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1. Introduction 

1.1. Main results. Throughout  this paper, I1@ will denote the distance of the real 

number 8 from the nearest integer. We shall prove the following results which represent 

extensions to simultaneous approximations of Roth ' s  famous theorem [5] on rational 

approximations to an algebraic irrationM ~. 

THEOREm 1. Let ~, fi be algebraic and 1, ~, fl linearly independent over the field o/ 

rationals Q. Then/or every e > 0 there are only finitely many positive integers q with 

Ilq~ll" llqHII" q~+~ < 1. (1) 

COROLLARY. Let ~, fl, e be as be/ore. There are only finitely many pairs o/ rationals 

PJq, P2/q satis/yinq 

Pl 

A dual to Theorem 1 is 

THEOR~I~ 2. Let ~, fl, e be as in Theorem 1. There are only finitely many pairs o/ 

rational integers ql #0,  q~ #0  with 

I[ql~+q~ll" Iqlq~l 1+~<1. (3) 

COROLSARY. Again let o~, fl, e be as in Theorem 1. There are only finitely many triples 

ql, q~, P o/rational integers with q = max  ( I ql 1, ] q, ] ) > 0 satis/ying 

lqlo~ +q2fl +pl <q-2-~. (4) 

1.2. Approximations by rationals or quadratic irrationals. Let co be either rational or 

a quadratic irrational. There is a polynomial/(t)  = xt~+ yt + z ~ O, unique u p  to a factor • 1, 
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whose coefficients x, y, z are eoprime integers and which is irreducible over the rationals, 

such that/(co) =0. Define the height H(eo) of eo by  

H(~) = m a x  (Ixl, lYl, Izl). (~) 

T H~ o a~,~z 3. Let ~ be algebraic, but not rational or a quadratic irrational, and let e > O. 

There are at most finitely many numbers w which are rationals or quadratic irrationals and 

which satis/y 

This theorem should be compared with a recent result of Davenport and the author 

[3] which asserts the existence of infinitely many numbers co of the type described above 

satisfying 
I~-o~1 <C(~)H(~)-~; (7) 

in fact in this latter result ~ can be any real number which is neither rational nor a qua- 

dratie irrational. (For results concerning approximations by algebraic numbers of degree 

~< k, see Wirsing [7]. Wirsing (unpublished as yet) also proved a general result of the type 

of Theorem 3, but  without best possible exponents.) 

Theorem 3 follows easily from the corollary to Theorem 2; by Roth's Theorem, we 

may restrict ourselves to quadratic irrationals 09. Let  

l ( t )  = ~ + ~ + z = x ( t  - o~) ( t -  ~') 

be the irreducible polynomial described above, and o '  the conjugate of w. Then Ix] ~< H(eo) 

and, as is easily seen, leo'x[ ~<2H(o~). If  (6) holds, then 

Ix~ +Y~ +zl  = Ix~176 I~  <([:~l + 2)H(e~176 -~-~/2 

if H(o)  is large. Since H(o)-2-~/~<(max (Ix], ]y]))-~-~% 

our inequality has only a finite number of solutions by the corollary of Theorem 2. 

1.3. Further results. 

T~]~OR]~M 4. Let a, fl, ? be algebraic, 1, fl, ? linearly independent and 1, ~, a ? - f l  

linearly independent over Q. Let ~ + 7: > 1. There are only finitely many triples o/ rational 

integers ql, q~, qa with ql >0 satis/ying 

laqi+q~l <~q~q, I&,+rg,+q,I <q;'. (s) 

This theorem appears to be more general than Theorems 1 or 2, since it involves three 

numbers cr fl, ?; but  actually it contains neither of them. Later  in section 4.3 we shall 

prove a general but  somewhat complicated theorem which contains Theorems 1, 2 and 4. 
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Notice t h a t  our conditions of l inear independence are necessary: For  1, fl, ~ this is 

ra ther  obvious. For  1, ~, ~ - f l ,  assume ~ ~> ~. For  sufficiently small  C, the  inequalities 

[~q~ +q~] <-<Cq;~, [(fl-aT)q~ +q31 <~Cqi" (9) 

imp ly  (8), and  (9) m a y  have  infinitely m a n y  solutions unless 1, ~, cr are l inearly 

independent .  

THEOREM 5. Let ~, fl, ~ be algebraic and 1, ~, fl, $ linearly independent over Q, and 

let ~>0 .  

There are only finitely many triples o~ non-zero integers ql, q2, qa having 

H gql -{-/~q2 ~- rqa H" [ qlq2 qa I s/a+e < 1. (]0) 

This theorem p robab ly  is not  best  possible; p robab ly  the  exponent  5 / 3 + ~  in (10) 

m a y  be replaced b y  1 + e. I a m  unable  to prove  the  analogue of Theorem 1 or 2 for three  

numbers  a, fl, ~. I cannot  prove  any  result  in this direction for more  t han  three  numbers .  

1.4. Auxiliary results. To prove  the ma in  results we shall derive some auxi l iary  theo- 

rems.  Le t  n >~ 1, 

l = n + l  , (11) 

and  let 5 1  = ~ 1 1 X 1  -~- . . .  -~- O~llXl, 

L l : o~ l lX  1 + ... + o~l iX l 

be linear forms. Denote  the  cofactor of ~ in the  ma t r ix  (ahk)(1 ~<h, k~<l) b y  Atj. 

Definition. Let  L 1 . . . . .  L~ be linear forms as above,  and  let S be a subset  of (1 . . . .  , l}. 

We say L 1 . . . . .  Ll; S are proper if 

(i) the  ~hk are algebraic and  det  (~hk) ~ 0  

(ii) for every  i E S, the non-zero elements  among  A il . . . .  , A ,  are l inearly independent  

over  Q. 

(iii) for every  k, 1 ~<k~<l, there is an iES with Aik40 .  

Of par t icular  interest  will be the  following examples.  

(1) l = 2 ,  L I = X  1-~X~, L2=X~, S= {2}./)1, L2; S are proper  if :r is an algebraic irra- 

tional. 

(2) 1=3, LI = X  1-o~X3, L2=X2-flX3, L3=Xs, S= (3}. Now L, ,  L2, L3; S are p roper  

if g, fl are algebraic and  1, ~, fl l inearly independent  over  Q. 
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(3) 1=3, LI=X~,  Ls=X~, L a = ~ X I §  S = { 1 ,  2}. i l ,  L2, La; S are proper  if 

~, fl are both  algebraic irrationals. 

T ~ ~ o R ]~ ~ 6. Suppose L 1 ..... Lz; S are proper, and A 1 ..... A z are positive reals satis/ying 

The set defined by 

A l A s  ... Az = 1, (12) 

A~>~I i/ iES.  (13) 

[Lj(~)I <As (l<j<l) (14) 

is a parallelopiped; denote its successive minima (in the sense o/ the Geometry o/Numbers) 

by 21 .. . .  ,2n, 2z. 

For every (~ > 0  there is then a Qo(~; L1 ..... Lz; S) such that 

q 

2n > Q-* (15) 

Q~>max (A 1 . . . .  , A~, Qo(O))- (16) 

Applying this theorem to our example 1) we obtain a lower bound for 21. Hence it 

is easy to see tha t  this part icular  case of Theorem 6 is equivalent  to Roth ' s  Theorem. 

Applying Theorem 6 to example 2) or 3) one only obtains a lower bound for 22 ra ther  

than  for 21, and hence one does not  immediate ly  obtain Theorem 1 or 2. The following 

transference principle allows one in this case to proceed from the inequal i ty  for 22 to an 

inequali ty for 21 . 

THE OREM 7. Let L1, Ls, La be three linear/orms o/ determinant I in variables X1, X2, Xa, 

and l e t / 1 ,  Ms, Ma be the adjoint /orms, i.e. the/orms with 

L I M 1 + L s M s +L 3 i 3 = X~ + X i  + X~. 

Let S, T be nonempty subsets o] {1, 2, 3) with empty intersection. 

Suppose now the second minimum 2 s o/ the paraUelopiped (14) satis/ies 

2s >Q-a  (17) 

provided (12), (13) and (16) are satis/ied. Also suppose the second minimum lzs o/ 

]M,(x)[ <B, (i=l, 2, 3) (lS) 

satisfies /~s > Q-~ (19) 

provided B1BsBa=I ,  B , ~  I i] l e t  and Q>~max (B 1, Bs, Bs, Ql(5)). 
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Then the first minimum 41 o/ (14) satisfies 

41 > Q-~ (20) 

i/ A1A~A a = 1, 

i/ A~>~I /or iES, Aj<~I /or i E T  (21) 

and Q~>max (A 1, A s, A a, Q2(~)). (22) 

We shall show in chapter 4 tha t  Theorems 1, 2 and 4 are easy consequences of Theo- 

rems 6 and 7. Theorem 5 will be derived from Theorem 6 by  a similar transference principle. 

Our proof of Theorem 6 will follow the method of my  previous paper  [6] on this sub- 

ject, where a weaker form of the theorem was proved. This method consists of a further 

development of the ideas involved in the proof of Roth 's  Theorem [5]. In  the first draft  

of m y  manuscript  I had derived the transference principles of chapter 4 by  the methods 

of [6]. I am indebted to Professor H. Davenport  for suggesting the much more lucid 

method of the present version. 

2. The index of a polynomial 

2.1. The index. ~ will denote the ring of polynomials in ml variables 

X l l  . . . .  , X l l ;  ...; X m l  . . . .  , X m l  

with real coefficients. Let  L x ..... Lm be linear forms, none of them identically zero, of 

the special type 
Lh =Lh(Xhl ..... Xhz) (1 <~h <~m). 

Also let positive integers rl . . . .  , r~ be given. For c~>0 we denote by 

I(c) 

the ideal in ~ generated by  the polynomials 

1 ~ 2  . . .  m (1 )  

w i t h  ~ ihrh  I ~ C. (2) 
h = l  

I(c) D I(c') if c ~< c'. One has I ( 0 ) =  ~ and rl i(c)= (0). 
c>~0 

Definition. The index of a polynomial P E R  with respect to (L 1 ... . .  Lm; rl ..... rm) is 

defined as the largest c with PEI(c) if P~O, and it is + c~ if P ~ 0 .  



32 WOLFGANG M. SCHMIDT 

Remark. Since the  set  of numbers  ~ = 1  ihrh ~ is discrete, there is for a po lynomia l  

P ~ 0  always such a max ima l  c. For  given i I . . . .  , L  m and r~ . . . . .  r m we denote the  index 

of P by  ind P.  

B y  Hilfssatz 6 of [6], 

ind (P + Q) >/min (ind P,  ind Q), (3) 

ind (PQ) = ind P + ind Q. (a) 

I n  wha t  follows, r will a lways denote  an m-tuple  of positive integers (r 1 . . . .  , r~) and  

will denote  an lm-tuple of nonnegative integers (ill . . . . .  ilZ; ...; ira1 . . . . .  imZ ). We pu t  

Given a polynomial  P E ~ ,  set 

(~//r) = ~. (ihl + . . .  + ihl) r~ 1. (5) 
h = l  

P 3 =  (ial! .. .  imp!) -1 ~Xi~l, ... Xm~ P.  (6) 

The  inequal i ty  ind p 3  >/ind P -  (~/r) (7) 

follows easily f rom our definitions. 

L ~ ~ M A 1. Suppose the polynomial P has index c :# oo with respect to (LI .. . . .  Lm; rl . . . . .  rm). 

Let T be the (ml -m)-d imens ional  subspace o/ ml-dimensional space R mz de/ined by 

Ll (Xi l  . . . . .  Xlz ) . . . . .  Lrn(Xml . . . . .  Xmt ) = O. 

There is an ~ with (~/r) = c such that P~ does not vanish identically on T.  

Proo/. This is a weakened version of one of the  assert ions of Hilfssatz 7 in [6]. 

Given a polynomial  P 6 ~ ,  write ]P[ for the m a x i m u m  of the absolute values  of its 

coefficients. I f  P has  integral  coefficients, then  so does P~. 

Lv.~MA 2. Let P e G  be homogeneous in Xh,,  ..., Xa,  o] degree r a (1 <~h<m). (That is, 

P is a sum o/monomials  CXJl~ ~ ... X ~  having ] a i + . . . + ] a z = r a ( 1  <~h<~m).) T h e n / o r  any ~, 

[PZ I <2r,+ +r~lp I. (s) 

Proo]. I t  will suffice to p rove  this es t imate  for monomials .  Now 

(X)111, . . .  X l m l , ~  = ( J11 )  ( ! ra t )  XJ1~lX_,. . . . .  Xjm~_,m z 
rnl ! \ i 111  " '" \~ral/  ml " 
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Since 

the desired inequali ty follows. 

2.2. Existence o/certain polynomials. 

T H E O R E ~  8. Let l, t be positive integers and 

Lj = ~nXl  + ... + ~jiXl 

(J"l (<"I < 
i11] "'" \~md 

( 1 < i < 0  

33 

linear /orms, none identically zero, whose coe//icients are algebraic integers. Construct new 

l inear/orms 
L h j = o ~ n X h l + . . . + ~ s z X h l  (1 ~<j~<t) 

in variables Xhl , ..., Xhl ( l~<h~m).  Set A j  /or the degree o/ K j = Q ( ~  n . . . .  , ajz) and A =  

max(51 .... ,As). 
Let e > 0 and assume m to be so large that 

m ~> 4e -2 log (2tA). (9) 
Let rl, ..., r m be positive integers. 

There is a polynomial P E ~ with rational integral coe//icients, not vanishing identically 

and satis/ying 

(i) P is homogeneous in Xhl  . . . . .  Xal o/degree rh (1 ~<h ~<m), 

(ii) P has index >1 (1-1 - e ) m  with respect to 

(Lll . . . . .  Lmi; r 1 . . . . .  rm) (1 <?'•t), 

(iii) IPI <Dr,+'"+r% 

where D is a constant depending only on the coe]]icients ~jk. 

Proo/. This is Satz 7 (Indexsatz) of [6]. 

The following theorem is almost bu t  not  quite identical with Satz 8 of [6]. 

THEOREM 9. Let 
L s = ~ n X l + . . .  + ~ , X ,  (1 < j  <l)  

be linear ]orms with nonvanishing determinant whose coe//icients are algebraic integers. 

De/ine A and the l inear/orms Lhj as in Theorem 8. Let e > 0 and assume 

m/> 4e -2 log (2IA). (10) 

Let r 1 . . . . .  r m be positive integers. 

3 - - 6 7 2 9 0 8  Acts  mathematica. 119. I m p r i m 6  lo 16 n o v e m b r o  1967. 
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There is a polynomial P ~ 0 in ~ with rational integral coefficients such that 

(i) P is homogeneous in Xhi .. . .  , Xhz o/ degree r a (1 <<.h <~m), 

(ii) ]PI ~<D~'+'"+~, 

(iii) writing (uniquely!) 

P3 = ~ d~ (J11, jmz) L~i' r,~ LJ-~ L j,~ " " " ~ . . . .  1l ~ " " m l  " " " ml 

one has 

]or arbitrary ~ and 711 . . . .  , ?,a. 

(iv) I /  (~/r) <2era,  

then d '~ ( ] l l  . . . . .  jmt) = 0 u n l e 8 8  

I~l]akr;1--ml-ll<.31me 

Here D, E depend only on the coefficients o~ak. 

Idf(j11 . . . .  , imt)[ < Er'+'"+r= 

(11) 

(12) 

(1 < k < 1). (13) 

Proo/. As we shall see, the polynomial  P constructed in Theorem 8 satisfies everything.  

This is clear as far  as (i) and (ii) are concerned. As for (iii), 

l 
let X~=k~l~kL k (1 <~i <l), 

l 
whence Xhi=k~lfltkLhk (l<~i<~l; 1 ~ h  <~m). (14) 

Le t  G = max  (1, ]fin ] . . . . .  [flvl). 

One obtains P3  in the form (11) by  substi tut ing the r ight-hand side of (14) for  each Xa~ in 

P~ = ~ c~(i l ,  i,,,) x~'i'.., x j'~ (15) " ' ' ~  ml" 

A typical  product  in (15), namely  X~'I' X j~. then becomes ~  r/ll~ 

z \j,, / z \ j~  
k~=l ~ l k i l k  ) " ' '  ( k ~ l  ~ l k i m k )  

and as a polynomial  in Ll l  . . . .  , Lmz has coefficients of absolute value 

<~ (IG)J,, +... w,~ ~ (IG)', +...+ ~. 

B y  (ii) and by  Lemma 2, 
[ c ~ ( j , I ,  . . . ,  jml) [  ~< ( 2 D )  r l + ' ' ' + r m .  

Therefore pZ as a polynomial  in L n ..... Lmz has coefficients of absolute value ~< (2lDG) r, +''" +"% 

This proves (iii). 
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The index of P with respect to (Llj . . . .  , Lmj; rl . . . . .  rm) is at  least (1-1 - e )  by  the previous 

theorem. Hence if (12) holds, the index of P3 is a t  least 

(1-1 --~)m--(~i~lr)/> (1-1 --3g)m 

by (7). Hence any lm-tuple (?n ..... i~l) having d~(j n ..... I'll) :F0 satisfies 

ihkr; 1 -- ml -I >1 -- 3m~ (1 < k K 1). (16) 
h - 1  

Since pZ is homogeneous in L h .. . . . .  L~z of degree <rh,  one obtains 

~ jhkr~ 1 K 1, " r -1 -- rn1-1 k=1 k=1 =1~hk h K0, 

whence by  (16), ~ }hkrh 1 - - m 1 - 1 K 3 m ( l -  1) e. (17) 
h = l  

The inequalities (16) and (17) give (iv). 

2.3. Grids. Now as always let 
l = n + l ,  (18) 

and  let iv 1 . . . . .  iv, be n linearly independent  vectors of R z, spanning a subspaee H.  Le t  

s be a positive integer. Wri te  
= ~(s; ml . . . . .  lvn) 

for the set of all vectors lV = h 1 ~1 +. . .  + hn lvn, 

where h 1 . . . .  , h~ are integers in the interval 1 Kh~ Ks. r will be called a grid o] size s on H, 

and  lvl . . . . .  lv~ are basis vectors of the grid. 

I n  wha t  follows a polynomial  in X 1 .. . . .  Xl  will be interpreted as a funct ion on R t. 

The next  lemma contains the idea which will enable us to improve upon the results of [6]. 

L ~ M A  3. Let P ( X  1 . . . . .  Xz) be a polynomial in X 1 . . . .  , Xz with real coe][icients o] total 

degree K r, and let s, t be positive integers satis/ying 

s( t+ l ) > r .  (19) 

Suppose ~ is a grid o] size s on a subspace H o / R  z sgch that P and all the partial derivatives 

~ t l  + . . .  + t l  

~X~' . . . ~X~ z P with t~ + . .. + t~ K t 

vanish on ~. Then P vanishes identically on H. 



36 W O L F G A N G  1~I. S C H M I D T  

Proo/. Af te r  a l inear  t r ans fo rma t ion  we m a y  assume the  basis vectors  of the  gr id  to  be 

1"o1=(1, 0 . . . . .  0), ..., lv~=(O . . . . .  O, 1, 0). P u t t i n g  P ( X  1 . . . .  , Xn, O)=Q(X 1 . . . .  , Xn), we see: 

I t  will su//ice to show that a polynomial Q o/total degree <~ r is identically zero, i / Q  and its 

mixed partial derivatives o/order <<. t vanish in the s ~ integer points (hi .... , h~) where 1 <<-h~ <s 

(1 < i < n ) .  

I f  n = 1, Q has  zeros of order  ~>t + 1 a t  X 1 = 1, 2 . . . .  , s, hence a l toge ther  count ing mul t i -  

pl ici t ies  Q has  a t  least  s(t + 1 ) >  r 7> deg Q zeros, a n d  Q is iden t ica l ly  zero. 

Now comes the  induc t ion  f rom n = l  to  n. I t  will suffice to  show t h a t  ( X l - h )  t+l 

d iv ides  Q(X1 .. . . .  Xn) for h = 1, 2 . . . . .  s, because  this  implies  t h a t  the  p roduc t  (X 1 - 1 )  t+l ... 

( X l - s )  t+l divides  Q(...), a n d  since here the  divisor  has  degree s ( t+ l )>r>~deg  Q, Q--O 

follows. 

Le t  e h be the  larges t  exponen t  wi th  (Xl -h)eh]Q ( tha t  is, ( X l - h )  eh divides  Q), and  

p u t  e = r a i n  (e 1 . . . .  , es). W e  have  to  show t h a t  e>~t+ 1. 

Assume now e < t, a n d  wi thou t  loss of genera l i ty  assume e = el < t. W e  m a y  wri te  

Q(X 1, ..., X~) = ( X  1 - 1 )  e' ... ( X  1 - s ) * ' R ( X l  . . . . .  X=). (20) 

The  degree of R is a t  mos t  r - e ~ -  . . . - e  8 < r - e s .  Af te r  t ak ing  the  pa r t i a l  de r iva t ive  wi th  

respect  to  X i of order  e = e  1 and  p u t t i n g  X1 = 1 af te rwards ,  the  r i gh t -hand  side of (20) 

becomes 
e! ( 1 - 2 )  *' ... (1 -s)e*R(1, X~ . . . .  , X=). 

N o w  every  m i x e d  pa r t i a l  de r iva t ive  of the  po lynomia l  R(1, X 2 . . . . .  Xn) in n -  1 var iab les  

of order  ~< t - e  vanishes  in each of the  integer  po in t s  (h z . . . . .  hn) where 1 <h~ < s  (2 < i  <n ) .  

Since 
s ( t - e  + l)  > r - e s ,  

our  induc t ive  a s sumpt ion  gives R(1, X~ . . . .  , X ~ ) ~ 0 .  This can only  be so if 

( X l - - 1 )  l R ( X  1, ..., Xn), 

whence (X 1 - 1 ) e ' + l I Q ,  a n d  this  con t rad ic t s  our  choice of el. 

L~MMA 4. Let the polynomial P E ~  be el total degree ~ rh in Xhl ,  ..., Xhz (1 <<.h <~m). 

We may write P ( X l l  . . . .  , Xlz;  ...; X,nl . . . .  , Xmz)=P(  3~1, ..., ~m) where ~h = (Xhl .... , Xhl), and 

interprete P as a /unc t ion  on the m-/old product space R ~ x ... • R z. 

Now let H 1 . . . .  , Tim be subspaces el dimension n = l - 1  el R l, and let ~ on Hh be a grid 

o/ size sa (l~<h~<m). Let T = H l  x . . .  • be the subspace el RZ • • R z consisting o / a l l  

(~1 . . . . .  ~ . rn)  with ~a EHa (1 < h < m ) ,  a n d / e t  ~*=~1 • " '" X~m consist o /a l l  ( ~1 . . . . .  ~.,n) with 

:~hE0a (1 <h <m).  Let t I . . . .  ,tra be integers with 

s~(ta + 1) > rh (21) 
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such that P and the partial derivatives (more precisely, partial derivatives except/or constant 

]actors) 
P~ where ~=( t11 , . . . , tm l  ) with th l+. . .+thz<~th( l<~h<m) 

vanish on ~*. Then P is identically zero on T.  

Proo/. This lemma is easily proved by using Lemma 3 and induction on m. 

2.4. The index with respect to certain rational l inear/orms.  Suppose n >/1 and ~Vl ..... r0n 

are linearly independent integer points in R ~ where l = n + l .  Except  for a factor _+1, 

there is exactly one linear form M = m l X l + . . . §  where m 1 ..... mz are coprime 

rational integers, having 

M ( l v ~ ) = m l w t z + . . . + m z w ~ z = O  (1 ~<i~<n). 

W r i t e  M = / ( Y 0 1  . . . . .  ~0n~. (22) 

Put  [M[ = m a x  (Imi[ . . . . .  [mll ). 

THEOREm 10. Let c I . . . .  , e~ be reals having 

Ic, l ~<1 ( i = 1  . . . . .  l); c l + . . . + c  , = 0 .  (23) 

Let e>0 ,  0 < ~ < 1  and ~>16l~t. (24) 

Let L 1 . . . . .  L z be l inear/orms and m; r 1 . . . . .  rm integers satis/ying the hypothesis o~ Theorem 9. 

Let E be the constant o/ part (iii) o/ that theorem, and P the polynomial described there. 

Let Q1 . . . . .  Q,~ be reals satis/ying the inequalities 

(a) Q~>2'E,  ~ > l ( s - l + l )  (l~<h~<m), 

(b) r 1 log Ql<<.rh log Qh<(1 +e) r  1 log Q1 (1 <<.h<~m). 

F ina l l y , / o r  h = 1 . . . .  , m, let lob1 . . . .  , lvh~ be linearly independent integer points o/ R z satis/ying 

(c) [/,(m~)l ~<Q~J-o (1 ~<i~<l; 1 < k < n ;  1 <~h<~m). 

Then P has index at least me 

with respect to (M 1 ..... M~n; rl ..... rm) where Ma (h = 1 . . . . .  m) is the l inear/orm in Xhl  ..... Xaz 

given by M a = M  (IOhl, .... loan}. 

Remark.  The advantage of this theorem as compared with the corresponding Satz 9 
e ~  in [6] is the absence of a condition Qa ~ (rh § 1)l (1 ~<h <m). Such a condition is a serious 

disadvantage, since in the applications r 1 has order of magnitude log Q~, so the condition 

would require that  Q1 is not too small compared to Qm. 
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Proof. B y  Lemma 1 it will suffice to show tha t  P3  is identically zero on T provided 

(~/r) < em. Pu t t ing  
~h = ~([~:--1] .~ 1 ; ~Ohl . . . .  , mhn) ,  

it will be enough by  Lemma 4 to prove tha t  

(PZ)Z (V~, ..., ~,~) = 0 

for OaE~)a and  ~ = ( t  n .. . . .  tml) satisfying thl +.. .+thl<[rhe],  

th----[rhe] satisfy the inequali ty {21). Since 

em + [r 18fir 1 +...[rme]/rm ~ 2em, 

it will suffice to verify tha t  P~(V~ ... . .  Or,) = 0 

for ~ e ~  (1 <h<-<m) and (~/r )<2em.  

The left-hand side of (25) m a y  be writ ten 

because sh = [~-1] + 1 and 

(25) 

d~(A1 . . . .  , ]ral) 51  (~)1) j ' '  . . .  LI (~)1)]1l . . .  L 1 (Ore)tin1... L l (~m) ]~. (26) 
tll ...tmt 

:By (24), (a) and (c), 

ILk(Vh)l<Q~-~l(~-l+l)<~Qi*-~+~<~Qi *-15~'~ ( l < k ~ < / ;  l<~h<.m).  (27) 

Fur thermore,  by  pa r t  (iv) of Theorem 9 and by  (b), indices ]11, -.., Jm* having d~(?" n ..... ?'mz) =k0 

satisfy 

jhk log Qa ~ r i  log Q1 ~ Jhkr; 1 >~ rl log Qi ( 1-1 - 3/~) m, 
h=l h=l 

]hk log Qh ~< (1 + e) r~ log Q~ ~ ]h~r; 1 
h~l hffil 

< r 1 log Q1 (1 + e) (1-1 + 3/e) m ~< r I log Q1 ( 1-1 + 7le) m, 

whence I ~ ] h k l ~ 1 7 6 1 7 6  h=l (1 ~k~<l)" 

Combining this with (27) we get  

ILk ( 0 1 )  i lk - . .  Lk (V~)J~*[ ~< Q[,Z-l~r = Q~Z-,~r 

and each sum m a nd  of (26) has absolute value 

E ~, + ... + ~ Q~,~l-,(~+...+ ~) . . . .  l,~ = E ~, + ... + ~ Q1 r,~ l~ ~ E ~, + ... + ~ (Q; ~,~ ... Qm~)l*/(1 +6) 

~< (EQ~)~, ... (EQ~)  ~., 
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by  vir tue of par t  (iii) of Theorem 10 and by  (b). Since (26) has at  most  2 z(rl+'''+~) sum- 

mands, we get 

le~(vl, . . . ,  ~m)[ ~< 1~ (2~EQ;~)rh< 1 
h - 1  

by  (a). The lef t .hand side of this inequali ty is a rat ional  integer, hence is zero. 

This proves Theorem 10. 

2.5. A variant o/ Roth's Lemma. 

THEOREM 11. Let 
co = co(m, e) = 24.2-m(~/12) 2~-~, (28) 

where m is a positive integer and 
0 <e  < 1/12. (29) 

Let r~ . . . .  , r,n be positive integers such that 

oJra >~ra+l (1 <.h ~m) .  (30) 

Let M a = m h l X h l + . . . + m a z X a z  (1 <~h<~m) be linear ]orms whose coe//icients are relatively 

prime integers. Let 0 < ~; <~ n and assume 

[Mh]ra>~ ]MI[ r~ (l~<h~<m), (31) 

IM,~[~ >~2 3"'~' (1 < h < m ) .  (32) 

L e t  P ( X 1 1  . . . . .  X l l ,  ...; Xml . . . . .  Xml )~O be a polynomial with rational integral coe//icients 
which is a / o r m  in Xal  . . . . .  Xh~ o/degree ra (l~<h~<m) and which satisfies 

IPl '< IMll . . . .  . (33) 

Then the index o / P  with respect to (M 1 .. . . .  Mm; rl . . . . .  rm) is at most e. 

Proo/. This is Satz 11 of [6]. 

3. P r o o f  o f  T h e o r e m  6 
3.1. Two lemmas. 

LEMMA 5. Let l = n + l ,  /et lI 1 . . . . .  1I n be vectors o/ R z, u~=(u n . . . .  , un) (l~<i~<n) and 

let U 1 . . . . .  U t be the n •  subdeterminants o / the  matrix (u~j) (1 <i  <-n, 1 <~j~l). Similarly, 

let Vl . . . . .  Vn be vectors and V1 .. . . .  Vz subdeterminants o/ (vii). Then 

Ul~) 1 . . .  "I~ID n 

. . . .  U1V1 + ... + UzV,. (1) 



40 W O L F G A N G  M .  S C H M I D T  

Proo[. Without  doubt,  this lemma in some disguised form m a y  be found in the lite- 

rature.  A simple proof is as follows. 

Bo th  the left and r ight -hand side of (1) are linear functions in each of the vectors u~ 

and  each of the vectors Dj. I t  therefore suffices to verify the equat ion if the It's as well 

as the ~'s are taken f rom a fixed or thonormal  basis e~, ..., et of R z. Bo th  sides are zero 

unless lh .. . . .  an consist of n distinct basis vectors, the Vt, ..., Vn consist of n basis vectors 

and  fur thermore the set 111, ..., tt~ is identical with the set V~, ..., 0n. Now both  sides of 

(1) are + 1 or - 1 depending on whether  1~1 ... .  , ~ is an  even or odd permuta t ion  of tit ..... ttn. 

Then 

satisfies 

provided Q ~ C a. 

LwMMA 6. Let l = n  + l,  and let JL1, ...,L~; S be proper in the sense explained in w 

I~et Cl, ..., c z be real numbers havinq 
el +. . .  + ez = 0 (2) 

and Ictl <~1/or i = l  ..... l and c,>~O /or i6S .  (3) 

Let ~ > O, Q > 0 and let to1 .. . .  , YO~ be linearly independent integer points o / R  l satis/ying 

[L,(YOj)] <O~'-~ ( l < i < l ,  l < i < n ) .  (4) 

M = M{YO 1 ... . .  ~n) 

QC,< ]M I <~QC, (5) 

Here C~ = C~((5, L t ..... Ll) > 0  (i = l ,  2, 3). 

Proo/. Using the vectors rot, ..., lvn, construct  the determinants  W t . . . . .  Wz as in 

L e m m a  5. Then put t ing  Mk= Wk/W (1 <]r where W is the greatest  common divisor 

of W1 ... . .  Wz, one has 
M =  M1XI  +... + MzXI.  

B y  (4) and  since ]c~l ~<1, each component  wjk of YOj satisfies [wjk] <~CaQ, whence 

] Wk[ <~CsQ n and  ] / ]  <~C5Q n <~ Qn+t if Q is large. 

As for the lower bound,  suppose a part icular  Mk is =~ 0. :By condition (iii) of proper 

systems, there is an i E S  with A ~ 4 0 ,  and  by  (ii), the non-zero elements among  

A i l ,  ..., A ~ ,  ..., A~z 

are linearly independent  over Q. For  this part icular  i, c 1 + ... +c~_ 1 +c~+ t + ... +cz ~ 0  by  (2) 

[ L1 (YOl) "'" L~-I (ml) L~+I (ml) . . .  Ll (~l~l) 

L1 (YOn)'" i~-i (YOn) L,+t (YOn)'." Lz (YOn) 

and  (3), and by  (4), 

I ~<n! Q-n~. 
(6) 
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On the  other  hand,  b y  L e m m a  5, the  lef t -hand side of (6) equals 

[ W1Asl+...~- WsAtz[, 

whence IM~Asl +... + MkAsk +... + MsAts[ <~n! Q-~a. (7) 

Le t  Ks=Q(A,I ..... Ass) have  degree d,, and  let d be m a x  ds, t aken  over  all i6S .  Since 

Mk ~0 ,  Ask 40 ,  and  since the non-zero elements  among  A l . . . . .  Ass are l inearly independ- 

ent  over  Q, M1Asl+... +MzAss is not  zero, and  in fact  its no rm (from Ks to Q) has  absolute  

value >~ C s. Since each conjugate  has  absolute value ~< C~]M[, we m a y  conclude t h a t  

IM1Asl+... +MlAsz ] >~Csli[i-d'>~Cs[M[ i-d. For  large Q, the  last  inequal i ty  combined 

with (7) yields d > l  and  I i ]  >~C, Qn~l(d-~)>~Q ~ld. 

3.2. Reductions o/the problem. 

I t  su/fices to prove Theorem 6 in the special case where 

As=Q ~' (1 ~<i~<l) (8) 

and c 1 . . . . .  cz are fixed constants subject to the conditions (2) and (3). 

To prove  this s ta tement ,  we r emark  t ha t  because of A I A  2 ... As = 1, we m a y  restr ict  

ourselves to numbers  Q satisfying not  only Q >/max (A 1 . . . . .  A s) bu t  also 

Q ~> m a x  (A11  . . . . .  A71). 

Then  As=Q c~ ( i = 1 ,  ..., l) where e 1 . . . . .  cs sat isfy (2) and  (3), bu t  of course these c 1 . . . . .  es 

will in general  depend on A 1 . . . .  , A t. 

Now let N be an  integer > 2/~, and  p u t  7 = N - l ;  then  0 < 7  <~/2.  Wri te  Z 7 for  the  

set  of integral  mult iples of 7- There  are el, ..., c[, all lying in 27, such t h a t  

c i + . . . + c / = 0 ,  Ic;- ,1<7 ( i=1  . . . . .  1). 

Since all integers are in i 7 ,  one has again 

Ic;I <1  ( i=1 ,  ..., l) and  c ; > 0  if i eS .  

P u t  A~ =QC~. ( i= l  ..... 1). Then  A1 ... A~=I,  A~ >11 if i eS .  Fur thermore ,  if the  n th  succes- 

sive m i n i m u m  2~ of [Ls(x)] <~A~ (i=1 . . . . .  l) has 2'~>Q -~/2, then  the  n th  m i n i m u m  2,  of 

ILs(~)[<As (i=1 ..... l) satisfies 2n>Q -~. I t  therefore suffices to prove  the  theorem with  

r replaced b y  ~/2 and  with  c I . . . . .  c~ in the finite set  of l-tuples having  c~eZ 7 and  [cs[ ~<1. 

Hence  it  is enough to prove  the  theorem for a par t icular  such l-tuple. 

It  su/fices to prove Theorem 6 when the coe/ficients ~ j  o /L  1 . . . .  , L s are algebraic integers. 
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Namely ,  there is a lways a ra t ional  integer q > 0  such t h a t  the forms qLa, ..., qL l all 

have  integral  coefficients. I f  L I .. . . .  L 5 S are proper,  then  so are qL 1 . . . . .  qL 5 S.  Our reduc- 

t ion now follows f rom the r emark  t h a t  the successive min ima  of [qL~(~) I <~A~ (i = 1 . . . . .  l) 

are q-1 t imes the successive min ima  of IL~(~)I ~<A~ (i = 1 . . . . .  1). 

3.3. P r o o / o ]  Theorem 6. Let  Ca . . . .  , c I be constants  sat isfying (2) and  (3). Le t  ~J~ be 

the  set  of reals Q > 1 such t h a t  there are n l inearly independent  integer points  iol . . . . .  ion 

having  
]L~(ioj) I <Q~-~ ( l < i < l ,  1 < j < n ) .  (9) 

We have  to show t h a t  the set  ~ is bounded.  

We m a y  clearly assume 0 < 0  < 1/12. Pick ~ > 0  small  enough to sat isfy 

> 1612e. (10) 

Then also 0 < ~ <  1/12. Next ,  pick an  integer m so large t h a t  

m~>4e -2 log (2/A), (11) 

where A is the  m a x i m u m  of the  degrees A~ of K ~ = Q ( ~ I ,  ..., ~n). Fu r the r  set  

eo = 24.2-re(e/12) zm- ~. (12) 

Now e < 1 and  m >~ 1 implies eo < 1. 

I n  wha t  follows, D, E will be the  constants  of par t s  (ii), (iii) of Theorem 9, and  

C1, C2, Ca the  constants  of L e m m a  6. 

We argue indirect ly and  assume t h a t  ~ is unbounded.  There is then  a Q1 in ~ such 

thai; 
Q~ > 2ZE, Q~ >/(r + 1), 

~ C ~  oJ A3rnn~CI 
Q1 > Ca, ~x > z , 

We also m a y  pick Q= . . . .  , Qm in ff~ sat isfying 

�89 log Qa+l > l o g  Qa 

I n  par t icular  this implies Q1 < " "  < O,n. 

Let  r 1 be an  integer so large t ha t  
~r 1 log QI >~log Q~ 

and for  h = 2, 3 . . . .  , m pu t  rh = [rl log Q1/log Qh] + 1. 

This choice of r I . . . .  , rm implies 

r 1 log Q1 <rn  log Qn~<(1 + e ) r  1 log Q1 

B y  vir tue  of (18) and  (20), wrap>2(1 +e ) - I rh , l  ~ r h + r  

(13-14) 

QC~OJ > Dmn*c, (15-17) 
1 * 

(1 ~<h <m) .  

(1 ~<h ~<m). 

(18) 

(19) 

(20) 

(21) 
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Our linear forms L 1 . . . . .  L z as well as e, m and r 1 . . . .  , rm sat isfy all the hypotheses  of 

Theorem 9. Le t  P(XII  ..... Xm~) be the polynomial  described in t h a t  theorem.  Now the 

hypotheses  of Theorem 10 are also satisfied. 

Conditions (2.23), (2.24) (i.e. formulae  (23), (24) of chapte r  2) of Theorem 10 follow 

f rom (2), (3) and  (10), while (a), (b) follow f rom (13), (14), (19) and  (20). B y  definit ion 

of ~3~ and since Q~ E ~r there exist  for each h, 1 ~< h ~< m, l inearly independent  integer points  

lVhl . . . .  , ~0h~ such t h a t  (c) holds. Le t  M~ . . . .  , Mm be the  linear forms of Theorem 10. Then  

we have  
P has index at least me with respect to (M 1 . . . . .  M m ;  r I . . . . .  rm) .  

B y  L e m m a  6 and  since Qh >~ C3, 

Qc'<.]MhI<QC' (1 ~<h~<m), (22) 

whence [Ma I rh >~ Q?C,/> QI,C, > / IM x Ir,c,/c2, 

and  this gives ]Ma]rh~ > IMxl r'~ (1 <~h<m) (23) 

with ~ = C1/C 2. Fur thermore ,  

[Ma l~  ~> Q~C'~> 2 am~" (1 <h~<m)  (24) 

b y  (16), (19) and  (22). B y  Theorem 9, 

and  because of (17) and  (22) this implies 

[pin, <Dm=,~, << QT~,c~/c, << ] M ,  [~r,c,/c, = IMll  . . . .  . (25) 

B y  our  choice of e and  co and  b y  (21), e, m, co, r 1 . . . . .  rz  sat isfy the  hypotheses  of 

Theorem 11. Also 7, the  linear forms M 1 . . . . .  Mm and the polynomial  P sat isfy the condi- 

tions. The inequalities (2.31), (2.32), (2.33) of Theorem 11 are our inequalities (23), (24) 

and  (25). We  therefore conclude: 

P has index at most e with respect to (M1, ..., M~;  rl . . . . .  rz). 

Since m > 1, this contradicts  the lower bound for the index given earlier. The  assump-  

t ion t ha t  ~ is unbounded  was therefore wrong, and  Theorem 6 holds. 

4. Proof of the main theorems 

4.1. Davenport' s Lemma. 

LEMMA 7. Let L 1 . . . .  , Ll be linear /orms o/determinant 1, and let 2x . . . . .  2z denote the 

successive minima o/the paraUelopiped defined by 

ILs(x)l ~<1 (l~<j~<l). (1) 
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Suppose ~1, ..., Qz satis/y 
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~ I ~ 2  "" @l = 1,  (2 )  

& ~>Q~. ~> ... ~>& > 0, (3) 

~121 ~,)22:$ < ... <~12l. (4) 

Then, after a suitable permutation o / L  I . . . .  , Lz, the successive min ima  1~ . . . .  , t~ o / t h e  new 

paralleloplped 
ejlLj(~) I <1 ( l < j < z )  (5) 

satisly 2-zqj2j~.<2;~.<2~'Z!e~tj (1 ~<]~<I). (6) 

Proo]. We shall use the ideas of [2]. B y  a well-known Theorem of Minkowski (for 

example,  see [1], chapter  VII I ,  Theorem V), 

~. <2~ ,.. ~t < 1, < ~  ... t ;  < 1. (7) 

Set N ( ~ ) = m a x  ([L~(~)[ . . . .  , [L,(~)I) and let ~ . . . . .  ~, be l inearly independent  integer 

points such tha t  N($~) --2~ (i = 1 . . . .  , l). I f  ~ lies in the subspace S~ generated by  0, ~1 . . . .  , ~ ,  

then  Ll(~) . . . .  , Lz(~) satisfy l - i  independent  linear conditions, the coefficients in which 

depend only on ~1 . . . .  , ~z. 

We order L 1 . . . . .  L~ in the following way. In  the condition 

U~L~ + ... + UzL~ = 0 (8) 

implied by  ~ E S I _ I ,  U 1 iS the largest coefficient in absolute value. In  the addit ional  linear 

relat ion implied by  ~ESI_2, which we can take in the form 

V I L  1 -~- ... -~- VI_ 1 i z _  1 = O, (9) 

Vz-1 is to be the largest coefficient in absolute value, and so on. 

Then if L1, ..., L z satisfy (8), we have 

IV,L,] <-IU1Lll + . . .+  ] Ul-lLl-i]  

and  so IZ,] < ]L~] + . . . +  IL,_~[, 

whence ILl ] + ... + [Lz-11 >~ 1( [L 1 ] +. . .  + I L z]). 

I f  L 1 . . . .  , Lz satisfy both (8) and (9), we have,  similarly, 

ILl] + .... + ]L,_2[ ~>�89 + . . . +  l/,_l[)>~(l/,I + . . . +  IL,[),  

and so on generally. 
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Now suppose ~ lies in St but  not in S~_1 (1 ~i<.l). Then N(~)>~2, and LI(~) ..... Ll(~) 

satisfy l - - i  linear relations, whence 

ILll + . . .+  ]L, 1 ~>2'-l([L1[ + . . .+  ]Lzl)>~2'-z]q. 
By (3) this yields 

max (ellLll ..... Q~IL~I) 1> max (el]51], . . . ,  ~|[L,I) >12~_z~2 ~>~2_zQ,2~. 

By (4), this inequality in fact holds for any ~ which is not in Si-1- This shows )t~>~2-tQ~t. 

The lower bound for ~t~ now follows from (2) and (7). 

4.2. Proo/ o/ Theorem 7. Let the forms L1, Ls, L3, M1, Ms, M3 and the sets S, T satisfy 

the hypotheses of Theorem 7. If S={1, 2, 3}, condition (1.21) implies AI=As=A3=I, 
the set (1.14) is a fixed set, and (1.20) certainly holds if Q is large. We may therefore assume 

that neither S nor T contains all three elements 1, 2, 3. Since S and T are not empty and 

since S N T is, S contains either one or two elements, and similarly for T. 

There exist integers cl, cs, c a with 

c~+cs+%=O, Ic~]<~2(i=1,2,3), c~>llifieS, cj<, .- l i f jET.  (10) 

Throughout this section, A1, As, A a will be positive reals with AIAsAa= 1 and 

A~>~l if iES, Aj<~l if jET, 

i.e. (1.21). ~1, 2s, 23 will denote the successive minima of 

(11) 

IL,(~)I <A,  ( i=1,  2, 3) (12) 

and/zl, ~s,/~a the successive minima of 

[ i , (~ ) l  ~<A~ 1 ( i=1,  2, 3). (13) 

The convex bodies defined by (12), (13), respectively, are polar to each other. By  a well- 

known Theorem of M~hler ([4], or see [1], chapter VIII,  Theorem VI), 

l~<)~H~,_~<3! ( j = l ,  2, 3). (14) 

By the hypothesis of Theorem 7, one has 

2s > Q-~ (15) 

provided Q >~max (A1, As, Aa, CI(O)). Similarly, 

/~s > Q-n (I6) 
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provided Q~>max (A~ 1, A~ 1, A~ 1, C2((~)). By virtue of (14), applied for j = 2 ,  and since 

Q>~max (A1, A~, A3) implies Q2~>max (Ai -1, A~ 1, A~I), we therefore have 

Q-~ <;t 2 <Q8 (17) 
if Q~>max (AI, A2, Aa, Ca(~)). 

Suppose now for some A1, A2, A 3 satisfying all our conditions one has 

;tl <~Q-15~ (18) 

where Q~>max (Ai, A2, A3). Put  

"Jl~ = A~ Q~ '  (i = 1, 2, 3). (19) 
Then JrlJ[2Ji a = 1 and 

~i~>~Q '~ if i e~ ,  .~j<Q-~ if j e T ,  (20) 

and Ql+SO~>max (~1, fl~, Jr3). The first minimum ~ of the set 

]L,(~) I <5 ,  (i=1, 2, 3) (21) 

satisfies ~ < Q - ~ .  By an inequality of the type (17), applied to J/~, J/2, ~3, one has 

Q-~ <22<Q ~ if Q>~Ca(O ). 

Set e~ = Q~, e2 = Q-~, e3 = Q-~- 

Since ~1~ ~<Q-a~ ~<~2~ ~<~3, Lemma 7 is applicable to the parallelopiped defined by (21). 

There is a permutation j~, ?'~, ]a of 1, 2, 3 such that the successive minima ;t~, ;t~, ;t~ of the 

parallelopiped 
[L,(~)[ <.~, e~7 ~ = A; (i = 1, 2, 3) (~2) 

2-~2e~<;t~<2~2e~2~ (1=1, 2, 3). (23) satisfy 

In  particular, ;tg ~< 212Q -~. 

One has A;A~A~=I,  and by (20) and the construction of el, Q2, Q3, A',~>I if iES  and 

Aj~<I if jET.  Also note Ql+l~a>~max(A1, A" " �9 ' 2, A3). Now suppose Q>Ca(~/2) and put 

Q, _Ql+12~. Inequality (17) applied to the parallelopiped (22) and to Q' yields ;t~ ~Q,-~/2 > 

212Q -$ if Q is large. We thus have reached a contradiction, and (18) cannot hold if Q is 

large. Since ~ > 0 was arbitrary, Theorem 7 is proved. 

4.3. A general theorem. 

TtIE OREM 12. Let L l = ~,IXI-~-6~i2X 2 -~-gi3X3 ( i  = 1, 2, 3) be linear forms with algebraic 

coefficients and with determinant 4 O, and let M r =fl~lX1 + ~i2X~ + fl~aXa be the ad]oint forms. 

Let A, B be subsets o/{1,  2, 3} such that A N B = O  and assume that 

(i) /or i CA, the non-zero elements among (a~l, ~i2, g~3) are linearly independent over Q; 

(if) for j e B, the non-zero elements among (fit1, fl~2, fit3) are linearly independent over Q; 

(iii) /or k = l ,  2, 3, there is an i e A  and a j e B  such that o~k 40,  fljz 40. 
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Let e>0,  ~ >0. There are only/initely many integer points q #0  such that 

]Ll(q)L2(q)La(q)l < [ql-L (24) 

IL,(q)l  < lq l -~ /or  ieA, (25) 

IL,(q)l ~>,7 for ieB, (26) 

where I q I = m a x  ( lq!l ,  l q~l, l q31) i l  q = (ql, q~, q3). 

Proo]. L1, L2, L3; B and 21/1, Ms, Ma; A are proper. Without loss of generality we may 

assume that  L~, L~, L a have determinant 1. We may apply Theorem 6 and then Theorem 7 

with S = B, T = A. As before we may assume that  S, T contain one or two elements each. 

Suppose now (24), (25), (26) hold. Set 

A, =max (lL,(q)] Iql~,  Iq1-5) if i r  (27) 

Now if l E T = A ,  then ir  and by (25) one has A~<I.  By (24), if ]q[ is sufficiently large 

and if s < 1, 
]-[ ([Lj(q)[ [ q l~z6)< min (] qla, [ q [-2~z~ ~ [ / , (q ) [ -~)<  ]-[ A;-I. 

j e S  f r  

Hence one may for each j e S = S choose A j such that  [Lj(q) ] [ q [d~ < Aj and that  A1A2A3 = 1. 

By (26), A~>I  if j e S = B ,  at least if ]q] is large. 

We have IL,(q)l <A,Iql-~Z' (i=1, 2, 3). (28) 

By (27), we have ] q l - 5 < A , <  ]q]~ if ir  Since Aj>~I if i e S  and since A~A~Aa=I, one 

obtains Iq[l~ (A1, A2, A3). Put  Q= ]q] 1~ By virtue of (28), the first minimum 21 of 

IL,(~)I <.A, ( i=L 2, 3) (29) 

satisfies ~ < I ql -d6 =Q-d6o. By Theorem 7 this cannot happens if I q] and hence Q is large. 

4.4. Proo/ o/ Theorem 1, 2 and 4. 

Proo/o] Theorem 1. Let a, fi be algebraic and 1, a, fl linearly independent over Q. Set 

L 1 = X 1 - ~ X 3 ,  L~ = X~ - f i X  s, L a = X 3. 

Theorem 12 applies with A = {1, 2}, B =  {3}. Now suppose q>O and 

II ~ql[" llflqll" q~+~ < 1. (30) 

Choose q=(p.p~,q) such that ]Li(q)l =ll~qll, l/~(q)l =ll~qll, ]/s(q)l =q. By Roth's 
Theorem, II~qll > q - ~ - ~ ,  whence by (30), 

IL~(q) I = IlZqll <q-~/~  < I ql - ~  if q is large. 
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Since also {Ll(q) { < [q{-~,'~, a relation of the type (25) but  with exponenO - e / 2  instead 

of - e  holds. Similarly, (30) implies a relation of the type (24). Since (26) with v/= 1 is 

obvious, there can be only a finite number of such integer points q, hence a finite number 

of positive integers q satisfying (30). 

Proo/el Theorem 2. Let ~,/5 be as before and let 51 =X1, L 2 =X2, La=o~XI+I~X2WX ~. 

Theorem 13 applies with A = {3}, B = {1, 2}. 

Now suppose ql 4:0, q2 4:0 and 

II ~ql +~q~]l" ]qlqz {1+~ < 1. (31) 

Choose q=(ql,  q~, q3) such that  Ll(q)=ql,  Lz(q)=q2, {Ls(q){ = [[~ (26) with B = I  

is obvious, and for large ]q], (31) implies relations of the type (24), (25). Hence by Theo- 

rem 12 there are only finitely many solutions. 

Proo] el Theorem 4. Suppose ~,/~, ? satisfy the hypotheses of Theorem 4, and let 

L 1 = XI, L,~ = o~X 1 + X2 ,  L 3 = f i x  I + 7X2 + X3 .  

The adjoint forms are now 

M~=X1+o~'X~+~'X~, M~=X~+y'X~, M~=X~ 

where a ' =  - a ,  ) , '=  --?, /~' =a?- - f l .  Theorem 12 applies with A = {3}, B= {1}. 

Now suppose q = (ql, q,, q3), r > 0 and 

{aql +q2[ <qfq, ]flq~ +?q~+qa] <q;~, (32) 

where ~ + v = l  +~>1 .  For large ql whence large ]q{, (32) implies a relation of the type 

(24), but  with exponen~ -~ / ( I  + {~{ + [ v {) instead of - e .  By Roth's Theorem, the number 

of solutions is finite unless ~ < 1. Hence v~>~ and (32) implies a relation of the type (25). 

Obviously (26) holds with ~y =1. Hence by Theorem 12 there are only finitely many q 

satisfying our inequalities. 

Let  

4.5. Proo/el Theorem 5. Let ~, fl, ? be numbers satisfying the conditions of Theorem 5. 

LI = X I - ~ X , ,  L~ = X~-flX,, L3= X~-~,X,, L~= X,, 

and let M 1 ..... M 4 be the adjoint forms, i.e. 

M I = X 1 ,  M~=X2, Ma=X3, M4=xXI+flX2+TXa§ 

Set S = (4}, T = {1, 2, 3}. L 1 .. . .  , L4; S and M 1 ..... M4; T are proper and Theorem 6 applies. 
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Le t  A 1 . . . . .  A 4 be positive reals with AIA2AsA ~ = 1 and 

A ~ < I  for i = 1, 2, 3; A4~>l. (33) 

Le t  hi . . . . .  h 4 and #1 . . . . .  /~4 denote the successive minima of the paralMopipeds 

[L,(~)] <~A, ( i = l  . . . . .  4) (34) 

and IMp(;)] ~<A~ 1 ( i = 1  . . . . .  4), (35) 

respectively. By  Mahler's Theorem, 

1 ~<hs/xs_j~<4! ( ]=1  . . . . .  4). (36) 

We claim tha t  hi >A4 -1/9-~ (37) 

if A 4 is large. Otherwise there is a q = (  .... q) r  having [L~(q)[ ~A~Aa -1/9-8 ( i = 1  . . . . .  4). 

Since A1A2A a =A~ 1, we may  assume AIA 2 <~A~ 2la. 

n(~[[ , [[/~q[], ql+~ ~ _~12x4A A-119-~A.z~2zl 4A-1/9-~A(1+~)(S/9-e).r14 < A 4  2/3-219-2~+8/9 < 1. 

B y  Theorem 1 this cannot  happen if A a hence q is large. 

B y  Theorem 6, ha >A~ ~, /xa >A~ 8 (38) 

if A a is large. Combining the inequalities wri t ten down so far  with Minkowski's well-known 

inequali ty 1/4! ~./A 1 ... lag ~< 1 ([1], chapter  VII I ,  Theorem V), we see tha t  

A~l/~ Ai-~</xa<A~/~ #4<A~/~ (39) 
if A4 is large. 

L~MIVlA 8. SUppose A4 is large and 

A~<~A~ ~9-~ ( i=1 ,  2, 3). (40) 

Then /*1 > A41/0-4~" (41) 

Pro@ Set ~1 = ~2 = (/A3//A2) 1/2' e3 = ~4 = (/A2//A3) 1/2" 

Since ~I]A1 ~< ~2/~2 = ~Mxs ~< ~a/~a, (42) 

we may  apply  Lemma 7. There is a permuta t ion  ]1 . . . . .  J4 of 1, ..., 4 such tha t  the successive 

minima/x~, ..., ~t~ of 
[Mi(~) ] <i~lOh I : A ~  -1 ( i=1  . . . . .  4) (43) 

satisfy 2-7~ ~<27~ t (~ = 1 . . . . .  4). (44) 

B y  (39), #a//s~<A~/9+2., and therefore by  (40), A~=A,o6<.A;1/9-*A~/9+*--1 ( i=1 ,  2, 3). 

Also A s/9-* <A~ <A~ ~ 

4 - 6 7 2 9 0 8  Acta mathematica. 119. Imprim6 le 16 novembro 1967. 
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What we said earlier about (35) therefore also applies to the parallelopiped (43). 

Since by (42) and (44)/z~ and ~u~ are of the same order of magnitude, we have ~u~ <A~, 

/~ <A~ if A a is large. Using (44) again we obtain 

/~'~ "~#l/A2~3/A4 <-~14 ~-~1~L~4 " ~  -~4 /o'1/~t4"~- ~ "g'14 "s /AI" 

For large Aa, (41) follows. 

Proo/ o/ Theorem 5. Let g, fl, y satisfy the conditions of Theorem 5. Suppose integers 

ql :~0, q2 =k0, qa ~=0 satisfy 
]l ~ql +flq2 +Yqa]]" ]qiq~qs ] 5/s+e < 1, (45) 

where e>0.  Choose q=(ql, q,, qs, q,) such that  IM,(q)l = Iq, I (i=1, 2, 3) and IM,(q)l = 

II~qi +flq2 -kyqs]] �9 

Put  A,  = Iq, l-llqlq~qa[ -1/~ ( i = 1 ,  2, 3), A4 = [q~q~q.I a/~+~/S. 

Then A~/~176 Iqlqzqa[~/e+E/9<~A~ "~ ( i=1,  2, 3), 

whence A, ~< A~ 1/9-~jS~ (46) 

Ai/O+~/O~ [ = A~'~[qlq~qa [ -~/'-*/s+(S/~+~/a'(1/9+~/a~ < A ~  (i = 1, 2, 3), 

and thereforo 

IMp(q)[ = [q,[ <AF~A; ~/9-~/S~ (i=1,  2, 3), [m4(q) [ < [q~q~qal-s/s-~<A{ ~-1~~176 

Therefore/z 1 <A~ 1/9-~/S~ On the other hand, since (46) is an inequality of the type (40), 

Lemma 8 implies/z~ > A41/9-*/S~ 

Hence there are no solutions of our inequalities having large A4, and (45) has only 

a finite number of solutions. 
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