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Introduction 

T h e  m a i n  pu rpose  of th i s  p a p e r  is t o  g i v e  s o m e  app l i ca t i ons  of  t h e  c o n c e p t  of  a n o r m a l  

f a m i l y  of h o l o m o r p h i c  m a p p i n g s  b e t w e e n  c o m p l e x  mani fo lds .  Th i s  n o t i o n  has  long  p r o v e d  

i ts  i m p o r t a n c e  in  t h e  t h e o r y  of h o l o m o r p h i e  f u n c t i o n s  of  one  va r i ab le ,  b u t  i ts  s t u d y  in  

t h e  gene ra l  s e t t i ng  of c o m p l e x  man i fo ld s  was  b e g u n  o n l y  r e c e n t l y  b y  G r a u e r t  a n d  R e c k -  

ziegel ,  [10]. T h e  t w o  m a i n  p r o b l e m s  c o n t e m p l a t e d  he re  can  be  b r i e f ly  descr ibed .  I f  : ~ i M ~ N  
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is a family of holomorphic mappings between complex manifolds M and N, the first 

problem is: if :~ is normal, or compact (in the compact;open topology), or equicontinuous, 

what can be said~about the behavior of the individual members of :7 ~. The second problem, 

which is important in applications, is to attach suitable invariants to :7 itself (or, if neces- 

sary, to N) to insure the normality, or compactness, 'or equieontinuity of :7. 

This paper is divided into three parts. I~oughly speaking, the first two parts are de- 

voted to these two problems respectively. The first theorem to be proved in Par t  I (Theo- 

rem A) essentially asserts the t ruth of Bloch's theorem for a relatively compact family 

of holomorphic mappings. I t  wilt be basic in the proof of the general Bloch theorem as 

presented in Par t  I I I  and the Appendix. Theorems C, D and E are respectively the abstract 

analogues of the theorems of H. Cartan-Caratheodory, H. Cartan and Liouville on bounded 

domains. (See, for instance, Chu-Kobayashi [9] and Boehner-Martin [6].) The informed 

reader will readily detect the debt I owe the original theorems. But the proofs of Theorems 

C, D and E given here may perhaps claim the credit of shedding some light on these classi- 

cal theorems themselves. The material in Par t  I is essentially a topic in the pointset topo- 

logy of function spaces (see Kelley [19], Chapter 7) and is, accordingly, written from this 

point of view. In  Part  II,  it will be necessary to bring in hermitian differential geometry. 

The main idea here is to show how the holomorphic curvature of the image hermitian 

manifold N controls the topology of the space of all holomorphic mappings from M into N. 

In slightly less precise terms, this was already done by Grauert and Reckziegel in [10]. 

Their main theorem will be proved here in a generalized form (the basic theorem of w 8). 

To be sure, there is essentially nothing new to be found in the proof of this more general 

version, but  the latter does yield a result (Corollary 8.3) which is inaccessible in the original 

formulation. From the basic theorem, it is a routine matter  to render more tangible and 

geometric the general theorems of Par t  I. Some of the more significant consequences are 

recorded in w 9. 

Par t  I I I , w  10, is offered by way of an apology. I t  will be quite clear from the proofs 

in Part  I that  a few of the theorems there are susceptible of considerable generalizations. 

The reason for not striving for maximum generality,in Par t  I is that  these theorems appear 

most naturally in the setting of holomorphy. Nevertheless, it is inevitable that  such gener- 

alizations will b e pointed out, and so I take the l iberty of giving some such indications. 

One O f them, Lemma 10.1, will be seen to be crucial to the proof of the general Bloch 

theorem, Theorem 11.4. In a special case, tMs theorem was already proved by Bochner 

in 1946, [5]. One interesting consequence (Corollary 1!.5) of Theorem 11.4 is that  the 

original theorem of Bloch can be extended to include a large class of the pseudo-analytic 

functions of Lipman Bers, [4]. TMs fact appears to be new.  
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The most important and useful special case of the general Bloch theorem is, without 

doubt, that  of quasiconformal holomorphie mappings in several complex variables. This 

special case was already covered by the Boehner result. However, the proof of Theorem 

11.4 as presented here, when restricted to this special case, becomes exceedingly simple, 

and is dependent solely on the well-known theorem of Montel that  a uniformly bounded 

family of holomorphic functions is relatively compact. But the machinery needed for the 

degree of generality of Theorem 11.4 somewhat obscures this simplicity. I therefore feel 

justified in producing a geodesic to get at this special case of Theorem 11.4, one that  oper- 

ates entirely within the category of holomorphie functions and which, even when re- 

stricted to the classical case of one complex variable, seems to make the original Bloch 

theorem appear less mysterious. This is done in the Appendix. 

In  closing, I would like to raise a few basic questions suggested by  the results of this 

paper: 

(1) Is a complete simply connected K~hler manifold with nonpositive riemannian cur- 

vature and with holomorphie curvature negative and bounded away from zero biholo- 

morphie to a bounded domain of C=? 

(2) Which domains in (~ can be equipped with a complete hermitian metric whose 

holomorphic curvature is negative and bounded away from zero? 

(3) If a hermitian manifold is compact and has negative holomorphic curvature, is 

the set of all holomorphic mappings into itself with nonsingular differential at one point 

finite? 

I t  is obvious how to make these questions more inclusive by  a trivial variation of the 

terms. The reason for stating them in such restrictive forms is that  they are more imme- 

diately accessible this way. This is so for (1) because a complete simply connected K~hler 

manifold with nonpositive riemannian curvature is necessarily Stein, [28]. For (2), we 

know by Theorem ~ of w 9 that  such a domain must be a domain of holomorphy, and for 

(3), the theorem of Peters-Kobayashi ([27], Satz 3) states that  the answer is yes for compact 

complex manifolds with negative definite first Chern class. I t  should be pointed out tha t  

our present knowledge of the control over the topology of (even) K~hler manifolds by the 

holomorphie curvature is very meagre: In particular, let me pose a very simple-minded 

problem. If a complete Ks manifold has positive holomorphie curvature bounded below 

from zero, then it is simply connected and compact. However: 

(4) If a K~hler manifold is complete and simply connected and has holomorphie 

curvature negative and bounded above from zero, is it noncompact? 

1 3 -  672909 Ac~a mathematica 119. I m p r l m 6  le 7 f4vr ie r  1968. 
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This paper is based on an earlier manuscript with the longer title, "Normal families 

of holomorphic mappings and the theorem of Bloch in several complex variables". In  

between these two manuscripts, there has appeared a paper by  Kobayashi,  [22], which 

presents (among other things) an entirely different approach to Theorems 8, r and ~ of w 9. 

He pointed out to  me that  the "K~hler"  condition assumed throughout the earlier manu- 

script could be replaced by  "hermitian",  tha t  the completeness requirement of the metric 

in the original version of Theorem ~ and the assumption of C ~ boundary in the original 

version of Theorem ~ could be removed. I am very indebted to him for these as well as 

many  informative discussions. I have also been the beneficiary of much valuable advice 

from Professors Chern and Griffiths. I t  was mainly through conversations with Phil Griffiths 

tha t  the dreadful task of revision was transformed into something better  than pure drud- 

gery. To all of them, I tender my  most sincere thanks. 

PART I 

1. Basic  definitions 

The convention in force throughout this paper  is tha t  all complex manifolds are 

connected and second countable and all objects defined on them (differential forms, hermitian 

metrics, etc.) are C ~ unless stated to the contrary. Let  M, IV be complex manifolds. Then 

by  definition: 

(i) C(M, IV) is the set of all continuous maps from M to IV. 

(ii) A(M, IV) is the set of all holomorphie maps from M to IV. 

For convenience, C(M)-----C(M, M), and A(M)--A(M, M). 

The only topology on C(M, IV) that  will be used in both Par t  I and Par t  I I  is the 

compact-open topology, defined as follows, (Kelley [19], Chapter 7): let C and 0 be com- 

pact  and open sets in M and IV respectively, and let 

W(C, O) = (IEC(M, IV) : I(C)~_ O}. 

The open sets of the compact,open topology are then the unions of finite intersections of 

such W(C 0); i.e. {W(C, O)} is a subbase. A basic fact is that ,  since M, IV are both second 

countable, so is C(M, IV) in this topology. The Cauehy integral formula implies in a stand- 

ard way tha t  A(M, IV) is closed in C(M, IV). This entials the pleasant consequence tha t  

a subset :~_~ A(M, IV) is compact or closed in C(M, IV) iff it is so in ~4(M, IV). From now 

on, the compact-open topology on C(M, IV) will be used without explicit re]erence. 
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I t  is well-known that  such complex manifolds under consideration are metrizable. 

A customary and useful device is to metrize these by  imposing on them a hermitian metric 

h, from which one derives a distance function d( ,  )-----da(, ) which converts the manifold 

into a metric space. At any rate, once a distance function is chosen on 1V, a sequence 

{/~}_~ C(M, N) converges to an /EC(M, N) iff/~ converges to [ uniformly on compact sets. 

(Kelley [19], p. 229.) The above remark on the closedness of A(M, N) in C(M, N) can 

easily be derived from this fact. Because of the metrizabflity of such complex manifolds, 

it is convenient to relax M and N to be just locally compact connected metric spaces. The 

space C(M, N) and its (compact-open) topology can be defined in the same fashion. I t  is 

known that  all locally compact connected metric spaces are second countable (Koba-  

yashi-Nomizu [23], p. 269) so that  C(M, N) is itself second countable. In this context, a 

sequence {/i}~_C(M, N) is called compactly divergent iff given any compact K in M, and 

compact K'  in N, there exists an i 0 such that /~(K) N K ' = O  for all i>~i o. 

De/inition 1.1. A subset :~ of C(M, N) is called normal iff every sequence of :~ con- 

tains a subsequence which is either relatively compact in C(M, N) or compactly divergent. 

As usual, a set is relatively compact in a space X iff it has compact closure in X. Since 

C(M, N) is second countable, compactness is equivalent to sequential compactness. This 

accounts for the use of sequence in the definition of normality and is a useful thing to 

keep in mind. Two related concepts which will play an important role are local compactness 

and equicontinuity. The latter will now be defined. Let  the distance function of N be dN. 

Then :~%C(M, 2V) is called an equicontinuous /amily iff given any e > 0  and any mEM, 

there exists a neighborhood U of m such that  m'E U implies d•(/(m),/(m')) <s  for all /E :~. 

The relationship among these concepts is clarified by the following two lemmas. 

L ~ M A  1.1. Let :~_ C(M, N), where M, N are connected, locally compact metric spaces. 
Then 

(i) 11/:~is compact, then :~ is normal. 

(ii) I/:~ is normal, then its closure is locally compact. 

(iii) I/:~ is equicontinuous and i/ each bounded subset o / N  is relatively compact, then 
:~ is normal. 

Remark. I t  is obvious that  the converse of (i) and (ii) is false, and that  normality does 

not imply equieontinuity. The condition on N in (iii) implies, but  is stronger than, the 

completeness of N; however, they coincide for hermitian manifolds (cf. w 8, Lemma 8.1). 

The next  lemma is the wellknown Ascoli theorem, (Kelley [19], p. 233-6). Because this 
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theorem will be invoked so often for the rest of this paper, it is good to have an explicit 

s tatement  of it suitable for our purpose. 

L~M~A 1.2 (Aseoli theorem). :~E C(M, N) is compact i/]: 

(a) :~ is closed in C(M, N). 

(b) ~(m) ( ~ ( n E N :  n=/(m) /or some/E:~}) is relatively compact in hr /or every mEM. 

(c) ~ is equicontinuous. 

RemarIc. Thus, if N is compact, closed § equicontinuous = compact  = closed + normal = 

locally compact. 

Proo/o/Lemma 1.1. (i) is obvious. For the proof of (ii), consider a n y / E : ~  and take 

any  point m E M. Let  O be any  relatively compact open neighborhood of/(m).  The neigh- 

borhood W((m}, O) of / is then relatively compact, for the following reason: no sequence 

in W((m}, O) can be compactly divergent and so normality implies that  every sequence in 

W((m}, O) is relatively compact. Consequently, the closure of W((m}, O) in C(M, hr) 

furnishes a compact neighborhood o f / .  

I t  remains to prove (iii). First a notation: if K is a subset of M, :~(K) will denote 

the set of al l / (m),  where ]E:~ and reEK. The proof of (iii) is broken into three steps; the 

first two make no use of the assumption on h r . 

Step 1: I f  F is a sequence in :~ and F(K) is relatively compact for every compact 

K_~ M, then F is relatively compact in C(M, hr). 

Reason: Consider the closure P in C(M, hr). Since :~ is by assumption equicontinuous, 

conditions (a)-(c) of Lemma 1.2 are fulfilled and F is compact. 

Step 2: I f  F= (/4} is a sequence in :~ and if for one compact set K 0 in M and one 

compact set K 1 in hr, ]4(Ko) N K 1=~O, for all/4 E F, then F(K) is a bounded subset of hr 

for all compact K ~  M. 

Reason: Since M is connected, it will be sufficient to prove this assertion for all con- 

nected compact K containing K 0. Thus, take such a K and we know that /~(K) N K 1 =~O. 

Choose an arbi trary ~ > 0, then associate with each m E K a neighborhood U such tha t  the 

diameter of/4(U) is less than e for all ]4 E F. K then admits a finite covering by  such neigh- 

borhoods U 1 ..... Ul. I t  is clear tha t  the diameter of the connected/4(K) cannot exceed 

21~ for all i. Let the diameter of K 1 be ~, (~ < ~ because K 1 compact) and let n 0 be a fixed 

point in K 1. Because/~(K) N K 1 =~O,/~(K) is necessarily contained in the ball about  n 0 of 

radius ~ + 21e. Since i is arbitrary, F(K) is then a subset of this ball also. 
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Step 3: Let  F be a sequence in :~. Unless F is compactly divergent, F contains a 

relatively compact subsequence. (This clearly proves (iii).) 

Reason: Assume F not compactly divergent, then there is some compact K 0 in M 

and some compact K 1 in N such that  for infinitely many g~ of F, g~(Ko) N K 1 # 0 .  By Step 2, 

{g~} carries each compact K of M into a bounded set in iV, and the latter must then be 

relatively compact by hypothesis on h r. Now Step 1 implies that  {g~} is a relatively com- 

pact subset of C(M, iV). Q.E.D. 

I t  will be convenient later on to introduce the following two notions. 

Definition 1.2. A complex manifold N is called taut iff for every complex manifold M, 

the set of all holomorphic mappings A(M, N) is normal. 

Definition 1.3. Let iV be a complex manifold and d be a metric on N inducing its 

topology. Then (hr, d) (or if no confusion is possible, just N) is tight iff for every complex 

manifold M, the set of all holomorphic mappings A(M, iV) is equieontinuous. 

Remark. I t  should be emphasized that  while tautness is an intrinsic property of the 

complex structure of N, tightness is dependent on the metric d used. I t  can happen that  

two metrics d and d' both induce the same topology of N, but  (N, d) is tight while (N, d') 

is not. In  all applications which we shall consider, d will be the distance function associ- 

ated with a hermitian metric on iV. See w 2 as well as w 8 and w 9. 

Lemma 1.1 gives a link between tightness and tautness. If N is compact, the two 

concepts coincide, by Lemma 1.2. Clearly both concepts are entirely local questions, so 

the following is clear. 

LEMMA 1.3. N is taut i / A ( D  ~, N) is normal/or all n, where D n is the unit bail in C n. 

(N, d) is tight i/~4(D ~, N) is equicontinuous for all n. 

To conclude this section, let us examine the most popular compact family of holo- 

morphie mappings. If M is a complex manifold as usual, then :~_A(M, C =) is called 

uniformly bounded iff there is a constant C such that  supme MII/(m)]l <C  for all f e ~ .  Here 

[[ ]1 denotes the ordinary euclidean norm of C n. The following is classical, (Montel [25], 

p. 241). 

L~MMA 1.4 (Theorem of Montel). A uniformly bounded/amily o/holomorphic mappings 

from M into C ~ is equicontinuous and hence relatively compact in A(M, C~). 

This immediately implies: 

LwMMA 1.5. Every bounded domain in C ~ is a tight manifold in its usual metric. 

I t  is much harder for a domain to be taut.  See w 6. 
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2. Theorems A and B 

Let us set up the notation. I f  N is an hermitian manifold of dimension n (without 

further notice, dimension =complex dimension) with hermitian metric h, we shall agree 

to denote the volume element of h by  ~.  h gives rise to a distance function on N which 

is denoted by  d or d h. By  the distance between two points in N, we shall always mean 

the distance relative to this dh. Suppose P0 is a fixed point of another complex manifold M 
~A2nM* also of dimension n, and # is a fixed nonzero real co-vector of degree 2n at P0, i.e. # . . . . . .  po, 

where M~o denotes the real cotangent space of M at  P0 and A denotes exterior power. 

I f / E A ( M ,  2V), then (]*~)v0=c~u for some real number c. We shall denote c by (/*~/#) /or 

convenience. Consider now a holomorphie family :~a~ {/E (M,/V): ]]*~//u ] ~>a >0}. Roughly 

speaking, this simply means tha t  the gacobian of ] E :~a a t  P0 is bounded away from zero 

by a in absolute value. 

De/inition 2.1. I f  / : M - + N  is holomorphic and 2Y is hermitian, then a univalent ball 

(/or ]) is an open ball in the image of / onto which / maps an open set biholomorphieally. 

By biholomorphic, we mean as usual tha t  the holomorphic mapping is one-one and 

has everywhere nonsingular differential. (One may  note tha t  the second requirement is 

redundant in the case of holomorphie mappings; see Bochner-Martin [6], p. 179. But  this 

definition will serve us better  in Par t  I I I , w  10.) 

TH~ORlCM A. I / ~ a  is a relatively compact/amily, then there exists a positive constant 

cr such that every /E ~a possesses a univalent ball o/radius a around ](Pc). 

TH]~OREM B. Suppose M also hermitian. Hypothesis as above, then there is a positive 

constant ~ such that/or every /E ~a, / is biholomorphic on the open ball o/radius ~ about Pc. 

Proo] o/Theorem A.  Let ~a denote { lEA(M,  ~Y): >~a>0}. We first show that  

Ea is closed in A(M, N). Let  ] belong to the closure of s then there is a sequence {]~} in 

~a such that  ]~-§ This means /~ converges to / uniformly on all compact subsets of M 

and so, by a well-known property of holomorphic functions which states that  uniform con- 

vergence entails uniform convergence of all corresponding partial derivatives of all orders, 

] ~ ] * C 2  uniformly on compact subsets of M. (This last can be taken to mean "with 

respect to any hermitian metric on M".)  * * As a result, 1,~1~-~/air which implies I/*~/ffl >/ 

a > 0 .  Thus /EEa, and Ea is closed in A(M, N). In  particular, the compact closure of :~ 

will still reside in ~ .  We will there]ore assume : ~ _  Ea and is compact. Furthermore, a second 

reduction is possible: we will assume tha t  M is the unit open ball D n in i3 n and Po is the origin 

O. Indeed, we may  choose complex coordinates z 1, ..., z n around Po so that  z~(po)=0, a = 

1 ... .  , n, and such that  Dn=--{(Z~Iz~I~)�89 <1} is contained in this coordinate neighborhood. 
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Then we restrict each / of :~a to {(Y~lz~12)�89 <1} and work entirely within it. Assume this 

done. We will now prove Theorem A in this form: 

For a compact family of holomorphic mappings :~a~.c~(D n, N), with I/*~//tl >~a>0 

for each /E :~a (where tt is a nonzero real co-vector of degree 2n at 0), there is a positive 

constant ~ such that  e v e r y / E  :~a has a univalent ]Jail of radius ~ a round/ (0) .  

Assume this assertion false, then there is a sequence {]~ )___ :~ such that  the radius 

of the maximal univalent ban fo r/~ around/v (0) approaches zero as i-~ oo. By compactness 

of :~a, there is a subsequence {]~} which converges (in the compact open topology of course) 

to an ] :  Dn"*N, and ]E:~.  Since I]*~]#1 >--a>0, d] is nonsingular at the origin 0, Hence 

there is a univalent ball of radius r > 0  for ] about ](0). Call this B. Let  A be the open 

set in D n which contains 0 and which / maps biholomorphically onto B. (Although not 

needed in the sequel, we would like to clarify the situation with this remark: A is the 

component of /-I(B) containing 0. This can be established by a completely elementary 

reasoning or by a dimension argument.) Now let B' (resp. B") be the open ball of radius 

r - 2 e  (resp. r - 4 e )  a round/ (0) ,  where s is any sufficiently small positive number. Let  A'  

(resp. A") be the unique subset of A which / carries onto B' (resp. B"). I t  is clear that  

the closure .4' of A' (resp. .~ '  of A ~) is compact and contains no boundary point of D n. 

Now let B~ be the maximal univalent ball of radius rt, say, for/~ around/~(0). By 

our hypothesis, r~-+0 as i->co. Let  A t be the open set in D n containing 0 which ]f maps 

biholomorphically onto B~. The crucial property of A~ is this: the boundary ~At o/ A~ 

must contain a boundary point o/ D n or a lgoint Pt at which d/t is singular. For if ~At con- 

tains neither, then a simple application of the inverse function theorem will enable us to 

construct a univalent ball containing/t(O) with radius strictly larger than rt, and B~ will 

not be maximal. 

Now select an integer i 0 so large that  B~_~ B ~ if i ~> i 0. This is possible because ]~(0) -~/(0) 

and rt->0 as i-~oo. Since A' is compact , /~-~/uniformly on A' so that  we may select an 

integer i~ with the property: m a x ~  A' dh(/t(P),/(P)) <s  if i ~> i 1. Let  i~ >--{i0, il}. We claim: 

A ~ _ A '  if i>--f2. 

For if not, there will be a point p e A t  N ~A' for an i>Ji~. (~A'~boundary  of A' in Dn.) 

Since pEAt, and /~(At )=B~_B" ,  /t(P) is of distance at least 2e away from ~B'. On the 

other hand, p e ~A'. Then the two facts da(/(p),/~(p)) <e  and/(~A')  = ~B' imply that / t (P)  

is of distance at most e from ~B'. A contradiction. 

Thus, {~t} for all i>_-i~ are contained in the compact set A ~. As A ~ contains no 

boundary point of D ~, nor does any of the ~ for i >i i~. By the above remark, there must 

be a point p~e~At such that  (d/t)~ is singular. Let  p be an accumulation point of {p~}; 
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pEA'. Note again tha t  {]c} are holomorphic mappings converging uniformly to ] on A' ,  

so d]t converges uni]ormIy to d] on .4' relative to the hermitian metric h of N and, say ,  

the flat metric on D n. Therefore if {pc,) is a subsequence of {P4} such tha t  {pr as 

i ' - > ~ ,  it is clear tha t  
(d/c,)~,,-~(dl)~ as i ' - ~ .  

~c  Consequently, (dl) p is singular. But  pEA , 4 ,  and d I is nowhere singular on A because 

I is biholomorphic on A. This contradiction completes the proof. 

Proof of Theorem B. Let us choose a coordinate system s 1 . . . . .  z ~ around P0 so tha t  

z~(p0)=0 for all a and so tha t  the unit ball {E~]z~]2<l} is contained in this coordinate 

neighborhood. I t  is well known (Kobayashi-Nomizu [23], p. 166) tha t  the distaince func- 

tion of the hermitian metric on M and the ordinary euclidean metric induced b y  z 1 . . . .  , z ~ 

both define the same topology in this coordinate neighborhood. Therefore, as in the proof 

of Theorem A, it suffices to prove the following equivalent statement: 

For a compact family :~agA(D n, N) such tha t  ~>a>0 for a l l /E~a ,  (g being 

a nonzero real co-vector of degree 2n at  the origin 0), there is a positive constant ~ such 

tha t  every /E :~a is biholomorphie on an open ball of radius X around O. 

In  view of Theorem A, we can choose a positive constant a* so tha t  if /E:~a, then 

there is a univalent ball B r of / of radius a* a b o u t / ( 0 )  with the property: there exists 

an open set A r containing 0 with compact closure z/I which / maps biholomorphically 

onto/~r.  Indeed, it suffices to take ~* to be any positive constant smaller than  the ~ of 

Theorem A. Next,  we claim: 

17 Ar contains an open ball around 0. 
fe~a 

This clearly implies the theorem. In  turn, to prove this claim, we will prove the 

following equivalent statement: 
inf dist(O, 8AI) > 0, 

f r 

where dist ( , )  means the ordinary euclidean distance of C ~. I f  this were false, then there 

exists a sequence {f~} such tha t  dist(0, 8A~)-+O as i~oo ,  where we have denoted 

8AI~ by 8A~ for simplicity. Again, the compactness of :~a implies that  a subsequenee 

{14} converges to some I E ~ A ( D n ,  N). Then there is an open set A of D n containing 

O with compact closure ~ which ] maps biholomorphically onto the closure /~ of an 

open ball of radius ~* around l(O). 

Let Pc E 8A 4 (~8~lr~) realize the distance from O to 8A c, i.e. let dist(O, P4) = dist(O, 8A 4). 

This is possible because 8A4 is compact. Since dist(O, ~A4)-~0 as i-~oo, 24->0 as i-+oo. 

Consequently, dh(/(P4), l(O))~O as i-+oo. On the other hand, 14 converges uniformly on 
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the compact set -4. Using this, the usual argument gives dh(/~(p~),/(0))-~0 as i - ~ .  We 

will see that  this is not possible. Indeed, an integer i 0 can be chosen so that  dh(/~(O),/(0)) < 

�89 if i>~i o. But for all i, da(/~(O),/~(Pi)) =a* because p~E~Ai, and hence/t(pt)E~B~. Thus, 

i ~> i 0 implies dh(/i(Pi),/(0)) > �89 > 0. This is a contradiction. Q.E.D. 

Combining Lemma 1.4 with Theorems A and B, we deduce trivially: 

COROLLARY 2.1. Let X be a domain (=open connected set) o /C  n, and let E be any 

bounded domain o/ CL I /  ~ _ A ( X ,  E) has the property that at some /ixed point xoEX , 

I J/(xo) I >~a > 0 / o r  all / E ~ ,  where J/denotes the Jacobian determinant, then: 

(i) There is a positive constant ~ such that every /E :~ possesses a univalent ball o/ radius 

oc around/(Xo). 

(ii) There is a positive constant ~ such that every /E ~ is biholomorphic on the open ball 

of radius ~ around x o. 

The explicit determination of ~ and 2 for X = E = (a symmetric bounded domain in C ") 

should be an interesting problem. In  particular, a lower bound for a in the case of the 

unit ball D n in C n will yield a lower bound for the Bloch constant fl in the general Bloeh 

theorem of w 11. But such a lower bound for fl will be very poor in general. 

3. Two examples 

First let us recall that  the classical theorem of Bloch deals with holomorphic mappings 

from the unit disc D 1 into C. (i) of Corollary 2.1 is the embryonic form of the extension 

of this result to n variables; it is unsatisfactory because it was necessary to restrict the 

receiving space to be a bounded domain rather than all of C n itself. The relaxation of this 

restriction will be carried out in Part  I I I .  (See particularly the Appendix.) But in the 

process of doing this, a restriction of a different nature will creep in, namely, the family 

of such mappings will have to be quasi-conformal. See Appendix for definition. I t  is the 

purpose of this section to show that  some kind of restriction is to be expected once we 

go outside of one complex variable. The first example is naive but has the virtue of being 

convincing, while the second is more sophisticated but possibly less instructive. 

Example One. Define q~ : D2-~C ~ (D ~ as usual denotes the open unit ball in C 2) by: 

cf,(z~, z~) = (izl, 1/i z2) , where i is an integer. Clearly ]J~,(O) l = 1 for all i and the univalent 

balls for ~, are of radius at most 1/i. Therefore Corollary 2.1 (i) breaks down for the family 

{%} (i = 1, 2 .... ) in the strong sense that  the supremum of the radii of the univalent balls 

anywhere when all members of {~0,} are taken into account is zero. 

The trouble lies in the fact that, as i-+c~, ~, expands infinitely in the zl-direction 

and contracts infinitely in the z~-direction. This points to the necessity of looking at those 
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mappings whose infinitesimal dilatation is bounded, i.e. the ratio of the infinitesimal 

expansion over infinitesimal contraction is bounded by  an absolute constant. These quasi- 

conformal holomorphic mappings will have applications not only in extending the Bloch 

theorem, but  also in n-dimensional value distribution theory. The latter will be pursued 

in a separate publication. 

Example Two. This time, a series of %0 i : D 1 • DI~C 2 will be defined (D 1 is the unit 

disc in C), where Image v/i for each ~0t will be all of C ~ and I J%0i(0) I = 1. Yet, Corollary 2.1 (i) 

will break down for the family {Y~i} (i = 1, 2 . . . .  ) in the same strong sense as above. The 

improvement  over the previous example is tha t  the image of each of the ~ in Example  

One is only a bounded subset of C ~. 

First we define a holomorphie/ :  D i s C .  So let ~ be an entire function with double 

zeroes at  exactly all the lattice points of C except a t  the origin, i.e. at  1:~{0} where s is 

the set of all Gaussian integers in C. Take the Riemann surface of V~; call it S, and let 

~: S-+C be the natural  projection of this ramified covering. We claim tha t  D 1 is the 

universal covering surface of S. To show this, it suffices to show tha t  the universal cover- 

ing surface of S cannot be C. I f  it were, then let g '  : C-~S be the natural  projection, then 

~o~': C-+C is an entire function, and by  our construction, no univalent ball of ffoz' can 

exceed 2 in radius. On the other hand, using the original Bloch theorem, one can verify 

tha t  for an entire function, there exist univalent balls of arbitrarily large radius. This 

contradicts the above. Hence D 1 is the universal covering surface of S. So let g: DI-~S 

be the natural  projection and define / to be @oz. Clearly / is onto and d//dz vanishes 

at/-1(C\{0}). 

( t  i/(z2)), where c ~  Now by  definition, yu D 1 • D I ~ C  2 is ~(z l ,  z2) = ic/(Zl), c 

(d//dz)(O)+O. Consequently, [J~fl,(0)[=l and y~, maps onto C ~. Also, if T = [  -~ 

} ( s  then ~0~(TxT)=  ~ : a , b  are integers andJ~o,(0/=0ifpe{TxC}U 

{C x T}. Therefore each ~o~ is not one-one in any neighborhood of {T x C} U {17 x T}, 

and hence any  ball containing a point of ~ (T x T) is not univalent. From this, one 

sees readily tha t  the size Of the univalent balls anywhere for V~ shrinks down to 

zero as i-~ c~. 

4. Theorem C 

We begin with the statements of the theorem itself and some of  its consequences. 

THEOREM C. Let M be a relatively compact open submani/old o/a complex mani]old IV. 

Let d be some metric on IV such that (M, d) is tight (De/inition 1.3). I / / :  M ~ M  is holomor- 



NORMAL F A M I L I E S  OF HOLOMORPHIC MAPPINGS 205 

phic and/(p) =p, consider d/,: M~-> M~, where M v denotes the tangent space o / M  at p. Then: 

(1) Idetd/~l <1. 
(2) I / d / v  is the identity linear trans/ormation, then / is the identity mapping o/ M. 

(3) Idet d]~ I =1 i]] ] is an automorphism. 

By an automorphism of a complex manifold, we mean a biholomoq~hic mapping of 

the manifold onto itself. The following should be obvious: 

COROLLARY 4.1. Hypothesis on M and N as above, let/ ,  g be automorphisms o / M .  

I / / (q)  =g(q) and d]q=dgq /or some qEM, then/=g.  

COROLLARY 4.2. Suppose M, N as above. For two/ ,  g in A(M)  both leaving a point 

p /ixed, d/v is the inverse o/dg~ i// ] and g are both automorphisms and ] is the inverse o/g. 

From the proof of Theorem C to be given presently, it will be clear that  the following 

also holds. 

THEOREM C'. Let M be a taut complex mani/old and let lEA(M)  be such that/(p) =p. 

Then (1)-(3) o/Theorem C are true. 

COROLLARY 4.2'. Suppose M is taut and /, gEA(M)  such tha t / (p )=g(p)=p.  Then 

d/v = (dg~) -1 i]/ /, g are both automorphisms and / =g-1. 

Finally, let us note an immediate consequence of (3) of Theorem C and Lemma 1.5; 

this the Theorem o /H.  Cartan-Caratheodory: If E is a bounded domain in (~n and ]: E-->E 

leaves p E E fixed and is holomorphic, then ]J](p)]= 1 implies / is an automorphism. 

(J /= Jacobian determinant.) 

Proo/ o/ Theorem C. Consider the iterates {/i} of /. Since (M, d) is tight, (/'} is an 

equicontinuous family. As M is relatively compact in N, it follows from Lemma 1.2 that,  

regarded as a subset of A(M, N), {/~} is relatively compact. Let {f(s)} (s = 1, 2 .... ) be a 

subsequence of {/t} which converges to an hEA(M,  N). An argument which is familiar 

to us by now yields d/~S)->dh, as s-+oo. In  particular, (det d/,)i(s)-~det dh~ as s-+oo. 

Now if ]det d]~ I > 1, the left side goes off to infinity as s-~ oo while the right side is 

finite. Impossible. Thus Idetd/~l ~<1, which proves (1). Suppose / is an automorphism 

of M, then its inverse satisfies, by (1), Idetd/v 1 ] ~<1, which is the same as saying 

Idet d/, I ~>1. Thus, / is an automorphism implies Idet d],] =1. This proves one part  of (3). 

We now begin the proof of (2). Thus/(p)  =p and d/~ is the identity linear map of M~. 

Let  U be a coordinate neighborhood of p with coordinate functions z 1, ..., z n such that  

zr =0, ( l=l  ..... n. Since {/~} is an eqnicontinuous family and/~(p) =p,  we may assume 
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t h a t  {fl} carries t he  closure of the  un i t  bal l  in to  v .  Considering {]'} as 

a subset  of ~ ( D  n, U), we can decompose  each [~ in to  coordina te  funct ions  re la t ive  to  

z ~ . . . .  , z~: ]~= ([~ . . . . .  /~). (Of course, [1= [). B y  hypothes is ,  we have:  

~z ~ (0)  = ~ ,  1 ~<o, ~ ~<n, (4.1) 

where 5g is the  Kronecke r  del ta .  W e  will show t h a t  al l  h igher  der iva t ives  of t h e / ~ ' s  vanish  

a t  0.  As before, consider  the  subsequence {f(s)} which converges to  h: M ~ N .  Clearly,  

h also carries the  closure of D n in to  U and  so will be r ega rded  as in  A ( D  n, U). Le t  h =  

(h i . . . .  , h~) re la t ive  to z 1 . . . .  , z n. Then  as  s - ~ ,  f(s) t oge the r  wi th  all  i t s  der iva t ives  converge 

un i fo rmly  to  he on D n, 1 ~ a  <~n. Now, b y  the  chain rule: 

az0 - ~ 1  . . . . . .  t-1 ~z~, " ~z~ " . . . .  ~z ~ . (4.2) 

(Note t h a t / ~  is not  t he  i t h  power  o f / r  F r o m  (4.1) and  (4.2), we see tha t :  

a~l~ . a% (0) 
az ~ az ~ (0 )  = ~ . az o az----- ~ 

for  1 4Q, a , ~ 4 n  and  al l  i. Hence  i t  is clear  t h a t  azO~z~(O) cannot  converge to  

~2ho 
~z-~z~ (0 )  as s - ~  ~ un le s s  ~ [ ~  ~zq~z---- ~ (0 )  = 0 for all  ~, a, ~. W e  now induc t  on the  order  of 

the  par t i a l s  of /~ .  Suppose we know t h a t  the  par t i a l s  of [o of order  2, 3 . . . . . .  r - 1 all  van i sh  

a t  O, then  a compu ta t i on  based  on (4.2) reveals  tha t :  

" ' "  ( O ~ = i .  (0). 
~z~ .. .  ~z ~, �9 , ~z~, . . .  ~Z~r 

converge  to  (0), i t  is necessa ry  t h a t  Then  again,  in order  t h a t  ~zo, . . .  ~zO, (0~ ~z~, . . .  ~z~, 

~, ~ (0)  = 0 for  a l l  an, - . . ,  a ,  a.  W e  h a v e  therefore  p roved  t h a t  al l  t he  de r iva t ives  
~z . . .~z  r 

of the  ]~, 1 ~<a~<n, mus t  van ish  a t  0 wi th  the  sole except ion  of (4.1). I f  we deve lop  

]~ in to  a power  series in D ~, th is  means  ]~(z t . . . .  , z ' )  = z  ~ Thus  the  m a p p i n g  [ =  

(]1 . . . . .  ]n) of D ~ into  U is j u s t  the  inclusion m a p  D n E  U.  As [ is holomorphic ,  i t s  

behav ior  on M is comple te ly  de t e rmined  b y  i ts  behav ior  on a n y  open set .  T h u s / i s  

the  i d e n t i t y  of M onto  itself,  which proves  (2). 
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Finally, we tu rn  to the proof of the second half of (3): I f  ] ( p ) = p  and 

]get d]v]= 1, then ] is an automorphism of M. Pick D n, U, {zX,...,z n} as before, and 

let f ( s )~  h as before. Consider the Jordan canonical form r of the matr ix  of dry re- 

lative to the basis ~ (0),... ,  (0) of Mv. (Recall tha t  p corresponds to the origin 

0 of this coordinate neighborhood.) We claim: 

F is a uni tary diagonal matrix. 

To prove this, note as before tha t  (dry) i(8)L (dhv) as linear transformations, so tha t  

F ~(8)~ A, where A is the matrix of dh~, relative to the same basis as F. In  particular, 

all entries of F i(s) are bounded by a constant independent of s. Hence the diagonal 

entries of F all have absolute value at  most one because of the fact that  if the (k, k)-th 

entry of F is 2, then the (k, k)-th entry of F i(~) is 2 ~(~). Now if one diagonal entry of F in 

fact has absolute value strictly less than one, then the hypothesis of ]det d]v] = 1 ( = [det F ] ) 

will force some other diagonal entry to have absolute value strictly bigger than one. 

This last is forbidden. Hence, if ~ is in the diagonal of F, 12I = 1. 

Suppose F is not in diagonal form, then it must  have a diagonal block of this form: 

I t  is trivial to see tha t  the corresponding diagonal block of F z is then of the form: 

,;L ~ 1 2 - 1  

o . .  j 

This means tha t  the entries immediately above the diagonal of F ~r will diverge to infinity 

as s-+oo. Then again, this contradicts an observation made above. Thus, F has diagonal 

entries all of the form e g~ 0 Ett, and has zero entries off the diagonal. Our claim is established. 

I t  is now clear tha t  we can pick a subsequence of {F i} so tha t  it converges to the 

identi ty matrix. Equivalently, there is a subsequence of {d]~} which converges to the 

identi ty transformation of M~,~Mp. To save symbols, let us assume tha t  this is the sub- 

sequence {dr (s)} above. Since fcs)--->h, we see tha t  dh~, =ident i ty  map of Mv--->M2,. By (2), 
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h is the identity map of M--->M. An immediate consequence of this is tha t  / is one-one. 

For, if /(Pl)=](P~), then f(S)(pl)=f(S~(p~). As s->c~, we have Pl=P2. To conclude the 

proof of (3) and the theorem, let us show ] is onto. Suppose not, then there is a q E M ~ / ( M ) .  

Clearly then, q E M ~ f ( ~ ) ( M )  for all s. Now equip M with any hermitian metric h whose 

global distance function and volume form we denote by dh and ~ as usual. Since d/~ (s) s 

identity map of M ~ M q ,  it is clear tha t  (f(~))*s as s-~oo. Thus for s>~s o, say, 

[(f(~))*~A2(q) I/> 1 - e > 0 .  By Theorem A, there is a univalent ball of radius ~ (relative 

to dh) around f(S)(q) for s ~>s 0. But  f(S)(q)Sq, so q belongs to all these univalent balls as 

soon as s is so large tha t  da(f(~)(q), q) < �89 say. Hence f(~)(M) contains q for all sufficiently 

large s, contradicting q is in M~/~(~)(M). Q.E.D. 

5. Theorems D and E 

We will consider the group :H(N) of automorphisms (--biholomorphic, onto self- 

mappings) of a complex manifold N in this section. Note that  :H(N) is a closed subset of 

.,4(N), so it is also closed in C(N). The dominating notion hero will be the tightness of N 

(always with respect to some pre-assigned metric d on N). See Definition 1.3. 

TH~ORW~ D. I f  (N, d) is a tight complex mani/old, then its automorphism group :~(N) 

is a (not necessarily connected) Lie group, and the isotropy subgroup o/ ~ (N)  at a point is a 

compact Lie group. 

By the isotropy group of ~4(N) at  a point p, we mean the set of all elements in ~4(/V) 

leaving p fixed. Theorem D will be a consequence of a general lemma about transformation 

groups of a metric space, Lemma 5.1 below. A related theorem, which however needs a 

separate proof, is the following. 

T ~ E O ~ . M  D'. I / ~  is a taut complex mani/old, then its automorphism group ~4(1V) 

is a (not necessarily connected) Lie group, and the isotropy subgroup o/~4(N) at a point is a 

compact Lie group. 

The proof of both will depend on the basic Theorem o/Bochner-Montgomery (Chu- 

Kobayashi  [9], Theorem C) which we quote: A locally compact transformation group of 

diffeomorphisms of a differentiable manifold is a (not necessarily connected) Lie trans- 

formation group of the manifold. With this theorem at  hand, Theorem D is clearly a 

corollary of the following lemma. 

L~MMA 5.1. Let N be a connected locally compact metric space and G a group o] homeo- 

morphisms o / N  which is (i) equicontinuous, and (ii) closed in C(N). Then G is a locally 

compact trans/ormation group o / N .  



NORMAL FAMILIES OF HOLOMORPHIC MAPPINGS 209 

Proo/. Let the metric of hr be d. Define a new distance function 8~8a on hr as follows: 

~(x, y) = sup d(~o(x), q)(y)) 
q~eG 

We will prove that  ~ is a metric on h r. Since the identity transformation belongs to 

G, clearly ~(x, y)=O iff x=y. The  triangular inequality and the symmetry  condition 

(~(x, y) =($(y, x) are both trivial. What  remains unproved is that  (~(x, y) < ~ for all x, y ehr. 

For this, we shall need assumption (i) of equicontinuity. Fix an xEhr, and define (I)(x) 

to be the set of all yEhr such tha t  ~(x, y ) <  ~ .  Since xE~(x), ~9(x)is nonempty.  Suppose 

y E (I)(x), we will show tha t  so does a neighborhood of y. For let 0 < 8 < oo be given, then the 

equicontinuity of G implies the existence of a neighborhood U of y such tha t  d(~(y), q~(y')) <8 

for all y'EU and all ~0EG. Thus 5(y, y')<8 for all y'EU and consequently 8(y', x)~< 

(~(y', y)+~(y,  x ) < ~ .  So U~_cb(x), and (I)(x) is open. Now, (I)(x) is also closed by  a very 

similar argument. So the connectedness of hr implies (I)(x)=hr, and 8(x, y )<oo  for all 

x, yEhr. Thus 8 is a metric on hr. 

Next  we observe tha t  the topology induced by  8 on N coincides with the original 

one induced by d. This also needs equicontinuity, as follows. First observe that,  since 

the identity map of hr~hr is in G, d~<(~; so every e-ball of d contains an e-ball of ~. Con- 

versely, let an 8-ball of 8 be given. Call it B'  and let it be centered at  x 0. By  equicon- 

t inuity of G, we can choose an 8'-ball of d (call it B) centered at x 0 such tha t  x E B implies 

d(q)(Xo), ~(x))<18 for all T E G. We claim: B _  B'.  For if x E B ~ B ' ,  then 8(x, x0)>~8, and 

there will be a sequence ~0,EG such tha t  d(~0,(x), ~i(x0))-->e for this xEB. This contradicts 

the choice of B. Thus the d-topology and the 8-topology of 57 coincide. In  the following 

we may  therefore replace d by  8. 

Since G is a group, it is obvious tha t  it becomes a group of isometrics of (hr, ~l). By  

a well-known theorem of van Dantzig - van der Waerden (Kobayashi-Nomizu [23], p. 46), 

the group of all isometries of a connected locally compact metric space is a locally compact 

transformation group. Now, G is closed in C(hr) by  assumption (i), and hence closed in 

the set of all 6-isometries of h r. Therefore G is a locally compact transformation group of hr. 

The compactness assertion concerning the isotropy group is a corollary of the proof of 

the van  D a n t z i g -  van  der Waerden theorem, (Kobayashi-Nomizu [23], p. 49). Q.E.D. 

Proo/o/ Theorem D'. Recall that  C(Z r) is second countable, so we shall employ se- 

quences exclusively to deal with all questions concerning continuity. Also, to simplify 

matters,  we impose a metric d on IY. 

We first show tha t  the inverse operation is continuous in ~4(/V). Let  /~-~], and we 

must  show/[1_~/-1. I t  suffices to.show: if K is a compact set and e>O is given, then there 
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is some i 0 such tha t  d(fi-l(x),/-l(x)) <e  for all x E K  and all i>~i o. To this end, let K" =/-I(K), 

and let y=/- l (x )EK' .  Thus: 

d(/~(x), /-~(x)) = d(/f ~(/(y)), y) = d(/il(/(y)), /[~(/~(y))) 

We claim: There exist a 6 > 0  and an i 1 such tha t  if z, z 'EK  and if d(z, z ' )<~,  then 

d(/~l(z), Kl(z ' ) )<~ for all i ~>i 1. 

Granting this for a moment,  choose i 2 so tha t  d(/(y),/~(y))<6 if i>~i~ and if yEK' .  

This is possible since /~-~/ and K'=/ - I (K)  is compact. Let i0~>{i~, i2}, then the above 

claim implies: 
d(/~-l(x),/-l(x))<e if y e K '  and i>~i o. 

In  other words, this holds for all x E K  and all i ~>i0, as desired. 

We now turn to the proof of the claim. Let  yoEK' and let xo=/(yo)EK. Let U be 

any relatively compact neighborhood of x 0. Since/~-+/, for a large enough il, i>~il, will 

imply that/~(yo)EU. Thus the sequence F={/i-1}~>~, has the property: the compact set 

{Y0} is contained in al l /~1(~),  where O denotes the compact closure of U. Thus no sub- 

sequence of F can be compactly divergent, and the tautness of h r then implies tha t  F is 

a relatively compact set in ~/(N). By  Lemma 1.2, F is an equicontinuous family. Therefore, 

for each z e K, there is an open neighborhood Uz such that  z'E Uz implies 

d(t[l(z) , /[l(z '))<ls if i>~i 1. 

Let this compact K be covered by  finitely many  such Uz and let 5 be the Lebesgue cover- 

ing number, i.e. d(z~, z~)<8 implies zl, z 2 belongs to the same Uz, for some z*. The claim 

clearly follows from this choice of 8. 

The fact tha t  multiplication in ~/(N) is continuous is provable in a similar fashion. 

To show tha t  the action on N: ~ / ( N ) •  r with (/, x)---)-/(x) is continuous, one proves 

/~-~/ and x j ~ x  imply/~(xj)~/(x).  But  this is a standard consequence of the uniformity 

of the convergence of/~ to t (on some compact neighborhood of x). Thus 74(N) is a topo- 

logical group acting effectively on h r. ~/(N) is locally compact in view of Lemma 1.1 (ii). 

Hence the above theorem of Bochner-Montgomery applies and ~/(N) is a Lie group. 

Now clearly the isotropy subgroup of ~/(h r) at p, by  its very definition, can contain no 

compactly divergent subsequences. Then the tautness of h r implies tha t  it is compact in 

~/(2r In  particular, it is closed in ://(N) and so a Lie group also. Q.E.D. 

I t  should be remarked that  there are no known examples of a tau t  manifold which 

is not tight relative to some suitable metric. See Par t  I I .  So in applications, on ly  Theorem 

D is ever needed. Note also tha t  Theorem D together with Lemma 1.5 imply the famous 



NORMAL F A M I L I E S  OF HOLOMORPHIC MAPPINGS 211 

Theorem o / H .  Cartan to the effect that  the automorphism group of a bounded domain 

in C n is a Lie group. 

The special case of Theorems D and D '  for a compact N is particularly interesting. 

(Both theorems coincide in this case.) But  we first need a basic result. 

THV.O~EM E. I /  (N, d) is a tight complex manifold, then there is no nonconstant holo- 

morphic map of C n into N. 

Proof. Clearly it suffices to prove that  every holomorphie map f : C ~ N  reduces to 

a constant. Let / (0 )=p ,  and let z 1 ..... z" be a coordinate system around p such tha t  

z~(p) = 0 (a = 1 ..... n) and the unit ball n ~ = {Z~ [z~ [2 < 1 } is contained in this neighborhood. 

Consider the sequence of mappings ~s~: DI-~(~ such tha t  ~o~(z)=iz, where i is a nonnegative 

integer. Then y j ~ f o ~  is a sequence of holomorphic mappings from D 1 into N. By the 

tightness of N, there is a (~>0 so tha t  if ~EDs--{]z  I <~}, then ~ ( ~ ) e D  n for all i. We 

now show tha t  this implies /(C)_ D ~. For let ~EC and let i 0 be so large tha t  i0~ > I$[" 

Thus ~e~,(Ds) .  Let ~E D~ be such that  ~0(~)=~. Then f (~)=f(~o(~))=~,(~)e  DL Since 

is a rb i t ra ry , / (C)~  D n as desired. By Liouville's T h e o r e m , / ( C ) -  (p}. Q.E.D. 

COROLLARY 5.2. / / I V  is compact and taut, then ~It(N) is finite. 

Proof. Since N is compact, its tautness implies that  ~/(N) is a compact Lie group. 

Another theorem of Bochner-Montgomcry states: the automorphism group ~/(N) of a 

compact complex manifold N is a complex Lie group and the action ~: ~/(1V)• N ~ N ,  

~(g, p)=g(p) ,  is holomorphic. (Bochner-Montgomery [5].) So ~/(N) is a compact complex 

Lie group and therefore its identity component is a torus T. I f  T consists of more than  

one element, then it admits C r as universal covering group, where r > 0 .  Let  z: Cr-~T be 

the covering map. Take a g E T distinct from the identity and let p be some point of N 

such tha t  g(p)~:p. Then the mapping of f f ~ N  such that  ~-~(zr(~), p) is holomorphic 

and nonconstant. This contradicts Theorem E. Hence T is just the identity element, and 

the finiteness of ~/(N) follows from its compactness. Q.E.D. 

6. Digression into domains ha C" 

THEOREm F. I / a  domain E (=open connected set) in C n is taut and E:4:C n, then E 

is pseudo-convex and hence a domain o/holomorphy. 

We have to recall a definition of pseudo-convexity which is most  suitable for our 

purpose. I t  is the classical Kontinuit/~tsatz, as found in L. Bers [2], p. 30, or Katznelson 

[18], p. 2.8. First, the notation A ~  c B is employed to denote " A  has compact closure in 
14 - 672909 Acta mathematica 119. I m p r i m ~  le 8 f~vrier 1968. 
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B." By definition, an analytic disc in C n is a holomorphic mapping of the closed unit disc 

D l = { I z  [ ~I}___C into CL If s: D I ~ C  ~ is an analytic disc in C ~, by abuse of language, 

we sometimes identify s with its image s(D1)_~ C =. The boundary ~s of s denotes either 

the restriction of s to the unit circle ~/gx or the image set s(~D1). A domain E of C ~ (E #C ~) 

is called pseudo-convex iff every sequence of analytic discs {s~} in E with [.J~ ~s~c c E has 

the property that (Ji s ic  c E. 

Proo/o~ Theorem F. Let {s,} be a sequence of analytic discs in E with [.J, ~s,c c E 

as above. ( J ~ s ,  has compact closure and hence bounded. By the maximum modulus 

principle, [-J,S, is also a bounded subset of C = and hence by Montel's Theorem (Lemma 

1.4), (s,} is a relatively compact subset of .r 1, cn). I t  is then clear that  there is a com- 

pact neighborhood K of (J t ~s, in E such that ~s, f3 K # O  for all i. This means that  the 

sequence {s,}_~A(D 1, E) can contain no compactly divergent subsequence. By tautness 

of E, (s~} is a relatively compact subset of A(D 1, E). I t  follows that  [.J i s i c  c E, and E 

is pseudo-convex. By the celebrated Oka solution of Levi's Problem, E is a domain of 

holomorphy. Q.E.D. 

Remark. I t  follows from the classical uniformization theorem as well as Corollary 8.4 

in w 8 that a domain E in C is taut  iff E is neither C nor C-{point}. However, the converse 

to Theorem F is unknown already for n = 2. 

PART II 

7. Hermitian geometry 

In  this section are to be found the basic facts about hermitian geometry; in particular, 

we present in some detail the passage from a hermitian connection on the unitary bundle 

to a connection on the associated orthogonal bundle. The reason for doing this known 

(but generally inaccessible) material is that  there are grievous errors as well as confusion 

in signs in the literature. Since the negativeness of the holomorphie curvature will be of 

the utmost importance to us, it is imperative that  we do this carefully and correctly. 

There are two conventions in sign concerning the structure equations of a connection. 

The one adopted here coincides with the one in Kobayashi-Nomizu [23] and is the more 

natural of the two. Namely, we regard Lie algebras as left invariant vector fields and the 

structure group acts on the right in the principal bundle. The connection form is a one- 

form on the bundle which should be the identity on the Lie algebras of each fibre. Let G 

be a subgroup of Gl(n, R ) o r  Gl(n, C). Then the structure equations read: 
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d~ ~ = - Z~0~ A ~ + E ~ } 
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(7.1) 

where 1 ~<~, fl, 7~<n; (v~) is the connection form, (,~) the torsion form and (@~) the curva- 

ture form. Finally, (~)  is the canonical one-form attached to every G-structure inde- 

pendent of the connection. See [23], p. 121. 

Now let h (------(,)) be a hermitian metric on a given n-dimensional complex manifold 

M. I t  gives rise to a bundle of unitary frames, F @ ( M ) = { ( m ,  % ..., en): m E M ,  e~,EM,n, 

(e~, e~)=(~}.  The structure group of F ~r (M) is of course the n-dimensional unitary group 

U(n). The canonical hermitian connection of h is the unique connection on F@ (M) whose 

torsion form is of type (2, 0) (Chern [8], Griffiths [11].) In this case, we rewrite the struc- 

ture equations as follows: 
d~0 ~ ~ = - ~ o ~  A r + ~F ~ ~ ], 

deo~ = - ~ro)~ A co~ + ~ J (7.2) 

where 1 ~<~, fl, 7 ~<n. The connection and curvature forms ~ = (y)~) and ~ = ( ~ )  now take 

value in the skew-hermitian matrices so that,  ~0~ = -v~,  ~ = - ~ .  The torsion form ~F ~ 

is of type (2, 0) as noted above and ~ is of type (1, 1). The hermitian connection can be 

alternatively characterized by: when the connection on F @ ( M )  is extended to the fuli 

Gl(n, C)-bundle of all complex bases then its connection form is of type (1, 0). (Chern [8]. 

There is also a very elegant discussion of this in Singer's paper in the Pacific J. Math. 1959.) 

Now decompose h into real and imaginary parts: h = g + ( - V - 1 ) h .  Then g is 

a riemannian metric on M and k is the real (1,1) K~hler form of h. If  dk=O,  h is 

called K~ihler; this happens iff ~F = 0 in (7.2). (Chern [8].) Let  the complex structure 

tensor of M be J ,  then g(Jx,  J y ) = g ( x ,  y). Associated with F @ ( M )  is the bundle 

.F*(M) = ((m, e I . . . . .  en, Jei  . . . . .  Jen) : m EM, (e~,, ez) = ~,~, 1 <~ a, fl <<- n}. 

Clearly .F*(M) is a subbundle of the S0(2 n)-bundie of oriented orthonormal frames 

(with respect to g). The structure group of .F*(M)is  the subgroup SO*(2n)of  SO(2n) 

consisting of all matrices of the form I A - A  B] where ( A + V ~ - I B ) E U ( n ) .  Now, 

U-> is a group isomorphism from U(n) onto SO*(2n) and this induces a 

map (m, % ..., en)-->(m, el . . . .  , en, ,1"el . . . . .  Jen) of F # ( M )  onto F*(M). This is a bundle 

isomorphism and we identi[y the two bundles via this isomorphism. The hermitian 

connection on F #  (M) induces a unique connection on F*(M), and we want an explicit 
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form of the lat ter  directly in terms of the Lie algebra of SO*(2n). So decompose eo 

and ~ into real and imaginary parts: co = co' + ] / -  1 co", ~ = ~ '  + V ~ 1 ~".  Consider 

the following (2n • 2n) matrices of differential forms: 

V [~ ~ = ( ~ ) =  ~" o/J' O=(0~)=  ~, ,  ~ ,  , (7.4) 

where l<.i,~,<~2n. Explicitly: 0 ~ = w ~ ,  ~ + ~ -  a)~, =a )~ ,  ~+~=a)~, where 

1 ~<a,/~ ~<n. Same for O, ~ '  and ~".  Similarly, decompose (y~) and (~F ~) into real 

and imaginary parts: ~p = y / +  ] / -  I v2", ~F = ~F' + V ~-  1 ~F", and consider also the fol- 

lowing (1 • 2n) matrices: 

= (~,) = [ ~ '  ~" ] ,  r = ( o ' )  = [~F' W"] ,  (7.5) 

where 1 ~< i ~< 2 n. Explicitly: ~0 ~ = yJ'~, ~n+~ = yf~, where 1 ~< ~ ~ n. Same for O, ~F', and 

~F". Then by  virtue of (7.2), (7.3) and (7.4), a simple computation gives: 

d ~ o t = - ~ j v ~ A ~ J + O  ~ } 
, ( 7 . 6 )  

where 1 ~< i, j, k ~< 2n. 

Now, it is easy to show tha t  ~ = ( ~ )  is the canonical one-form attached to the 

SO*(2n)-bundle F*(M) and tha t  v~=(v~) is a connection form on F*(M). Comparison of 

(7.1) with (7.6) therefore yields this fact: @ is the torsion and O is the curvature o/the 

connection ~. We pause to remark that,  because SO*(2n)__ SO(2n), v ~ is the unique connec- 

t ion with �9 as torsion form and tha t  if the hermitian metric h is Ks then ~F = �9 =0,  

and consequently v~ would be the unique riemannian connection of g. 

We shall be particularly interested in the sectional curvature of the holomorphie 

planes, span {e~, Je~}, (~=  1 ... . .  n) of the hermitian connection co. This will be defined 

via v~, and instead of staying up in the bundle F~(M) and F*(M) all the time, we shall 

go down to M - - n o t  out of necessity, but  purely as a mat te r  of convenience. So let e~ E M,n, 

be a fixed vector and let s be a C ~ section in a neighborhood of m ~ into F*(M), such tha t  

if s(m)=(m, el(m ) ..... e~(m), Jel(m) ..... Jet(m)), then e~176 s* pulls down the struc- 

ture equations (7.2) and (7.6) into M, but  once this is understood, we shall omit s* in 

front of each term of (7.2) and (7.6) for the sake of brevity. Now, if co were a K~hler con- 

neetion, then v ~ would be torsionfree and hence the riemannian connection of g. In  this 

ease the sectional curvature (in the usual sense) of the complex line span {e ~ Je~ is known 

to be: 
_~_ ~ 0 0 On+~(e~,, Je~). (7.7) 
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We now de/ine in general: the holomorphic curvature in the direction e ~ o/the hermitian 

connection o~ is (7.7) regardless of whether ~o is K~hler or not. As usual, (7.7) so de- 
~ttO~ 0 fined is independent of the section s used. By (7.4), (7.7)equals -~z~ (e~, Je~ Since 

takes value in skew hermitian matrices, the diagonal entries of ~ are purely im- 

aginary so that  ~ = V - I ~  ~. Thus (7.7) in fact equals l / -  l ~ ( e ~ 1 7 6  Now let 

~ = ~r.~ R~v~ ~pv A v~ 6, 1 ~< V, ~ < n. Then via the section s, this becomes an equation on 

M, and from y~(@)=(~, ~ ( g @ ) = -  V - 1 ~ ,  ~p~(J@)= l / -  1 ~ ,  and ~ ( e ~ ) = ~ ,  one 

deduces that  (7.7) equals 2R~(m ~  Now, recalling the identification between F 4* (M) 

and F* (M), we have clearly proved: 

L ~ I M A  7.1. Let ~ be the curvature/orm o/the hermitian connection eo in (7.2) and 

let ~ = ~v.~R~r~yY A ~ .  Then via a section s(m) = (m, el(m) . . . . .  e~(m)) into F~r (M), the 

functions ( + 2 R ~ )  give the holomorphic curvature o/the complex lines span {e~, Je~} with 

respect to co. 

Now let M' be a complex submanifold of M of dimension r. Choose a local C ~ section 

s of M' into F~* (M) so that  the first r vectors are everywhere tangent to M'. Let us agree 

on these ranges of indices: 

l<~a,b,c,d<r,  r+l<<.a,~,~<~n, l<--.o,,fl, y<n .  

Hence with respect to this section s, ~ ( - -s*vf)=0,  and the first equation of (7.2) (via s*, 

as is everything else here) implies that: 

0 =  - X.o)~ A ~ + ' F  ~ 

or X~ co~ A ~ = ~F ~. 

~qow locally in M',  {~a, v~} is a basis of C 0r one-forms. Since ~pa is of type (I, 0) 

and ~F of type (2,0), there will be some C ~ functions (S~b} defined locally in M' 

such that:  
o4 = 5 ~ s ~  ~ (  = - ~ )  

(S~o) constitutes the complex second fundamental form of M' in M; for a more thorough 

discussion of this concept in hermitian geometry, see Griffiths [11] and [12]. The sec- 

ond equation of (7.2) then implies that  

= - ~ A ~ + ( - 5 ~ o 4  A , 4 )  + 5~.a RLa~p ~ A ~a 

a , O" ~' C - d  

In other words, if we let T~ca = (R~a-X,S~oS~a),  and let A~ = Z,, a T~cavf A ~/a, then 
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dw~ = - ~ eo~ A o)~ + A~. (7.8) 

By the reasoning familiar in riemannian geometry, since (~o~) is obviously a connec- 

tion in F @ ( M  ') and since the torsion form ~t za of dy) a= -~beo~A~b+~F  a is of type 

(2, 0) the uniqueness of the hermitian connection implies tha t  (~o~) is in fact the her- 

mitian connection in M '  of the induced metric in M' .  By  (7.8) (A~) is then the 
a _ _  a (~ 2 curvature form of this induced connection. But  Taaa--Raaa--~o[Sa~l,  and so via 

Lemma 7.1, we have proved: 

L~MMA 7.2 (Kobayashi). Let M'  be a complex submani/old o / a  hermitian mani]old M 

and let 1 be a complex line tangent to M'.  Then the holomorphic curvature o/1 in M'  (with 

respect to the induced metric) is not greater than the holomorphic curvature o/1 in M. 

The most important  special case of this lemma is when M '  is a holomorphically im- 

bedded disc. In  this case, the induced metric on the disc is always a K~hler metric (for 

purely dimensional reasons) and the holomorphic curvature of such an l (which is then 

necessarily the tangent space to the disc at  some point) is exactly the Gaussian curvature 

(in the usual sense) of the induced K~hler metric. 

8. The  basic  t h e o r e m  

Thus far, we have assigned arbitrary metrics (in the sense of point-set topology) to 

complex manifolds. Suppose now N is hermitian, with hermitian metric h, then h gives 

rise to a global distance function da (or just d if there can be no confusion) which of course 

makes N a metric space. Hence/orth, when we speak o] a hermitian mani/old N as a metric 

space, we shall mean with respect to d~, and i/ we say the hermitian N is tight, we simply mean 

(N, da) is tight, in the terminology of Definition 1.3. We recall this well-known fact: 

LEMMA 8.1 (Hopf-Rinow). A hermitian mani[old is a complete metric space i// every 
bounded subset is compact. 

For  discs in C, or more generally, for Riemann surfaces, we must  consider a more 

general class of hermitian metrics. 

De/inition 8.1. A pseudo-hermitian metric h ~ on a Riemann surface M is a C ~~ covariant 

tensor of rank two such that,  (1) h ~ is a hermitian metric on M ~ S ,  where S is a subset 

of M consisting only of isolated points, and (2) h ~ is zero on S. 

Such objects arise naturally because if we take a nonconstant holomorphic mapping 

qg: M ~ N ,  where M is a Riemann surface and N has hermitian metric h, then ~*h is a 
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pseudo-hermitian metric on M, the set S in question being simply the zeroes of d~. Now 

in general, since h ~ is a hermitian metric on M ~ ,  S, it makes sense to speak of the (Gaussian) 

curvature of h ~ on M ~ S .  In  the sequel, it will be understood that  by the curvature o / h  ~ 

on M, we mean the curvature o /h  ~ on M ~ S. In  this connection, we recall another famous 

theorem: 

L~MMA 8.2 (Ahlfors). I] a pseudo-hermitian metric gO on the unit disc DI~_C has 

curvature bounded above by - k  o <0,  then kog ~ < H, where H is the Poincard hyperbolic metric 

on D ~ with constant curvature - 1 .  

De/inition 8.2. Let :~: M - ~ N  be a family of holomorphie mappings from a complex 

manifold M into a hermitian manifold N with hermitian metric h. :~ is called a strongly 

negatively curved /amily (o/ order - k 0 < 0  ) iff for any /E:~ and for any holomorphically 

imbedded disc D in M the curvature of the pseudo-hermitian metric (/ID)*h is bounded 

above by  - k 0 < 0. 

The main result of this section, which entails as a corollary the main theorem of 

Grauert-Reckziegel [10], Satz 1, is the following. 

B A SIC T HE 0 ~E~. A strongly negatively curved/amily ~ o/holomorphic mappings/rom 

a complex manifold M into a hermitian mani/old N is equicontinuous. I /  N is complete, 

then ~ is normal. 

Proo/. Suppose we know :~ is equicontinuous and N is complete, then by  Lemma 8.1 

and Lemma 1.1 (iii), :~ is normal. Hence it suffices to prove the equicontinnity of :~, 

assuming that  it is strongly negatively curved. This is an entirely local question, so we fix 

an arbi t rary  point p ~ M, and take p-centered coordinate functions {z 1, ..., z n} so that  the 

uni t  ball Dn={E~lz~12<l } is well-defined. To facilitate matters,  though not strictly 

necessary, we assume :~ is strongly negatively curved of order - 1 ,  and tha t  the Bergman 

metric b on D ~ (which is a K~hler metric of constant holomorphic curvature - 1 ,  see Helga- 

son [15]) has been imposed. The former can be achieved through multiplication of the 

hermitian metric h on N by  a suitable scalar factor. Assume both done, and we restrict :~ 

to D n. For our purpose, it suffices to deduce a simple-minded distance-decreasing property 

of ~ with respect to db on D n and dh on N. (For full generality, see Kobayashi  [21]). Let  

q E D n be given, pass a linearly and holomorphically imbedded unit disc D through q and 

the origin O of D n. Now D is a totally geodesic submanifold of (D n, b), so tha t  if b' is the 

induced metric on D, d~,(q, O)=d~(q, 0). By assumption on :7, if /e:~, then the pseudo- 

hermitian metric (]lD)*h on D has curvature less than  - 1 .  Lemma 8.2 then implies tha t  

db, (q, O)>~dh(/(q),/(0)). Thus db(q, O)>~dh(/(q),/(0)), for all q e D  ~ and all /e:~. Equicon- 
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t inuity is now obvious: if ~ is given, choose a ball B of radius �89 relative to d~ around the 

origin of D ~ so tha t  if q, q' are in B, and /E :~, we have 

dh(/(q), /(q')) <~da(](q), /(0)) +dh(/(q'), riO)) <~db(q, O) +do(q', O) ~<e. Q.E.D. 

A first consequence of the basic theorem is the following corollary suggested to me 

by  Phil Griffiths. In  his work on the moduli problem of algebraic manifolds, he found that  

the situation described below presents itself naturally and that  in all the specific cases he 

has computed, the hypothesis of the corollary is always fulfilled. See his long paper [13], 

especially the initial section. For the terms tha t  enter into the following statement,  recall 

tha t  a complex distribution on a complex manifold IV is a C ~ subbundle of the tangent 

bundle of IV (which we denote by T(IV)) whose fibres are complex subspaces of the tangent 

spaces of IV. 

COROLLARY 8.3. Let IV be a hermitian mani/old which admits a complex distribution S 

with the property that the holomorphic curvature o/every complex line in S is bounded above 

by a/ixed negative constant - k o < 0 .  Let :~: M - * N  be a holomorphic /amily with the property 

that each/E~ maps T(M) into S; i.e. the image o/each tangent space under d], /or a l l /E~ ,  

lies in S. Then :~ is equicontinuous. I] IV is complete, :~ is normal. 

Proo/. Let D _  M be a holomorphically imbedded disc of M and let / E :~. Then lemma 

7.2 implies tha t  the curvature of the pseudo-hermitian metric (/] D)*h on D is bounded 

above by - k 0 < 0. Hence :~ is a strongly negatively curved family and the corollary follows 

from the basic theorem. 

I f  S happens to be all of T(IV), then the above yields (essentially) the main theorem 

of Grauert-Reckziegel [10], Satz 1. However, it will be convenient to first introduce this 

definition: a hermitian manifold is strongly negatively curved (o] order - k  o <0)  iff its holo- 

morphic curvature of all complex lines is bounded above by - /c  o < 0. 

COROLLARY 8.4 (Grauerb-Reckziegel). I / I V  is a stro~gly negatively curved hermitian 

mani/old, then it is tight. I / N  is/urthermore complete, then it is taut. (See Definition 1.2, 1.3.) 

We mention in passing that  direct products and complex submanifolds of strongly 

negatively curved hermitian manifolds are also strongly negatively curved; so are the 

covering manifolds of Such. In  this way, quite a few tight and tau t  manifolds can be gen- 

erated. I t  is an open question whether there are tight manifolds (resp. tau t  manifolds) 

which are not strongly negatively curved (resp. strongly negatively curved and complete) 

in some suitable hermitian metric. 
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Note finally that ,  for Riemann surfaces, the existence of a strongly negatively curved 

pseudo-hermitian metric is sufficient to guarantee the validity of Corollary 8.4. One can 

see tha t  the concept of completeness is well-defined in tha t  case, and the proof carries 

over verbatim. 

9. Applications 

In  this section, we apply Corollary 8.4 to the main results of Par t  I .  In  so doing, we 

have tried as far as possible to avoid invoking the completeness assumption on 2V as it is 

difficult to verify this condition in practice. 

T H E O ~  :r Let M be complex, N strongly negatively curved hermitian and dim M = 

dim N =n. Let ~ :  M-+ N be a family of holomorphic mappings with these properties: 

(1) At  a fixed point m o of M, ]/*f~],u I >~a>0 ]or all ] E ~ ,  where f2=volume element 

of N and tz is a fixed nonzero real covector at m o o/degree 2n. 

(2) m o gets carried by each /E :~ into some fixed compact set K in N. 

Then there is a positive constant ~ such that each f E ~a possesses a univalent ball of radius 

around/(mo). 

T H v . o ~  9. Hypothesis as above, let M be hermitian also. Then there is a positive 

constant ~ such that each fE~a is biholomorphic on an open ball of radius ~ around m o. 

Proof of Theorems ~ and ft. We first prove Theorem ~. By Corollary 8.4, :~a is equicon- 

tinuous. Let  V be a relatively compact, open neighborhood of the compact K of (2) in N 

and let the distance from K to the complement of V be e. Choose a neighborhood U of m 0 

such tha t  m E U  implies d(mo, m)<s.  Now if :~a is considered as a subset of A(U, N), it is 

relatively compact in virtue of Lemma 1.2. Theorem A applies to conclude the proof. 

For Theorem ~, we also consider :~ as a subset of A(U, N) and apply Theorem B" 

Q.E.D. 
The following special case of Theorems C and C' is almost a direct translation and 

needs no comment. 

THEORWM y. Let M be a complex manifold which is either an open relatively compact 

submani/old of a strongly negatively curved hermitian manifold N,  or a complete strongly 

negatively curved hermitian manifold itself. Then/or  a holomorphic f: M-+M which leaves 

a point p fixed: 

(i) I det dl~l < 1. 

(ii) I f  dfp: M~, ~ Mp is the identity linear map, then f is the identity mapping of M ~ M. 

(iii) I det d/~ I = 1 i f / / i s  an automorphism of N. 
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Here we interpose a remark about bounded domains in C ~. Since every bounded domain 

can be enclosed in a large enough open ball in C a, and since each open ball can be equipped 

with the Bergman metric which is complete and has holomorphic curvature equal to - 1, 

every bounded domain is strongly negatively curved in the induced metric. Then Corollary 

8.4 implies Montel's theorem, and Theorem y implies the H. Cartan-Caratheodory theorem 

without recourse to Montel's theorem. The same comment applies to theorem ~ and 

It .  Cartan's theorem. 

T ~ O R E M  ~. I /  a hermitian mani/old is strongly negatively curved, then its automor- 

phism group ~(N)  is a (not necessarily connected) Lie group and the isotropy group o/rl-l(N) 

at a point is a compact Lie group. I / N  is compact, then ~(N)  is ]inite. 

T~EOREM ~. Every holomorphic mapping /rom C a into a strongly negatively curved 

hermitian mani/old reduces to a constant. 

These are immediate from Theorems D, E and Corollary 5.2 of w 5. The following 

consequences of Theorem r are of particular interest: 

CO~OT.LARu 9.1. C ~ cannot be equipped with a hermitian metric whose holomorphic 

curvature is bounded above by a negative constant - k  o < O. 

COROLLARY 9.2, A Riemann sur/ace can be given a strongly negatively curved pseudo- 

hermitian metric i// it is not the plane, the punctured plane, the torus or the sphere. 

The last assertion makes use of the remarks at  the end of w 8. The following is im- 

plied by  Theorem F. 

T ~ O R E M  ~. I] a domain E in C ~ (E =~C n) can be given a complete and strongly nega- 

tively curved hermitian metric, then it is a domain o] holomorphy. 

I t  is well known tha t  every bounded symmetric domain (in particular the open balls) 

of C n is strongly negatively curved and complete in its Bergman metric. (See, for instance, 

Helgason [15].) We have therefore retrieved the known result tha t  every bounded sym- 

metric domain (~-- every hermitian symmetric space of noncompaet type) is a Stein manifold. 

Cf. [28]. 

PART HI 

10. A more general setting 

We shall reexamine a bit the proofs of Theorems A and B and, to a lesser extent, (1) 

of Theorem C in Par t  I .  I t  is quite obvious tha t  the only property of holomorphie mappings 

we made use of was the fact tha t /~-+/uni formly  implies the convergence of the correspond- 
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ing first partial derivatives (with the understanding tha t  we operate within a compact 

coordinate neighborhood). From this, we concluded t h a t / * ~ / *  in the usual topology. I f  

now instead of postulating that  :~a be a family of holomorphie mapping, we require tha t  

9:a has the property tha t  a sequence {/i}---:~ converges iff their corresponding first partial  

derivatives also converge (uniformly on compact sets), then clearly Theorems A, B, C(1) 

would extend to this class of mappings. To formalize this, we have to introduce the weak 

(or coarse) Cr.topology (0 <~ r <~ co) in the space of differentiable mappings between real dif- 

ferentiable manifolds, (see Munkres [26], p. 25 ff.). 

First of all, suppose Uc_R v, V ~ R  q are open sets and / :  U-~ V is of class C r, 0 < r <  oo. 

Note tha t  we leave out the case r = ~ for the moment.  Let  C be a compact subset of U, 

and let 0 be an open neighborhood of/(C) in V. Then define 

W(], C, e) = {g: U-+ V is a Cr-mapping such tha t  g(C) ~ 0 and max 11 (D~/- D~g) (p)11 < e}, 
I~l~<r 

where we have used the notation of multi-indices: ~=(~1 . . . .  ,~u) with each ~i being 

a non-negative integer, I ~1 ~ Z~ ~ ,  and 

where ! = (l, . . . . .  1o) as usual. II I1 denotes the euclidean norm of R~ The weak Or-topology 

of C ( U ,  V) (where r < 0o, and o r ( u ,  V) denotes the set of C r mappings from U to V) is by  

definition the collection of open sets obtained by  arbi trary unions of finite intersections of 

such W(I, C, e). 

Suppose/ :  M-+IV is a C r mapping between differentiable manifolds. I f  C is a compact 

subset of a coordinate neighborhood in M such tha t  ](C) also lies in a coordinate neighbor- 

hood in IV, then again W(/, C, e) makes sense via the coordinate systems. 

Definition 10.1. The weak Cr-topology ( r < ~ )  for the set of all C ~ mappings C(M, N) 

between differentiable manifolds M and iV is the collection of open sets generated by  arbi- 

t ra ry  unions of finite intersections of all such W(/, C, ~), where C and /(C) both lie in 

some coordinate neighborhood. The weak C~-topology for the set of C ~ mappings C~(M, iV) 
is the union of all C~-topologies on C~(M, iV). 

Note as usual tha t  the weak Cr-topology is independent of the particular coordinate 

systems chosen for C and ](C). Also, the weak C~ clearly coincides with the com- 

pact-open topology, i.e. C~ iV) =C(M, iV) in the notation of Parts  I and I I .  Of course, 

the beautiful thing about holomorphic mappings (and one tha t  is so heavily exploited in 

this paper) is tha t  on A(M, iV) (M, iV are now complex manifolds), the compact-open 
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topology coincides with the weak C~-topology. We shall see tha t  this property is shared 

by  a wider class of functions, Lemma 11.3. At any rate, making use of the observation 

made above, we can now state the generalizations of Theorems A, B and C (1). 

LEM~A 10.1. Let M, IV be di//erentiable mani/olds o] the same real dimension n, with 

N riemannian. Let Ya~CI(M,  N) be relatively compact in the weak Cl-topology. Suppose 

each / e ~a has the property that I /*~/tt I >~ a > 0 where ~ is the volume element o/the riemannian 

metric in N and tt is a fixed nonzero covector o/degree n at a fixed point 19o E M. Then there 

exists a fixed positive constant ~ such that each /E ~a possesses a univalent ball o/radius 

around/(Po). 

Here, by analogy with w 2, a univalent ball for / is an open ball in the image of / onto 

which / maps an open set one- to-one and with everywhere nonsingular differential. 

LEMMA 10.2. Let ~a: M ~ N  be as above, and let M be riemannian also. Then each 

/ E ~a possesses an open ball o/radius ~ around P0 (2 > 0, independent o/ /)  on which / is one-one 

and has nowhere singular di//erential. 

L]~M~A 10.3. Let /: N-+N be C 1 and let / leave a point p fixed. I / t h e  sequence o/ 

iterates {f} is relatively compact in the weak C~-topology o/C~(N, N), then I det d/p I <~ 1. 

The following special case of Lemma 10.1 will be of particular importance and so we 

single it out as 

COROLLARY 10.4. Let B n be the open unit ball in R n. I /~a~_CI(B n, R n) is a relatively 

compact/amily in the weak Cl-topology and the Jacobian determinant o/each /E ~a is equal 

to a fixed positive constant a at the origin 0 o / B  ~, then there exists a positive constant ~ such 

that each / has a univalent ball o/radius ~ around/(0). 

11. The general Bloch Theorem 

In  this section, we continue to consider differentiable mappings between real dif- 

ferentiable manifolds. The main application we have in mind is of course for holomorphic 

mappings; see Appendix. First of all, we wish to define quasi-conformality of such C ~ 

mappings; to make life simple we do it only fo r / :  U-~R n where U is any open subset 

of R n. I t  will be understood once and for all that  any open subset o / R  n will be automatically 

endowed with the/lat metric if not otherwise specified, and tha t  tangent spaces at  all points 

of R ~ are identified with R n itself. These enter into the following discussion. 

Definition 11.1. A st~baet ~ of CI(U, R ") (U___ R n) is called a K-quasicon/ormal/amily 
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iff the following holds: for any point pE U and any lET,  if S~ denotes the unit sphere in 

the tangent space Ur, the ratio of the length of the maximal axis of the hyperellipsoid 

df~(S~) to the length of its minimal axis is bounded by K. 

We need an equivalent analytic formulation of this geometric concept. Denote the 

canonical coordinate functions on U and R n by (xl . . . . .  x~) and (Yl . . . . .  y)~ respectively, 

and let ] = (/1 . . . . .  /~)~(ylot ,  ..., y, ol) as usual. Now in self-explanatory notation, if 

t= ~=~ - -  is a vector in U,, then 

Denoting the inner product of R ~ by ( , )  we see that  

/ 
II d/.  (t)118~ <g/. (t), d]~ (t)> = Z,.j a, aj ~ 

This defines a quadratic form Q(a) on U~ by 

Q(a) = II gl~ (t)II e = 'aGa, 

w h e r e  a = [a~ . . .  a~] is a r o w  m a t r i x  a n d  ta  is i t s  t r anspose .  G is t h e  n x n m a t r i x  

with G~j = 2k0 ~0 j" We are interested in the maximum and minimum of Q(a) as a 

varies through the unit sphere ~ a ~ = l .  Now the extreme (or, critical) values of 

Q(a) for 2fa~= I are exactly the eigenvalues of the symmetric, positive semidefinite 

matrix G, as is well-known, (see, for instance, tIMmos (14], p. 181). The following 

algebraic lemma is then relevant; the proof is a simple exercise which can be left out. 

LE~MA 11.1. Let S be a symmetric positive semi-delinite matrix with eigenvalues 

0 ~ ~1 ~ ~ <~ ... <~ ~ .  Then 2~/21 <~ K'  implies trace S <~ nK' (det S) 11~. Conversely, il trace S 

~<K" (det S) 1I~, then ~/~1 <~ (K") n" 

Apply this lemma to our situation: if J /  denotes the Jacobian determinant of ], 

max II al~ (t)II 
then obviously det G = (det Jl) ~. The requirement that  IItIp1 min II dl~ (t)II <" K, is by  the 

I1~11=1 
previous remark equivalent to (2n//)[1) �89 ~< K, where 2~, ;t 1 are respectively the maximum 

and minimum eigenvalues of G at  p. We therefore have this fact. 

L]~MM.~ 11.2. ~ CI(U, R n) is a K.quasiconlormal ]amiIy ill there is a constant Ko 

so tha~ 
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~, , {~[t ]2 < Ko(J[) i/". (11.1) 
' \ ~ x j  

Note  tha t  f rom a purely analyt ic  point  of view, this lemma says tha t  K-quasi-  

conformali ty  of :~ is essentially the assertion t h a t  the reverse H a d a m a r d  inequali ty 

for the Jacob ian  matr ix  of each /E :~ should hold everywhere with the same constant .  

We rephrase the above slightly. Consider the following mappings 

Ox~ ~Oxi OxJ i = 1, n. 

Then (11.1) is clearly equivalent  to: there exists a constant  K 1 such tha t  in U, 

I ~ <K1 [j/]l/n (11,2) 

for all i = l  . . . .  , n  and for all /E:~.  

For  the s ta tement  of the general Bloch theorem, we have to consider linear 

systems of partial  differential equations (PDE) defined in a U g R  ~, i .e.  expressions 

of the form ~==~l~j(x,D)/j=g~, i = 1  . . . .  ,n ,  where each l~j(x,D)is  a linear partial 

differential operator  defined in U and /j, g~, are distributions in the sense of L. 

Schwartz.  Usually, we rewrite this as follows. [],1 [ 11,xo,  lnxo,] 
Let  / =  ! , g =  . , and let = : i . 

/~ g~ Llnl(x, D) . . .  l~(x,  D) 

Then the above becomes 
L_(x, D ) / =  g (11.3) 

Recall t ha t  L_(x, D) is called hypoeUiptic iff / is C ~~ wherever g is in (11.3). See HSr- 

mander  [16]. Note  tha t  in the event  g is C ~ on a U_~ R n, we m a y  regard the se t  of all 

solutions of (11.3) as C ~ mappings from U into R n in the obvious way. The most  common  

hypoelliptie systems are of course the elliptic ones with C ~ coefficients. The fundamenta l  

fact  we need about  this class of operators is the following weakened version of a result  due 

to Malgrange ([24], p. 331, Proposit ion 2). 

L ~ M ~ A  11.3 (Malgrange lemma). Suppose L_(x, D) is hypoeUiptic. Then in the space 

o[ solutions $ of _L(x, D ) / = 0 ,  the compact open topology and the weak C~-topology coincide 

when S is viewed as a subset o/C~(U,  Rn). 
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From the point of view of this lemma, the fact that  the compact open topology and 

the weak C~-topology on holomorphic mappings coincide can be readily explained by 

noting that  the latter are exactly the solutions of the strongly elliptic system of Cauchy- 

Riemann equations. In what follows, we only have occasion to consider a very special 

class of PDE.  

De/inition 11.3. L(x, D) defined on U___R ~ is said to be homogeneous (o/order m) 

iff either ltj(x, D)~O on U or else l~j(x, D) consists of derivatives of order exactly m 

throughout U. 

T H E O R ~ I  11.4 (The general Bloch theorem): Let :~: Bn---> R n be a/amily o/C a map- 

pings, where ~n denotes the closed unit ball { ~  x~ <~ 1}. Suppose :~ satisfies the three condi- 

tions: 

(a) :~ is a K-quasicon/ormal /amily. Equivalently, there exists a constant K 1 so that 

(11.2) holds in B~; i. e . . . .  , 

(b) Every / E ~ is a solution o /a / i xed  linear hypoelliptic homogeneous system o /PDE:  

L_(x, D)  / = 0 on ~ .  

(c) For all fE~ ,  IJ/(O)] = 1, where 0 denotes the origin o / ~ .  

Then there is a universal constant fl~fl(L_(x, D), n, K ) > 0  such that each / E ~  possesses a 

univalent ball o/radius ft. 

Some comments before we begin the proof. The result of Bochner [5] alluded 

to in the introduction corresponds to the case 

L(x,  D) = 

where A is the Laplacian of R ~. This special case of course already implies the theo- 

rem of Bloch for quasiconformal holomorphie mappings in n dimensions. Next, S. 

Takahashi (Ann. of Math. (2) 53, 1951, 464-471) has observed that  the condition (a) 

of quasiconformality in Bochner's theorem can be replaced by  the following slightly 

weaker requirement: 

max ~, j ~[~2  (P) < max (gl(p))e/n (11.4) 
Ilpll<r " \~xj/ Ilvll<r 

for all rE[O, 1]. I t  will be readily seen that  the proof of Theorem 11.4 as given here is also 
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valid if (a) is relaxed to (11.4). We have not done that  explicitly because we feel that  

K-quasiconformality has such a simple geometric meaning that  foregoing this extra bit 

of generality is justified. Perhaps an interpretation of (11.4) is not out of place here. In 

the presence of condition (e), :~ fulfills (11.4) if :~ has uniformly bounded first derivatives 

and :~ is K*-quasiconformal is a neighborhood of the boundary of B~. 

Now, a word about the connection of this theorem with the pseudo-analytic/unctions 

of Lipman :Bets [4]. We shall therefore consider the special case :~: B2-~tt~. Let  

(~1, X2) ~ X  1 --  0~12 (Xl' X2) ~ X  2 (11.5)  ~(x, D) = ~xl - 5n 

a �9 
~X 2 --  521 - -  __ 522 (Xl, 

where ~11 . . . .  , g2~ are C ~ functions defined on the closed unit disc /~2. ~(x, D) is 

clearly homogeneous of order one. We require ~(x, D) to be uni]ormly (or strongly) 

elliptic; in other words, 

(51s + 521) ~ < K (11.6) 0<51~, and 0 <  4 
512 ~21 (511 + 522) $ 

throughout /~, and K is some constant. If ~n = -52~ and g12 = g21 > 0 ,  then clearly 

~(x,D) is uniformly elliptic in /is. In this case, the solutions eo=~0+ I / -  1~  of 

~(x,D) ~ ]  = 0 are exactly Bers' pseudo-analytic /unctions o/ the second kind. 0 n  the 

other hand, it can be shown that  the uniform ellipticity of ~(x, D) implies that  it 

can be reduced to the normal form with 511 = g2~, cr cr > 0  as above. See Bers 

[3]. Now, it is quite easy to verify that the family of all solutions of ~(x, D) ll~]=O 

is Ko-quasieonformal, where K o is dependent only on K of (11.6), That  is, if ]= 

\0 xj/ <~ K~ ] J/l" Thus Theorem 

11.4 implies: 

COROLLARY 11.5. 1/ ~(x,D) o/ (11.5) is uni/ormly elliptic on ~2 and ~11,...,522 

[/11 = 0 withlJI(O)l=l, are C :~ there, then/or the/amily o/solutions / = (/~, ]3) o/ ~(x, D) /3 

there is a constant fl > 0 such that each such / possesses a univalent ball o/radius ft. In  other 

words, the classical theorem o/ Bloch holds also /or pseudoanalytic /unctions o/ the second 

kind whose defining PDE has C :r coe/fieients in ~s. 
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Remark. I t  is presumably all right to reduce the C ~ assumption on the coefficients 

of ~(x, D) to C 1. One simply has to modify Malgrange's lemma accordingly. 

Proo/ o/ Theorem 11.4. We briefly outline the argument. The main point is to reduce 

the theorem to Corollary 10.4. However, we cannot hope to prove that  :~ is itself relatively 

compact in the weak Cl-topology. Instead; take b E B ~ and consider a linear map v2:/~n-~/~ 

with ~0(p)=b§189 (1-Hbl[) p. Then define F=[o~. Thus, ~0 maps onto a closed ball of 

radius �89 -]]bid around b and F is / restricted to this ball. (The �89 is purely a safety factor,) 

Let  :~r denote the family of all C r176 mappings F : / ~ - + R  n so obtained; clearly a univalent 

ball for F is automatically one for / .  With the help of hypotheses (a)-(c), we shall be able 

to locate a suitable b for each / so that  :~# is weak-Cl-relatively-compact, and so Corollary 

10.4 applies to conclude the proof. The strategic location of such a b depends on a trick 

going back to Edmund Landau (Hille [17], p. 386-7) which consists of considering the 

function C(s) to be defined presently. 

The formal proof now begins. Let  / E ~  and let M(8)= max IJ/(p)llin. Define 
Ilvll<s 

C(s) = sM(I  - s). 

~ow (c) implies that  C(0)=0,  C(1)=I .  L e t ' r  be the smallest value of s for which 

C(s) = 1. Clearly 0 < r ~< 1 and: 
1 

M(1 " r ) "  - .  (11.7) 

r' < r implies M(1 - r') < 1,. (11,8) 

Let  b be any point inside the ball of radius (1 - r )  such that  

Define then F: / ~ - ~ R  ~ by: 

aV(P)=] (b + 2 P) - /(b). 

J/(b) ]l/n = M(1 - r). 

The summand " - ] ( b ) "  is merely to insure that  

F(0) = 0. 

We have yet  to show F is well-defined. This is so because 

b+ p <llbH+ llpll<(l-r)+ = 

1 5 -  672909 Acta  mathematica 119. Impr im6  le 9 fgvrier  1968. 

(11.9) 

makes s o l o  and so does F Fur  or oro 
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where the last step is by virtue of the definition of b and (11.7). Therefore, for 

every such F, 

Now, for any p E B  ~ and for i = l , . . . , n ,  

r .  r . r . by (a) 

~<KI" " M  1 -  because + z  < 1 -  

I JI So by (11.8) ~ (p) ~<K1. 

This inequality together with the mean value theorem for several variables very easily 

leads to this fact: if p, q are any two points in /~'~, then [IF(p)-F(q/ll   NllIp-qll. In 

particular, IlF(p)[[ = I[F(p)-F(0)[[ <~nKll[pll <~K 1, where we have used (11.9). Thus, these 

two statements imply that, if 3 # :  Bn-~Rn is the family of C ~ mappings consisting of all 

such F's, 34* is a uniformly bounded and equicontinuous family. By Ascoli's theorem 

(Lemma 1.2), 3 #  is relatively compact in the compact-open topology. 

Here, assumption (b) enters. 3 consists of solutions of the hypoelliptic system 

L(x, D) /=0 ,  and L(x, D) is homogeneous of order m, say. Then, 

for all pE/~ ~. Hence 3 #  is also a family of solutions of L(x, D ) F = 0 .  By Lemma 11.3, 

3:H: must then be relatively compact in the weak C~-topology. By (11.10), Corollary 10.4 

can be applied and consequently, there is a fl > 0 such that  each F E 3 #  has a univalent ball 

of radius fl around F(0). In the above notation, this means that  each /E 3 has a univalent 

ball of radius/~ around/(b) (although this b depends on/) .  The proof is thereby concluded. 

Appendix 

This appendix proves the Bloch theorem directly for a K-quasiconformal family of 

holomorphic mappings. With the exception of two casual references to the preceding 

sections, the presentation here is intended to be self-contained. The only tools we need 
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are Montel's theorem (Lemma 1.4 of w 1) and the fact that  uniform convergence of holo- 

morphic functions entails uniform convergence of derivatives of all orders. These enter 

into the lemma below, which is in fact a restatement of (i) of Corollary 2.1. We shall 

operate directly with (~ and holomorphic functions, in contradistinction to w 11 where 

real variables were used. 

Let  D~ be the closed unit ball (Z~]z~l~<l)  of (~n and let :~ :Dn-+Cn be a family of 

holomorphic mappings. We say :~ is K-quasicon/ormal iff there exists a constant K so that~ 

for each / = (11 .... ,/~) of 9:, the following holds throughout D n, 

~11 ~<K Idet J/ll 'n (A.I) 

I tl a/n] for a =  1 , . . . , n .  Here, II H denotes the usual norm of fin, Oz - ~ =  [ oza ' ' ' ' '  ~za] and J / i s  

p1o  the complex Jacobian determinant  [aze j of /. Of course, (A.1) is automatically sa- 

tisfied for the case n = 1 by letting K >~ 1. 

(The reason for this name is given by the following fact which will not be needed in 

the sequel: Let  ~n and (~n be both given the flat hermitian metric. Then :~ is K quasicon- 

formal iff there exists a constant K 0 such that  for each p e D  n and for each/e :~ ,  the rat io 

of the lengths of the longest axis to the shortest axis of d/~(S~) is bounded by K 0 (d/~: 
- - n  _~ n Dp Cp, and S~ is the unit sphere in the tangent space D~.) 

The proof is almost identical with that  of Lemma 11.2. The obvious differences are: 

symmetric matrices are replaced by hermitian matrices, real tangent spaces are replaced 

by holomorphic tangent spaces, etc.) 

The crucial fact needed is given by the following 

LEM~A.  Let :~a: D ~ C  n be a uni/ormly bounded lamily o I holomorphic mappings with 

IJ/(O)l =a>O /or any / e :~ .  Then there is an ~ > 0  so that each/E:~ a has a univalent ball 

o I radius o~ around/(0), i.e. a ball o/radius ~ onto which / maps some open set biholomorphically. 

Outline o/ proo 1. By Montel's theorem, :~ is relatively compact in the compact open 

topology. So if the lemma were false, there would exist a sequence (/i} in :~a such tha t  

/i-+/ (where/:Dn->Cn) and the maximal univalent of ]i has radius r ~ 0  as i-+c~. Now, 

IJ](O)l =lim,_.~[Jl,(O)[ =a>O and so I has a univalent ball of positive radius r about 

/(0). Call the latter B. By shrinking B a little if necessary, we may assume / maps a com- 

pact set A containing the origin 0 biholomorphically onto/~.  Thus t ~ / u n i f o r m l y  on A 

and for large i, I J]il is nowhere zero on A because I J/I  is nowhere zero on A. From this 
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one can deduce without much difficulty tha t  for i sufficiently large,/~ possesses a univalent 

ball of radius at  least �88 say, inside B. This contradicts r (+0 .  (For full details, see the 

proof of Theorem A in w 2, starting with the third paragraph and replace "/*~/F" every- 

where by  " IJ ] (O)] . " )  Q.E.D. 

The following is the main result we are after. 

BLOCk'S T ~ E O R ~ .  Let :~: D ' ~ C  '~ be a K-quasicon/ormal /amily o/ holomorphic 

mappings such that I J/(O) I = 1/or all / E :~. Then there is a fl > 0 such that every / E :~ possesses 

a univalent ball o/radius ft. 

Proo/. We wish to apply the preceding lemma, but  not directly to :~ because :~ is not 

known to be uniformly bounded. Instead, we consider for e a c h / E ~  the restriction F =/ ]  B, 

where B is some closed ball inside D= wi th  center b. I f  we can choose this b properly for 

e a c h / ,  roughly speaking, the set of all such $' will form a uniformly bounded family :~# 

to  which the Lemma would be applicable.  The initial section of this proof is concerned 

with this correct choice of b for each/ .  

So l e t / e  :~ and define M(s)= maxllzll<8 ]J/(z)]I/~. Let  C(s)= sM(1 - s ) .  By hypoth- 

.esis, C(0)=0  and C ( 1 ) = I .  Let  r be t h e  smallest value of s for which  C(s)=l.  

Clearly 0 < r ~< 1 and r satisfies: 
1 

r '  < r implies M(1 - r') < -~ (A.2) 
r 

1 
M(1 - r) = - .  (A.3) 

r 

Let  b the point inside the bali of radius ( 1 - r )  such tha t  

Define F: /)=-+ (~ by: 

1 
IJ/(b) 11( n = M(1 - r) = - .  

F ( z ) = / (  b+rz)2 - / ( b ) .  

This is the restriction map of ] referred to aboVe; the subtraction of /(b) from F is 

merely to normalize F so tha t  
F(0) =0 .  (A.4) 

We have yet  to show F well-defined, Since b +  2 ~<llbll+ ~11 <(i-r)+2= 
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<~.K. 
= g .  

by  (A.1) 

because lib + r  2 

by  (A.2) 

II r <i-~ 

Thus, throughout ~n and for a = l ,  . . . ,n ,  we have: 

K.  (A.5) 

Together with (A.4) we shall deduce the uniform boundedness of all such F.  First a 

remark about  holomorphie functions of one variable. Let  g(z) be defined in a disc 

around z0, then for each z' in the disc, we can find a z* in the line segment joining 

z. and z' so tha t  Ig(z')-g(z0) I ~<lz ' -z . I  ~ (z*) . This is a consequence of the Cauehy 

theorem because if we integrate along this line segment: 

so tha t  

f 
'@ 

g(z') - g(zo) = , d~ dz 

where we have used the mean value theorem for  integrals to Obtain z*. Now, if $'(z 1 ... . .  z n) 

is a holomorphie function of n variables, we may  derive, by  a standard procedure, the 

following from the preceding result: if F is defined in a ball around P0, then for each p'  

in this ball, we can find n points Pl . . . . .  p~ in this ball so that:  

[IF(P')-F(Po)[[< {(1~ (Pl) II + + a_F -Poll}. (A.6) 

Returning to our original F,  (A.4)-(A.6) imply tha t  < 

n K  Hzll <.nK.  Thus if we denote by  :~# the set of all such F so obtained from the 
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/ of :~, ~ #  is uniformly bounded. I t  is obvious from (A.3) t ha t  IJF(O)l = IJ/(b)l ~= 

( 1 )  n. Thus the Lemma is applicable and each F 6  ~@ possesses a univalent  ball of 

radius ~ around F(0), where ~ > 0  is independent  of F.  This means tha t  each / has 

a univalent  ball of radius/~ a round / (b )  (b depending o n / ) .  Q.E.D.  

I t  is an easy consequence of the preceding theorem tha t  if :~ is a K-quasiconformal  

family of holomorphic mappings from the entire space C n into C ~, and if I J](0)] = 1 for 

each /6:~, then the radii of the univalent  balls for each /61~ are unbounded.  We close 

this paper  with the conjecture that ,  in this case, the assumption of K-quasiconformali ty  

is unnecessary. 
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