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1. Introduction
1. The solutions f, and f_,

In order to state the main results of this paper, we shall start with the differ-

ential equation

d2y/dzz—P(z, C1y Cos -+ ,Gm)?/=07 (1'1)
where ¢y, ¢y, ..., ¢, are complex parameters and
Pz, e)=(2—¢){z~€y) ... (2—¢n). (1.2)
m + oo
j=1 h=1
where b,(c) are homogeneous polynomials of ¢,,...,c, of degree h respectively, and
let us put
3m+1)
z*'"{ + Z b,(c)z ”} (m = odd),
h=
(1.4)
im
211 { Z ‘”} + b——l"ii_"_"z(c) (m = even),
where #' =exp {r [log |z| +4 arg 2]} (1.5)

for any constant r. Previously, P. ¥. Hsieh and Y. Sibuya {7] constructed a unique

solution
Y=Ynlz,0) (1.6)

of the differential equation (1.1) such that

(*) This paper was written with partial support from the National Science Foundation (GP-7041X).
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(i) Yn is an entire function of (2,¢q, ... , Cn)s

(i) Yn and dY,,/dz admit respectively the asympiotic representations

Yn=2""{1+0(z"1)} exp {— fz An(,c) dt} ,

. (1.7)

AYn/dz=2*"{ -1+ 0(z %)} exp { - f An(t, c) dt}
0

uniformly on each compact set in the (cy, ..., c,) space as z tends to infinity in any sector of
the form

|arg z| < (1.8)

_37__,
(m+2)
where the path of integration should be taken in the sector (1.8) and §, is an arbitrary

positive constant.

The solution Y, tends to zero as z tends to infinity in the sector |arg z| < z/(m +2).
We call Y,, a subdominant solution of the differential equation in the sector |arg z|<
7/ (m+2).

Now let A be a complex parameter, and a,,...,a, fixed real constants such that

— O LUy < U1 < e <A<y < F 00, (1.9)
Then let us put w=exp (2mi/(m+2)),. (1.10)
o =A2m+D arg o= 2 arg A, (1.11)
’ m+2
1,2,... /2 = odd),
_ O’ ) &y ?(m—l_l)/ (m O ) (1'12)
0,1,2,...,m/2,1+m/2 (m=even),

and fe(@, 4) = Yn(0w*z, pway, o as, ... , oo an), } (1.13)

f- (@A) =Ynlow™ "z, o0™" a).
It is easily verified that the functions y=/f.(x,A) and y=f_,(x, ) are solutions of the
differential equation
(E) y' — 12 P@)y=0,
where " =d?/da® and
Px)=Px,a)=(x—a,) (x—ay) ... (x — ap). (1.14)
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Furthermore, from the properties (i) and (i) of the function Y, we can derive the

following properties of f, and f_;:

(i) The functions f,, and f_, are entire functions of (z,@);
(i) fu, frs for and f' ) admit the asymplotic representations
x
fr=(000") " 2" ¥ {1+ O(z ")} exp {-kaf An(o0*t, po’a) dt},
0

. (1.15-k)
fro = (0*) ¥ Azt {(—1)*** + O(x™¥)} exp { - @w"f An(00*t, go¥a) dt},
0

uniformly on each compact set of the p-plane as x tends to infinity in the sector

2 1k < 3x
(m+2)| (m+2)

arg p +arg -+ — dg» (1.16-k)

and

foe=(ow ") ¥ &~ 4" {14 O(a"4)} exp {‘ ew"‘fx Am(ew™t, 00 a) d‘},

o, (1.15-(-K))

fr=(ow ™) " Aat™ {(~1)*"* + O(a™¥)} exp { - @w""f Anlow ™, o™ a) d‘},
0

uniformly on each compact set of the p-plane as x tends to infinity in the sector

2ak |_ 3a
(m+2)|  (m+2)

arg o +arg x— So- (1.16-(-k))
The paths of integrations in the right-hand members of (1.15) should be taken in the
sectors (1.16) respectively.

Let 8, be the sector in the z-plane which is defined by

2k b3
1.17-k
Mgt oy S mt2) (1.17-k)
and let S_, be the sector in the z-plane which is defined by
arg o — 20| T (1.17-())
E mr2) | “mr2) '

If >0, f, tends to zero as z tends to infinity in S,, while f_, tends to zero as x
tends to infinity in S_,. Hence we call f, and f_, subdominant solutions in S, and
§8_; respectively.

We shall denote by I, the intervals
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app<x<a, (=12 ..,m—1) (1.18)

on the real axis of the z-plane respectively. The intervals — oo <z <apand @, <z < + o
will be denoted by I,, and I, respectively. Furthermore, I, ., denotes the empty set.
Then one of our main concerns in this paper will be to evaluate fy, fr, f-x and [y
when €Iy U lpp 1 Uy as A tends to oo in a sector |arg A| <0p, where

k=

{1,2, viey (m+1)/2  (m=0dd), (1.19)

1,2,..., m/2 (m = even).

By using these results we shall also compute large positive eigenvalues A of the bound-
ary-value problem

+00

(P) y" — A P(x)y=0, f ly(2)|? de< + oo,

when m is an even infeger.

2. The associated Riccati equation

We denote by , the domain obtained from the complex z-plane by deleting the

line-segments @, <z <a,,.; on the real axis, where

C(L,2,..., (m+1)/2  (m=odd),
j= @2.1)

1,2,...,m/2 (m=even)

and @,,,= —oo. Let A(x) be a branch of P(x)* such that
A@@)>0 (2.2)

for large positive values of z. It is easily verified that A(z) is single-valued and
holomorphic in the interior of Q.

By the transformation w=y ‘dy/dx we derive the Riccati equation dw/dx +w?=
/2 P(x) from the equation (E) of Section 1. In the domain €, we can write this Riccati

equation in the form

w +uw? = (1A(x))>. (2.3)

In order to evaluate the quantities f,, f-x, f and f-, when 2€Iy U Iy U Lpg-1) a8 A
tends to oo, we shall stildy the Riccati equation (2.3).

First of all, we shall prové the following lemma.

Lemma 1. The Riccati equation (2.3) has two formal solutions
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w=2AA(x) - } R(z) + p(z, 1) (2.4)

and w= —AA@®) -} B(x) +p(x, ~A), (2.5)
where R(x) = P'(x)/P(z), (2.6)
ple, ) = 3 (AE) " pa(a), @)

Pa (%) =@y, () Px) "7, (2.8)

and the quantity Q, is a polynomial in x of degree not greater than (m—1)(n+1).

In fact, if we define p, by
p1(#) =% {} R (z) — 5 R(2)*} (2.9)

ad  p@=1{1nB@ P @ —pia@ = S p@mE) @1, @10)

the two formal series (2.4) and (2.5) satisfy the equation (2.3), since A’ () =} A{x) R(x).
Secondly, we shall prove the following lemma.

Lemma 2. For each fized point & in Iy U Iy o U Ing_1y, where

k={1,2, ver, (m+1)/2  (m=odd), 2.11)
1,2,...,m/2 (m = even),
there is a curve Cr1(8): z=2z(s;&) (0<s< + o0) (2.12)

and a positive constant 0,(%) such that

(1) 2x(s; &) is continuous in s for 0 <s< 4+ oo;

(i) 2,(s; &) is bounded and piecewise continuous in s for 0 <s< + oo, where de-
notes d/ds;

(iil) 2,(0; &) =&
(iv) Yimg ., yo0 2 (85 &) =00, lim,_, 4o arg 2 (8; &) =27k/(m + 2);

(v) Im 2,(s;8)>0 for O<s< + oo;

(vi) the quantity (—1)* Re [e“’ ft Az (85 8)) 2k (s; &) ds] is nondecreasing for 0 <t<
0
+ oo if |6] <6y (é).
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This lemma will be proved in Sections 5, 6 of Chapter II. In the proof we shall
use the idea that was suggested in the paper of M. A. Evgrafov and M. V. Fedorjuk

[3; p. 9. We shall use some properties of the trajectories of the autonomous system
dx/dt = i A(E), (2.13)

where ¢ is a real independent variable and — denotes the complex conjugate. If z=

x(t) is a trajectory of (2.13), then we have

t —
g,,: fo A(x(s)) #(s) ds = A(z(t)) &(t) = i A(2(t)) Ax(t))
=i A((t)) A (t) =i | Alz®)]*.

Hence the real part of the holomorphic function

fIA(r) dr

is constant along the trajectory z==z(f) of (2.13). This is the reason why we shall
study the system (2.13).

As a corollary of Lemma 2, we obtain the following lemma.

LevMma 3. Put
Cu(88) =2,(8,8) (08 + 00). (2.14)

Then the curve Cr2l8): x=04(s;8)
satisfies the conditions

(1) Ci(s; &) is continuous in s for 0 <s< + ooy

(ii) Cp(s; &) is bounded and piecewise continuous in s for 0 <s< + oo;
(i) (0, 8)=&;

(iv) limy_, 4o Cp(8; &) =00, lim,s_, o arg (s; &)= —2ak/(m+2);
(v) Im £,(s;8) <0 for 0<s< +o0;

(vi) the quantity (—1)* Re [e"’ ftA(Ck(s; &) Ee(s: &) ds] s nondecreasing for 0 <t<
0
+ oo if |6] <6,(8).

Since & is real, the conditions (i), (ii), (iil), (iv) and (v) of Lemma 3 can be
easily derived from the corresponding conditions of Lemma 2. In order to derive the

condition (vi) of Lemma 3 from that of Lemma 2, we use the identity A4(Z)= A(z).

Finally we shall prove the following lemma.
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Lemma 4. For each & in Iy U Iy o ULy yy, where

_{1,2, vy (m+1)/2 (m=odd),

= (2.15)
L2,...,m/2 (m = even),
there exists a function wy , (s, A; &) such that
(i) wy,q s defined and continuous n (s,A) and holomorphic in A for
|A|= My (&), |arg 2| <6,(f), 0<s< + oo, (2.16)
where My is a sufficiently large positive constant depending on &;
(i) by, ts piecewise continuous tn s for 0 <s< + oo, where' denotes d/ds;
(iil) wy,, salisfies the differential equation
ty,1 =2 (55 &) {[AA (% (s; E)F —wk 1} (2.17)

for (2.16) except at the points of disconbinuity of iy, in s;
(iv) w,, satisfies the inequalities
[.1(5,2:£) = (=1 2A(0 + § R = 3 1~ 1 2A@I ™ po (e
SKy(&)|AA@)| VY (N=1,2,...) (2.18)
for (2.16), where 2, =z;(s; &) and Ky are positive constants depending on &.

This lemma will be proved in Section 7 of Chapter II. From Lemma 4 we can
derive the following lemma,

Lemma 5. Put
Wi,2 (8, 4; &) = wi 1 (s, 4; §)- (2.19)
Then the function wy , satisfies the conditions
(i) wx,y is defined and continuous in (s,A) and holomorphic in A for (2.16);
(i) dy, ts piecewise continuous in s for 0 <s< + oo
(ill) wy o satisfies the differential equation
i3 =Ciels; €) {IAA(k(s; €)1 — w2} (2.20)

for (2.16) except at the points of discontinuity of W5 N8
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(iv) wy o satisfies the inequalities

102625 8= (= 17 2AG) + 1 REGI— 3 1(= 1 AAGIT pu @9

<Ky(8) |2AQG)| 7 (V=1,2,...) (2.21)
for (2.16), where (= i(s; &).

It is easily seen that the quantities jy; and  , have a discontinuity in s only
at the points of discontinuity of %, and ; respectively. The differential equations
(2.17) and (2.20) are derived from the Riccati equation (2.3) by the changes of the
variable x=z,(s; &) and x=(;(s; &) respectively. The inequalities (2.18) and (2.21) give
asymptotic expansions of wy , and wy , as AA4(z) and A4({c) tend to infinity for each
fixed £ We have

We1 (8,45 &) 2 (— 1) AA(2) — § Blz) + 721[( = 1) AA(2)] 7" pn (i) (2.22)
as AA4(z) tends to infinity, and

Wie,a (8, 45 €) = (= 1)1 AA() — } B(G) +§1 (=1 24T " pa (C) (2.23)

as AA(ly) tends to infinity. The estimates (2.18) and (2.21) depend on & and they
are not uniform over any interval which contains the points as;_1 or ay. The quan-
tities AA4(z;) and 14(Z;) tend to infinity either if 1 tends to infinity or if s tends to
infinity.

3. Main results

Let us denote by B(x) a branch of P(x)! such that
B(z)>0 (3.1)

for large positive values of x. For real 7, we shall put

A(r—) =t1i13)a+ At —1it), Alr+) =tli1£r At +it) (3.2)
and Br—)— lim Br—it),  B(r+)= lim Bz+i). (3.3)
Let Qi1 (8,45 &) =wye 1 (8, 4; &) — (= 1) AA(2) + § Rlz) (3.4)
and Qi 2(8, 4; &) =wi a8, 4; &) — (— 1)1 2A(%) + § R(Gw), (3.5)

where 2, =z(s; §) and = {x(s; £). Finally, put
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o =(—1)bysmpz(a). (3.6)

We remark that the function B(z) is single-valued and holomorphic in the x-plane
cut along the interval — oo <x< @, on the real axis. In (3.3), we use this holomorphic
function B(x).

Our main result of this paper is the following theorem:
THEOREM 1. For each fized point & in I U Inp 1 U Ipy_qy, where

k={1,2,...,(m+1)/2 (m = odd), (2.11)

1,2,...,m/2 (m = even),
we have

3 +00
fr(E,2)=Cr(A) B(E—) " exp [(— 1)"“1L A(T—)d‘r“fo Qi 208, 45 &) Li(s; &) ds]

& +0o0
FolE )= Oy (1) BE+)" oxp [(—n"“z f Az +) dr— f Qur (o, 33 £) (5 &) ds], ,

fe(& A ={(— 1) AAE —) — 1 R(&) + Qr,2(0, 4; &)} i (&, 2),
@D ={(—D* 2AE+) = 1 R(E) + Qe.1(0, 4; £} [ (£, D),

where

r(gw")_*’" exp [(—1)k+llf+w{Am(r, a)— At —)} d-r] (m = odd)
Ci(h) = - (3.8)
(ow®) ¥ %% exp [(—1)"“1f {An(r,a0)— AQx—)} dr] (m = even),

0

F(Qw—k)‘im oxp [(_1)k+11f+w {An(t,a)— A(r+)} d‘l’] (m =odd)
C_x()= e (3.9)
(e~ ¥)~ "4 exp [(—I)HIZJ {An(r,0)— Az +)} dr] (m = even),

0

and s and T are real variables, and
|A|= (&), |arg 4| <6,(&). (3.10)

Remark. In order to derive asymptotic representations for fy, f_x, fr and f., as
A tends to infinity in the domain (3.10), use the definitions (3.4) and (3.5) for Q.
and (Jy , respectively, and use the asymptotic expansions (2.22) and (2.23) for wy , and
wy o Tespectively. It was already mentioned that these expansions are not uniform

over any interval which contains ag,_; or ag,. Hence the corresponding asymptotic
16 — 672909 Acta mathematica 119. Imprimé le 9 février 1968,

(3.7)
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representations for fy, f_x, fx and f , are also not uniform over any interval containing
Qg OT Qgj—q.

This theorem will be proved in Section 8 of Chapter II.

4. Computation of eigenvalues of Problem (P)

Notice that, since @™*2=1, the two solutions fi.,e and f_y_,. are identical.
Furthermore, the solution f, is subdominant along the positive real axis, while the
solution f;. 2 is subdominant along the negative real axis. Therefore, eigenvalues of
Problem (P), when m is even, are zeros of the Wrongkian of f, and fiimp:

W)= f(,)(x,l) freme(, 2) . 4.1)

fo@,2)  firmpe(z,2)

We may compute large positive zeros of W(1) by using asymptotic evaluations of
for fos fromz and f{y 2 as A tends to + oo. However, a straightforward application of
the theory of asymptotic solutions of ordinary differential equations with respect to
parameters would yield asymptotic evaluations of fy, fo, fi+mz and fiime in different
z-intervals that are disjoint. Hence such results cannot be used for the computation
of zeros of W(A). This difficulty is due to the fact that the coefficient P(z} of (E) has zeros
@4, ..., 8, These zeros of the coefficient P(z) of (&) are called transition points of (Z).
For a general discussion and the history of the study of the problem of transition
points see R. E. Langer [9], J. Heading [6] and W. Wasow [11].

In order to overcome such a difficulty, we need a more elaborate analysis. While
in case m =2 the problem is reduced to the study of the parabolic cylinder function,
there is no such well-known special function that is helpful in case m >2. For general
discussion of the problem of two transition points see A. Erdélyi, M. Kennedy, and
J. L. McGregor [2], R. E. Langer [10], and: N. D. Kazarinoff [8]. In this paper, the
function Y, plays a role similar to that of the parabolic cylinder function in case
m=2. Actually the functions f, and f_, were derived directly from the function Y.
We shall explain briefly how to evaluate W(4) asymptotically as A tends to + co. The
proof will be given in detail later on in Chapter III. Let us put

am=| T =12, mp), (4.2)
fe  f-x

D fk flc+l

e ()=, ", (k=0,1,...,m/2), (4.3)
fe  fin




SUBDOMINANT SOLUTIONS OF ¢".—A3(x —a,) (x—a,) ... (x—a,)y=0

and

Dk, 2 A=

Ak,l (l) =

Ak.z (l) =

f-x f-xa

- k=0,1,...,m/2),
o faal m/2)
fj"f’f“ (k=1,2,..., ~1+m/2),
< fen

f’f fj’“ (k=1,2,..., —1+m/2).
fk f~k—1

245

(4.4)

(4.5)

(4.8)

First of all by using Theorem 1, we shall evaluate Ag(4) at a fixed point of the
interval I, , for large positive values of A. This will show that f, and f_, are line-
arly independent if A is positive and large. Let ®,(z,A) be the matrix of these two
independent solutions, i.e.

fe@, A forlx, A)
®, (x, A =( , ) ) 47
R VA wn
—1 -1 f,—k —,f—k
Then TN O ). (8)
—fk fk
Hence if we put
Br,2(A) Dk.z(l))
H. (1) = =1,..., — .
x(A) (—Dk.l(l) A ) (k=1,..., —14+m/2), 4.9)
we get Oy (, A) = Ai41 (1) iy (2, 2) He (), (4.10)
and D, (2, 1) = {A5(2) Ag(A) - Amip(A)} ! Dpyp(, A) H(A), (4.11)
where H(A)=H_1;mi2(A) ... Hy(A) Hy (A). (4.12)
On the other hand, we have
fol, 2)) 1 ( Do,z(l))
=A AT ®y(x, A 4.13
(f(')(x, 2 1(A) 1z, 2) — Dy (A) ( )
fl+m/2(xyl) - _1 (—D§m.2(2))
and () = Aa @ @t 2 o) (.14
Hence we get
Wi = , -1 Dy,5(2)
(A ={A1(2) Az (A) ... Ay W)} ' [Dym,1(A), Dym,2 ()] H(A) . (415)
. . _Do.l(/l)

Therefore, large positive eigenvalues of Problem (P) are zeros of
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Do,z(l)).

[Dym.1(A), Dym,2(A)] H(A) (—D )
0.1

(4.16)

We shall evaluate the quantities D,; and Dy, at x=occ by using asymptotic repre-
sentations (1.15) of fy, f_ and their derivatives. On the other hand, by using Theorem 1,
we shall evaluate the quantities Ay, and Ay, at a fixed point of I5,. In this manner,

we shall prove the following theorem.

TeEEOREM 2. Let

l -]
ak(n)=r“f?+2)” + S S (k=1,2,...,m/2)

V|P(z)| dv

gk

1

be formal power sertes im n ' with constant coefficients &, , which satisfy the formal

equations
z,cfam VP@) | do=(+Ha—G/2) S A2 f [(— 1) A@)] 2" pgn_y(z)dz (4.17)
A2k n=1 Vi

(k=1,2,...,m/2),

where y, is a circle which encircles only asy and azy_,, and the integration must be taken
in the counterclockwise sense. Then there is a positive integer vy such that we can denote
almost all positive eigenvalues of the boundary-value problem (P) by A, (k=1,2,...,m2;
v=1+4v;, 2+v,,...) so that we have
by = TS g 0
[ vr@le

Ak

as v tends to + oo, where N may be any positive integer.

Remark. Previously M. V. Fedorjuk [4] claimed that the eigenvalues A, are de-
termined asymptotically as » tends to + oo by the formal equations

ho [ VP@I = 04 D7 S 383 [ (-0 A T s 1)

[
2k V&

However, we felt that he gave only a sketch of the proof. Furthermore, since then,
M. A. Evgrafov and M. V. Fedorjuk [3] explained again exactly the same method, and

they gave only the first approximations of ;,, i.e.
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PR hs L. +0(1). (4.19)

22x-1

V|P(z)| dv

In addition, they remarked that we need a more elaborate analysis to obtain higher
order approximations. Therefore, we felt that it might be worth-while to present an-
other proof for the results of M. V. Fedorjuk. By using an idea due to N. Froman
[5] we can prove that

f Al@) " poa@)dz=0 (n=1,2,...). (4.20)
Vi

Hence Theorem 2 gives us the same results as those of M. V. Fedorjuk. We shall give
a proof of (4.20) in Section 10 of Chapter III. The analysis of M. V. Fedorjuk is based
on the computation of the so-called Stokes multipliers around a transition point after
another. Our analysis is based on the computation of the Stokes multipliers around
a pair of transition points a@s,_; and ap; after another pair.

The author of the present paper wishes to express his thanks to Professor Masahiro
Iwano for valuable advice.

II. Proof of Theorem 1
5. Proof of Lemma 2 (Part I)

We shall prove Lemma 2 of Section 2 in Sections 5 and 6. First of all, we shall

construct some particular trajectories of the autonomous system (2.13)
dz/dt =1A4(%),

where ¢ is a real independent variable and — denotes the complex conjugate, and prove
the following lemma:

LeEMwmA 6. For each h=1,2,...,m the system (2.13) has a unique trajectory J,
x =2, (t) (6.1)

such that x,(t) is defined for t,<t<0 if h=2 or 3 mod4 and z,(t) is defined for
0<t<t, if h=0 or 1 mod4, where |t,|= + oo if m=1,2, and |t,|< + o otherwise,
and such that

(i) lim z,()=a;;
t—->0
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(i) Im x,(8)>0 for t,<t<0 cr O<t<iy;

(iii) lim |2, ()] = + oo;
t->tn

(iv) there is an integer k such that

. _(_2_/0—1)7:

th_])ltlharg 2y, (8) = m¥2)
and that
(a) 1<k<(m+3)/2 (m=odd), 1<k<14+m/2 (m=even);
(b) k is even if h=2 or 3 mod4;

k wsodd if h=0 or 1 mod4.

In Lemma 6, the integers k are not exactly specified. If this lemma is proved,
we can determine the exact values of the integers & by using the fact that the tra-

jectories T, cannot intersect each other. We can prove the following lemma.

LrmMA 7. The trajectories T, satisfy the conditions

lim arg z,(t)=hn/(m+2) if h is odd, (6.2)
t—tp
and lim arg z,(f)=(h+1)n/(m+2)' if h is even. (5.3)
t—in

Now we shall prove Lemma 6. Let
D21»1={x2 Ix—a2]—1| <4, larg (x-agj_1)|<7t},
Dyy={z; |z —ay|<d, |arg (@ — ay,) — 7| <7},

where & is a small positive number. Then D, are contained in €, if d is sufficiently

small. Hence the functions
F,(x)= J‘ A(r)dr (h=1,2,...,m) (5.4)
2

are holomorphic in D), respectively. Let z=x(f) (£, <t<t?) be a trajectory of (2.13)
which is contained in D, for some k. Then

dF, (z(t))/dt = Az () da(t)/dt=1| Az ()]

Hence Re F,(x(f)) is constant. On the other hand, if a curve z=a(7) (v, <T<7)
satisfies the conditions:
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(i) z(x)€D, for some h;
(i) da(z)/dr+0 for 1,<t <745

(iii) Re F,(x(z)) = constant for 7,<71 <13
then this curve is a trajectory of (2.13). In fact
a(t) = —i dF, (x(r))/dr

is real and different from zero for 7,<7<17,. Let
T
t=f a(s) | A )| 2 ds (o ST<TY). (6.5)

Then the function x=ux(7(f)) satisfies the differential equation (2.13), where 7(f) is the
inverse function of (5.5).

Now we shall study the function F, in the neighborhood of a,. It is easily seen
that in the interval ag; ;<x<asy_,, we have

>0 .if § is odd,

<0 if § is even,

Ax) {

where a,= + co. Therefore

(=1 (@ —ag;_ ) {dg;_1+ 0@ —ag;_1)} in Dy,
Alx)= : : 5.6
@ { (=1 (@ —ag) {idy; +O(x—ay)} in Dy, ¢6)
where arg [(z—a,)t] =} arg (x—a,)
and b=V ];Ihlah——an|>0.
Hence Foj1=(—1)" (@ —as;_1)} {§ $2)-1 + O(x —ag;_1)} in D2j—1a} (5.7)
F2,=(—l)’+1(x—au)§ {§i¢2,+0(x—a21')} in Dzn '

where arg [(x—a,)¥]=32 arg (x—a,;). From (5.7) we can conclude that there are two

trajectories in D, which approach the point a,. Two such trajectories can be given by

e=’§’+0(r) and 0=—’§’+0(r) in Days

and 0= gg-f— O(r) and 6= 4—37!+ O(ry in Dy

if we put x—a,=re®. Let us denote by J, the one of these two trajectories in D,
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which lies in the upper half-plane in the neighborhood of a@,. If b, is a point on the
trajectory J,, this trajectory is determined by the solution of (2.13) which satisfies

the initial condition x(0)=b,. Let xz=yv,(t) be this unique solution. If we put

Yn(t) — an =1(t)e"®,

then we get 0(t)=7—; +O(r(@®) if kis odd (5.8)

and 0(t)=%:—t+ O(r(#)) if A is even. (5.9)

From (2.13), (5.6), (5.8) and (5.9), we derive

dr(t) {(—h’“r(t)* fos-1 {1+0(-(®)} in Doys,
(=1 () g, { —1+0(r(t))} in D,
Hence in D, we have
dr{>0 if h=0 or 1 mod 4,
dt <0 if A=2 or 3 mod 4.

On the other hand, since dt/dr=0(r"%), the trajectory z=y,(f) arrives at a, from b,
within a finite time-interval. Thus we can construct the unique trajectories J, which
satisfy the conditions (i} and (ii) of Lemma 6 in the neighborhood of the point a,.

Now we shall complete the proof of Lemma 6 for the case h=3 mod 4. Other
cases can be treated in the same manner. Assume that the trajectory

r=z,() t,<t<0 (5.10)

satisfies the conditions (i) and (ii) of Lemma 6. Furthermore, assume that this tra-
jectory cannot be extended without violating the condition (ii). We want to prove
that the trajectory (5.10) satisfies the condition (iii) of Lemma 6.

To do this, first of all, assume that there is a decreasing sequence of values £,
of t such that lim,_, ., #,=#,, and that lim,_, . z,(f,) =& exists and Im £>0. If, in
this case, |£,]< + oo, then we have lim;_s z,(f)=¢. This contradicts the assumption
that trajectory (5.10) cannot be extended without violating the condition (ii) of Lemma 6.
Hence we must have f,= — co. Now assume that #,= —co. Then since Im z,(¢)>0
for 0>¢> — o and Im #,(0)=Im a,=0, this trajectory must approach a limit cycle
as t tends to —oco. Otherwise, we must have lim,_, . (t,) =& = oo. This limit cycle
must be in the upper half-plane. However, this is impossible, since there is no zero
of A(£) in the upper half-plane. (Poincaré-Bendixson Theorem [1; pp. 389-403].)
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Secondly, assume that there is a decreasing sequence of values #, of ¢ such that

lim, , 4o tn =1y, and that lim, _, ;. 2,(f,) =& exists and Im £=0. Then we can prove that

lim z,(t)=¢ and |f,]|< + oo. (6.11)
t—tp

In fact, if @ppi1<E<a,, then A4(£) is real and different from zero. Hence the asser-

tion (5.11) can be easily verified. In case when £=a,, let us consider the function

F,(x)= fr Ar) dz

in the upper half-plane Q. The function F, is holomorphic in Q and Re F,(x,(f)) is
constant for £,<t<0. On the other hand, F,(x,(f,)) tends to zero as n tends to in-

finity. Hence
Re F,(z,(8))=0 for ¢,<t<O.

Therefore, in the neighborhood of a,, the trajectory (5.10) must coincide with the tra-
jectory J,. This implies (5.11). We shall now prove that & is not in the interval

@y, <T<@2,.3. To do this, assume that a,,<&<as, 1. Then consider the function

Fy(x) = fr A(r) dr

in Q. The function F,, is holomorphic in Q and Re F,,(x,(t)) is constant for £, <£<O0.
It is easily seen that A(z) is purely imaginary for a,,<xz<as, 1. Hence Re F,,(x,(f,))
tends to zero as » tends to infinity, and we have

Re Fy, (x,(t))=0 for ¢,<t<O.
However, for sufficiently large », it is easily verified that
Re Fy, (23, (£)) + 0.
This is a contradiction. Thus we have proved (5.11). Moreover, we also have shown that
Gspi1 <E<a,, for some p. (5.12)

Now we shall derive a contradiction from the conditions (i), (ii), (5.11) and (5.12).
In fact, since (5.10) is a trajectory of (2.13), then x=m (0<t<t,)is also a trajec-
tory of (2.13). Hence if the conditions (i), (ii), (5.11), and (5.12) are satisfied, we have
a closed trajectory of (2.13). By modifying this closed trajectory at a; and &, if nec-

essary, we can construct a simple closed curve in Q, so that arg A4(f) increases by
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27 if x goes along this closed curve counterclockwise. This means that the index of
this closed curve with respect to the vector field ¢ 4(Z) is one. (See, for example,
[1; pp. 398-400].) This implies that

fd log A(x)= —2m
if the integration is taken along this closed curve counterclockwise. However, every
residue of A4'(z)/A(x) is 3. Hence fd log A(x)>0. Thus we arrive at a contradiction.
Consequently, we proved that

lim |, ()| = + 0. (5.13)
t—tp

In order to prove the condition (iv) of Lemma 6, we shall consider the equation
(2.13) at x=cc. We know that 4(x) has the form

Ax) =™ {1 + § bh(a)x"‘}
n=1

in the neighborhood of x= co. Let us define F(x) by

2 b 2
1m+1 gl . .
x. {m+2+z§1m+2—2lbl(a)x } if m is odd,

2 2
m+2 2,¢,,,+2m+2—2l

Foo(@)=

x;,mn{ b, (a) x"}+b1+m,2(a) log # if m is even,

where arg Fo,(xz) =0 for large positive -z. Then the function F, -is holomorphic in Q.
Furthermore, Re F(z,()) is constant for ¢,<t<0. In the neighborhood of z= oo,

any curve defined by Re F(x)=constant has one of the following forms
0=(2k=1)n/(m+2)+0@r)
if z=re? and 0<0<m, where
1<k<(m+3)/2 (m=odd), 1<k<l+m/2 (m=even).

On the other hand, along such a curve, we have

%= rim {sin (m;— 2 0) + 0(1'_1)} =" {(—1)**"1+0(r )}

dr{>0 if £ is odd,
Hence

dt | <0 if k is even.

Moreover, dt/dr=0O(r~ ™). This completes the proof of Lemma 6 for the case » =3 mod 4.
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6. Proof of Lemma 2 (Part II)

Now we shall construct the curve C; ; (£) of Lemma 2 for §€Io, U Ipy- 1 U I3 -1 When
k is an even integer. The case when k is odd can be treated in the same manner.
Let Q, be the simply connected subdomain of the upper half-plane Q which is bounded
by Jox, Iy-1, and JTpp-y. On the other hand, for each point x, in the interior of €,
we denote by x=w(t,2,) the trajectory of the system (2.13) such that xy=w(0, ).
Let x,€8k, and assume that the trajectory w(t,z,) is defined for #,<# <, where

—1o and &, may be +oo. Then w(f,#,) has the following properties:

lim w(f, ) = oo, lim arg o(t, z,) = (2k+1) n/(m+2) (6.1)
t—>to t—>to
and im w(t, ) = oo, lim arg w(t, z)=2k—1)z/(m+2). (6.2)

t—>tp t—>1

In fact, the trajectory wft,z,) should be in the interior of Q, for fy<t<t, Then by
using the Poincaré—Bendixson Theorem [1; pp. 389-403] and Lemma 7, we can prove (6.1)
and (6.2).

Now for £€I,,_; we define Cy,(&) by

E+is (0<s<y),
T=2(8; &) = w(s— 81, 2, (83 &) (8, <8<8y), (6.3)
2 (555 &) + (8 —8,) exp {2kmi/(m+2)} (s,<s< + o).
(See Fig. 1.)

If s, and 1/s, are sufficiently small, the function

i .
Fii)=Re f A (53 ) 353 £) ds

is nondecreasing. In fact,

—Im [AE+it)]  (0<t<s),
F(t)=10 (81 <E<3y),
Re [A(Z(t; £)) exp {2kni/(m+2)}] (s,<t< + o).

Notice that, if t is even, we have
V|P(x)| if =z€ly,

24('1;)= _?: IP(:&:)! if xEIZk—h
— V[P@)| it z€lig-1,
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T ¥

Mops1 Gy, & Qor-1 B2ge-1)
Fig. 1.
where V|_15(x_)—] >0. Hence, if s; is sufficiently small, we have
—Im [A(£+it)]>} V|P@)] >0 for 0<t<s,.
On the other hand, if s, is sufficiently large, we have
km < arg [A(z (5 &) exp {2kmi/(m+2)} 1< (k+ 1) n
for s, <t< -+ co. Hence

Re [AG(t; &) exp {2kni/(m +2)}]>0.

Thus we get F(t)>0 for all .
For £€ Iy, let Ek,1(§) be defined hy

(w(s, &) (0 <s<s,),
2 (815 &) (s — &) (8, <8 <8y),
©=7(s; £) =4 fo(s "o ey 5))M_ (g <) (6.4)
26 (833 &) + (8 — 85) Alzi (353 §)) (s3<8<8y),
(8 — 84, 2 (845 £)) (84 <8< 85),
| 2 (855 &) + (s — 85) exp {2kmi/(m+2)}  (s5,<8< +o0).
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Mox-1 & Gy Mokl Bak-1

Fig. 2.

(See Fig. 2.) We can determine sy, s,, 83, 8,, and s; so that the function

t -
Re [ AGie: )30 8)ds
0
is nondecreasing.

Finally, for £€ Iy, let Cp1(£) be defined by

o(—s, &) (0 <s<g),
Ze(s; E)— (s —8y) (8, <8 <sy),
@ =Ex(s; &) = (.0(82_8’ oy S))_____ (fa=s8y) (6.5)
Zi (833 &) + (5 — 85) A2k (35 €)) (83 <8<8y),
(8 — 34, 2k (34 £)) (8, <8 <sy),
|7 (855 &) + (s — 85) exp {2kmi/(m+2)} (85 <8< + o0).

(See TFig. 3.)
Since the mapping z=f§,4(t) dt is conformal, we can find Ci,(£) and 6y(&) by

modifying 6k'1(§) in a suitable manner.
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2k+1

A2k+1 Aoy Q2k-1 £ asx -y
Fig. 3.

7. Proof of Lemma 4
Let | Q) ={z;2€Q,|x—a,|>6>0,(h=1,2,...,m)}, (1.1)
where () is the upper half-plane. Then ‘
| A(@)| = 6™, |arg A(@)| <y for =z€Q(d), (7.2)

where y is a positive constant. By using the Borel-Ritt Theorem [11; p. 47] we can con-
struct a function g(u,x) of two complex variables (u,x) so that
(i) g is holomorphic for
z€QO), |u|>uy>0, |argu|<y+2m; (7.3)

(ii) g satisfies the inequalities

N
g(u, x) —nglu‘"pn(x) <Ey(0)|u|™"71,

<Ey(8)|ul V2 (7.4)

dg(u, x)/ou — 721( —n)u" " p, ()

<Ey(d) |u|_N—1

3g(@, x) /0% — él u " pn()

for (7.3) and N=1,2, ..., where Ey are positive constants depending of 4.
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Put gz, A) =g ((— 1)1 AA(x), 2). (7.5)
Then we can prove the following lemma.
LeEMMA 8. The function q(x,A) is holomorphic in (z,2) for
- 2€Q8), |A|Zu 6™, |arg A| <6y(&). (7.6)

Moreover, q satisfies the inegualities

(@, A) — Z [(— 1) AA@)] " pa(@)| < By(8) |[AA()|7"?

7.7
0@ D= S = 1 2A@T™ (— 10 pa o) + 3 )| < Ba(d) [2A@] "
for (1.6) and N=1,2,..., where By are positive constants depending on 6.

In fact, if (z,4) is in the region (7.6), then the inequalities (7.2) imply that
|AA@)|>u, and |arg [(—1)*** 1A(@)]| <y +27.
Hence ¢ is holomorphic for (7.6). The first inequality of (7.7) is then derived from
the first inequality of (7.4). On the other hand, the formula
¢ (x, 1) = (= 1) A4’ (%) 0g(( — 1)* T  AA(), x)/ou + og(( — 1) A A(), x)/ox

and the second and the third inequalities of (7.4) imply the second inequality of (7.7).

Here we used the identity
A (z) =} A@) R(2)

and the fact that |R(z)| is bounded in Q(6).
Let us transform the Riccati equation (2.3) by

w=(—1)""11A(x) + } B(z) + g(z, 1) + AA@) v. (7.8)

Then we have v =Lz, A) + ((— 1) 2AA(x) — 2 g(x, A))v — AA(z) v%, (7.9)
where L(z,2)= ~ (AA(= ))_1 [¢'(z,4) +{ R (z)*— 1 R'(2)

2((— 1" AA(x) + § B(2)) g(z, A+ q(=, 2% (7.10)

By using Lemma 8 and the definitions (2.9) and (2.10) of the functions p,(x), we can

prove that
| Lz, 2)| < Hy(3) | AAR=)| Y (N=1,2,...) (7.11)

for (7.6), where H, are positive constants depending on 4.
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For each & in I5, U lsx-y U Ipp-yy there exists a positive constant §(£) such that
the curve Cy (&) is contained in Q(5(£)). We have

2,(8; E) EQ(A(E)) for 0<s< + oo, (7.12)
Hence we have

[L(ze(s; §), )| < Hy(8(8)| Az (55 8)) 7" (N=1,2,...) (7.13)

for 0<s< + oo and |A|>%,8(&)"*™, and |arg A| <6, (&).

Assume that a function
v=u(s; A; &) (7.14)

satisfies the differential equation
dv/ds =i(s; &) [L(z, 1) + ((— 1) 2AA4(2) — 24(2, 1) v — AA(2) %], (7.15)
where z=2z,(s; £), and the inequalities
|o(s, 4; &)| < M, (&) [AAG (s )Y (N =1,2,...) (7.16)
hold for C0<s< +oo, |A|=My(E), larg A|<6,(8), (7.17)
where My are positive constants depending on & Then
Wr,1 (8, 2 €)= (— 1) AA(zi (53 ) — % Rlzx(s; 8) + (i (s; £), A) + AA(z(s; £) v(s, 438)

satisfies all the conditions of Lemma 4. Hence we shall construct a solution (7.14) of
(7.15) which satisfies the conditions (7.16). To do this let us reduce the equation

(7.15) to an integral equation
v(s, 4; €)

= fs [L(z, A) — 2 g(z, 4) v(0, 4; &) — AA(2) v(0, 4; £)*] exp {( —1)22 f: Az)z dr} tdo, (7.18)

+o0

where z=2,(0;&), z=2,(1;£) We shall solve this integral equation using successive
approximations.
Let us denote by F(s, 4,v; &) the right-hand member of (7.18). Then successive

approximations are defined by

vo(3,56)=0 (0<s< +oo), } 719

vn(sﬁl; S)ZF(S: A:vn~1; E) (n>1)‘

In order to prove that the approximations are well defined for (7.17) if M, is suf-
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ficiently large, we remark that the real part of (—l)klj': A(z) #ds is nondecreasing,
where z=z,(s; £). Hence

<1 for s<o< +oo. (7.20)

exp {( —1)k24 J: Az) éd‘r}

On the other hand, we have
|Z(z, )| < Hy+2(8(8)) [AA@) |2 (7.21)
and la(z, )] <|p1(2)] 12A4()| " + By (8(5)) | AA(2)| 2 (7.22)
for 0<s< + oo and |A|>ud(&)7 ™, |arg A|<6,(£). Therefore, if |
(s, 4; &) < K |AA((s; 6) | (7.23)

for (7.17) and some positive number K and some positive integer N >4, we have

+

|P(s, 4,05 8)| < f [(Hs2(8)+2 B, (8) K) | 1A 2

§

+2K |p;(2)| |[AAGR) [TV + K2|AA(R) |2V 2| dr, (7.24)

where z=z(t; &).

Notice that, for large values of s, we have
2 (8; §) =20 8 exp (2kzi/(m +2)),
where z, is some constant. Hence, for large values of s, we get
s <|u(s; &) < 2s.
On the other hand, if x€Q and |z| is sufficiently large, we have
3 lalt” <|A)] < 2]alt™.
Moreover, (2.6) and (2.9) imply that

p1 (@) = 0@™®)

as z tends to oo, Thus, we can conclude that F is well defined for (7.17). Further-
more, if M, is sufficiently large, the function F satisfies. the inequality

| F(s, 2, v; &) < K | AAGzic(s; &)Y (7.25)

for (7.17). Now fix N and K, and choose M, Then the successive approximations

v, can be well defined for (7.17) and they satisfy the inequalities
17 — 672909 Acta mathematica 119. Tmprimé le 9 février 1968.
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|va (8, 4; &)| < K |AA(zi(s; ENY (7.26)

for (7.17). The uniform convergence of the sequence {v,} can be proved in a similar
manner. Thus we get a solution (7.14) of (7.18) which satisfies the condition (7.16)
for a particular N. Now it is still necessary to prove that we can choose a constant
M, (&) independent of N. Since A(x)=0 in Q(d), this can be accomplished by choosing

My(&) in a suitable manner. This completes the proof of Lemma 4.

8. Proof of Theorem 1

In this section we shall evaluate the quantities f_.(x,4) and f ,(x,A) for each
fixed  in Ip; Uz UIng 1. The quantities f; and f; can be treated in the same
manner.

Assume that & is given in Ip Ulzx 3 Ulogoqy. For 0<s< +oo, |A|=M,y(8),
|arg A] <6,(&), let us define a function G(s,4;&) by

$

G=[f k(2 A) —wy, (8, A &) f-x(2,A)] exp {f

0

Wi,1(0, 45 &) % (0; &) do},

where z=2.(s; £). Then it is easily verified that dG/ds=0 except at points of dis-
continuity of Z,(s; £). Hence @ is piecewise constant with respect to s. Since & is
continuous in s, this function @ must be constant with respect to s. This constant

can be computed by letting s tend to + oo. First of all, from Lemma 2 we derive

lm z,(s; &) = oo, Hm arg z(s; &) =2nk/(m +2).

$—>+00 8->+ 00

Since f_j is subdominant for 4>0 in the sector (1.17-(-%))
|arg x — 27k /(m +2)| < x/(m +2),
then, if 6,(&)>0 is small and |arg A| <6y(&), we have

lim f_p(z,A)=0 and lim f ,(z,4)=0.

§=>+00 s—>+00

Furthermbre, if we use the asymptotic representation (1.15-(-k)) of f_, and the in-
equality (2.18) of Lemma 4, we can prove that

Jim w1 (3, 45 6) f-elew 1) =0

On the other hand, it is easily verified that
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lim arg [A(z) & (s; £)]=ka,
s>+00

since 2 (s; &)=z, +s exp (2aki/(m+2)) for large positive values of s, where z, is a cer-
tain constant. Thus we get

lim exp {f: Wy 1 (0, A; &) (03 &) do} =0.

§—>+00
Therefore, we have G(s, A; £) =0 identically. This in turn implies that
fl_k (Z, }.) - 'wk’l(s, },; 5) f—k (Z, ﬂ.) =0

for 0<s< +oo, |A|=M,(&), |argA|<6,(&), (8.1)

where z=12,(s; £). Consider now the function
(]

0

H(s, 2; &) =f (2, A) exp {— J wi,1(0, 4; &) 2 (0; &) dO’}-

It is easily verified that dH/ds=0 except at points of discontinuity of z(s; £). How-
ever H is continuous in s. Thus we conclude that H(s, 4; £) is independent of s. Let
us denote by C(4; &) the values of H. Then we get

f-r(zi(s; &), A) = C(4; &) exp ”0 Wy 1 (0, 4; &) 2 (03 &) da},

Flila(s; &), =C(4 &) w1 (8, 4; &) exp {fo wy,1 (0, A; &) % da}
for (8.1). By putting s=0, we get

f~k (E; /1) = O(Z" E):
fou (8, 1) =04, &) w1 (0, 4; &)

for |A]= My (), |arg A] <Ou(8). (8.2)

We can evaluate the quantity C(4; &) if we compute im,_, .., H(s, 4; £). To do this,
first of all, we shall rewrite the asymptotic representation (1.15-(-k)) of the function
f-x using the following identities;

(— 1Y AAn(x,a) (m=o0dd),
00" A (00* %, p* a) = 1 1

+g'1w"‘_:v+ 1

(— 1) AAn(z, ) + Ax {x } (m = even).
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(ew™®)7¥"  (m=odd),

(ow %) "% (4 =even).

Let y(4) ={
Then the function f_, has the asymptotic representation

foe=pA) z" ¥ {1+ O0(x )} exp {( - 1)"“2.f£ A, a) dt} (8.3)
0

uniformly on each compact set of the A-plane as x tends to infinity in the sector

arg o +arg «— (8.4)

2nk < 3n _s
(m+2) (m+2) ¥

where the path of integration should be taken in the sector (8.4). In deriving (8.3),
we used the identity

-k Aa z
ew "1™ 1
{ z+1 } P [l“kfo {t-i—g‘lw" vy 4

Secondly, we remark that
B(¢+)/B(2) =exp [*i fo R(z(o; €)) 2 (03 §) da] ;

where z=z,(s; £), and that the integral

L“am@kaama@

exists for (8.2).
Finally, we shall write the integral

LAm@mamaM
in the form

2x(5: 5)

s &
fo Az (0; &) (03 &) do= f Alt)di — fo Alr+)d,

0

where the first integral is taken along a path in the sector (8.4), and the second in-

tegral is taken along the real axis. Notice that

f: {An(t, a)— A} ds
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exists if the integral is taken along a path in the sector (8.4). Furthermore, it is
easily verified that this integral is equal to

J:w {An(r,0) — Az +)}dr

which is taken along the real axis. This completes the proof of Theorem 1 for f_,.

II1. Proof of Theorem 2
9. Wronskians

Hereafter we assume that m is even, and that
k=1,2,....4m. (9.1)
Let us fix a point &, in each interval I,, where h=1,2,...,m—1.

Lremma 9. If we denote by Ay(A) the Wronskian of fi, and f_i, i.e.

)= fi(x, 2)  f-r(=, A)I
e )
we find that Ak(A)=2ip" 2% exp {(— 1)** AL, + O™ 1)} (9.2)

as A tends to oo in the sector |arg A| <6, =min, 0,(&,), where
a

k-1 2
m=2z<—wa
§=1

22731

1P ()] dr+rl [A(x+)+ A(x—)]dt
0

+ fo w[(Am (v, 0) — A(r+)) + (An(z, @) — Az —))1d7, (9.3)
and V|P(7)|>0, and 7 is a real variable.

Remark. This lemma verifies that f,, and f_, are linearly independent for large
A in the sector |arg A|<6,.

In order to prove this lemma, let us put z=§&,_; in (4.2). Then we derive
D)= fu(& M) fn (B, D [(— 1) A{AE+) - AE—)}+0(R7Y] (94)
from Lemmas 4 and 5 and Theorem 1, where £ =& ,_;. Now, using Theorem 1, we get
fel&, ) f-1(&, 2)
=Cx(A) C_x(A)B(E—) " B(£+)  exp [( ~1)k+12 f:{A(r +)+ Alr—)}dr+ 0(/1“1)] (9.5)

and
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Cr(A) O (D)
~ o im 2ok o [(-1)“11 f "L An(r, @) — AT +)) + (An(x, a)—A(z—))}dr]. (9.6)
1

On the other hand, it is easily verified that, for £=§;,_;, we have

AE+H)= (=Y PE)
AE=)= (=1 (=) V[P®], 9.7)
BE—)BE+)=V[P@E)-
Thetefore B(£—) ' BE+)  (AE+)— AE—) =(— 1) 2.
Finally, since

At +)=A@x~)=A@x)= (- 1YV P7)| for v€1,,

and Alr+)=—A(r—) for T€I_4,
we find that
a, k-1 ay
[t + A -nae=2’s -1y [ VPG
is1

Q25+1
Hence

¢ a k-1 ay s
fo [A(T+)+A(T—)]d1=f (Alz+)+ Az —)ldr—2 21 (*U’f V| P(z)| dv.
0 i= Gz5+1

This completes the proof of Lemma 9.

Lemma 10. If we denote by D, ,(A) and Dy (1) the Wronskians of fx, fx+1 and
foky f-x—1 respectively, i.e.

fo  fenr

fi  frn

e for
Dy (A) = . D)= f,’° f
-k J-k-1

2

then we find that
Dk,1 (ﬂ) — 2ka—m/4wlak’ -Dk,z(j-) - 29w~k+ml4w—l<zk.

We shall compute Dy ,(A). The Wronskian Dy ,(4) is computed in the same

manner. To compute D, ,. we use the asymptotic representations (1.15) and the identity

1 1
ka)4m (ga)kx, kaa,) =(— 1 AA,, (x, @) + Ao {W - m} .

We get
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. {owfz+1\ I (gw"“x+ 1)‘“"
z+1 z+1

1
(__ 1)k+1( - 1)k+2

Dy,1 (A) = (@) " (" ™) 71"

z —>0o0

— ( — l)k 2Qw—m(2 k+1)/4 wl“"=2ga)khm“ wl“",

where x tends to infinity along the direction arg x= —2xk/m+2. Here we used the
identity ay.;= —a.

Lemma 11. Let

f—k(xi ﬂ') fk+1(x: j-)

Api(B)=) .
wal @A) fesr(w, A)

N

Then Ay (A)=Ji(A) Dy 1 () + By 1 (3), 9.8)
and Are3(2) = Dy 5 (A)/ T (A) + By o (), 9.9)
where Te(3) = (= 1F (™) exp { M, (A)}, (9.10)

k Oy
M (A)=(—1)**12i2 3 (—l)jf ) 1”P(T)ldf
i=1 a.
+o0 7 +o0
+ fo Qu.o (8, As Ear) i (55 Ei) ds — fo Qi1 (5, A &) 2 (8;82) ds,  (9.11)
and for Re A>M,, |ImA|<r, we have

IEk,n(A)I <I{l)

Gor

0 exp{—2}.f V| P(z)] dtH (n=1,2), (9.12)
ok

of Ko, My and 1ry are sufficiently large positive numbers.

We shall prove this lemma in a number of steps. First of all, we shall prove
the following lemma.

Lemma 11. We have the identity

(&2 A = Jic () fie(ar, A). (9.13)

In fact, by using Theorem 1, we get
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I3 + 00
C-x(A) B(E+) ' exp [(- 1)"“/1f A(r+)dr—f Qi1 (8,2 &) 2e(s3 &) dé‘]
f—k(§7 }')= 0 V]
fk(§7 }') 0
k

£ oo )
(A)B(E—)texp [(—1)"“1]0 A(r—)dr—Jo Qi.2(3, 45 &) Ll &) ds]

(9.14)
where £=§&;,. Furthermore,

+o0

f+°°[’4m(7’ a)— At +)]dr— fom[Am(r, a)—Alr—)ldr = — f [A(z+)— Az —)]dr.

0 0

On the other hand, it is easily seen that

Az +)=A@x—)=AR@) =(—1YV[P(z)| for €I,

and Al +)=— A —)=(—1Y"ti V[P@)| for T€Ily_4.
Hence L+°°[,4(T+)—,4(z—)] dr=2i S (- 1)f-lja2’_ll/| P()] dv.
2% j=1 LY

Notice also that
arg B(&y + ) =2k(n/4) =13 kn, arg B(éu—)= 2k("7t/4) = —3kn
Therefore B(fai—)/Bl&ze +)=(— 1)~

This completes the proof of Lemma 12.

Lemua 13. We have the inequality

. (9.15)

agy
|Q}c,1(0: A &) — Qi 2(0,4; §2k)| < K,|Aexp {"21L VlP(T)“dT}

where K, is a suitable positive constant.

In order to prove this lemma, we shall again compute the Wronskian A;(4) of
fr and f_, by putting x=§&y in (4.2). Since A(E+)=A(&—) for £€1y, we have

Ap(2) ={Qr.1(0, 4; &) — Qi (0, 4; £)} fie(&, 2) f1 (€, A), (9.16)

where &=2§&;,. Hence

Qk.l(O, 2.; fgk) - ak.z(o, l; §2k) = Ak(l)/fk(émcs }') f—k(§2k’ j')' (9’17)

On the other hand, from the formula (9.4) we derive
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1Qe.1(0, 2; &2) — Qi 2(0, 4 Ea)| < K |4

flc £2k l’l)f k(EZk 1 z’))
fc(€ans A) f-x(E2x, A)

= 4]

Sok—1
exp [(—l)"“lf (AHr+)+ A=) dr+0(1)] l,
S ’

where K is a suitable positive constant. Since
Alz+)=—Ar—) for €l _,

and Alx+)=Alr—)=(-1FV|P@x)| for €Iy,

we have

Eok—1 Ao . Qo
f (A(r+)+A<r~))dr=f (A<r+)+»4(r—))dr=<—1)'°2f5 VIP@)] dr.

Sog Sax

This completes the proof of Lemma 13.
Levma 14. We find ‘that
oo, ) =T (A) fi(ban, B) {1+ Fi(A)}, (9.18)

exp {—21 f:gkl/lP(r)l dr}

where |Fe(A)| <K,

and K, is a suitable positive constant.

In fact, we have

Fa@D=[(—1"2AE+) — 1 BE) + Qi1 (0, 4; 1 (D) fie (&, 2)

where £=&;,. Here we used Theorem 1 and Lemma 12. Then using A4(&sr + ) = A(&arx —)
and Lemma 13, we can prove (9.18) without .any difficulty.

Now we shall prove (9.8). The formula (9.9) can be proved in the same manner.
Letting = &5, in (4.5) and using Lemmas 12 and 14, we get

Ak,l (Z) = Jk(;“) ch.l{)») - Jk(l) f;(fzk, 3) fk+1 (5210 l) Fk(l)-

It is easily seen that Jy(A) is bounded with respect to A for ReA>M,, |[Im A| <7,.
On the other hand, Theorem 1 implies that

(&, ) frerr (G A ={(= 1" AAE —) = F B(E) + Que2 (0, & )} fu (€, A) frern (€, )
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and fiel€: 2) fev1€, 4) = Ce(R) Cierr (A) B(E — )% exp [0(A7")] = O(e™*"),

where £=§&;. This completes the proof of Lemma 11.

10. Proof of Theorem 2

We shall use the notations which were introduced in Section 4. We have already
shown that large positive eigenvalues of Problem (P) are zeros of the function (4.16).
Using Lemmas 10 and 11, and the formula (4.9), we find that

Dy () ., B D, , ) 2(Ul(m)
H’M)(—Do.uz))_"‘ (Do.c J‘D"-"(—JIDM T\ rw)

where | U1 ()] +]V1 (D] =0 (exp[—2).f:1/|—?(‘f_)|df])

for ReA>M,, |Im 2| <r,. In the same manner we have

Dy, . 1 ( D,,, ) 3(Uz(l))
H2H1(__D0.1) (J12) (Do,s = J1 Dy,1) (D2~ J1J3Dr.4) —J, Dy e V. (d)
2 29
where [Uy(A)|+|Va(2)|=0 ( > ‘exp [~2ZL V| P(D)| d'r])
for Re A>M,,|Im 4| <r,. In general, we have
D, 2(3-)) {%m_l }-1 im—1 ( Dym-1,2 )
H(A ’ = Ju(A Dy_1,0— Ji-1JeDi-1,
( )(“Do.1(7~) ’gl n(4) kI;Il( -1.2 ~ Jr1x Di-1,1) ~Jym-1Dymotn
‘ U m—l(}-)
+ *m( : ) (10.1
VAN !
im-1 Qg
where |U§m_1(l)l+[V*m_1(}.)|=0( > exp [— 21-‘; VIP@)| dr]) (10.2)
j=1 25

for Re 4> M,, [Im 1| <r,. Thus we have proved that almost all positive eigenvalues of
Problem (P) must salisfy the equation

m—1

)
(D}m.1D§m—1,2'J§m—1D}m~1.lD1}m.2) H (Dk-—l,2—Jk—leDk—l.1)=2'U(2-): (10.3)

k=1

where Jy(A)=1 and
Ui)=0{exp (—fpA) (10.4)
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as A tends to oo in the strip Re 1>0, |Im | <r,, the quantity f being a suitable posi-
tive constant.

Now by using Lemma 10 and the formula (9.10), we shall rewrite the equation

(10.3). In fact, we get
Dk,l(l) — w21¢k+2k—ml2Dk'2 (l).

Hence, if we use the identity .= — o, We get
Dy, (&) = 1 (A) Dy.1 (2) = Dy, (A) {1 +exp [ M, (1)1} (10.5)
and Dy 1.5(A) = Ti-1(A) Ji(A) D_1.1(A)
=Dy y1,s(A) {1 +exp [My_1(A) + M (D))} (=2,3,...,—1+m/2). (10.6)

In the same manner, if we use the identities

m+2)la*m=exp [27‘[1:}»!1%”,], ‘wm+2){m___(__1)§m,

Aym = ~&Xim-1, (w
we have Dy 1(A) Dym-1,2(2) = ym-1(A) Dypy_1,2(1) Dym,2(A)
=Dym,1(A) Dym_1,2(1) {l+exp[— 275@7«_1;»; +Mym-1(D)]}. (10.7)

Thus we have proved that almost all positive eigenvalues must satisfy the equation

{1+ exp [~ 2iky + My 11} (1 +exp OUL]) 11 (1 +exp (M s+ D) = V() (108)
where V() =O(exp (—BA)) (10.9)

as A tends to o in the strip Re A0, |Im A|<r,.
Finally, using the definitions (9.11} of the quantities 3,(4), we shall derive
Theorem 2. It is easily seen that

My ()= —wfa‘ VIP@)] dr+ f " Qua(e 25 £ B (53 £2) di— f Qur (6. 15 £2) s £2) s,
and

My (A)+ M (A)= —21},1f e V[P(-c)[ dr+ fo Qi-1.2(8, 4 E2.6-1) Co-1(8; & w-p) ds
- J‘o Qu-1.1(8, 4 Eak-1) Ze-1(8 Sz e-v) ds + fo Qu.2(8, 4; Ear) Ck (85 Ear) ds

_fo Qu.1(5, 4; E21) 2l s; §2k)d‘§ (k=2,3..., _1+m/2)°
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On the other hand, notice that
27ib1 4y mpz(a) = fA(t) dt,

where the integration should be taken along a large circle in the counterclockwise

V| P(z)| dr.

sense. Hence we have

27!’5b1+m/2

f [AGz—)—A(xr+)]dr= 2@2(—1 faz

m

Therefore
~ 27tz =270 (— 1) ™2 A by s ia (@) = 24( —1)1H ™2 Z _l)if V[P@)| dv
- ag;

Thus we have

-2 ﬂiﬂ.dmm + M—1+m/2 (;‘)

Q1 +0o0 .
= —Z’M.J‘ l’IP(T)I tlr+f a«}m—l,2(8,l; fm—2) Cgm—l(s; Em 2)d8
[ 0
+00
_‘f Q;m—l.l(s: }*; Em—z)z.;-m—l(s; Em—z) ds
—1+m/2, let T, be a circle which encircles the points

For each k=1,2,..., s
, @y lie outside the curve I'y. Then by using

@q, Qg ..., Ay, while the points agy.1, ...
Lemmas 4 and 5 and the definitions (3.4) and (3.5) of Q.1 and Q2 we find that

M, ()= —2iA V| d1:+ Z A" J‘ Az

M1 (A)+ My (A ——Mf VIP@] et 3 2 {f [(~ 1) A(@)] " p, () de
n=1 Ty
+ (—1)7»] [(— 1) A4 (x)]" pa (@) dx} (k=2,8,..., —1+m/2
Tr_a

—1)"2A(@)]7" pa(2) da

and
~ 2ty nt M 14 mia(A) = —2zlf VIP 7)| dv+ z A f
Am 1

=~ indicates an asymptotic expansion in powers of A

as A tends to oo, where =
the usual sense, and every integral should be taken in the counterclockwise sense

Then if we use (4.20), Theorem 2 can easily be proved. In fact
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A@) " p,(x)dx=0 for even n,
Ty

P N S

Finally we shall prove (4.20). Put

H, )= AA@) + > (AA@) 2™ pon1 ()

n=1

o0

and S(Z, A) = % R(.’L‘) + Z (Z )4(%))—27‘ Pen (x)

n=1

Then the formal series #+s is a formal solution of the Riccati equation (2.3). Since

¢ contains only odd powers of A, we get
¥ +2r5=0. (10.10)

This formal identity was obtained by N. Fréoman [5]. It can be written as

s=—23(log r). (10.11)

Hence we get the formal identity
f s(z,A)de=0 (mod i), (10.12)
143

which completes the proof of (4.20).

References

[1]. CoppingToN, E. A. & LEVINSON, N., Theory of ordinary differential equation. McGraw—
Hill, New York, 1955.

[2]. ErpEryr, A., KEnNEDY, M. & McGREGOR, J. L. Parabolic cylinder functions of large
order. J. Rational Mech. Anal., 3 (1954), 459-485.

[3]. Everarov, M. A. & FEDORJUK, M. V., Asymptotic solutions of the differential equa-
tions w"(z) —p(z, A) w(z)=0 as A— oo in the ccmplex z-plane. Uspehi Mat. Nauk,
21 (1966), 3-50.

[4]. FEporsUk, M. V., Asymptotics of the discrete spectrum of the operator w” (z) —lzp(w)w(w).
Maz. Sb., 68 (1965), 81-110.

[5]. FromaN, N., Outline of a general theory for higher order approximations of the JWKB-
type. Ark. Fys., 32 (1966), 541-548.

[6]. HEADING, J., An introduction to phase-integral methods. John Wiley, New York, 1962.



272

[71.

[8].
[9].

[10].

[11].

YASUTAKA SIBUYA

HsieH, P. F. & S18uya, Y., On the asymptotic integration of second order linear ordi-
nary differential equations with polynomial coefficients. J. Math. Anal. Appl., 16
(1966), 84-103.

KazariNorr, N. D., Asymptotic theory of second order differential equations with two
simple turning points. Arch. Rational Mech. Anal., 2 (1958), 129-150.

Laxcer, R. E., The asymptotic solutions of ordinary linear differential equations of the
second order with special reference to the Stokes’ phenomenon. Bull. Amer. Math.
Soc., 40 (1934), 545-582.

Lancer, R. E., The asymptotic solutions of a linear differential equation of the second
order with two turning points. Trans. Amer. Math. Soc., 90 (1959), 113-142.

Wasow, W., Asymptotic expansions for ordinary differential equations. John Wiley, New
York, 1965.

Recetved April 20, 1967



