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Introduction

1. The starting point of this study was a problem of Kuga on the determination of
all symplectic representations of a semi-simple (algebraic) group of hermitian type satis-
fying a certain analyticity condition ([8); for a more precise formulation, see 6.1). In my
previous paper {9] ([9a]), I have solved this problem from the geometrical point of view,

or in other words, over the field of real numbers R(?). But, the aim of the problem lying

(1) Partly supported by NSF grant GP 3903.

(2) Mumford and Tate have considered a similar problem from a somewhat different point of view
and obtained a similar classification independently (at least, for absolutely irreducible representations
satisfying the condition (H,)), see Mumford, Families of abelian varieties, Proceedings of the Sym-
posia in Pure Mathematics, Vol. 9, 1966, 347-351. Meanwhile, in some special cases, holomorphic im-
beddings of a symmetric domain into another symmetric domain have been studied by several mathe-
maticians in connection with the theory of automorphic functions. Cf. [4], [7}; and also Eichler’s
Nancy note.
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primarily in the construction of families of (polarized) abelian varieties, the problem should
be considered over the field of rational numbers Q, rather than R. This requires naturally
a more systematic treatment of symplectic representations of an algebraic group, on the
one hand, and considerations of certain ‘“‘k-forms” (e.g. k;fofms ‘of a Clifford algebfa, and
of a spin group()), on the other. The main purpose of this paper is to achieve these points.
In Part I, we shall develop a generality on symplectic representations of a (reductive)
algebraic group G defined over a field k, of characteristic zero. We shall see that the deter-
mination of all symplectic representations of G' can be reduced to that of all bilinear or
hermitian invariants for the absolutely irreducible representations of G in a division
algebra with involution (3.6, Th. 1). Part II is devoted to the determination of this division
algebra (denoted by &,,), and this will be done by determining a certain invariant of @
(denoted by y(G)€H¥ky, Z), Z: the center of G) which generalizes the Hasse-Minkowski
invariant(?). Combining these results with our earlier ones, we shall be able to obtain,
in Part III, an almost complete classification over Q of the symplectic representations g
of the described type. Namely, let G be a Zariski-connected semi-simple algebraic group
defined over Q of hermitian type and ¢ a Q-rational symplectic representation of G satis-
fying the condition (H,). Then, by the general theory, the problem can first be reduced
to the case where the representation g is -primary (i.e. a direct sum of mutually equiva-
lent Q-irreducible representations). In this paper, we shall make an additional assumption
on g that ¢ comes essentially from an absolutely irreducible representation: of just one
absolutely simple factor of G (7.1, (9)); then we may assume without any loss of generality
that G is Q-simple (and so ¢ to be almost faithful). Under these assumptions, it turns out
(§ 8) that, besides the “‘standard solutions” (coming from the identical representation) for
the groups of type (I), (II), (ITI1.1), (IIL.2), investigated already by Shimura [12], [13]
from the other direction(3), we have also non-standard solutions for the groups of type
(1), IV.1), (IV.2) (and for the groups of the mixed type (II-IV.2) if the number of the -
quaternion varijables is four). These solutions give rise to analytic families of polarized
abelian varieties over symmetric domains of type (I), (IV), which are contained in Shimura’s

families as “subfamilies” (in the sense specified in Appendix). One notes that the above-

(1) The k-forms of an (even) Clifford algebra have been studied recently by Jacobson [6] and
others. .

(3) In his first manuscript, the author treated only those cases which are needed in Part III
by a more direct method. The generalization as presented here, especially the introduction of y(G),
was suggested to him by the Referee, to whom the author is very grateful.

(3) In the notation of [12], [13], these correspond to the Types IV, III, I, II, respectively. In
Shimura’s theory, the group GR has no compact factor except for Type (I) (which is an essential
consequence of his construction) and the representation g is Q-irreducible (which is merely a conventional
assumption).
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mentioned additional condition on ¢ is automatically satisfied, if the group Gr has ne
compact factor ([9]). Without this assumption, the conclusion would become much more
complicated, for one would then have to consider various ‘“mixed types”’, including the
type (II-1V.2) in the Q-simple case (9.2).

2. Notation. Following the general convention in algebraic geometry, we shall fix a
universal domain Q (of characteristic zero) and consider all algebraic groups, vector-spaces,
... etc. as having coordinates in Q. (For our purpose, it is enough to assume Q to be just
an algebraically closed field, which contains the field of complex numbers €, in Part IIL.)
Thus, for instance, a vector-space V defined over k£ means a vector-space over ) containing
a distinguished vector-space V, over k such that V="V,®,Q; then, for any K>k, we can
speak of the set of K-rational points V; which is a vector-space over K and is identified
with V,®,.K. A (linear) algebraic group @ defined over k acting on V is a subgroup of
GL(V) defined by polynomial equations in the matrix entries (with respect to any basis
of V,) with: coefficients in k. For any K ok, one puts Gx=G N GL(Vg).

For the convenience of the reader, we recall here briefly the notion of k-form of an
algebraic group. Let K>k, and let G, be a (linear) algebraic group defined over K. A
k-form (or more precisely a K/k-form) of G, is a pair (G, f) formed of an algebraic group
G defined over k and an isomorphism f defined over. K (or, as we shall call more briefly,
a K-isomorphism) of G onto G,. Now suppose that k is perfect and K/k is finite; we
denote by (k) the Galois group of k/k, k denoting the algebraic closure of k. If (&, f)
is a k-form of G, then, for every o€ G(k), p,=f"0f* is a k-isomorphism of G, onto Gj
(depending only on o|K) satisfying the condition gjog,=g,, for all g, T€((k); this last
condition is equivaleﬁt to sayiﬁg that, if one puts 7 =g l(g<f‘)\for g € (Gy)x, o €G(k), then
one has (g™ =¢“". Conversely, it is known ([11], [15]) that, given a collection of iso-
morphisms {p,} satisfying this condition, one can construct a k-form (@, f) such that
@r=]70f1. Moreover, let (&, f') be another K/k-form of G, with g;=fvof'~1. If there
is a k-isomorphism ¢ of G onto ', then p=f opof is a K-automorphism of G, satisfying
@a=yp7o@ oy~1 for all 0 €G(k), and vice versa. In particular, if K/k is a Galois extension
with the Galois group G(K/k) and if G, is defined over k, then the k-isomorphism-classes
of K/k-forms of G, are in a one-to-one correspondence with the elements of first cohomology
set HY(G(K[k), Autx(Gy)), where Autg(@,) is the group of all K-automorphisms of G. :

These considerations apply, of course, to other kinds of algebraic systems, too.. For
instance, any central simple algebra [ of dimension m? defined over k (and splitting over
K), together with its unique absolutely irreducible representation 6, (defined over K),
can be considered as a k-form (K/k-form) of a total matric algebra M, (defined over the
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prime field). Since all automorphisms of ,, are inner, one may identify Aut(M,) with
PL(m)=GL(m)[Gy, Gy denoting the multiplicative group of the universal domain. If
{®,} is a system of representatives in GL(m, k) of the (continuous) 1-cocycle corresponding
to U, one has ®;D, =4, ,D,, with A, .€(k)*, where {i,.} is a (continuous) 2-cocycle of
Gik) in (6)%=(k)*. The mapping A (A ) EH2(k, Gy) (=H2(G(k), (k)*)) is clearly multi-
plicative and gives rise to (the inverse of) the well-known isomorphism of the Brauer group
B(k) and H(k, Gy) ([11]). Replacing GL(m) by SL(m), one may also obtain a canonical
isomorphism B(k)~ H2(k, E), where E denotes the multiplicative group of all roots of
unity in k. We shall denote by ¢() the inverse of the 2-cohomology class (or, by abuse
of notation, a 2-cocycle representing it) in H2(k, E) corresponding to the algebra-class of .

Returning to an algebraic group G, defined over a finite extension K of k, one defines
the group Ry,(G,) defined over k as follows ([15]). Let {oy(=id.), ..., o5} (d=[K : k]) be a
complete set of representatives of G(K)\G(k). Then Ry, (G,) is defined as a k-form (G, f)
of Gy,=]1~1 G} such that, denoting by p, the projection of G, onto the ith factor G%,
one has p{ ofc =p,of if G(K)o;6=G(K)o;; this last condition is equivalent to saying that
putting p=p,of, one has f(g) =(p%(g)) for g€@G. The pair (G, p) is uniquely characterized
by the following universality: Whenever one has an algebraic group G defined over %
and a K-homorphism ¢, of G into @,, there exists (uniquely) a k-homomorphism ¢ of G
into @ such that ¢, =pog. For the groups of rational points one has the canonical isomor-
phism (R (G,)), >=Gx (induced by p). If ¢; has any additional algebraic structure (e.g.

vector-space, associative algebra, etc.), then so does also B, (G,).

Part I. Symplectic representations of algebraic groups

Throughout Part I, we fix once and for all a field &, of characteristic zero and a re-
ductive algebraic group G defined over k,. As is well-known, for any field K containing k,,
a representation of (¢ defined over K is completely reducible in K, namely, it is K-equiva-
lent to a direct sum of a certain number of K-irreducible representations, which are uni-
quely determined up to the order and K-equivalence. It is only this property of G that

will be used essentially in the following considerations.

§ 1. Primary representations

1.1. Let (V, ¢) be a representation defined over k, of ¢, where V is a (finite-dimen-
sional) vector-space defined over k, and g is a ky-homomorphism of @ into GL(V). (Some-
times p alone is called a representation, while V is referred to as a representation-space.)

Let (V4, 0,) be an absolutely irreducible representation defined over k, (=the algebraic
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closure of k) contained in (V, p), i.e., V; is a p(G)-invariant subspace of V, defined over
ko, such that the restriction g, =p| ¥, is %j-irreducible. Denote by § the Galois group of
ko/ko. Then, for every o€, we have a “conjugate’ representation (V3, 03), also contained
in (V, 0); namely, V9 is again a o(G)-invariant subspace of V, defined over %,, and we have

0i~p| V1. Now we define two subgroups of § as follows:

Go. = {0€G |01~}
G ={c€G|Vi=V}.

(1)

Then it is clear that G'< G,,. Denote further by K, and K’ the subfields of %, correspond-
ing to (4, and &, respectively; K’ is then the smallest field containing &, over which the
subspace V, (and hence g,) is defined. Therefore, K’ is a finite extension of %, and we
have K'> K, >k, Put [K,, : k)]=d and fix once and for all a system of representatives

{T1 s Ta} of Go,\G, i.€., one puts
a
g =il=Jlggl 7 2

It should be noted that the definition of §,, (and hence K, ) depends only on the (%,-)
equivalence-class of p,, while that of ¢’ (and hence K’) does depend essentially on the
imbedding of (¥, g;) in (V, p).

Now we denote by ¥, (resp. V,) the sum of all o(G)-invariant subspaces W of V,
defined over k,, such that o| W~p, (resp. o| W ~ g% with some 7€ (). Then, ¥, (resp. V,),
being invariant under all 0 €G,, (resp. ), is a subspace of V defined over K,, (resp. k).
(Actually, K,, is the smallest field containing %, over which ¥, is defined.) Clearly one

has an isomorphism (of respresentation-spaces)
ViemV, (over k), (3)

or, in other notation, ¢, =p| Vi~ mg,, where m is a positive integer, called the “multiplicity”’
of g, in p. Since, for every v€(§, Vi is the sum of all o(G)-invariant subspaces W of V,
defined over %, such that o| W ~ o}, one sees at once that ¥, is decomposed into the direct

sum of the following form:

~ d -~
7,= 3 75 )
i~ d -
Thus one has ol V, ~mzlg'{i (over k). (5)

According to a general notation in algebraic geometry (see Introduction, 2), one may also

write (4) in the form
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Vl = RKQI/IC., (171) (#)

If one starts from another absolutely irreducible o{(G)-invariant subspace V, of V
defined over %,, which is not contained in ¥,, and forms V,, ¥V, in a similar way, then one
has 7,0 V,= {0}. Repeating this process, one finally obtains, by virtue of the complete

reducibility of V (over %,), a direct decomposition of V:
V = Z 17{ . (6)

Definition. A (completely reducible) representation (V, o) defined over k, of G is
called ky-primary, if for any two absolutely irreducible o(G)-invariant subspaces W and
W’ of ¥, both defined over %,, one has (0| W) ~o| W' with some 7€ G =G(k,).

From the above construction, p| Vs are all k-primary and Vs are maximal with
respect to this property; and clearly the decomposition (6) is uniquely characterized by
these properties. (V;, o| Vs are called ko-pﬂmary components of (V,p). (V,, §;) may be

called an absolutely primary component of (¥, ).)

1.2. 1t is obvious that, for a given absolutely irreducible representation (¥4, g;) de-
fined over %, there exists always a ky-primary representation (V, ) containing (V,, g,).
(For instance, let K’ be a finite extension of k, over which (V,, g,) i¢ defined; and take
Bxy(V1, 01)) As we have seen above, such a representation (V, g) can be written uniquely

in the following form: . N
V=R, V1), VizmV, (over k),

Now the k,-equivalence-class of ¢ depends only on the multiplicity m. This will follow

immediately from the following (well-known) lemma;:

LeMma 1. Let (V,p) and (V', o) be two representations of G defined over by If there
exists @ monomorphism of V into V' (viewed as representation-spaces), then there exists a

ky-monomorphism of V into V'.

Proof (after Ono). Let  be the vector-space formed of all linear mappings of ¥ into
V', and let H be the subspace of £ formed of all homomorphisms of ¥ into ¥’ viewed as
representation-spaces, i.e., all €L such that ¢'(g)ep=g@og(g) for all g€G. Then, L is a
vector-space defined over &, and Jf is a linear subspace of  also defined over &,, so that
Hz,, the set of all ky-rational points in 4, is everywhere dense in H in the sense of Zariski
topology. On the other hand, from the assumption, the subset H® of 3 formed of all
monomorphisms (=injeetive homomorphisms) of V into V' is clearly a non-empty Zariski
(ko-)open set in . Therefore, one has WY n U, +9, q.e.d,
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We denote by m(p,, k) the smallest possible multiplicity of g, in the representations
defined over k. It follows from the above Lemma that a k,-primary representation g
containing ¢, is kg-irreducible if and only if m =m(p,, k), and the (k,-)equivalence-class
of such g is unique. In general, for a ky-primary representation g containing g,, the multi-
plicity m is a multiple of m(g,, &y) and g is (k,-)equivalent to the direct sum of m/m{g,, k,)
copies of the (unique) ky-irreducible representation containing p,. Thus a ky-primary

representation can also be defined as a representation defined over k, of ¢ which is a
direct sum of a certain number of mutually (k,-)equivalent %y -irreducible representations.

1.3. We shall now explain how the structure of a ky-primary representation can be
described in terms of Galois cohomology. To start with, let (¥, ;) be an absolutely irre-
ducible representation of G' defined over &, For every c€(,,, denote by ¢, a ko -isomor-
phism of V, onto V{ (viewed as representation-spaces), i.e., a linear isomorphism defined
over k, such that

01(9) =p,o0(9)ops " for all geG. (7)
By Schur’s lemma, such a ¢, is uniquely determined up to a scalar multiple. It follows,

in particular, that, for every o, T€(,,, one has
q?ZO(Pz = }«7,1(;001 (8)
with 2,,€ks. {%s,:} then becomes a 2-cocycle of ,, in (kg)* (=the multiplicative group

of non-zero elements in k,), whose cohomology class is uniquely determined. If one takes
a finite Galois extension K” of K, over which (7, 0,) is defined, then the system {p,}
can be chosen in such a way that all the @8 are defined over K" (Lemma 1) and that ¢,
depends only on the restriction of ¢ on K”; then one has 1, ,€K”. Thus we may assume,
whenever necessary, that (A, ) is actually a 2-cocycle of the Galois group G(K"/K,,) in
K"*. (Without specifying K", one sometimes says that (As,2) is a “continuous’ 2-cocycle.)
Now, as we have seen in 1.1, the structure of a k,-primary representation (V,p)
containing (¥, g,) is uniquely determined by that of the absolutely primary component
f}l, which can be considered as a “K,,-form” of mV,. For our purpose, it will be more
convenient to regard it as a K, -form of V,®V,, where V, is an m-dimensional row-vector
space (defined over the prime field) on which G operates trivially. Let v be a k,-isomor-
phism of V,®V, onto V, (viewed as representation-spaces) which we write in the follow-

ing form:
plax () = 3 (), 9)

where v, (1 <i <m) is a ky-monomorphism of ¥, into ¥,. Then one has o(g) oy =yo (0., (g)RL),

or what is the same,
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e(g)oyi =pioai(g) (1<i<m).
Applying 6 €(,, on the both sides of this equality, one obtains

o(g) oyl =47 00i(9) = yf o @,00,(9)0@s .

It then follows by Schur’s lemma that yfog, is a linear combination of y; (1<i<m),

[piogs v
( : =Q,| : (10)
Y O Qs Yn

with a non-singular m x m matrix @, with entries in %,. The system {®,} satisfies clearly

so that one may write

the relation
(D; q)r = Ao‘, 7 q)m: . (81)
It follows that one has

P rop(zr@u) = g (x) Qud;’ for €V, u€V,,

or in other words (cf. Introduction, 3), (V,, 1) is a K,-form of ¥, ® V, corresponding to

the operation of the Galois group defined by
(x@u)* = ;1 (z7) @ (u D,). (11)

Conversely, it is easy to see that, given a system {®@,} in GL(m, k,) satisfying (8),
one can define a K, -form (V;,y~1) of V,®V, (viewed as a representation-space) by the
operation of the Galois group given by (11). It is also trivial that if {®,} is another system
satisfying the same conditions as {(i)a}, two K, -forms corresponding to {®,} and {®;}
are K, -isomorphic, if and only if the two systems are “cohomologous” in the sense that
one has ®;=Fo® V-1 with ¥ E€GL(m, k,). But, as we have already seen in 1.2, there
exists only one K, -isomorphism class of V, of the given dimension, so that there is also
only one cohomology class of such {®,}. (In this form, our result is a special case of the

well-known theorem in Galois cohomology: Theorem 900 of Hilbert. Cf., e.g., [11].)

Example 1. Let K’ be a finite extension of K, over which (¥, p,) is defined, and
put T71=RK,,KQI(V1). Let m=[K': K,], G’'=G(ko/K’), and let {oy, ..., 6,,} be a system of
representatives of G'\Go. Then ¥, =37, ViiamV, (over k), so that ¥, is an absolutely
primary representation-space with multiplicity m. In the above notation, the monomor-
phism y;: ¥, =V, can be taken to be equal to yliops, (1<i<m). Then, if G'o;0=G's),
one has yio@,=4,, ,y;, i.e., ®, is an m x m matrix whose (¢, j)-th entry is equal to s,

if 0,00;*€(’, and zero otherwise. We shall see later (3.3, Ex. 2) that, in case all central
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division algebras over K, are represented by a crossed product (e.g., in the case k,=Q),
all absolutely primary, K, -irreducible representation-spaces ¥, can be obtained in this

manner.

§ 2. Invariant alternating forms

2.1. By a “symplectic” representation defined over k, of ¢, we understand a triple
(V, 4, p), where (V, p) is a representation of G defined over &, and 4 is a non-degenerate
o(@)-invariant alternating form defined over %, on V x ¥ or, as we shall call more briefly,
an invariant alternating form on V defined over k,. The notions of equivalence (or isomor-
phism), direct sum, etc., of symplectic representations are defined in the obvious way.

Let (V, 4, ) be a symplectic representation of G' defined over k,, and let
V 122 vi

be the decomposition of ¥V into the direet sum of ky-primary components. Let (V,, ¢,)
be, as before, an absolutely irreducible representation contained in ¥,. Then, since to-l~p,
an absolutely irreducible representation equivalent to the “contagredient’ representation
(V3 %1") (Vi denoting the dual space of V,) is also contained in (V, g). Now we shall

distinguish the following three cases:

(a') t9;1~917
(b) ‘o1'40,, but ~pf with some o,€G,
(¢) ‘foi'4pf for all T€G.

It should be noted that these conditions, being invariant under the operation of the Galois
group, depend only on the k,-primary component ¥, containing (¥, g,). The absolutely
irreducible representation g, (or the ky-primary representation containing g,) will be called
of type (a), (b), (c) (over k,) according to the cases.

In the case (c), a representation equivalent to ‘o7' is contained in a k,-primary com-
ponent different from ¥, say V,. Then, it is clear that the restrictions 4| V,xV,;for i=2
are all identically zero, so that A | V, x V, must be non-degenerate, and ¥, + 7, is a direct
summand of the symplectic representation-space V. Moreover, V, may be identified with

the dual representation-space Vi of ¥, by the bilinear form 4|V, x ¥,, so that one has

Ql 772~’(Q“71)_1 Nmi;(tgf1)75_

Conversely, if (V,, | V,) is equivalent to (VF, {(o| V,)~), then one can define an invariant
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alternating form defined over &, on ¥, + ¥, in a natural way. Thus, in this case, to have a
symplectic representation-space ¥, + ¥, defined over k, is essentially the same as to have
a (k,-primary) representation-space ¥, (without alternating form) defined over k. Inci-
dentally, in our later considerations (Part III), this case will not occur at all.

In the cases (a), (b), a representation equivalent to o7 is again contained in V..
It is then clear that A|V, x 7 (i+1) are all identically zero, while 4|V, x ¥, is non-
degenerate; in other words, ¥, becomes a direct summand of the symplectic representation-
space V. From these, one concludes that a symplecbie representation (V, 4, ¢) can be
decomposed into a direct sum of the symplectic representations defined over k,, each
one of which is either of the form (¥, 4 | V., Q[ V) (cases (a), (b)) or of the form (V,+ 7,
A| (V,+7V:), 3! 171-}—@[ V1) (case (c)), and that this decomposition is unigue in an obvious
sense. Since the case (c) is of no further interest to us, we shall restrict ourselves to the
case where V is ky-primary; such a symplectic representation (V, 4, o) will also be called

kq-primary.

2.2, Let (V, 4, o) be a k,-primary symplectic representation of type (a). Then it is
clear that the restrictions A4 |( Vi x V%) are all identically zero except for =7 and that,
if one puts 4, =A|V, xV,, 4, is an invariant alternating form defined over K, on ¥, and
one has A | (Vi x V1) = A%. Thus one obtains

A(Z w2, Yo :i=21 fifi (%5 ) (12)

for all x;, y,€ V}i. We shall express this simply by writing
A=trg, x, (4,). (12')

Now, from the assumption, there is a non-degenerate p,(G)-invariant bilinear form
B, on V,xV,, determined uniquely up to a scalar multiple (Schur’s lemma). If (V,, g,)
is defined over K’, B, may also be taken to be defined over the same field X’ (Lemma 1).
In the notation in 1.3, it follows that one has

ng\1('/)1'(27)’ 7/)/(:'/)) = Bl(x! y)ﬂii for all , AS Vl

with B,,€%, Putting B,=(8,) and By(u, v)=(u;) B,i(v;) for all u=(u,),v=(v)EV,, one
has from (9)

A, (p(x@u), ply®v)) = Bi(2, ) By(u, v). (13)

Clearly this relation, in turn, determines B, and B, uniquely up to scalar multiples. Since
4, is alternating, it follows first that one of the bilinear forms B, and B, is symmetric
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and the other is alternating. Secondly, applying ¢ €§,, on the both sides of (13) and in

view of (11), one obtains the relations:

Bg ((pd ((L’), % (Z/)) = AO’ Bl (x7 y)’ (14)
B (u®;, v®;1y =151 By(u,v) or @, B,'"®,=],B3. (14')

Conversely, it is easy to see that, if one has non-degenerate bilinear forms B; on V, and
B, on V, satisfying these conditions and if B, is g,(¢)-invariant, then by (13) one can
define an invariant alternating form 4, on ¥, defined over K,, and then by (12) an in-
variant alternating form A on V defined over k,. It should be noted that from (14) or

(14’) one obtains the relation
l%,r:]-;zrz;rl"’l' (15)

2.3. Let us now consider the case (b), where one has o1 ~of* with some o,€ G, ¢ G,

Since pf~*(03") "1 ~g;, one has 05€ Gy, Next, for every o€ (,,, one has
-1 _ -1 _ -1
o1 ~ (oY ~ (i) ~py,

so that, putting & =0,00 ", one has G€(,,. This means that G,, U G,,0, is a subgroup of
G containing §,, as a normal subgroup of index 2. We denote by K, the subfield of %,
corresponding to G, U G, 65 Then, it follows that K’=K, and K, is a quadratic ex-
tension of K, with the Galois group (K, /Ky)={1,d|K,}. In the following, we shall
fix once and for all an element « in K, such that K = K(Va). Also, we shall take a system
of representatives {ty, ..., 7,} of G,\G in such a way that 7,5+ =0,7; (1 <i<d/2); then
one has

a2
g =;L=Jl(991 U Ge, 6p) T:-

Under these assumptions, it is clear that 4| (V% x V%) are all identically zero except
for j=d/2 +¢ (mod d), and, if one puts

Fa,y)=VaA@™,y) for z,y,€V, (16)

¥ is a non-degenerate o(G)-invariant hermitian form on ¥, with respect to o, ie., it is

linear in the variable y and satisfies the relation

Fz,y)>=F(y, ™) for all =z y€7V,. (a7

(For simplicity, we shall henceforth suppose that ¢, is extended to an automorphism of
the “universal domain’.) Therefore, putting
15 — 662903, Acta mathematica. 117. Imprimé le 15 février 1967.
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I}l = RKgllKo (?1) = I71 + f)ge, “il =4 I f/p
one has

Ayt y+y) = Ve {F@™ y) ~ Fy'™ 2)})

=V HF (@ y)— F* (2%, y)}  for all @, y€ Py, o',y €V, (16')
On the other hand, as 4| 44 =2}‘ (1<¢<d/2), one may write

A =trg,, (4y). (18)

Remark. It might have been more natural to consider a hermitian form F’ defined by
P+, y+y) = (Va A@@,y), —Va Az, y') forz,y€Vy, o',y €V

which is a hermitian form on 171 =RKQl /Ko(fﬂ) taking values in B Ko /r.(field) with respect

to the involution (&, ) >(5, £). But, if we consider F' and F’ restricted on 7)) KQ]=(V1) o

which take values in K, =(Rg, ,(field))g,, then they reduce essentially to the same

thing, as is seen from the relation

F'(x+a%, y+y™) = (Flz, y), Flzx,y)”) for x,y€ (V)x

o

Thus, one may write (16’) symbolically as Afl=trxel ,Ko(l/;-lF). For instance, in the case

K, <C, o= —1, one has 21=2 Im 7.

Now, from the assumption, there exists a non-degenerate p,(G)-invariant sesqui-
linear form (with respect to ¢,) F; on Vy x V;, determined uniquely up to a scalar multiple.
If (V,, 0,) is defined over K’, F; may be taken to be defined over K'U K'®. It follows that
one has F(y,(2), v,(y)) = Fy(x, y)B;; with §;,€k,. Putting F= () and Fy(u, v) = (ui*) F(v))
for w=(u,), v=(v;) €EV,, one has from (9)

Flypeu), ply@v)) = Fi(x, y) Falu, v). (19)

Again this relation determines F;, and F, up to scalar multiples. It follows from (17) and
(11) that

F.(z, y)™ = AF, (v, q);; (%)) for all z,y€V,, (20)

Py =1""F, "0y, (20)

with A€%,; and, for every ¢ €(,,, one has

Fi(p;(@), @o(y) = A Fy (2, y) forall z,y€V,, (@1)
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Cg t _ G ’
2 F D, = A, F3. (21)

with 2,€%,. Conversely, it is also trivial that, if one has non-degenerate sesqui-linear forms
F, on V, and F, on V, satisfying these conditions and if F, is p,(G)-invariant, then (19),
(16"), (18) define an invariant alternating form 4 on V defined over %,. One notes that
from (20), (21), or (20"), (21’) one obtains the relations

Aoz Ror =N dedt ~ 1 (22a)
Aoy = A7, (22b)
A =00 ey (22¢)

§3. Formulations in terms of division algebras

3.1. We shall now translate the results so far obtained into the terminology of the
theory of algebras. The notation being as before, let (3, 6,) and (I,, 6,) be K, -forms
of &(V,) (=the algebra of all linear endomorphisms of ¥,) and of &(V,) (=M,,) defined,
respectively, by the operations of the Galois group given as follows:

P =gp;log’ops for p€ E(Vy)i,» (23)
DI=D; 0D, for DE M, (k). (23"

A, and 9, are then central simple algebras defined over K, such that ¢(3,)~ (4;1) and
¢(Ny) ~ (A7) (see Introduction, 2). Since (¥, yp 1) is a K,-form of V,® V, with respect
to the operation of the Galois group given by (11), it follows that £(¥,) may be identified
with 9, ® U, as a K, -form of E(V,® V,)=E(V,)® E(V,). More precisely, the identification

is made in such a way that one has

Po (1@ @o)oy™ = 01 1)) ® 02 ' (gp)  for all @, €E(V)). (24)
Now, from (7) and (23), one has

01(9) = 4(97) for all g€G5,, 0EG,,;

this means that the rational mapping: G €g P (9)=01"0p,(g) €Y, is defined over K,,. It
follows that 01(Gg,) is contained in 6, ((,) K, )i but, since g, is absolutely irreducible, the
latter is the K,,-linear closure of the former. Since g, =yo (o, ®1)oy-1=P,®1, it follows that
(911)x91®1 is the K, -linear closure of §,(Gy, ), or what amounts to the same, 1®(912)K91
is the centralizer of §,(Gx ) in &V,) o

Q1
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Now, let &, be a division algebra defined over K,, (i.e., an algebra defined over K|,
such that (R,)x,, is division) representing the Brauer class of ;. Then, one has U~ &,.%.
It follows, in particular, that, if &, is of dimension 72, then r divides both dim ¥, and

dim V,=m; hence we shall put
dim V; =nr, dim Vy=m=n'r. (25)

As is well-known, g, is K, -irreducible, if and only if the centralizer of é‘l(GKQI) in &7,) Ko

is division, i.e., n' =1. Thus one concludes that
m(gy, kg) =r = (dim Ke)'? (26)

3.2. (In this paragraph, we shall abbreviate K,,, &, as K, & We shall need only the
relations 9 =M, (R), UM, (K1), where & is not necessarily assumed to be division.)
Let V, be an n-dimensional right vector-space over &, or as we shall say more briefly, a
right R-space defined over K. By definition, V, is an nr2-dimensional vector-space defined
over K, provided with the right multiplication: V, x K € (z, &) >2£ €V, also defined over
K, such that V, has a basis over & consisting of # vectors. Then U, may be identified with
E(V,/R) (=the algebra of all §-linear endomorphisms of V;) in the following way.

Let us fix once and for all a ky-isomorphism M of § onto the total matric algebra
‘M,, or, what amounts to the same, a system of matrix-units ¢; (1<4, j<r) in &, Then
for each o €(,,, there exists an element 7, € &%,, determined uniquely up to a scalar multiple,

such that
Me(g) = M(n;'én,) forall £€R, (27)

or, what is the same,
eg}=736£ij7];1 (1<s,§<r) (27"

For o, 7€ (,,, one has clearly
7]5 Ne = Uo,vNor (28)

with pe:€kg, and (us.:)€Ec(R). On the other hand, one obtains a direct decomposition:
r
A\t =Z:1V1 Ests (29)

where every V, &, is an nr-dimensional vector-subspace defined over [,, invariant under
E(V,/R). Therefore, any one of V,¢;/’s, say V1=V, &y, gives a (unique) absolutely irreducible
representation of £(V,/®). In view of (27'), for each ¢ €(,,, the right multiplication

Biz——an, ! (30)

induces an isomorphism ¢, of Vi onto Vi°=Vel; (viewed as E(V,/R)-spaces). It follows
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that £(V,/®) (together with the restriction map on V) is a K-form of &(V;) defined by
the operation of the Galois group: ¢'' =@, ¢'7p,. Therefore, identifying U, with &(V,/K)
is equivalent to fixing an isomorphism between &£(V,) and &(V;) which gives rise to a
K-isomorphism between the corresponding K-forms U, and &(V,/®). By Skolem-Noether’s
theorem, such an isomorphism of &(V,) onto £(V:) comes from a k,-isomorphism f; of

V, onto V; (determined uniquely up to a sealar multiple) satisfying the relation
@ =nsf300,0f, L for all G€G,, (31)
with x,€k,, and the identification of U, and &(V,/{) is made in such a way that one has
X|Vi=fo00,(X)of,t for X €U, = E(V,/K). (32)
It follows from (31) that one has
e Mz

;u;ﬂl: =’—_/16.vr~20.1- (33)

oT

Quite similarly, let V, be an n’-dimensional left &-space defined over K and put V3=
&1;Va. For each ¢€(,, the left multiplication L, : €7,z induces an isomorphism of V3
onto V3’ =¢f1V, (viewed as E(R\V,)-spaces). One identifies %A, with E(K\V,) (=the algebra
of all &-linear endomorphisms of V,) in such a way that one has

X|Vi=fu0 (6(X))ofz" for all X €Uy =ER\VY), (3%

where f, is a ky-isomorphism of ¥, onto V; satisfying the relation

fz°0Ly 0 fa=u, D5 for every g€ G, (31"
with x, € k,. Tt follows that fho, e = ”x k.

Comparing this with (33), one sees that {x,%.} is a (continuous) 1-cocycle of G,, in (ko)*,
so that by Hilbert’s lemma (Th. 90) there exists an element f€k, such that one has
#,%s =071, Therefore, replacing f, by 0f,, one may assume that x;—=x;*.

We can now form a tensor-product V;®gV, of V, and V, over &, which is an nn'r2-
dimensional vector-space defined over K, obtained from the ordinary tensor-product
V,®V, by identifying (2, x)®%, with 2, ® (ax,), for 2,€V,, x€R. We shall show that ¥,
is actually K-isomorphic to V; ®qV, (as representation-spaces) by the mapping (f, ® fo)op1.
First of all, one has

Vi®aVe = (2, Viey) @2 enV2) = Vi®eVs
which can be identified with the ordinary tensor-product V{® V;. Hence it is enough to

show that one has
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(h(@)®efou)” = (L® fo) (z®@u)) for all &€ (Vy)z,, u€(Va)i,> 0€ o,

From (11), (31), (31’), the right-hand side is equal to

Fi(@s (@) @sf (u° @o) = %o f1(2°) o @ a5m5  3(07) = (fulx) ©nfa(w)),

which proves our assertion. From (24), (32), (32"), it is easy to see that this isomorphism
of ¥, and V,®gV, is compatible with the identification of &(¥,) and U, ®¥, mentioned
in 3.1. In particular, one has §,(9) =P,(9)®1 for g€G.

3.3. As the results of the above considerations, we obtain the following propositions.

ProPosiTION 1. Let G be an algebraic group defined over a field k, (of characteristic
zero) and let (V,, p,) be an absolutely irreducible representation defined over ko of G- Let K,
be a finite extension of k, defined in 1.1. Then there exisis a uniquely determined central
division algebra R, a (finite-dimensional) right K,-space V,, both defined over K, , and a
K, -homomorphism P, of G into GL(V,/R,,) (=the group of all non-singular K,,-linear auto-
morphisms of V,) such that o, is factorized in the following form.:

01(9) = 0,(P:(9)) for all g€G, (34)

where (V, 6,) is a (unique) absolutely irreducible representation defined over ko of E(V,/Rs)

(=the algebra of all K,,-linear endomorphisms of V).

Here K,, is also uniquely characterized as the smallest extension of k, over which
such a (non-commutative) representation (V,/8,,, P;) can be constructed. In fact, if one
has (34) over K, it follows that o] =07oP, ~6,0P; =p, for all ¢€G(K), which shows that
K should contain the field defined in 1.1. As for the uniqueness of &,,, it is enough to note
that, if one has (34) with &, then one has

UX) =g 00,(X)og;' for all XEE(V,R)

and for all 6 € G(K,,), which shows that the Brauer class of £(V,/8), i.e., that of &, is just
the one corresponding to the cohomology class of (4;%). A (non-commutative) representa-
tion (V,/K,,, P;) given above will sometimes be called an “absolutely irreducible represen-

tation” of ¢ in §,,.

ProrosiTioN 2. The notation being as in Proposition 1, let V, be a finite-dimensional

left &,,-space defined over K, and put

V1=V, ®g, Vs, 8, =P, ® (triv.),

o (35)
(V. 0)=RBr, ks (V1 81)-
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Then (V, 0) is a ky-primary representation of G containing (V4, 01); and conversely all such
representations of G are obtained in this manner. The ky-equivalence-class of (V, o) depends

only on dim V,; in particular, (V, p) is ky-trreducible if and only if dim V,=1.

Denote by Rg, /x, (V1 P,) the representation defined over K, (of degree nr?) obtained
from (V,, P,). Then the representation (V,, §,) defined by (35) is equivalent to the direct
sum of n’ (=dim V,) copies of Rg, /g, (Vy, Py), which in turn is equivalent to the direct
sum of r copies of (V, p;); thus (V1, 8,) is absolutely primary and so (V, g) is k,-primary.
This proves the first assertion. The rest is clear from what we have seen already. (One
may note that, to obtain Proposition 2, we do not need the results stated at the end of
1.2 and in (26), so that these results can also be considered as consequences of Proposi-
tion 2.)

Example 2. Consider the case of a “crossed product” & =(K"/K, u,,+) (not necessarily

division), where K” is a finite Galois extension of K with Galois group

g(K”/K) = {Gl(:1)> seey Gr}

and where (u,,-) is a 2-cocycle of G(K"/K) in K"*. By definition, there exist, for every
6€G(K’|K), an element u,ER; and a monomorphism (of fields) ¢ of K” into fx such

that one has
Rx=2 o i (K"),
Us Uz = ucrti(,uu. ) (36)
uF (&) us=14(£°) for all ¢,7€G(K"/K),EEK".

An isomorphism M of & onto M,, defined over K", can be given by the relation

Bty ooy Ug ) = (Ugys +oes Ug ) (M (2)) for all x€ Ky

Then, for every ¢ €G(K"/K), one has Mo (x) = M(n; 'xn,) with 7, given by
r
7o =‘Zl Yo, o0,0,a,5 (37)

where (and in the following) &, o stands for g ;. It follows that

Ul — ‘liii'_u.‘ 371
&, o ,U'a]., . o,0.0;0, ( )
and 7g 7; =Ho,s Mo Conversely, it is easy to see that, if 7, can be written in the form (37),

or equivalently, if one has (37’), then & becomes a crossed product.
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Let us also remark that, in case &, is a crossed product, the matrices @, (defined in
1.3) can be written in the form as given in Example 1. To see this, take a basis (e, ..., ¢,)
of V, over &,,; then ¢, e; (1<i<r, 1<j<n’) form a basis of V3. Define a linear isomor-
phism f, of ¥V, onto V; by

Vadu = (uy) — fo(w) =2 uye1,6,€ Vs.
Then, from (31)" and (37) one obtains at once that

‘Du = K;I(M;:a 6050, a].) ®l,~ (/161,, ¢ 60'1.0, aj) ®1,-.

Thus one has ~
Vizn'Bgog, ( V1), ie, Va'Bg (V1)

3.4. We shall now consider a k,-primary symplectic representation (V, A4, g} of type (a).
We first contend that 9, is then a simple algebra with an involution of the first kind
defined over K,,. In fact, since B, is symmetric or alternating, one can define an “involu-

tion” (i.e., involutorial anti-automorphism) ¢ of E(V,) by
Bi(w, ¢'y) = Bylgz,y) forall 2, y€V;, g €EV). (38)

Then, applying o €§,, on the both sides of (38) and in view of (14), (23), one sees imme-

diately that
(@) = @)

which shows that the involution 6,~1ot08, of ;, denoted again by ¢, is defined over K.

Now, since U;~ R, & =8, has also an involution of the first kind, denoted by ¢,
defined over K =K,,, by a theorem of Albert ([1], [2]). (In this and the next paragraphs,
we shall again omit the subscript g,.) Then one has

M(E%)y = J-UM(E)J for £ER (39)

with a matrix J€GL(r, k), uniquely determined up to a scalar multiple, satisfying the

relation
=gy, &= t1. (40)

Applying ¢ €, on (39), and in view of (27), one gets
"Mno) T M (n,) = pgJ” (41)
with u, €&y, whence it follows that
Moo= s s o (42)

Comparing this with (15), (33), one sees that the system {x31,u,} becomes a (continuous)
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L-cocycle of G, in (ko)*, so that by Hilbert’s lemma one can find € (%,)* such that one
has %54, u,=07-1. Therefore, replacing J by 6J (or B, by 6-1B,), one may assume that

Wohopty = 1. (43)

Next, we shall establish a one-to-one correspondence between the symmetric or
alternating forms B, on V, satisfying (14) and the e-hermitian forms F; on V, with respect
to (&, ¢,) defined over K. By the latter, we mean bilinear mappings F, from V, xV; into
K defined over K, (V, and & being considered as vector-spaces defined over K), satisfying

the conditions

{Fl(m, yB)=aFy(w, ) B, )
Fi(y,2)=eFy(@, y)°, e=*1,
for all #, y€V,, o, fE€K. To begin with, suppose such an F, is given, and put
J - M(Fy(z, y)) = (By(, )),
where B,’s are bilinear forms on V, xV,. From (44), (39), one sees at once that
By | Vyem x Veey
is identically zero except for k=I=1, and one has
By(x, y) = Byy(wey, ye;,) for all z, y€V,.

Thus, putting B;=B,,|V; x V1 one has

J - M(Fy(%, y)) = (Bi(zey, yep))- (45)

In the second place, from (40), (44), one sees that Bj is £,e-Symmetric (i.e., symmetric or
alternating according as gye= +1 or —1). Finally, from the fact that F, is defined over
K and from (41), (27), one obtains the relation

Bi%(xnst, yns ') = us'Bi(x,y) for all z, y €V5.

Therefore, putting ‘
By, y) = Bi(fi(2), h(y)) for ,y €V, (46)

one gets, in view of (31) and (43), an gye-symmetric bilinear form B; on V, satisfying the
relation (14). Conversely, it is easy to see that, given such a form B, on V,, one can define
an g-hermitian form F; on V,; with respect to (&, ¢,) defined over K by (45), (46).

One notes that from (32) one has

J - M(Fy(Xa, Yy)) = (By(04(X) f1 (wew), 0,(Y) 1 (yen))
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for all z,y€V,, X, YE€NA, =E(V,/R). It follows that B, is p,(()-invariant if and only if
F, is P,(@)-invariant. It follows also that, for an involution of the first kind ¢ of 9, B,

satisfies (38), if and only if the corresponding F, satisfies
F,(Xz, y) =F, (2, X') forallz,y€V,, X€,. (38"

Quite similarly, one can establish a one-to-one correspondence between the s-hermi-
tian forms F, on V, with respect to (f, ¢,) defined over K and the ¢ye-symmetric bilinear
forms (or matrices) B, on V, satisfying (14’) by the relations:

MFy(z, y)) - T = (Baleyy, &) for 2, y €V, (45")

By(x, y) = Bé(fz(x)’ faly)) forx,y€V,. (46')

(Of course, in the definition of an e-hermitian form F, on V, with respect to (8, ¢,), one
should replace the first condition in (44) by
FZ(m, ﬁy) = “Fz(x: ?/)13"
for all 2, y€V,, a, FER.)
Combining these with the results obtained in 2.2, we get the following:

ProrositioN 3. The notation being as in Propositions 1, 2, suppose that (V, o,) is of
type (a). Then &, has an involution i, of the first kind defined over K, , and there exists a
non-degenerate P (G)-invariant e-hermitian form F, on V, with respect to (R, t,) defined
over K, , determined uniquely up to a scalar multiple. Let ¥y be any non-degenerate (—¢)-

hermitian form on V, with respect to (8,,, ty) defined over K,,, and put

{‘41(“71 @y, o Y1 @8, Y2) = tre, (Fi(@y, 11) Folyy, #5)) for all zy,y,€ Vi, 5, 42 € Vs, (47)

4= b, ko (4,),

trg, denoting the reduced trace of &,. Then A is a non-degenerate o(G)-invariant alternating

form on V defined over ky; and conversely all such forms A are obtained in this manner.

Rests to prove the last assertion. It suffices to show that, if F, and F, are correspond-
ing to B, and B,, respectively, in the above sense, then the first relation in (47) is equiva-
lent to (13). In fact, one has

tl‘@(Fl(-’”v y1) Fo(ya, @) = tr (J - M(Fy(2y, 1)) - M (Fa(y, 7,)) - J_l)
=i 12=:1 By (%, 81, y1811) Bé(b‘li %y, £15Y2)-

But, since x; ®g®s= >1-1%; & ®gsu%s, the element in 171 corresponding to x; ® g %, under
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the isomorphism V,>V,®¢V, given in 3.2 is ¢ (371 (fi {(@160) @ fz (e %)) and similarly

for y,®ays. This proves our assertion.

Example 3. As is well-known, in the case k,=40, the quaternion algebras are the only
division algebras with an involution of the first kind. A quaternion algebra &=(8, y) is
a crossed product (K"/K, u,, ), where K" =K (V‘E) is a quadratic extension of K with
Galois group {1, oy} and where u,, 5, =y and all the other p,,.'s are=1. Putting ¢, —i(VB),
£3= s, in the notation of Example 2, one has a basis (1, g, &, &,&,) of & satisfying the rela-
tion

2 2
e=P, &=y, && =%

If one takes the representation 3 as given in Example 2, i.e.

LTEVE pE+EVD
M(Eo+§1€1+5282+§33152):( vtals v ?—ﬂ ) (48)
L&V &H-&VB
one has 7,,=&,. On the other hand, for the canonical involution:
ot &ie+8et 88— 8 &6~ &e— 36,8
one has in (39) J= ((1) - (1)) (49)

so that one has gg= —1 and y,,= —y.

3.5. For a ky-primary symplectic representation (¥, 4, g) of type (b), one can prove
quite similarly as above, that 9, has an “involution of the second kind” ¢ (with respect
to ¢,) defined over K. By this, we mean a semi-linear anti-automorphism ¢ of ; (with

respect to o) defined over K satisfying the relation
X=X for all X€¥,. (50)
In fact, defining a semi-linear anti-automorphism ¢ of £(V;) by
Fy(x, ¢'y) = Fy(pw,y) forallz, y€V,, p€EV,), (61)
one verifies at once by (20), (21), (23) that
¢ =gl (@)1 =(¢") for all g€y,

which proves our assertion. (We denote 6516, again by ¢.)
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Now, since %, ~ &, & has also an involution of the second kind (with respect to gy)
defined over K, denoted by ¢, by a theorem of Albert (loc. cit.). Then, one has

M) =T (T (52)

with J €GL(r, k,), uniquely determined up to a scalar multiple. Applying this equa,hty

twice on M (& ) and in view of the relation 3 =03 and (27), one has
*J°°%H'IJM 7a3) (53)

with u€%,. On the other hand, applying ¢ €, on (52) and in view of the relation (o =5ty

and (27), one has
M (1) J M (ns) = psJ° for c€G,, (54)

with e, € k.
From (54), it follows that
M2~ fho, v = i e o - (85 a)

Furthermore, easy calculations from (53), (54), combined with (27), (28), give the relations

pay = o, (55 b)

0,03

I e T SN (65 c)

First, comparing (55a) with (22a) and (33), one sees that {%go%lalla} becomes a (contin-
uous) 1l-cocycle of G, in (k)*, so that by Hilbert’s lemma one has xy %, Amu, =05 * for
all ¢€@,, with a 0, €k, Hence, replacing J by 6,J (or F; by 6;'F,), one may assume

%2 o Ao fha = 1. (56 a)
Next, from (55b) and (22b), one has

G+l _

(xuﬂzﬂ) 2 ‘,gz‘dgluo-g = 1

On the other hand, from (55¢) and (33), one has

gg O Co g
Aaa‘uao 7{_ % %_ 3 (;% ;{Eﬂ,a_‘u,.o)

(%, Ayt =2 .._ =1 for all c€G,,.

= g
2o o %oy %o xo’ﬁa %26 Ao ho

which implies that ».; Au € K. Therefore, again by Hilbert’s lemma one may write 5.3 Ay =
03>~! with 6,€ K. Thus, replacing J by 0,J, (or F, by 6;' F,) one may assume (without
changing u, and hence the relation (56 a)) that
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soy A =1. (56b)

Remark. It is known (Albert [1]) that, in case the Hilbert’s irreducibility theorem
holds for k,, (which is surely the case for ky=@), K has a finite Galois splitting field K"
over K such that K"*=K", | K"=1 and G|K"=c|K" for all 6€(,,; in other words,
K"|K, is a Galois extension whose Galois group G(K"/K,) is the direct product of G(K"/K)
and {1, o’olK”}. Under this assumption, in taking M, n,, J, ete., to be K"-rational, one
may assume that #,=1, u=1, which reduces (53) to a simpler form: tJ%=J. But, in
this paper, we shall never need this simplification.

We can again establish a one-to-one correspondence between the sesqui-linear forms
F, on V, (with respect to g,) satisfying (20), (21) and the hermitian forms F, on V; with
respect to (&, t,) defined over K. By the latter, we mean sesqui-linear mapings F; from

V, xV, into & defined over K satisfying the conditions

{Fl(x‘x’ yp)y=o" Fi(z,y) B,

: (57)
Fi(z, y)° =Fy(y, 2%) for all =, y€V,,, fER.

In fact, given such a hermitian form F, on V,, one can prove, quite similarly as in 3.4,

that there exists a sesqui-linear form Fj on V; such that one has
J - MFy(z, y)) = (Fi(zey, yen)) for all z, y€Vy, (58)
and satisfying the relations
Fi(@,y)* =p " Fi(y, 2 na),

F(@en, yna')=pa ' Fi(x, y) for all z,y €V
Then putting Fy(z,y) = Fi(f,(2), f,(y)) for x,y€V,, (59)

one concludes from (31), (56a), (56b) that F, becomes a sesqui-linear form on ¥, satisfying
(20), (21). The converse is also immediate. Moreover, it is clear that F, is g,(G)-invariant,
if and only if the corresponding F, is P;(G)-invariant.

Quite similarly, one sees that there is a one-to-one correspondence between the her-
mitian forms F, on V, with respect to (R, ¢,) defined over K and the sesqui-linear forms
(or matrices) ¥, on ¥V, satisfying (20’), (21') by the relations analogous to (45"), (46").

Combining these with the results obtained in 2.3, we get the following:

ProrosiTioN 4. The notation being as in Propositions 1, 2, suppose that (V,, o) 18
of type (b) with respect to a,. Then K,, has an involution i, of the second kind (with respect

to a,) defined over K,,, and there exists a non-degenerate P(Q)-invariant hermition form Fy
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on Vy with respect to (8, t,) defined over K,,. Let F, be any non-degenerate hermitian form

on Vy with respect to (RKy,, t,) defined over K, , and put

F(z, y)=tra, (Fy(2), y1) Folys, 22)) for ©=a,@g, @, ¥ = 1, @, Y2 € V= V,®g, Vo

A+, y+y)=Va @5, g)~ Fly'™' , 0)} for z,y€Py, o,y €V, (60)

N
[

4= 13I‘K.,/lco (A1),

where K is the fized subfields of oy| K,, in K,, and & is an element in K such that Ko, — Ko(Va).
Then A is a non-degenerate g(Q)-tnvariant alternating form on V defined over ky; and con-

versely all such forms A are obtained in this manner.

3.6, Let (V, 4, ) be a k,-primary symplectic representation of G defined over k,.
Then ¢ is a ky-homomorphism of @ into Sp(V, 4), the symplectic group of (V, 4), viewed
as an algebraic group defined over k,. The notation being as before, we denote by Gy =
U(V,/8,,, F,) the “unitary group” of (V,/R,, F,), i.e., the group of all &, -linear trans-
formations of V; leaving F, invariant. In the case (a), G1 is a linear algebraic group defined
over K, , operating on the underlying vector-space of V,, and P, is a K,-homomorphism
of @ into G1. In the case (b), G1 can be viewed as a linear algebraic group defined over
K,, operating on the underlying vector-space of Ry, /5(V1), and By, /xo(Py) is a Ky-homo-
morphism of @ into G1. Quite similarly, the unitary group Gz = U(8,,\V,, F,) can be viewed
as a linear algebraic group defined over K, or K,. Our results may then be summarized

as follows:

THEOREM 1. Let G be an algebraic group defined over a field k, (of characteristic 0)
and let o : G~ @ =8p(V, 4) be a (completely reducible) ky-primary symplectic representation.
Let K,, be a finite extension of k, defined in 1.1, i.e., the smallest field over which an absolutely

primary component (V,, 8,) of (V, o) is defined. Then:

(i) In case (a), there exist a central division algebra R,, with an involution of the first
kind 1y, a right &,,-space V; with o non-degenerate c-hermitian form ¥, with respect to (K,,, t),
a left K,-space Vy with a non-degenerate (—e)-hermitian form Fy with respect to (R,,, to),
all defined over K, and a K, -homomorphism P, of @ into U(V,/8,,, F,), whick is absolutely
irreducible as o representation of G in K, (in the sense of 3.3), such that p is factorized in
the following manner:

Gi" U(V1/@e . Fy) ® Bx, i«
o —— 8p(V,, A;) —2= Sp(V, 4),

U(@QJ.\VZ’ F2)
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where

vl = v]_ ®@91V2: V= 'RKQI/ko (Vl)’
4,= trg, (F1®°Fy), A=trg, i, (4y).

(i) In case (b) (with respect to ao) let K, be the fixed subfield of ao| Ko, in K, and let «
be an element in K, such that KQI=K0(V;)- Then there exist a central division algebra R,
with an involution of the second kind 1, inducing o, on the center, a right (resp. left) &,,-space
V, (resp. V) with a non-degenerate hermitian form ¥, (resp. Fy,) with respect to (K, ), all
defined over K,,, and a Ko-homomorphism By, x(P.) of G into U(V,/R,, Fy), P; being an
absolutely irreducible representation of G into GL(V,/K,,), such that o is factorized in the

following manner:

R (P
¢Tre= ) iy g wy . R
x —=— UV, F)=8p(V,, 4;) == Sp(V, 4),
U('@el\vzy F2)
where 7.=V,0s, V.. Vl =By, 5, (7)), V= RK,,,k.,<I§),
F =trﬁgl (F1®tF2), A1=tI'KQI/K°(I/;VlF), A=tI‘K0/k”(A1).

In either case Ry, Vi, Vo, Py and the multiplicative equivalence-classes of ¥y, ¥y are deter-
mined uniquely. Conversely, any symplectic representation o constructed in these manners is

ky-primary and of type (a), (b), respectively.

In case G is a connected semi-simple algebraic group, one may replace each unitary
group in Theorem 1 by the corresponding special unitary group, i.e., the subgroup of the

unitary group consisting of all elements with the reduced norm 1.

3.7. Finally, we add some remarks about how these data describing a symplectic
representation behave under the extension of the ground field %, Letv o, be, as before,
an absolutely irreducible representation of G defined over %,. Let k; be any extension of
k, (contained in the same universal domain), and we denote the data relative to ko by
the same symbols with a prime (e.g., K,,, K., V1, ...) as those denoting the corresponding
data relative to &, (e.g., Ko, &, V1, ---). Then, from the definitions, it is clear that K, =
koK, and R, ~ &, over K, ; therefore, putting r=7"t (dim &, =r"2), one has &, = M,(K,.)

over K,. By means of this matrix expression, one obtains, as in 3.2, a K, -isomorphism
O : E(V1/8e) ~E(V1/8R¢.), (61)

where V; is an ni-dimensional right &,,-space defined over K, . Then one has a factorization

0, =010P; of g, relative to k, (as given in Proposition 1) with
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01 =0,00-1, P;=00P,, (62)

A ky-primary representation (V, ) (containing p,) decomposes into a direct sum of a
certain number of kj-primary components; let (V’, ¢’) be the one containing g,. Then,
since the absolutely primary component ¥, containing g, is determined independently of

the choice of the ground field, one has
V' = R, jis(P1),  Vi=Vi®g, Vs (over Ky,

where Vs is an n't-dimensional left &, -space defined over K, on which @ is supposed to
operate trivially. (We have to excuse the exceptional use of the notation »’ against the
general convention settled above.)

Now, it is clear that, if o, is of type (a) (resp. (c)) over k,, so is it also over ky; if g
is of type (b) over %,, then g, is of type (b) or (c) over k;. Here we shall be interested only
in those cases where g, is of type (a) or (b) over both k, and kg, for only such cases will
occur in Part ITI, where we shall apply our theory with k,=@Q, k;=R.

In the case (a) (over both k, and kg), one obtains an &’-hermitian form F; on V; with
respect to (Ry,, to) defined over K, (where gye=go¢’), either from F, on V, or from B; on

V, as explained in 3.4, and @ induces a K,,-isomorphism of the unitary groups:
U(Vy/ R F1) = U(V1/ R0, Fi); (63)

and similarly for F; on V. In the case (b) (over both &, and k), the Galois automorphism
0, can be taken in common for k, and kg, so that one has Ko=koK,, Ko=K,, 0 Kq. The
relation between F; and F; (=1, 2) is the same as above except that this time one has

in place of (63) a Kg-isomorphism induced by RKéI/K;(G)).

Part II. Determination of K, and &,
§ 4. Comparison with the quasi-split group

4.1. In the following, let & be a connected semi-simple algebraic group defined over
k,. Let T be a maximal torus in @ defined over k, and let X be the character module of
T. We shall fix once and for all a linear order in X and let A be the corresponding funda-
mental system of roots. For a given absolutely irreducible representation g, of G we denote
by 2, the corresponding highest weight relative to 7'.

The Galois group § operates on X in a natural manner and permutes the fundamental
systems among themselves. Hence, for every o€(, there exists a uniquely determined
element w, in the Weyl group W (relative to 7') such that one has A=w,A. For y€X,

we pub
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=t )
Then clearly one has A¥’=A. It follows that
(2e)* = Agyo- @)

This implies the following

ProrosiTioN 5. In the above notation, one has
gglz{aeg|ﬂ'g:]=ﬂ‘gl}' 3)

CororLARY 1. If G is of Chevalley type over ky, then one has K, =k, for all absolutely

trreducible representations g,.

CorOLLARY 2. If G is absolutely simple and not of type A;(1=2), D, or Eg, then one

has K, =k, for all absolutely irreducible representations g,.

In fact, under the assumption of Corollary 1 or 2, the operation [¢] of the Galois
group on X is trivial, so that one has G, = §.

4.2, A connected semi-simple algebraic group @ is called k,-quasi-split (or “‘of Stein-
berg type”), if there exists a Borel subgroup B of ¢ defined over k. If the maximal torus
T and the fundamental system A are so chosen as to determine such a B, then one has
Av=A for all ¢€§. (As is well-known, to get such 7', A, it suffices to take 7' containing
a maximal ky-trivial torus 4 and define A with respect to a linear order compatible with

X,< X, X, denoting the annihilator of 4 in X.) Hence in this case one has
Ao = (A,)7 for 0€G. 2"

ProrositionN 6. If G is ky-quasi-split, then S, ~1 for all absolutely irreducible

representation g,.

Proof. Take T and A as above. Let V; be the representation-space of g, and let x;
be an eigen-vector corresponding to the highest weight A, which is %,-rational; x, is then
uniquely determined up to a scalar multiple. Then it is clear that, for each ¢ € ,, 7 is an
eigen-vector in V{ corresponding to the weight A7, which is the highest one by (2'). There-
fore one can normalize the isomorphism ¢, : V; —V7 in such a way that one has ¢ (z,) =23
for all o€ §,,. Then it follows that 1,,=1, so that one has &, ~1.

4.3. Let G be a connected semi-simple algebraic group defined over k,. It is known
that there exists a ky-quasi-split group G" from which @ is obtained by twisting with respect
to inner automorphisms (see e.g. [17]); this means that there exists a %,-isomorphism f
of G' onto G such that, for every ¢€(, f7of! is an inner automorphism of G. Such G*
is unique up to a k;-isomorphism (see e.g. [19]). Put frof*=1, with g,€@, I, denoting
16 — 662903. Acta mathematica. 117. Imprimé le 15 février 1967.
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the inner automorphism: g —g,gg; " of G. Since g, is uniquely determined modulo the center
Z of G, ¢5:=059:95 is a 2-cocycle of § in Z, whose cohomology class is uniquely deter-
mined. We shall now show that this cohomology class does not depend on the choice
of f either. Let /' be another k,-isomorphism of G! onto G such that f7o f~t=1, with
g-€@ for every c€(@. It is known (see e.g. [17]) that Aut(G") splits into a semi-direct
product of Inn(G') and a finite subgroup U which is invariant under . Hence we can
pub flof =1, ou with g, €EG* and € U'. Then one has

Iy = frolgousourolyr0ft = I;yy0l, o(fousourof1)olsg,

This shows that uoou! is inner and so »” =u. It follows that g,=f(g,)7g,f(g;)™* (mod. Z),
whence our assertion. We shall denote the cohomology class of (¢, 1) by y,(&), or simply
by y(@).(*) For any k> ky, v,(G) is the element in H%(k, Z) obtained from y(G) by restricting
the Galois group.

Now let o, be an absolutely irreducible representation of & defined over %,. For every

o €@, one has (g9,0f)" =plo(f7of)of~piof, so that one has
01~0:1>(019f)"~010/-
Thus one concludes that G, =Gp.or, Ko, =Kpor Since K..r~1 (Proposition 6), one may
agsume that g, of is defined over K, . Then one has
01(g) = (@10/)of~7(9) = 01(95"99)> @)

which shows that one can take g,(g,)~! as g,. It then follows that, for o, T€(,,, one has

Do v = Qo e @i = 01(957) 02097 ") 01(g0) = a(C5.%)-
Since Z is of finite order, A, .’s are all in E (=the group of all roots of unity in %,). In
view of (4), the restriction of o, on Z is a §,,-homomorphism of Z into E, so that it induces
a canonical homomorphism:
HX(K,,, Z) ~H* Ky, E),
which we shall denote by ;. We have thus obtained the following

TaEOREM 2. Let G be a connected semi-simple algebraic group defined over ky, and
let y(@) be the element of H2(k,, Z) defined above, Z denoting the center of G. Then, for every

absolutely irreducible representation p, of G, one has
o(Re) = 2oy, (B))- (5)
Thus, for the determination of &,,, it is enough to determine y(&) for simply connec-
ted G.

(1) For a p-adic field %,, the canonical map HY(GY/Z')—~H?(Z') is bijective, so that the k,-isomor-
phism class of @ is uniquely determined by f*-2(p(G)) € H2(k,, Z'). Cf. M. Kneger [17].
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§ 5. Determination of y(G)

5.1. Suppose first G is decomposed into the direct product of kj-simple factors:
G=]1G®. Then it is clear that one has

7@ =TTr(G").

Therefore one may assume G to be k,-simple. Suppose further that G is decomposable into

the direct product of absolutely simple factors. Then one may put
3
G =£G§‘=Rklko(a1): (6)

where k is a finite extension of k,, G is an absolutely simple group defined over k, and
{r1, ..., 15} is a system of representatives of G(k)\G. If (G4, f,) is a quasi-split k-form of
G, such that f{of;' is an inner automorphism of G, for every ¢ €((k), then it is clear
that (R, (G1), [1/i) is a quasi-split ky-form of @ satisfying the similar condition over k.
Let Z, be the center of ;. Then Z =R, (Z,) is the center of G and one has the canonical

isomorphism (see [11]):
H(k, Zl)%Hz(ko, Rk/ko(Zl))3 (7)

which we shall denote, by abuse of notation, by R,,.* (More precisely, for each o€g,
put 70 =0(i)T;s with o(7) €G(k).) Then one has Ry, *(co,+)=(c,.7) With

Co,v= (Coar*0Y @) for all o, 7€QG.

In these notations, it is easy to see that

Vol &) = Rk/ko* (yr(G1)). (8)

Thus the determination of y(G) is reduced to the case where @ is absolutely simple.

5.2. The case ('=SL(n, &), & being a central simple division algebra of dimension
72 defined over k. In this case Gt =SL(nr), and the center Z of G can be identified cano-
nically with E,, (=the group of nrth roots of unity in %,) as a group with operators (k).

In the notation of 3.2, one may put f=M-1, g, =n.1,, and ¢, :=ps 1, Therefore
through the natural injection H?(k, Z) -~H?(k, E), one has

7(@) =c(R). (9)

5.3. The case G=SU(V/&, F), where & is a central division algebra of dimension 7%

defined over a quadratic extension k' of k¥ with a non-trivial Galois automorphism g,

r

having an involution ¢, of the second kind (with respect to o,), V is an n-dimensional
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right K-space, and F is a hermitian form on V with respect to (&, ¢,), both defined over
k'. Regarding F as a linear mapping from V onto the dual of V* (which is ¢ 'o,-semi-linear
if the dual of V™ is regarded as a left R*-space), we regard & as a k-closed subgroup of
G’ =R, (GL(V/R)) =GL(V|®) x GL(V*/{°") defined as follows:

G = {(g1, 92) EGQ"' | n(gy) = 1, 'g,Fg, = F},

n denoting the reduced norm of E(V/®). We put G*=8U(V, F,), where V is an nr-dimen-
sional vector-space and F, is a hermitian form on V (with respect to ¢,) with the maximal
index [nr/2], both defined over k’; in the similar way as above, G is regarded as a k-closed

subgroup of G'*= R, ,(GL(V)). The notation (s;), #,, ... being as in 3.2, 3.5, put
J- M (F (=, y)) = (F(@en, yen))

with a sesqui-linear form F on Ve;; x Ve;; (with respect to o,), which will also be regarded
as a linear mapping from Ve,; onto the dual of V"¢ff. Let , be any linear isomorphism

of V onto Ve,; and put
hy=tF'oth;'otF,. (10)

Then we have an isomorphism f=(f,, f;) : @1 - G’ defined by

{f1(91)lv <911=k1g1h1;1 for g, € GL(V),

. i . (1)
f2(g2) [V et =hogo hy ' for g,€ GL(V™).

It is then clear that one has f(G*)=G.

Now to calculate f7of~L, we first observe that fjof;* =I, withg,=f,(hi*o R, ohf), R,
denoting the right multiplication by 7, It follows that, if one puts f'=(fy, fi), one has
feof' =1, with

, {(ga, g%) for o€ G(K),
Jo=

(o005 955) for o ¢ G(K).
On the other hand, one has fof1=1I, », With hy=fy(hz 'h{*). It follows that foofl=
(' of o (feof Vo (f of 1) = I, with
@0 ho®g7hy)  for c€GK),
o= ,
* (h0 Goror 95,3 ho) for a € G(E).
Tt is easy to see that gy is a similitude of the hermitian form F with the multiplicator:

" Ho for o€ g(k')’
(ga ) a M—Gﬂaoa /"Z?,“. a0t for ¢ ¢ g(k,)
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Now normalizing 7, and J in such a way that n(n,)=1, det (J)=1, we may assume
that u, 7, g, 4 are all rth roots of unity. Moreover, taking %, suitably, one has g, € SL(V/&)
for all c€G(E'). To have this, it suffices to take a k'-rational &-basis (e,, ..., e,) of V and
a k'-rational basis (e, ..., e,,) of V and to take &, in such a way that the matrix of 2, with
respect to the basis (e;) and (e,€;,)1<i<n. 1<j<r has the determinant one. Then it follows also

that one has

n(ho) = n(F)-det(Fo)~,
where n(F)=det(M (F(e,, ¢,))) and det(F,) =det(Fy(ei, ¢;)). Taking F, in the usual normal
form, one has det(Fy) =(— 1) = (—1)"®r-DZ,

Now we put

ﬁ — n(ho)llnr — ( . 1)(nr—1)l2n(F)1/nr’ (12)
. (1, o) for o€ G(k'),
- B Moo b, B) for 0 GE).

Then one has ¢;'gs €@, and frof1=1 ¢;* gy Therefore calculating the coboundary of (¢; g7)

(which is the same as that of (c;'g,)), one obtains the following result

Ho, for o,7€G(k),
Yo, ros for o€G(X'), 7¢G(K'),

Co,z =9 pr-1 —06o _ ; ’ (13)
B o proci iz for o¢G(k'), 1€G(K),

BT pog gy for o, T¢G(K),

where we identify the center Z of & with E,, (by the projection to the first factor). Note
that the Galois group G(k) then operates on Z by the following rule: 2 =27 for o € G(k'),
=27 for ¢ G(k'). If we put SU(R, t,) = {£€RK|n(&) =1, £*&=1}, one may write

V(@) =y (F)-y(SUS, 1)), (14)
where y'(F) denotes the class of 2-cocycle defined as follows:

1 for c€G(K'),
oe=1f""  for c¢G (), z€G(K),
prT for o, G,

where ' =(— 1)@ VrizyEylinT,
Remark 1. In case r=2, & has a k-form &, defined by the operation of the Galois

group: £°1=§44 ; denoting the canonical involution of the quaternion algebra & (cf. [2],
p. 161, Th. 21). It is not hard to see that one has
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)/(SU(,Q, LO)) = c('@lo)’

where both sides are considered as elements of H3(k, E,).

Remark 2. In the similar sense as above, if nr is even, (' (F))""2 can be identified with
¢(&,), where &, is a quaternion algebra defined by the crossed product (&'/k, (—1)"""*n(F)).
Let {w,, ..., war-1} be the fundamental weights of G (relative to 7' and A) arranged

in the usual order, and put A, =2 m,m;. Since w{"™ =w,,_;, one has by Proposition 5

k if my_;=m,; forall i,
Ko =1, . (1)
k otherwise
In case K, =k’, one has by Theorem 2
Ko~ KE™ (16)
In case K, =k, &, is (at most) a quaternion algebra determined by
c(ﬁgl) — y(G)? iz if mr=0 (mod 2), (16/)
otherwise,

where both sides are considered as elements of H2(k', E,).

5.4. The case @=8U(V/R®, F), & being a central division algebra of dimension #2
with an involution ¢, of the first kind, V is an n-dimensional right R-space, and F is a
non-degenerate e-hermitian form on V with respect to (8, ¢,), all defined over k. Let V
be an nr-dimensional vector-space defined over & and let B=8 or 4 be a suitable ge-
symmetrie bilinear form on V defined over k such that G is given by SO(V, 8) or Sp (V, 4),
where we write B=S or A according as gje=1 or —1.(}) Let % be a linear isomorphism

of V onto Ve, defined over k such that one has

(1) As is well known and also as will be seen from the following arguments, it suffices to take B of
the maximal index except for the case ¢ =1 and nr=0 (mod. 2), in which case B =S is given as follows:
If »=1, put § =1. If #>1, then r is even; taking J in such a way that det (J) =1, one can find § €k such

that n(ns) = ng_ly,r,/ 2. Then B =8 will be any symmetric bilinear form of index nr/2-1 with the deter-
minant det (S) ~0"n(F) (mod. (£*)?), for instance,

(O 1nr/2—1) . (1 0 )
S = + .
lnrlz—l 0 0 ( —_ 1)nr/2—16n,n(F)

Note that, in case § is a quaternion algebra, ons can put =1.
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J - M(F(x, y)) = Blh—(wen), h~(ye,)),
and define an isomorphism f of GL(V) onto GL(V/®) by the relation
()| Ve, =hogoht.
Then it is clear that f(G*)=G. For each g €G(k), one has feoft=1, with
=f(h~1o R, oh")EGL(V/K).

By what we have seen in 3.4, g, is a similitude of F with the multiplicator u,, which is
“proper” in the case where ¢, =1 and »r is even by our choice of . So putting g, = +us tg,,
one has g,€G and frof1=1I, . Therefore, through the natural injection Z —E,, one has

7(G) = c(8). (7

5.5. In the case goe=1 (i.e. B=8 :symmetric), the group @ in the preceding para-
graph is not simply connected, so that one has to consider the universal covering group
(G, @) of G. The corresponding quasi-split k-form is given by the universal covering group
(G4, g1y of GL. Let us first recall briefly the construction of the “spin group” G! and its
twisted form @ after Jacobson [6].

Let C=C(V, S) be the Clifford algebra of (¥, 8), i.e. an associative algebra (over
the universal domain) with the unit element 1 generated by all x€V with the defining
relations 22=_8(z, z); and let .C*+ denote its even part, ie. the subalgebra of € spanned
by all products of an even number of vectors in V. Let further ¢ be the canonical involu-
tion of C, i.e. the involution of C defined by (x; ... z,)'==2, ... %, (x,€V). Then (G, oY)
is given as follows (cf. [3]):

{67‘={g€0+|9‘g=1, gVg =73}, 8)

@H(9) (x) =gzg ™ for ge@, z€V.

Next, we define a k-form (€, /1) of C+ by the following (well-defined) operation of
the Glalois group:

@) =psf Hgo) 2 ) ¥ = Ngo) & fHgo) y° for @, yEV, (19)

where g,, g, are as defined in 5.4. Then it is immediate that the k-isomorphism class of €
is uniquely determined only by (V,F) (independently of the choice of &, h, etc.) and
that, when & ~1, this € can be identified with the ordinary even Clifford algebra of (V, F).

Moreover it is clear that one has
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(2 = (™) for all z€CT,

that means that the corresponding involution of €, denoted again by ¢, is defined over k.

Now, as is well known (cf. [3], II, 3.4), the group {g€C*|gVg'1=V} is generated
by the products of two vectors z, y in V with S(z, ) +0, S(y, y) +0. It follows that G
is invariant under all [o] (0 € G(k)), and therefore G =f(GY) is defined over k. To prove
that the covering homomorphism of G onto G is also defined over &, we need the following

characterization of ¢
LEMMA 2. Let p be a homomorphism of G into G* satisfying the relation

gley)g™ =p(g)z-plg)y (20)
for all g, z, y€ V. Then one has y—=g?.

Proof. Put () =w(g)¢*{g)L. Then one has y(9)z-x(g)y=wy for all 2, y€V, so that
the orthogonal transformation y(g) ean be extended to an automorphism of ¢ which is
trivial on C+. Applying this automorphism on the second formula of (18), one obtains
9 2(9) (@) 97 =x(g)op(g) (), ie. @lg)ox(g)=x(g)oglg) for all gEG, whence follows that
x(g) is in the center of G* and so =+ 1. Since G* is connected, ¥ must be trivial, g.e.d.

Now applying [¢] on (20) with ¢ =¢?, one has

g = y)g " = ¢ (9 (2) - ¢*(9) (%)

where @l(g)"=f1of7(¢'(g)?). It follows from the Lemma that ¢!(g)"=g'(¢"")=
¢'(f1of°(9°)), whence follows that ¢ =foto(f2|@) is defined over k.(*) Thus one obtains
the following commutative diagram:
1 L o
v f (21)
G

Qu

Ct>
Fi
¢ > a

—

5.6. (1) The case nr=1 (mod. 2). The center of G being trivial, one has y(@) =¢(&) =1
(i.e. r=1). On the other hand, one has G+~ Mei«-1 over k and so € is a central simple
algebra (with involution of the first kind). Taking g, €G in such a way that ¢(§,) =gs, one
has from (19) f7ef1=1I; . Therefore, identifying the center Z of G with E,, one has

(*) This can be proven more directly as follows: Denote by ;;0 the (inner) sutomorphism of C
extending the proper orthogonal transformation f_l(g;)_l; then one has f "of = <;7g] C¢*t. Put further
Do =f_c°f=1fﬂ(g;)—1. It suffices to show that @lo ((“Po’ l él) =g@sop'. For g € é one has (}7102;'95(!;) =
15, & |V== (peo1; 0&;1) |V= f_l(g;)—lotpl(;)"f‘l(g;) = (@s°¢") (g), Which proves our assertion. The fact

that G is defind over % can also be given a similar proof.
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7(G) = ¢(©). (22)

Let {wy, ..., wyn-1} be the fundamental weights of @ ordered in the usual way (i.e.
®3n -1 corresponding to the spin representation) and put A, = > m,w;. Then g, is a represen-
tation of ¢ if and only if myy 1) is even. One has K, =k for all g, and

R, ~E™1-n (over k), (23)

for the spin representation is, by definition, the restriction on @ of the (unique) absolutely

irreducible representation of €.

(2) The case nr=0 (mod. 2). In this case, one has
C* = Mypnr1 @ Mypnr-1 over k' =k(V(— 1)¥" det ().
Let’ @ = @1 @ @2 (24:)

be the corresponding direct decomposition of €. Again taking gt,e(? such that ¢(§,)=go,
one has frof-1=1 7,- This implies in the first place that the decomposition (24) is also de-

fined over &'. Now we have to distinguish the following two cases:

(2.1) The case nr=0 (mod. 4). In this case, ¢ leaves €, and €, invariant and induces
an involution of the first kind in each of them. It follows that, if one denotes by 1’, 1"
the unit elements of §; and €,, respectively, the center Z of G is given by {+1'+1"}.
If k' =Fk, the Galois group operates trivially on Z and so, through the identification Z=

E, x E,, one has

(@) = (¢(C1), c(Ea))- (25)
If ¥’ >k, One may write € =R, ,(€,) and identify Z with Ry n(Es). Then one has

@) = By p*(ew(€1)), (25')
where R,.,* denotes the canonical isomorphism H*(%', E;) ~H2(k, E . 4(E,)).

(2.2) The case nr=2 (mod. 4). In this case, : interchanges €, and €, each other. It
follows that, in the same notation as above, Z is a cyclic group of order 4 generated by
VTI(I’ —1"). I ¥’ =k, the projection on the ith factor (=1, 2) gives a G(k)-isomorphism
of Z onto E,. and through this one has

proif (y(@) = «(€)). (26)

It follows that €; and €, are of exponent 2"(»<2). If &' 2k, let o, be an element of G(k)

which induces a non-trivial automorphism of ¥'/k. Then (g, induces on each €; an involu-
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tion of the second kind (in the sense of 3.5), which we denote by ¢, Put G;=8SU(E,, ¢,).
Then the projection on the first factor gives an injection of Z into the center of Gy (with
the operation of the Galois group G(k)), and through this one has
proji (@) =7(SUEy, ). (26')
It follows, in particular,
proji (y(@)) = e (Cy),

so that €, and €, are again of exponent 2’ (»<2).

Returning to the general case nr=0 (mod. 2), let {w,, ..., w,,} be the fundamental

weights of G, where w,,,-1 and oy, correspond to the spin representations @ and o®

given by €, and §,, respectively. Put 4, =2 m,w,. Then one has

k if Mynr—1= Mynr,
K, = b 27
& {k' otherwise, #7)
$nr—2
X omg

K, ~& ' @CPm2@Elr over k. (28)

On the other hand, g, is a representation of G if and only if m,, 1=my,, (mod. 2), and

for such a representation one has

inr—2
)1: ””H(im)’"‘;m”1+(i""“1)m§m

Ko~ 8 over K,,. (28"

Comparing these two expressions, one obtains the following relations due to Jacobson

(61: (M
When nr=0 (mod. 4), C, @8~ & over &'; (29)

When nr=2 (mod. 4), C,08,~1, Ci~Ci~& over k' (30)

(These relations can also be obtained by comparing the restrictions of ¢, o@, p® on Z.)
Note that, in case £~1, one has §,~E,~ (', ¢’ denoting the (full) Clifford algebra of
(V, F) in the ordinary sense.

8.7. For the exceptional groups, our result being still incomplete, we shall restrict
ourselves to the case where £ is a local field or a number-field. Let ¢ be a simply connected
absolutely simple group of exceptional type defined over k and let Z be the center of G;

(1) In [16], p. 173, Cartan writes “‘Il en est de méme pour le groupe g,, qui admet done, ainsi que
g, d’indice 1.” But this clearly contradicts Jacobson’s result. In Cartan’s notation, one should say
that one of g, and g, is of index 1, while the other is of index - 1.
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.. __. e W ’ .

we may assume G to be of type D,, E; or E,, for otherwise Z is trivial. In case k is a local
field, one obtains the following results (cf. [16], [17]). If 6" is not of Chevalley type‘over k
(i.e. the cases %D,, 8D,, 2E), one has H*k, Z)=1 and so a fortiori y(@)=1. (The same
is also true over number-fields.) Hence suppose G' to be of Chevalley type. In case G is
of type (Ey), Z is (j{k)-isomorphic to E,, so that HX(k, Z)>~H2(k, E,) is cyclic of order 3.
When k is a p-adic field and & has the diagram as indicated, G contains a k-closed sub-
group k-isomorphic to SL(2, &) where §; is a central division algebra of dimension 9
defined over k; in this case, one has y(G) =¢(R&;). Otherwise one has y(G)=1. In case G
is of type (E,), Z is isomorphic to E, and so H2(k, Z) is of order 2. When @ has the diagram
as indicated, or when G, is compact (£=R), one has (@) =c(8,), where &, is the (unique)
quaternion algebra defined over k. In all other cases, one has y(G)=1. For the group ¢
defined over an algebraic number-field k, y,(&) can be determined in virtue of Hasse
principle for H%(k, Z). (See T. Ono, On the relative theory of Tamagawa numbers, Ann.
of Math., 82 (1965), 88-111, especially p. 107.)

5.8. We shall add here few remarks on the determination of F,, which is also indis-
pensable for the description of symplectic representations. We use the notation introduced
in § 4.

(i) Let w, be the (unique) element in the Weyl group W such that w,A = —A. Then
an absolutely irreducible representation g, of G is of type (a) if and only if one has
~Wo(he,) =Aq,. (For instance, if & has no simple factors of type 4, (1=2), D, (I : 0dd) or
Eg, one has wy= —1, so that g, is always of type (a).) In that case, putting A = {a,, ..., a;},
one may write 24, =2, n;a; with n,€Z, n,>0. Then, in the notation of Part I, one has
gge=(—1)=" ([18]).()

(ii) In the same notation, g, is of type (b), if and only if

) D. N. Verma gave recently a simpler proof for this formula independent of the classification
theory. Iwahori has also gotten another formula determining gge.
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—Wo(Ae,) = AN 41, for some ¢, €G.

In both cases (a), (b), the determination of F, can easily be reduced to the case where
G is ky-simple (cf. 9.2).

Part ITI. Symplectic representations of semi-simple algebraic groups of hermitian type
satisfying the condition (H,)

§ 6. Observations over R

6.1. Let G be a (Zariski-)connected semi-simple algebraic group defined over Q.
Gr is then a semi-simple Lie group with a finite number of connected components (in
the usual topology). One denotes by G the identity component of Gr. We assume G to
be “of hermitian type”, i.e., denoting by X a maximal compact subgroup of G'g, we assume
that the associated symmetric space D=Gr/X has a G}-invariant complex structure and
thus becomes a symmetric (bounded) domain. This implies, as is well-known, that all simple
factors of (g (viewed as a Lie group) are either non-compact and corresponding to irre-
ducible symmetric domains, or compact; thus all absolutely simple factors of G (viewed
as an algebraic group) are defined over R.

As explained in the Introduction, our main problem is the following: for a given maxi-
mal compact subgroups X of Gr, determine all symplectic representations (V, 4, p) of
G defined over Q (or R) together with a maximal compact subgroup X’ of Gg=8Sp (V, A)r
containing ¢(X), such that the induced mapping from D =Ggr/X into D' =Gg/X’ is holo-
morphic with respect to the given complex structures on D and D’ (Condition (H,)).
In terms of Lie algebras, this condition is expressed as follows ([9]). Let g, ¢’, ¥, £ be the
Lie algebras of GR, Gy, X, X', respectively. Then there exists a (uniquely determined)
element H, in the center of f such that ad(H,) induces on the factor space g/ ¥, identified
with the tangent vector-space to D at the origin, the given complex structure of it. For
brevity, we shall call such an element H, in g an H-element for Qg (or G). Let H; be an
H-element for G determining the maximal compact subgroup X’ and the given complex
structure on D’. Then, the condition (H,) may be expressed as

do([H,, X1) =[H,, dp(X)] for all X €g, (Hy)

dg denoting the homomorphism of g into ¢’ induced by g. (This condition clearly implies
that do(H)< ¥ and so g(K)= X', for K and X’ are Zariski-connected algebraic subgroups
of Gr and Gy corresponding to fand ¥, respectively.) We shall also consider the following

stronger condition:
do(Ho) = H,. (Hy)
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As is well known, the maximal compact subgroups X' of Gg=38p (V, A)r (= Gg) are

corresponding (in a one-to-one way) to the complex structures I on Vg such that
Az, Iy) (x, y€ VR) is symmetric and positive-definite, (1)

by the relation that [ is J{’-invariant; and, if 7 is an H-element determining X', one has
Hy=411. In this paper, we shall always choose the complex structure on D’ in such a

way that we have the plus sign here. Then the condition (H,) may also be written as
do({Ho, X)] = 311, dp(X)] for all X€g. @)

Thus, given a maximal compact subgroup X of Gr and a G'yx-invariant complex structure on
D (or, what amounts to the same, given an H-element H, for Gg), our problem is to determine
all symplectic representations (V, 4, p) of G defined over Q (or R) together with a complex
structure I on Vy satisfying the conditions (1), (2).

6.2. Considering the above problem over R, we shall show in the first place that a
solution (V, 4, p; I) can be decomposed into a direct sum of R-primary solutions. (Cf.
[9], Th. 1.)

We first assert that all R-primary components of V are invariant under the complex
structure I. In fact, let W be any R-irreducible o(G)-invariant subspace of V. Since G
is Zariski-connected, the condition (2) implies that I--2do(H,) commutes with all p(g)
(g E€G); or, in other words, the linear transformation I —2dg(H,) is an endomorphism of V'
viewed as a representation-space. Hence the image (I —2do(Hy))(W) of W is contained

in the same R-primary component of V as W, and therefore so does also

I(W)= (1 —2do(Hy) (W) + W.

This proves our assertion.

Combining this with the condition (1), we see that, in the notation of 2.1, the case (c)
does not occur for any R-primary component of V. Therefore, denoting by (V9, o?) the
R-primary components of (V,g) and putting AD=A|V®, o =o|V, IO =I|VH, we
conclude that a solution (V, 4, g; I) decomposes into the direct sum as follows:

(V,0) =2 (V,g"%), A4=3 4%, 1=3 10,
where each (V(, A®, o I9) satisties again the eonditions (1), (2). Thus, the problem
over @ (resp. R} is reduced to the case when (V, g) is Q- (resp. R-) primary.

By 3.7, the above consideration also implies that, when one has a Q-primary solution
(V, A, g; 1), o is of type (a) or (b) over § and in either case all the R-primary components
of g are of the same type over R. Moreover, in the case (b), one can take as g, (an extension

of) the usual complex conjugation, so that one has ¢i=1 in (.
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There ig a “trivial” solution of our problem over § (resp. R), i.e., the one obtained
by taking (V, g) to be a trivial representation of G (of any degree) defined over Q (resp.
R) and 4 and [ arbitrarily under the only condition (1). The associated mapping of the
symmetric domain D into a Siegel space is also trivial in the sense that the image of the
mapping reduces to a point. Such a solution is, of course, of no interest at all from our
point of view. Therefore, in the following, we shall assume that the representation p is Q-

(resp. R-) primary and non-trivial.

6.3. Applying the main results of Part I to the case ky=R, we shall now study non-
trivial, R-primary solutions (V, 4, g; I) more closely. We first assume that dg(H,)=0;
as we shall see, this condition is equivalent to saying that the associated mapping of the
symmetric domain P is non-trivial. Moreover, it will also imply that the complex structure
I is uniquely determined only by (V, p) and H, (under the condition (H,)). In this and
the next paragraphs, to simplify the notation, we shall consider the real vector-space
Vr instead of the vector-space V over the universal domain. '

In the notation of Part I, we have the following four possibilities (where &,, stands
for (R,,) Kgl):

(@) K, =8,=R,

(ag) K, =R, &,=K (=the real quaternion algebra),
(a5) Ko =8R,,=C,

(b) Ko =&, =C, Ko=R.

As we shall see, the case (a;) does not occur; in other words, in the case (a) p is always

absolutely primary.
The case (a,). One has (Proposition 2)
Vr=V Vs,
{ nT Rt (3,
o0=p® triv.,

where ¥V, and V, are vector-spaces over R and p, is an absolutely irreducible representation
of Gx in R.
Moreover (under the conditions (H;) and dg(H,) ==0) one has
4=4,88,, (4a,)
I=1ly, (5ay)
where A4, (resp. §,) is a non-degenerate, real, g,(Gr)-invariant alternating (resp. symmetric)

bilinear form on V (resp. V,) and I, is a (o (X)-invariant) complex structure on V,,

satisfying the following conditions:
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Ay (x, I, y) (%, y€V,) is symmetric and (positive) definite, (1ay)
a

S, is (positive) definite, !

doy(Hy) =3} 1. (2ay)

1y, denotes the identity transformation of the vector-space V,.
In fact, since the centralizer of o(@)=g,(@)®1y, in E(Vr) is equal to 1y, ® E(V,),
the condition (2) implies that
I =2do,(Hy) @1y, + 1y, @,

@, being an endomorphism of V,. As I2= —1, one has
4(doy(H)* @1 +4 doy(Hy) @, +1® (> +1) =O0.

Since dg,(H,)(=+0) and 1y, are linearly independent, (for tr(dg,(H,))=0), one obtains the

relations
(dQl(Ho))2 =Aly, + u d@l(Ho),

@2=—ply, A=—1(E+1).

But, the trace of I being also equal to zero, one must have y=0, and so @,=0, which
proves (5a,) and (2a,). Then, by Proposition 3, (4a,) and (la,) follow from (1) immediately.
(Replacing 4,, 8, by —4,, —8,, if necessary, one may assume that A4,(z, Iy) and 8,
are positive-definite.)

The case (ay). One has
{ Vr=V,QkV;,

3
0=P,® triv., (3 2,)

where V; (resp. V,) is a right (resp. left) K-space and P, is an absolutely irreducible repre-
sentation of Gr in K. In this case, by a similar argument as above, one has
A =trg/r(F,®F,), (4 ay)
I=1,®ly, (5 a,)

where F; (resp. F,) is a non-degenerate, quaternionic, P,(GR)-invariant skew-hermitian
(resp. hermitian) form on V, (resp. V,) and I, is a K-linear complex structure on V,, satis-

fying the following conditions:

Fi(z, 1, y) (x,y€V,) is quaternionic hermitian and (posititive) definite,
F, is (positive) definite,

dP, (Hy)=$1,. T (2ay)
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(Note that the multiplicative equivalence-class of the quaternionic skew-hermitian forms

on V, is unique.)
The case (b). One has

{VR= Vi®eV, (viewed as a vector-gpace over R), (31)

0 =0y ® triv.,,

where V, and V, are vector-spaces over { and g, is an absolutely irreducible representa-

tion of Gr in €. Moreover one has
A=21Im((F,®F,), 4b)
I=(V-1T)ely, (5b)

where F/’s are non-degenerate, hermitian forms on V, (i=1, 2), F, being g,(G'r)-invariant,

and 7', is a C-linear transformation on V; with 7,2=1, satisfying the following conditions:

Fi(x,T,y)(x,y€V,) is hermitian and (positive) definite, (1b)
F, is (positive) definite,
V-1
do,(Ho) = o (T4 + plyy), (2b)

where u is a rational number, uniquely determined by the property that 7', +uly, is of
trace zero. (If F, is of signature (p, q) and if F,(z, Ty, y) is positive-definite, one has
uw={g—p){p+q). Note also that the condition dg(H,)=+0 implies that F; is indefinite.)

In the case (a;), one would again have (3b). But, proceeding just as above, one has
A=B,®B,, I (V=1 T)®1ly, where B/'s are symmetric or alternating bilinear forms
on V; (i=1,2) and T, is a C-linear transformation on ¥V, with T,%2=1. Then, clearly,
condition (1) can never be satisfied.

In the notation of Theorem 1, the corresponding special unitary groups G; and G

the are given as follows:

R
Sp(Vy, 44) SU(Vl/K: F,)) {SU(V,, Fy)
SO(sz Sz) SU(K\VZ’ F2) SU(Vz’ F2)

Gin=

Gop=

Thus, one sees that, in every case, the group Gyr is non-compact and of hermitian type

(type (IIT), (II), (I), respectively) and the group Gy is compact. (Actually, by the classi-



SYMPLECTIC REPRESENTATIONS OF ALGEBRAIC GROUPS 257

fication-theory, the above table exhausts all the possibilities of such pairs (G1, G3).) An
H-element for G4g is given by
V-1

Hy=}L, 3L0), —5— (Ti+uly), ®)

respectively, and the condition (2*) means that the absolutely irreducible representation
0, or P, of Gr into Gir satisfies the condition (H,) with respect to the H-elements H, and
Hg,. (In the cases (a,), (a,), o itself satisfies (H,) with respect to Hyand Hg.) Thus, summing
up, we obtain (the “only if” parts of) the following theorem. (The ““if”’ part is trivial.)

THEEOREM 3. Let G be a connected semi-simple algebraic group, defined over R, of her-
mitian type with an H-element H, (see 4.1), and let (V, 4, g) be a (non-trivial) R-primary
symplectic representation of G defined over R. Then, g satisfies the conditions (H,) and
do(H,) +£0, if and only if, in the notation of Theorem 1, the special unitary group Gir=
SU(V,/K, F))r is non-compact and of hermitian type, Gir=SU(K\V,. F)r is compact and
the representation P,(%) of Qg into Gig satisfies the condition (H,). More precisely, o satisfies
(H,) with respect to the H-elements Hy and Hy=3%I, I being a complex structure on Vg satis-
fying (1), if and ony if there exists an H-element Hg, for Gin such that one has

dP,(Hy)=Hg, (condition (H,)), (2%)
Hu®ly, in case (a),

Hy= - 5%
’ Hl’)1®1vg—‘/2£|/“ 11, in case (b), (5%)

where p is a (uniquely determined) rational number. Thus, in this case, I is uniquely deter-
mined by (V, o) and H,.

(1) The interpretation given here for H-elements in the case (a,) is slightly different from the one
given in [9]. The relation between them is as follows. Fix an isomorphism M : K®R C—>m2(C), as given
in 3.4, Example 3, and put V,; =(V,®Rr C)zy; {2n-dimensional complex vector-space). Then, as explained
in 3.4, there corresponds, to F,, a complex symmetric bilinear form § on V, satisfying the relation

Slxes y&o) = ~ VS, y).

Therefore, if one puts F(z, y) =V?I S(Zey, y) (z, y €V,), F becomes a usual hermitian form on V, and

one has by (45)
_l *IF(may) "'J’S(%y) )

M(F1<x+az,y+g»=( o
-S@y) V-1F(zy)

for x, y €V,. If one puts I,[V,=) —1 T, then the conditions for I, stated in the text is equivalent to
saying that T2 =1, S(», T'y) is alternating and F(z, Ty) is hermitian and positive-definite. Thus 3/ —1 7
is an H-element in the sense given in [9]. )

() When considered as a homomorphism of an algebraic group, this P, should be replaced by
R¢/R(P,) in the case (b).

17 — 662903. Acta mathematica. 117. Imprimé le 15 février 1967,
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6.4. In the case dp(H,)=0, the roles of V, and V, (in the formulas (4), (5)) are inter-

changed. For instance, in the case (a,), one sees immediately that one has (3a,) with
4=28,®4,, (4" ay)
I=1,01I, (5"a,)

where S; (resp. 4,) is a non-degenerate, real, p;(Gr)-invariant symmetric (resp. alternating)
bilinear form on ¥V, (resp. V,) and I, is a complex structure on V,, satisfying the following

relations:

S is {positive) definite, ,
(1" a,)

Aq(x, I,y) (x, yEV,) is symmetric and (positive) definite.

Similar results are also obtained in the other cases (a,), (b), (the case (a3) again missing);
in the case (b), one has (3b), (4b) with

I=(/~11,)0T, » (5 b)

and the condition (1'b) says that F, and F,(z, Thy) are (positive) definite. In this Jast
case the signature of F, can be arbitrary, and it may happen that F, itself is definite
a/nd T2 = i‘ 1 Var

Thus one obtains the following supplement to Theorem 3.

TrEOREM 3'. The notation being as in Theorem 3,-g satisfies the conditions (H,) with
respect to the H-element Hy and Hy and do(H,) =0, if and only if Gir is compact. In that

case, Gyr is of hermitian type with an H-element Hoy satisfying the relation:

lv,®@ Hee in case (a),

Hy= i 5
’ 1V,®Hoz—’g V=11y in case (b), ()

where u is a rational number (depending only on the signature of F,); in particular, in case

(a), Gar is non-compact.

Contrary to the case do(H,) #0, the H-element Hg, in (5'*) (as well as the signature
of F, in case (b)) can be taken arbitrarily. One should also note that, in case dg is faithful,
one has do(H,)=0 if and only if Gr is compact.

§ 7. Observations over Q

7.1. Let & be a connected semi-simple algebraic group, defined over Q, of hermitian

type, and let (V, 4, g; I) be a non-trivial -primary solution of our problem. First of all,



SYMPLECTIC REPRESENTATIONS OF ALGEBRAIC GROUPS 259

it is clear that we may assume, without any loss of generality, that & is simply connected
(as an algebraic group); then G is decomposed into the direct product of absolutely simple
factors defined over Q as follows:

G=0x..x6G, (7)

Let (V,,0,) be an absolutely irreducible representation of G defined over (_Q, contained
in (V, ). Then by a well-known theorem in the representation-theory g, is decomposed

in the following form:

01 zi@lglwph 8

where p; denotes the projection of ¢ onto G; and p,; is an absolutely irreducible represen-
tation of @, defined over Q In the following, we shall restrict ourselves to the case where

p14's are all trivial except one of them, say g,; i.e., we shall assume that 01 18 of the form
01 = Q%P (9)

By virtue of [9], Th. 2, this is surely the case, if Gr has no compact factor.
Now, let G be the Galois group of /Q, put

Go = {0€G|GT =1}

and denote by % the subfield of Q corresponding to g ; then k is the smallest field over
which the subgroup G, is defined. Since the conjugates of G, are all defined over R, k is
a totally real number-field (of finite degree). If one puts

g,=¢§16017;’ (10)

then one has s, distinct conjugates G in the decomposition (7), and for each 6€Ge,1;
one has o =of,0pj¢ where pi is the projection of G onto G}i and ¢f, is a representation
of Gfi. Thus g is essentially a representation of [Tf*; Gfi = R, q(G,), which is nothing else
than a Q-simple factor of ¢ containing G;. Therefore, in the following, we shall further

assume that G is Q-simple, i.e., G is of the form:
6=1165' = Rua(64), (1)

where @, is a connected (simply connected) absolutely simple algebraic group defined over k.
It then follows that g is almost faithful (i.e., has a finite kernel) and so dp is faithful.

Remark. When we consider discrete subgroups in Gp, the above argument should be

supplemented by the following observation. Suppose one has a discrete subgroup I in
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Gr such that I'\GR is of finite volume and that o(T") is contained in I =Sp(L, 4), L being
a lattice in V¢ (see Introduction, 2). Put GV = R,¢(G,) and let G2 be the complementary
partial product in the decomposition (7), which is also defined over §. Then, by the assump-
tion (9), o =p |GV is almost faithful and ¢|G*® is trivial. It follows that the projection
of T' on Gf is also discrete, for it is contained in the discrete subgroup ¢ (V) of G,
Therefore, denoting by I'? the projections of I' on G (¢=1, 2), one can conclude that
I" is commensurable with I'D x ['®), (See e.g. H. Shimizu, On Discontinuous groups operat-
ing on the product of the upper half planes, Ann. of Math., 77 (1963), p. 40) Consequently,
the considerations on the quotient space I'\D is essentially reduced to that on the direct
product of the quotient spaces '"V\D!V and I'2A\D®, DV denoting the symmetric domains
associated with G (i=1, 2), and we have a family of abelian varieties only on the first
factor V\D®. Thus, for the study of families of abelian varieties, we may restrict our-
selves to the case G=GW,

One should also note that, under the assumption (11), the commensurability class

of I' is uniquely determined, i.e., I' is automatically commensurable with G'z.

7.2. We shall note here that, under the above assumptions, one has K, =K, , &, =8,,,

and if
01 = 010Py (12)

is a factorization of g,, as given in Proposition 1, then
01 = 0,0(Pyy0p,) : (13)

is the corresponding factorization of ;. In fact, for 0 €, one has g7 =gf10 pi, so that one
has gf~p,, if and only if p]=p, and gf; ~p,;; and the condition pi—p, is equivalent to
6 €@, Therefore one has Gy, =G, = Gg,, namely K, =K, k. Moreover, if Py, is a repre-
sentation of G, into GL(V,/K,,) satisfying (12), then one has also (13). This implies, by
the uniqueness of the factorization in Proposition 1, that &, =,,., and our last assertion

follows.

7.3. The notation and the assumptions being as above, let us first consider the case

(a). By Theorem 1 and 7.2, the representation p can be factorized as follows:

P ’
G!Q P Gy 11 Gi= SU(VI/'@Qv Fl)!KQ1 ® . RKQ e,
X —"Sp(vla Al)IKQl__l"G =SP(V’A)/Q,
Gz =8U (R,\V3, Fz)/ls’gl (14a)

or what amounts to the same,
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Ko /@ (P110P1)

R
G = Ryjo(Gy) Re,10(G1)| o

o —— G =8p(V, 4). (14" a)
Re, jo(G3)

Here P, is almost faithful, since @, is absolutely simple and p is non-trivial.
By § 4, all R-primary components of V are absolutely primary, so that the decom-
position

g ~
V :_z]:. V{i, With Vl = Vl ®@91V2

is exactly the decomposition of V into the R-primary components. This implies in the
first place that K, is a totally real number-field. Next, applying what we have said in

3.7 and Theorem 2.2' to each component V7¢, one sees that
7 d /1‘ 7’ d /Ti
RKQ1/Q (Gl) = I_TIGI and RK01/Q(G2) = 1;[1 Gz

are of hermitian type and that, for each ¢, one of (G{”)R and (G;i)R is compact, while the
other is non-compact. Thus, in the classification of 8.1, R %, 10(G4) is of type (TIT.1), (IIL.2)
or (IT) (see the next paragraph). Moreover, one can take respective H-elements Hy and
Hg, for R(G1)r and R(G2)w in such a way that one has

d(R(P)))(H,) =Hg (P, =Py 0py), (15)
Hu®1+1®Hg, = H;, (16 a)

Thus the representation R(P,) satisfies the condition (H,) with respect to the H-elements
H,and Hg.

Conversely, it is clear that, if R(G;), R(G3) and R(P,) are taken to satisfy all these
conditions, then the representation ¢ defined by the above diagram (14a) or (14'a) satisfies
the condition (H,). Thus one sees that the essential part of our problem lies in the deter-
mination of the absolutely irreducible (almost faithful) representation o,, =0,0P, of Gy such
that Gy =8U(V,/R,,, F,) is of hermitian type (as described above) and that Eg, 0(Pyopy):
G=R,,0(G,) >R Ko/Q (G1) satisfies the condition (H,). In fact, this will first determine
uniquely K,,, &,,V, and F, (up to a scalar multiple), and then (as we shall see it more
explicitly in the next paragraph) settle the rest of the problem, i.e., the determinations
of V,, F, and I, almost automatically. A complete list of such absolutely irreducible re-
presentations g, will be given in § 8.

Denoting by D; and D; the symmetric domains associated with R(G1)r and R(G:)r
respectively, one obtains from (14'a) the following diagram:
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D——D;
% t——1D'. (17)
D,

If one takes invariant complex structures on i and D; determined by Hg and Hg,
respectively, these associated mappings become holomorphic. As we have seen above,
D1 x D; has exactly d irreducible components. When one fixes (V, 4, g) and H, (together
with the factorization (14'a)), the complex structure I giving a solution of our problem,
i.e., satisfying the conditions (1), (2), is parametrized by an H-element Hg, for R(Gs)r.
In other words, if d, is the number of irreducible components of D, the disjoint sum of
2% copies of D, provided with various complex structures may be regarded as a ‘“para-

meter-space’’ of the solutions.

Remark. From the almost faithfulness of p,;, it follows that (G{”)R is compact, if
and only if (Gi')r is compact. Thus, in particular, if Gr has no compact factor, then
R(G1)r has no compact factor either and so R(G)r is compact. In this case, I is uniquely

determined by (V, g} and H,, and the parameter-space D; reduces to a point.

7.4. To describe the solutions more explitly, let us now consider the cases separately,
according as §,, ~ 1 or 4 1. First in case &, ~ 1, all R-primary components (¥, A%, o9 =§5))
of (V, A, o) are of type (a,). Since we have at least one index ¢ for which one has dp®(H,) =0,

it follows that F; =4, is alternating and so F;=S8, is symmetric. Thus one has

V= RKQl/Q(V1® Vz),

(18a,)
A= trKgllQ(A1® 8y),

and G1=8p(V,, 4,), Go=80(V,, 8,). (R(Gy) is of type (II1.1).) Then, one has do‘?(H,) -0
for all 1<\i<d, and therefore
d
I=3IP®1, (16a,)
=1

where I{? =2dpi«(H,) is a complex structure on (Vii)g. With suitable &;=+1 (1 <i<d),

one has

AT, 1P >0,
{81 1 (x, 1 Z’/)> (193}1)

£;85:>0.

Now, we shall indicate the process of obtaining a solution (V, 4, p; I). First find an
absolutely irreducible representation g, of @, into Gf=_8p(V,, 4,), defined over K, such
that Ry oo 0p,) satisfies (H,) with respect to the H-elements H, and Hg =12 I, I{

being a complex structure on (V3¢)g. Next, one determines the “distribution of signs”
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(¢:) by the first inequalities in (19a,). Then, taking any vector-space V, defined over K
and any symmetric bilinear form S, on it also defined over K and satisfying the second
inequalities in (19a,) with this (¢;), one constructs a solution (V, 4, ; I) by means of
(18a,) (K,,—K) and (16a,).

One notes that, taking an element w € K with the given distribution of signs (¢;) and
replacing 4, and S, by w4, and w—18,, respectively, one may always obtain the solution
with &;= 41 for all <.

Next, let §,,+1; then §,,, having an involution of the first kind, is a quaternion
division algebra defined over K,,. We shall rearrange the indices in such a way that

do'?(Hy) =0 for 1<i<d,,
) (20)
doP(Hy)=0 ford,+1<i<d.
First consider the case where F; is hermitian and F, is skew-hermitian (with respect to
the canonical involution of &,). (R(G;), R(Gs) are of type (IIL.2), (IT), respectively.) Then,
for 1<¢<d,, one has ({;)r~1 and the corresponding R-primary component o'” is of
type (a,), while, for d,+1<i<d, (ﬁ;‘l)mvl and o'? is of type (a,). More precisely, for
1<i<d,, taking an R-isomorphism M : 7>, (as given in 3.4, Example 3), one can
define V{’ =(Vie,)r, V& =(e,Vi)r and Af°, 8 by the relations (I, 45), (I, 45"). This
allows us to identify (Vi) with VP @V and A% with 4P ®8$, and one has isomor-

phisms: (G5 g Sp(VP, AP), (5% )= SO(VY, 8%). Then one has

dy d
I=31Pp1+ > 11, (16')
i=1 i=d;+1

where I =2dPji(H,)| Vi, and 1{ is a K-linear complex structure on (V!)gr. Also, with

suitable &;, one has

& AP (x, IPy)>0, 19’2y
£89>0, (1<i<d,) 1
Fii>0,
{8i 1 @ . (19’ a,)
g F5(1Px, y)>0.(d, ~1<i<d)

(Remark that the g;’s for 1 <i<d, depend not only on the choice of F, and F, but also
on the matrix-representations M.)

In this case, when one has P, : G, >G; such that Rgq(P,op,) satisfies (H,) with
respect to the H-elements H, and Hg=1>", I{, a solution can be constructed, first
determining the “distribution of signs” (g;) by the first inequalities in (19'a,) and (19a,),
and then taking any F, satisfying the second inequalities in (19’a,) and (19'a,). This time,
Is (d, +1<i<d) can be taken quite arbitrarily and I is then given by (16').
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The case when F, is skew-hermitian and F, is hermitian (i.e., R(G;), R(G5) are of
type (II), (ITL.2), respectively) can be treated quite similarly, just in interchanging the
roles of F, and F,. Namely, for 1<i<d,, one has ({)r+1 and o'? is of type (a,), while,
for d, +1<i<d, ({;)r~1 and o is of type (a,); for d; +1<7<d, one gets a symmetric
(vesp. alternating) bilinear form S (resp. 4$) on a real vector-space V{’ (resp. V{’)
such that one has (Pi)g=VP @ V§ and A% =8 ® AS. Then one has

dy d )
I=21P@l+ 2> 1017, (16")
i=1 i=d+1

where If? =2dP}{(H,) is a K-linear complex structure on (Vi?)g (1<i<d,) and I¥ is a

complex structure on V§ (d, +1<¢<d). Moreover, with suitable ¢;, one has

siFI‘ (Ig.i)x; ?/)>0> ”

. (19" a;)
e Fi>0, (1<i<d,)
SP>0,
am = . (19" a)
e AP (@, IPy)>0. (dy+1<i<d)

Thus it is again clear that the determination of Py, is sufficient.

7.5. In the case (b), the special unitary groups G{=SU(V,/f,,F,) and Gz=
SU(RK,\V,, F,) being algebraic groups defined over K,, the diagram (14a) in 5.3 should
be modified as follows:

2 By, 1x,(Py1)
Glq—— G — 2% G, ®

A4 R ,
X Sp(Vy, Ay)ix, 2 G =Sp(V, A (14D)

’
Gz/K,,

By a similar reason as in 5.3, one sees that K, is totally real, K, is totally imaginary,
and that
d/2 2

V= ZVH (WlthV RK /Kn(V1®Kg V)

is exactly the decomposition of V into R-pmmary components Thus, replacing K,,, d,

P, V1, 4,, respectively by K,, d/2, B, 1, (Pu1); Vl, Al, everywhere, one sees that all re-
sults stated in 7.3 remain true in the case (b), except for the following two points: (i) it

can happen that both (G{“)R and (G;‘)R are compact, so that the number of irreducible
components of D; x Dy is < d/2; (ii) the equality (16a) should be replaced by a congruence
modulo scalar multiplications (in each R-primary component) by certain purely imaginary

numbers.
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To be more explicit, for each 1<i<d/2, let F{’, FY be (usual) hermitian forms on
complex vector-spaces V{’ =(Viie;)o, V§ =(e,,V5)c, obtained from Fii, F¥, respectively

(as explained in 3.5; since 05 =1, we may assume A=1 in (1.20, 20")). Then one has
(Vigr=VP@cVY, Af=2Im(FPOFP), (G r=SUVY,FP), (63 m>SUVE,FY).

Suppose that F{ (1<i<d,/2) is indefinite with the signature (p;, ¢;) and F$ (d,/2+1<

1<.d/2) is definite. Then one has

dif2 d/2
I=V-1(2TP®clyp+ 2> 1lyocTP), (16 b)
i= i=dy2+1

where T (1<i<d,/2) is a C-linear transformation on V{’ with 7%°=1 such that one has

V-1

APy (H) | VP ="

(TP + p, 1y0) (15b)
for some rational number u, and where 75 (d,/2 +1<¢<d/2) is a C-linear transformation
on V§ with 79" =1. With suitable &;, one has

O (2, T )0,
{8 v (@ I1'y)> (19b)

e FP>0, (1<i<d,/2)

SiFii)>O:
(19'b)

eFP (x, T9y)=>0. (d,/2+1<i<d/2)

(Note that 7 and pu;=¢,(¢;—p;)/(p;+¢;) are determined uniquely by (15b).)

Thus, when one has Rgx(Py): Gy~ Gy such that Ry q(P 0p,) satisfies (H,) with
respect to the H-elements Hy and He =% V' — 1 5 (T¥ +u;1), a solution can be con-
structed, first determining 7% (1 <i<d,) by (15b) and the distribution of signs (g;) by
the first inequalities in (19b) (or by the relation u;=(g;—»,)/(p;+¢;)) and (19'b), and
then taking any F, satisfying the second inequalities in (19b) and (19'b); here T%’s can
be taken quite arbitrarily and I is then given by (16b).

§ 8. List of solutions

8.1. We are now in position to give a list of all possible Q-simple algebraic groups
G = R,,4(G,;) of hermitian type having actually a (ﬁon-trivia,l) symplectic representation
satisfying all the above requirements. It suffices to give a list of the corresponding abso-
lutely simple algebraic groups @, defined over a totally real number-field k. In the follow-

ing, we arrange the indices ¢ (1 <i<s, s=[k : @]) in such a way that (G5¢)g is non-compact
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for 1<i<s; (s;>1) and compact for s, +1<i<s. A “quaternion algebra” means always
a central quaternion division algebra, and a “quaternionic” e-hermitian form means an

e-hermitian form with respect to the canonical involution of the quaternion algebra.

(I) G,=8U(V,/8], F,) (simply connected), where
k' =totally imaginary quadratic extension of k,
(&, tp) =central division algebra of dimension r?* with an involution of the second kind
(with respect to the complex conjugation o), both defined over &,
V, =n-dimensional right &-space defined over ¥/,

F, =non-degenerate hermitian form on V; with respect to (&, ¢,) defined over k'.

(One denotes by (p;, q;) the signature of the (usual) hermitian form F{ obtained from
Ff as in 3.5. So one has Min{p,, ¢,} >0 for 1<:<s; and=0 for s, +1<i<s.)

(IT) G, =8U(V,/R, F,), where
& =quaternion division algebra defined over % such that (§%)r=K for 1 <¢<s, and
= M,(R) for s; +1<i<s, ‘
¥V, =n-dimensional right §-space defined over k (n=>3),
F, =non-degenerate, quaternionic skew-hermitian form on V, defined over k such
that, for s, +1<i<s, the real symmetric bilinear form S{°, obtained from Ff:

as in 3.4, is definite.

(II1.1) &, =8p (Vy, 4,) (simply connected), where
¥V, =n-dimensional vector-space defined over &,
A, =non-degenerate algernating form on ¥V, defined over £.

(In this case, one has s; =s.)

(I11.2) G, =8U(V,/&, F;) (simply connected), where
R = quaternion division algebra defined over k such that one has (§7)r = My(R) for
1<i<s; and =K for s, +1<i<s,
V, =n-dimensional right &-space defined over £,
F, =non-degenerate, quaternionic hermitian form on V; defined over k such that,

for s, +1<i<s, the real quaternionic hermition form F is definite.

(IV.1) G, =simply connected covering group of SO(W, S), where
W =I-dimensional vector-space defined over k (>3, | +4),
8 =non-degenerate symmetric bilinear form on W, defined over k, such that S%
(considered over R) is of the signature (I—2, 2) or (2,1-2) for 1<i<s; and
is definite for s, +1<¢<s.
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(IV.2) ¢, =simply connected covering group of SU(W/K, H), where
f =“‘totally indefinite” quaternion division algebra over £, (i.e., one has (R%)gr~1
for all 1<4<s),
W —l-dimensional right R-space defined over k (I' >3),
H =non-degeneréte, quaternionic skew-hermitian form on W, defined over £k, such
that the real symmetric bilinear form S, obtained from M%, has the same

signature as in the case (IV.1).

' Remark. Besides these, there are Q-simple algebraic groups of hermitian type, of the
mixed type (II-IV.2), of the exceptional type (D,) coming from the “triality”, and of
types (E,) and (E,). But by [9] we know already that for the last two types there is no
solution of our problem. Also, as we shall see in 8.4, the mixed type (II-IV.2) can occur

(under the assumption (9)) only for I’ =4, and the exceptional (D,) cannot occur at all.

8.2, We shall now determine, for a given G =R, ¢(#,), all non-trivial, Q-primary
solutions (V, 4, p; I) (satisfying the condition (9)) of our problem. As we have seen in
7.3-7.5, it is enough to determine all absolutely irreducible representations g, =6,0P;; of
Gy of type (a) or (b) such that Ry o(G1) or Rg,q(G1) with G1=8U(Vy/8,,, Fy) is of type
(IIT.1), (ITL.2), (II) or (I) and that Rg ,q(Puopy): G= Ry e(Gy) ‘"’RKQJQ(G{) or Rg,ie(G1)
satisfies the condition (H,). Considering @, and g,, over R, one will then have a simple
Lie group Gir of hermitian type and an absolutely irreducible representation g,; of it
into a certain (complex) unitary group satisfying the condition (H,). But, we have already
a complete list of such representations g,; ([9], 3.10), whence we can conclude that, except
for the case @, =(D,), any one of these representations, taken to be defined over (_), satis-
fies actually all the above conditions. We shall prove this last point in the following

Proposition:

ProPoSITION 7. Let G, be an absolutely simple algebraic group defined over a totally
real number-field k, such that Gir is non-compact and G=R,o(G,) 15 of hermitian type,
but not of type (D,). Then, for an absolutely irreducible representation gy, of Gy defined over

Q of type (a) (resp. (b)), the following four conditions are equivalent:

(i) If 01y =0,0Py; is the factorization of oy, relative to ky=k and if Gi=8SU(V,/K, Fy)
is the corresponding special unitary group, then R Kgl,q(G{) (vesp. Ry, q(G1)) 1s of type (TIL.1),
(ITL.2), (II) (resp. (I)) and Ry, 0(Pyopy) : G=Ry(Gy) ~>Ex, 0(Gi) (xesp. Brq(64) sabis-
fies the condition (H,).

(i1) The notation being as in (i), Gir s of hermitian type (IIT), (T1) (resp. (1)) and P,
(resp. Ror(Py1)) : Gin— Gir satisfies (H,).
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(iii) If gy, =0{"oP{ is the factorization of g, relative to ko=R and if GP=
SUVL/RW, FP) 4s (the group of Rerational points of) the corresponding special unitary
group, then G is of hermitian type (IIT), (IT) (resp. (I)) and P{Y : Gir— G3Y satisfies (H,).

(iv) 011(G1Rr) has a hermitian tnvariant F, and 9, : Gir >SU(Vie, F,) satisfies (H,).

In fact, (i)= (ii) is evident. The equivalence (i)« (iii) follows immediately from the
existence of an R-(resp. C-)isomorphism O : E(V,/f)r ~EVY/]D), inducing an isomor-
phism Gir=>G{", such that one has 6, =00®, PR =0oP,; (see 3.7). (65" may be taken
to be id. except for the case where G{¥ is of type (II).) The equivalence (iii)<(iv) is clear
in the case (b} (R® =C). In the case (a), if G¥ is of type (IIT) or (IT), there exists an
invariant hermitian form ¥, on the representation-space V;¢ of 0¥ and the monomor-
phism 0 : G{° ~SU(Vy¢, F,) satisfies (H,). (In the notation of [9], d#{” is nothing but
the canonical injection: (III), or (II),~(I), ,.) Hence one has (iii)= (iv). The converse
(iv)=(iii) follows either directly from the definitions or from the list given in [9].

Now, suppose p,, satisfies (iv). In view of the Iist in [9], one sees that every conjugate
pir of gy, is a representation of GF of the same kind as g,;, excepting the case where G,
is of type (D,). Since gj; =070P7; is the factorization of i; (relative to k,=Fk), this implies,
by virtue of (iv)= (ii), that (ii) holds for the corresponding conjugate Pi; : (Gi)r -(1)R
of P, as long as (G9)g is non-compact. On the other hand, if {(67)g is compact, then
011((G1)r) is contained in a compact unitary group, so that ()R is also compact (see 4.4).
Thus we conclude that (i) holds for g,,. This completes the proof.

8.3. We finally obtain the following list of all possible g,; =0,0P,; excepting the
case G, =(D,), which we shall treat separately in 8.4. The first four solutions will be called

“standard”’.

(I) (nr=3): Case (b). K, =k, Kj=Fk, &,=8, and V,, F; are the same as given in the first
list. Denoting by 7, the canonical projection: R Ko kol GL(V)) —GL(V,), one hag Py, =7,
or mi7° (restricted on &), so that Ry, ixo(Pyp) =1d.

(I1) (n>5): Case (a). K, =k, &, =&, and V,, F, are the same as given in the first list;
and P, =id.

(IIL.1): Case (a). Ko, =k, &,~1, V,=V,, F;=4,; and P;; =p,; =id.

(I11.2): Case (a). K, =k, &, =8, and V,, F, are the same as in the first list; and P, =id.

(I') (Special case of (I) where one has p; or ¢;=1 for all 1<i<s,): one has g, =A,00,0m,

(1 <y <[nr/2]), where A, denotes a skew-symmetric tensor representation of degree »
of GL(V,). Case (a) and K,, =%, if v =nr/2, and case (b) and K, =¥, K =k otherwise.
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For the determination of &, and F,, see 5.3 and [9], 3.2; especially when » =nr/2,

one has gye =(—1)"""2.

(IV.1): p,; is a spin representation. Let C+ be the even Clifford algebra of (W, §). When
I=1 (2), one is in Case (a), K, =k, &,~C*. One can identify C+ with &(V,/&,,), so
that P;; becomes the inclusion mapping. F, is the ¢-hermitian form on V, correspond-

ing to the canonical involution ¢ of C+; one has

{ 1 if I=41(8),
£pe= (21)

—1 if I=+3@8),

and accordingly Gy =8U(V,, F,) is of type (IT) or (IIT) ([9], 8.7). When [=0 (2), put
B =k V(ﬁjl)”—zdmy Let o be the spin representations of ¢, obtained by the
simple component O; (i=1,2) of C+ and denote by Vi, F{’, P{}, ... the. correspond-
ing data. When I=0 (4), one is in Case (a), K,4 =k, &un~Ci (~C). One can identify
Cf with E(VP/R,0), so that P is the restriction on G, of the projection of C+ on
the sth factor. The hermitian form F{” is the g-hermitian form on V{° corresponding

to the restriction on C;" of the canonical involution ¢; one has

808:{ 1 if 1=0(8), )

—1 if 1=4(8),

and accordingly G{=S8U(V{, F{) is of type (IT) or (IIT) ([9], 3.6). If k' >k, o'V and
o' being conjugate over k, one gets only one solution. When /=2 (4), one is in Case
(), Koiy=k, Ko=Fk, and K,q, P{ are the same as above. The hermitian form F{’
is the one corresponding to the involution of the second kind ¢;=109| 0} ¢V and p'®,

being conjugate over k, give one and the same solution.

(IV.2): g, is a spin representation (see 5.5, 5.6). Replacing I, O+, 0} by 2I', €, §,, respec-
tively, one obtains the similar result as in the case (IV.1), I=0 (2).

Remark. For the group of type (II) (r=3), the identical representation and two spin
representations (which are mutually conjugate over k) are solutions of our problem. But,
since this group is isomorphic to a group of type (I) (n=1, r=4) and these solutions cor-
respond to those given in (I'), we omitted them from the list. On the other hand, for the
group of type (IV.1) (I=8), (IV.2) (I'=4), no modification is needed, so that they are
included in the list.

8.4. In this paragraph, we shall consider the groups of the mixed type (II-IV.2)
(I'>4) and the groups of type (D,) (which is not of type (IV.1), (IV.2)). Let (G,, ¢) be
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the universal covering group of SU(W/&, H), wheré & .is a quaternion division algebra
defined over k such that (f%)r =& for 1<i<s' and =M,R) for s'+1<i<s, W an l'-
dimensional right &-space, and H a non-degenerate quaternionic skew-hermitian form on
W, both defined over k, such that the real symmetric bilinear form S, obtained from
H" for s’ +1<1<s, is of signature (20’ —2, 2) or (2, 21’ —2) for s’ +1 <7 <s, and is definite
for 5, +1<i<s. Let €=, +€, be the corresponding “twisted” Clifford algebra, as con-
structed in 5.5, and let ¢ be the spin representation of Gy obtained by §; (j =1, 2).

First let I’ >4 and 0<s' <s,, and suppose we have a solution g,, =6,0P;, of our prob-
lem. Then, one has Pifi =¢% for 1<i<s' and p;fi =pV™ or @i for s’ +1<i<s,, whence
one would have 0,09 =p'V or ', which is a contradiction (cf. 5.6). Thus there is.no solu-
tion for the group of the mixed type (II-1V.2) (I' >4).

Next, let I’ =4 and we shall examine the condition for the existence of solution. Let
T€G(k)7,. In view of Jacobson’s theorem (5.6), we have the following possibilities for the

algebra-class of (&])g:

1<i<s'| s’ +1<i<s, | 8, +1<2<5s
1| 81

KorR
RorK

(ENr ~

(C)r~ K R

K i R
Now, if g;;=0;0P; is a solution, then, for s'+1<i<s,, one has again g7; =¢®* or p®”,
while, for 1<¢<¢’, one has of;=0io¢™ or =¢?° where (€})r~XK (cf. [9], 3.3). Thus, in
case s’ =s; (i.e. G, is of type (II)), P, =¢ is always a solution, and g,, =o' is a solution
if and only if one has (&])r~XK for all t€G(k)z/, 1 <i¢<s'. This condition implies that k' —
%(V/n(H)) =, for otherwise one would have @Fr~ (Cr~K (1<i<s'), which is impossi-
ble. Therefore the above condition is equivalent to saying that k' =k and (€3)g ~ XK for all
1<i<¢'. In case 0<s' <s, (i.e. G, is of the mixed type (II-1V.2)), the only possibility is
011 =0 and this occurs under the same condition as above. In both cases, the data de-
seribing g, =p is as given in 8.3, (IV.1) (I=8); especially the corresponding group G
{(which is in this case k-isogeneous to &) is of type (II).

Finally, let us consider the “exceptional’” (D,) which comes from the triality. % being,
as before, a totally real number-field, let G, be a simply connected algebraic group of
type (D,) such that (Gf)r is non-compact and corresponds to an irreducible symmetric
domain (of type (IT),=(IV),) for 1<i<s;, and is compact for s; +1<i<s. Take any
quadratic form of 8 variables, defined over @, of the signature (6, 2) (say, Di-1 X7 — X7 — X2),
and let &, be the corresponding spin group. Then there exists an isomorphism f: G, @,,
defined over Q NR.
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Now, let A={«, ..., %} be a G(k)-fundamental system of G, in the sense of [19].
By definition, G, is an exceptional (D,), if and only if the operation of {lo1]oc€G(k)}
(as defined in 4.1) is transitive on the set of three extreme vertices o, &3, &, of the diagram
of A (see the figure). On the other hand, if G; has a solution g,; of our problem, then,
for any c€((k), pliof is one of the two spin representations of Gy. Through the fixed

isomorphism f, one can distinguish two fundamental weights of @, (relative to A), say
o3

oy

oy
w3, Wy, corresponding to the two spin representations of G,. Then one has A,g —=w; or w,
for all o€ ((k), A5 denoting the heighest weight of pf; (relative to A). In view of the
relation A =257, this implies that {w;, w,} and hence{a,, a,} is left invariant under
[6] (c€G(k)). This contradiction proves the non-existence of solution for the excep-
tional (D,).

§9. Examples and generalizations

9.1. We shall give here some examples to indicate how the ““distribution of signs” can
be determined for the non-standard solutions. We keep the notation of the preceding

section,
Example 1. (I') (v<nr/2) Let Gy =8U(V,/K, F,). For each 1 <i<s=d/2, let V{ and
F{ be a complex vector-space and a (complex) hermitian form on it obtained from V%, Fi,

respectively. Let A,(V{’) denote the yth exterior product of V{’, and A,(F{’) the hermi-
tian form on A,(V{’) obtained from F{ in the canonical way (see [9], (34)). Then one has

(G SUVY, FY), (61 Im=SUMTY), A, (FP)).
Through these isomorphisms, the H-elements for 'R(GI)R, R(G)r are expressed as follows:
r—1s ( =P
Hy=-—= T 4 ¢, i i)’
’ 2 ’gl ' Pty
V-1

31 7 _ r
o = T, + ¢ L D
. 2 21 ( Ly pita)’
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where (p,, q;) is the signature of F{, g;=+1, and T{ is a C-linear transformation on
 with T{" =1 such that &, F{(», T{y) is positive-definite, and similarly for the second
equation. Now suppose the condition (H,):R(P,) (H,)=Hg is satisfied. If p;=nr—1,

¢;=1, &;=1, then one has

‘_ nr—1 ‘_ nr—1 f_ 1
Pi » y i y—1 s &

(see [91, 3.2). In general, for 1 <i¢<s;, put ;=1 or —1 according as ¢;=1 or p;=1; then
applying this result to 5, FY, e, TP, one gets easily & =¢,7; " For 8, +1<1<s, ¢; and
¢; being determined by the conditions g, F>0 and & A,(F{’)>0, one clearly obtains

g =¢..
Example 2. (IV.1) We can take &, and V, in the following form:
Ry, =eCte, V,=Cte, (22)

where ¢ is a k'-rational idempotent in C+, which is indecomposable in %'. (In the following,
we put k' =k, if 1 is odd.) In the case (a), one may further assume that &'=¢, so that &,
is invariant under ¢ ([2], p. 156, Th. 12); then ¢ induces in &, an involution of the first
kind.

The case 1=3,4,5 (8) and &, is a quaternion algebra (i.e., R(Gy) is of type (II1.2)).
In this case, one sees easily (e.g., by counting the number of linearly independent ¢-sym-
metric elements in &,,) that ¢|&,, coincides with the canonical involution ¢, of &,,. There-

fore one may take F, in the form
Pz, y) =2'y forx, yEV,. (23)
For 1<i<d,, let {¢2} be a system of matrix-units in (@gg)g and put

VP = (Ve

. ; ) 24
{A‘l‘)(x,y)=—tr(e§‘£x‘y) for z, yEVY. @)

Let further (ef, ..., e) be an orthogonal basis of (W™)g such that S%(ef?, ef”)=1
(1<j<i—-2o0r2)and = —1 (-1 or 3<j<I). Reordering these basis if necessary, one may
assume that the H-element H, for B(G,)r is compatible with the usual bounded domain
realization of D= R(G,)r/X obtained from these basis (see [9], 3.5). Then, if dB(P,)(H,)=
Hy=3>%, I, one has ([9], 3.6, 7)

e ePx if 8% ig of signature (I—2,2),

IP() = { (25)

—elefPx if §% is of signature (2,1—2).
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We put e® =¢? e or —ef’ed’ according to the cases, and call §”(€R) the (1, 2)-com-

@)

ponent of g% e @

€%, i,e. one puts & e? 3 = fP &3. Then, one has
BPAP (x, IPy) = — B? tr(eBa'ePy) =tr (e ' ePy).

Since z —»e® 'z is a positive involution of (C*™)g (cf. [10]), this shows that the ith
sign ¢; is given by sign(8?) for 1<i<d,. (In particular, one has 3 +0.) For d, +1 <i<d,
x>z is a positive involution of (C*%)g, so that Fi is positive-definite. Thus one has ¢; =1.

In case §,,~1 (ie., R(Gy) is of type (IIL.1)), taking %'-rational matrix-units ¢ in
the splitting quaternion algebra and putting & —g;7, AP =AY, etc., one obtains the
same result.

The case I=—1,0,1 (8) (i.e., R(Gy) is of type (II)). In this case, one has

& =ay'ta, for EER, (26)
with @€ (f,,)x, a6 = —-a, and so one may put
Fy(z, y) = ap2'y = 2" agy. (23)

For d; +1<i<d, let {&2} be a system of matrix-units in (R,7)r and define V{’ and S{
similarly as (24). Let «®(€R) be the (1, 2)-component of af’. Then, quite similarly as
above, one obtains &,=sign(a®n(ad)). For 1<i<d,, let ¢? and H, be as before. Then,
one has afie® e =5V ¢ with 6” €R, and ¢, is given by &, =sign(6®).

The case 1=2 (4) (i.e., RB(Gy) is of type (I)). In this case, one may assume in (22) that
€0 and " =¢; then (, leaves §,, invariant and induces in it an involution of the second
kind. One also assumes that &, + 1. (The other case is easier.) For each 4, one can take a

matrix representation M® of (&,7)¢ such that

Ell 512

511 775-21)
En oo

for MO(£) = ( nEy &
12 S22

), one has M® (5‘1):(

where n= —1 (1 <1<, =d,/2), =1 (8; +1 <i<s=d/2). One puts
Fi(x,y) ="y for z, y€V,, (23")
and for each ¢ FP(z,y)=tr (&y) for z, yeVP = (Viied)e. (24")

Then F{ is of signature (2'*7%, 2'*7%) for 1<{<s, and positive-definite for s,-+1<7<s.
e® and H, being as before, one can show that the (1, 1)-component of ee®¢™is =} — 15®
with ® €R, and one has &, =sign (%) for 1<i<s,. For s, +1<i<s, one has ¢;=1.

18 — 662903. Acta mathematica. 117. Imprimé le 15 févrie 1967.
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9.2. We shall conclude this paper by a brief indication about the most general solu-
tions not necessarily satisfying the condition (9). For simplicity, we shall treat only the
case (a).

To begin with, let G be a connected semi-simple algebraic group defined over k,
which is decomposable into the direct product of k,-closed subgroups G as follows:

G=GPx .. xG0. @7

We denote by p® the projection of & onto G®. Then, an absolutely irreducible represen-

tation g, of G (defined over %,) can be expressed as
0, = ®elop?, (28)

where of” is an absolutely irreducible representation of G®. It is clear from the definitions

that one has
Ko, = UK,» (=the smallest field containing all K,»),

29
R~ QR0 over K, (29)

(cf., also Part II). One puts dim K, =7, dim &, =72, []r;=ru, and fixes a system of
matrix-units {&;} in ®R,® giving a matrix representation of it in K,. Let g, =6;0P,,
o =0 oP, and let V{’ be an n,-dimensional right {,@-space giving the absolutely irre-
ducible representation P{’. Then ®V{’ can be regarded as a right vector-space over
@ Koo = MR, and V; = (QV{) &1, is a right vector-space over &, of dimensionn = ([[n,)%,
giving the representation P,. More precisely, one has P, =@o(®P{), where © denotes
the natural isomorphism E(QVY/® &0) —~E(V,/R,,).

Now the representation g, is of type (a) if and only if all the o’ are of type (a).
Supposing this to be the case, let ¢, ¢§’ be involutions of the first kind of &, and &0,
respectively, and for ®&; =({) (£,€ 8.0, (x€R,,) putb

@& =J5" (L) I, (30)
with J,€ M(RKe), J& =e0dy, £6=+1. Then, to a system of P(G?)-invariant ¢”-hermitian
forms F{’ on V{ (with respect to (R0, «’)) defined over K,@ (1 <i<¢), there corresponds
a Py(G)-invariant s-hermitian form ¥, on V, (with respect to (R, ¢,)) defined over K,
where £=¢y] [£¥, by the relation

Jo (Fy (@)1, y &11)) = QFP (i, y) for x=QRux;,y= @y, z;,y,€VP (31)
and wvice versa.

Applying this to the case k,=9Q (and R), and by a similar argument as in [9], 2.5,

one can prove the following
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ProrosiTiON 8. Let G be a connected semi-simple algebraic group defined over Q, of
hermitian type, which is a direct product of Q-closed subgroups G (1<i<t). Then, in the
above notation, the group R KQI,Q(G{), G1=8SU(V,/8,., F,), is of hermitian type (II), (I11) and
the representation RKgl,Q(PI) : Gr—~R(Gy)n satisfies the condition (H,), if and only if, for
all 1 <i<t, the group RKQ@,Q(G{@), G’ =8 U(VP[Rm, FP), is of hermitian type (IT), (III),
the representation RKgl(i)/Q(Pii) ): 68 - R(G;”)n satisfies the condition (H,), and for each v € G(Q)

1O

there is at most one non-compact gmup among the (G ")g (1 <i<¥).

Thus our problem of determining P, such that R(P,) satisfies (H,) can again be re-
duced essentially to the case where G is Q-simple. But, without assuming the condition
(9), the actual determination of such representations for a Q-simple G would be rather

complicated, so that we donot enter this problem any further.

Example. G=G%x ... xG?®, where G¥=R, o(07), GP=8SUNVP/R®, FP) (type
(IT) or (IIL.2)), K” being a quaternion algebra defined over a totally real number-field £;,
and F® an quaternionic ¢”-hermitian form on V{, both defined over k;, One supposes
that, for every t€(G(Q), there exists at most one index ¢ such that either (8¥")g + 1,
g;=—1, or (R )r~1, ¢;=1. Then, taking P{’ to be the projection of G® on to the factor

G, one obtains a solution of our problem.

Appendix. Construction of analytic families of polarized abelian varieties

1. We shall explain here (after Kuga) how to construct a family of polarized abelian
varieties from a given symplectic representation. By a polarized abelian variety we shall
understand here a triple P=(V/L, I, A) where V is a 2n-dimensional real vector-space,
L a lattice in V (i.e. a discrete submodule of rank 2n), I a complex structure on V (i.e.
a linear transformation of ¥ with J2= —1), and 4 a non-degenerate alternating form on
V, such that A(z, Iy) (x,y€V) is symmetric and positive-definite and that one has
Afz, y)€Z for all x, y €EL. By the existence of such an alternating form (called a “Riemann
form”), the complex torus (V/L, 4) becomes actually an abelian variety, on which A
determines a polarization. Let P'=(V’/L’, I’, A’) be another polarized abelian Variety.
P and P’ are called equivalent, if there exists an (R-)linear isomorphism ¥ of ¥V onto V'
satisfying the following conditions:

Wy =L,
Wol=1'0V, ")
pAd =AY with u€Q*, u>0;

18* — 662903, Acta mathematica. 117. Imprimé le 16 février 1967.
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Such a ¥ is also called an isomorphism of P onto P’. We denote by [P] the equivalence-
class containing a polarized abelian variety P. For a fixed L and 4, one sees easily that a
linear automorphism y of V gives an isomorphism of (V/L, I, A) onto (V/L, I’, A), if and
only if o belongs to Sp(L, 4)={y€GL(V)|y(L)=L, yAy=A} (Siegel’s paramodular
group) and one has I’ =y Iy-1.

Now let D be a complex analytic manifold. By a wuniformized analytic family of polari-

zed abelian varieties over D we mean a collection of polarized abelian varieties
g = {Pz = (V/L> Iz: A)IZGD}

satisfying the following conditions: Namely, there exists a complex analytic structure J on
(V/L) x D such that

(i) the canonical projection 7 : (V/L) x D —D is holomorphic;
(ii) for each z€D, J induces the complex structure I, on the fiber (V/L) xz;
(i) ¥V x D becomes a complex vector-bundle over D with respect to the complex

structure on it obtained in a natural way from J.

It is known that a complex structure J on (V/L) x D satisfying these conditions is unique
and that, for each v€V, the section z—(yv mod. L) xz is holomorphic. Two uniformized
analytic families F={P,|2€D} and J' ={P. €D’} are called equivalent, if there exists a
biholomorphic map p of D onto D’ such that P, is equivalent to Py, for all z€D; when
D is connected, the linear isomorphism ¥, of the vector-space V onto V’ giving the equi-
valence of P, onto P, can be taken to be independent of z€D. By means of this equi-
valence and by the usual method of overlapping neighbourhoods, one can define the notion
of an analytic family of polarized abelian varieties (or rather Kummer varieties) {[P,]|z€ D},
starting from an open covering {U,} of D and a collection of uniformized analytic families
of polarized abelian varieties JF, on each U, satisfying the usual consistency conditions.

Let F' ={P. |2 €D’} be a (uniformized) analytic family of polarized abelian varieties
over a complex analytic manifold D’ and let  be a holomorphic mapping of D into D’'.
Then one can construct a (uniformized) analytic family F={P,.|2€D} over D, which
is called a family induced from F by p. In particular, when D is a submanifold of D’
and v is the inclusion map, we get a subfamily F=F | Dot F.

2. Let us now fix V and A4, and consider the corresponding ‘‘Siegel space” D' =D(V, 4),
which is, by definition, the space of all complex structures I on V such that A(x, Iy)
is symmetric and positive-definite. As is well-known, D’ has a natural complex structure,
and the group of all analytic automorphisms of D’ can be identified with the symplectic
group G' =8p(V, A) (modulo center) operating transitively on D’ by (g, 1) -gIg—'. There-
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fore, if one denotes by K’ the stabilizer of any complex structure I€D’, then K’
is a maximal compact subgroup of G’ and D’ can be identified with the coset-space
G'/K’ by the correspondence gK'<—glg~! (g€G'). Taking any lattice L in ¥ such that
A(L,L)<Z, one obtains a uniformized analytic family of polarized abelian varieties
{Pyw=(V|L, gIg-1, A)|gK'€D'}. This is the “Siegel’s family” relative to L, of which the
equivalence-class is uniquely characterized by the elementary divisor of A with respect
to the lattice L. Considering this family modulo IV =8p(L, 4), i.e. forming the quotient
variety I"\(V/L) x D', one gets also an analytic family over ["\D'.
Siegel’s family has the following universality (cf. Kuga [8], § 6): Let

:; = {Pz = (V/L’ Iz’ A)}

be a collection of polarized abelian varieties parametrized by a complex analytic manifold
D. Then F becomes a uniformized analytic family over D if and only if the mapping
D3z->L€D =DV, A) is holomorphic, and, if that is so, F is the family induced from
the Siegel’s family by this mapping.

3. Shimura [12], [13] has recently considered certain analytic families of polarized
abelian varieties, which, roughly speaking, are obtained by prescribing the structure of the
endomorphism-rings of the abelian varieties in addition to the data V, 4, L. He obtained
in this way four kinds of families over symmetric domains (of type (I), (II), (ILI)). More
recently, Kuga [8] has given a more general method of constructing a family of polarized
abelian varieties over a symmetric domain, starting from a symplectic representation of a
semi-simple Lie group. Namely, let G be a semi-simple Lie group of hermitian type with
a finite number of connected components and with a finite center, K a maximal compact
subgroup of @, and D=G/K the corresponding symmetric domain; furthermore let I" be
a discrete subgroups of G such that the homogeneous space I'\G has a finite volume.
Suppose one has a symplectic representation o : @ —>G =Sp(V, 4) such that g¢(K)c K,
o(I"y<I" and satisfying the condition (H,). Then g induces in a natural manner a mapping
of D=G/K into D' =G'|K’ as well as a mapping of '\ D into I'"\D’, which are holomorphic
by the assumption. Therefore one obtains a uniformized analytic family of polarized abelian
varieties F={P,z=(V/L, o(g) Io(g)~, A)|gK €D} over the symmetric domain D induced
from the Siegel’s family by this mapping and also an analytic family over I'\D induced
from that over I"\D’. (Of course, this construction applies also to the case where D has
no complex structure.) It can be proven, by virtue of Borel’s density theorem, that if
F={P=(V'|L', 0 (9)I'0’(9)"1, A')|gK €D} is another family over D obtained in the

similar way from another symplectic representation p’ : G—Sp(V’, 4’), then F and F’ are
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equivalent (with ¢ =id.) if and only if the restrictions of the representations ¢ and ¢’ on
the identity connected component of G are equivalent by a linear isomorphism ¥ of ¥
onto V' satisfying the condition (*).

It is well known that when @ is (the group of R-rational points of) a semi-simple
algebraic group defined over @, p'is a Q-rational representation of & into G/, and I' is a
subgroup of (¢ commensurable with Ggz, taken sufficiently small, then all the above
conditions on I' are satisfied. On the other hand, in case @ is connected and algebraic and
¢ is faithful, one can show that the above conditions imply that G has a (unique) structure
of an algebraic group defined over Q such that ¢ is Q-rational and I' is commensurable
with Gz.
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