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1. Introduction 

Let / be a locally bounded function from a p-dimensional Euclidean space E~ to a 

q-dimensional Euclidean space Fq. :For a given subset A of Ep • 2'q we will consider condi- 

tions on ] of the following type: for each (~, 7)EA, ~ E E~, 7 E Fq, the function x-~ <7,/(x)> 

has a certain regularity property in the direction ~. Here <., �9 } denotes the inner product 

in Fq. The problem is to determine the condition on A in order that  these conditions on 

/ imply a corresponding (unrestricted) regularity property for the funct ion/ .  

The answer to these problems is formulated in terms of the following two algebraic 

conditions on A. Let  R denote the real numbers. 

(A) i / � 9  is a bilinear /orm (E~, Fq)-~It and O(A)=0,  then O = 0 .  

(A) i / � 9  is a bilinear ]orm (Ep, Fq)~R o/rank 1 and O(A) =0, then ~P =0. 

As examples of our results we mention the following. If the regularity property is 

continuity or infinite differentiability, the condition (.~) is necessary and sufficient for 

an assertion of the above-mentioned type to hold. If we consider continuity of the first 

derivatives, the condition (A) plays the same role. If / is locally bounded and <7, ]} is 

constant in the direction ~ for each (~, 7) EA, then it follows that  / is constant if and only 

if (A) holds. The same assumption implies that  / is a polynomial, if and only if (~) holds. 

If (A) holds, A contains at least pq elements. On the other hand, there exist subsets 

A of E~• which satisfy (A) and contain only p + q - 1  elements. If q=l ,  then (A) 

and (.~) are equivalent and mean simply that  the linear huh of {~; (~,7)EA, 7 # 0 }  is 

equal to Ep. An analogous statement holds of course if p = 1. Our results are trivial in 

ease p or q is equal to one. 

The above-mentioned problem becomes particularly interesting if the regularity in 

question is described by the modulus of continuity. Then both of the conditions (A) and 
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(~) come into consideration. Assume that / is a locally bounded function from E v to Fq 

and that <~,/> has modulus of continuity ~<a(e) in the direction ~ for each (~, ~) 6A (see 

section 1 for exact definition). I f  A satisfies (-~), these assumptions imply that  / is con- 

tinuous, and tha t  the modulus of continuity of / is ~< Cd(e), where ~(e)is related to a(e) 

by  formula (1.2), roughly ~(e)~e S 1 t-2a(t)dt. The function ~(e) is always larger than a(e) 

and sometimes of a strictly larger order of magnitude than a(~) when e-+0. I f  A satisfies 

(A), the same assumptions imply that  / has modulus of continuity ~< Ca(e). Theorem 1 

gives complete information on these questions. 

Our main results deal with bounds for differences instead of local regularity properties. 

Assume that  / is a continuous function from E~ to Fq and that  any  difference in the direc- 

tion ~ of the function <r/,/>, i.e. any expression of the form I<r/,/(x +t~) - / (x)> I, is bounded 

by  a constant C for all t6R,  x6Ep and ($, ~])6A. I f  (A) holds we can then estimate an 

arbi t rary difference I/(x)-/(y)l by C1C, where C 1 depends only on A (Theorem 3 and 

corollaries). I f  A satisfies only the weaker condition (A), we can not estimate the differ- 

e n c e s / ( x ) - / ( y ) ,  but  we obtain a similar estimate for the qth order differences, where q 

is the dimension of Fq (Theorem 5 and corollaries). These results are used to prove Theo- 

rem 1. 

1. The directional modulus of continuity 

Let a be a function defined on the non-negative reals which tends to zero at  the 

origin. 

Definition. K(a) denotes the set of functions ~:E v--> Fq such tha t  to every compact 

subset K c E v  there exists a constant C such that  for x and x+y in K 

II(x+y)-l(x)l if lyl 
I f  0 # ~  6 E~, we denote by K(~, a) the set of locally bounded functions I:E~-->Fq such that  

to every Compact subset K c  Ep there exists a constant C such tha t  for x and x+t~6K, 
t real 

if Itl 

Denote by  ~ the set of all real-valued continuous subadditive and increasing func- 

tions defined on the non-negative reals and vanishing at  the origin. I t  is easy to see that  

any  class K(~) is equal to some K(ql) where ~16 Z. In  fact we can take 

~(~) = in/{Era(e,); Z~e, > ~, ~ >/0}, 

which is the largest subadditive and increasing minorant  of a. I f  a, r 6 Y,, the expression 

a ~  will mean that  there is a constant C such that a(e)<~Cv(e) when e < l .  Then a~(v, 
if and only if K(a) c K(~). I f  a ' ( v  and v -< a, we write a ~  and say that  a is equivalent to r. 
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We will often use the following simple inequality. If a >0, t > 0, and [a] denotes the 

integral part  of a, then 
a(at) <~ a(([a] + 1)t) ~< (a + 1)a(t). (1.1) 

If aEZ,  we set 

( L ) &(e)--e l + a ( 1 ) +  t-ua(t) dt) , e > 0 .  (1.2) 
in (e, 1) 

LEMlVIA 1. I / a E Z ,  then ~E]~ and a~,(~. 

Proo/. We will only prove that  lim~_,o d(e) = 0 and that  a*(d. These statements follow 

from the inequalities 

a(e) e t-edt <~ e t-2a(t) dt ~ a(~) e t-2dt + e t 2a(t) dr, if 0 < e < (~ < 1. 

For example, if a(e)=e b, 0 < b < l ,  we get (~(e)=2e+(eb-e) / (1-b)  when e < l ,  hence @~q 

in this case. If a(e)=e we get @(e)=2e+e log (l/e), which shows that  K(a) is sometimes 

a proper subset of K(a). 

The term ea(1) in formula (1.2) is needed to make d(e) increasing, and the term e 

is needed to make @(e) positive in case a(e) is identically zero. The following theorem gives 

a complete solution to our problem in the case when the regularity is described by the 

modulus of continuity. 

Assume moreover that 

THEOREM 1. Let a, ~EZ and A c E  v x Fq. Assume that at least one o/ the /ollowing 

two conditions holds 
a-< ~ and A satisfies (A), (1.3) 

~'< v and A satisfies (.~). (1.4) 

<7,/> EK(~, a)/or each (~, 7) EA. (1.5) 

Then /E K(~). Conversely, i/ (1.5) implies that /EK(~), then at least one o/ the conditions (1.3) 

and (1.4) holds. 

The theorem is trivial if p or q is equal to one. In this ease (1.4) implies (1.3), and 

hence (1.4) drops out. 

A few corollaries of this result are given in Section 4. Let  us here consider only one 

very simple but  nevertheless quite illuminating example. Let  E~ =/vq =R~ and let a(e)=e. 

Then ~(e)~e log (1/8). The theorem implies the following. In order to prove that  a func- 

t ion/ :R2-~R ~ belongs to K(a) we need at least four conditions of the type <~/,/> EK(~, a). 

To prove that  / i s  continuous we need three conditions. Assume that  A consists of the 

following three elements: ~=~=(1 ,  0), ~ = ~ = ( 0 ,  1), ~=~=(1 ,  1). Then it is easy to see 
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that  (4) holds, so that  the modulus of continuity of / must be O(e log (l/e)). Conversely, 

since (A) does not hold, Theorem 1 implies that  no stronger assertion about the modulus 

of continuity of / follows from the assumptions. This fact can be seen directly as follows. 

Take 
/(x) = (x 2 log [xI, - x  1 log IxI), where Ix] = (x~+x~) ~, /(0, 0) = (0, 0). 

Then (~ , / )  EK(~, a) for each (~, ~) EA (in fact for every (~, ~) such that  ~ =~). For reasons 

of symmetry it is enough to verify this when ~=~1=(1, 0). And this follows from the 

fact that  I(d/dxl)x~ log ] x l ] =  Ixlx21/Ixl2<~l when Ix I :~0. But it is clear that  the state- 

ment /EK(d)  can not be strengthened. 

Several of our statements can be generalized if one considers, instead of the conditions 

(A) and (.~), certain hull operations P and /6  defined on subsets of E~ • Fq, which we 

now define. PA is the set of all (~0, ~0) E E~ • Fq such that  every bilinear form (I) : (E~, Fq) ~ It 

which vanishes on A also vanishes on (~o, ~0). PA is the set of all (~o, ~o) E E~ • Fq such 

that  every bilinear form (I) of rank one which vanishes on A also vanishes on (~o, ~/o). 

Then P A = E p •  if and only if (A) holds, and P A = E r •  q if and only if (_~) holds. 

The following statement is proved in the same way as Theorem 1. The conditions (1.6) 

and (1.7) below are equivalent: 

/ is continuous and (~ , /~  EK(~, a ) /or  each (~, ~/)EA ] 

implies (rio,/~ E K(~ ~ ~) J 
a ~ ~ and (~~ ~~ E P A  or]  
;y "~, "C and (~o, ~]o) 6. P A .  f 

(1.6) 

(1.7) 

2. Consequences of the stronger algebraic condition (A) 

The most important consequences of (A)are  deduced from the theorem on decom- 

position of vector valued measures (Theorem 3). In order to illustrate the condition (A) 

we give first a few simple consequences of (A). 

The condition (A) is equivalent to the following: the set of tensor products ~| 

where (~,~)EA, spans the linear space E~| Or equivalently, using a pair of bases, 

the set of p • q-matrices (~ ~),  where (~, ~) EA, spans the linear space of all p • q-matrices. 

To see that  these conditions are equivalent to (A) we need of course only represent bilinear 

forms by (I)(~, ~) = Z a t j ~ j .  

Definition. Let 0 # ~ E E r  and k>~l. We denote by Ck(~) the class of continuous func- 

tions defined in Ev such that  the derivatives D~/(x)= [(d/dt)J/(x+t~)]t=o exist and are 



MAPPINGS BETWEEN EUCLIDEAN SPACES 5 

continuous when ~" ~<k. C ~ is the class of k times continuously differentiable functions. 
r~r Ck C~176 denotes N ~=1 C~(~) and C ~~ denotes i i  k=0 �9 

Using a standard approximation technique we can prove the following theorem. 

THEOREM 2. Assume that A = E ~  • Fq satisfies (A) and that/:E~-*Fq satisfies 

( 7 , / } e C l ( ~ )  / o r  each ($, 7)CA. (2.1) 

Then /E C 1. Moreover, there exists a constant B which depends only on A, such that 

IlD/(x)ll <. B sup IDa<7,/(x)} I /or every xeE~. 
(& ~/) cA 

~ere IID/(x)ll denotes the norm o/ the di//erential o / [  at x considered as an operator [rom 

Ep to F e. Conversely, i/ (2.1) implies that /EC 1, then (A) holds. 

COROLLARY. Assume that A satisfies (A), that / is continuous and that (7 , / }  is con. 

stunt on all lines parallel with ~ /or each (~, ~1) EA. Then / is constant. 

In section 3 we will be able to prove the same assertion without assuming that  [ is 

continuous. 

Proo/o/  Theorem 2. We have to prove that  an arbitrary first partial derivative of / 

exists and is continuous. Choose bases in Ep and Fe such that  this derivative is D 1/x. (We 

use the notation D 1 =~/~Xl. ) Since A satisfies (A), there exist b~ and (~,  7 ~) EA such that  

Z [ l w h e n  (i, i) -- (1,1), 
L b'~7~ = / (2.2) 

,=1 0 when (i, ?') @ (1, 1). 

Take ~o of class C 1 with compact support such that  f~0 dx = 1 and for any e > 0 set 

/~ (x) = f /(x + ey) ~o(y) dy. 

Then for each ($, 7) EA, D~(7, ]~} converges uniformly on compact sets to D~(7 , / )  when 

e-~0. Denoting the first component of/~ by (/~)1 we have by (2.2) 

D1(/,)1 = ~ b,D~v (7",/e). (2.3) 
v=l 

Thus DI(/~)I is continuous and converges uniformly on compact sets to some continuous 

function g when e-~0. Also, since/1 is continuous, (/~)1 converges uniformly on compact 

sets t o / i .  Using a suitable result from elementary calculus we conclude tha t /1  is differ- 

entiable with respect to x 1 and that  DI/1 =g. 
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We also obtain  formula  (2.3) with /~=f. Since the constants  b~ depend only on A, 

this proves  the es t imate  of [[ D/(x)[[. 
We now prove  the necessity of the condition (A). I f  (A) does not  hold there exists 

a non-tr ivial  bil inear fo rm (I) such t ha t  (I)(~, ~) = 0  for each (~, ~) qA. V~re can represent  (I) 

b y  (I)(~, ~ ) =  <B~, ~>, where B is a linear opera tor  f rom Ep to Fq. Take  a funct ion 0 : R - + R  

of class C ~ such t h a t  0~<0~<1, 0 ( t ) = l  when t< �88  and  0( t )=0  when t>�89 take  ~ and  a 

such t h a t  0< (~<1 ,  0 < a < l  and  set  

/~.~(x)=O(]x/a]n)Bx, for xeE~,. 

Then/~.  a E C'.  I f  <B~, ~> = 0 we have  

D,<~, /~.~(x)> = [d t O(Ix +t~l~a-~ {Bx, ~>]t=o 

=< B~, ~>. <x, #>.a-~lx[ a-~O'( [x/a[n) 

<I[BII I~] I~ldl~l ~a-~ max Io'l. 

Hence  I D~<~,/~. a(x)> [ ~< C(~a -~, 

where C is independent  of x, ~ and a. On the other  hand,  she differential of/~. ~ a t  x = 0 is 

equal  to the  opera tor  B. Final ly  we note  t ha t  [/o.~(x)[ ~ < I[B[[ .a  for every  x. Now choose 

a~ and  ~ ,  v = 1, 2 . . . .  such t h a t  Ea~ < oo and  Y~(~,,[a,, < ~ ,  and  set  

o~  

/(x) = ~,/~,,  oJx). 

Then  <~,/>ECI(~) for each (~, ~) such t ha t  <B~, ~]> =0 ,  bu t  / is not  differentiable a t  the 

origin.(1) This completes  the proof  of Theorem 2. 

I f  we replace CI(~) b y  Ck(~), k > 1, the assert ion of Theorem 2 becomes false, even 

in the tr ivial  case q = 1 and  p = 2. To see this it is sufficient to observe t ha t  there  exists 

a f u n c t i o n / : I t ~ l ~  such t h a t  D~/and D ~ / e x i s t  and  are continuous and  DID J does not  

exist  everywhere.  (Such a funct ion i s / (x )  = x 1 x 2 log [ log lx  H, 0 < Ix [<  1 [2 , / (0 )  = 0.) 

Le t  M(Ep) be the  space of all complex-valued measures  in E ,  with compac t  support .  

The  elements  of M(E~) can be considered as l inear functionals  f rom the space C~ C) 
of complex-valued  continuous functions on Ep to the complex numbers  C. Denote  b y  

M~(E~) the subset  of M(En) consisting of those IaEM(E~) which s a t i s f y / ~ ( ~ ) = 0  if ~ is 

cons tan t  on all lines parallel  with ~, t ha t  is if cp(x+t~) is independent  of t for every  x. 

M~(E~,) is clearly a linear subspace of M(E~). The tota l  mass  of ~t is denoted H/~II. We 

(x) A simpler example is ](x) = (Bx) log [log I x l I, 0 < I x [ < 1/2, ](0) = 0. 
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have I1~11 =sup { ln@)l ;sup I~1 ~<1}. The support of # is denoted supp//.  Finally we 

form the tensor product /V~| of the spaces F~ and M(E~) considered as vector 

spaces over the field of real numbers. Let C~ Fq) denote the real linear space of con- 

tinuous functions from E~ to Fq. To any element ~|174 is associated in a 

canonical way a linear functional from C~ Fq) to C as follows: ~ |  

We can now state the main result of this section. 

THEOREM 3. Assume that A c E p  x IPq and that (~o, ~0)EpA" Then there exists a con- 

stant C, which depends only on A, with the/ollowing properties. For each/~o EM~o(Ep) such 

that supp/~oc Br = {x; Ix I ~<r}, there exist (~v, ~ ) e A  and /~,eM~(E~), ~=1 ..... n, such 

that supp ~ c Bcr/or each ~, Y~=I II/~ ]] ~< Cil/~0 ]l I u~ and 

n 

~~ o = ~  z/"@/~.,,.. (2.4) 

Conversely, i/ /or each/~0EM~o(Ep) there exist (~%~)EA and/~vEM~,.(E~) such that (2.4) 

holds, then (~0, ~]0) EPA. 

By introducing some additional notation we can give Theorem 3 a condensed for- 

mulation. To any subset F of Fa| p we associate a subset M r  of Fq| as follows: 

Let  the letter L denote linear hull. Then the main part  of Theorem 3 reads: ~ s ( r ) C L ( ~ r ) .  

A measure /~eM(E,)  is called real, if/~(~) is real for every real-valued function ~0. 

I t  is obvious that  we can take all the/~, in (2.4) real, if flo is real. 

In the applications of Theorem 3 the measure ~u 0 will be a difference measure/~o: 

~0-+~(x + t~ ~ -~0(x). I t  is essential to note that  even if/~o is a discrete measure, there may 

not exist discrete measures/~, such that  (2.4) holds. This fact can be proved as follows. 

Let  /:R2-~R ~, set ~ = ( 1 ,  0), ~2=(0, 1), ~a=(1, 1) and set A={(~% ~ , ) ; u = l ,  2, 3}. Then 

PA={(O, tO); 0OR ~, t ER}. Define #o by /~0(~)=~(~~ Assume that  there exist 

discrete measures/~ ~MI~(E~) such that  
3 

~~174 = Z ~ |  (2.5) 

Let h be an arbitrary (possibly non-measurable) solution of the functional equation 

h(s+t)=h(s)+h(t) and set ]=(/~,]~)=(h(x2) , -h(Xl) ). If /~ is discrete, any function is 

/~-measurable. The functions (~l,/)=h(x~), (~2, / )=-h(x~)  and (~a,/)=h(xz)-h(x~)= 

h(x 2 -Xl) are constant on lines parallel with ~,  ~ and ~a respectively. Thus the right-hand 

side of (2.5) is equal to zero. Using the fact that  h(0)=0, we see that  the left-hand side 

of (2.5) is equal to 
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(~~ | F,o) (/) = m ( ~  h(x2) - ~o h(xl)) = ~ h(~)  - ~o h(~) .  

However ,  if the  last expression were equal to zero for every  ($0, ~0), the funct ion h would 

necessarily be linear. Bu t  this gives a contradiction,  since we know tha t  the equat ion 

h(s +t)=h(s)+h(t) has non-measurable solutions. Thus for some ~o there does not  exist 

discrete measures/~v satisfying (2.5). 

The applications of Theorem 3 depend on the following simple lemma. 

L ~ A  2. Assume that q~: E r ~ R  is continuous, that p6M~(E~) and that supp p c  B r =  

{x; [xl < r}. Then 

]~u(~) ] ~< ]]/x]] max  {]q~(x)--q~(x+t~)[; xeBr, x + t ~ e B ,  t6R}.  

Proo/. Let  x I . . . . .  xp be the components  of x with respect to an orthogonal  basis such 

tha t  ~ = (1, 0, ..., 0). Define ~o: E v e r  by  

~o(Xl . . . . .  x~) = ~v(0, x~ . . . .  , x~). Since/~ eMg(Ep), we have/~(~o) = 0. 

Thus ]/x(~)] = /x(~-~o)[  < ]I/x[] max  {[~(x) -~0(x) [ ;  xeB,}.  

But  ~o(x) can of course be wri t ten ~(x + t~) for each x. This proves the s ta tement .  

COROLLAI~Y 1. Assgme that (~o, ~7o)epA, let ] be a continuous /gnction defined in 

B r =  {x; xeE~, Ix] ~<r} with values in Fa, and assume that 

[(~1,/(x+t~)-/(x))[ < C x, i / (~ ,  y ) e A ,  xfiB., x + t ~ e B ,  teR. 

Then there exist constants ~ > 0 and C 2 which depend only on A, such that 

J0? ~176  <~ C~C21~70], i] xqB~,  x +t~~ tea .  

Proo]. Fix xEB~ and x+t~~ and define Po by  po(q~)=q~(x+t~~ Then 

supplxo~B~ and [[tXol[=2. B y  Theorem 3 we can find C depending only on A and 

($r,~7~)eA and ~t~eM~(E,) such tha t  supplx~CBc~ . Zr]]/x~[l<2C]~~ I and (2.4) holds. 

Using Lemma 2 we obtain, if (~ < C -1 

I <~o,/(x + t~ ~ - /(x)> I 

= I~o(<~ ~ t))1 = I Z ,~ ,  (<,~, l>)l 
<Z~II,~,II  sup { l< ,~ , l (x+t~) - l (x )> l ;  (~,~l)eA, xeB,,x+t~eB,} 
<2clr 

I f  we use Theorem 5 we can now prove par t  of Theorem 1. 
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COROLLARY 2. Let aEE,  l e t / : E ~ F q  and let A be a subset o /E~ • Fq satis/ying (A). 

Assume that (~7, /} EK(t,  a)/or each (t, 7) EA. Then ]EK(a). 

Proo/. Since (A) implies (4) Corollary 3 of Theorem 5 shows that  / is continuous. 

Corollary 1 then shows that  on compact sets 

if lyl 

where (~ is the constant in Corollary 1. Since a is subadditive, this implies t h a t / E K ( a ) .  

The remainder of this section is devoted to a proof of Theorem 3. 

Denote by/2 the Fourier transform of/~: 

/2(z)=t~(e-~<x'~>), zEE~. 

If /~eM~(E,) ,  we clearly have/2(z)=0 for each z such that  (z, t} =0. Of course the con- 

verse also holds, i.e. if/2(z)=O on the hyperplane (z, t } = 0 ,  then t~eM~(E~). To see this 

we need only observe that  a continuous function r E ~ R  such that  cp(x+t~) is independ- 

ent of t for every x can be approximated uniformly on compact sets by linear combinations 

of exponential functions e ~ (~' x> such that  (z, t} = 0. The Fourier transform of an arbitrary 

element of Fq | M(E~) is defined by  7 |  t =7  | and linear extension to all of ~'q | M(E~). 

The result is an element of Fq|  where A denotes the set of complex-valued real analytic 

functions on E~. The set of Fourier transforms of elements in M(E~) is denoted M(E~). 

We can now prove the necessity of the condition (t ~ 7 ~ EPA in Theorem 3 as follows. 

Take a measure/t  o E M~o(E~) such that/2(z) = ( t  ~ z} + o(z) (e.g. tt(~) = i(~(t ~ -~(0))).  Assume 

that  the equality (2.4) holds, take the Fourier transform of both members, and finally 

single out the linear part  of each term. Since/2~(z) =0  when (z, t ~} =0,  the linear part  

of/2v must also vanish in the plane (z, t ~} =0, i.e. the linear part  can be written bv(z , t~} 

with some complex constant b~. Thus we obtain the relation 

7~174 t ~ - 7~| t~}, zEE~. (2.6) 
v=l  

I t  is obvious t ha t  the existence of such constants b~ is equivalent to (t  ~ 7 ~ EPA. 

A natural a t tempt  to prove Theorem 3 would be to take b~ such that  (2.6) holds 

and set 
u,(z) = b,(z, t"}(/2o(z)l(z, t~ ). (2.7) 

This expression defines an analytic function, since/z0EM~~ Moreover, 

~ 7  ~|  ~ o and t 

u~(z) = O, when (z, ~} = O. 

(2.s) 
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However ;  the t rouble  is t h a t  up need not  be the Fourier  t rans form of a measure  (it is 

a lways the Fourier  t rans form of a distr ibution of order one). The idea of our proof  is to 

modi fy  the funct ions ~t~ so t ha t  they  become Fourier  t ransforms of measures  with compac t  

suppor t  wi thout  losing the propert ies  (2.8). 

Assume t h a t  r/o | ~e0 = ~ bjr~J| ~ .  (2.9) 
J=l 

The assertion of Theorem 3 is t ha t  there exist gr 21l(Ev) such t ha t  

t ~~174 = j~ lq J |  s and  (2.10) 

g~(z) = O, when <z, ~J> = O, ?'= 1, . . . ,  n. 

Le t  the dimension of the linear hull of ~/1, ..,, r/n be r. Then we can determine r of the  gj, 

say  g,t-r+l . . . .  , gn, f rom (2.10) in te rms  of gl, ..., gn-r- Set n - r = m .  Then  the first  equat ion 

in (2.10) becomes 

gs =~Sa~jgj+aso~o,  i = m + l , . . . , n .  
t=1 

Thus  (2.10) is equivalent  to 

m ^ } 
~ a i ~ g j = - a s o / ~ o ,  when ( z , ~ > = O , i = m + l , . . . , n ,  

gs(z) = O, when (z, ~s> = O, i = 1, . . . ,  m. 

(2.11) 

(2.12) 

I n  construct ing solutions gj to (2.12) we of course have  to use an assumpt ion  on asj cor- 

responding to (2.9). This assumpt ion  can be expressed in a convenient  form as follows: 

there exist analyt ic  funct ions uj such t ha t  (2.12) holds with gr replaced b y  ~tj. I n  fact ,  since 

the functions uj defined b y  (2.7) sat isfy (2.8), these functions mus t  also sat isfy (2.12). 

Thus  our p rob lem is to f ind gj E M(Ev) such t h a t  

m m j~=iasygt =t~=laSiut' when <z, ~'> = 0 ,  i =  1 . . . . .  n, (2.13) 

where asj=(~J when i and  ?'~<m, and  a~j are the  same as in (2.12) when m < i < n .  

For  the existence of gjE ~r(E~) sat isfying (2.13) it is obviously necessary t h a t  the 

restr ict ion of U s = ~j~l  asj~tj to the plane (z, ~> = 0  be the Fourier  t ransform of a measure.  

The  functions Us have  in fact  a s t ronger  p rope r ty  which we will now formulate .  Take  

a non-negat ive  funct ion ~o of class C 1 on the real line, vanishing when I t ] > 1 and  satisfying 

S~p dt --- 1, and  set  y~r(t) = r-lv2(t/r), if r > 0. Le t  w be the Fourier  t ransform of Vdr, and  set  ws(z) = 

w((z ,  ~s>). Then the  funct ion (z ,  ~S>ws(z) E ~I(E~) (it is ac tual ly  the Fourier  t ransform of 
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the measure which takes ~ into (1/i) S ~(t~)~(t)dt). We assert that  w~ U~ EM(E~), i = 1, ..., n. 

When i ~m, we have U~ =u~ and hence 

w~ U~ = w~u~ = b~((z, ~}w~)(rio(Z)/@, ~o}), i ~< m, (2.14) 

which belongs to ~I(E~), since each of the expressions within brackets belongs to M(E~). 

When i>m,  we have ~=la~juj=-a~ofio+U~, since ut satisfy (2.8) and therefore must 

satisfy (2.11). Hence 

w~ U~ = -atofioW~+ W~U~e ~I(Ep), m < i <~n. (2.15) 

If h=f~,#eM(Er) ,  we define Ilhll as II#ll. If g, he2g(Ev), we have of course Hgh][ <~ 

][gl]-]]h]]. We shall need an estimate of I]w, U~H. I t  is immediately seen that  Hw,]] = 1 and 

that  II<z, ~,>w, ll = (l/r) ~ lv2'(t) ldt =Co/r. I t  is an elementary fact that  if supp/~oc Br, then 

II~o(~:)/<z, ~~ II ~< 2r 1 ~~ 
Thus, if supp #o(:::: B,, then 

IIw,~,ll ~ Ib,I i1<~, ~'>w,II I1,~oI<~, ~~ < I b,I 2CoI~:~ �9 

Using (2.14) and (2.15) we obtain 

IIw, U,II~<(Ib,12Col~~ i < n .  

The constants b~ depend on ~o and 7 ~ as well as on A. However, there exists a constant C 

which depends only on A, such that  for each (~~176 there exist bf and (~ ,~ i )EA 

such that  (2.9) holds and Ib~l ~<C]~~ 17~ Perhaps the simplest way to see this is tore-  

place A by a finite subset A~ such that  P A  =PAl ,  which is always possible. Similarly we 

may take C such that  l a,0 ] ~< C]~~ Thus we obtain 

IIw, V,lt < Cl~~ JJ~oll, (2.16) 

with a constant C which depends only on A. 

We shall need the following lemma. 

Lv.M~x 3. Let a~ be real numbers, l <~i <~n, l < ~ m .  Then there exist polynomials 

P~a=P~(x~ ..... x~), 1 <.] <~m, 1 <~k<~n, o/ degree at most n, such that 

P~(x)=O,  i/ x~=O, l ~ < . m ,  l <~]c<.n (2.17) 

~ a ~ P ~ ( x ) a ~ = a ~ ,  if x ~ = l , l ~ i ~ n , l < ~ l ~ m .  (2.18) 
t=1 k - 1  

Using this lemma it is simple to complete the proof of Theorem 3. Define functions 

p~e_7~l(E~) by 
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pttt(Z) =Ptk(Wl(Z) ..... Wn(Z)) , zEE~ 
and define gj by  

gt(z) = ~. pj~(z) U~(z)= ~ ~ pt~(z)a k,u~(z), z E E . 
k = l  k = l  l = 1  

Then Ptk Uk 6J~t(EJ for every 1" and k, since Plk is divisible by x k and w~ UkE~I(E~.). More- 

over, 

~a , jg s ( z )=~a / t i o t~ ( z )akzuz ( z )=  ~a/,u/(z), 
t ~ 1  t k l / = 1  

when <z, ~/>=0 by virtue of (2.18), since w~(z)=l when <z, ~>=0 .  This proves (2.13) 

which has been shown to imply (2.4). 

I t  remains to prove the estimates of [[fts[ [ and supp ~u 1. Writing qj~=ptk/wk, we have 

pt~ rT~ =q,~w~ tr~ and llPI~ U~II -< Ilqi~ll [[w~ U~I[ = IlPt~It I1~ v~[I, si,ce I[w~tl = 1. An estimate 
of ]]we UkH has been given in (2.16). The norm IlPtkll depends formally only on the numbers 

a~t , i.e. on the vectors ~1, .-., ~=, but  these may depend on ~0 and ~0. However, since we 

may assume that  A is finite, it is clear that  IlPtkll can be estimated by a constant which 

depends only on A (actually only on {r/; (~, ~)eA}). Using (2.16) and the definition of gt 

we then get 
m 

- =  -1=, [Ig, lI < / ~ o b ~  Doll < c , b ~  Doll, 

where C 1 depends only on A. To prove the estimate of snpp tzj we use the well-known 

fact that  s u p p g l c B  ~ and supp q ~ B ~  implies supp (~-)e~z)~B~+~. We use the symbol 

:~-1 to denote the inverse Fourier transform. I t  suffices to find C depending only on A 

such that  supp :~-lpm~ Bc~. I t  is seen from the definition of w / th a t  supp :~-lw/~ Brl~q. 

Since the degree of each of the polynomials Ptk is at  most n, we must then have 

supp ~- lp ikc  B~ c, 

where c = sup {]~1; (~, ~/)EA}, and A is again assumed to be finite. The proof of Theorem 3 

is complete. 

Proo/o/Lemma 3. Let T = (t/~) be a non-singular m • m matrix with inverse S = (s/t). 

If  the matrix P =  (Ptk) of polynomials and the matrix A = (a~l) of real numbers satisfy 

(2.17) and (2.18), it is easily seen that  the matrices 

P' = S P  = (~ s/tPlk ) and A' = A T  = (~ a,,tlk ) 
1 = 1  j~ l  

satisfy the same relations. We may choose T so that the last row in the matrix .4' becomes 

(0 ..... O, I). We assume that such a transformation has already been made, so that 

(an~ ..... a=m) = (0 ..... 0, 1). 
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We will prove the lemma by  induction on the number n. When n = 1 the s tatement  

is trivial. We assume tha t  the s tatement  is proved for n -  1. Then there exist polynomials 

Qjk=Qjk(x 1 . . . .  , x~_l), ?'~<m,/c~<n-1, of degree at  most n - l ,  such that  Qjk=0 if xk=0,  and 

m n - 1  

~ a~jQjkak~=a~z, if x~=l,i<~n--l,l<~m. 
j = l  k = l  

Setting Qm=0 when j = l  . . . .  , m we note that  the Qjk satisfy (2.17) and (2.18) for i<~n-1. 

By the induction hypothesis we can also find polynomials Rjk=Rjk(x 1 . . . . .  x~_l), 

~ < m - 1 ,  k~ < n-1 ,  of degree at  most n - l ,  such that  Rjk=0 when xk=O, and 

m - 1  n - 1  

~ a,jRjka~=a~, if x ,=l , i<~n-- l , l<.m--1 .  (2.19) 
j = l  k = l  

Take R,nl . . . . .  Rmn_ 1 = O, Rmn = 1, and 

n--1  

R ] ~ = -  ~Rjkakm, when j~<m--1 .  
k = l  

Then, since a.,~ = l, we have 

n - 1  

Rma~:,n =~  Rj~a~z+Rtn'l = 0 ,  if ~ < m - 1 .  (2.20) 
k = l  k = l  

We claim that  (2.18) holds with Pjk=Rj~. (Note tha t  Rjk does not satisfy (2.17), since 

Rmn=l. ) First let l<m. Then Rjkakl=O if k=-n or ]=m, and hence the assertion follows 

from (2.19) in this case. When 1 =m we use (2.20) and obtain 

~ a~jRjkaa,~=~lO+a~,~ Rmkakm=a~m 
J=l k=l j=i k=l 

for every x and i ~< n. 

Define the polynomials Pjk =Pjk(xl ..... Xn) of degree at  most n by  

Pjk = (1 -xn)Qjk + x,~Rm, ~ <~m, b <n. 

Then it is easily seen tha t  Pjk satisfy (2.17) and (2.18). This completes the proof of the 

lemma. 

3. Consequences of the weaker algebraic condition (A)  

We begin by  proving a s tatement  concerning infinite differentiability. Using the 

Fourier transform we reduce this s tatement  to a very simple s tatement  concerning the 

rate of decrease of a function E~,~Fq at  infinity. The proof of the corresponding result 

for continuity (Corollary 3 of Theorem 5) is more difficult. This result, including the 
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sharp estimate for the modulus of continuity, will be deduced from a theorem on decom- 

position of measures analogous to Theorem 3. 

THEOREM 4. Assume that A ~ E  v • Fq satisfies (z{) and that/:Ep-+Fq satisfies 

<7,/> EC~176 each (2, 7) EA. (3.1) 

Then ]EG ~~ Conversely, i /(3.1) implies tha t /EC ~176 then (z{) holds. 

L~MMA 4. Assume that A is a finite subset o/ Ev • Fq satis/ying (~) and that s is a 

natural number. Then there exists a constant C which is independent o/ u oeh v such that 

Ivl lul <c 1<7,v>l 1<2,u>l (3.2) 
($,~)~A 

Proo[. The function on the right-hand side is positively homogeneous with respect 

to v of degree 1 and with respect to u of degree s, and so is the left-hand side. Thus it is 

sufficient to prove (3.2) when Iv[ = [u[ =1.  But if l u l  = Ivl =1 the bilinear form 0(2, 7 )=  

<u, 2><v, 7> can not vanish on all of A in view of the condition (A). Hence the continuous 

function on the right-hand side of (3.2) must have a positive lower bound on the compact 

set I u I = I v I = 1. This completes the proof. 

Proo/ o/ Theorem 4. Take yJ:Fq-+R, ~EC ~176 such that  ~v=l on some open set and 

~v=0 outside some compact set. I t  will be enough to prove that  g=~v/EC ~ I t  is clear 

that  <7, g> EC~176 for each (2, 7) EA. Since g has compact support W e can form the Fourier 

transform ~ of g. We may assume that  A is finite. By partial integration we obtain in a 

well-known way for any natural number s a constant C~ such that  

1<7, I [<2, z> I s < 

for every (2, 7)EA and z E E  v. @plying  Lemma 4 we then obtain 

10(z)l I l <CC , 2, . . . .  

I t  is well known that  this implies that  g E C ~ To prove the converse statement we assume 

that  there exist u4:0 and v # 0  such that  <u, 2><v, 7 >=0  for each (2,7)EA. Then, if h 

is an arbitrary continuous function tt-~ R, the func t ion / :E  v--> Fq defined by/(x)  = vh(<u, x>) 

satisfies D~<7,/>=0 for every (2, 7)EA, and hence (7, /> EC~176 for every (2, 7)EA. But 

of course / does not in general belong to C ~176 

We now turn to the decomposition theorem for measures, which is analogous to 

Theorem 3 but  valid under the weaker assumption (2 ~ 7 ~ ~OA. The symbol P is defined 

at  the end of section 1. 
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We will denote the convolution of # and vEM(Ev) b y / z ~ v .  The convolution can be 

defined e.g. by  
/x ~ev(~) = ix~(v=(q~(x +y))), 

where the subscripts have an obvious meaning. If k is a natural number we write/z *~ 

to denote the convolution #~e/z~-...~-~u (k factors). We will frequently use the fact that  

/t~-v = /~ .  This shows that  M~(Ev) is an ideal in the ring M(Ev). 

TI~EOREM 5. Assume that A c E ~  • F~ and that ($% ~~ Then there exists a con- 

stant C, which depends only on A, with the/ollowing properties. For each izo~Mg~ such 

that suppl~o=B,={x; Ix] <r} there exists (~" ,~ )EA and /~eM~,(E~), v = l  ..... n, such 

that supp/~vc Be,, 5~=1 [[/~v][ ~< C][/Zo[] q ] ~0[, and 

= i (3.3) 

I//~o is discrete, we can take all the measures i~ discrete. Conversely, i / /or  each I~oEM~,(Ev) 

there exist (~,  ~l ~) e A  and #,eM~qE~) such that (3.3) holds, then (~o, vo)epA" 
For the proof we need the following lemma, which is precisely the assertion of Theo- 

rem 5 in the case where the dimension q is equal to 1. Denote by L{$1 ..... Sn} the linear 

hull of {$1 ..... ~n}. 

LEMMA 5. Assume that ~~ 1, .... ~} ,  ~EE~,  and that ~toEM~o(E~), and supp/xo= 

Br = {X; IX] <~r}. Then there exist a constant C, which depends only on ~1 . . . . .  ~n, and measures 

]a~ E M~(E,)  such that 

n 

[[~tvl [ ~<21~t01 and supp f l ,~  BC,/or each v, and/x o = ~l~t~. (3.4) 

I/I~o is discrete, we may choose i~, discrete. 

If  r=Ev, set M r =  (J {M~(Ev); ~EF}. Denoting again the linear hull by  L we can 

formulate one part  of Lemma 5 as follows: M~(r)=L(Mr). 

Proo/o/Lemma 5. Note that  Theorem 3 implies all the assertions of the lemma except 

the fact  that/x~ can be taken discrete if/x 0 is discrete. We will nevertheless give a direct 

proof here of all the assertions of the lemma. We may assume that  ~I ..... ~n are linearly 

independent. If n < p  we take ~ n + i  . . . .  , ~v such that  ~1, ..., ~v form a basis for E~. Let  pro, 

m = l  ... .  ,p,  be the linear operator E~-+Ep which takes ~=1 c,~ v into ~=m c, ~", and let 

P~+I be the 0-operator. Define/x~ by 

I~v(q:) =l~o(qJoPr-q~oP.+l), v = l  ..... n. 
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H q~(x +t~ ~) is independent of t for every x, the function ~oP~ - ~  oP~+~ is identically zero. 

This shows that  #~ E M~(E~). Similarly the function ~ o P~+~ is constant in the direction 

~o, since ~o E L ( ~  .. . .  , ~}.  This shows that/~0(~ oP~+~)=0. Hence 

~o(~) =,~0(~) -,~o(~ o P~+~) = ~ / ~ ( ~ ) .  
~ = 1  

I t  is obvious that/~v satisfies the estimates (3.4) and that  ~, is discrete if/~0 is discrete. 

Proo] o] Theorem 5. Let B be a subspace of Fq such that  7~ B. Denote by A the 

linear hull of (~; (~, 7)cA, 7r We claim that  

peA,  if (p, 7 0) ePA. (3.5) 

In fact, if ~~ one could choose uEE~ and vEFq such that  ~ annlbilates A and v anni- 

hilates B, but  (u, ~~ 7~ ~=0. By the definition of A one would then have (u, ~ ( v ,  7) --0 

for every (~, 7) EA. This, however, contradicts the assumption ($o, 70) E_PA. 

Let  N=N(7~ A) be the set of all #EM(E~) such that  

n 

70| = ~17~| 

for some/~eM~(E~) ,  and (~,  7~)eA. Then N is a linear subset of M(E~) (N is in fact 

an ideal in the ring M(E~)). Our assertion is t ha t /~a  eN, if/~o EM~o(E~). Let N O =No(~ ~ A) 

be the linear hull of the set of all measures 0 of the form 

e =e~ ~-'" ~-~k, (3.6) 

where p~EM~(E~), (~, 7v)eA, ~,=1 ..... k, and 7~ ~ . . . .  ,7~}. Since each M((Er) is an 

ideal, N o is an ideal. We assert that  No~N. Since N is a linear set, it is enough to verify 

tha t  each 9 of the form (3.6) belongs to N. But this is obvious, since 7~ b~7~ for 

some b~, and hence 

where ~ belongs to each M~(E~), since M~(Ep) is an ideal. 

We now assert that  M~o(E~)*qc N o. This will prove (3.3), since of course/~a E M~o(E~) *~. 

To shorten the formulas we write M~ instead of M~(E~). We will in fact prove the following 

stronger statement. If  (~v, 7v) eA for ~ = 1 ..... k and 71 . . . .  ,7  k are linearly independent, then 

M~o q-k * M ~ , *  ... * M~k c N o. (3.7) 

We will prove (3.7) by induction on k for decreasing k. If  k--q, then (3.7) is obvious. 

Next, let k<q.  If 7~ ..... 7~), then (3.7) is again obvious, since in this case we have 

e v e n  
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M~,~e... ~e M ~ c  N 6. 

I f  7 ~ ~L(71, ..., 7~}, we apply (3.5) with B =L(7~ ..... ~} .  Thus we find (0 ~, ~)  EA, i = L ..., s, 

such tha t  $ ~  B for each ] and ~~ 6L{O 1 . . . . .  0s}. Then for each ?" the k + 1 vectors 7 ~ ... . .  7 k, 

~ are linearly independent, and hence the induction assumption gives: 

M~oq-k-I-~M~,-)C...~M,~MdcNo, ]=1, ..., s. (3.8) 

However, since ~~ 1 . . . . .  0s), we have M~ocMo,+... +Mo, by Lemma 5, which shows 

that  (3.8) implies (3.7). This completes the proof that  M~ q c No C N. 

The proof shows that/z~ q is the snm of at most pq terms of the type (3.6), where each 

0i arises from a decomposition of/~0 of the type considered in Lemma 5. Thus each 0~ 

can be chosen so that  H0,1l ~<211/~o]l a nd supp 0~c Bcr, if supp/aocBr, where C depends 

only on {~; (~, U) CA}. Then 

supp 0 = supp 01" "" *Ok c Bkc~ c Bqc. 

and 11011 < 2ki[~ollk <2q( 1 + I1~011~ �9 

Our proof shows that  7~174 q is t h e  sum of a t  most pq sums of the form ~q=l b~7v| 

where 0 is a measure of the form (3.6). To estimate II vll it therefore only remains to 

estimate b~. However, it is obvious tha t  we can take b~ so tha t  I b l< C lr  where C 

depends only on the set {7; (~, 7) 6A}. Thus we obtain the estimate 

II~ll < c o  + II~011~162 
i 

with a new constant C. For homogeneity reasons we must  in fact have II~,ll < q l ~ o l l ~ 1 6 2  �9 

Finally, if/~o is discrete, we can tak6 all the measures 0~ discrete by  Lemma 5, and this 

of course makes all the measures/~, discrete as well. 

We now prove the necessity of the condition (~o, 70)6pA. I f  (~o, 70)CPA, we can 

choose u and v such tha t  <u, ~)<v, 7> = 0  for every (~, ~/) 6A, and <u, ~~ ~o> 4:0. Choose 

bases so that  u=(1 ,  0 ... . .  0), v=(1 ,  0 ..... 0). Then ~171=0 for every (~, 7) 6A andS~176 ~0.  

I f  the formula (3.3) holds, then in particular 

n ~0 ~ = , ~  ~. 

Choose for/~o the measure #o(~V) =~v(~ ~ -~(0) ,  and take ~ depending only on xl, i.e. iv(x) = 

h(xl). Then 7[#~(~)=0 for each v, since either 7~=0 or /~(~0)=0. But  if h(xl)=x~, for 

instance, we have 
7o~(~)  =7oq! (~o)~ ~o, 

which gives a contradiction. The proof of Theorem 5 is complete. 

2 - - 6 7 2 9 0 8  Acta mathemat'ica. 119. I m p r i m 6  le 15 n o v e m b r e  1967. 
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Set Ar  and define A~q(x) recursively by A~q(z)=A~A~-lq(x). 
@plying  Theorem 5 with go(q)=At~q(x), t real, we immediately obtain (in the same way 

as Corollary 1 of Theorem 3 was deduced from Theorem 3): 

COROLLARY 1. Assume that (t  o, 7 o) e P A  and let / be an arbitrary/unction 

such that 
]At~<~,/(x)>l <~C~, when (t, 7)eA, x e B ,  x+t teB~.  

Then there exist constants (~ > 0 and C 2 which depend only on A such that 

IAtS.<r I <v,v lvo ], when xeB , freeBee. (3.9) 

Note that  we obtain the estimate (3.9) for quite arbitrary functions, since we can 

choose the measures g ,  in Theorem 5 discrete. 

COROLLARY 2. I /  A c  E~ • Fq satisfies (.~ ) and i/ /: E~ ~ Fq is a locally bounded/unc- 

tion such that <~?, /> is constant on lines parallel with t / o r  each (t, ~) EA, then / is a (vector 

valued) polynomial o/ degree at most q - 1 .  

Proo]. Applying Corollary 1 with g0 equal to the difference measure go(q) = q( t  ~ -q (0 )  = 

A~oq, we find that  A~0<~0,/) = 0  for arbitrary t ~ and 7 ~ I t  is well known that  a locally 

bounded function ~v(t) of one variable such that  A~%f(t)=0 for all s and t must be a poly- 

nomial of degree at most q - 1 .  Hence t~<~ ~176 is a polynomial of degree at  most 

q -  1 for each t ~ and 7 ~ I t  is easy to see that  this implies that  / is a polynomial of degree 

at  most q - 1 .  

Using Corollary 2 we can replace the condition that  / is continuous in the corollary 

of Theorem 2 by the weaker condition that  / is bounded. 

If A does not satisfy (A), of course no regularity property for / follows from the 

assumptions. In fact, relative to suitable bases in Ep and ~'q we then have t171=0 for 

each (t, 7)EA, and thus any function / of the form /(x)=(/a(xl), 0, ..., 0) satisfies the 

assumptions. 

Let us say that  the function / is continuous in the direction t ,  i f / ( x + t t )  tends to 

/(x) uniformly on compact sets when t tends to zero. 

COROLLARY 3. Assume that A ~ Ep • ~'q satisfies (~), that/: E~-~ IYq is locally bounded, 

and that <7, /> is continuous in the direction t / o r  each (t, 7)EA. Then / is continuous. 

To prove Corollary 3 it remains only to estimate the first difference of a function 

of one variable in terms of bounds for the q~h difference and for the function itself. A 
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very sharp estimate of this kind is given in Theorem 6. However, if we only want to prove 

tha t  / is continuous without caring about  the modulus of continuity, we can manage 

with a much weaker estimate, such as the following. Let ]c be a natural  number  and let 

yJ be a real-valued function on a finite interval I c  R. Set 

~k(V, e) = sup { ] •  x e I ,  x + ~ e I ,  It I -<e}- 

LEMMA 6. There exist constants C and e0, which depend only on the length o/the interval 

I, and a constant C~ depending only on ~, such that 

wl(y~,e)<~C(Cae)k(y~,e)+e~max[y~[), i/ 0 < e < e  0 and ~>e.  (3.10) 

This inequality shows tha t  lim~_~0 wl(~p, e )=0,  if lim~_,o wk(~, e )=0.  Corollary 1 and 

Lemma 6 together imply Corollary 3. We do not prove Lemma 6 here. By  simple consi- 

derations one can prove (3.10) with C$=(~ -a, a > 0 .  Theorem 6 implies (3.10) with Ca= 

log (1/6). 

I f  we use Theorem 6 we can obtain exact information about  the modulus of con- 

t inuity o f / .  

COROLLARY 4. I] A satisfies (.~) and (~7,/)EK(~, (r) /or every (~, ~)EA, then/EK(~). 

Proo/. We may  assume tha t  A contains only a finite number  of elements. Then for 

each compact set K c  Ep we can choose C (independent of e) such tha t  

I5~;v,/(z)~[ <oa(e), when (~,~)EA, ~eK, ~+t~eK, [t~ I <e. 

Applying Corollary 1 with B~ equal to an arbi trary ball with radius e contained in K we 

see tha t  for any compact set K ~  E~ there exist C and ~ > 0  (independent of e) such tha t  

]A~o<~O,/(x)>] < Ca(e), when xEg,  x+t~~ ]t~~ ~<~e. 

Let K 0 be another compact set, and assume tha t  K is so large tha t  K o +  (x; Ix[ ~<I}~K.  

I f  x is fixed in K0, we then have an estimate of the qth difference of the function 

h: t-~(~o, /(x +t~o)> 

on an interval I of length at least 2/]~~ Thus we have with a new constant C 

IA~(t)l <v~(e), re1. 

(We frequently use the fact tha t  a(ae)~<(a+l)a(e) in view of the subadditivity.) By  

Theorem 6 with k = 1 this implies that  h E K((~). Here it is essential tha t  ~ is definied so 
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tha t  e < C0(e) even if ~(e)= 0. Applying this result for ~0 and 7 ~ in a pair of bases for Er  

and Fq we obtain/EK(O).  

The assumption tha t  / is locally bounded, which is included in the definition of K(~, a), 
can not be omitted. This is seen from the example considered after Theorem 3. With the 

same notation, <~ , />  is constant on lines parallel with ~ for v = 1, 2, 3, and A satisfies 

(~), if A =  {($~, 7~); v=l ,  2, 3}. But  [ is not continuous if h is a non-measurable solution 

of h(s § t) =h(s) + h(t). 
Finally we make a comment on the number  q in the term/Xo ~ in Theorem 5. Assume 

that  /~0(z)=(~ ~ z>+o(z) and tha t  formula (3.3) holds. Taking the Taylor expansion of 

degree m of the Fourier transform of both sides we obtain 

7~174162 ~, z> ~ = ~ 7~| <~, z>, (3 .11)  

for some homogeneous real-valued polynomials rv(z ) of degree m -  1. I f  

A = {($~, 7~);  ~ = 1, 2 . . . .  , ~}  

is fixed and m is fixed, the dimension of the linear space of expressions on the right-hand 

side of (3.11) is at  most n , since the number  of terms in each r~(z) is at  most 

(m:p_~2) .  The dimension of the linear space spanned by  all the functions 7~ | <~~ z> m 

~or ~~ E~, 7~ Fq is q . Thus, if for each ~0 E E~ and 7~ Fq there exist rr(z) 

or equivalently such that  (3.11) holds, we must  have n ~>q m 

n>~q(m+p-1)/m. However, if m<q and p > l ,  then q ( m + p - 1 ) / m > q + p - 1 ,  which 

implies tha t  n > q + p - 1 .  On the other hand, for any p and q there exist A consisting 

of precisely p + q - 1  elements such tha t  DA=E~ • Fq (Lemma 7). These observations 

prove tha t  the number  q in the term #~q in Theorem 5 cannot be replaced by  any  smaller 

number  depending only on p and q. 

We have seen tha t  if (~o, 70)E_PA, then there exist polynomials r~(z) of degree q - 1  

and  (~,  7 ~) EA such tha t  
n 

7~174 c, z> q = ~ ~f | <~, z>. (3.12) 

(The converse s tatement  is of course also true.) An examination of our proof of Theorem 5 

shows tha t  its algebraic content is very close to a proof of this fact. To make this point 

clear we need to reformulate (3.12). Let  E~ q = Ep V ... V E~ (q factors) denote the symmetric 
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tensor product of q copies of E~ (see [2] for a definition). The elements of E v q can be iden- 

tified with homogeneous polynomials of degree q in p variables. Set G = Fq| E~ q. Let  GA 

denote the set consisting of all elements of G of the form 7 |  . . .V t  q-l, where 

(t, 7)CA and t 1 ..... t q-1 are arbitrary elements of E~. Let  L denote linear hull. Then 

7~174176 means precisely the same as (3.12). I t  is easy to see that  our proof of 

Theorem 5 shows that  (t ~ 7 ~ e_PA implies ~0| (t0)vq eL(G,,,). However, we wish to empha- 

size that  one cannot deduce Theorem 5 from this fact. Theorem 5 depends also on the 

fact tha t - - in  somewhat vague terms--one can generate L(GA) from G A by varying one 

of the t v at  a time. 

4. Conclusion of proof of Theorem 1 

Corollary 2 of Theorem 3 and Corollary 4 of Theorem 5 together prove the first part  

of Theorem 1. I t  remains to prove the necessity of (1.3) or (1.4). 

To prove that  (1.3) or (1.4) holds means to prove that  each of the following three 

statements hold 

( a l )  o" ~( "t " 

(as) A satisfies (A) 

(a3) a-< v or A satisfies (A). 

If  (1.5) implies that  /EK(~), it is obvious that  (al) holds. That  (as) must hold follows 

from the remark following Corollary 2 of Theorem 5. I t  remains to prove (as). Let  us 

assume that  (A) does not hold; we then have to prove that  ~ .  We shall do this by 

constructing a funct ion/ :  Ep-~_Yq such that  

(bl) ( 7 , / )  EK(t,  a) for each (t, 7) EA, and 

(b~) / EK(~) implies ~ ~. 

Since (A) does not hold there exists a non-trivial bilinear form dp: (E~, Fq)-~R which 

vanishes on A. We can represent (P in the form (I)(t, 7 ) = ( A t ,  7), where A is a linear 

operator E~--> ~'q. Set 
/(x) =(Ax/lAx])O([Axl), xEE~. 

Then (b~) is obviously true. We claim that  ( 7 , / )  EK(t,  a) whenever (At ,  7 ) = 0 ;  this will 

prove (bl). We may assume ]Ax[ < [A(x+tt)l. Then 

'5([A(x+tt)[) ~([Ax[)]  
[(7'/(x+tt)-/(x))]= (7'Ax) [A(x+tt)[ lAx[ ] 

~ [A(x+t~)l 

< <7, Ax) s -2 a(s) ds. 
J I A z l  
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Using  first  the  fact  t h a t  a is increasing a n d  then  t h a t  a(st)<~ (1 + s)a(t) we obtain ,  ff a < b, 

f~  s-2a(s)ds<a(b) f~ s-2ds=a(b) (b-a)/(ab) 

<-a(b-a) ( l  + b-ba) ~ <~(2/a)a(b-a). 

W i t h  a =  lAx I, b= IA(x +t~)], we have  b-a<. IAt~] and  hence 

<2lnl (IAt$l)<2lnl( 1+  IA l) (ltli �9 

This completes  the  proof  of Theorem 1. 

W e  will now s ta te  a few consequences of Theorem 1. 

There  is a s imple sufficient  condi t ion  on A in order  t h a t  P A  = Ep • Fq. To fo rmula te  

th is  condi t ion  we need  the  following defini t ion.  A f ini te  or  inf ini te  set  H of e lements  of 

a l inear  space is sa id  to  be r-wise linearly independent, if each subset  of H consist ing of 

a t  most  r e lements  forms a l inear ly  independen t  set. I t  is obvious t h a t  if p ~> 2 there  are  

inf ini te  subsets  of E~ which are  p-wise  l inear ly  independen t .  

L ] ~ A  7. Assume that A = {(~ ,  ~v); v = 1 . . . .  , p + q -  1}=  Ep • Fq, where {~}  is p-wise 

and  {~v} is q-wise linearly independent. Then A satisfies (fi), i.e. P A = E ,  • Fq. 

Proo/. Assume t h a t  (u ,  ~ ) ( v ,  ~ )  = 0  for eve ry  u. Then  e i ther  (u ,  ~") = 0  for a set of 

p indices, or (v, ~ )  = 0  for a set  of q indices v. This shows t h a t  u or v mus t  be equal  to  zero. 

The  above  a r g u m e n t  shows t h a t  PA ~: E~ • Fq if A conta ins  less t h a n  p + q -  1 e lements .  

If ,  in addi t ion ,  {~} is p-wise  and  {~}  is q-wise l inear ly  independent ,  we can in fact  p rove  

t h a t / S A  is as smal l  as i t  can be, n a m e l y / ~ A  = A .  This  s t a t e m e n t  toge ther  wi th  L e m m a  7 

shows t h a t  in the  case where  {~v} is p-wise  and  {~}  is q-wise l inear ly  independen t  we 

m u s t  have  e i ther  P A  = E~ • Fq or P A  =A,  depending  on whe ther  or no t  A conta ins  a t  

leas t  p + q -  1 elements.  W e  will no t  p rove  this  s t a t e m e n t  here.  

CO ROT.LAR~- 1. Let a E Z and assume that ~v E R~, ~ = 1, ..., m >~ p, /orm a p-wise linearly 

independent set o~ vectors. Let gv be/unctions/rom R ~ to It such that gv EK(~ ~, a)/or each ~. 

Assume moreover that 
rn 

~c,,g,=O, i = l  . . . .  , p - l ,  
~ = 1  

and that the m + p - 1  vectors in R m (1, 0 . . . .  , 0 )  . . . . .  (0, ..., 0, 1), (Cl. 1 . . . . .  c1.~) . . . . .  (%-L1, "., 

%-1. m) /orm an m-wise linearly independent set. Then each g~ eK(a). 

Proo/. D e f i n e / :  R~-~R m b y  / =  (gl, .--, gin) and  t ake  ~ 4=0 para l le l  to  the  vth coordina te  

axis  in R m when v ~< m and  ~ ~ = (c~_m. 1 . . . . .  c~-ra, m), when m < ~ ~< m + p  - 1. Then  for a r b i t r a r y  
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sere+l, ..., ~m+r-1 we have (~/~,/~ EK(~ v, a) for r =  1 ... . .  m + / 9 - 1 .  Hence /EK(#)  by  Theorem 

1 and Lemma 7. 

In  the case/9 = 2 we obtain the following. 

COROLLARY 2. Let r and let ~ E R  2, ~=1 . . . . .  m, be pairwise linearly independent. 

Let gv be/unctions/rom R 2 to It and assume that g~EK(~ v, a) /or  each ~ and that ~=lg~  =0.  

Then g~ ~ K(a) /or each v. 

Note tha t  the last condition of Corollary 1 is trivially satisfied in this ease, since all 

the coefficients cl, are equal to 1. Note also that  the assertion of Corollary 2 is trivial if 

m ~< 2. The example considered after Theorem 1 corresponds to the case m = 3 in Corollary 2. 

In  a recent paper  [1] we applied a result very close to Corollary 2 (Lemma 7 in [1]). 

Here it was known of a continuous funct ion/ :  R~-~R ~ tha t  (~, ]~ EK(~, a) for every non- 

zero ~ E R p, and we wanted to estimate the modulus of continuity o f / .  The estimate tha t  

we gave in [1] was not  the best possible. However, this situation is easily analysed by  

means of Theorem 1. Setting A={(~ ,  ~); 0 : ~ E R  p} we have of course P A = E r  • Fq, but  

P A  4 E r  • Fq. This shows t h a t / E K ( # )  and tha t  no stronger conclusion is possible. 

5. The inequality for the moduli of smoothness 

In  the proof of Theorem 1 we used an inequality between the so-called moduli of 

smoothness of various orders, which was first proved by  Marchaud [3]. This inequality 

will now be described. In  order to make the paper  self-contained we have included a 

proof here. A proof can also be found in Timan's  book on approximation theory [4]. 

Let  g be a real-valued function on a finite subinterval I of R and k a natural  number.  

The kth order difference 

and the modulus of smoothness of order k 

 k(a,  )=sup (l Tg(x)l; xe ,  +ktei, Itl 

have already been considered. When k--1 ,  ogk(g, e) is of course the modulus of continuity 

of g. I t  is obvious tha t  wk(g, e)~>2k-no~n(g, 8) if k ~<n. The result of Marehaud is an estimate 

in the opposite direction. 

THEOREM 6. There exists a constant C which depend8 only on q and on the length o/ 

the interval I ,  such that i / 1  <~ k ~ q, 
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w~(g,s)<~Cek(f~t-~-~eoq(g,t)dt+sup]gl),  s > 0 .  (5.1) 

Special cases of Theorem 6 have frequently been considered in the literature. :For 

example, Zygmund considers so-called smooth functions in connection with trigonometric 

series [5]. A function is called uniformly smooth in an interval, if (/(x + t) + ] ( x -  t) -2/(x))/t  

tends to zero uniformly when t tends to zero. I t  is well known tha t  such a function must  

have modulus of continuity 0(~ log (l/s)). This simple assertion is of course implied by  

Theorem 6 (k = 1, q = 2, o~(g, ~) <<. Cs). 

The inequality (5.1) is closely related to the theory of best approximation, l~ote for 

example tha t  the expression ~(~) occurs in the converse of Jackson's  theorem (see Timan 

[4], section 6.2.1). 

Proo/ o/ Theorem 6. Let Ta be the translation operator defined by  TAg(t ) =g(t+h) 

and J the identity operator. Using the fact tha t  T~ = T2a we obtain (multiplication of 

operators defined as usual) 

(T2a _g)k _ 2~(Ta _ j ) k  = ( T a _g)k( ( Ta + g)~_ 2kj) 

: (Th--J)~+I((Th§ ~ 1§247 ). 

Since (Th -- J)~g = A~ g, this shows that  for each t and h such that  t E I and t + 2kh E I we have 

15~a g(t) - 2~a~g(t) I < k2 ~-1 ~+ l (g ,  Iht ). 

By the triangle inequality we then obtain 

IA g(01 < 2 - ~ ( g ,  12hl)§ lhl), if re1, t §  (5.2) 

Let d(I) denote the length of I .  Assume that  tEI ,  t + h k E I  and tha t  [hk I <d(I)/3. Then 

either t - hk e I or t + 2hk E I. Using this observation and the fact that  I A~ g(t)] = [A ~_ a g(t + h) l 

we obtain (5.2) for all t and h such that  tEI ,  t + h k E I  and Ihkl <~d(I)/3. Hence 

eoz(g, e) < 2-•k(g, 2e)+ (k/2)a)~+l(g, e), if 0 <e <d(I)/3k. (5.3) 

Repeated use of (5.3) will now prove the theorem when q = k + 1. Let us show this by  an 

induction argument.  Set 

H k ( e ) = e k ( ; a - k - l o )  " ) k+lig, S) ds + sup Igl �9 

I f  C > k 2 and ~ < �89 we have, since wk+l(g, e) is increasing, 
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f:.. (k/2) ~o~ § e) < ~o~§ (~, e) Ce ~ s-k-~ds 

fi~8 -k 1(2) " <~ C ~  k+l (g, s) ds <~ C(Hk(e) - 2- kHk(2 e)). (5.4) 

Adding (5.3) and  (5.4) gives 

o~k(g, e ) -CH~(e)  ~ 2-~(tok(g, 2e)--CHk(2e)), if 0 < e < e  o, (5.5) 

where eo = m i n  (�89 d(I)/3]c). Since cok(g, e) ~ 2  ~ sup ]g[, it is clear t ha t  a~k(g, e) -CH~(~) <~0 

when eo <e  < 1, if C > (2/Co) ~. This together  with (5.5) proves the theorem in the special 

case where q = ]c § 1. 

Using this special case of the inequali ty we obtain, if n >/]c + 1, 

f, 18-k-l(Dn(~],8) ds~f:,3 k-lCsn(ffu-n-ifA)n~rl(~,~l~)du§ 

< c f{ . - - - i . , . §  + c s.p Ig[ 

< C "lt-n-l oon+l (~, U) un-kdu § C sup Igl 

el U-  k-1 (2) s = C ~+~g, u) du + C sup Igl. 

Combining this inequali ty with the special case already proved we obtain  the general 

case inductively. 
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