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Introduction 

A basic unsolved problem of ergodic theory is to classify the ergodic measure pre- 

serving automorphisms of the measure algebra of the unit interval, up to conjugaey. In  

this paper, it is shown that  the theory of a single automorphism of this type is fully equi- 

valent to the theory of a certain Banach algebra of operators on the Hflbert space L2[0, 1], 

in that  the eonjugacy problem for automorphisms is the same as the problem of unitary 

equivalence in this class of operator algebras (Theorem 1.8). 

One question that  arises is to what extent this method can be applied to more general 

groups of automorphisms, and this is taken up in section 2. Roughly, it is shown that  

the method is always workable if the underlying group is amenable (qua a discrete group); 

and for any non-amenable group of automorphisms the method always breaks down (Theo- 

rem 2.6). 

These results were previously announced in [1]. 

1. The operator algebras M and B 

Consider the probability space consisting of the unit interval [0, 1], Borel sets, and 

Lebesgue measure. Let  ~ /be  the Hflbert space L2[0, 1], and let M be the yon Neumann 

algebra of all multiplications by  bounded measurable functions, acting on :H. Lebesgue 

measure lifts to a eouutably additive probability measure m on the projections of M. 

A *-automorphism ~ of M is said to preserve m if  m o ~ = m  on the projections of M. ~ is 

ergodic i f  the only projections P E M  for which ~(P) = P  are 0 and I .  If fl is another ergo~c 

m-preserving *-automorphism, then ~ and fl are conjugate if there exists a *-automorphism 

(1) This research was supported by  the U.S. Army Research Office (Durham).  
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T of M such that  ~o~=~oT (a standard argument, using ergodicity of ~, shows that  

necessarily preserves m). 

There exists a unitary operator Ua on :H such that  ~r = U~A U*, A EM. For example, 

let l0 be the constant function 1, and define U~ on the dense submanifold M]o of ~ by  

U~: A/o~o~(A)[ o. U~ is easily seen to be an isometry of M]o onto itself, and its unitary 

extension implements g in the right way. If  V is any other unitary operator such that  

o~(A)= VAV*, then there exists a unitary WE M such that  V =  U~W. Indeed, U*V is a 

unitary operator which commutes with M, and since M is maximal abelian, it follows 

that  W= U*VEM. 

In  the remainder of this section, ~ will be a fixed m-preserving ergodic *-automor- 

phism of M, with U~ a uni tary operator such that  ~ = U~. U* on M. Since MU~, = U~M, 

the set A0(a) of finite sums Ao+A1U~+.. .+A,U~,  n>~O, A~EM, forms on algebra, and 

the set B0(~) of sums Am U~ +... + An U$, m<~O<~n, A~EM, forms a *-algebra. By the 

above remarks, neither A0(a) nor B0(:r depends on the particular choice of U~. Let  ,d(~) 

and B(~) be the respective closures in the operator norm. Clearly M ~  A(a)---B(a), and of 

course B(a) is a C*-algebra. 

While the powers a" (n +0) of a are not in general ergodic, they are ]reely.acting in 

the sense that  for every n +0  and every projection P +0  in M, there exists a subprojection 

QeM, O~:Q<~p, such that  ~n(Q).j_Q (see [6], p. 125). By choosing successively smaller 

projections, it follows that  for every finite set F of integers such that  0~2 '  and every 

projection P4=0 in M, there is a nonzero subprojection Q of P such that  ~n(Q).I_Q for 

all nEF. 

The following result appears in [10] p. 232, where, incidentally, the algebra Ao(~) is 

shown to be an irreducible triangular subalgcbra of the algebra B(~)  of all bounded linear 

operators on ~.  For completeness, we include a short proof. 

Lv,~tMA 1.1. Am U~ + ... +A ,  U~ =0 implies A m = . . . .  An =0. 

Proo[. Suppose, to the contrary, that  Am U"+.. .+AnU~=O and A~+0.  Then n>~ 

m + l  necessarily, and Am+Am+IUa+...+A~U~-'~=O. Choose a projection P=~0 in M 

such that  AmQ~:O for every QEM satisfying O:~Q<~P (e.g., if A~ is multiplication by  

/EL~176 1], P can be multiplication by the characteristic function of the set (1[I >~e), 

where e is a positive number small enough that  the set has positive measure). By free 

action, there exists Q eM, 0 +Q <P, such that  ~ (Q) •  for all/r = 1, 2 ..... n - r e .  For every 

BEM, 1 <~lc<n-m, one has QBU~Q=QBo~(Q)U~ =Qo~(Q)BU~ =0. Hence, 

AmQ = QAmQ = Q(A,, + A,,+~ U~, +... + A~ V~- "~) Q = O, 

and that  contradicts the original choice of P. 
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Hence, one can define a linear map (I) of B0(a) onto M by 

O(~ A~U~) = A o. 
k 

In the next few results, through Theorem 1.5, we develop some properties of this mapping. 

The simplest are these: 

(i) r 1 6 2  = r  r  = I 

(ii) ~P(AT) =A(I)(T), r = ~P(T)A, 

(iii) O9(T*) = (I)(T)*, TeBo(a) 

(iv) r = O, n :~ 0 

(v) 0~<(I)(T)*(I)(T)<.~P(T*T), T6Bo(~ ). 

A 6M, TeBo(~) 

(1.2) 

Indeed, (i) through (iv) are obvious consequences of the definition, and (v) follows from 

them by expanding the inequality 0 <~P([T-~P(T)]*[T-(I)(T)]. 

If  Bo(~) were closed (norm), then (v) would imply that  (I) is positivity-preserving, 

and a/ortiori bounded. However, since the usual argument involves taking the positive 

square root of a positive operator, an operation requiring norm closure, we cannot con- 

elude from (v) that  (I) is bounded. One needs the following ]emma, another consequence 

of free action. 

L]~M~A 1.3. For every projection P +O in M, there exists a state ~ o/ B(~) such that 

@(P) =1 and ~(MU~)=0, /or all n 4 0 .  

Proo/. Fix P. For every h r >~ 1, let KN be the set of all states ~ of B(~) such that  ~(P) = 1 

and ~(MU~)=0, 1 ~< In[ ~<N. Each KN is a weak*-closed, and therefore compact, subset 

of the state space of B(~), and KN~ KN+I for all N. By free action, there exists, for each 

N, a nonzero projection QN6M such that  O~=QN<P and o~(QN)• 1 <. ]k I <~N. Choose 

any unit vector / in the range of QN, and put  ~N(T) =(T/ , / ) ,  TeB(a).  Clearly @n(P) =1 

and one has QN(T)=~N(QNTQN), for all T. If A 6M and 1 ~< IIcl ~<N, then 

~N(A U~) = ~N( QNA U~ Qn) = en( QN~( QN) A U~) = O. 

Thus ~N6KN, and this shows that  the KN's have the finite intersection property. Hence 

N KN + 0 ,  and any state in the intersection has all the required properties. 

P~OPOSITION 1.4. IICI)(T)H ~< lIT[I,/or all T6Bo(~ ). 

Pro#. Let T e ~o(~), and suppos~ II r > H T II. Sine~ r  e M, ther~ ~xists a nni- 
7 -  662905 Aota  mathemat ica .  118. I m p r l m 6  le 12 avr i l  1967. 
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tary operator WEM such that  (I)(T)W>~0. Now lie(T)WII = IIr IITII +~, for suffi- 

ciently small e >0. So by spectral theory, there exists a projection P # 0  in M such that  

r WP>~(IJTJJ +~/2)P. Now choose Q as in Lemma 1.3: ~(P)= ] and Q ( M ~ ) = 0 ,  n#0 .  

By definition of (I), it follows that  9(S)=QoCl)(S) for every SEBo(~). Hence, 

o(TWP) = QoO(TWP) = Q((~(T) WP) >1 (J] TII +e/2)~(P) = ][ T]J +e/2. 

But this is impossible, since Ig(TWP)] <. ]] TWP]] ~< [[ T]], and this contradiction completes 

the proof. 

One may now extend ~ to a bounded linear map of ~(~) onto M, by continuity. 

Properties (1.2) are valid for the extension, which we denote by the same letter ~.  

A positive linear map ~1 of one G*-algebra into another is /aith]ul if ~ I (T*T)=0  

implies T = 0, for every T in the domain of r We claim that  a9 is faithful. For the proof, 

it  suffices to produce another C*-algebra C, a positive faithful linear map r of C into M, 

and a *-representation ~ of C such that  ~t(C)=B(~) and aPort=co. This gives the result, 

for if TE~(,r and ~(T*T) =0, then choose any CEC such that  T =~t(C). One has o~(C*C)= 

agort(C*C) =r Since m is faithful, C=0,  and finally T=~(C)=0 .  

C is constructed as follows. Let F be the unit circle and let C1 be the collection of 

all functions F defined on 1 ~, taking values in the set B(:H) of bounded operators on ~ ,  

and which are norm continuous: 

lim [[F(e 'e)-F(r176 =0,  for all O0E [0, 2zt]. 
O--~Oe 

Endowed with the pointwise algebraic operations, pointwise involution, and the norm 

I FI =sup ll~(,'~ r becomes a C*-algebra. The point evaluation ~r(F)=F(1) is clearly 

a *-representation of C1 on B(~/). Now define 

_ 1  ~ 2" 
m ( F ) - 2 ~ j 0  F(e~~ FEC1, 

i.e., ~o(F) is the operator in B(~) satisfying 

(w(F)/, g) = - ~  (F(e~~ g) dO, for all J, g ~. =14. 

Evidently, ~ is a positive linear map of C1 into B(~). If  o~(F*F)=0, then for e v e r y / ~ ,  

II = 0. 

Since e~~176 is a nonnegative continuous function on F, we have F(e~~ for 

all O. Hence, F=O,  and thus o~ is faithful. 
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Now let C be the norm closure of the set of all functions of the form 

F(e~O)= m ,,,o . . .~-A rr,  4,o AmU~ e + - - . ~ n ~ e  , 

m<~O<~n, A~EM. C is clearly a C*-subalgebra containing the identity. If  F is of this 

form, then ~o(F)=A0, ~ ( F ) = A  m U~ +... +A n U~, and ( b o g ( F ) = A o = m ( F  ). By norm con- 

tinuity, (bo:~=~o on C. These formulas also show that  n(C)~B(~) and og(C)___M. Since 

is a *-representation, :~(C) is a closed *-subalgebra of ~(a) which contains every finite sum 

AmU~'+. . .+A,U~,  A tEM.  Hence, ~(C)=B(~), and the restrictions of ~ and 09 to C have 

all the right properties. This proves the following: 

THEOREM 1.5. The extended map (b is/aith/ul on B(oO. 

We turn now to the Banach algebra A(~). Clearly M ~  M(~) N ~4(~)*. I t  is a key fact 

that  this inclusion is actually equality: i.e., A(~) determines M. 

LEMMA 1.6. (i) (b is multiplicative on .,4(~). 

(ii) Jg(a) N ~4(a)* = i .  

Proo/. For (i), let A, B 6M  and let m and n be nonnegative integers. Then A U2BU~ = 

A~m(B) U2 +n, so that  (b(A UmBU~) = 0 or A B  according as m + n > 0 or m = n = 0. In  either 

case, we have (b(AU2BU'~)=(b(AU2)(b(BU"~). By summing on m and n, it follows that  

(b is multiplicative on M0(~), and (i) follows by  continuity. 

For (ii), it suffices to show that  A(a) f3 A(a)*~_M, and since A(~) N A(a)* is spanned 

by its self-adjoint elements, we need only show that  every self-adjoint element of M(a) 

is in M. Take T = T * q A ( ~ ) ,  and let T I = T - ( b ( T  ). Then T 1 is self-adjoint, belongs to 

~4(a), and by  (i), 
(b(T12) = ( b ( T 1 )  z = ( ( b ( T )  - ( b o ( b ( T ) )  2 = 0 .  

By Theorem 1.5, T I = 0 ,  and so T=(b (T )6M.  

The second key fact about ~4(~) is that  it determines ~. This is a consequence of 

the following Lemma. 

LEMMA 1.7. Let V 1 and V2 be two unitary operators in .,4(~) such that 

(i) A-+ V~A V* is a/reely-acting automorphism o / M , / o r  i = 1, 2, and 

(ii) V2 belongs to the closed algebra generated by M and V 1. 

Then V2 V~ 6A(a). 

Proo/. First, we claim (b(V1)=(b(V2)=0. Let  ~)1 be the collection of all,projections 

P E M  such that  P_l_ V1PV~. For P 6  ~)1, we have 
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(I)(V1) P = P~P( V ~ ) P = P@( V~ P) = Pcb( V~ P V~ V1) = P VI P V~ ~( V1) = 0. 

Thus, (I)(V1)=0 on P:H. But  by free action, the least upper bound of all projections in 

~1 is 1. Hence, (I)(V1) =0.  The same argument shows that  (I)(V2)= 0. 

Since VIM=MV1,  the set of finite sums Ao+A1VI+. . .+A~V~I (A~EM, N>~O) is 

dense in the closed algebra generated by  M and V~; so by (ii), there exists a sequence T ,  

of operators of this form such that  H V~-T~]]-~0. Since (I)(V~)=0, q)(T~)-~0. Hence, if 

T'~=T=-r  then T'~-~V~. But q)(V~)=(I)(V1)~=0 for all k>~l (this, by  1.6 (i)), so 

tha t  if T n has the form Ao+A ~ Vt+.. .  +A~V~, then T~ looks like 

A~ V1 + A~ V~I + ... +A~ V~ = (A~ +A~ V~ + ... +AN V~ -~) V 1 �9 

In particular, T~ E A(~) V 1. Since A(a) V 1 is a closed subspace of B(:~) in the operator 

norm (V1 is invertible), we conclude that  V2 E A(~) V1, proving the lemma. 

COaOLLAR~Y. I!  V is a unitary operator in A(a) such that A ~ VA V* is a/reely-acting 

automorphism o[ M and such that M and V generate A(o~) as a Banach algebra, then there 

exists a unitary W E M such that V = Ua W. 

In  particular, or(A) = VA V*, A EM. 

Proo/. Applying Lemma 1.7 twice (once to the pair (V, Ua) and once again to (Ua, V)), 

we have VU* eA(o~) and (VU*)* = Ua V* Ez4(~). So if W 1 = VU*, then W1EA(a ) N A(a)*, 

and V = W1 Ua = U=-r162 as required. 

T ~ O R ~ M  1.8. Let ~ and fl be ergodic re.preserving *.automorphisms o/ M. Then o~ 

and fl are conjugate i[, and only i[, there exists a unitary operator T such that T.,4(at) T* = ~4(fi). 

Proo/. For necessity, say T is an m-preserving *-automorphism of M such that  To a =  

rioT. There are a number of familiar methods that  will produce the T that  does the job. 

To sketch one, let ]0 be the constant function 1, and let ~ be the vector state ~(A)= 

(A/o,/o), A E M .  Then ~(P)=m(P) if P is a projection in M; hence ~o~(P)=~(P). Since 

~inite linear combinations of projections are norm dense in M, we have ~oz(A)=Q(A), 

A EM. Thus, the map A/o~z(A)[  o (A EM) extends to an isometry T of [M/0 ] on [z(M)[o] = 

[M/0 ]. Since [0 is cyclic for M, T is unitary. Routine computation now shows that  

TA =7;(A) T, A EM, so that  TMT* =M. Moreover, vo~(A) -- To~(A) T* = TU~AU* T*, and 

f lo'r(A)=UpTAT*U$, A e M .  Since ~oo~=flov, we have T * U $ T U ~ e M ' = M ,  so there 

exists a unitary W E M  such that  TU~= UpTW. Thus, 

TUFT* = UpTWT* = U#v(W)6.,4(fl), and T*UBT = U~W*6j4(~). 



O P E R A T O R  A L G E B R A S  A N D  M E A S U R E  PRESER~TTNG A U T O M O R P H I S M S  101 

Since M and Ua (resp. Up) generate ~4(a)(resp. A(fl)), it follows that  T.,4(a)T*~,,4(fl) 

and T*A(fl) T~_ A(a). Hence, TA(~) T* = A(fl), as asserted. 

Now suppose, conversely, that  T is a unitary operator such that  TA(a)T* =A(fl). 

Hence, A(fl)* = TA(~)*T*, so that  by Lemma 1.6, M = A(fl) N A(fl) *= T(A(a)  N A(a)*)T*= 

TMT*.  Thus, T ( A ) = T A T *  is a *-automorphism of M. Let V be the unitary operator 

TU~T*EA(fl).  The closed algebra generated by M and V is TA(a)T*=A( f l ) .  Also, for 

A EM, VA V* = T U  a T*ATU* T* =~oaoT-l(A); since flee-action is a conjugacy invariant, 

V satisfies all the hypotheses of the preceding corollary. Hence, fl(A) = Vii  V* = �9 o a o T-I(A), 

completing the proof. 

Remarks. Care must be exercised in closing the original algebra ~4o(:r Indeed, Ao(a) 

contains the maximal abelian yon Neumann algebra M, and it is easy to see that  ~4o(a) 

has no closed invariant subspaces except (0~ and ~/([10], p. 232). By the results of ([3]), 

any irreducible subalgebra of B(~) which contains M is strongly dense in B(~/). In partic- 

ular, the strong closure of Ao(a) contains no information about ~. 

Nevertheless, A(~) carries considerable structure. First, it is a norm-closed irreducible 

triangular subalgebra of B(~/) (not necessarily maximal, see [10]). Second, A(a) can be 

realized as an algebra of operator-valued analytic functions in the unit disc. To sketch 

this very briefly, consider the C*-algebra C constructed in the proof of Theorem 1.5. By 

making use of the classical Fejer kernel, one can show that  C consists precisely of all 

norm-continuous functions 2': F-+B(~)  such that  S2o'~F(et~ ~n~ for every n. 

Moreover, the *-representation ~ is actually a *-isomorphism. Thus, B(a) is identified 

(non-spatially) with C. A(a) becomes the set of all F e C  for which ~"F(et~176 

for n >/1, and there is a natural way of extending every such F analytically to the interior 

of the disc. Thirdly, one can associate with A(:r a maximal subdiagaonal subalgebra 

(in the sense of [2]) of a 1 I  1 factor. For this, regard A(a) as a subalgebra of the function 

algebra C. Let :~ be the Hilbert space of all ~-valued weakly measurable functions / 

such that  ~ H/(e'~ r The map a that  associates with F e C  the operator 

(a(F)/) (d ~ = F(e '~ ~ 

is a faithful *-representation of C such that  the weak closure of a(C) is a hyperfinite 111 

factor acting on :~ (hyperfiniteness follows from [7], p. 576). Moreover, the ultraweak 

closure of a(A(~)) is a maximal subdiagonal subalgebra of a(C)- for which gensen's ine- 

quality is valid (see [2]). This subdiagonal algebra also characterizes g up to conjugaey. 

Finally, in a different direction, it follows from 1.8 that  there is a very large number 

of unitarily inequivalent norm-closed irreducible triangular subalgebras of B(~). 
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2. Generalizations 

I t  may be of interest to know the extent  to which Theorem 1.8 generalizes to more 

general groups of *-automorphisms. In  particular, is there an analog of 1.8 for one-para- 

meter groups ? We shall not go into specific questions here, except to show that  there is 

a natural boundary for the method. We prove that,  while the results through 1.4 carry 

over routinely to arbitrary groups of *-automorphisms, 1.5 is true if, and only if, the group 

is amenable (qua a discrete group). 

Let  M be the multiplication algebra of section 1, let G be a group, and let x - ~ x  

be a homomorphism of G into the group of m-preserving *-automorphisms of M. We do 

not assume that  the action is ergodic, but  we do require that  the action be / ree  in the 

sense that  for every x 4 e  and every projection P ~ 0  in M, there exists a nonzero sub- 

projection Q of P (in M) such that  ~x(Q) • 

L e t / e  be the constant function 1. Note that  there exists a unitary representation 

x ~ U  z of G on ~ such that  UzAU;I=o~(A)  and Ujo=/o  , for every xEG. Indeed, arguing 

as in the first paragraphs of w 1, the map 

U~:A/o->o~(A)[ o, A E M ,  

extends to a unitary operator having the properties UJo=/o (by definition), and U~A = 

az(A) Ux, A EM. One has, moreover, 

U~ Uy:A[o~axo~(A)/o  = a~(A)/o, 

so that  UxU~= U~. The property Ux[e=]o will enter in an essential way to the proof of 

Theorem 2.6. 

Now if x ~ A  x is an M-valued function on G such that  Ax =0  for all but  finitely many 

x, we can form the operator ~z Ax Uz; since MUx = UzM for all x, the set of all operators 

of this form is a *-algebra, whose norm closure we call B. Note that  ~ Az Uz =0  implies 

Ax=O for all x. Indeed, for fixed xe, let F be the finite set (xxol :x4Xe and A~=~0), and 

let  ~ be the family of projections P E M  such that  at(P) •  for tEF.  Arguing as in Lemma 

1.1, we have, for P E ~), 

A~.P = P A x . P  = P ~ A~U~z:,P = P ( 5  A~U~) U*.P = O. 

B y  free action, LUB~)- - I ,  hence Ax, =0.  Thus, one can define ~ exactly as before: 

r  A~Ux) = Ae, 
e being the identity of G. 
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PROPOSITIOn 2.1. IIr < I[TII/or every T=~.  A:Ux. Thus ~P extendsbycontinuity 
to ~. The extension has the/oUowing properties: 

(i) oo ( I )  = o ,  o ( 1 )  = i 

(ii) r  OP(TA)=O(T)A, A e M ,  T e B  

(iii) O(T*) =O(T)*,  TEB 

(iv) O(MUx) = O, x =4= e 

(v) 0 ~<O(T)*(I)(T) <~r 

Proo/. The argument is a trivial alteration of that  already given in w 1. First, arguing 

as in 1.3, one shows that  for each P 6 M, P 4:0, there exists a state g of B such that  g (P)=  1 

and @(MUx) =0, x 4:e. The proof of 1.4 can then be repeated verbatim to show that  II(I)H ~< 1. 

Finally, (i) through (v) are valid for the same reasons as 1.2. 

From here on, we regard (I) as extended to the C*-algebra B. (v) shows that  (I) is 

positive, and it makes sense therefore to ask if (I) is faithful. 

A (discrete) group G is said to be amenable if there exists a finitely additive probability 

measure ju on the field of all subsets of G such that/~(xE) =I~(E) for all xEG, E~_ G. When 

such a ~u exists, it is called a mean ([9], pp. 230-245). Solvable groups are amenable, as 

are locally finite groups. The free group on n/> 2 generators is not amenable. An important  

characterization of amenability was found by  Folner [8], and his proof has recently been 

greatly simplified by  Namioka [11]. Folner's condition is that  G is amenable if and only if 

for every finite subset F___ G and e>0 ,  there is a finite subset E g G  such that  

IxE n EI 
E l l ~ e '  

for all xEF  (]. I denotes "number of elements in"). We shall need a preliminary lemma 

characterizing amenability in a different way. 

Let  C00(G) be the set of complex valued functions on G having finite support, and 

let lx be the left regular representatiop of G in 12(G) (lx~(y)=~(x-ly), ~el~(G)). For every 

~teCoo(G), we can form the operator T = ~ 2 ( x ) I x  on/~(G); 2 is of positive type if T>~O. 

We believe the following lemma is known; e.g., i t  is proved in ([5], p. 319) that  condition 

(iii) is equivalent to a slightly strengthened version of (ii). However, we know of no re- 

ference in the literature tha t  relates these conditions to amenability. For completeness, 

then, we have included a proof. 

LEMMA 2.2. The/ollowing are equivalent,/or any discrete group G: 
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(i) G is amenab/e. 

(ii) I / 2  E Coo(G) is o! positive type, then ~ 2(x) >10. 

(iii) For  every finite subset ~ o/ G and e > 0 ,  there exists a unit vector ~l~(G) such 

that [(lx~ , ~) - 1 [ ~< s / o r  all x e F. 

Proo/. (i) implies (ii): Let  2eC0o(G) be such tha t  ~ 2(x)lx>~0, and let F be a finite set 

such tha t  2 = 0  off F. Fix e>0 .  By the Folner-Namioka theorem, there exists a finite 

subset E r  O of G such tha t  

I:~EnEIrEI ll<: 
for all ~ .  Put  ~(t)= I ~ l - % ( t ) .  ~ e ,  II~ll:=~, an,~ for every x, EG, 

(l,,~, ~) = [EI-~Y. Z~(~-'t) Z~(t) = I~E n F_____I 
, IEI 

Hence, ](l,$, ~) - 1 ] ~<e whenever x e F. Now 

By hypothesis, ~ 2(x)(l,~, ~)~>0, and since s is arbi trary,  this shows t h a t  the distance 

between the complex number  ~ 2(x) and the nonnegative real axis can be made as small 

as we please. Thus ~ 2(x) ~> 0. 

(ii) implies (iii): Suppose (iii) fails. Then there exist x 1 ... . .  xnEG and e > 0  such tha t  

max~ [(lz~, ~ ) - 1 [  >~e, for every unit vector ~EF(G). Let ~ be the set of all vector states 

co$, ][~][ =1,  defined on the yon Neumann algebra s generated by  (l~:xeG). Since s has 

a separating vector (e.g., the characteristic function of (e)), every normal state of s is a 

vector state ([4], p. 233). I t  follows a t  once that  ~ is convex. Let  K be the following 

subset of Cn: 
K = {(e(Z,,) . . . .  , e(&}): e e l } .  

K is convex, and the first lines of the proof show tha t  (1, 1 ... . .  l) does not belong to the 

closure of K. Hence, there exists a linear functional $' on C n and a real number  r such 

tha t  Re F ( K ) > ~ r > R e  F(1 ,1  . . . .  , 1). I f  F(z I .. . . .  z~)=~akzk, define the operator T on 

F(G) by  

Then for every ~ E F(G), ]]~1] = 1, one has 

(T~, ~) = Re F((lz,~, ~) ... . .  (lx,~, ~)) >Jr; 

moreover, r > ~  ck+~Sk. Hence, T-rI>~O and ~ c k + ~  5 k - r < 0 ,  contradicting (ii). 
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(iii) implies (i): Let  xx ..... x~ ~ G, e > O. Choose a unit  vector ~ q l~(G) such tha t  

J<-<i<n. 

For E___ G, put  #(E) = ~ ]~(x)]2. 
x E E  

Then/x is a finitely (in fact, eountably) additive probabil i ty measure. We claim 

I~t(x, E) - f t (E )  I < 2(2~) �89 

for every E _  G and i = 1, 2, ..., n. Indeed,/x(E) = ~ ZE(x)~(x)~(x)= (XE~, ~), and for every 

yEG, 

E 

Hence ]#(yE) - /x(E)  l = I (Z~, ~ ) -  (ZE~, l~ )  § (g~,  l~,~)--()~Ely~, l~)] 

 <2115-1  11. 

Ig(x~E)-/~(E)]<~2(2~)�89 as asserted. 

For x~ .... , xzfiG and r  let ~(x I .. . . .  x~; r be the collection of all finitely additive 

probabil i ty measures # on G such tha t  ]#(x~ E) - g ( E )  ] ~<e for every E_~ G and i = 1, ..., m. 

We have just shown that  the ~ 's  have the finite intersection property.  Since the space of 

finitely additive probabili ty measures is compact (in the topology of "pointwise" con- 

vergence at  every subset of G), there is an element v fi 17 ~. v is clearly a mean. That  

completes the proof. 

Remarks. There are a number  of other characterizations of (i)-(iii) tha t  are more 

useful in different situations. For example, one may  add to the list: 

(iv) Every  irreducible representation of G is weakly contained in the left regular 

representation. See ([5], p. 319). 

We return now to the main problem, (7, Ux, ~ ,  and (P are as above. We shall construct 

another C*-algebra C and a faithful positive linear map o~:C~M. We then define a 

*-homomorphism n 0 of a dense *-subalgebra of C into B, Such tha t  (I)oz~ 0 =m, and we shall 

analyze what  happens when one tries to extend ~r 0 to C. 

Form the Hilbert  space :H| I f  A, BEM, x, yEG, then 

(A Ux| ( BU~| = A U~BV~| = A ~ (  B) U~| 

and (A U~| = (A Ux)* | = ~-I(A*) U~-~| 
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Thus, the set Co of all finite sums ~t  At  U~| forms a *-algebra with identity. Let C 

be the norm closure of Co. Let ~ be the characteristic function of {e}, regarded as an 

element of l~((7). 

L~.MMA 2.3. There exists a/aith/uI positive linear ma~ to :C-+M such that (to(C)/, 9)= 

(C(/| 9| /or every/, gE~. One has 

to(Y AtU~| = Ae 
Z 

/or every/unction xEG-~AtEM such that A t = 0 / o r  all but/initely many x. 

Pro| For every fixed CEC, [/, g] = (C(/| g| defines a bilinear form on IH x tH 

such that  
I[I, g]l < Ilcll-II1| IIg| = IlCll. Iit11-II~ll. 

By a familiar lemma of Riesz, there exists a unique operator to(C)EB(~H) such that  

(to(C)/, g) -- (C(/| 9| to is clearly linear, positive, norm-depressing, and to ( I )= / .  

If  A t = 0  for all but finitely many x, then 

(~.A.Ux| | 9 |  = Y. (AtU.l |  0| = Z (AY . I ,  g) (lt $,, $~). 
Z X 

Since lt~e J-~e for x #e, the right side reduces to (Ad, g). Thus, to(~ At U~| lt)=Ae. 

I t  remains to show that  to is faithful. Take CEC and suppose to(G'G)=0. Then 

I I C ( I |  " = ( O * C ( l |  l |  = ( to(C'C)/,  l )  = O, 

so tha t  C(]| for e v e r y / E ~ .  [Now let rt he the right regular representation of G in 

l~(G) (r~(y)=~(yx), ~/EI~(G)). Then r~l~=l~rz, so that  each operator I |  x commutes with 

C- Thus, 
C( l |  = C(I|174 = IOrtC( l |  = O, 

for every [E~ ,  xEG. But {rt~:xEG} is fundamental in/2(G); hence {[|  xEa} 

is fundamental in tH| Thus C=0,  and that  completes the proof. 

We claim that  ~. Az Ux| implies Ax=O for all x. Indeed, for every XeEG , 

Y ax,(A~) Ut, x| = ( U , |  Y AtUt|  ~ = O. 

Applying to, we have ~z.(AtT, ) =0, hence A~:, =0. One can now define rte:Co-~B by 

~o(Z A,Ux| = ~ AtUt. 

~o is clearly a *-homomorphism of Co on a dense *-subalgebra of B, and by definition of 
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e| and (I), we have (I)og o---e| on Co. The question now is whether n o is bounded, and there- 

fore extendable to C. 

LEMMA 2.4. ~o is bounded i/, and only i/, �9 is/aith/ul. 

Proo/. If  go is bounded, it extends by continuity to a *-representation g of C in B 

such that  (I)og=eo, g(C) is closed, and it contains go(C0)-=B- Hence, g(C)=B.  The argu- 

ment used in w 1 now shows that  (I) is faithful. 

Conversely, assume (I)is faithful. Let  T E Co, ]] T ll ~< 1. We will prove that  g o ( T ' T ) ~  I.  

I t  follows that  no is bounded for ][go(T)[[2= ][~o(T)*go(T)[I = [[~o(T-T) H ~< 1. 

Let  H=T*TECo. Then O<~H<~I. Consider the abelian C*-algebra generated by I 

and the positive operator n0(H). By spectral theory, we can regard this as the algebra 

C(X) of all continuous functions on a compact Hausorff space X. Let  / be the functional 

representative of no(H ). If  go(H) ~< I fails, then there is a number r > 1 such that  the open 

set U={~EX:](7)>r } is nonvoid. Let  gEC(X) be such that  0~<g~<l, g = l  somewhere 

in U, and g = 0  on X -  U (if U--X, we drop the last requirement on g). Then g(7) =~0 im- 

plies/(7)>~r, so that  g/a>~rag for n = l ,  2 . . . . .  Let  A be the operator corresponding to g. 

Then A ~0,  O<A <I,  Ago(H ) =go(H)A, A eB, and Ago(H a) =Ago(H)a>~raA for all n~>l. 

Since (I) is assumed faithful, (I)(A) ~0.  Let  ~1 be any state of B such that  ~I((I)(A)) =~0, 

and put  ~ =~lO(I). Then ~ is a state, ~o(I) =~, and ~(A) ~0.  Using the Schwarz inequality 

and (I)og o =w, we have, for n >/1: 

But  

Hence, 

~(Ago(Ha) ) 2 <~(A2) q(go(Ha) ~) <~( I)q(go(Ha) 2) 

= q(go(H2a)) --- Q 0 (I)(x~o(H~a)) = q oeo(H2a). 

H 2a < I, r 2a) <r = I ,  and qoeo(H *a) ~<q(I) = 1. 

~(Ago(Ha)) < 1. 

At the same time, rnA <<.Ago(Hn), and so raQ(A)~.<~(Ag0(Ha))~< 1. Since n is arbitrary, the 

last inequality implies that  ~(A)= 0, a contradiction. 

Before giving the main result, we have to construct one more mapping. If  :~ is a 

Iamily of operators, [[:~]] will denote the C*-algebra generated by  ~. Let /o  be a unit vector 

in ~ such that  Ujo =/0 for all x (e.g., the constant function 1 will do). 

LEMMA 2.5. There exists a *-isomorphism ~ o/ [[Ux| onto [[lz:xEG]] 8xeh 

Shat (a(C)~, ~])=(C(/o|174 every CE[[Uz| and every ~, ~EI~(G). 

I/~eCoo(G), then a ( ~  ~(x) uxol~) =~ ~(~)~x. 

Proo]. Applying the Schwarz 1emma as in Lemma 2.3, there exists, for each C E 
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[[Ux| an operator a(C) EB(l~(G)) such that  (a(C)2, ~) = (C([o| [o| for all 

2, ~. a is clearly a positive linear map, and a(I)---I follows because H[0[I =1.  

For each x E G, 2, ?7 E 12(G), we have 

= = 2 )  = 

I t  follows that  a(U~| and by  taking finite sums, that  a ( ~ ( x ) U ~ |  2(x)l~, 
for every 2 E C00(G ). From this formula, it is evident that  a is multiplicative and *-preserving 

on the dense *-subalgebra of finite sums ~ 2(x) U~| by continuity, then, a is a *-homo- 

morphism. The range of a is the closure of all finite sums a(~ 2(x)Ux| ~(x)lx, 
and hence ~ is onto [[/~: x E G]]. 

I t  remains to show that  a(C)=0 implies C=0.  Let  2e be the characteristic function 

of e, qua an element of 12(G). We have used before the fact that  ~(T) = (T2e, 2e) is a faithful 

state of [[lx:xEG]]. Now we claim os(C)=ooa(C)I, for every CE[[Ux| Indeed, 

o(U~| =0 or I according as x~=e or x=e, and Ooa(U~| 2~). The claim 

follows because lxSeA_2e whenever x~=e. Now let CE[[Uz| be such that  g(C)=O. 
Then os(C*C)=0o~(C*C)=O(a(C)*a(C))=0. As eo is faithful, C=O as required. 

T~t~ORV.M 2.6. gP iS/aith/ul i/, and only i/, O is amenable. 

Proof. First, suppose G is amenable. By Lemma 2.4, it suffices to show that  :z 0 is 

bounded. 

Let T=~.~AxU~| We will show that  HbA~UxH<[[T[[ (thus, [[sr0[[<l ). Fix 

e>0 ,  and let F be a finite subset of G such that  A~--0 for all xCF.  By Lemma 2.2 (iii), 

there exists a unit vector 2EI~(G) such that  ] (/~2, ~) - 1[ ~<e, xE F. For  [, g e ~ ,  HfH = ligll = 1, 

one has 
(T(/|  2), g| = 5 (A~U~/| g| = 5 (A~U~/, g) (l~2, ~). 

So the distance between this complex number and ~ (A~UJ, g)=(~. A~Uj,  g) is not  

greater than 
E I(A Uj, w)l" [ I I-< E l[ AYxII. 

H e n c e ,  I(V.A U /,g)I<I(T(/G2),gO )I+ V.IIAxU II<-IITII+ EIIA U=I[ 
Since e is arbitrary, we have I(~ A= Ux/, g) l ~ II Til, and the proof is completed by taking 

the supremum over ]1/1[ = Ilgll = 1. 

Conversely, suppose (I) is faithful. We show that  G satisfies condition (ii) of Lemma 

2.2. Let  2EC~(G) be such that  ~ ]t(x)l:c>~O. Now by Lemma 2.4, Jr 0 extends to a *.homo- 

morphism :z of C into it. Hence, ~roa -1 is a *-homomorphism of [[/~:xEO]] into it; in par- 

titular, T=~roa-X(~. 2(x)lx) is a positive operator in B. We have, 
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T = ~ ( ~  ~(x) ~-l(lx)) = ~ ( ~  ~(x) Ux | Z~) = V ~(x) Ux. 

L e t t i n g / o  be a uni t  vector  such tha t  U~/o=/o for all x, we have (U~/o,/o)=1 for all x, 

and hence 
~(x) = ~ ~(x) (V~/o, /o) = (T/o,/o) >~ O. 

Thus, G satisfies condition (ii), and  the proof is finished. 

Remarks. I t  seems curious tha t  this p roper ty  of (I) is determined by  the algebraic 

s t ructure of G and has nothing to do with the properties of the part icular  free act ion a t  

hand. Thus, if G is amenable, the (I) based on any  m-preserving free act ion of G is faithful; 

if G is no t  amenable, the (I) based on any  such act ion of G fails to be faithful. 

As an  application of Theorem 2.6, one has the following generalization of Lemma 1.6. 

COROLLARY. Suppose G is amenable. Let S be a sub semigroup o/(7 such that S N S-1-~ 

{e}, and let .,4(S) be the Banach algebra generated by M and the unitary semigroup { Ux:x E S}. 

Then r is multiplicative on A(S),  and Jd(S) N ~4(S)* =M.  

Proo/. The proof is an imitat ion of the corresponding results of w 1. For  example, 

if x, y e S ,  then r U~)=r  or 1 according as xy ~-e or x = y = e  (since S N S -1= 

(e}). I t  follows easily t ha t  (I) is multiplicative on A(S). B y  Theorem 2.6, (I) is faithful, 

and  one can now prove ~4(S) fl ~4(S)* = M  as in Lemma 1.6. 
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