ON SIMULTANEOUS APPROXIMATIONS OF TWO ALGEBRAIC NUMBERS BY RATIONALS

BY

WOLFGANG M. SCHMIDT

Cambridge, England, and Boulder, Colorado, U.S.A

1. Introduction

1.1. Main results. Throughout this paper, $\|\xi\|$ will denote the distance of the real number ξ from the nearest integer. We shall prove the following results which represent extensions to simultaneous approximations of Roth's famous theorem [5] on rational approximations to an algebraic irrational α.

Theorem 1. Let α, β be algebraic and $1, \alpha, \beta$ linearly independent over the field of rationals \mathbf{Q}. Then for every $\varepsilon>0$ there are only finitely many positive integers q with

$$
\begin{equation*}
\|q \alpha\| \cdot\|q \beta\| \cdot q^{1+\varepsilon}<1 \tag{1}
\end{equation*}
$$

Corollary. Let $\alpha, \beta, \varepsilon$ be as before. There are only finitely many pairs of rationals $p_{1} / q, p_{2} / q$ satisfying

$$
\begin{equation*}
\left|\alpha-\frac{p_{1}}{q}\right|<|q|^{-3 / 2-\varepsilon}, \quad\left|\beta-\frac{p_{2}}{q}\right|<|q|^{-3 / 2-\varepsilon} . \tag{2}
\end{equation*}
$$

A dual to Theorem 1 is
Theorem 2. Let $\alpha, \beta, \varepsilon$ be as in Theorem 1. There are only finitely many pairs of rational integers $q_{1} \neq 0, q_{2} \neq 0$ with

$$
\begin{equation*}
\left\|q_{1} \alpha+q_{2} \beta\right\| \cdot\left|q_{1} q_{2}\right|^{1+\varepsilon}<1 \tag{3}
\end{equation*}
$$

Corollary. Again let $\alpha, \beta, \varepsilon$ be as in Theorem 1. There are only finitely many triples q_{1}, q_{2}, p of rational integers with $q=\max \left(\left|q_{1}\right|,\left|q_{2}\right|\right)>0$ satisfying

$$
\begin{equation*}
\left|q_{1} \alpha+q_{2} \beta+p\right|<q^{-2-\varepsilon} . \tag{4}
\end{equation*}
$$

1.2. Approximations by rationals or quadratic irrationals. Let ω be either rational or a quadratic irrational. There is a polynomial $f(t)=x t^{2}+y t+z \equiv 0$, unique up to a factor ± 1,
whose coefficients x, y, z are coprime integers and which is irreducible over the rationals, such that $f(\omega)=0$. Define the height $H(\omega)$ of ω by

$$
\begin{equation*}
H(\omega)=\max (|x|,|y|,|z|) \tag{5}
\end{equation*}
$$

Theorem 3. Let α be algebraic, but not rational or a quadratic irrational, and let $\varepsilon>0$. There are at most finitely many numbers ω which are rationals or quadratic irrationals and which satisfy

$$
\begin{equation*}
|\alpha-\omega|<H(\omega)^{-3-\varepsilon} . \tag{6}
\end{equation*}
$$

This theorem should be compared with a recent result of Davenport and the author [3] which asserts the existence of infinitely many numbers ω of the type described above satisfying

$$
\begin{equation*}
|\alpha-\omega|<C(\alpha) H(\omega)^{-3} \tag{7}
\end{equation*}
$$

in fact in this latter result α can be any real number which is neither rational nor a quadratic irrational. (For results concerning approximations by algebraic numbers of degree $\leqslant k$, see Wirsing [7]. Wirsing (unpublished as yet) also proved a general result of the type of Theorem 3, but without best possible exponents.)

Theorem 3 follows easily from the corollary to Theorem 2; by Roth's Theorem, we may restrict ourselves to quadratic irrationals ω. Let

$$
f(t)=x t^{2}+y t+z=x(t-\omega)\left(t-\omega^{\prime}\right)
$$

be the irreducible polynomial described above, and ω^{\prime} the conjugate of ω. Then $|x| \leqslant H(\omega)$ and, as is easily seen, $\left|\omega^{\prime} x\right| \leqslant 2 H(\omega)$. If (6) holds, then

$$
\left|x \alpha^{2}+y \alpha+z\right|=\left|x \alpha-x \omega^{\prime}\right||\alpha-\omega|<(|\alpha|+2) H(\omega) H(\omega)^{-3-\varepsilon}<H(\omega)^{-2-\varepsilon / 2}
$$

if $H(\omega)$ is large. Since $\quad H(\omega)^{-2-\varepsilon / 2} \leqslant(\max (|x|,|y|))^{-2-\varepsilon / 2}$,
our inequality has only a finite number of solutions by the corollary of Theorem 2.

1.3. Further results.

Theorem 4. Let α, β, γ be algebraic, $1, \beta, \gamma$ linearly independent and $1, \alpha, \alpha \gamma-\beta$ linearly independent over \mathbf{Q}. Let $\varrho+\tau>1$. There are only finitely many triples of rational integers q_{1}, q_{2}, q_{3} with $q_{1}>0$ satisfying

$$
\begin{equation*}
\left|\alpha q_{1}+q_{2}\right| \leqslant q_{1}^{-o}, \quad\left|\beta q_{1}+\gamma q_{2}+q_{3}\right| \leqslant q_{1}^{-\tau} . \tag{8}
\end{equation*}
$$

This theorem appears to be more general than Theorems 1 or 2, since it involves three numbers α, β, γ; but actually it contains neither of them. Later in section 4.3 we shall prove a general but somewhat complicated theorem which contains Theorems 1, 2 and 4.

Notice that our conditions of linear independence are necessary: For $1, \beta, \gamma$ this is rather obvious. For $1, \alpha, \alpha \gamma-\beta$, assume $\varrho \geqslant \tau$. For sufficiently small C, the inequalities

$$
\begin{equation*}
\left|\alpha q_{1}+q_{2}\right| \leqslant C q_{1}^{-Q}, \quad\left|(\beta-\alpha \gamma) q_{1}+q_{3}\right| \leqslant C q_{1}^{-\tau} \tag{9}
\end{equation*}
$$

imply (8), and (9) may have infinitely many solutions unless $1, \alpha, \alpha \gamma-\beta$ are linearly independent.

Theorem 5. Let α, β, γ be algebraic and $1, \alpha, \beta, \gamma$ linearly independent over \mathbf{Q}, and let $\varepsilon>0$.

There are only finitely many triples of non-zero integers q_{1}, q_{2}, q_{3} having

$$
\begin{equation*}
\left\|\alpha q_{1}+\beta q_{2}+\gamma q_{3}\right\| \cdot\left|q_{1} q_{2} q_{3}\right|^{5 / 3+\varepsilon<1} \tag{10}
\end{equation*}
$$

This theorem probably is not best possible; probably the exponent $5 / 3+\varepsilon$ in (10) may be replaced by $l+\varepsilon$. I am unable to prove the analogue of Theorem 1 or 2 for three numbers α, β, γ. I cannot prove any result in this direction for more than three numbers.
1.4. Auxiliary results. To prove the main results we shall derive some auxiliary theorems. Let $n \geqslant 1$,

$$
\begin{equation*}
l=n+1 \text {, } \tag{11}
\end{equation*}
$$

and let

$$
\begin{aligned}
& L_{1}=\alpha_{11} X_{1}+\ldots+\alpha_{1 l} X_{l} \\
& \ldots \ldots \\
& L_{l}=\alpha_{l 1} X_{1}+\ldots+\alpha_{l l} X_{l}
\end{aligned}
$$

be linear forms. Denote the cofactor of $\alpha_{i j}$ in the matrix $\left(\alpha_{n k}\right)(1 \leqslant h, k \leqslant l)$ by $A_{i j}$.
Definition. Let L_{1}, \ldots, L_{l} be linear forms as above, and let S be a subset of $\{1, \ldots, l\}$. We say $L_{1}, \ldots, L_{l} ; S$ are proper if
(i) the $\alpha_{h k}$ are algebraic and $\operatorname{det}\left(\alpha_{h k}\right) \neq 0$
(ii) for every $i \in S$, the non-zero elements among $A_{i 1}, \ldots, A_{i l}$ are linearly independent over \mathbf{Q}.
(iii) for every $k, \mathbf{l} \leqslant k \leqslant l$, there is an $i \in S$ with $A_{i k} \neq 0$.

Of particular interest will be the following examples.
(1) $l=2, L_{1}=X_{1}-\alpha X_{2}, L_{2}=X_{2}, S=\{2\} . L_{1}, L_{2} ; S$ are proper if α is an algebraic irrational.
(2) $l=3, L_{1}=X_{1}-\alpha X_{3}, L_{2}=X_{2}-\beta X_{3}, L_{3}=X_{3}, S=\{3\}$. Now $L_{1}, L_{2}, L_{3} ; S$ are proper if α, β are algebraic and $\mathbf{1}, \alpha, \beta$ linearly independent over \mathbf{Q}.
(3) $l=3, L_{1}=X_{1}, L_{2}=X_{2}, L_{3}=\alpha X_{1}+\beta X_{2}+X_{3}, S=\{1,2\} . L_{1}, L_{2}, L_{3}$; S are proper if α, β are both algebraic irrationals.

Theorem 6. Suppose $L_{1}, \ldots, L_{l} ; S$ are proper, and A_{1}, \ldots, A_{l} are positive reals satisfying

$$
\begin{align*}
& A_{1} A_{2} \ldots A_{i}=1 \tag{12}\\
& A_{i} \geqslant 1 \quad \text { if } \quad i \in S \tag{13}
\end{align*}
$$

The set defined by

$$
\begin{equation*}
\left|L_{j}(\mathfrak{x})\right| \leqslant A_{j} \quad(1 \leqslant j \leqslant l) \tag{14}
\end{equation*}
$$

is a parallelopiped; denote its successive minima (in the sense of the Geometry of Numbers) by $\lambda_{1}, \ldots, \lambda_{n}, \lambda_{l}$.

For every $\delta>0$ there is then $a Q_{0}\left(\delta ; L_{1}, \ldots, L_{l} ; S\right)$ such that

$$
\begin{array}{cc}
& \lambda_{n}>Q^{-\delta} \\
\text { if } & Q \geqslant \max \left(A_{1}, \ldots, A_{l}, Q_{0}(\delta)\right) . \tag{16}
\end{array}
$$

Applying this theorem to our example 1) we obtain a lower bound for λ_{1}. Hence it is easy to see that this particular case of Theorem 6 is equivalent to Roth's Theorem. Applying Theorem 6 to example 2) or 3) one only obtains a lower bound for λ_{2} rather than for λ_{1}, and hence one does not immediately obtain Theorem 1 or 2. The following transference principle allows one in this case to proceed from the inequality for λ_{2} to an inequality for λ_{1}.

Theorem 7. Let L_{1}, L_{2}, L_{3} be three linear forms of determinant 1 in variables X_{1}, X_{2}, X_{3}, and let M_{1}, M_{2}, M_{3} be the adjoint forms, i.e. the forms with

$$
L_{1} M_{1}+L_{2} M_{2}+L_{3} M_{3} \equiv X_{1}^{2}+X_{2}^{2}+X_{3}^{2}
$$

Let S, T be nonempty subsets of $\{1,2,3\}$ with empty intersection.
Suppose now the second minimum λ_{2} of the parallelopiped (14) satisfies

$$
\begin{equation*}
\lambda_{2}>Q^{-\delta} \tag{17}
\end{equation*}
$$

provided (12), (13) and (16) are satisfied. Also suppose the second minimum μ_{2} of

$$
\begin{equation*}
\left|M_{i}(\mathrm{x})\right| \leqslant B_{i} \quad(i=1,2,3) \tag{18}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\mu_{2}>Q^{-\delta} \tag{19}
\end{equation*}
$$

provided $B_{1} B_{2} B_{3}=1, B_{i} \geqslant 1$ if $i \in T$ and $Q \geqslant \max \left(B_{1}, B_{2}, B_{3}, Q_{1}(\delta)\right.$.

Then the first minimum λ_{1} of (14) satisfies

$$
\begin{equation*}
\lambda_{1}>Q^{-\delta} \tag{20}
\end{equation*}
$$

$$
\begin{array}{lc}
\text { if } & A_{1} A_{2} A_{3}=1, \\
\text { if } & A_{i} \geqslant 1 \text { for } i \in S, A_{j} \leqslant 1 \text { for } j \in T \\
\text { and } & Q \geqslant \max \left(A_{1}, A_{2}, A_{3}, Q_{2}(\delta)\right) .
\end{array}
$$

We shall show in chapter 4 that Theorems 1,2 and 4 are easy consequences of Theorems 6 and 7. Theorem 5 will be derived from Theorem 6 by a similar transference principle.

Our proof of Theorem 6 will follow the method of my previous paper [6] on this subject, where a weaker form of the theorem was proved. This method consists of a further development of the ideas involved in the proof of Roth's Theorem [5]. In the first draft of my manuscript I had derived the transference principles of chapter 4 by the methods of [6]. I am indebted to Professor H. Davenport for suggesting the much more lucid method of the present version.

2. The index of a polynomial

2.1. The index. \mathfrak{R} will denote the ring of polynomials in $m l$ variables

$$
X_{11}, \ldots, X_{1 l} ; \ldots ; X_{m 1}, \ldots, X_{m l}
$$

with real coefficients. Let L_{1}, \ldots, L_{m} be linear forms, none of them identically zero, of the special type

$$
L_{h}=L_{h}\left(X_{h 1}, \ldots, X_{h 1}\right) \quad(1 \leqslant h \leqslant m) .
$$

Also let positive integers r_{1}, \ldots, r_{m} be given. For $c \geqslant 0$ we denote by

$$
I(c)
$$

the ideal in $\mathfrak{\Re}$ generated by the polynomials

$$
\begin{equation*}
L_{1}^{i_{1}} L_{2}^{i_{2}} \ldots L_{m}^{i_{m}} \tag{I}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{n=1}^{m} i_{h} r_{h}^{-1} \geqslant c \tag{2}
\end{equation*}
$$

$I(c) \supset I\left(c^{\prime}\right)$ if $c \leqslant c^{\prime}$. One has $I(0)=\Re$ and $\bigcap_{c \geqslant 0} I(c)=(0)$.
Definition. The index of a polynomial $P \in \Re$ with respect to $\left(L_{1}, \ldots, L_{m} ; r_{1}, \ldots, r_{m}\right)$ is defined as the largest c with $P \in I(c)$ if $P \neq 0$, and it is $+\infty$ if $P \equiv 0$.

Remark. Since the set of numbers $\sum_{n-1}^{m} i_{h} r_{h}^{-1}$ is discrete, there is for a polynomial $P \equiv 0$ always such a maximal c. For given L_{1}, \ldots, L_{m} and r_{1}, \ldots, r_{m} we denote the index of P by ind P.

By Hilfssatz 6 of [6],

$$
\begin{gather*}
\text { ind }(P+Q) \geqslant \min (\operatorname{ind} P, \text { ind } Q) \tag{3}\\
\quad \text { ind }(P Q)=\operatorname{ind} P+\operatorname{ind} Q \tag{4}
\end{gather*}
$$

In what follows, r will always denote an m-tuple of positive integers (r_{1}, \ldots, r_{m}) and \mathfrak{F} will denote an $l m$-tuple of nonnegative integers ($i_{11}, \ldots, i_{1 l} ; \ldots ; i_{m 1}, \ldots, i_{m l}$). We put

$$
\begin{equation*}
(\mathfrak{J} / \mathrm{r})=\sum_{n=1}^{m}\left(i_{n 1}+\ldots+i_{n l}\right) r_{h l}^{-1} . \tag{5}
\end{equation*}
$$

Given a polynomial $P \in \mathfrak{R}$, set

$$
\begin{equation*}
P^{\mathfrak{Y}}=\left(i_{11}!\ldots i_{m l}!\right)^{-1} \frac{\partial^{i_{11}+\ldots+i_{m l}}}{\partial X_{11}^{i_{11}} \ldots X_{m l}^{i_{m l}}} P \tag{6}
\end{equation*}
$$

The inequality

$$
\begin{equation*}
\text { ind } P^{\Im} \geqslant \text { ind } P-(\Im / \mathrm{r}) \tag{7}
\end{equation*}
$$

follows easily from our definitions.

Lemma I. Suppose the polynomial P has index $c \neq \infty$ with respect to $\left(L_{1}, \ldots, L_{m} ; r_{1}, \ldots, r_{m}\right)$. Let T be the ($m l-m$)-dimensional subspace of ml-dimensional space $R^{m l}$ defined by

$$
L_{1}\left(X_{11}, \ldots, X_{1 l}\right)=\ldots=L_{m}\left(X_{m 1}, \ldots, X_{m l}\right)=0
$$

There is an \mathfrak{J} with $(\mathfrak{F} / \mathfrak{r})=c$ such that $P^{\mathfrak{Y}}$ does not vanish identically on T.
Proof. This is a weakened version of one of the assertions of Hilfssatz 7 in [6].
Given a polynomial $P \in \Re$, write $|P|$ for the maximum of the absolute values of its coefficients. If P has integral coefficients, then so does P^{3}.

Lemma 2. Let $P \in \Re$ be homogeneous in $X_{h 1}, \ldots, X_{h l}$ of degree $r_{h}(1 \leqslant h \leqslant m)$. (That is, P is a sum of monomials $c X_{11}^{j_{11}} \ldots X_{m l}^{j_{m l}}$ having $j_{h 1}+\ldots+j_{h l}=r_{h}(1 \leqslant h \leqslant m)$.) Then for any \mathfrak{J},

$$
\begin{equation*}
\left|P^{\mathfrak{F}}\right| \leqslant 2^{r_{1}+\ldots+r_{m}}|P| . \tag{8}
\end{equation*}
$$

Proof. It will suffice to prove this estimate for monomials. Now

$$
\left(X _ { 1 1 } ^ { j _ { 1 1 } } \ldots X _ { m l } ^ { i _ { m l } } \left\{=\binom{j_{11}}{i_{11}} \ldots\binom{j_{m l}}{i_{m l}} X_{11}^{j_{11}-i_{11}} \ldots X_{m l}^{j_{m l}-i_{m l}}\right.\right.
$$

Since

$$
\binom{j_{11}}{i_{11}} \ldots\binom{j_{m l}}{i_{m l}} \leqslant 2^{j_{11}+\ldots+j_{m l}}
$$

the desired inequality follows.
2.2. Existence of certain polynomials.

Theorem 8. Let l, t be positive integers and

$$
L_{j}=\alpha_{j 1} X_{1}+\ldots+\alpha_{j l} X_{l} \quad(1 \leqslant j \leqslant t)
$$

linear forms, none identically zero, whose coefficients are algebraic integers. Construct new linear forms

$$
L_{h j}=\alpha_{j 1} X_{h 1}+\ldots+\alpha_{j l} X_{h l} \quad(1 \leqslant j \leqslant t)
$$

in variables $X_{h 1}, \ldots, X_{h l}(1 \leqslant h \leqslant m)$. Set Δ_{j} for the degree of $K_{j}=\mathbf{Q}\left(\alpha_{j 1}, \ldots, \alpha_{j l}\right)$ and $\Delta=$ $\max \left(\Delta_{1}, \ldots, \Delta_{t}\right)$.

Let $\varepsilon>0$ and assume m to be so large that

$$
\begin{equation*}
m \geqslant 4 \varepsilon^{-2} \log (2 t \Delta) . \tag{9}
\end{equation*}
$$

Let r_{1}, \ldots, r_{m} be positive integers.
There is a polynomial $P \in \Re$ with rational integral coefficients, not vanishing identically and satisfying
(i) P is homogeneous in $X_{h 1}, \ldots, X_{h l}$ of degree $r_{h}(1 \leqslant h \leqslant m)$,
(ii) P has index $\geqslant\left(l^{-1}-\varepsilon\right) m$ with respect to

$$
\left(L_{1 j}, \ldots, L_{m j} ; r_{1}, \ldots, r_{m}\right) \quad(1 \leqslant j \leqslant t)
$$

(iii) $|P| \leqslant D^{r_{1}+\ldots+r_{m}}$,
where D is a constant depending only on the coefficients $\alpha_{j k}$.
Proof. This is Satz 7 (Indexsatz) of [6].
The following theorem is almost but not quite identical with Satz 8 of [6].
Theorem 9. Let

$$
L_{j}=\alpha_{j 1} X_{1}+\ldots+\alpha_{l l} X_{l} \quad(l \leqslant j \leqslant l)
$$

be linear forms with nonvanishing determinant whose coefficients are algebraic integers. Define Δ and the linear forms $L_{h j}$ as in Theorem 8. Let $\varepsilon>0$ and assume

$$
\begin{equation*}
m \geqslant 4 \varepsilon^{-2} \log (2 l \Delta) \tag{10}
\end{equation*}
$$

Let r_{1}, \ldots, r_{m} be positive integers.
3-672908 Acta mathematica. 119. Imprimé le 16 novembre 1967.

There is a polynomial $P \equiv 0$ in \mathfrak{R} with rational integral coefficients such that
(i) P is homogeneous in $X_{h 1}, \ldots, X_{h l}$ of degree $r_{h}(1 \leqslant h \leqslant m)$,
(ii) $|P| \leqslant D^{r_{1}+\ldots+r_{m}}$,
(iii) writing (uniquely!)

$$
\begin{equation*}
P^{\mathfrak{}}=\sum d^{\mathfrak{}}\left(j_{11}, \ldots, j_{m l}\right) L_{11}^{j_{11}} \ldots L_{1 l}^{j_{1 l}} \ldots L_{m 1}^{j_{m 1}} \ldots L_{m l}^{i_{m l}} \tag{11}
\end{equation*}
$$

one has

$$
\left|d^{\mathfrak{S}}\left(j_{11}, \ldots, j_{m l}\right)\right| \leqslant E^{r_{1}+\ldots+r_{m}}
$$

for arbitrary \mathfrak{J} and $j_{11}, \ldots, j_{m l}$.

$$
\begin{equation*}
\text { (iv) If } \quad(\Im / \mathrm{r}) \leqslant 2 \varepsilon m \text {, } \tag{12}
\end{equation*}
$$

then $d^{\Im}\left(j_{11}, \ldots, j_{m l}\right)=0$ unless

$$
\begin{equation*}
\left|\sum_{h=1}^{m} j_{h k} r_{n}^{-1}-m l^{-1}\right| \leqslant 3 l m \varepsilon \quad(1 \leqslant k \leqslant l) . \tag{13}
\end{equation*}
$$

Here D, E depend only on the coefficients $\alpha_{h k}$.
Proof. As we shall see, the polynomial P constructed in Theorem 8 satisfies everything. This is clear as far as (i) and (ii) are concerned. As for (iii),
let

$$
X_{i}=\sum_{k=1}^{l} \beta_{i k} L_{k} \quad(1 \leqslant i \leqslant l)
$$

whence

$$
\begin{equation*}
X_{h i}=\sum_{k=1}^{l} \beta_{i k} L_{h k} \quad(1 \leqslant i \leqslant l ; \quad 1 \leqslant h \leqslant m) \tag{14}
\end{equation*}
$$

Let

$$
G=\max \left(1,\left|\beta_{11}\right|, \ldots,\left|\beta_{l l}\right|\right)
$$

One obtains $P^{\mathfrak{s}}$ in the form (11) by substituting the right-hand side of (14) for each $X_{h i}$ in

$$
\begin{equation*}
P^{\mathfrak{J}}=\sum c^{\mathfrak{S}}\left(j_{11}, \ldots, j_{m l}\right) X_{11}^{j_{11}} \ldots X_{m l}^{j_{m l}} . \tag{15}
\end{equation*}
$$

A typical product in (15), namely $X_{11}^{j_{11}} \ldots X_{m l}^{j_{m l}}$, then becomes

$$
\left(\sum_{k=1}^{l} \beta_{1 k} L_{1 k}\right)^{j_{11}} \cdots\left(\sum_{k=1}^{l} \beta_{l k} L_{m k}\right)^{j_{m t}}
$$

and as a polynomial in $L_{11}, \ldots, L_{m 1}$ has coefficients of absolute value

$$
\leqslant(l G)^{i_{11}+\ldots+j_{m l}} \leqslant(l G)^{r_{1}+\ldots+r_{m}}
$$

By (ii) and by Lemma 2,

$$
\left|c^{\Im}\left(j_{11}, \ldots, j_{m l}\right)\right| \leqslant(2 D)^{r_{1}+\ldots+r_{m}}
$$

Therefore P as a polynomial in $L_{11}, \ldots, L_{m l}$ has coefficients of absolute value $\leqslant(2 l D G)^{r_{1}+\ldots+\tau_{m}}$. This proves (iii).

The index of P with respect to $\left(L_{1}, \ldots, L_{m j} ; r_{1}, \ldots, r_{m}\right)$ is at least $\left(l^{-1}-\varepsilon\right)$ by the previous theorem. Hence if (12) holds, the index of P^{\mho} is at least

$$
\left(l^{-1}-\varepsilon\right) m-(\Im / \mathrm{r}) \geqslant\left(l^{-1}-3 \varepsilon\right) m
$$

by (7). Hence any $l m$-tuple $\left(j_{11}, \ldots, j_{m l}\right)$ having $d^{\Im}\left(j_{11}, \ldots, j_{m l}\right) \neq 0$ satisfies

$$
\begin{equation*}
\sum_{h=1}^{m} j_{h k} r_{h}^{-1}-m l^{-1} \geqslant-3 m \varepsilon \quad(1 \leqslant k \leqslant l) \tag{16}
\end{equation*}
$$

Since P^{\Im} is homogeneous in $L_{h_{1}}, \ldots, L_{h l}$ of degree $\leqslant r_{h}$, one obtains
whence by (16),

$$
\sum_{k=1}^{l} j_{h k} r_{h}^{-1} \leqslant 1, \quad \sum_{k=1}^{l}\left(\sum_{n=1}^{m} j_{h k} r_{h}^{-1}-m l^{-1}\right) \leqslant 0
$$

$$
\begin{equation*}
\sum_{n=1}^{m} j_{n k} r_{h}^{-1}-m l^{-1} \leqslant 3 m(l-1) \varepsilon \tag{17}
\end{equation*}
$$

The inequalities (16) and (17) give (iv).
2.3. Grids. Now as always let

$$
\begin{equation*}
l=n+1, \tag{18}
\end{equation*}
$$

and let $\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}$ be n linearly independent vectors of R^{l}, spanning a subspace H. Let s be a positive integer. Write

$$
\varrho=\varrho\left(s ; \mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}\right)
$$

for the set of all vectors

$$
\mathfrak{w}=h_{1} \mathfrak{w}_{1}+\ldots+h_{n} \mathfrak{w}_{n}
$$

where h_{1}, \ldots, h_{m} are integers in the interval $1 \leqslant h_{i} \leqslant s . \varrho$ will be called a grid of size s on H, and $\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}$ are basis vectors of the grid.

In what follows a polynomial in X_{1}, \ldots, X_{l} will be interpreted as a function on R^{l}. The next lemma contains the idea which will enable us to improve upon the results of [6].

Lemma 3. Let $P\left(X_{1}, \ldots, X_{t}\right)$ be a polynomial in X_{1}, \ldots, X_{l} with real coefficients of total degree $\leqslant r$, and let s, t be positive integers satisfying

$$
\begin{equation*}
s(t+1)>r . \tag{19}
\end{equation*}
$$

Suppose @ is a grid of size s on a subspace H of R^{l} such that P and all the partial derivatives

$$
\frac{\partial^{t_{1}+\ldots+t_{l}}}{\partial X_{1}^{t_{1}} \ldots \partial X_{l}^{t_{l}}} P \quad \text { with } \quad t_{1}+\ldots+t_{l} \leqslant t
$$

vanish on ϱ. Then P vanishes identically on H.

Proof. After a linear transformation we may assume the basis vectors of the grid to be $\mathfrak{w}_{1}=(1,0, \ldots, 0), \ldots, \mathfrak{w}_{n}=(0, \ldots, 0,1,0)$. Putting $P\left(X_{1}, \ldots, X_{n}, 0\right)=Q\left(X_{1}, \ldots, X_{n}\right)$, we see: It will suffice to show that a polynomial Q of total degree $\leqslant r$ is identically zero, if Q and its mixed partial derivatives of order $\leqslant t$ vanish in the s^{n} integer points $\left(h_{1}, \ldots, h_{n}\right)$ where $\mathrm{I} \leqslant h_{i} \leqslant s$ $(1 \leqslant i \leqslant n)$.

If $n=1, Q$ has zeros of order $\geqslant t+1$ at $X_{1}=1,2, \ldots, s$, hence altogether counting multiplicities Q has at least $s(t+1)>r \geqslant \operatorname{deg} Q$ zeros, and Q is identically zero.

Now comes the induction from $n=1$ to n. It will suffice to show that $\left(X_{1}-h\right)^{t+1}$ divides $Q\left(X_{1}, \ldots, X_{n}\right)$ for $h=1,2, \ldots, s$, because this implies that the product $\left(X_{1}-1\right)^{t+1} \ldots$ $\left(X_{1}-s\right)^{t+1}$ divides $Q(\ldots)$, and since here the divisor has degree $s(t+1)>r \geqslant \operatorname{deg} Q, Q \equiv 0$ follows.

Let e_{h} be the largest exponent with $\left(X_{1}-h\right)^{e_{h}} \mid Q$ (that is, $\left(X_{1}-h\right)^{e_{h}}$ divides Q), and put $e=\min \left(e_{1}, \ldots, e_{s}\right)$. We have to show that $e \geqslant t+1$.

Assume now $e \leqslant t$, and without loss of generality assume $e=e_{1} \leqslant t$. We may write

$$
\begin{equation*}
Q\left(X_{1}, \ldots, X_{n}\right)=\left(X_{1}-1\right)^{e_{1}} \ldots\left(X_{1}-s\right)^{e_{s}} R\left(X_{1}, \ldots, X_{n}\right) \tag{20}
\end{equation*}
$$

The degree of R is at most $r-e_{1}-\ldots-e_{s} \leqslant r-e s$. After taking the partial derivative with respect to X_{1} of order $e=e_{1}$ and putting $X_{1}=1$ afterwards, the right-hand side of (20) becomes

$$
e!(1-2)^{e_{2}} \ldots(1-s)^{e_{s}} R\left(1, X_{2}, \ldots, X_{n}\right)
$$

Now every mixed partial derivative of the polynomial $R\left(1, X_{2}, \ldots, X_{n}\right)$ in $n-1$ variables of order $\leqslant t-e$ vanishes in each of the integer points $\left(h_{2}, \ldots, h_{n}\right)$ where $1 \leqslant h_{i} \leqslant s(2 \leqslant i \leqslant n)$. Since

$$
s(t-e+1)>r-e s
$$

our inductive assumption gives $R\left(1, X_{2}, \ldots, X_{n}\right) \equiv 0$. This can only be so if

$$
\left(X_{1}-1\right) \mid R\left(X_{1}, \ldots, X_{n}\right)
$$

whence $\left(X_{1}-1\right)^{e_{1}+1} \mid Q$, and this contradicts our choice of e_{1}.
Lemma 4. Let the polynomial $P \in \Re$ be of total degree $\leqslant r_{h}$ in $X_{h 1}, \ldots, X_{h l}(1 \leqslant h \leqslant m)$. We may write $P\left(X_{11}, \ldots, X_{11} ; \ldots ; X_{m 1}, \ldots, X_{m l}\right)=P\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{m}\right)$ where $\mathfrak{X}_{n}=\left(X_{h 1}, \ldots, X_{h l}\right)$, and interprete P as a function on the m-fold product space $R^{l} \times \ldots \times R^{l}$.

Now let H_{1}, \ldots, H_{m} be subspaces of dimension $n=l-1$ of R^{l}, and let ϱ_{n} on H_{h} be a grid of size $s_{h}(1 \leqslant h \leqslant m)$. Let $T=H_{1} \times \ldots \times H_{m}$ be the subspace of $R^{l} \times \ldots \times R^{l}$ consisting of all $\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{m}\right)$ with $\mathfrak{X}_{h} \in H_{h}(1 \leqslant h \leqslant m)$, and let $\varrho^{*}=\varrho_{1} \times \ldots \times \varrho_{m}$ consist of all $\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{m}\right)$ with $\mathfrak{X}_{h} €_{\varrho_{h}}(1 \leqslant h \leqslant m)$. Let t_{1}, \ldots, t_{m} be integers with

$$
\begin{equation*}
s_{h}\left(t_{h}+1\right)>r_{h} \tag{21}
\end{equation*}
$$

such that P and the partial derivatives (more precisely, partial derivatives except for constant factors)

$$
p^{\mathfrak{I}} \text { where } \mathfrak{I}=\left(t_{11}, \ldots, t_{m l}\right) \text { with } t_{h 1}+\ldots+t_{h l} \leqslant t_{h}(1 \leqslant h \leqslant m)
$$

vanish on ϱ^{*}. Then P is identically zero on T.
Proof. This lemma is easily proved by using Lemma 3 and induction on m.
2.4. The index with respect to certain rational linear forms. Suppose $n \geqslant 1$ and $\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}$ are linearly independent integer points in R^{l} where $l=n+1$. Except for a factor ± 1, there is exactly one linear form $M=m_{1} X_{1}+\ldots+m_{l} X_{l} \neq 0$ where m_{1}, \ldots, m_{l} are coprime rational integers, having

$$
M\left(\mathfrak{w}_{i}\right)=m_{1} w_{i l}+\ldots+m_{l} w_{i l}=0 \quad(1 \leqslant i \leqslant n) .
$$

Write

$$
\begin{equation*}
M=M\left\{\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}\right\} \tag{22}
\end{equation*}
$$

Put

$$
|M|=\max \left(\left|m_{1}\right|, \ldots,\left|m_{i}\right|\right)
$$

Theorem 10. Let c_{1}, \ldots, c_{l} be reals having

$$
\begin{equation*}
\left|c_{i}\right| \leqslant 1 \quad(i=1, \ldots, l) ; \quad c_{1}+\ldots+c_{l}=0 . \tag{23}
\end{equation*}
$$

Let $\varepsilon>0,0<\delta<1$ and

$$
\begin{equation*}
\delta>16 l^{2} \varepsilon \tag{24}
\end{equation*}
$$

Let L_{1}, \ldots, L_{l} be linear forms and $m ; r_{1}, \ldots, r_{m}$ integers satisfying the hypothesis of Theorem 9. Let E be the constant of part (iii) of that theorem, and P the polynomial described there.

Let Q_{1}, \ldots, Q_{m} be reals satisfying the inequalities

$$
\begin{equation*}
Q_{h}^{e}>2^{l} E, \quad Q_{h}^{e}>l\left(\varepsilon^{-1}+1\right) \quad(1 \leqslant h \leqslant m), \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
r_{1} \log Q_{1} \leqslant r_{h} \log Q_{n} \leqslant(\mathrm{l}+\varepsilon) r_{1} \log Q_{1} \quad(1 \leqslant h \leqslant m) . \tag{b}
\end{equation*}
$$

Finally, for $h=1, \ldots, m$, let $\mathfrak{w}_{h 1}, \ldots, \mathfrak{w}_{h n}$ be linearly independent integer points of R^{l} satisfying

$$
\begin{equation*}
\left|L_{j}\left(\mathfrak{w}_{h k}\right)\right| \leqslant Q_{h}^{c_{j}-\delta} \quad(1 \leqslant j \leqslant l ; 1 \leqslant k \leqslant n ; 1 \leqslant h \leqslant m) . \tag{c}
\end{equation*}
$$

Then P has index at least $m \varepsilon$
with respect to $\left(M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}\right)$ where $M_{h}(h=1, \ldots, m)$ is the linear form in $X_{h 1}, \ldots, X_{n t}$ given by $M_{h}=M\left\{\mathfrak{w}_{h 1}, \ldots, \mathfrak{w}_{h n}\right\}$.

Remark. The advantage of this theorem as compared with the corresponding Satz 9 in [6] is the absence of a condition $Q_{h}^{\varepsilon} \geqslant\left(r_{h}+1\right) l(1 \leqslant h \leqslant m)$. Such a condition is a serious disadvantage, since in the applications r_{1} has order of magnitude $\log Q_{m}$, so the condition would require that Q_{1} is not too small compared to Q_{m}.

Proof. By Lemma 1 it will suffice to show that $P^{\mathfrak{F}}$ is identically zero on T provided $(\mathfrak{\Im} / \mathfrak{r})<\varepsilon m$. Putting

$$
\varrho_{h}=\varrho\left(\left[\varepsilon^{-1}\right]+1 ; \mathfrak{w}_{h 1}, \ldots, \mathfrak{w}_{h n}\right)
$$

it will be enough by Lemma 4 to prove that

$$
\left(P^{\mathfrak{V}}\right)^{\mathfrak{I}}\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{m}\right)=0
$$

for $\mathfrak{v}_{h} \in \varrho_{h}$ and $\mathfrak{I}=\left(t_{11}, \ldots, t_{m l}\right)$ satisfying $t_{h 1}+\ldots+t_{h l} \leqslant\left[r_{h} \varepsilon\right]$, because $s_{h}=\left[\varepsilon^{-1}\right]+1$ and $t_{h}=\left[r_{h} \varepsilon\right]$ satisfy the inequality (21). Since

$$
\varepsilon m+\left[r_{1} \varepsilon\right] / r_{1}+\ldots\left[r_{m} \varepsilon\right] / r_{m} \leqslant 2 \varepsilon m,
$$

it will suffice to verify that

$$
\begin{equation*}
P^{\mathfrak{J}}\left(\mathfrak{b}_{1}, \ldots, \mathfrak{v}_{m}\right)=0 \tag{25}
\end{equation*}
$$

for $\mathfrak{v}_{h} \varrho_{\varrho_{h}}(1 \leqslant h \leqslant m)$ and $(\mathfrak{\Im} / \mathfrak{r})<2 \varepsilon m$.
The left-hand side of (25) may be written

$$
\begin{equation*}
\sum_{j_{1} \ldots j_{m l}} d^{\Im}\left(j_{11}, \ldots, j_{m l}\right) L_{1}\left(\mathfrak{v}_{1}\right)^{j_{11}} \ldots L_{l}\left(\mathfrak{v}_{1}\right)^{j_{11}} \ldots L_{1}\left(\mathfrak{v}_{m}\right)^{j_{m 1}} \ldots L_{l}\left(\mathfrak{v}_{m}\right)^{j_{m l}} \tag{26}
\end{equation*}
$$

By (24), (a) and (c),

$$
\begin{equation*}
\left|L_{k}\left(\mathfrak{b}_{h}\right)\right| \leqslant Q_{h}^{c_{k}-\delta} l\left(\varepsilon^{-1}+1\right) \leqslant Q_{h}^{c_{k}-\delta+\varepsilon} \leqslant Q_{h}^{c_{k}-15 l^{2} \varepsilon} \quad(1 \leqslant k \leqslant l ; \quad 1 \leqslant h \leqslant m) \tag{27}
\end{equation*}
$$

Furthermore, by part (iv) of Theorem 9 and by (b), indices $j_{11}, \ldots, j_{m l}$ having $d \Im\left(j_{11}, \ldots, j_{m l}\right) \neq 0$ satisfy

$$
\begin{aligned}
\sum_{n=1}^{m} j_{n k} \log Q_{h} & \geqslant r_{1} \log Q_{1} \sum_{n=1}^{m} j_{n k} r_{n}^{-1} \geqslant r_{1} \log Q_{1}\left(l^{-1}-3 l \varepsilon\right) m \\
\sum_{n=1}^{m} j_{h k} \log Q_{h} & \leqslant(1+\varepsilon) r_{1} \log Q_{1} \sum_{n=1}^{m} j_{h k} r_{h}^{-1} \\
& \leqslant r_{1} \log Q_{1}(1+\varepsilon)\left(l^{-1}+3 l \varepsilon\right) m \leqslant r_{1} \log Q_{1}\left(l^{-1}+7 l \varepsilon\right) m
\end{aligned}
$$

whence

$$
\left|\sum_{h=1}^{m} j_{n k} \log Q_{h}-r_{1} \log Q_{1} l^{-1} m\right| \leqslant 7 l m \varepsilon r_{1} \log Q_{1} \quad(1 \leqslant k \leqslant l)
$$

Combining this with (27) we get

$$
\left|L_{k}\left(\mathfrak{v}_{1}\right)^{j_{1 k}} \ldots L_{k}\left(\mathfrak{v}_{m}\right)^{j_{m k}}\right| \leqslant Q_{1}^{r_{1} l-1 m\left(c_{k}-15 t^{\left.\varepsilon_{\varepsilon}\right)+14 l m e r_{2}}\right.}=Q_{1}^{r l-1 m c_{k}-r_{1} l m \varepsilon}
$$

and each summand of (26) has absolute value

$$
\begin{aligned}
\leqslant E^{r_{1}+\ldots+r_{m}} Q_{1}^{r_{1} m l^{-1}\left(c_{1}+\ldots+c_{\mathcal{l}}-r_{1} m l^{z_{\varepsilon}}\right.}=E^{r_{1}+\ldots+r_{m}} Q_{1}^{-r_{1} m l^{\varepsilon_{\varepsilon}}} & \leqslant E^{r_{1}+\ldots+r_{m}}\left(Q_{1}^{-r_{1} \varepsilon} \ldots Q_{m}^{-r_{m} \varepsilon}\right)^{l^{2 /(1+\varepsilon)}} \\
& \leqslant\left(E Q_{1}^{-\varepsilon}\right)^{r_{1}} \ldots\left(E Q_{m}^{-\varepsilon}\right)^{r_{m}}
\end{aligned}
$$

by virtue of part (iii) of Theorem 10 and by (b). Since (26) has at most $2^{l\left(r_{1}+\ldots+\tau_{m}\right)}$ summands, we get

$$
\left|P^{\mathfrak{Y}}\left(\mathfrak{b}_{1}, \ldots, \mathfrak{v}_{m}\right)\right| \leqslant \prod_{h=1}^{m}\left(2^{l} E Q_{n}^{-\varepsilon}\right)^{r_{h}}<1
$$

by (a). The left-hand side of this inequality is a rational integer, hence is zero.
This proves Theorem 10.
2.5. A variant of Roth's Lemma.

Theorem 11. Let

$$
\begin{equation*}
\omega=\omega(m, \varepsilon)=24 \cdot 2^{-m}(\varepsilon / 12)^{2 m-1} \tag{28}
\end{equation*}
$$

where m is a positive integer and

$$
\begin{equation*}
0<\varepsilon<1 / 12 \tag{29}
\end{equation*}
$$

Let r_{1}, \ldots, r_{m} be positive integers such that

$$
\begin{equation*}
\omega r_{h} \geqslant r_{h+1} \quad(1 \leqslant h \leqslant m) . \tag{30}
\end{equation*}
$$

Let $M_{h}=m_{h 1} X_{h 1}+\ldots+m_{h l} X_{h l}(1 \leqslant h \leqslant m)$ be linear forms whose coefficients are relatively prime integers. Let $0<\tau \leqslant n$ and assume

$$
\begin{gather*}
\left|M_{h}\right|^{r_{h}} \geqslant\left|M_{1}\right|^{r_{1} \tau} \quad(1 \leqslant h \leqslant m), \tag{31}\\
\left|M_{h}\right|^{\omega \tau} \geqslant 2^{3 m n^{2}} \quad(1 \leqslant h \leqslant m) . \tag{32}
\end{gather*}
$$

Let $P\left(X_{11}, \ldots, X_{1 l} ; \ldots ; X_{m 1}, \ldots, X_{m l}\right) \neq 0$ be a polynomial with rational integral coefficients which is a form in $X_{h 1}, \ldots, X_{h 1}$ of degree $r_{h}(1 \leqslant h \leqslant m)$ and which satisfies

$$
\begin{equation*}
|P|^{n^{2}} \leqslant\left|M_{1}\right|^{\omega r_{1} \tau} . \tag{33}
\end{equation*}
$$

Then the index of P with respect to $\left(M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}\right)$ is at most ε.
Proof. This is Satz 11 of [6].

3. Proof of Theorem 6

3.1. Two lemmas.

Lemma 5. Let $l=n+1$, let $\mathfrak{u}_{1}, \ldots, \mathfrak{u}_{n}$ be vectors of $R^{l}, \mathfrak{u}_{i}=\left(u_{i 1}, \ldots, u_{i l}\right)(1 \leqslant i \leqslant n)$ and let U_{1}, \ldots, U_{l} be the $n \times n$ subdeterminants of the matrix $\left(u_{i j}\right)(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant l)$. Similarly, let $\mathfrak{p}_{1}, \ldots, \mathfrak{b}_{n}$ be vectors and V_{1}, \ldots, V_{l} subdeterminants of $\left(v_{i j}\right)$. Then

$$
\left|\begin{array}{ccc}
\mathfrak{u}_{1} \mathfrak{b}_{1} \ldots \mathfrak{u}_{1} \mathfrak{v}_{n} \tag{1}\\
\ldots & \\
\mathfrak{u}_{n} \mathfrak{b}_{1} \ldots & \mathfrak{u}_{n} \mathfrak{b}_{n}
\end{array}\right|=U_{1} V_{1}+\ldots+U_{l} V_{l}
$$

Proof. Without doubt, this lemma in some disguised form may be found in the literature. A simple proof is as follows.

Both the left and right-hand side of (1) are linear functions in each of the vectors \mathfrak{H}_{i} and each of the vectors \mathfrak{v}_{j}. It therefore suffices to verify the equation if the \mathfrak{u} 's as well as the \mathfrak{v} 's are taken from a fixed orthonormal basis $\mathfrak{e}_{1}, \ldots, \mathfrak{e}_{l}$ of R^{l}. Both sides are zero unless $\mathfrak{u}_{1}, \ldots, \mathfrak{u}_{n}$ consist of n distinct basis vectors, the $\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{n}$ consist of n basis vectors and furthermore the set $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n}$ is identical with the set $\mathfrak{b}_{1}, \ldots, \mathfrak{v}_{n}$. Now both sides of (1) are +1 or -1 depending on whether $\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{n}$ is an even or odd permutation of $\mathfrak{u}_{1}, \ldots, \mathfrak{u}_{n}$.

Lemma 6. Let $l=n+1$, and let $L_{1}, \ldots, L_{l} ; S$ be proper in the sense explained in § l.4. Let c_{1}, \ldots, c_{l} be real numbers having

$$
\begin{equation*}
c_{1}+\ldots+c_{l}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|c_{i}\right| \leqslant 1 \text { for } i=1, \ldots, l \text { and } c_{i} \geqslant 0 \text { for } i \in S \tag{3}
\end{equation*}
$$

Let $\delta>0, Q>0$ and let $\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}$ be linearly independent integer points of R^{t} satisfying

$$
\begin{equation*}
\left|L_{i}\left(\mathfrak{w}_{j}\right)\right| \leqslant Q^{c_{i}-\delta} \quad(1 \leqslant i \leqslant l, 1 \leqslant j \leqslant n) . \tag{4}
\end{equation*}
$$

Then

$$
M=M\left\{\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}\right\}
$$

satisfies

$$
\begin{equation*}
Q^{C_{1}} \leqslant|M| \leqslant Q^{C_{3}} \tag{5}
\end{equation*}
$$

provided $Q \geqslant C_{3}$.
Here $C_{i}=C_{i}\left(\delta, L_{1}, \ldots, L_{i}\right)>0(i=1,2,3)$.
Proof. Using the vectors $\mathfrak{w}_{1}, \ldots, \mathfrak{m}_{n}$, construct the determinants W_{1}, \ldots, W_{l} as in Lemma 5. Then putting $M_{k}=W_{k} / W(1 \leqslant k \leqslant l)$ where W is the greatest common divisor of W_{1}, \ldots, W_{l}, one has

$$
M=M_{1} X_{1}+\ldots+M_{l} X_{l}
$$

By (4) and since $\left|c_{i}\right| \leqslant 1$, each component $w_{j k}$ of \mathfrak{w}_{j} satisfies $\left|w_{j k}\right| \leqslant C_{4} Q$, whence $\left|W_{k}\right| \leqslant C_{5} Q^{n}$ and $|M| \leqslant C_{5} Q^{n} \leqslant Q^{n+1}$ if Q is large.

As for the lower bound, suppose a particular M_{k} is $\neq 0$. By condition (iii) of proper systems, there is an $i \in S$ with $A_{i k} \neq 0$, and by (ii), the non-zero elements among

$$
A_{i 1}, \ldots, A_{i k}, \ldots, A_{i l}
$$

are linearly independent over \mathbf{Q}. For this particular $i, c_{1}+\ldots+c_{i-1}+c_{i+1}+\ldots+c_{l} \leqslant 0$ by (2) and (3), and by (4),

$$
\left|\left|\begin{array}{l}
L_{1}\left(\mathfrak{w}_{1}\right) \ldots L_{i-1}\left(\mathfrak{w}_{1}\right) L_{i+1}\left(\mathfrak{w}_{1}\right) \ldots L_{l}\left(\mathfrak{w}_{1}\right) \tag{6}\\
\ldots \\
L_{1}\left(\mathfrak{w}_{n}\right) \ldots L_{i-1}\left(\mathfrak{w}_{n}\right) L_{i+1}\left(\mathfrak{w}_{n}\right) \ldots . \\
L_{l}\left(\mathfrak{w}_{n}\right)
\end{array}\right|\right| \leqslant n!Q^{-n \delta}
$$

On the other hand, by Lemma 5, the left-hand side of (6) equals
whence

$$
\begin{gather*}
\left|W_{1} A_{i 1}+\ldots+W_{l} A_{i l}\right| \\
\left|M_{1} A_{i 1}+\ldots+M_{k} A_{i k}+\ldots+M_{l} A_{i l}\right| \leqslant n!Q^{-n \delta} . \tag{7}
\end{gather*}
$$

Let $K_{i}=\mathbf{Q}\left(A_{i 1}, \ldots, A_{i l}\right)$ have degree d_{i}, and let d be $\max d_{i}$, taken over all $i \in S$. Since $M_{k} \neq 0, A_{i k} \neq 0$, and since the non-zero elements among $A_{1}, \ldots, A_{i l}$ are linearly independent over $\mathbb{Q}, M_{1} A_{i 1}+\ldots+M_{l} A_{i l}$ is not zero, and in fact its norm (from K_{i} to \mathbb{Q}) has absolute value $\geqslant C_{6}$. Since each conjugate has absolute value $\leqslant C_{7}|M|$, we may conclude that $\left|M_{1} A_{i 1}+\ldots+M_{l} A_{i l}\right| \geqslant C_{8}|M|^{1-d_{i}} \geqslant C_{8}|M|^{1-d}$. For large Q, the last inequality combined with (7) yields $d>1$ and $|M| \geqslant C_{9} Q^{n \delta /(d-1)} \geqslant Q^{\delta / d}$.
3.2. Reductions of the problem.

It suffices to prove Theorem 6 in the special case where

$$
\begin{equation*}
A_{i}=Q^{c_{i}} \quad(1 \leqslant i \leqslant l) \tag{8}
\end{equation*}
$$

and c_{1}, \ldots, c_{l} are fixed constants subject to the conditions (2) and (3).
To prove this statement, we remark that because of $A_{1} A_{2} \ldots A_{l}=1$, we may restrict ourselves to numbers Q satisfying not only $Q \geqslant \max \left(A_{1}, \ldots, A_{l}\right)$ but also

$$
Q \geqslant \max \left(A_{1}^{-1}, \ldots, A_{l}^{-1}\right)
$$

Then $A_{i}=Q^{c_{i}}(i=1, \ldots, l)$ where c_{1}, \ldots, c_{l} satisfy (2) and (3), but of course these c_{1}, \ldots, c_{l} will in general depend on A_{1}, \ldots, A_{l}.

Now let N be an integer $>2 / \delta$, and put $\eta=N^{-1}$; then $0<\eta<\delta / 2$. Write $\mathbf{Z} \eta$ for the set of integral multiples of η. There are $c_{1}^{\prime}, \ldots, c_{l}^{\prime}$, all lying in $\mathbf{Z} \eta$, such that

$$
c_{1}^{\prime}+\ldots+c_{l}^{\prime}=0, \quad\left|c_{i}^{\prime}-c_{i}\right|<\eta \quad(i=1, \ldots, l)
$$

Since all integers are in $\mathbf{Z} \eta$, one has again

$$
\left|c_{i}^{\prime}\right| \leqslant 1(i=1, \ldots, l) \quad \text { and } c_{i}^{\prime} \geqslant 0 \text { if } i \in S
$$

Put $A_{i}^{\prime}=Q^{c_{i}^{\prime}}(i=1, \ldots, l)$. Then $A_{1}^{\prime} \ldots A_{l}^{\prime}=1, A_{i}^{\prime} \geqslant 1$ if $i \in S$. Furthermore, if the nth successive minimum λ_{n}^{\prime} of $\left|L_{i}(x)\right| \leqslant A_{i}^{\prime}(i=1, \ldots, l)$ has $\lambda_{n}^{\prime}>Q^{-\delta / 2}$, then the nth minimum λ_{n} of $\left|L_{i}(\mathfrak{c})\right| \leqslant A_{i}(i=1, \ldots, l)$ satisfies $\lambda_{n}>Q^{-\delta}$. It therefore suffices to prove the theorem with δ replaced by $\delta / 2$ and with c_{1}, \ldots, c_{l} in the finite set of l-tuples having $c_{i} \in \mathbf{Z} \eta$ and $\left|c_{i}\right| \leqslant 1$. Hence it is enough to prove the theorem for a particular such l-tuple.

It suffices to prove Theorem 6 when the coefficients $\alpha_{i j}$ of L_{1}, \ldots, L_{l} are algebraic integers.

Namely, there is always a rational integer $q>0$ such that the forms $q L_{1}, \ldots, q L_{l}$ all have integral coefficients. If $L_{1}, \ldots, L_{l} ; S$ are proper, then so are $q L_{1}, \ldots, q L_{i} ; S$. Our reduction now follows from the remark that the successive minima of $\left|q L_{i}(\mathfrak{x})\right| \leqslant A_{i}(i=1, \ldots, l)$ are q^{-1} times the successive minima of $\left|L_{i}(x)\right| \leqslant A_{i}(i=1, \ldots, l)$.
3.3. Proof of Theorem 6. Let c_{1}, \ldots, c_{l} be constants satisfying (2) and (3). Let $9 \mathfrak{A}$ be the set of reals $Q>1$ such that there are n linearly independent integer points $\mathfrak{w}_{1}, \ldots, \mathfrak{w}_{n}$ having

$$
\begin{equation*}
\left|L_{i}\left(\mathfrak{w}_{j}\right)\right| \leqslant Q^{c_{i}-\delta} \quad(1 \leqslant i \leqslant l, 1 \leqslant j \leqslant n) . \tag{9}
\end{equation*}
$$

We have to show that the set \mathfrak{M} is bounded.
We may clearly assume $0<\delta<1 / 12$. Pick $\varepsilon>0$ small enough to satisfy

$$
\begin{equation*}
\delta>16 l^{2} \varepsilon \tag{10}
\end{equation*}
$$

Then also $0<\varepsilon<1 / 12$. Next, pick an integer m so large that

$$
\begin{equation*}
m \geqslant 4 \varepsilon^{-2} \log (2 l \Delta) \tag{11}
\end{equation*}
$$

where Δ is the maximum of the degrees Δ_{i} of $K_{i}=\mathbf{Q}\left(\alpha_{i 1}, \ldots, \alpha_{i l}\right)$. Further set

$$
\begin{equation*}
\omega=24 \cdot 2^{-m}(\varepsilon / 12)^{2 m-1} . \tag{12}
\end{equation*}
$$

Now $\varepsilon<1$ and $m \geqslant 1$ implies $\omega<1$.
In what follows, D, E will be the constants of parts (ii), (iii) of Theorem 9 , and C_{1}, C_{2}, C_{3} the constants of Lemma 6.

We argue indirectly and assume that \mathfrak{M} is unbounded. There is then a Q_{1} in \mathfrak{M} such that

$$
\begin{gather*}
Q_{1}^{\epsilon}>2^{l} E, \quad Q_{1}^{\epsilon}>l\left(\varepsilon^{-1}+1\right), \tag{13-14}\\
Q_{1}>C_{3}, \quad Q_{1}^{C_{1}^{l} \omega}>2^{3 m n^{2} C_{3}}, \quad Q_{1}^{C_{1}^{\xi} \omega}>D^{m n^{2} C_{2}} \tag{15-17}
\end{gather*}
$$

We also may pick Q_{2}, \ldots, Q_{m} in \mathfrak{M} satisfying

$$
\begin{equation*}
\frac{1}{2} \omega \log Q_{h+1}>\log Q_{h} \quad(1 \leqslant h<m) \tag{18}
\end{equation*}
$$

In particular this implies

$$
\begin{equation*}
Q_{1}<\ldots<Q_{m} \tag{19}
\end{equation*}
$$

Let r_{1} be an integer so large that

$$
\varepsilon r_{1} \log Q_{1} \geqslant \log Q_{m}
$$

and for $h=2,3, \ldots, m$ put $\quad r_{h}=\left[r_{1} \log Q_{1} / \log Q_{h}\right]+1$.
This choice of r_{1}, \ldots, r_{m} implies

$$
\begin{equation*}
r_{1} \log Q_{1} \leqslant r_{h} \log Q_{h} \leqslant(1+\varepsilon) r_{1} \log Q_{1} \quad(1 \leqslant h \leqslant m) . \tag{20}
\end{equation*}
$$

By virtue of (18) and (20), $\quad \omega r_{h} \geqslant 2(1+\varepsilon)^{-1} r_{h+1} \geqslant r_{h+1}$.

Our linear forms L_{1}, \ldots, L_{l} as well as ε, m and r_{1}, \ldots, r_{m} satisfy all the hypotheses of Theorem 9. Let $P\left(X_{11}, \ldots, X_{m l}\right)$ be the polynomial described in that theorem. Now the hypotheses of Theorem 10 are also satisfied.

Conditions (2.23), (2.24) (i.e. formulae (23), (24) of chapter 2) of Theorem 10 follow from (2), (3) and (10), while (a), (b) follow from (13), (14), (19) and (20). By definition of \mathfrak{M} and since $Q_{h} \in \mathfrak{M}$, there exist for each $h, \mathbf{l} \leqslant h \leqslant m$, linearly independent integer points $\mathfrak{w}_{h 1}, \ldots, \mathfrak{w}_{h n}$ such that (c) holds. Let M_{1}, \ldots, M_{m} be the linear forms of Theorem 10 . Then we have
P has index at least $m \varepsilon$ with respect to $\left(M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}\right)$.
By Lemma 6 and since $Q_{h} \geqslant C_{3}$,

$$
\begin{equation*}
Q_{h}^{C_{1}} \leqslant\left|M_{h}\right| \leqslant Q_{h}^{C_{2}} \quad(1 \leqslant h \leqslant m) \tag{22}
\end{equation*}
$$

whence

$$
\left|M_{h}\right|^{r_{n}} \geqslant Q_{n}^{r_{h} C_{1}} \geqslant Q_{1}^{r_{1} C_{1}} \geqslant\left|M_{1}\right|^{r_{1} C_{1} / C_{2}}
$$

and this gives

$$
\begin{equation*}
\left|M_{h}\right|^{r_{h} \geqslant} \geqslant\left|M_{1}\right|^{r_{1} \tau} \quad(1 \leqslant h \leqslant m) \tag{23}
\end{equation*}
$$

with $\tau=C_{1} / C_{2}$. Furthermore,

$$
\begin{equation*}
\left|M_{h}\right|^{\omega \tau} \geqslant Q_{h}^{\omega \tau C_{1}} \geqslant 2^{3 m n^{2}} \quad(1 \leqslant h \leqslant m) \tag{24}
\end{equation*}
$$

by (16), (19) and (22). By Theorem 9 ,

$$
|P| \leqslant D^{r_{1}+\ldots+r_{m}} \leqslant D^{m r_{1}}
$$

and because of (17) and (22) this implies

$$
\begin{equation*}
|P|^{n^{2}} \leqslant D^{m n^{2} r_{1}} \leqslant Q_{1}^{\omega r_{1} C_{1}^{z} / C_{2}} \leqslant\left|M_{1}\right|^{\omega r_{1} C_{1} / C_{2}}=\left|M_{1}\right|^{\omega r_{1} \tau} . \tag{25}
\end{equation*}
$$

By our choice of ε and ω and by (21), $\varepsilon, m, \omega, r_{1}, \ldots, r_{m}$ satisfy the hypotheses of Theorem 11. Also τ, the linear forms M_{1}, \ldots, M_{m} and the polynomial P satisfy the conditions. The inequalities (2.31), (2.32), (2.33) of Theorem 11 are our inequalities (23), (24) and (25). We therefore conclude:
P has index at most ε with respect to $\left(M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}\right)$.
Since $m>1$, this contradicts the lower bound for the index given earlier. The assumption that \mathfrak{M} is unbounded was therefore wrong, and Theorem 6 holds.

4. Proof of the main theorems

4.1. Davenport's Lemma.

Lemma 7. Let L_{1}, \ldots, L_{l} be linear forms of determinant 1 , and let $\lambda_{1}, \ldots, \lambda_{l}$ denote the successive minima of the parallelopiped defined by

$$
\begin{equation*}
\left|L_{j}(\mathfrak{x})\right| \leqslant 1 \quad(1 \leqslant j \leqslant l . \tag{1}
\end{equation*}
$$

Suppose $\varrho_{1}, \ldots, \varrho_{l}$ satisfy

$$
\begin{gather*}
\varrho_{1} \varrho_{2} \ldots \varrho_{l}=1, \tag{2}\\
\varrho_{1} \geqslant \varrho_{2} \geqslant \ldots \geqslant \varrho_{l}>0, \tag{3}\\
\varrho_{1} \lambda_{1} \leqslant \varrho_{2} \lambda_{2} \leqslant \ldots \leqslant \varrho_{l} \lambda_{l} . \tag{4}
\end{gather*}
$$

Then, after a suitable permutation of L_{1}, \ldots, L_{l}, the successive minima $\lambda_{1}^{\prime}, \ldots, \lambda_{l}^{\prime}$ of the new parallelopiped
satisfy

$$
\begin{gather*}
\varrho_{j}\left|L_{j}(\mathfrak{x})\right| \leqslant 1 \quad(1 \leqslant j \leqslant l) \tag{5}\\
2^{-l} \varrho_{j} \lambda_{j} \leqslant \lambda_{j}^{\prime} \leqslant 2^{1^{2}} l!\varrho_{j} \lambda_{j} \quad(1 \leqslant j \leqslant l) . \tag{6}
\end{gather*}
$$

Proof. We shall use the ideas of [2]. By a well-known Theorem of Minkowski (for example, see [1], chapter VIII, Theorem V),

$$
\begin{equation*}
\frac{1}{l!} \leqslant \lambda_{1} \ldots \lambda_{l} \leqslant 1, \quad \frac{1}{l!} \leqslant \lambda_{1}^{\prime} \ldots \lambda_{l}^{\prime} \leqslant 1 . \tag{7}
\end{equation*}
$$

Set $N(\mathfrak{x})=\max \left(\left|L_{1}(\mathfrak{x})\right|, \ldots,\left|L_{l}(\mathfrak{x})\right|\right)$ and let ${\underset{x}{1}}, \ldots, \mathfrak{x}_{l}$ be linearly independent integer points such that $N\left(\mathfrak{x}_{i}\right)=\lambda_{i}(i=1, \ldots, l)$. If \mathfrak{x} lies in the subspace S_{i} generated by $0, \mathfrak{x}_{1}, \ldots, \mathfrak{x}_{i}$, then $L_{1}(\mathfrak{x}), \ldots, L_{l}(\mathrm{x})$ satisfy $l-i$ independent linear conditions, the coefficients in which depend only on $\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{1}$.

We order L_{1}, \ldots, L_{l} in the following way. In the condition

$$
\begin{equation*}
U_{1} L_{1}+\ldots+U_{1} L_{l}=0 \tag{8}
\end{equation*}
$$

implied by $\mathfrak{x} \in S_{l-1}, U_{l}$ is the largest coefficient in absolute value. In the additional linear relation implied by $\mathfrak{c} \in S_{l-2}$, which we can take in the form

$$
\begin{equation*}
V_{1} L_{1}+\ldots+V_{l-1} L_{l-1}=0 \tag{9}
\end{equation*}
$$

V_{l-1} is to be the largest coefficient in absolute value, and so on.
Then if L_{1}, \ldots, L_{l} satisfy (8), we have

$$
\left|U_{l} L_{l}\right| \leqslant\left|U_{1} L_{1}\right|+\ldots+\left|U_{l-1} L_{l-1}\right|
$$

and so

$$
\left|L_{l}\right| \leqslant\left|L_{1}\right|+\ldots+\left|L_{l-1}\right|,
$$

whence

$$
\left|L_{1}\right|+\ldots+\left|L_{l-1}\right| \geqslant \frac{1}{2}\left(\left|L_{1}\right|+\ldots+\left|L_{l}\right|\right)
$$

If L_{1}, \ldots, L_{l} satisfy both (8) and (9), we have, similarly,

$$
\left|L_{1}\right|+\ldots+\left|L_{l-2}\right| \geqslant \frac{1}{2}\left(\left|L_{1}\right|+\ldots+\left|L_{l-1}\right|\right) \geqslant \frac{1}{4}\left(\left|L_{1}\right|+\ldots+\left|L_{l}\right|\right)
$$

and so on generally.

Now suppose x lies in S_{i} but not in $S_{i-1}(1 \leqslant i \leqslant l)$. Then $N(\mathfrak{x}) \geqslant \lambda_{i}$ and $L_{1}(\mathfrak{x}), \ldots, L_{l}(\mathfrak{x})$ satisfy $l-i$ linear relations, whence

$$
\left|L_{1}\right|+\ldots+\left|L_{i}\right| \geqslant 2^{i-l}\left(\left|L_{i}\right|+\ldots+\left|L_{l}\right|\right) \geqslant 2^{i-l} \lambda_{i}
$$

By (3) this yields

$$
\max \left(\varrho_{1}\left|L_{1}\right|, \ldots, \varrho_{l}\left|L_{l}\right|\right) \geqslant \max \left(\varrho_{1}\left|L_{1}\right|, \ldots, \varrho_{i}\left|L_{i}\right|\right) \geqslant \frac{1}{i} 2^{i-l} \varrho_{i} \lambda_{i} \geqslant 2^{-l} \varrho_{i} \lambda_{i}
$$

By (4), this inequality in fact holds for any \mathfrak{x} which is not in S_{i-1}. This shows $\lambda_{i}^{\prime} \geqslant 2^{-l} \varrho_{i} \lambda_{i}$. The lower bound for λ_{j}^{\prime} now follows from (2) and (7).
4.2. Proof of Theorem 7. Let the forms $L_{1}, L_{2}, L_{3}, M_{1}, M_{2}, M_{3}$ and the sets S, T satisfy the hypotheses of Theorem 7. If $S=\{1,2,3\}$, condition (1.21) implies $A_{1}=A_{2}=A_{3}=1$, the set (1.14) is a fixed set, and (1.20) certainly holds if Q is large. We may therefore assume that neither S nor T contains all three elements $1,2,3$. Since S and T are not empty and since $S \cap T$ is, S contains either one or two elements, and similarly for T.

There exist integers c_{1}, c_{2}, c_{3} with

$$
\begin{equation*}
c_{1}+c_{2}+c_{3}=0, \quad\left|c_{i}\right| \leqslant 2(i=1,2,3), \quad c_{i} \geqslant 1 \text { if } i \in S, \quad c_{j} \leqslant-1 \text { if } j \in T . \tag{10}
\end{equation*}
$$

Throughout this section, A_{1}, A_{2}, A_{3} will be positive reals with $A_{1} A_{2} A_{3}=1$ and

$$
\begin{equation*}
A_{i} \geqslant 1 \text { if } i \in S, \quad A_{j} \leqslant 1 \text { if } j \in T, \tag{11}
\end{equation*}
$$

i.e. (1.21). $\lambda_{1}, \lambda_{2}, \lambda_{3}$ will denote the successive minima of

$$
\begin{equation*}
\left|L_{i}(\underline{x})\right| \leqslant A_{i} \quad(i=1,2,3) \tag{12}
\end{equation*}
$$

and $\mu_{1}, \mu_{2}, \mu_{3}$ the successive minima of

$$
\begin{equation*}
\left|M_{i}(\mathfrak{X})\right| \leqslant A_{i}^{-1} \quad(i=1,2,3) \tag{13}
\end{equation*}
$$

The convex bodies defined by (12), (13), respectively, are polar to each other. By a wellknown Theorem of Mahler ([4], or see [l], chapter VIII, Theorem VI),

$$
\begin{equation*}
1 \leqslant \lambda_{j} \mu_{4-j} \leqslant 3!\quad(j=1,2,3) \tag{14}
\end{equation*}
$$

By the hypothesis of Theorem 7, one has

$$
\begin{equation*}
\lambda_{2}>Q^{-\delta} \tag{15}
\end{equation*}
$$

provided $Q \geqslant \max \left(A_{1}, A_{2}, A_{3}, C_{1}(\delta)\right)$. Similarly,

$$
\begin{equation*}
\mu_{2}>Q^{-\delta} \tag{16}
\end{equation*}
$$

provided $Q \geqslant \max \left(A_{1}^{-1}, A_{2}^{-1}, A_{3}^{-1}, C_{2}(\delta)\right.$. By virtue of (14), applied for $j=2$, and since $Q \geqslant \max \left(A_{1}, A_{2}, A_{3}\right)$ implies $Q^{2} \geqslant \max \left(A_{1}^{-1}, A_{2}^{-1}, A_{3}^{-1}\right)$, we therefore have

$$
\begin{equation*}
Q^{-\delta}<\lambda_{2}<Q^{\delta} \tag{17}
\end{equation*}
$$

if $Q \geqslant \max \left(A_{1}, A_{2}, A_{3}, C_{3}(\delta)\right)$.
Suppose now for some A_{1}, A_{2}, A_{3} satisfying all our conditions one has

$$
\begin{equation*}
\lambda_{1} \leqslant Q^{-15 \delta} \tag{18}
\end{equation*}
$$

where $Q \geqslant \max \left(A_{1}, A_{2}, A_{3}\right)$. Put

$$
\begin{equation*}
\bar{A}_{i}=A_{i} Q^{4 \delta c_{i}} \quad(i=1,2,3) \tag{19}
\end{equation*}
$$

Then $\bar{A}_{1} \bar{A}_{2} \bar{A}_{3}=1$ and

$$
\begin{equation*}
\bar{A}_{i} \geqslant Q^{4 \delta} \text { if } i \in S, \quad \bar{A}_{j} \leqslant Q^{-4 \delta} \text { if } j \in T, \tag{20}
\end{equation*}
$$

and $Q^{1+88} \geqslant \max \left(\bar{A}_{1}, \bar{A}_{2}, \bar{A}_{3}\right)$. The first minimum $\bar{\lambda}_{1}$ of the set

$$
\begin{equation*}
\left|L_{i}(\mathfrak{X})\right| \leqslant A_{i} \quad(i=1,2,3) \tag{21}
\end{equation*}
$$

satisfies $\bar{\lambda}_{1} \leqslant Q^{-7 \delta}$. By an inequality of the type (17), applied to $\bar{A}_{1}, \bar{A}_{2}, \bar{A}_{3}$, one has $Q^{-\delta}<\bar{\lambda}_{2}<Q^{\delta}$ if $Q \geqslant C_{4}(\delta)$.

Set

$$
\varrho_{1}=Q^{4 \delta}, \quad \varrho_{2}=Q^{-2 \delta}, \quad \varrho_{3}=Q^{-2 \delta} .
$$

Since $\varrho_{1} \bar{\lambda}_{1} \leqslant Q^{-3 \delta} \leqslant \varrho_{2} \bar{\lambda}_{2} \leqslant \varrho_{3} \bar{\lambda}_{3}$, Lemma 7 is applicable to the parallelopiped defined by (21). There is a permutation j_{1}, j_{2}, j_{3} of $1,2,3$ such that the successive minima $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}$ of the parallelopiped

$$
\begin{equation*}
\left|L_{i}(\mathfrak{x})\right| \leqslant \bar{A}_{i} \varrho_{j_{i}}^{-1}=A_{i}^{\prime} \quad(i=1,2,3) \tag{22}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
2^{-12} \varrho_{j} \bar{\lambda}_{j} \leqslant \lambda_{j}^{\prime} \leqslant 2^{12} \varrho_{j} \bar{\lambda}_{j} \quad(j=1,2,3) . \tag{23}
\end{equation*}
$$

In particular, $\lambda_{2}^{\prime} \leqslant 2^{12} Q^{-\delta}$.
One has $A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}=1$, and by (20) and the construction of $\varrho_{1}, \varrho_{2}, \varrho_{3}, A_{i}^{\prime} \geqslant 1$ if $i \in S$ and $A_{j}^{\prime} \leqslant 1$ if $j \in T$. Also note $Q^{1+12 \delta} \geqslant \max \left(A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right)$. Now suppose $Q>C_{3}(\delta / 2)$ and put $Q^{\prime}=Q^{1+12 \delta}$. Inequality (17) applied to the parallelopiped (22) and to Q^{\prime} yields $\lambda_{2}^{\prime} \geqslant Q^{\prime-\delta / 2}>$ $2^{12} Q^{-\delta}$ if Q is large. We thus have reached a contradiction, and (18) cannot hold if Q is large. Since $\delta>0$ was arbitrary, Theorem 7 is proved.

4.3. A general theorem.

Theorem 12. Let $L_{i}=\alpha_{i 1} X_{1}+\alpha_{i 2} X_{2}+\alpha_{i 3} X_{3}(i=1,2,3)$ be linear forms with algebraic coefficients and with determinant $\neq 0$, and let $M_{i}=\beta_{i 1} X_{1}+\beta_{i 2} X_{2}+\beta_{i 3} X_{3}$ be the adjoint forms. Let A, B be subsets of $\{1,2,3\}$ such that $A \cap B=\varnothing$ and assume that
(i) for $i \in A$, the non-zero elements among ($\alpha_{i 1}, \alpha_{i 2}, \alpha_{i 3}$) are linearly independent over \mathbf{Q};
(ii) for $j \in B$, the non-zero elements among ($\beta_{i 1}, \beta_{i 2}, \beta_{i 3}$) are linearly independent over \mathbf{Q};
(iii) for $k=1,2,3$, there is an $i \in A$ and $a j \in B$ such that $\alpha_{i k} \neq 0, \beta_{j k} \neq 0$.

Let $\varepsilon>0, \eta>0$. There are only finitely many integer points $\mathfrak{q} \neq 0$ such that

$$
\begin{gather*}
\left|L_{1}(\mathfrak{q}) L_{2}(\mathfrak{q}) L_{3}(\mathfrak{q})\right|<|\mathfrak{q}|^{-\varepsilon}, \tag{24}\\
\left|L_{i}(\mathfrak{q})\right|<|\mathfrak{q}|^{-\varepsilon} \text { for } i \in A, \tag{25}\\
\left|L_{j}(\mathfrak{q})\right| \geqslant \eta \text { for } j \in B, \tag{26}
\end{gather*}
$$

where $|\mathfrak{q}|=\max \left(\left|q_{1}\right|,\left|q_{2}\right|,\left|q_{3}\right|\right)$ if $\mathfrak{q}=\left(q_{1}, q_{2}, q_{3}\right)$.
Proof. $L_{1}, L_{2}, L_{3} ; B$ and $M_{1}, M_{2}, M_{3} ; A$ are proper. Without loss of generality we may assume that L_{1}, L_{2}, L_{3} have determinant 1. We may apply Theorem 6 and then Theorem 7 with $S=B, T=A$. As before we may assume that S, T contain one or two elements each.

Suppose now (24), (25), (26) hold. Set

$$
\begin{equation*}
A_{i}=\max \left(\left|L_{i}(\mathfrak{q})\right||\mathfrak{q}|^{\varepsilon / 3},|\mathfrak{q}|^{-5}\right) \quad \text { if } i \notin S=B \tag{27}
\end{equation*}
$$

Now if $i \in T=A$, then $i \notin S$, and by (25) one has $A_{i}<1$. By (24), if $|\mathfrak{q}|$ is sufficiently large and if $\varepsilon<1$,

$$
\prod_{j \in S}\left(\left|L_{j}(\mathfrak{q})\right||q|^{\varepsilon / 6}\right)<\min \left(|q|^{3},|q|^{-2 \varepsilon / 3} \prod_{i \in S}\left|L_{i}(\mathfrak{q})\right|^{-1}\right) \leqslant \prod_{i \in S} A_{i}^{-1}
$$

Hence one may for each $j \in S=B$ choose A_{j} such that $\left.\left|L_{j}(\mathfrak{q})\right||q|\right|^{\varepsilon / 6}<A_{j}$ and that $A_{1} A_{2} A_{3}=1$. By (26), $A_{j}>1$ if $j \in S=B$, at least if $|\mathfrak{q}|$ is large.

We have $\quad\left|L_{i}(\mathfrak{q})\right| \leqslant A_{i}|\mathfrak{q}|^{-\varepsilon / 6} \quad(i=1,2,3)$.
By (27), we have $|q|^{-5} \leqslant A_{i} \leqslant|q|^{2}$ if $i \notin S$. Since $A_{j} \geqslant 1$ if $j \in S$ and since $A_{1} A_{2} A_{3}=1$, one obtains $|\mathfrak{q}|^{10} \geqslant \max \left(A_{1}, A_{2}, A_{3}\right)$. Put $Q=|\mathfrak{q}|^{10}$. By virtue of (28), the first minimum λ_{1} of

$$
\begin{equation*}
\left|L_{i}(\mathfrak{y})\right| \leqslant A_{\mathfrak{i}} \quad(i=1,2,3) \tag{29}
\end{equation*}
$$

satisfies $\lambda_{1} \leqslant|q|^{-\varepsilon / 6}=Q^{-\varepsilon / 60}$. By Theorem 7 this cannot happens if $|q|$ and hence Q is large.

4.4. Proof of Theorem 1, 2 and 4.

Proof of Theorem 1. Let α, β be algebraic and $1, \alpha, \beta$ linearly independent over \mathbf{Q}. Set

$$
L_{1}=X_{1}-\alpha X_{3}, \quad L_{2}=X_{2}-\beta X_{3}, \quad L_{3}=X_{3}
$$

Theorem 12 applies with $A=\{1,2\}, B=\{3\}$. Now suppose $q>0$ and

$$
\begin{equation*}
\|\alpha q\| \cdot\|\beta q\| \cdot q^{1+\varepsilon<1} \tag{30}
\end{equation*}
$$

Choose $\mathfrak{q}=\left(p_{1}, p_{2}, q\right)$ such that $\left|L_{1}(\mathfrak{q})\right|=\|\alpha q\|,\left|L_{2}(\mathfrak{q})\right|=\|\beta q\|,\left|L_{3}(\mathfrak{q})\right|=q$. By Roth's Theorem, $\|\alpha q\|>q^{-1-\varepsilon / 3}$, whence by (30),

$$
\left|L_{2}(\mathfrak{q})\right|=\|\beta q\|<q^{-2 \varepsilon / 3}<|q|^{-\varepsilon / 2} \text { if } q \text { is large. }
$$

Since also $\left|L_{1}(\mathfrak{q})\right|<|\mathfrak{q}|^{-\varepsilon / 2}$, a relation of the type (25) but with exponent $-\varepsilon / 2$ instead of $-\varepsilon$ holds. Similarly, (30) implies a relation of the type (24). Since (26) with $\eta=1$ is obvious, there can be only a finite number of such integer points \mathfrak{q}, hence a finite number of positive integers q satisfying (30).

Proof of Theorem 2. Let α, β be as before and let $L_{1}=X_{1}, L_{2}=X_{2}, L_{3}=\alpha X_{1}+\beta X_{2}+X_{3}$. Theorem 13 applies with $A=\{3\}, B=\{1,2\}$.

Now suppose $q_{1} \neq 0, q_{2} \neq 0$ and

$$
\begin{equation*}
\left\|\alpha q_{1}+\beta q_{2}\right\| \cdot\left|q_{1} q_{2}\right|^{1+\varepsilon<1} \tag{31}
\end{equation*}
$$

Choose $\mathfrak{q}=\left(q_{1}, q_{2}, q_{3}\right)$ such that $L_{1}(\mathfrak{q})=q_{1}, L_{2}(\mathfrak{q})=q_{2},\left|L_{3}(\mathfrak{q})\right|=\left\|\alpha q_{1}+\beta q_{2}\right\|$. (26) with $\eta=1$ is obvious, and for large $|\mathfrak{q}|$, (31) implies relations of the type (24), (25). Hence by Theorem 12 there are only finitely many solutions.

Proof of Theorem 4. Suppose α, β, γ satisfy the hypotheses of Theorem 4, and let

$$
L_{1}=X_{1}, \quad L_{2}=\alpha X_{1}+X_{2}, \quad L_{3}=\beta X_{1}+\gamma X_{2}+X_{3}
$$

The adjoint forms are now

$$
M_{1}=X_{1}+\alpha^{\prime} X_{2}+\beta^{\prime} X_{3}, \quad M_{2}=X_{2}+\gamma^{\prime} X_{3}, \quad M_{3}=X_{3}
$$

where $\alpha^{\prime}=-\alpha, \gamma^{\prime}=-\gamma, \beta^{\prime}=\alpha \gamma-\beta$. Theorem 12 applies with $A=\{3\}, B=\{1\}$.
Now suppose $\mathfrak{q}=\left(q_{1}, q_{2}, q_{3}\right), q_{1}>0$ and

$$
\begin{equation*}
\left|\alpha q_{1}+q_{2}\right|<q_{1}^{-o}, \quad\left|\beta q_{1}+\gamma q_{2}+q_{3}\right|<q_{1}^{-\tau}, \tag{32}
\end{equation*}
$$

where $\varrho+\tau=1+\varepsilon>1$. For large q_{1} whence large $|q|$, (32) implies a relation of the type (24), but with exponent $-\varepsilon /(I+|\varrho|+|\tau|)$ instead of $-\varepsilon$. By Roth's Theorem, the number of solutions is finite unless $\varrho \leqslant 1$. Hence $\tau \geqslant \varepsilon$ and (32) implies a relation of the type (25). Obviously (26) holds with $\eta=1$. Hence by Theorem 12 there are only finitely many \mathfrak{q} satisfying our inequalities.
4.5. Proof of Theorem 5. Let α, β, γ be numbers satisfying the conditions of Theorem 5 . Let

$$
L_{1}=X_{1}-\alpha X_{4}, \quad L_{2}=X_{2}-\beta X_{4}, \quad L_{3}=X_{3}-\gamma X_{4}, \quad L_{4}=X_{4},
$$

and let M_{1}, \ldots, M_{4} be the adjoint forms, i.e.

$$
M_{1}=X_{1}, \quad M_{2}=X_{2}, \quad M_{3}=X_{3}, \quad M_{4}=\alpha X_{1}+\beta X_{2}+\gamma X_{3}+X_{4} .
$$

Set $S=\{4\}, T=\{1,2,3\} . L_{1}, \ldots, L_{4} ; S$ and $M_{1}, \ldots, M_{4} ; T$ are proper and Theorem 6 applies.

Let A_{1}, \ldots, A_{4} be positive reals with $A_{1} A_{2} A_{3} A_{4}=1$ and

$$
\begin{equation*}
A_{i} \leqslant 1 \text { for } i=1,2,3 ; \quad A_{4} \geqslant 1 \tag{33}
\end{equation*}
$$

Let $\lambda_{1}, \ldots, \lambda_{4}$ and μ_{1}, \ldots, μ_{4} denote the successive minima of the parallelopipeds

$$
\begin{equation*}
\left|L_{i}(x)\right| \leqslant A_{i} \quad(i=1, \ldots, 4) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|M_{i}(\mathfrak{x})\right| \leqslant A_{i}^{-1} \quad(i=1, \ldots, 4) \tag{35}
\end{equation*}
$$

respectively. By Mahler's Theorem,

$$
\begin{equation*}
1 \leqslant \lambda_{j} \mu_{5-j} \leqslant 4!\quad(j=1, \ldots, 4) \tag{36}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\lambda_{1}>A_{4}^{-1 / 9-\varepsilon} \tag{37}
\end{equation*}
$$

if A_{4} is large. Otherwise there is a $\mathfrak{q}=(\ldots, q) \neq 0$ having $\left|L_{i}(\mathfrak{q})\right| \leqslant A_{i} A_{4}{ }^{-1 / 9-\varepsilon}(i=1, \ldots, 4)$. Since $A_{1} A_{2} A_{3}=A_{4}^{-1}$, we may assume $A_{1} A_{2} \leqslant A_{4}^{-2 / 3}$.

$$
\|\alpha\|\|\cdot\| \beta q \| \cdot q^{1+\varepsilon} \leqslant A_{1} A_{4}^{-1 / 9-\varepsilon} A_{2} A_{4}^{-1 / 9-\varepsilon} A_{4}^{(1+\varepsilon)(8 / 9-\varepsilon)}<A_{4}^{-2 / 3-2 / 9-2 \varepsilon+8 / 9}<1
$$

By Theorem 1 this cannot happen if A_{4} hence q is large.

$$
\begin{equation*}
\text { By Theorem 6, } \quad \lambda_{3}>A_{4}^{-\varepsilon}, \quad \mu_{3}>A_{4}^{-\varepsilon} \tag{38}
\end{equation*}
$$

if A_{4} is large. Combining the inequalities written down so far with Minkowski's well-known inequality $1 / 4!\leqslant \mu_{1} \ldots \mu_{4} \leqslant 1$ ([1], chapter VIII, Theorem V), we see that

$$
\begin{equation*}
A_{4}^{-1 / 9-\varepsilon}<\mu_{2}<A_{4}^{\varepsilon}, \quad A_{4}^{-\varepsilon}<\mu_{3}<A_{4}^{1 / 9+\varepsilon}, \quad \mu_{4}<A_{4}^{1 / 9+\varepsilon} \tag{39}
\end{equation*}
$$

if A_{4} is large.
Lemma 8. Suppose A_{4} is large and

Then

$$
\begin{gather*}
A_{i} \leqslant A_{4}^{-1 / 9-\varepsilon} \quad(i=1,2,3) . \tag{40}\\
\mu_{1}>A_{4}^{-1 / 9-4 \varepsilon} \tag{41}
\end{gather*}
$$

Proof. Set

$$
\varrho_{1}=\varrho_{2}=\left(\mu_{3} / \mu_{2}\right)^{1 / 2}, \quad \varrho_{3}=\varrho_{4}=\left(\mu_{2} / \mu_{3}\right)^{1 / 2}
$$

Since

$$
\begin{equation*}
\varrho_{1} \mu_{1} \leqslant \varrho_{2} \mu_{2}=\varrho_{3} \mu_{3} \leqslant \varrho_{4} \mu_{4}, \tag{42}
\end{equation*}
$$

we may apply Lemma 7. There is a permutation j_{1}, \ldots, j_{4} of $1, \ldots, 4$ such that the successive minima $\mu_{1}^{\prime}, \ldots, \mu_{4}^{\prime}$ of

$$
\begin{equation*}
\left|M_{i}(\mathfrak{x})\right| \leqslant A_{i}^{-1} \varrho_{j_{i}}^{-1}=A_{i}^{\prime-1} \quad(i=1, \ldots, 4) \tag{43}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
2^{-70} \varrho_{j} \mu_{j} \leqslant \mu_{j}^{\prime} \leqslant 2^{70} \varrho_{j} \mu_{j} \quad(j=1, \ldots, 4) \tag{44}
\end{equation*}
$$

By (39), $\mu_{3} / \mu_{2} \leqslant A_{4}^{2 / 9+2 \varepsilon}$, and therefore by (40), $A_{i}^{\prime}=A_{i} \varrho_{i} \leqslant A_{4}^{-1 / 9-\varepsilon} A_{4}^{1 / 9+\varepsilon}=1 \quad(i=1,2,3)$. Also $A_{4}^{8 / 9-\varepsilon} \leqslant A_{4}^{\prime} \leqslant A_{4}^{10 / 9+\varepsilon}$.
4-672908 Acta mathematica. 119. Imprimé le 16 novembre 1967.

What we said earlier about (35) therefore also applies to the parallelopiped (43). Since by (42) and (44) μ_{2}^{\prime} and μ_{3}^{\prime} are of the same order of magnitude, we have $\mu_{2}^{\prime}<A_{4}^{\varepsilon}$, $\mu_{3}^{\prime}<A_{4}^{\varepsilon}$ if A_{4} is large. Using (44) again we obtain

$$
1 / 4!\leqslant \mu_{1}^{\prime} \mu_{2}^{\prime} \mu_{3}^{\prime} \mu_{4}^{\prime}<A_{4}^{2 \varepsilon} \mu_{1}^{\prime} \mu_{4}^{\prime} \leqslant 2^{140} A_{4}^{2 \varepsilon} \mu_{1} \mu_{4}<2^{140} A_{4}^{2 \varepsilon} A_{4}^{1 / 9+\varepsilon} \mu_{1}
$$

For large A_{4}, (41) follows.
Proof of Theorem 5. Let α, β, γ satisfy the conditions of Theorem 5. Suppose integers $q_{1} \neq 0, q_{2} \neq 0, q_{3} \neq 0$ satisfy

$$
\begin{equation*}
\left\|\alpha q_{1}+\beta q_{2}+\gamma q_{3}\right\| \cdot\left|q_{1} q_{2} q_{3}\right|^{5 / 3+\varepsilon<1} \tag{45}
\end{equation*}
$$

where $\varepsilon>0$. Choose $\mathfrak{q}=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ such that $\left|M_{i}(q)\right|=\left|q_{i}\right| \quad(i=1,2,3)$ and $\left|M_{4}(q)\right|=$ $\left\|\alpha q_{1}+\beta q_{2}+\gamma q_{3}\right\|$.

Put $\quad A_{i}=\left|q_{i}\right|^{-1}\left|q_{1} q_{2} q_{3}\right|^{-1 / 6-\varepsilon / 9} \quad(i=1,2,3), \quad A_{4}=\left|q_{1} q_{2} q_{3}\right|^{3 / 2+\varepsilon / 3}$.
Then $\quad A_{4}^{1 / 9+\varepsilon / 30}<\left|q_{1} q_{2} q_{3}\right|^{1 / 6+\varepsilon / 9} \leqslant A_{i}^{-1} \quad(i=1,2,3)$,
whence

$$
\begin{equation*}
A_{t} \leqslant A_{4}^{-1 / 9-\varepsilon / 30} . \tag{46}
\end{equation*}
$$

$$
A_{4}^{1 / 9+\varepsilon / 30}\left|q_{i}\right|=A_{i}^{-1}\left|q_{1} q_{2} q_{3}\right|^{-1 / 6-\varepsilon / 9+(3 / 2+\varepsilon / 3)(1 / 9+\varepsilon / 30)<A_{i}^{-1} \quad(i=1,2,3), ~}
$$

and therefore

$$
\left|M_{i}(\mathfrak{q})\right|=\left|q_{i}\right|<A_{i}^{-1} A_{4}^{-1 / 9-\varepsilon / 30}(i=1,2,3), \quad\left|M_{4}(\mathfrak{q})\right|<\left|q_{1} q_{2} q_{3}\right|^{-5 / 3-\varepsilon<A_{4}^{-1-1 / 9-\varepsilon / 30}}
$$

Therefore $\mu_{1}<A_{4}^{-1 / 9-\varepsilon / 30}$. On the other hand, since (46) is an inequality of the type (40), Lemma 8 implies $\mu_{1}>A_{4}^{-1 / 9-\varepsilon / 30}$.

Hence there are no solutions of our inequalities having large A_{4}, and (45) has only a finite number of solutions.

References

[1]. Cassels, J. W. S., An introduction to the geometry of numbers. Springer Grundlehren 99 (1959).
[2]. Davenport, H., Note on a result of Siegel. Acta arith., 2 (1937), 262-265.
[3]. Davenport, H. \& Schmidt, W. M., Approximation to real numbers by quadratic irrationals. Acta arith. To appear.
[4]. Mahler, K., Ein Übertragungsprinzip für konvexe Körper. Casopis pro pést. mat. a fys., 68 (1939), 93-102.
[5]. Rotн, K. F., Rational approximations to algebraic numbers. Mathematika, 2 (1955), 1-20.
[6]. Sohmidt, W. M., Zur simultanen Approximation algebraischer Zahlen durch rationale. Acta Math., 114 (1965), 159-209.
[7]. Wirsing, E., Approximation mit algebraischen Zahlen beschränkten Grades. J. Reine Angew. Math., 206 (1960), 67-77.

