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The theory of value distribution of functions of one complex variable is well developed 

and has yielded beautiful results and applications. An important  aspect is tha t  a non- 

constant meromorphic function can be considered as an open map into the l l iemann 

sphere P, so providing a ramified covering of an open subset of P. 

Compared to the theory for one variable, the theory of value distribution for functions 

of several complex variables is still in its infant stage. The dual aspect seems to be lost. 

One way is to s tudy the value distribution of a holomorphic function. Here H. Kneser 

[7] (1936) and [8] (1938) initiated a theory of value distribution for a meromorphie function 

of finite order in C =. This theory was later completed in [19] (1953) and gave an analogon 

to the theory of functions of finite order of one variable. The Kneser integral(2) substituted 

for the Weierstrass-product. In  [20] (1953), these results were applied to construct Jaco- 

bian and abelian functions similar to the construction of the a, ~ and ~o function in one 

variable. Also the Kneser integral was extended to functions of infinite order in [19] 

(1953) and was applied in [14] (1964) to the theory of normal families of divisors in C ~. 

Ahlfors, H. Weyl and J.  Weyl developed a theory of value distribution of a holo- 

morphic m a p / : M - + P  n of a Riemann surface M into the n-dimensional, complex projec- 

tive space P=. They were able to prove both Main Theorems and the Defect Relation. 

These results can be found in [29] (1943). In  [21] (1953) and [22] (1954), this theory was 

united with the theory of Kneser to a value distribution of meromorphic m a p s / : M - + P  n 

where M is a pure m-dimensional complex manifold. Both Main Theorems and the Defect 

(1) This research was partially supported by the National Science Foundation under grant NSF 
GP-3988. 

(2) A different integral representation was used by Lelong [9], [10] and [11], which enables him 
to give a new proof of the Cousin I I  Theorem for positive divisors of fillite order. 
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Relation could be proved. In  [25] (1964) and [26] (1964), the First Main Theorem was 

extended to the case, where M is a pure m-dimensional analytic set in a complex manifold. 

An application showed, tha t  an analytic set M of pure dimension m in C = is algebraic if 

and only if the 2m-dimensional Hausdorff measure of M N {z[ I~1 <r} is O(r~m) for r-~oo. 

The other aspect of value distribution in one variable leads to the study of open, 

holomorphic maps ] : M ~ C  m where M is a pure m-dimensional complex manifold. The 

fibers are discrete. Fatou [4] (1922) and Bieberbach [1] (1933) found a biholomorphic 

map of C ~ onto an open, non-dense subset of C ~, whose Jacobian was constant. This 

discouraged the "map"  approach. However, Schwartz [15] (1954) and [16] (1954) used 

topological methods to s tudy this case and generalized the Ahlfors theory of covering 

spaces. Levine [12] (1960) found an unintegrated First Main Theorem. 

Chern [3] (1960) integrated this theorem and obtained a result (Chern-Picard Theorem) 

which assures tha t  an open holomorphic map ]:Cm-+P m assumes almost every point in 

pm if the characteristic of ] grows stronger than the new "deficit" term which appeared 

in his First Main Theorem. Hence, the difficulties which the Bieherbach map posed were 

overcome. 

l~ecently, Bot t  and Chern [2] (1965) have extended these methods to the study of 

sections in fiber bundles and obtained deep results. 

Comparing the formulas in Levine [12] and Chern [3] with the formulas in [21], [22] 

and Kneser [8], a great similarity becomes apparent. Therefore, the question of an united 

theory arises. Such an unification will be provided here. 

Let  M and P be connected complex manifolds with dim M ~ m  and d i m P = n .  Let  

be a family of pure p-dimensional analytic subsets of P. Let  f : M ~ P  he an holomorphic 

map. Suppose that  ] is general of order r = n - p  in respect to 7, that  means, that  ]-1(S) 

is empty or analytic of pure dimension q = m -  r for every S E 7. The theory of value distri- 

bution is concerned with the size of ]-1(S) for SE 7. A typical statement would be: If ] 

"grows" strongly enough, f(M) intersects "most"  elements of 7. Usually, the "nmst" 

which results from a "_First Main Theorem" would be in the Lcbesgue measure sense, 

where upon the "most" which results from a "'Second Main Theorem" would mean "all up 

to finitely many".  The theory of Kneser and Stoll belong to the codimension r = 1, the 

theory of Chern and Levine belong to the codimension r=n.  Here, both theories will be 

special case of an unified theory for codimension r where 1 ~<r ~<Min (m, n), at  least so far 

the "_First Main Theorem" is concerned. P will be the n-dimensional complex projective 

space, and ~ will be the Grassmann manifold of all p-dimensional complex planes in P.  

Let  F be an (n+l)-r]irnensional complex vector space with a given Hermitian pro- 

duct ([). On every exterior product V[p] = V A... A F (p-times) an associated Hermitian 
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product is induced if 0 < p ~ < n + l .  I t  defines a norm on V[p]. For a e V - { 0 } ,  define 

~(a) = {zalz q C}. Then 
r ( v )  = {e(a) I a e v -  {0}) 

is the complex projective space of V and ~: V-{0}-~P(V) is the natural projection. De- 

note the natural projection of V[p]- {0} onto P(V[p]) also by ~. Define 

~'~+.t)(v) = {CoA ... A c~[c.e v}_~ vho + 1]. 

Then (~(V) = e((~+x(V) - {0)) 

is the Grassmann manifold of the p-dimensional complex planes in P(V). Of course (~0(V) = 

P(V). If aE(~(V), then E(at) and E(at) are well defined by 

E(a) = {3]3A a=0}, where Q ~ Q - - l ( a )  

Z(at) = e (~ (a t ) -  {0}). 

If  ate(~(V) and fle~q(V), then ]]at:fl]] are well defined by 

II~:Zll laA~l =[a] ]b [ '  where aee-~(at), bee-l(fl) .  

Moreover, 0 < liar:fill ~< 1. 
On any complex manifold, let d = ~ +~ be the exterior derivative with ~ as the com- 

plex component and ~ as the conjugate complex component. Define d ' = i ( ~ - ~ ) .  On 

V - {0}, define the non-negative "projective" form eo by 

w($) = ld'dlog [$]. 

Then one and only one positive "projective" form ~ of bidegree (1, 1) exists on P(V) such 

that  Q*(~)=w. Here ~ is the exterior form of a Kaehler metric on P(V). Define the pro- 

jective forms of bidegree (p, p) by 

1 
o)~ =~.~ eo A ... A o); 

Define the "euclidean" forms on V by 

Let O<p<n 

defined by 

1 
w~=-~ ~ A. . .  A ~ (p-times). p., 

i ~(313); vr =~.t v A A v (p-times) V ~  . . .  

and aE~'(V) .  On V-E(at),  a form d)(at) of bidegree (1, 1) is well- 

alP(or) (3) = ld• log [ a A 3[, 
8 -- 662905 Acta mathematica. 118. Impr im6  lo 12 avr i l  1967. 
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where aE~-I(a).  One and only one non-negative form ~P(~) of bidegree (1, 1) exists on 

P(V) - ~(~) such tha t  

e*((I)(~)) = ~(~). 

Define r = n - p .  On P ( V ) - E ( ~ ) ,  define the Levine form of order r by  

1 r-1 
Y r A/5 ' - l-~'. 

A(a) ( r - l ) !  .-0 

The form A(a) is non-negative and has bidegree ( r -  1, r - 1 ) .  For  r = 1 is A ( a ) =  1. Define 

W ( s ) = ~  i f  sEN. 

Let  M be a complex manifold of pure dimension m. Let  g be a differential form of 

bidegree (q, q) and class C 1 on M with d Z = 0. Suppose tha t  

0 < m - q  ffi n - p  = r <Min (m, n). 

Let  / : M ~ N  be a holomorphic map, which is general of order r (in respect to (~(V)). 

For every zE/-I($(a)) ,  an intersection multiplicity vf(z; ~) is defined, which is a positive 

integer. The function v1(z; :r of z is constant on every connectivity component of the set 

of simple points of /- l ( /~(a)) .  As a consequence of a residue formula (Theorem 4.4) the 

following result is obtained. 

T ~ E  UNINTEGRATED FIRST MAIN THEOREM(I ) .  Let H be an open, relative com. 

pact subset o / M  whose boundary S is either empty or a smooth, (2m-1)-dimensional sub- 

mani/old o / M  which is oriented to the exterior o / H .  Take o~ E (~'(V). Suppose that 

is integrable over S. Then 
$(ar = d ' log  IIt: ,11 A I* (A(a))  A z 

1 1 ~(,,)+ [ , , . ( , ; , , ) z=V~  t*(&)AZ. 
27~ W ( r -  l) as jnnt-R~(,,)) 

For r = m  (i.e., q=0)  and Z = I ,  this is the First Main Theorem of Levine [12]. I f  M 

is compact and H = M, then S = O and 

- '& , , ,  ~,,-(z; =) Z = W-~ l*(&.) A Z 

is constant on (~(V). I f  r = n  (i.e., p = 0 ) ,  then ( ~ ( V ) = P ( V )  a n d / : M - + P ( V )  is an open 

(1) See Theorem 4.5. 
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holomorphic map of pure fiber dimension q(1). In ZI,(2) the continuity of the fiber integral 

hi(G; o~) = fi_l(~(~)) vr(z; ~) Z 

was proved. I-Iere, it turns out that ni(G; o~) is constant, if dg =0 and if the image mani- 

fold is P(V). 

Now, suppose that Z is non-negative on M. Let G and g be non-empty, open, relative 

compact subsets of M with smooth C~176 F of G and ~ of g, both of which are 

oriented to the exterior. Assume that ~ c G. Let yJ be any continuous, non-negative func- 

tion on G, such that yJ[F = 0 and Y~lg = R > 0 are constant, such that ~ is of class Coo on 

G - g  and such that 0~<yj(z)~<R for zEG. Define the characteristic of / by 

1 /" *(oJr )A x. 

For ~ E (~(V), define the compensation/unctions by 

m1(F; ~) I 1 f r  ~ 2~ W(r - 1) log /*(A(a)) A d'y~ A Z, 

mI@; ~) - 2 ~  W ( r -  1) log I*(A(~)) A d '~ A Z. 

Define the valence/unction by(3) 

vs(z:~) 

The integrands of these integrals are non-negative. This is not true for the deficit 

1 1 fv. 1 AI(G; a) 2~ W(r -  1) __l~ ~ / * ( A ( a ) )  A dd'~v A X. 

These assumptions imply the First Main Theorem(4) 

Nr(a; ~r a ) -  m1(~,; a) = Tr(G ) +At(G; a). 

The theory of [21] and [22] is obtained by choosing r = l ( q = m - 1 )  and dd '~Ag=O 

(1) Such  a m a p  is also cal led q-fibering. 

(2) Stoll [27] is deno t ed  b y  I a n d  Stoll [28] is deno t ed  b y  I I ,  because  t he se  pape r s  a re  nece s sa ry  
p r epa ra t i ons  for th i s  p a p e r  a n d  wore wr i t t en  s i m u l t a n e o u s l y .  

(s) I f  q = 0, t h e  in tegra l  is a f ini te  sum.  
(4) See T h e o r e m  4.8. 
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on G - y .  The  t h e o r y  of H.  W e y l  and  J .  W e y l  [29] is ob t a ined  b y  choosing m = r = 1 a n d  

Z = I  wi th  d d ~ p = 0  on G - ~ .  The  t h e o r y  of H.  Knese r  [8] is ob t a ined  b y  choosing r =  

l = n ( q = m - l , p = O )  a n d  M = C  m with  Z=Vm_I, where G={31 131 < r )  a n d  g = { ~ ]  131 < t o )  

wi th  O < r o < r  a n d  1(i, 1) ~0(3) -2m_2 312m_ 1 r2~_ ~ on G-~ .  

The theory of Chern [3] is ob t a ined  b y  choosing r = m = n ( q = O = p )  a n d  M = C  m wi th  g = l .  

Moreover,  O, g a n d  ~0 are  chosen as  in t he  t h e o r y  of H.  Kneser .  However  Theorem 5.12 

shows t h a t  the  C h e r n - P i c a r d  Theorem can  be o b t a i n e d  for o the r  choices of ~. 

I f / : M ~ P ( V )  is an  open map ,  t hen  / is genera l  of order  s for eve ry  s in 0 < s ~ n .  

I n  add i t i on  suppose  t h a t  M is a connected,  non-compac t ,  pseudoconvex  manifold ,  where  

pseudoconvex  means,  t h a t  a non-nega t ive  funct ion  h of class C ~ exis ts  on M such t h a t  

dXdh>~O and  such t h a t  
G(r) = {z  [h(z) <r} 

is a re la t ive  compac t  subse t  of M if r >0.(1) Choose a n y  such a p lu r i subharmonie  funct ion  h. 

Define 

Z8 = 1  d• A ... A d• (s-times). 
8 [  

Take  r o > 0 such t h a t  g = G(ro) 4 0  and  such t h a t  dh # 0  on G(ro) -G(ro) =7-  F o r  r > to, define 

I 
O 

V,(z) = r - h(z)  

[ 7" - -  r 0 

if z E M -  G(r), 

if z E G(r) - g, 

if zEg. 

T h e  charac ter i s t ic  of [ for the  order  s is 

1 
Ts'r(r) = ~ ) )  f G(r) Y~r/*(ws) A Zm-~ 

i f  r >/r 0. The  funct ion  T8.I is d i f ferent iable  for r >~ r 0 a n d  i ts  de r iva t ive  is 

Def ine  
An-l , f(r)  

(~I = l im sup - - ,  
r--~ T~,r(r) 

1 f di~. b ( M )  = W ( n )  (M) 

(1) M is a Stein manifold if and only if such a function h with the stronger condition d~dh > 0 
exists. See Grauert [5], [6] and Narasimhan [13]. 
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Then b(M) is the normalized measure of the image of / in P(V). Obviously O<b(M)<~1. 

Then the following generalization of the Chern-Picard Theorem [3] holds:Q) 

THEOREM. Suppose that Tn.1(r)-->~ ]or r ~ .  Then 

- n +  1 ~ 1 
O<'(1-b(M))<~m 4~ ~=ov-+l ~f" 

Especially, i /~f= O, then ] assumes almost every "value" o/P(V). 

As a preparation for the proof of the First Main Theorem, the limit of certain integrals 

is obtained in section 1. The intersection number  vr(z; a) is introduced and studied in 

section 2. I t s  definition is reduced to the multiplicity of a certain open holomorphic map  

gl. In  section 3, the Levine form is studied. In  section 4, two integral theorems are proved 

which yield the First Main Theorem in its unintegrated and its integrated form. In  section 

5, the "spherical" representation (Theorem 5.8) of the characteristic and of the deficit is 

proved for open maps. The Chern-Picard Theorem [3] is extended to open maps. 

The results of Bot t  and Chern [2] have not been considered in this paper, because 

almost all of this research had been done as [2] became available to me. 

w 1. The existence and the limit of certain integrals 

The proof of the First Main Theorem requires some highly technical results about  

the existence and the limit of certain integrals. The proof of these results shall be given 

here to avoid an undue interruption of the later representation. 

The concepts and notations of I and 11 shall be used. For convenience sake, some 

are recalled here. 

1. Let  V be a complex vector space of dimension m. Define Vm= V • ... • Y (m-times). 

Then the general linear groups 

GL(V) = {(cl ..... Cz)lq A ... Acm*O} 

which is the set of all bases of V, is open and dense in V z. 

2. A function (I):  V x  V~t3 is a Hermitian product on V, if and only if i t  is linear 

in the first variable, if (El ~)) = (t) I ~) for all ~ E V and t) E V and if (~ [ ~) > 0 if 0 #~  E V. De- 

note I~[ = ~ / (~ ) .  Then V becomes a complex Hilbert  space. An element (Cl ..... cz) E V z 

is said to be a n  orthonormal base if and only if (c,[ c,) = 0  for all/~ =i:v as [c,[ =1  for all/x. 

The set II(V) of all orthonormal bases of V is a non-empty,  connected, real analytic sub- 

manifold of GL(V). 

(1) See Theorem 5.13. 
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3. If not otherwise directed, the space C~= C • • C is thought to be endowed with 

the Hermitian product defined by 

(~1 ~) = ~ x~,~, if ~ = (~1, . . . ,  ~m), ~ = (Y~ . . . . .  Y,n)- 

Then the base (r ..... era) is orthonormal, where ep=(~l~ ..... Om~) and ~ = 0  if p~=r and 

(~/q, = 1. 

4. The group ~(m) of all permutations ~ of {1 ..... m} operates effectively on V m, 

G L ( V )  and U(V) by setting 
Y'~(C 1 . . . . .  era) = (C~(1), . . . ,  C~(m)) .  

Let  ~(q, m) be the set of all injective and increasing maps 

~ : { 1  . . . .  , q}-~ {1 . . . . .  m} 

Then ~E~(q, m) defines one and only one permutation ~E~(m)  such that  _~(~)=~(~) for 

~=1 ..... q and ~(r) <~(~+1)  for ~ = q + l  ..... m - 1 .  

5. Let  M be a pure m-dimensional complex manifold. The set ~M of all biholomorphie 

map , :  U~-~ U~' of an open subset U~ of M onto an open subset U~ of C m is the complex 

structure of M. Then ~ = (z~, z~), where z ~ -  , are holomorphic functions on U~. Let  

d be the exterior derivative on M. For ~ E ~(q, m) and y~ E ~(q, m) define 

~ = ~ = dz~(;) A .. .  A dz~(q), 

/ \  i q ~/~=l'/~m= ~ ) dzq~(l) A dZv(l) A .. .  A dzq~(a) A d~,~(q) 

on U~. Then ~ = ~ = ~(1) A. . .  A d~v(q), 

6. If X is a differential form of bidegree (q, q) on a subset A of M, if ~ E ~M with 

A N U~ :~O, then 

rCe~.(q.m) ~e~(q.m) 

on A N U~, where Z~ are uniquely defined functions on A N U~. Z is said to be real, if 

Z=2~; this is the case, if and only if Z ~ = Z ~  for all % ~0, ~. If  Z has bidegree (m, m) on 

A, then {t}=~(m, m), where t is the identity and Z=Z,~/,. The set of all real forms of 

bidegree (m, m) on A is ordered at a E A  such that  Z ~  at  a if and only if Z,~(a)~<~(a) 

when ever ~ E ~M with a E U~. 
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7. Let  M and N be complex manifolds. Let  ]:N-->M be holomorphic. Then, every 

form Z on M induces a form/*(Z) on N. The map a* is a homomorphism, which preserves 

degrees, bidegrees and conjugation and commutes with d, 0, 0 and d • where 0 is the com- 

plex component and 0 is the conjugate complex component of d, and where 

d �9 = i ( ~ - ~ ) .  

8. Let  M be a pure m-dimensional complex manifold. Let  0 < q < m .  Let  Z and ~ be 

real differential forms of bidegree (q, q) on MI Then g~<~ at aEM, if and only if for every 

smooth, pure q-dimensional complex submanifold N of M with inclusion ~:N-->M, the 

inequality J~(Z)~<J~(~) holds at  a. (Observe, that  6. applies, because ?*(Z) and ?'*(~) are 

again real and of bidegree (q, q).) A partial order on the set of all real differential forms 

of bidegree (q, q) on M is defined, especially, the concept of positive, negative, non-negative 

and non-positive forms at  a are defined. If Ac_M then g~<~ (resp. Z<~) on A if g~<~ 

(resp. g<~)  at every aEA.  Hence g is positive (negative, non-negative or non-positive 

on A) if this is true at  every point of A. The forms ~ are non-negative on Ua. 

9. Let  M be a pure m-dimensional complex manifold. Let  y) and g be forms of bide- 

t ree  (q, q) on M with O<q<.m. Let Z be non-negative on M. Then I~vl ~<g means, tha t  

for every smooth, pure q-dimensional, complex submanifold N of M with inclusion ~N:N-+ M, 

the inequality l <J (z)holds. 
10. Let  V be a complex vector space of dimension m with a Hermitian product (I). 

l~or $ E V, define 

i 
v = ~ (d~ [d3) 

1 
vp = ~. v A ... A v (p-times). 

Then v is the associated form of the K/ihler metric defined by (I). Moreover, v~ is positive 

if 0<p~<m. The forms v and v~ are called the euclidean/orms to ([). If  c--(el ..... Cm) is a 

base of V, define ~: V~C m by a(c~)=e~ for # = 1  .. . .  , m.(~) Then g~:Cm-~C is defined by  

g~(z~ ..... zm) =z~,. Then z~=:~o~:  V->C are the coordinates associated to c. I t  is 

~= ~z~($)Cu for ~ V .  

For ~0~Z(lo, m) and ~)~Z(I~, m), define r  and e ~ �9 ~=~/~v ,  if Clear, write ~ = ~  and 

~/~ = ~  and call these the forms associated to c. Define g~ = (ct~l c~) then 

(1) Here e/~ = ((~/n ..... (~/~m) where (~/~v = 0 if/~ ~ and where (~/~ = 1. 
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m 

v = -  ~ g , ,dz ,  A d~,. 
2 l~.pffil 

I f  and  only if c E 1I(V) is or thonormal ,  then  g#v = ~#v and  

rn 

11. Le t  V be a complex vec tor  space of dimension n + 1 wi th  a H e r m i t i a n  p roduc t  

(I) .  Le t  P(V) be the  associated project ive  space and  let O: V - { O } - + P ( V )  be the  residual 

map .  Then  O-I(o(Q)) = {zal0 :#2: E C},  where a 4=0. On V -  {0}, define 

| 1 i 
= z ~ dd• log I$[r:i = ~ OR log (3 [3). (,O 

Then  do)=  0 and  
i (3[3) (d$1d3) - (d315) A ($1d$) O J l ~ - -  

2 I 1' 

This form is non-negat ive  and  called the  projective/orm to (I)  on V. Define 

1 
e% = ~  co A ... A co (p-times) 

p:  

Then  o)~ is non-negat ive  and  called the  project ive  form of bidegree (p, p)  on V. On P(V), 

one and  only one exter ior  fo rm ~ of bidegree (1, 1) exists such t h a t  Q*(oJ) =co on V -  (0}" 

The  form ~ is real analyt ic ,  posi t ive definit  and  d ~  = 0. I t  is the  exter ior  fo rm associated 

to a Kaeh le r  metr ic  on P(V). Define 

1 .. 
~p = ~  co A ... A ~ (p-times) pl  

Then on V -  {0}. 

12. Let  M b e  an  oriented, real manifold  of class C ~176 Le t  N be an  oriented, real sub- 

manifold of pure  dimension n and  class C k wi th  k >/1. Le t  ]N:N-~M be the  inclusion map .  

Le t  yJ be a form of degree n on a subset  A of M such t h a t  ?'*(~0) is integrable over  A N N.  

Define 

13. Le t  M be a complex manifold.  Le t  zV be a pure  n-dimensional  analyt ic  subset  of 



A G E N E R A L  F IRST  MAIN T H E O R E M  OF V A L U E  D I S T R I B U T I O N .  I 1 2 1  

M. Let N be the set of simple points of M. Let  yJ be a form of bidegree (n, n) on a subset 

A of M, which is integrable over A N N .  Define 

If  A is compact and if ~o is continuous on A, these integrals exist. 

In  the following lemmata, the spaces C m and C p with O<p<<.m appear often. The 

forms vq, ~%, ~ and $~ are formed for the natural coordinates. Those on (~m shall be dis- 

tinguished from those on C v by a lower bar: %, wq, V~ and $~. 

L~,MMA 1.1. Let M be an open, non-empty subset o /C m. L e t / : M ~ C  v be a holomorphic, 

q-fibering map.(1) Let s E N. Suppose that 1 <<. s < p = m - q  <<. m. Let ~ be a non.negative integer. 

Let Z be a dif/erential form of bidegree ( m - s ,  m - s )  on a compact subset K of M. Suppose 

that the coefficients of Z are measurable and bounded on K. Take ~E~(s,  p). ~or  ~ER with 

0 < ~ < 1, define 
L(e ) = {z [�89 ~< ]/(z)] ~< e with z e g ) ,  

1 ~ 1 , 
I (~)= fr~(o)(log []]) V]~/~] f ( ~ )  A Z,. 

Then I(~)-->0 /or ~-+0. 

Proof. Without loss of generality, ~(v)=v for v = l ,  2 ..... s can be assumed. Now, 

f = (fl . . . .  , fv), where fg is holomorphic on M. Then 

f*(~q~) = (�89 ~ df~ A d / A . . .  A df~ A d/,. 

An open neighborhood H of K exists, such that  H is compact and contained in M and such 

that  H is a finite union of balls. On M - K ,  define Z by setting g(z)=0. Then 

~e T;(m--s,m) ~eyXm--s.m) 

A constant B > 0 exists such that  ]Z~p($) ] ~< B if $ fi M for all ~ and fl in ~ ( m -  s, m). Define 

F~ =~(/1 . . . . . . . . . . . . . . .  /~) for ~ e ~ ( m - s , m ) .  
~(Zct(rn - s + l ) ,  - . . ,  Z~(m) ) 

Then [ f* (~ )  A Z] = ] ~. ~ sign a sign flF~_F~ X~lvm 
tte~(m--s.m) fl~.~.(rn--s,m) 

_<B 

t~E~(m--s,m) .Sea(m--s, m) 

Q) A holomorphic map ] :M~N is said to be q-fibering if and only if I-l(I(a)) is a pure q-dimen- 
sional analytic set for every a E M. 
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\ 8 ]  ~E~:(m-s,m) 

(9 = B d l i A d f i A  Ad ] ,Ad / ,Av_m_  . 
8 2 " ' "  

For 0 E R with 0 <~  < 1 define 

I / I !  It I '"/*(n,.)  ^ ~_,,-~ 
Then L(~)_~ T(0 ) and 

I(O)<.(?)B.J(~), if 0 < 0 < 1 .  

Therefore, it suffices to prove 
J(~)->O for ~-*0. 

Define g:~2'->ff by  ~(z~ ..... %)=(z~ .. . . .  z,). On C ~ distinguish the standard forms by  a 

dash: v~, o~, ~?~ and ~ .  Then gfzeo/:M.-,C" is a map of pure fiber dimension q + p - s =  
, t , �9 

m - s ,  hence (m-s)-f ibering.  Moreover, ~ r  (v,) and / ( ~ ) = g * ( v , ) .  According to I I  

Proposition 2.9 is 

1 ~ 1 

, , - , ,  

[~) I/T~ ~'-')" 
~ea-,(ro) n T(e), then Irol = la(~)l < I/(~)I <e- ~e-oe 

(*) 
4" 1 " <e-~fl~.,~.(f._.,~,o~,o,".(I~ ~-,..)": 

for 0 < ~ < 1 .  

Because g-l(O)_/-1(0) with dim g-l(O) -- m -- s and dim/-1(0) ---- m - p  and m - p  < m - s, 
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/does  not vanish identically on any branch of g-~(lv) if iv E C'. A constant 2' > 1 exists such 

that  [/($)1 ~<F if SEH. According to Theorem 4.9, the integral 

G(w)= f _a(~)ng (l~ ~/])"%v-~-s 

is a continuous function on ~s. Therefore, a constant U>0  exists such that  0~<G(lV)<d 

if Iml < 1  L~t 0~<~<1 and lvEG ~ with Jml <1. Then 

1 ~ F ( log--j/i)Vm_s~G,~iv,<C. 

NOW, 

for 9-~0 shall be proved. 

Take e > 0. Define 

U 
~eg~f-X(O) 

Because H is compact and contained in M, an open neighborhood H o of H exists such that  

~0 is compact and contained in M. Then e 0 > 0 exists such that  

A(~i~_A(~o)~_Ho if O<~<e,. 

Therefore A(~) is compact if O < t ~ e  o. Take SE.~(�89 A sequence {~v},EN Of points in 

A(�89 converges to 3. Hence t~vEHA/-I(0) exists such that  [3,-t~,[ <�89 Because H is 

compact, a convergent subsequence { t~v~}~eN exists, where v~-~ c~ for ~t-* c~ and where 

t)=lima_~D~aEHN/-l(0). Then J$-DI <�89 Hence 3EA(e). Therefore .~(�89 

Take a continuous function 28 on G m with 0~<)t~<~l such that  )t~ has compact support in 

A(e) and such that  28($)= 1 if $ EA(�89 
Suppose, that  a sequence {~v}vGN Of real numbers with 0 < ~ < 1  converges to zero 

such that  T(~p)-A(�89 for each v E N. Pick 3v E T(~)-A(�89 for each ~ E N. Then 3~ E H. 

A subsequence {3va}~, with ~-~ co for 2-~ c~, converges to a point t)EH-A(�89 More- 

over, DC(3va)J ~<Q~ for 2EN. Hence /(t~)=0. Therefore, ~)EH ~/-~(O)-A(�89 Contra- 

diction! Hence, for each ~ in 0 <e ~ 0 ;  a number ~0(e) with 0 <~0(e)< 1 exists such that  

T(~)_~A(�89 if 0 <~ ~<~0(e). Consequently, 

ff ]iv] ~<1 and O<O<Qo(e ). 
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Because ~ is continuous, because H is the union of balls and because / is not iden: 
tically zero on any branch of g-l(0), I I  Theorem 4.9 implies 

@--~0 J g-- l(@~)n T(q) 

If O<e'<e, then A(e')~_A(e). Moreover, n0<,<~~ A(e)=/t  N/-1(0), which is a subset of 

measure zero on g-l(O). Hence 

for e--> 0. Hence 

fo- l(0)n~n A(8) ~: (l~ ~ )  ~vm-s-~0 

1 
l im0 fa-l,q~)n,,,) % (l~ ~]/) -v~-' = 0" 

Because the integral is non-negative, limQ_~o can be replaced by limq_,o. Because the 
integral is uniformly bounded, the theorem of bounded convergence implies in (*) that 

J(~)-*0 for ~-*0, q.e.d. 

LEMMA 1.2. Let M 4 0  be an open subset o/C m. Let/:M-->C p be a holomorphic, q-fibering 

map with q = m - p  and 0 <p <~m. Let K be a compact subset o / M .  Let Z be a differential 

/orm o/bidegree (q, q) on K with bounded and measurable coe//icients on K. For 0<Q <1, 

define 

L(~)={$IsEK,  2 "~Q--<[/($)I ~<0}, 

f 1 z(e) = [z A l*(v,) 1. 
L (q) 

Then a constant D > 0  exists such that [I(0)[ ~<D i / 0 < 0 < 1 .  

Proo/. At first, consider the ease q>0. Let ~0E~(p, p) be the identity. Continue Z 

onto M by setting Z(z)=O if z E M - K .  Denote/=(/1 ..... fr). Construct H, B, T(~), J(~), 

~ = v ~ ,  F > l ,  g=Id:~2'->C r and g = /  as in the proof of Lemma 1.1, where s = p  and 

=0. Then 

I ( ~ ) ~ ( ; ) B J ( ~ )  if O<Q<I 
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and J(~o) = fr(e) [~]~p [* (v) A vq 

= fol2~l~l<e ] l]'o ( ffl(ro)n~'fv-q) v2' 

\jr-](ew)n~ - / 

Because I~ is the union of f initely many balls, Sf-l(ro)n~f__.q is eOHtinuous on t~, hence 

bounded by a constant Do > 0 on the uni t  baH. Hence 

fr ~rv-q Do 0 ~ -~(oro)n~ 

if [tO[ ~ 1 and 0 < 0 < 1. Therefore 

O<~J(q) <~4~.~. Do=D x 

and I(q)<~(p)BD I = D  f f 0 < q < l .  

As the second case, consider q =0.  Then p = m. The map / is light. According to I 

Lemma 2.5 a constant D o > 0 exists such that  

ns(K; m) = ~ ~r(3; to) ~< D o if to e C ~. 
~eE  

Because q =0,  the form g is a function, which is bounded and measurable on K. Hence 

B >0  exists such that  [g($)[ < B if 3 e K. Therefore 

5 vt(3; m)]Z(3)[ <~PoB. 
~r  

According to I I  Lemma 2.8 is 

f z  1 fe (: ,A3;ro)Jz(3)l) 1 

4 m /"  :r/: m 
<~':ygmDo B l Vm = 4reDo B =D 

if O < e < l , q.e.d. 

LEMM.A 1.3. Let M g=~ be open in C m. L e t / : M ~  be a holomorlghic, q./ibering map 
with q =m-19. Let ~, s and t non-negative integers such that 

l <~s<<.19<-~m, l <~t~p<~m, s+t<219. 
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Let q) be in ~E(8, p) and let ~ be in ~(t, p). Let K be a com1~ct subset o/ M. Let Z be a di//eren. 

tial form on K with bounded and mea~rable coe//icients on K. Define a = m - s  and T = m - t ,  

Suppose that Z has the bidegree (a, z). For 0 < Q < I ,  define 

" <0},  

Then l(e)-,0/or e~0. 

Proo/. Without loss of generality, it can be assumed, that  1 ~<s < p  and 1 ~<t ~<~o, Then, 

holomorphie function/~ exist such that / =  (h .. . . .  /~). Then 

]*(~) ~ dfr A.. .  A d/~r and /*($~) = dry(1 , A ... A d]va,. 

]3ounded and measurable function Z~$ exist on K such that 

~eTs fle~(v,m) 

A constant B~>0 exist~ such that IZ~p($)l < B  for s e K  and ae%(a, m) and fle~:(~, m). 

Define 

6',~ = a(l~,(,),::.,h,<,)) if flfi~:('t:, m). 
~(z~(,+ 1) . . . . .  z~(,,,)) 

Then II*r ~ ~ signocsign~F~O~Z.$lvm 
~e?g(a.m) I~(~.m) 

<B 5 Y IF~ l la ,  lvm. 

z" (e) = f, (0, l l . o  1 \~' ~1  Define [og ) v. 

/ 1"~ ~" 1 

= Lo, t 

Then O ~ I ( ~ ) ~ B  ~ S f ( l o g l ~ "  1 
~o~(o.m) ~,~(~.m) .~,~),  I11! I11 '+' I~1  I~l_~.. 

< B  E ~ I , (q) t ' J~(~)  �89 
~ e%(a, rQ ~6e~(v,m) 
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According to Lemma 1.1, I~(~)~0 for ~ 0 .  If t<p,  then Jp(~)->O for ~ >0 according to 

Lemma 1.1. If  t=p,  then J~(~) is bounded on 0 < ~ < 1 .  Hence I(~)-*0 for 0>0  in both 

cases; q.e.d. 

LEMMA 1.4. Under the same assumptions as in Lemma 1.3, the integral 

exists. 

Proo[. Without loss of generality, 0 < s < p  can be assumed. Define L(~), I(Q), F~, Gp, 

I~(Q), Jp(Q) as in Lemma 1.3. Then Jp(~)-~0 for 0-+0 or JB(~) is bounded in 0 < ~ < 1 .  In 

either case, a constant D I > 0  exists such that  ]Jp(~)] ~<D 1 for 0 < ~ < 1  and flE~:(~, m). 

Moreover, 
F [ 1 \  s~ 1 

1 F / 1 \~k+4 1 
<~(logl/o) 'JL(o(l~ ~ / * ( ~ v v )  A ~ a~' 

where fL ( 1 \~,,+4 1 

for ~-+0 according to Lemma 1.1. Hence a constant D 2 > 0 exists such that  I~(~)~< D s if 

0 < 0 < 1  and ~E~(~, m). Hence I~(~)<(log 1/~)-4D2 for 0 < Q < I .  Then 

~e~s m) fle%(v.m) 

1 B 1 

for 0 < ~ < 1 ,  where B 1 is a positive constant. If  1 <nEN, then 

~< B1 (~og 2)Sn s s ~ ,  

where Bs is constant. Define K s = {$15 E K and I/(3) 1<�89 and KI = K - K  s. Then K 2 = 

O~=~L(1/2 n) where L(1/2n+I) NL(1/2~)={$ I l/($)]=1/2 ~+1} f iE  is a set of measure 

zero. Hence 

= n = l  = 



128 WILHELM STOLL 

Hence (log 1/111)" a/Ill '+' 1"(r ~) ^x  is integrable o v e r  K~. Clearly, it is integrable 
over K x. Hence, it is integrable over K, q.e.d. 

Now, the case s = 0 has to be treated. 

L E y ~  1.5. Let M +O be open in C m. Let [:M-~CP be a holomorphic, q-/ibering map. 

Let O < p = m - q < ~ m .  Let u be a non-negative integer. Let Z be bounded measurable ]arm o] 

bidegree (m, m) on a compact subset K o / M .  Far ~ e R  with 0 < Q < I ,  define 

~< 11(3)1 <o}, L(0)={31~eK,  ~ 

I(e)= yL,~)(l~ ~)'lZl" 
Then I (~ ) ~ 0 /or  ~ ~ O. Moreover, the integral 

exists. 

Proo[. I f / ( ~ ) + 0  for all ~EK, the lemma is t r ibal .  Suppose that  A = K  N]-l(O)~e~. 

A constant B > 0  exists such that  ]ZI ~Bvm on K. Define E -- {w I I w I ~ 1 }. Define 

~0:M • C-~C and g : M  • C-~M as the natural projections. Then v~($, 0) =1 for s eM.  More- 

over, q0-x(0)=M • (0} and ~-~(0) N (K • E ) = K  • {0}. Define j : M ~ M  • C by i(3)=($, 0). 

Then g o ~ = I d : M - + M  is the identity. Define g=]o~. Then go~=[. Moreover, 

g I = ~-x(0) fl g-l(0) N (K • E) = A • {0} =~O. 

Apply I I  Lemma 4.8 using the table 

There M m N p q ] ~ g b g K K 

Here M• m+l  C 1 m qJ ~t g 0 ~r*(v m) K • E K 

y, ,,, Ilog Igl I" =* ('2_,~) Hence J = - l ( o ) : f l ( K X E )  

exists. Because j : M - ~ M  • {0} is biholomorphic, 

fK ~V J = ]log I/ll _~ 

exists. Because 9( is measurable and ]Z] <~Bvm. The functions 

(log 1/]]])"• are integrable over K. 

[(log X/lll)l"lx I and 
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D e ~ e  A(O) = { , I ,  eK,  I1(,)1 < o }  for 0 <O < 1. Define 

129 

Because Oo<q<1 A(0)=A is a set of measure zero, and because A(p')c_A(o) i f 0 < ~ ' < ~ < l ,  

the integral S(~)-*0 for ~-~0. Because 0~<I(~)~<S(~), also 1(~)-~0 for ~-+0, q.e.d. 

Of course, this lemma can also be proved direqtly. 

L~.MI~IA 1.6. Let M . O  be open in C m. L e t / : M ~  be a holomorphic, q./ibering map 

with q f m - p .  Let ~ be a non.negative integer. Let tEN such that $ <~p <.m. Taker 2 in ~:($, m). 

Define T = m - t .  Let g be a diHerential /orm on the coml~d s~bsd K of M with bounded 

and measurable coeHicients on K. Suppose that g has bidegree (m, ~). For  0 < ~ < 1, define 

x(e) = J ~(,),l~ ~ I*(r A z. 

Then 1(0)~0 /or ~ 0 .  Moreover, 

exist. 

1 " 1  , 1 " 1  , L(log ~) ~ ,  (t,)Az a~d f.(log m) ~'! (r 

Proo/. Let  ~ e ~(m, m) be the identity e(v)= r for u = 1 .. . . .  m. Bounded and measurable 

function Z# exist on K such that  

# ~ ~(~. m) 

A constant B >0  exists such that  I g#l ~< B on K. F[olomorphic flmotions /# exist such 

that  / =  (/1 ..... /~). Then 

1"(~,) =at , ( , ,  ^ .... ^ ah,,. 

Define Gp O([~a), " . ,  ]~(o) if fle ~(v, m). 
8(z~(~+1) . . . . .  z~(,o) 

Then It*(t,)Azl=l • sign#O~Z~lu,,<<.B E IOpl_,,. 
# G ~(T, m) # G ~(T, m) 

8I" - -662905  A a a  mag~matica. 118. I m p r l m ~  le 12 avr i l  1967. 
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1 2 1 , 
Define J~(0) = f.(0,~lG~l ~_~= fz,.)lT~[ (v.)^ ~. 

I ' (~)=  ,o, log]-]] Vm, 

f [ 1 "~2"+' 
I , (0)= J z,q,~l~ 1-/]) --Vm" 

Then I, (0)-~ 0 and ~ (0)-~ 0 for 0-~ 0. 

If  t<io, then Jp(0)~0  for 0-~0; if t=p, then Jp(0) is bounded in 0 < 0 < 1 .  In either case, 

a constant D I > 0  exists such that Jp(o)<D1 for 0 < 0 < 1 .  A constant D z > 0  exists such 

that  I,(0),.<D 2 if 0 < 0 < 1 .  Then 

1 ~ 1  
O<"I'o)<"Be,z~(,.~)fr(o(l~ ~IG'I v- 

<B 5 LIepJ~(e)k #~:(,.m) 

Hence, I (~ )~0  for 0-~ ~ .  Moreover, 

1 
1'(0) < (log 1/0)' l '(q) ~< - -  

D~ 
(log 110) 4 

for 0 <0 < 1. Hence 

VD~ (log i /0)  ~ = 0og 1/0) * 

for 0 <0 < 1, where B x is constant. If 1 < n  E N, then 

I ~< B 1 (1-~g 2) 2 n~ 
_ B2 

~2 

where B~ is constant. Define K,={313eK and I]($)1 ~<�89 and K I = K - K  v Then K~= 
[3 ,~176 L(112 n) where L(1/2 n) N L(1/2 m) is a set of measure zero if n 4=m. Hence 

f x (  __1 ~'_1_1 ( 1 )  r162 1 logl/l/ ill, l/*($~)^xl= ~ I <B2n~__l--~< oo. 

Therefore 0og 11/t])"ll//17*($~)^z and its coniuga~ are integ~able over K,. ~early,  

they are integrable over K v Hence, they are integrable over K = K  1 0 K~, q.e.d. 

P~OPOSITION 1.7. Let M be a complex mani/old o/pure dimension m. L e t / : M ~ f 2  

be a holomorThlc, q-/ibering map with q = m - p ,  where O<p<<m. Let ~, s, t be non-negative 

integers such that 
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O<.s<~p, O<~t<~p, s+ t<2p .  

De/ine a = m - s  and v = m - t .  Let K be a compact subset o / M .  Let % be a di//erential /orm 

on K whose coe//icients are measurable and locally bounded. Suppose that g has bidegree 

(a, T). Let q) be a di//erential ]orm o/bidegree (s, t) on ~ with measurable and locally bounded 

coe//icients. Suppose that/or every Q > 0 a measurable/unction h o is given on M. Suppose 

that these/unctions are uni/ormly bounded by a constant B on K, that is ] ho(z ) [ <~ B i /~  > 0 

and z E K. For ~ > O, de/ine 

Ill] I I I  ~+~ 

Then I(e)-~O /or Q-~O and 

2= loglll! ii[.+,t*(~)Az 
is integrable over K. 

Proo/. The form Z is integrable over K, if and only if every point z 0 EK has a compact  

neighborhood U such tha t  Z is integrable over K (I U. Therefore, it can be assumed tha t  

M # O  is open in C m. 

1. Case: s = t = 0 .  Then ~0 is a function and/*(~)  =~o1 is a function on M, which is 

bounded and measurable on K .  Hence ~ is integrable over K according to Lemma 1.5. 

2. Case: 0 = s < t .  Then measurable and locally bounded function ~D exist on C v such 

tha t  

3 e~(t.v) 

Then ~0#o/is a measurable and bounded function on K and 

1"@) = ~ (~Bol) l*(~p). 
3e~:(t,p) 

According to Lemma 1.6, the differential 

/ 1 \  ~ 1 

is integrable over 'K.  Hence ~ = ~#~(t.v) ~ is integrable over K. 

3. Case: 0 =t <s.  By conjugation, this follows from case 2. 

9 -  662905 Acta mathematica. 118. Xmprim6 le 12 avril 1967. 
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4. Case: O<s and O<t: Measurable and locally bounded function ~0aB exist on C ~ 

such that  
~ =  5 Y. ~ ^ $ ~ .  

r #e~.(t,~) 

Then /*(~0) -~ ~ ~. (~0~o/) ]*(~ A ~p), 

where each ~0~pof is bounded and measurable on K. According to Lemma 1.4 is 

= (log 1]" 1__1__ 
1/11 [/I s+' (~ot)./*(~o~o)oz 

integrable over K. Hence ~ = ~,E~(s.~) ~pE~(t.~)~p is integrable over K. 

Return to the original assumptions that  K is a compact subset of a complex mani- 

fold M. Define 
a(~) = {zlzEK with [/(z)[ ~<Q}. 

If 0 < Q < 1, then S(Q) = [ 121 
J A  (Q) 

exists. Because A(p')~_A(p) if O<e' < 0 < 1  and because No<o<1 A(p)~/-1(0)N K is a set 

of measure zero. S(~)~O for 0~0.  Because 

Iz(e)l < f~,o Ihol lift < Bf~,o)121 = s(e) 

also I(Q)-~0 for ~-~0; q.e.d. 

Now, a type of residue formula shall be proved, which will be very helpful later on. 

Let V be a complex vector space of dimension m with an Hermitian product (]). Then 

the projective forms eo and eo~ are defined on V-{0}.  On P(V) the forms ~ and ~ are 

defined. Let ~: V-{0}-+P(V) be the residual map. Then o)~=O*(~). Because degree 

~ = 2p, for p ~> m is ~ = 0. Therefore, 

o~ o = 0  on V-{0}  i f p>m.  
On V -  {0} is 

i 1 
d" log ]$] = i (a -~) �89  log ($[$)= ~ [ ~  ((d$[$)- ($[d$)). 

Moreover, 
�9 

= ( m - ~ ) ~  Isl ~ - ~  k~/  i , - - 2 ) ~  Isl ~ A (dsl$)n ($1d$) 
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Hence d z log [3[ A a)m-t=[~[2-2md~ log [~[ A Vm-1. 

Lv.M~A 1.8. Let M be a complex mani/old o~ pure dimension m. L e t / : M - ~ O  ~ be a 

holomorphic, q /ibering map with q = m - p  and O<p<~m. Let H be an open subset o / M  

with compact closure H. Let g be a continuous di//erential /orm o/ bidegree (q, q) on M. Let 

T be the support o / g  in I ~ - H .  Suppose that/-1(0) f) T is a set o/measure zero on/-1(0) 

i / q > 0  and that/-1(0) f~ T = O  i/ q=0.  Suppose that a constant B > 0  and/or every ~ i~. 

0 <~ < 1 a/unction go o/class C ~ on R are given such that 

1. For x E R  and 0 < Q < I  ks [go(x)[ <1. 

2. For x E a  and 0 < ~ < 1  ks Ixg;(~)l <B. 

3. _Por x <~ 1~ ks go(x) = O. 

4. For x>~ ks gQ(x) = I .  

~or m ec ,  and 0 <e < 1, de/ine ~0(m) =gQ(] ~l)" D4ins 

I(e) = f d "  log ]1] A d(~eo/) A/*(go-,) h Z. 

2~P f ~  Then I(Q)-+(p_I)~T. nr_l(o)VrZ /or 9 ~ 0 ,  

where, in the case q = O, X is a/unction and the integral means a sum: 

f .  v~z 7. ~(z; 0) z(z). 
f~f--l(0) z e H  

Proo/. If q > 0, then define J by 

J(lv) = ~ vfZ. 

According to II  Theorem 3.9, J is continuous at 0EC p. If  q=0,  ~hen define J by 

J(ro) = ~ vI(z; Yo) X(z). 
z E H  

According to I Proposition 3.2, J is continuous at 0 E C v. For 0 <~ < 1 is (1) 

i(e) = foJ(w) d" log ]m] h d)te(lv ) h (D~_I(m). 

Then d2e=g~(]yO] ) (dF0[Y0) + (F0[d~o) 

(1) For q > 0, seo II, Proposi$ion 2.9. For q = 0, see II, Proposition 2.8. 
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�9 vp-1(W~ 
Hence d" log [iv[ A d~(ro) A co,_~ ( m ) -  d "L log Iml A d~(ro) ;\ l ~  

i 1 
4 I~l ~.+x g~(liv[) A ( (dW[~)-  (~ldm)) A ((div[~ + (mld~o)) A V._l(~O) 

= ~  go(Iwl) ~ 1  , i (aivliv)//(ivlaiv) A ~,,,_~(m). 

Define Io(0) = f c  ~ ( J ( m ) -  JC0))d* log Ira] A d~(iv) A cOp_l ( iv ) ,  

= fcpd ~ log lm ] A dgQ(iv) h I I ( O )  f .o~  - 1 ( ( . o ) .  

Then  I(0 ) ~ /o(O)  + J(O) I1(0) for 0 < O < 1. I t  is 

Q ( J ( iv ) -  J(0)) 1 i (d~l~)  A (~l~[d~l~) A ~)p_l(~0) 

,<lwl<l (g(qiv)-  g(0)) (g~ (liv] q)]ivl q) v~-l. 

Define D = f�89 1 i <l~l<,]m~ ~+1 2 A (dmliv)A (ivldm)A v,_,Cm). 

Then 0 < D < ~ .  For every e > 0, n number qo(e) exists in 0 <0o(e) < 1 such that  I iV I <0o(e) 

implies I J ( iv) -J (0) ]  <e. Therefore IJ(qiv)-J(0)[  <e  if liv] <1 and 0<0<0o(~}. Hence 

I Io(q) I <~ BDe if 0 < 0 <Ode). Hence 

Io(0)-~0 for 0-~0. 

f~ log d~  oJp_l(iv ) :For I 1 i s  I I ( 0 )  = l~<[ro[<~ d" l v I^ A 

= - ( d(Xqa" log [to[ A r 
JI 

because ddXlog [ iv  ] A OJp_l( iv ) = - -  2(D A (Dp_ 1 = - -  2pc% ----- 0. 

Let  S o be the sphere of radius 0 with center at 0eC p oriented to the exterior of {$[ ]$[ <0}. 

~tokes' Theorem implies 
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11(5) = - fsQd" log [IV l/X cov_x(IV) 

= - -  fsdTl~ IIVl A ~_~(IV) 

= - f s  d' log I ml A Vp-l(~). 
i 

If j :S 1"4 C p is the inclusion map, the j*(d x log 1/] IV ] A vv_~(IV)) is the euclidean volumo 

element of S 1. Hence 

I~(5)=(p_l)!  if 0 < 5 < 1 .  

3"~ ~ 
Hence 1(5) = lo(5)+J(0) 11(5)-* (p _ 1)! J(0) 

for Q-~0; q.e.d. 

2. The intersection m, mher 

Let V be a complex vector space of dimension n + l .  Let P(V) be the associated 

projective space and let Or: V - { 0 } ~ P ( V )  be the associated projection such that  

~l(sv(a)) = {za l0  # z  ec} .  

Let V[p] be the p-folded exterior product of V. Define 

& + l ( V )  = {CoA . , ,  /~ CpI {~/~E V) CZ V[p + 1]. 

Then the Grassmann-manifold 

r162 = 5 v,~+1~(&+~(V) - {0)) 

is a smooth, connected, compact submanifold of P(V~ + 1]), 

If Co .... , cp are linearly independent vectors of V, then 

E(co  . . . . .  c~) --  {3]~  A CoA ... A C~ = o}  

is the (p + 1)-dimensional complex subspace of V which is spanned by (Co ..... c~). If  ~ E q~(V) 

then E(~)=E(co ..... cp) is well-defined by ;r This map E of (~(V) 

onto the set of all (p+l)-dimensional complex suhspaces of V is bijective. For 7Eq~'(V) 

define /0(F)=~(Co ... .  , c~)=sv(E(y)-{0}), where y=Sv[v+ll(CoA... A C~). Then E defines a 

bijective map of q~(V) onto the set of p-dimensional complex planes of V. 

aL(V) ={ (Co . . . . .  c,) I Co A ... ~, c~ # 0 }  
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is the set of all bases of V. I t  is the general linear group of V and is the complement of a 

thin analytic subset of V x ... • V (n-times). 

Now, a local coordinate system of (~(V) shall be introduced: 

LV.MMA 2.1. Let a={ao .. . . .  a,)EGL(V) be a base o] Y. Let 0~<p<n.  Define 

= Q v~ +l](ao ^ . . .  ^ o~) ~ ~ ( V ) .  
Define 

Zo = {ml m e @ + l ( v )  with ro ^ ~,+, A... ^ u , , o ) .  

Z = ev~+l~(Zo).  

Then Z is an open neighborhood o /a .  A holomorphic map 

r o " - ~ " ~ + "  ~ & + ~ ( v )  - {o} 

is defined in the following way: Talce 36C(n-m(r+l) then 3~=(z~.~+x .... .  z~n)6C n-~ exists with 

3 =($o  . . . .  , $~). 

De/ine c~ = ~ z,,a, /or p = 0 . . . . .  p. 
vfp+l  

~e t  ~o(~) = (ao + Co) ̂ . . .  ^ (a~ + c~). 

T h e n  ~ = ~V[p+l ]O~o : C ("-D)(p+I) --)-Z 

is a bihohm~rphlc map onto the open neighborhood Z o /~  = ~(0) in ~/'(V). 

Proof. 1. Denote 0 = 0 v~ +;]. Clearly, % + Co .. . .  , ap + cn arc linearly independent. Hence 

~o and ~ (into [~F(V)) are well-defined and holomorphic. Obviously, Z o is an open neigh- 

borhood of ~ A  ... A ~ in (~+I(V). Hence Z is an open neighborhood of ~=~(0) in (~(V). 

2. I f  3=($o . . . .  , $~)EC (n-m(n+x) with 3~EC "-~, then 

~0($) A (lp+ 1 A. . .  A (I n = (QO -[- CO) A. . .  A (O.~-'l- Cp) A (~+1 A. . .  A (In = % A. . .  A fin =~=0 

Therefore, ~0 maps into Z o and ~ maps into Z. 

3. The map ~ is surjective: Take flEZ. Then fl=~(b) with 13----l)0A...Al~p~=0 and 

1~ ~ V and 
~0 A ... A ~n A 0~+~ A ... A an*0.  

Now, the following s ta tement  Sq shall be proved by  induction for q in 0 , . < q < p + l :  

Sq: "vectors C/,q = ~ cuq, a~ and a number bq~ C ez~8$ such tha~ 
Y=q 

b=bq(ao+Co, q) h . . .  A ( 0 q _ 1 +  Cq_l.a) A Ca.qA . . .  h Cp.q". 
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I f  q = 0 ,  choose C~o=b~ for p = 0  .. . . .  p and  b o = l .  Then  S o is true. Suppose tha t  Sq is true. 

Then Sq+ 1 shall be proved if q + 1 ~<p + 1. Then 

0 ~ A O0+ z A ... A an = bqAao A ... A fin, 

where A is computed  tha t  way: Le t  E~ be the  uni t  matr ix  with r rows and  columns. Let  

~st  be the zero matr ix  with s rows and t columns. Define 

Then 

Cq_ I, p Eq o, q 

A = d e t  ~r -q+l ,q  C ~  

c O ,  p+lx  
q-l,n 

t~'q' P+I | = d e t  qq ~q.  n ~ Cpp.  
/ 

Hence %,q,q:~O for some ~u in q<~#<~p. B y  changing the enumerat ion of cq,q . . . . .  c~,q, it 

can be assumed tha t  ca, q, q :pO. Hence ca, q = ca, q. q((~q*q- Cq,q+l) where 

Cq, q+l ~ ~ Cq.q+l,t,O~* 
~=q+l 

Define bq+ 1 = Ca.q. q bq. Then 

= bq+l(flo q- to.q) A ... A ((lq_l-JrCq_l.q) A ((lq'q-Cq.q+l) A Cq+l, q A ... A Cpq. 

For  p =pq define 

C.u.q+l=C.u.q--C.a.q.q(QqJf'Cq.q+l) -~" ~,, C.a.q+l.l,0-1,. 
~=q+l 

Then - - - -  bq+l((lo q" Co. q+l) A A (O.q-~ Cq. q+l) A Cq+l. q+l A ... A Cq+ 1.p. 

Hence Sq+ 1 is proved.  Especially Sp.t. 1 is t rue 

~1 = bp+l(Q 0 .q- Co.p+i) A . . .  A ((Lp --~ Cp.p.l_l) 

with C~o p+l ~ ~ C~p +lv av- 
1,~p+l 

Define ~=(%.r+1.r+1 ..... %~+I..) for p=O ..... p and ~=(3o ..... 3r)EC(n-~)(~+l). Then b= 

b~+z~o(~) and ~(~)=e(~o(~))=~(b)=ft. Hence ~ is surjective. 

4. The map  ~ is injective: Le t  

~ = (z~+l . . . . .  z~n) and  e~ = (v#r+l . . . . .  v~n) 
for p = 0  .. . . .  p and  
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= (~o . . . . .  ~ ) ,  v = (Vo . . . . .  v~) 

such t h a t  ~($)=~(V). Define 

C~,= ~ z~,a and 
~ffip+l 

for/~ = 0  .. . . .  p .  A number  u =t=0 exists such tha t  

~ ' - p + l  

= (ao +Co) A ... A ( ~  + c~) = U(ao + ~o) A ... A (% +~). 

Then ~ A ~+1 A ... A (In = ao A... A an = Uao A ... A a~ =t=0. 

Hence ~ = 1. Take p with 0 ~ p  ~ p .  Then 

(a~ + ~ )  A (% + Co) A ... ^ ( ~  + c~) = 0 .  

Because (% + Co) A... A (% + ~) 4 0 ,  numbers  a~Q exist such tha t  

a ~ +  ~;~ -- Q=~o a ~  (% + O .  
Then 

0 ~:ao A ... A an = a0 A ... A a~-i A (a~ + ~ )  A a~+l A ... A an = a ~ a o  A ... A an. 

Hence a ~  = 1 if 0 ~ p  ~ p .  Take ~ ~:/z in 0 ~ ~p .  Then 

0 = a~ A ao A ... A a~_~ A a~+~ A ... A an = (% + ~ )  A ao A ... A ax-~ A a~+~ A ... A an 

ap~ a~ A % A ... A fl~-i A Q~+I A ... A On. 

Hence a ~  = 0 if p ~:~. Therefore a~ + ~ = a~ + C~ or ~ = C~ which implies I~ = ~ for /~  = 

0 . . . .  , p .  Hence I~ =~. Therefore ~ is injective; q.e.d. 

Let  M be a pure m-dimensional complex manifold. Let  F be a complex vector  space 

of dimension n + l .  Suppose tha t  0 ~ p < n .  L e t / : M ~ P ( V )  be a holomorphic map.  Then  

F~ = F ~ ( I ) =  {(z, ~ ) l l ( z ) e & ~ ) ,  where (z, ~ ) ~ M •  

is said to be the graph o /o rder  p o / f .  Obviously, F0(/) is the usual graph  o f / .  Define 

z~,:F~(/)-+(~'(V) by~f(z ,  ~) = 

~ : F ~ ( / ) ~ M  by  ~ (z ,  ~) = z .  
I f  ~ e ~ ' ( V ) ,  then 

~i'(~) = {(~, ~)l z e M ,  1(~) e & ~ ) }  = l - ' (&~) )  • D } .  
Hence 

(1) ~-~(~) = 1-~(~(~)) x {~} 

(~) ~ ( ~ / ' ( ~ ) )  = l -~ (&~) ) .  
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LEMMA 2.2. Let M be a pure m.dimensional complex mani/old. Let V be a complex 

vector space o] dimension n + l .  Suppose that O<.p<n. Let ] :M~P(V)  be a holomorphic 

map. Then the graph $'~(]) o/ order p o / / i s  a smooth complex submani/old o / M  • ~ ( V )  

with pure dimension m + p ( n - p ) .  

Remark: A local "coordinate system" at (a, o 0 E F~(]) can be obtained the/ollowing way: 

1. Step. Let 

e: V -  {O}-+P(V) e: Vip + 1 ] -  {O}-,-P(V[p + 1]) 

be the natural projections. Pick any base (ao ..... a,) E GL(V) such that Q(ao A ... A %)= o~ and 

](a) =•(ao). 

2. Step. Define 

Vo = 00 + E(f l l  . . . . .  fin) = {~o + ~.o.1~,,  e e }  
p=l 

Then fro=~(Vo) is an open neighborhood o/ /(a) in P(V). The map ~o=~[ Vo: VolVo is 

biholomorphic. 

3. Step. Pick any open neighborhood A o /a  such that/(A)~_ fr o. 

4. Step. Define a holomorphic map 

~:A • r  

by the ]oUowing construction: Take (z, 3) e A  • C " ( " - ~  then 3 = (31 . . . . .  3~) with 

3~ = (z~.~+l . . . . .  % . . )  e C "-~. 

n 

Define Sol(/(z)) = fio +u~=o/~(z) fiu, 

C~=Cu(3) = ~ z~a, for / z = l  . . . . .  p, 
v = p + l  

co = Co(Z, 3) = ~ /.(~) c ~ -  ~ / , , (~ )  c., 
v=~v+l ,a=l 

~(z, 3) = o(fio + co) A . . .  A (o~ + c~)), 

5. Step. For (z, 3) EA • C ~("-m, define 

a(z, 3) = (z, ~(z, 3))~M x (~(V) .  

Then B = a ( A  • (n-m) is an open neighborhood o] (a, a)=a(a, O) in F~(]). Moreover, 

a :A x C ~(~-m ~ B  is biholomorphic. Moreover, i] Z is the neighborhood o / ~  which was intro- 

duced in Lemma 2.1, then 
B = (A • z )  o PA/).  
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Proo]. Clearly, if the  s t a t ements  of the  R e m a r k  are proved,  the  L e m m a  2.2 is also 

proved.  Take  (a, ~) E F~, then  the  R e m a r k  shall be proved.  Now, % E V -  {0} with  ~(%) = / ( a )  

exists where / ( a )EE(x)  and  ~ ( ~ ) = O ( E ( ~ ) - { 0 } ) .  Hence  %EE(x) .  Therefore,  a base  a =  

(% . . . . .  an) E GL(V) can be picked such t h a t  ~(% A... A ~ )  = ~. This  completes  Step 1. S tep  2, 

Step 3 and  Step 4 are t r ivial  and  ~ is holomorphic.  

For  Step 5, define B = (A x Z) A ~ ( ] ) ,  where Z is the  neighborhood of ~ which was 

defined in L e m m a  2.1. Then  B is an  open neighborhood of (a, ~) in ~=(/). Holomorphic  

funct ions ]~ exist  on A such t h a t  

e~(/(z)) = ao+ ~ I t ( z )  ~,,, 
tu=l 

Here  is eo ~(](a)) = eo ~ (~t) + %. Hence  ]#(a) = 0 for #t = 1 . . . . .  ~t. Now, define/~:  A x c2(n-m 

C ~v+i)~-v~ b y  the  following procedure:  Take  (z, 3)EA x C2 ~-v). Then  

3 = ($1 . . . . .  3p) wi th  3g = (zg~+l . . . . .  zg-) EC"-v" 

Define 3o = 3o( z, 3 )=  (Zo.r+l . . . . .  Zo.,) b y  

zo,  = ~ ( z ,  3) = l , ( z )  - ~ Ira(z) z.,. 
I.t-1 

Set/5(z, 3)=  (z, 30, -.., 3v)EA • C (l~+l){a-l~}. Obviously/~ is a holomorphic,  injective m a p  with  

an  Jacob ian  of r ank  m + p ( n - p ) .  Hence/~(A • C2 ("-v)) = B '  is a smooth  complex submani-  

fold of A x {3 (v+l)(n-m, wi th  dim .B'--m +p(n-p).  

Now, ~: C cp+i)("-~)-~Z is biholomorphie.  Hence  

= Id~ x ~:A x r --*A x Z  

is a biholomorphie  m a p  onto  an  open subset  of M x ~ ( V ) .  Hence  ~o~ :A  x c~(n-m-~'A xZ  
is a holomorphie,  injective m a p  of r a n k  m + p ( n - p )  and  its image ~ ( B ' ) = B "  is a smooth  

complex submanifo ld  of A x Z with  pure  dimension m +p(n -10 ) .  Now, ~o~ = ~  and  B ~= B 

is claimed: 

For  (z, 3) E A x C ~(n-~) is 3 -- (31 . . . . .  3=) wi th  3~ = (z~. v+l . . . . .  zv,). Define 

n 
C~= =~+xz~,o, for  # = 0 ,  1 . . . . .  p .  

Then  3o = (Zo. n+l . . . . .  zo. , )  wi th  zo, =- h(z) - ~.~-i fz(z) z~,. Hence  

CO ~-~'~'= ~u*l ~'=p +1 I,=p+l 
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Therefore a(z, $) = (z, ~(z, $)) = (z, O((Oo + Co) A ... A (% +c~)) 

= ~(~, 3 o  . . . .  , $~) = ~(fl(~, $)). 
Hence ~--~~ 

Using the  same notat ion,  it  is 

e#~(l(z)) A (ao+ Co) A . . .  ^ (a~+ q,) 

~=I v=p+l / ~ 1  

= ~ ]r (a.  --]- c/t) ^ (0  0 -~" CO) A (C[ 1-4- Cl) A . , ,  A (~I~ "Jf- Cp) = O. 

H e n c e / ( z )  E ~(~(z ,  $)), which  implies 

~(z, $) = (z, ~(z, $))e F~. 

Hence ,  a=~'of l  is an  injective,  ho lomorphic  map  into  B; hence  B'___ B.  

Take  a n y  (z, ,/) e B.  Then  $ = ($o . . . . .  3v) e t3 cv+l~c~-p~ wi th  Sg = (z~r+x . . . . .  zg,,) exists  such 

that  r =r/. Def ine  c~ = ~2=v+~ z ~ a ~  for g = 0 ,  ..., io. Then  

0((ao + Co) ̂ . . .  ^ ( ~  + c~)) =,~. 

Hence  of f i ( / ( z ) )  ~ E(,/) -- E(ao + Co . . . . .  % + cv). 

n 

Hence ao + ~J.(~)a._ --~og.(a._ + c.), 

which implies go = I and g~ =f~(z) for/~ = I ..... p and 

/ ~ = P + l  /~=0 

n p p 

Hence  Zo~ = ] , ( z )  - -  ~ l t , ( z )  z m . 
bt~o 

Therefore f l(z ,  31 . . . . .  Sv) = (z, $o . . . . .  Sv) - -  (z, $) 

and a(z ,  $i . . . . .  St) = ~(fl(z ,  $1 . . . . .  Sv) = (z, ~($)) = (z,  7 ) .  

Therefore,  a is surjeetive.  Hence  a : A  •  is a b iholomorphic  map.  N o w ,  

],~(a) = 0 for / s  = 1 . . . . .  /9, implies 

a(a,  o) = (a, ~(a, 0))  = (a, e(ao ^ ... ^ a~)) = (a, ~),  
q.e.d. 
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If  M and N are complex manifolds and if h:N--~M an d / :M->P (V )  are holomorphio 

maps, define g = h o/. Then a holomorphic map ~: F~(g)-~ F~(/) is defined by s ~) = (h(z), a). 

Then ~io ~ = ho~ o. Especially, the identity map ]:P(V) -~ P(V) is defined. Then F~(~) -~ P(V) 

is a fiber bundle over P(V) with general fiber (~-1(C"). Moreover, F~([) is the bundle 

induced by [ and ~ is the induced bundle map: 

F , ( I )  f ,  Fp(j) 

M t ~ P(V) 

However, this interpretation will not  be needed now. Of importance is the local coordinate 

system introduced in Lemma 2.2. 

DEFINITION 2.3. (General maps of order r.) Let M be a pure m-dimensional complex 

mani/old. Let V be a complex vector space o] dimension n § 1. Let r be an integer such that 

O<r<n and O<r<.m. Define 

p = n - r  and q = m - r .  

L e t / : M ~ P ( V )  be a holomorphic map. Then ] is general o/order r /or  a e ( ~ ( r )  q and only 

i / a n  open neighborhood U o / ~  exists such that/-1(/~(~)) is empty or an analytic set o/pure 

dimension q whenever ~ e U. The map / is said to be general o/order r i /and only i / / i s  general 

/or every a e ~ ( V ) .  

Obviously, if r = n, then / is general of order r if and only if / is q-fibering, i.e. if / has 

pure rank r. 

LEMMA 2.4. Let M be a pure m-dimensional complex mani/old. Let V be a complex 

vector space o/dimension n + l .  Let r6N with p = n - r  >lO and q = m - r  >~O. Le t / :M-~P(V)  

be holomorphic. Then the ]ollowing statements are equivalent 

1. / is general of order r. 

2. For every aE~F(V), the set/-1($(~)) is empty or has pure fiber dimension q. 

3. The map ~z1: F~(/)-~(~(V) is q.fibering. 

4. The map :~s: F~(/)-~(~( V) is open. 

Proo/. 2) is only a reformulation of the definition of 1). Because ~71(x) =]-l(E(a)) • {a}, 

the statements 2 and 3 are equivalent. Because 

d i m  F A / )  - d i m  ( ~ ( V )  = m + p ( n - p )  - (p  + 1) ( n - p )  = q 

conditions 3 and 4 are equivalent, q.e.d. 

Obviously, / is general for a E(~(V), if and only if an open neighborhood U of 

exists such that  /] /-I(U) is general of order r. Suppose, that  /:M-->P(V) is general of 
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order  r for ~ E (~(V)  where m, n, p, q, r are as before. Then an open neighborhood U of 

exists such tha t  
nr l~ i l (U)  : n ~ ( u ) - ~  u 

is a q-fibering map.  I f  zE/-l($(~)),  define(1) v1(z; o~)=v~,l(z, ~) as the mult ipl ici ty of z r  at  

(z, ~)EF~(/). If  z$/-1(~(o~)), define vi(z; ~)=0 .  The number  vf(z; o~) does no t  depend on 

the  choice of U and  is called the intersection number o / / w i t h  o~ at z. Moreover,(~) 

~" =/-~(/~(~)) = {~ I ~r(z; ~) > 0} 

is called the intersection of / with ~. According to X Theorem 5.6 the funct ion v~(z; o~) 

of z is locally constant  on the set 2~ of simple points of F =/-~(i~(~)). I f  B is branch of 

F ,  then v~(z; ~) is constant  on B f~ F as a funct ion of z. 

Another  representat ion of the intersection number  will be obtained in Lemma 2.5 

for later use. 

L ~ . ~  2.5. Let M be a pure m.dimensional complex mani/ol~l. Let V be a complex vector 

space o/dimension n + 1 > 1 with an Hermitian product ( [ ). Let r q N with q = m -  r >~ 0 and 

p=n-r>~O.  Let e: V - { O } ~ P ( V )  and e: V[p+ l ] -{O}-+P(V[p+ l]) be the natural pro~ec. 

tions. Le t / :M->P(V)  be a holomorphic map which is general o/order r / o r  o~E~F(V). Let 

a~/-~(J~(o~)). Then an orthonormal base a=(a~ ..... an) o/ V exists such that ~(ao)=/(a) and 

q(aoA ... A av) =zr For any such a base a o/ V an open neighborhood A o/ a and holomorphic 

/unc t ions /1  . . . .  , /~ on A exist such that 

1. For zEA is/(z) = ~ ( t l o + ~ l / ~ ( z ) a v ) .  

2. I r i s  
n 

A n/-1($(~)) = n+ {zif.(z)=0; zeA}.  

3. The map ~o=(/~+ 1 . . . . .  /n):A-+C v is open and q-fiberin 9. Moreover, i~ z is a simple 

point o] q71(0) = A  N/-1(~(~)), then 

v,(z; a) = v~(z) ~ v~(z; 0). 

Proof. An open neighborhood U of ~Eq6v(V) exists such that for O=:t[I(U) the map 

zA O:  ~7-+ U is q-fibering. 

Pick aoE~-~(/(a)) with Is01 =1.  Then aoGe-~(E(~))__E(~). Hence an  or thonormal  

base (so .. . . .  a~)=a of V exists such tha t  a0 . . . . .  av span E(~), i.e.: Q (aoh . . .Aa r )=~ .  Le t  

a be any  such a base. Define 

Q) Actually, v~l(z, ~) ought to be written as v~l((z, ~)). Obviously, if r ~ 0, then vf(z; ~) is the 
a-multiplicity of ] at z as defined in I w 4, because ftf is biholomorphic. 

(2) Observe that F x {~} =~;1(~) .  
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n 

rof{%+ w.a.lw.eC}. 
pffil 

Then  e (Fo )=  Vo is open in P(V) and  Co=el Vo: v o ~  Vo is biholomorphic.  An open neigh- 

borhood A o of a exists such t h a t  ](Ao)~_ lz o. For  z e A o  is 

n 

e~( l ( z ) )  = ao + 5. l . (z)  a.,  
.uffil 

where 11 . . . . .  In are holomorphic  on A 0. Define ~ : A  o x ~ - + C '  by  

~(z, 3) = (h,,+l(z, 3) . . . . .  hn(z, 3)), 

if zEA o and 3=(31 . . . .  , 3 v ) E ~  r with ] g =  (zgv+i, ..., z+,n)EC r and where 

P 

h,(z ,  3) = l , ( z )  - 7 .  t,~(z) z , , , .  

Obviously,  hu+ 1 . . . .  , h~ and  r / a r e  holomorphic  on A o • C ~. Define 

,~ :A 0 x C~-~C ' x C ~ = C ~+1) '  

b y  set t ing ~/(z, 3) = 07( z, 3), 3)" Using this base a, cons t ruc t  Z o, Z, ~o, c~ and  ~ as in L e m m a  

2.1. Because ~ffl(/(a)) --ao, i t  is /g(a)  = 0  for p = 1 . . . .  , n. Therefore,  ~7(a, 0) = 0  and  ~/(a, 0) =0 .  

Hence  
~(~(a ,  0))  = ~(0) = a e g  n u .  

Open, connected neighborhoods A of a and  Q of 0 exist  such t h a t  A _  A o and  such t h a t  

~o~(A x Q ) _ Z  n v .  

Because /(A)~_/(Ao)~_ Vo, L e m m a  2.2 can be appl ied using the  same a, /m A and  

obtaining ~, ~, B. Then  7~I(B ) _  Z. Define g = g f l  B:  B-+Z.  Hence,  the  following d iagram 

is defined 

A x C P r  ~ , C r X C  pr 

B ~ Z 

where a and  $ are biholomorphic.  

_Now, it shall be proved, that the diagram is commutative. Take  (z, 3)EA • C) ~. Then  

$ = (31 . . . .  ,3p) wi th  3~ = (z~v+x . . . . .  zgn). Define 

C,= ~ z,,o~ for / u = l  . . . . .  p ,  
~ = p + l  
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�9 = p + l  ~=I 

Then n(a(z ,  8)) = ~(z, 8) = ~((ao + c0) A . . .  : (a ,  + c,)). 

Define 8o = ~(z ,  8) = (h~+l(Z, 8) . . . . .  h=(z, 8))" 

Then ~)(z, 8) = (80, 31,.-., By) 6 C (v+~)" and 

CO =v ~p~+I/v(z) O.,u -- ~ /.u(Z) ~'~ Z uvO-u = (/~,(Z) -- X /,u(Z) Z,uv) {]-u = ~v( Z, ~) au. 
= /~=1 u = p + l  u = p + l  /~=1 u ~ p + l  

Hence r 8)) = e((ao + Co) A. . .  A (a,  + c~)) = ~ (a (z ,  8)). 

Therefore, the diagram is commutative. 

Now, Z 1 =~(ff  • Q) is an open neighborhood of a =~(0). The map 

71 =~1A • • 

is holomorphic. Define ~)I:A •215 by setting ~)l(Z, 8)=(~1(z, $), 8) if (z, 8)EA • 

Then /h=@lA • Moreover, BI=a(A • is an open neighborhood of (a, a )=a(a ,  0) with 

B 1_ B. Because the diagram is commutative, 7t(Bs)~Z 1. Define ~1 =~t[B1 as a map into 

Z~. Define a 1 = a [ A  • Q and $1 =~1 ff  • Q. Then the restricted diagram 

A • ~'' ff • 

is commutative and al and ~1 are biholomorphic. Now ~f(B1)=Ttl(B1)=~I(~I(A x Q))-- 

~(~(A xQ))_  U. Hence, BI___~il(Y) and z~I=UzIB 1 is q-fibering. Moreover, the map 71 is 

q-fibering and 
~,:(~; fl) = % (~,/~) = ~,,.1(~, fl) = %(a;1(~,/~)) 

if (z, fl) e B r 

For 36Q, define ~l~:A-~ff by ~l~(z)=~h(z, 3) if zEA. According to I Proposition 5.7 

~1~ is a q-fibering map; moreover, for every ] EQ and every simple point z of ~1(~1~(z)) is 

v~,(z, 8)=v~,~(z). 

Now, take $=0eQ.  Then by(z, 0)=/~(z) for zeA and v = p + l ,  ..., n. Hence 

~lO(Z) = (/ ,+l(z),  ..., h (z) )  = ~ ( z )  if zeA, 

which means 71o =~  :A-~ C r. Therefore, ~o is a q-fibering map. Because dim A - dim C r = 

m -  r = q, the map ~ is open. 
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If  z EA fi f - i ($(~)) ,  then  [(z) E/~(~) which implies 9~([(z)) EVo fi E(ao ... . .  o~). Hence 

/~,(z) =(e~( / (z ) ) [a~)  = o  for # = p + l  . . . . .  n. 

Hence 9~(z)=0. I f  ~o(z)~0, then  [/,(z)=0 f o r #  = p  + 1 . . . . .  n. Hence ~l([(z))E V o fl E(cto ..... o~) 

which implies [(z)E/~(~), or z EA N [-l(j~(~)). Therefore 

A f~/-x(E(~))=9-1(0)=~0~(~ho(a))= N {z]zEA w i t h / ~ ( z ) = 0 } .  
# = p + l  

If  z E A  fi/-t(j~(~)), then  a(z, 0) = (z, ~(z, 0)) where ~(z, 0) =O(ao+Co) A ... h (0~+Cp)) 

with c~ = 0 for # = 1 . . . . .  Io and 

%-- 
~ = p + l  #=1 

Hence ~(z, 0 ) - ~ ( a o A . . . A a r ) = ~ ,  which  implies ~(z,O)=(z, o~). I f  z is a simple point  of 

A N ]-1(~(~)), then  
~(z;  0) = v~(z) = v~,,(z) = ~,(z, 0) = v,,,(al(z, 0)) 

= v~l(a(z, 0)) = v~l(z, a) = ~Az; a), 
q.e.d. 

The question, if this equal i ty  holds for all z e A  n[ - l ($ (~) ) ,  is open. However ,  for  

integrat ion purposes, the Lemma 2.5 is sufficient. 


