notation and the assumptions being as above, let us first consider the case 

~(a). By  Theorem 1 and 7.2, the representation 9 can be factorized as follows: 

Pll ~ / Q  P l  , Gl/k- �9 Gi• = SU(VI/~ol, F1)I~11 RKQ~/Q G '  = | - Sp (?1, .~1)/% ' * Sp(V,A):Q, 

(14a) 

~r what  amounts to the same, 
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G :  Rk/Q(G1)/~KQ'/Q (Pll ~  .~K~,/Q (~1) 1 
x / 

R~jQ (a~) ] 

| 
�9 G'=Sp(V,A) .  (14' a) 

Here P~ is almost faithful, since G 1 is absolutely simple and ~ is non-trivial. 

By w 4, all R-primary components of V are absolutely primary, so that  the decom- 

position 
d 

is exactly the decomposition of V into the R-primary components. This implies in the 

first place that  Ko~ is a totally real number-field. Next, applying what we have said in 

3.7 and Theorem 2.2' to each component V~, one sees that  

d t*gi I ~  
Rgq/Q(G~)=~=IG 1 and R~e,/Q(G~)= G~ ~ 

"= i = 1  

are of hermitian type and that,  for each i, one of (G1)R and (G2)R is compact, while the 

other is non-compact. Thus, in the classification of 8.1, R~e,jQ(G~) is of type (III.1), (III.2) 

or (II) (see the next  paragraph). Moreover, one can take respective H-elements He1 and 

H0~ for R(G~)R and R(G~)R in such a way that  one has 

d(R(P1))(H0) = He1 (P1 = Pll~ (15) 

H01| + 1 | = He. (16 a) 

Thus the representation R(P1) satisfies the condition (H2) with respect to the H-elements 

H 0 and He,. 

Conversely, it is clear that,  if R(G~), R(G~) and R(P1) are taken to satisfy all these 

conditions, then the representation @ defined by  the above diagram (14a) or (14'a) satisfies 

the condition (H1). Thus one sees that  the essential part  of our problem lies in the deter- 

mination o/the absolutely irreducible (almost/aith/ul) representation @11 =01~ P11 el G 1 such 

that G~=SU(u , F1) is o/ hermitian type (as described above) and that RrQ,/e(Pnopl): 

G=Rk/Q(G1)~R%/Q(G~ ) satisfies the condition (H2). In fact, this will first determine 

uniquely Ko, ~e,, Vl and F 1 (up to a scalar multiple), and then (as we shall see it more 

explicitly in the next  paragraph) settle the rest of the problem, i.e., the determinations 

of Y2, F~ and I ,  almost automatically. A complete list of such absolutely irreducible re- 

presentations @n will be given in w 8. 

Denoting by ~1 and Of the symmetric domains associated with R(G~)R and R(G~)R 

respectively, one obtains from (14%) the following diagram: 
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�9 x ;  t 9  ] ~ ' .  (17) 

If one takes invariant complex structures on ~ and ~ determined by H~I and He2, 

respectively, these associated mappings become holomorphic. As we have seen above, 

~ x ~ has exactly d irreducible components. When one fixes ( V, A, Q) and H 0 (together 

with the factorization (14'a)), the complex structure I giving a solution of our problem, 

i.e., satisfying the conditions (1), (2), is parametrized by an H-element H02 for R(G~)R. 

In other words, if d e is the number of irreducible components of ~ ,  the disjoint sum of 

2 ~ copies of ~ provided with various complex structures may be regarded as a "para- 

meter-space" of the solutions. 

Remark. From the almost faithfulness of ~n, it follows that  (G~)R is compact, if 

and only if ~ (G1)tt is compact. Thus, in particular, if Git has no compact factor, then 

R(G~)It has no compact factor either and so R(G~)It is compact, in  this case, I is uniquely 

determined by (V, ~) and H0, and the, parameter-space O~ reduces to a point. 

7.4. To describe the solutions more explitly, let us now consider the cases separately, 

according as ~e, ~ 1 or + 1. First in case ~ ,  ~ 1, all R-primary components (V~, ~i ' ,  ~(~ = ~i~)) 

of ( V, A, ~) are of type (al). Since we have at least one index i for which one has d~(O(Ho) #0,  

it follows that  F~ =A 1 is alternating and so F2=Sz is symmetric. Thus one has 

{:=R%,/Q(VI| (18al) 

= trKq,/~ (A 1 | ~q~), 

and G~ =SP(V1, A~), G~=SO(V2, S~). (R(G~) is of type (III.1).)Then, one has do(O(Ho) #0 
for all 1 ~< i ~< d, and therefore 

d 
I = ~ I<1~)| 1, (16al) 

t = l  

where I<~)=2deI*(Ho) is a complex structure on (V~*)R. With suitable ~,= _ 1  (1 ~i~d), 
one has 

{e~ A~(x, I(~ ~) y) > 0, 
(19 a l )  

Now, we shall indicate the process of obtaining a solution (V, A, p; 1). First find an 

absolutely irreducible representation Qll of G 1 into G~=Sp( V1, A1), defined over K, such 

that  RxiQ(~llopl) satisfies (H~) with respect to the H-elements H 0 and H~I = �89 1(i ~), I(1 ~) 

being a complex structure on (V~0m Next, one determines the "distribution of signs" 
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(st) by the first inequalities in (19al). Then , taking any vector-space V 2 defined over K 

and any symmetric bilinear form S~ on it also defined over K and satisfying the second 

inequalities in (19al) with this (st), one constructs a solution (V, A, p; I) by means of 

(18a 0 (Ke, =K)  and (16a 0. 

One notes that, taking an element co EK with the given distribution of signs (e,) and 

replacing A 1 and S 2 by ~oA 1 and ~o-lS2, respectively, one may always obtain the solution 

with s t -  - 1  for all i. 

Next, let ~e~+ 1; then ~e,, having an involution of the first kind, is a quaternion 

division algebra defined over KQ1. We shall rearrange the indices in such a way that  

d~(~)(Ho) 40 for 1 <~i<~dl, 
(20) 

d~(*)(Ho)=O for d l + l  <.i <~d. 

First consider the case where F 1 is hermitian and F 2 is skew-hermitian (with respect to 

the canonical involution of ~el). (R(G~), R(G~) are of type (III.2), (II), respectively.) Then, 

for l<~i~dr, one has ( ~ ) R ~ I  and the corresponding R-primary component Q(i) is of 
~ ~(~) type (ax) , while, for dl+l<~i<-d , (~e,)R+I and is of type (as). More precisely, for 

1 <~i<~dl, taking an R-isomorphism M(*) : ~ * - - > ~  (as given in 3.4, Example 3), one can 

define V(1 ~ ~* A(1 ~ - -  ( V i  S11)R, V(2 t) v, = ( S l l V 2 ) R  and Sos ~ by the relations (I, 45), (I, 45'). This 

~i T7(0 ~ TZ(t) A(O ~o(~) and one has isomer- allows us to identify (~1)R with ~1 ~ ~ and .~I~ with 1 ~ - 2 ,  

," S~t)) phisms: (G~")R ~ Sp(V(1 ~ A(l~ (G2 )R~SO(V(2 ~ . Then one has 

d~ d 
I = 5 I I ~ 1 7 4  ~ 1| ~ (16') 

i - i  ~=di+1 

where I~ ') ~2dPI~(Ho){V(1 ~ and I~ (~) is a K-linear complex structure on (V~')R. Also, with 

suitable e~, one has 
{ e~A(~)(x, I~)y)>O, 

e~S(~~ (1 ~<i ~<d~) (19' al) 

{e~ FI~>O, 

e~F,~' (I(~~ y)>0. (d~ + 1 ~< i < d) (19' a~) 

(Remark that  the e~'s for 1 < i  <~d~ depend not only on the choice of F~ and F~ but  also 

on the matrix-representations M(~).) 

In  this case, when one has Pn : G1-->G1 such that  RK/~(PnOpl ) satisfies (H~) with 

, lx:a~ i(~), a solution can be constructed, first respect to the H-elements H 0 and H0~=~/_~=~ 

determining the "distribution of signs" (e~) by the first inequalities in (19'a 0 and (19'%), 

and then taking any F~ satisfying the second inequalities in (19% 0 and (19'a~). This time, 

I (~ ~ ( d l + l  <~i<~d) can be taken quite arbitrarily and I is then given by  (16'). 
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The case when F 1 is skew-hermitian and F~ is hermitian (i.e., R(G~), R(G~) are of 

type (II), (III.2), respectively) can be treated quite similarly, just in interchanging the 

roles of F 1 and F 2. Namely, for 1 ~i~dl, one has (~*,)a+ 1 and ql0 is of type (a2), while, 

for dl+l<~i<~d, ( ~ ) a ~ l  and Q(o is of type (al); for d l + l  <~i<~d, one gets a symmetric 

(resp. alternating) bilinear form S(1 *) (resp. A(2 *)) on a real vector-space V(1 ~ (rcsp. V(~ *)) 
~'vd .O(i) ~ ( i )  such that  one has (~*)R = V(I*)| V(2 ~ and ~1 =*~1 |  �9 Then one has 

dx d 
I = 5 I < 1 ~ 1 7 4  ~ 1| (16") 

i =1 t=dx+l  

v i where I(it)=2dPI~(Ho) is a K-linear complex structure on (u (1 ~i~d~) and I~ (~ is a 

complex structure on V~ ~ (d I + 1 ~ i  ~d).  Moreover, with suitable e~, one has 

{s~ FI' (I[~) x, y ) ~ 0 ,  

e ~ F ~ 0 ,  (1 <~i~dx) (19"a0 

{ e~S(x~ >~ O' (19" a~) 
o Aa)~x I(Oo ~>~a (d l+ l~< i  ~ ~ ~ , ~ ~ v .  < ~ d )  

Thus it is again clear that  the determination of Pn is sufficient. 

7.5. In the case (b), the special unitary groups G~=SU(V~/~tq~, F1) and G~= 

SU(~q~\u F~) being algebraic groups defined over K0, the diagram (14a) in 5.3 should 

be modified as follows: 

P l  'RKoJK. (Pll)~ XGIIK., / 

f 
| "~ r 

RK./Q G'=Sp(V,A)/Q. (14b) 

By a similar reason as in 5.3, one sees that  K 0 is totally real, Ke, is totally imaginary, 

and that  
d/2 ,~ 

V = ~  W~ (withVl=R~lmo(Vl| 

is exactly the decomposition of V into R-primary components. Thus, replacing KQ~, d, 

hi,  ~ ,  ~I1, respectively by Ko, d/2, R~/~o(P11), Vl, J~, everywhere, one sees that all re- 
sults stated in 7.3 remain true in the case (b), except for the following two points: (i) it 

,T~ tT~ 
can happen that  both (G1)R and (Ge)R are compact, so that  the number of irreducible 

components of ~ • ~ is ~< d/2; (ii) the equality (16a) should be replaced by  a congruence 

modulo scalar multiplications (in each R-primary component) by certain purely imaginary 

numbers. 
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To be more explicit, for each 1 <~i <~d/2, let F~ ~ F~ ~ be (usual) hermitian forms on 

complex vector-spaces V(~ ~ ~ " ~ ~ F ~ respectively = (u ~xx)c, V~ ~ = (euu obtained from FI ,  2, 

(as explained in 3.5; since a~ = 1, we may assume X = 1 in (1.20, 20')). Then one has 

Suppose that  F(1 ~ (1 ~<i <dl/2 ) is indefinite with the signature (p~, q~) and F(~ ) (dl/2 + 1 <~ 

i <~ d/2) is definite. Then one has 

_ _  d l / 2  d / 2  

I =  V -  1( Z Ti~174 (o+ Z 1 v,(o | c T(2~ (16b) 
i=1 i = d 1 1 2 + 1  

where T(~ ~ (1 <~i ~di/2 ) is a C-linear transformation on V(~ ~ with T(~)~= 1 such that  one has 

dP~'(H~ V(~~ 2 (T~~176 (15b) 

for some rational number/x, and where T~ ~ (dl/2 + 1 <~i <~d/2) is a C-linear transformation 

on V(~ ) with T(~ i)* = 1. With suitable s,, one has 

{e~ Fi ~ (x, T~) y)>>O, 
~F~)>>0, (1 ~<i ~<dz//2) (19 b) 

F ( o ~ 0  
) (19'b) 
~ F 2  ~) (z, T (')~ y)>>0.~ (al/2 + 1 < i < d/2) 

(Note that  T~ ~ and f~ =e~(q~-p~)/(p~ +qi) are determined uniquely by (15b).) 

Thus, when one has RK//fo(Pll): GI--> G~ such that  R/uQ(PllOPl) satisfies (H2) with 

respect to the H-elements H o and Hm=�89  ~--  1 ~(T(~~ a solution can be con- 

structed, first determining T(~ ~ ( l < i < d l )  by (15b) and the distribution of signs (st) by 

the first inequalities in (19b) (or by  the relation /xi=(q~-p~)/(p~+q~)) and (19'b), and 

then taking any F 2 satisfying the second inequalities in (19b) and (19'b); here rv(o,~ ~2 o can 

be taken quite arbitrarily and I is then given by (16b). 

w 8. List of solutions 

8.1. We are now in position to give a list of all possible Q-simple algebraic groups 

G=  Rk/Q(G1) of hermitian type having actually a (non-trivial) symplectic representation 

satisfying all the above requirements. I t  suffices to give a list of the corresponding abso- 

lutely simple algebraic groups G1 defined over a totally real number-field k. In  the follow- 

ing, we arrange the indices i (1 <~i<~s, s=[k : Q]) in such a way that  (GI;)R is non-compact 
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for 1 <<-i<sl (81>1) and compact for s l + l  ~ i < s .  A "quaternion algebra" means always 

a central quaternion division algebra, and a "quaternionic" ~-hermitian form means an 

~.hermitian form with respect to the canonical involution of the quaternion algebra. 

(I) G 1 =SU(u F1) (simply connected), where 

]~' = tota l ly  imaginary quadratic extension of k, 

(R, t0)= central division algebra of dimension r ~ with an involution of the second kind 

(with respect to the complex conjugation a0), both defined over k', 

u :n-dimensional  right R-space defined over It', 

F 1 :non-degenerate  hermitian form on u with respect to (~, ~0) defined over It'. 

(One denotes by (p~, q~) the signature of the (usual) hermitian form F1 (~) obtained from 

F~ as in 3.5. So one has Min{p~, q~}>0 for l<i<~s 1 a n d = 0  for sl+l<i<~s. ) 

(~) G I=SU(v l /R  , F1)  , where 

R = quaternion division algebra defined over k such that  (R~)R = K for 1 ~<i ~<s I and 

= ~/2(R) for s l + l  <i<~s, 

u = n-dimensional right R-space defined over k (n i> 3), 

Fl=non-degenerate , quaternionic skew-hermitian form on u defined over /c such 

that,  for s 1 +1 <i<~s, the real symmetric bilinear form S(1 ~), obtained from FI i 

as in 3.4, is definite. 

(Il l .  1) G 1 = Sp ( V1, A1) (simply connected), where 

V1 =n-dimensional vector-space defined over k, 

A 1 = non-degenerate algernating form on Vi defined over/c. 

(In this case, one has Sl=S. ) 

(III.2) G 1 = S U ( V 1 / R  , F1) (simply connected), where 

R = quaternion division algebra defined over ]~ such that  one has (R~I)a = ~?/~(R) for 

1 <~i<~s 1 and =K for s l + l  <~i<~s, 

u = n-dimensional right R-space defined over k, 

F1 =non-degenerate, quaternionic hermitian form on V1 defined over k such that,  

for s 1 +1 ~<i ~<s, the real quaternionic hermition form F~; is definite. 

(IV.I) G1 =simply connected covering group of SO(W, S), where 

W =/-dimensional vector-space defined over k (1 >~ 3, 144), 

S =non-degenerate symmetric bilinear form on W, defined over k, such that  S ~i 

(considered over It) is of the signature (1-2, 2) or (2, I - 2 )  for 1 <~i<~sl and 

is definite for s 1 + 1 ~<i ~<s. 
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(IV.2) G 1 =simply connected covering group O f SU(W/~,  II), where 

= "totally indefinite" quaternion division algebra over k, (i.e., one has (~;)R ~ 1 

for all 1 <<.i~s), 

W=l-dimensional right ~-space defined over k (l' >~3), 

I t=non-degenerate,  quaternionic skew-hermitian form on W, defined over k, such 

that  the real symmetric bilinear form S (~, obtained from H ~1, has the same 

signature as in the case (IV.l). 

Remark. Besides these, there are Q2simple algebraic groups of hermitian type, of the 

mixed type (II-IV.2), of the exceptional type (D4) coming from the "triali ty",  and of 

types (E6) and (Ev). But  by [9] we know already that  for the last two types there is no 

solution of our problem. Also, as we shall see in 8:4, the mixed type (II-IV.2) can occur 

(under the assumption (9)) only for l' =4,  and the exceptional (Da) cannot occur at all. 

8.2. We shall now determine, for a given G=RkIQ(G1) , all non-trivial, Q-primary 

solutions (V, A, ~; 1) (satisfying the condition (9)) of our problem. As we have seen in 

7.3-7.5, it is enough to determine all absolutely irreducible representations Qll =01 ~ Pn of 

G 1 of type (a) or (b) such that  RK~/Q(G~) or R~ro/Q(G~) with G~ =SU(u P1) is of type 

(III.1), (III.2), (II) or (I) and that  R%/o(Pnop~):G=Rk/o(G~)~R%/Q(G~)orRir,/Q(G~) 

satisfies the condition (H2). Considering G 1 and ~11 over R, one will then have a simple 

Lie group G1R of hermitian type and an absolutely irreducible representation Q~I of it 

into a certain (complex) unitary group satisfying the condition (H2). But, we have already 

a complete list of such representations ~n ([9], 3.10), whence we can conclude that,  except 

for the case G1 = (D4), any one of these representations, taken to be defined over Q, satis- 

ties actually all the above conditions. We shall prove th i s  last point in the following 

Proposition: 

PROPOSITION 7. Let G 1 be an absolutely simple algebraic group defined over a totally 

real number-]ield k, such that G1R is non-compact and G=Rk/Q(G1) is o] hermitian type, 

but not o/type (1)4). Then,/or an absolutely irreducible representation ell o] G 1 defined over 

o/type (a) (resp. (b)), the/ollowing/our conditions are equivalent: 

(i) I /  e n = O l o P n  is the/actorization o /~n  relative to ko=k and i/ G I = S U ( V 1 / ~  , F1) 
is the corresponding special unitary group, then R%IIQ(G~) (resp. RgojQ(G[)) is o/type (III.1), 

(III.2), (II) (resp. (I)) and R~re/Q(Pnopl) : G= Rk/Q(G~)-+RKo/Q(G~) (resp. RK~163 satis- 

fies the condition (H2). 

(ii) The notation being as in (i), GiR is o/hermitian type (III), (II) (resp. (I)) and Pn 

(resp. RC/R(P11) ) : GIR-+ G;R satisfies (tI2): 
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(iii) I ]  ~1=0~(~)o ~(~) is the /actorization o/ ~11 relative to /c0=R and i/ G(11)- 

SU(V(~)/~ (1), F(1 ~)) is (the group o] R-rational points o]) the corresponding special unitary 

group, then G(11) is o/hermitian type (III), (II) (resT. (I)) and -1~(~) : G1R -~ ~11'~(~) satisfies (H~). 

(iv) ~ll(G1R) has a hermitian invariant E~ and ~n : G1R-->SU( VIc, El) satis[ies (I-I~). 

In  fact, (i)~ (if) is evident. The equivalence (if)r follows immediately from the 

existence of an R-(resp. C-)isomorphism 0 : E(V1/~)R _>~(u inducing an isomor- 
/'~(1) phism GIR~I , such that  one has 01=0(11)o0, -11[:)(1) = 0OPll (see 3.7). (0(11) m a y  be taken 

to be id. except for the case where G~ (1) is of type (II).) The equivalence (iii)~(iv) is clear 

in the ease (b) (~(t)=C). In  the ease (a), if G(11) is of type (III) or (II), there exists an 

invariant hermitian form F 1 on the representation-space Vlc of 0(11) and the monomor- 

phism 0(lZ) : G(11) -~SU(u El) satisfies (Hie). (In the notation of [9], dO(11) is nothing but  

the canonic&l injection: (III)p or (II)p->(I)p,~.) Hence one has (iii)~ (iv). The converse 

(iv)~ (iii) follows either directly from the definitions or from the list given in [9]. 

Now, suppose ~n satisfies (iv). In  view of the list in [9], one sees that  every conjugate 

~1 of ~11 is a representation of G~ of the same kind as ~11, excepting the case where G 1 

is of type (D4). Since ~1 = 0~o P[1 is the factorization of ~[1 (relative to k 0 =/c), this implies, 

by virtue of (iv)~ (if), that  (if) holds for the corresponding conjugate P[I: (G[)R-+(GI~)R 

of PlI as long as (G~)R is non-compact. On the other hand, if (G~)~ is compact, then 

011((G1)R) is contained in a compact unitary group, so that  (G1)R 1S also compact (see 4.4). 

Thus we conclude tha t  (i) holds for ~11. This completes the proof. 

8.3. We finally obtain the following list of all possible 011=01OPll excepting the 

ease G 1 = (/)4) , which we shall t reat  separately in 8.4. The first four solutions will be called 

"standard".  

(I) (nr>~3): Case (b). K~l=k'  , K 0 =k  , ~ = ~ ,  and V1, F 1 are the same as given in the first 

list. Denoting by ~z I the canonical projection: R~UK,(GL(Vi) ) --> GL(u , one has Pll = ~1 

or ~z~' (restricted on G1), so that  R%/K,(PlI ) =id. 

(II) (n>~5): Case (a). Kel=/c, ~0 ,=~ ,  and u F1 are the same as given in the first list; 

and Plz =id.  

(III.1): Case (a). Kel =/c , ~Q~ 1, u  V1, FI=A1; and Pll =~11 =id. 

(III.2): Case (a). K~, =t:, ~e, = ~ ,  and u Fa are the same as in the first list; and Pl l  =id. 

(I') (Special case of (I) where one has p,  or q , = l  for all 1 4i~<sl): one has ~ n = A ,  o01oTq 

(1 ~<v E [nr/2]), where A, denotes a skew-symmetric tensor representation of degree v 

of GL(V1). Case (a) and K~,=k, if v=nr/2, and case (b) and K~, =k', Ko=k  otherwise. 
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For the determination of ~e~ and F~, see 5.3 and [9], 3.2; especially when v=nr/2, 

one has eoe = ( -- 1) n~/2. 

(IV.l): Qn is a spin representation. Let  C+ be the even Clifford algebra of (W, S). When 

l ~ l  (2), one is in Case (a), Kq~=k, ~q~.,~C +. One can identify C + with ~(u so 

that  Pll becomes the inclusion mapping. F~ is the e-hermitian form on u correspond- 

ing to the canonical involution t of C+; one has 

1 if 1 ~ + 1 ( 8 ) ,  
e0e = - (21) 

- 1  if 1 ~ _ 3 ( 8 ) ,  

and accordingly G~ =SU(V1, F1) is of type (II) or (III) ([9], 3.7). When l ~ 0  (2), put  

k '=k( l / i -1 ) l /2de t  (S)). Let ~(0 be the spin representations of G 1 obtained by the 

simple component C/~ (i = 1, 2) of C + and denote by V~ ~), F~ i), -n,D(*) ... the. correspond- 

ing data. When l ~ 0  (4), one is in Case (a), Kq(~)=k', ~ ) ~  C~ (~  C). One can identify 

C + with s165 so that  -11D(*) is the restriction on G 1 of the projection of C + on 

the ith factor. The hermitian form F~ ~ is the e-hermitian form on V~ ~) corresponding 

to the restriction on C + of the canonical involution t; one has 

11 if l ~ 0  (8), 
CoS = (21') 

- if l - ~ 4  (8), 

and accordingly G~' =SU(V~ ~), F~ ~)) is of type (II) or (III) ([9], 3.6). If k' D k, ~(1) and 

~(2) being conjugate over k, one gets only one solution. When 1~2 (4), one is in Case 

(b), K~(~)=k', Ko=k,  and ~0c), D(~) r n  are the same as above. The hermitian form F1 (~ 

is the one corresponding to the involution of the second kind t, =tao{C +. Q(I~ and Q(~), 

being conjugate over k, give one and the same solution. 

(IV.2): ~n is a spin representation (see 5.5, 5.6). Replacing l, C +, C/~ by  21', ~, ~,, respec- 

tively, one obtains the similar result as in the case (IV.l), l ~ 0  (2). 

Remark. For the group of type (II) (n=3),  the identical representation and two spin 

representations (which are mutually conjugate over k) are solutions of our problem. But, 

since this group is isomorphic to a group of type (I) ( n = l ,  r=4) and these solutions cor- 

respond to those given in (I'), we omitted them from the list. On the other hand, for the 

group of type (IV.I) (l=8), (IV.2) (1'=4), no modification is needed, so that  they are 

included in the list. 

8.4. In  this paragraph, we shall consider the groups of the mixed type (II-IV.2) 

(l' >4) and the groups of type (/)4) (which is not of type (IV.l), (IV.2)). Let  (G1, ~) be 
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the universal covering group of SU(W/gt, It), where ~)is i~ quaternion division algebra 

defined over k such tha~ (R~i)R=R for l<~i<<.s' and = ~ 2 ( R )  for s'+l<~i<<.8, W an l'- 

dimensional right ~-spaee, and II a non-degenerate quaternionie skew-hermitian form on 

W, both defined over k, such that  the real symmetric bilinear form S (~, obtained from 

It ~ for s' + 1 ~<i ~<s, is of signature (2/' - 2 ,  2) or (2, 21' - 2 )  for s' + 1 ~<i ~<s~ and is definite 

for 8~ +1 ~<i <s. Let  ~ = ~  + ~  be the corresponding "twisted" Clifford algebra, as con- 

structed in 5.5, and let 0 I~ be the spin representation of G~ obtained by  ~ 0"=1, 2). 

First let l ' >  4 and 0 <8' <Sx, and suppose we have a solution On = 0~o Pn of our prob- 

lem. Then, one has Pl[~ =q~i for 1 ~<i ~<8' and ~1[ i =~(1)~i or ~(2)*'~ for s' + 1 <~i <~s~, whence 

one would have 01o~ =~(x) or 0 (~, which is a contradiction (cf. 5.6). Thus there is no solu- 

tion for the.group of the mixed type (II-IV.2) (l' >4). 

Next, let l' =4  and we shall examine the condition for the existence of solution. Let  

e ~(k)~[. In  view of Jacobson's theorem (5.6), we have the following possibilities for the 

algebra-class of (~I)a: 

1<~i<~8' 8'+l<...i<--.s~ s1+1<~i~8 

(~i)a ~ I K or 1{ K R 
I 

(@~)R "~ I R or K K R 

Now, if ~11 = 01 ~ Pll is a solution, then, for s ' +  1 ~<i ~sl,  one has again ~1 =~r or ~(2)~, 

while, for 1 ~i<~s', one has ~[l=01oT ~; or =~o)~ where ( ~ ) R ~ K  (ef. [9], 3.3). Thus, in 

ease s' =81 (i.e. G 1 is of type (II)), Pll =~0 is always a solution, and ~11 =~(1} i8 a 8ol~tio~ 

i[ and only i /one has ( ~ ) R ~ K / o r  all rE ~(k)vi', 1 ~<i ~<s'. This condition implies that  k '=  

k(~nn(tI)) -: k, for otherwise one would have (~ll)R ~ ~' (~2~)R~K (l~<i~<s'), which is impossi- 

ble. Therefore the above condition is equivalent to saying that k' =k  and (~;)R ~ K / o r  all 

1 ~<i ~<s'. In  case O<s' <s 1 (i.e. G~ is of the mixed type (II-IV.2)), the only possibilit3/is 

~n =Qo~ and this occurs under the same condition as above. In both cases, the data de- 

scribing ~11=~! ~ is as given in 8.3, (IV.I) (l=8); especially the corresponding group Gs 

(which is in this case k-isogeneous to G~) is of type (II). 

Finally, let us consider the "exceptional" (/)4) which comes from the triality./c being, 

as before, a totally real number-field, let G~ be a simply connected algebraic group of 

type (D~) such that  (@)1~ is non-compact and corresponds to an irreducible symmetric 

domain (of type (II)4z(IV)6) for l<~i<<.Sl, and is compact for sl+l<~i<~s. Take any 

quadratic form of 8 variables, defined over Q, of the signature (6, 2) (say, ~L~ X~ - X ~  -X~) ,  

and let G o be the corresponding spin group. Then there exists an isomorphism f : G O -> G~, 

defined over ~ (l R. 
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Now, let A=  (al ..... ~4} be a O(k)-fnndamental system of G 1 in the sense of [19]. 

By definition, G~ is an exceptional (D4), if and only if the operation of {[a]laeQ(k)} 

(as defined in 4.1) is transitive on the set of three extreme vertices al, a3, ~4 of the diagram 

of A (see the figure). On the other hand, if Gx has a solution ffll of our problem, then, 

for any aEQ(k), pglo/ is one of the two spin representations of G 0. Through the fixed 

isomorphism ], one can distinguish two fundamental weights of G 1 (relative to A), say 

o)~, w 4, corresponding to the two spin representations of G 0. Then one has 2Q~, =co s or eo 4 

for all a E Q(k), 2e~ ~ denoting the heighest weight of ~gl (relative to A). In  view of the 

~t,~ this implies that  {o~a, wa} and hence{an, an} is left invariant under relation ~ =-~o1,, 

[a] (ae~(/c)). This contradiction proves the non-existence of solution for the excep- 

tional (DR). 

w 9. Examples and generalizations 

9.1. We shall give here some examples to indicate how the "distribution of signs" can 

be determined for the non-standard solutions. We keep the notation of the preceding 

section. 

Example 1. (I') O,<nr/2) Let G I = S U ( V l / ~  , F1). For each 1 <~i<~s=d/2, let Vz (~) and 

/vl(i) be a complex vector-space and a (complex) hermitian form on it obtained from ~ ,  F~!, 

respectively. Let  A~(V(1 ~)) denote the vth exterior product of V1 (~), and A~(F(1 ~ the hermi- 

tian form on A,(V~ (~)) obtained from F(1 ~) in the canonical way (see [9], (34)). Then one has 

(GI')R ~= S U( V(~ ~), F(~')), (Gi~')a ~ SU(A~(V(~)), A, (F(~))). 

Through these isomorphisms, the H-elements for R(G1)R, R(G~)R are expressed as follows: 

2 ~ ~p~+qJ '  

He1 - y~-  1 Tf?, + e~ -~=~, , I ,  
2 ~ p, -~ q~] 
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where (Pi, q~) is the s ignature  of F(i ~), e~= _ 1 ,  and  T(i i) is a C-linear t r ans fo rmat ion  on 

V~ (~) with T~~ 1 such t ha t  e~ F(~)(x, T(~)y) is posit ive-definite,  and  similarly for the  second 

equation.  Now suppose the  condition (H~):R(Pi)  (Ho)=Hol is satisfied. I f  p i = n r - 1 ,  

q~ = 1, e~ = 1, then  one has  

P ~ =  ' q~ \ v - l ] '  

(see [9], 3.2). I n  general, for l<i<.si ,  p u t  ~?~=1 or - 1  according as q ~ = l  or p ~ = l ;  then  
8' 8 v+l apply ing  this result  to ~TlF(1 ~), sdT~T(~ ~), one gets easily ~ = ~ . For  sl+IC~i<.s, si and 

s~ being de te rmined  b y  the  conditions s~F~i)>~O and  s/A~(F(i~))>0, one clearly obtains  

Example 2. ( IV.I)  W e  can take  ~e~ and  Vi in the  following form: 

~e~ = sC+s, V 1 = C+s, (22) 

where e is a F - ra t iona l  idempoten t  in C +, which is indecomposable  in k'. ( In  the  following, 

we pu t  k'  = k ,  if 1 is odd.) I n  the  case (a), one m a y  fur ther  assume t h a t  e' =r so t h a t  ~e, 

is invar ian t  under  t ([2], p. 156, Th.  12); then  t induces in ~ ,  an  involut ion of the  first  

kind. 

The case I-~3, 4, 5 (8) and ~ is a quaternion algebra (i.e., R(Gi) is of t ype  (III .2)) .  

I n  this case, one sees easily (e.g., b y  count ing the n u m b e r  of l inearly independent  t-sym- 

metr ic  elements  in ~q~) t h a t  t[~e~ coincides with the  canonical involut ion to of ~e,. There- 

fore one m a y  t ake  F i in the  form 

Fi(x , y) = x'y for  x, y e u  i. {23) 

For  I ~< i ~< d,, let {e~ ) be a sys tem of mat r ix-uni t s  in ( ~ ) R  and p u t  

- -  (Yl' 811)R, (24) V l  ' ) -  �9 (,> 

[ A~)(x, y) = - t r  (e(l~x'y) for x, yEV(1 ~). 

. . . ,  t WTt\ Let  fur ther  (e(~ ~), e~ ~)) be  an  or thogonal  basis of [ SR such tha t  S~(e~),e~>)=l 
(1 ~< ] ~< l - 2  or 2) and  = - 1  ( 1 - 1  or 3 ~< ~ < 1). Reorder ing these basis if necessary,  one m a y  

assume t h a t  the  H-e lement  H 0 for R(G~)R is compat ib le  wi th  the  usual  bounded  domain  

realization of ~ = R(G1)R/~ obta ined  f rom these basis (see [9], 3.5). Then,  if dR(P i ) (H0)=  

Ho i l'E'dl I ( t )  =~/_~=z z , one has  ([9], 3.6, 7) 

i(i~)(x) = ~ ~ - i ~  ~ if S ~' is of s ignature  ( 1 -  2, 2), (25) 
~--(~)~(~)~ if S ~ is of s ignature  (2, l - 2 ) .  
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We put  e (i) ='(i)~l-1 e~(5) or - ~1~(i)'")~2 according to the cases, and call fi(~)(E R) the (1, 2),corn- 

�9 (~) -(~) r --/~(i) ~(~) Then, one has ponent  of e ~i e a) e ~i, i,e. one puts  sn  ~ s22- ~12. 

/~(i)A (1 ~) (x, I f  i) y) = - fl(~) tr(el~(i) x~ e (~) y) - tr  (e(t)-1 x ~ e(i) y). 

Since x-+e~ ) ~x~e (~) is a positive involution of (C+~)n (cf. [10]), this shows tha t  the i th 

sign si is given by  sign(fi (i)) for 1 ~< i ~< d 1. (In particular, one has/3(o =~ 0.) For  d 1 + 1 ~< i ~< d, 

x -~x ~ is a positive involution of (C+~)R, so tha t  Y[~ is positive-definite. Thus one has e~ = 1. 

I n  case ~0,~ 1 (i.e., R(G~) is of type  (HI. l ) ) ,  taking k,-rational matr ix-uni ts  e;a in 

the splitting quaternion algebra and put t ing  e~ ) =sj~,  A(I~ ~, etc., one obtains the 

same result. 

The case l ~  - 1 ,  0, 1 (8) (i.e., R(G~) is of type  (II)). I n  this case, one has 

~' = aol~'~ for ~C~Q~ (26) 

with a 0 E (~e,)l~,, a~' = - a  0, and so one m a y  pu t  

Fl (x , y) = aox' y = x" aoy. (23') 

r For  d ~ + l  <~i<~d, let ~ Jks be a sys tem of matr ix-uni ts  in (~[~)R and define V(~ ~ and S(t ~) 

similarly as (24). Let  ~(~)(~R) be the (1, 2)-component  of ~ ao. Then, quite similarly as 

above, one obtains e~=sign(o~(~ For  l ~ i ~ d l ,  let e(_ ~ and H o be as before. Then, 

one has a~r ~ =6(~)s ~ with 6 (~) ~R, and ~ is given by  c~=sign(~(~)). 

The case I==-2 (4) (i.e., R(G~) is of type  (I)). I n  this case, one m a y  assume in (22) t ha t  

s ~ C~ and s ~1= s; then t~ leaves ~ invariant  and induces in it an  involution of the second 

kind. One also assumes tha t  ~e~§ 1. (The other  case is easier.) For  each i, one can take a 

matr ix  representat ion M (~ of (~e:~)c such tha t  

for M(i)(ff)= ~ ~11 ~12~ one has M(i)(~t~)=( ~11 ~211 
\~21 ~22 I '  ~12 r ]' 

where ~ =  - 1  (1 <~i~s~=d~/2), ~ = 1  (s~+l  <~i~s=d/2).  One puts  

Fl(X, y) = x~y for x, y e V .  (23") 

and for each i F(~~ y) = t r  (~'y) for x, yeV(~ ~  (V~ i e~)c.(5)' (24") 

Then F~ ~ is of signature (2 ~/2 ~, 2 ~/~ ~) for 1 <~i<~s~ and positive-definite for s ~ + l  <~i~s. 

e~ ) and H o being as before, one can show tha t  the (1, 1)-component of e ~ e~ )e~ is = 1 / -  1 fl(o 

with fl(~) ~R, and one has s~ =s ign  (fl(o) for 1 ~<i ~s~. For  s~ + 1 ~<i ~<s, one has e~ = 1. 

18 -- 662903. Acta mathematica. 117. Imprim~ le 15 f~vrie 1967. 
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9.2. We shall conclude this paper by a brief indication about the most general solu- 

tions not necessarily satisfying the condition (9). For simplicity, we shall treat  only the 

c a s e  (a).  

To begin with, let G be a connected semi-simple algebraic group defined over k o 

which is decomposable into the direct product of ko-closed subgroups G (~) as follows: 

G = G (1) • ... • G (~). (27) 

We denote by p(~) the projection of G onto G (~). Then, an absolutely irreducible represen- 

tation ~1 of G (defined over ~o) can be expressed as 

")^-(~) (28) 

where #~) is an absolutely irreducible representation of e (i). I t  is clear from the definitions 

that  one has 
Ks1 = U K o~(~) ( =  the smallest field containing all Kelo), 

(29) 
~e~ ~ ( ~ t )  over K~ 

(cf., also Part  II). One puts dim ~e(~)=r~, dim ~q,=r  ~, I-Ir~=ru, and fixes a system of 

matrix-units {~'j} in @~e(o giving a matrix representation of it in ~a. Let a=01oe. 
~(~) ,(t)^ Dr and let u ~ be an n~-dimensional right g~elo-space giving the absolutely irre. 1 = t J l  V t l  

ducible representation P~). Then @u can be regarded as a right vector-space over 

Q ~oi~) = ~ = ( ~ ) ,  and Vx = (@V(~ ~)) e~ is a right vector-space over ~e~ of dimension n = (i-I n~) u, 

giving the representation Px. More precisely, one has P~=@o(@P~)), where O denotes 

the natural isomorphism ~((~)V~)/| ~e~')) ~E(V~/~a). 

Now the representation ~ is of type (a) if and only if all the q~) are of type (a). 

Supposing this to be the case, let % t~) ~) be involutions of the first kind of ~q, and ~q~), 

respectively, and for ~ ,  = ( ~ r  ~ e ~ ) p u t  

~)~ (~ = Jo  ~ ( ~ )  Jo (30) 

with Jo~ ~ ( ~ e , ) ,  J~' =~0J0, a0 = _+_ 1. Then, to a system of P(~)(G(~ e(~)-hermitian 

forms F(~ ~) on u (with respect to (~ei~), t(o~))) defined over Ke~o (1 ~<i ~<t), there corresponds 

a Px(G)-invariant e-hermitian form F1 on u (with respect to (~e~, to) ) defined over Ke~, 

where ~ = r  (~), by the relation 

J 0  (F I (Z~ t l ,  ygki))  = ~)F(li)(x~, y~) for x =  (~)xi, y = (~)y~, x~, y~V~! ) (31) 

and vice versa. 

Applying this to the case k 0 = Q (and R), and by a similar argument as in [9], 2.5, 

one can prove the following 
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PROPOSITION 8. Let G be a connected semi-simple algebraic group de/ined over Q, o/ 

hermitian type, which is a direct product o/ Q-closed subgroups G (t) (1 <~i <~t). Then, in the 

above notation, the group RKo/Q(G1) , G~ =SU(V~/~Q~, F1) , is o/hermitian type (II),  ( I I I )  and 

the representation R~uo(P1) : GR--->R(G~)R satis/ie8 the condition (H2), i~ and only i/, /or 

R "G "(~ all 1 <~i <~t, the group %(/)/Q( ~ ), G~(~176 F<I~)), is o/hermitian type (II),  ( I I I ) ,  

the representation RK(o/(t(P1 (~ : G~ -+R(G~(~ satisfies the condition (H2), and/or each v 6~(Q)  

there is at most one non-compact group among the (G'(%)R (1 ~<i ~<t). 

Thus  our p rob lem of determining P1 such t h a t  R(P1) satisfies (It2) can again be re- 

duced essentially to the  case where G is Q-simple. But ,  wi thout  assuming the  condit ion 

(9), the actual  de te rmina t ion  of such representa t ions  for a Q-simple G would be ra ther  

complicated,  so t h a t  we donor enter  this p rob lem any  further.  

Example. G = G a> x ... • G (t), where G (~) = Rk~/Q (G(xi>), G(x ~ = S U(V(li)/~ (~ F(1 t>) ( type 

(II)  or (III .2)) ,  ~(o being a quaternion algebra defined over  a to ta l ly  real number-f ie ld  ki, 

and  F (~ an  quaternionie s(%hermitian form on V(1 ~), both  defined over  ]~. One supposes 

tha t ,  for every  ~6~(Q) ,  there exists a t  most  one index i such t h a t  ei ther (~(~)~)R + 1, 

s~ = -- 1, or (~(~)~)R ~ 1, s~ = 1. Then, t a k i n g  p~i) to be the project ion of G (~ on to the factor  

G~ ~ one obtains  a solution of our problem. 

Appendix. Construction of analytic families of polarized abelian varieties 

I .  We shall explain here (after Kuga)  how to construct  a family  of polarized abel ian 

varieties f rom a given symplect ic  representat ion.  B y  a polarized abelian variety we shall 

unders tand  here a triple P = ( V / L ,  I, A) where V is a 2n-dimensional  real vector-space,  

L a lat t ice in V (i.e. a discrete submodule  of r ank  2n), I a complex s t ructure  on V (i.e. 

a l inear t r ans fo rmat ion  of V with I 2 =  - 1 ) ,  and  A a non-degenerate  a l ternat ing fo rm on 

V, such t h a t  A(x, Iy) (x, yEV)  is symmet r i c  and  posit ive-definite and  t ha t  one has 

A(x, y)6  Z for all x, y EL. B y  the existence of such an  a l ternat ing form (called a " R i e m a n n  

form") ,  the  complex torus  (V/L, A) becomes ac tual ly  an abel ian var ie ty ,  on which A 

determines a polarization.  Let  P'=(V ' /L ' ,  I ' ,  A') be another  polarized abel ian var ie ty .  

P and  P '  are called equivalent, if there exists an  (R-)linear i somorphism iF of V onto V' 

satisfying the  following conditions: 

t Y o I  = I o W ,  (*) 

p~A = ttYA' tF" wi th  # 6 Q*, # > O; 

18" -- 662903. Acta mathematica. 117. I m p r i m 6  le 16 f ~ v r i e r  1967. 
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Such a tF is also called an isomorphism of P onto P ' .  We denote by  [P] the equivalence- 

class containing a polarized abelian variety P. For a fixed L and A, one sees easily tha t  a 

linear automorphism 7 of V gives an isomorphism of (V/L, I, A) onto (V/L, I', A), if and 

only if 7 belongs to Sp(L,A)={~,EGL(V)]y(L)=L, ~yA~=A} (Siegel's paramodular  

group) and one has I '  = 7 I ~  -1. 

Now let ~ be a complex analytic manifold. By a uni/ormized analytic/amily o/polari. 

zed abelian varieties over ~ we mean a collection of polarized abelian varieties 

= {Px = (V/L, I x, A ) I zE~  } 

satisfying the following conditions: Namely, there exists a complex analytic structure J on 

(V/L) • 0 such that  

(i) the canonical projection ~ : (V/L) • 0 - + 9  is holomorphic; 

(ii) for each z E 9 ,  J induces the complex structure Ix on the f iber (V/L)  • z; 

(iii) V • ~ becomes a complex vector-bundle over 0 with respect to the complex 

structure on it obtained in a natural  way from J .  

I t  is known tha t  a complex structure J on (V/L) • D satisfying these conditions is unique 

and that,  for each v E V, the section z-->(v mod. L) x z is holomorphic. Two uniformized 

analytic families ~ =  {P,]zE 9}  and :~ '= {P~, E 9 ' }  are called equivalent, if there exists a 

biholomorphic map y~ of D onto 9 '  such that  Pz is equivalent to P~(z) for all z E 9 ;  when 

0 is connected, the linear isomorphism ~F~ of the vector-space V onto V' giving the equi- 

valence of Px onto P~(~) can be taken to be independent of z E 9 .  By  means of this equi- 

valence and by the usual method of overlapping neighbourhoods, one can define the notion 

of an analytic/amily o/polarized abelian varieties (or rather  Kummer  varieties) {[Pz] [z E ~}, 

starting from an open covering { U~} of ~ and a collection of uniformized analytic families 

of polarized abelian varieties :~  on each U~ satisfying the usual consistency conditions. 

Let  :~' = {Pz, I z' E ~ ' }  be a (uniformized) analytic family of polarized abelian varieties 

over a complex analytic manifold 9 '  and let ~v be a holomorphic mapping of ~ into 9 ' .  

Then one can construct a (uniformized) analytic family :~ = {P~(~)Iz E 9}  over 9 ,  which 

is Called a family induced from :~' by  ~. In  particular, when ~ is a submanifold of 9 '  

and ~v is the inclusion map, we get a sub/amily :~ = :~'[ ~ of :~'. 

2. Let  us now fix V and A, and consider the corresponding "Siegel space" 9 '  = :0(V, A), 

which is, by definition, the space of all complex structures I on V such that  A(x, Iy) 

is symmetric and positive-definite. As is well-known, 9 '  has a natural  complex structure, 

and the group of all analytic automorphisms of 9 '  can be identified with the symplectic 

group G' =Sp(V, A) (modulo center) operating transitively on 9 '  by  (g, I)-->gig -1. There- 
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fore, if one denotes by  K'  the stabilizer of any complex structure I EO', then K '  

is a maximal compact subgroup of G' and ~ '  can be identified with the coset-space 

G'/K' by the correspondence gK'~-~glg -1 (gEG'). Taking any lattice L in V such that  

A ( L , L ) c Z ,  one obtains a uniformized analytic family of polarized abelian varieties 

{Pan" = (V/L, gig -~, A)I gK'E ~'}.  This is the "Siegel's family" relative to L, of which the 

equivalence-class is uniquely characterized by the elementary divisor of A with respect 

to the lattice L. Considering this family modulo P'  =Sp(L,  A), i.e. forming the quotient 

variety F'\(V/L) x 0 ' ,  one gets also an analytic family over P ' \ 0 ' .  

Siegel's family has the following universality (cf. Kuga [8], w 6): Let  

9: = {Pz = (V/L, I~, A)} 

be a collection of polarized abelian varieties parametrized by a complex analytic manifold 

~ .  Then 9: becomes a uni/ormized analytic [amily over ~ i~ and only i/ the mapping 

~gz -~I~EO'  =O(V,  A) is holomorphic, and, if that  is so, 9: is the family induced from 

the Siegel's family by this mapping. 

3. Shimura [12], [13] has recently considered certain analytic families of polarized 

abelian varieties, which, roughly speaking, are obtained by prescribing the structure of the 

endomorphism-rings of the abelian varieties in additior~ to the data V, A, L. He obtained 

in this way four kinds of families over symmetric domains (of type (I), (II), (III)). More 

recently, Kuga [8] has given a more general method of constructing a family of polarized 

abelian varieties over a symmetric domain, starting from a symplectic representation of a 

semi-simple Lie group. Namely, let G be a semi-simple Lie group of hermitian type with 

a finite number of connected components and with a finite center, K a maximal compact 

subgroup of G, and ~ = G/K the corresponding symmetric domain; furthermore let F be 

a discrete subgroups of G such that  the homogeneous space F\G has a finite volume. 

Suppose one has a symplectic representation ~ : G-+G' = Sp(V,  A) such that  Q(K) c K',  

Q(F)cF '  and satisfying the condition (H1). Then ~ induces in a natural manner a mapping 

of ~ = G/K into ~ '  - G'/K' as well as a mapping of F \ O  into F ' \ ~ ' ,  which are holomorphic 

by the assumption. Therefore one obtains a uniformized analytic family of polarized abelian 

varieties 9: = {Pgn = (V/L, e(g) I~(g) -1, A ) IgK E ~}  over the symmetric domain ~ induced 

from the Siegel's family by this mapping and also an analytic family over F \ ~  induced 

from that  over F ' \ ~ ' .  (Of course, this construction applies also to the case where ~ has 

no complex structure.) I t  can be proven, by virtue of Borel's density theorem, t h a t  if 

9:' = {Pgn = (V'/L', e'(g)I'e'(g)-~, A ' ) i g g  E ~} is another family over ~ obtained in the 

similar way from another symplectic representation 0' : G--->Sp(V', A'), then 9: and 9:' are 
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equ iva len t  (with ~ = id . )  if and  only  if the  res t r ic t ions  of the  represen ta t ions  r and  r on 

the  i d e n t i t y  connected  componen t  of G are  equ iva len t  b y  a l inear  i somorph ism ~F of V 

onto  V' sa t is fying the  condi t ion  (*). 

I t  is well known  t h a t  when G is (the group of R- ra t iona l  po in ts  of) a semi-s imple  

a lgebra ic  g roup  def ined over  Q, Q 'is a Q-ra t ional  r ep resen ta t ion  of G into  G', and  P is a 

subgroup  of G O commensurab le  wi th  Gz, t a k e n  suff icient ly small ,  t hen  all the  above  

condi t ions  on F are  satisfied. On the  o ther  hand,  in case G is connected and  a lgebra ic  and  

Q is fai thful ,  one can show t h a t  the  above  condi t ions  i m p l y  t h a t  G has  a (unique) s t ruc tu re  

of an  a lgebraic  group def ined over  Q such t h a t  Q is Q-ra t ional  and  P is commensurab le  

wi th  Gz. 
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