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l .  Introduction 

Given a set E in the cartesian product X • Y of two spaces X and Y, a set U is said to 

uniformize E, if the projections z x E ,  zcz U of E and U through Y onto X coincide, and if, 

for each point x of g x E ,  the set 

{(x) • Y} n U (1) 

of points of U lying above x consists of a single point. The existence of such a uniformizing 

set U follows immediately from the axiom of choice. But, if X and ~Y are topological spaces, 

and E is, in some sense, topologically respectable, for example if E belongs to some Borel 

class, it is natural  to seek a uniformizing set U that  is equally respectable, or at  any  rate 

not much worse. Usually there is no way of controlling the topological respectability of 

sets obtained by  use of the axiom of choice, and quite different methods have to be used 

in obtaining topologically respectable uniformizing sets. 

The earlier work of N. Lusin (see [19]) on problems of this nature was confined to the 

case when, for each x in ~xE, the set (1) of points of E lying above x is at  most countable. 

The first general result seems to have been the result obtained independently by  N. Lusin 

[20] and by  W. Sierpinski [27] showing that,  when X and Y are Euclidean spaces and E is a 

Borel set in X • ]z, the uniformizing set U can be taken to be the complement of an analytic 

set. Following work by  N. Lusin and P. Novikoff [21] on the effective choice of a point 

from a complement of an analytic set defined by  a given sieve, M. Kond5 [15] showed that ,  

in the Euclidean case, the complement of an analytic set could be uniformized by a comple- 

ment  of an analytic set. Since any  Borel set in a Euclidean space is the complement of an 

analytic set, this provided a most satisfactory generalization of the result of Lusin and 

(1) The work  of one au thor  (R. C .W.)  was  suppor t ed  b y  the Nat ional  Research  Council of 

Canada. 
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Sierpinski. KondS's proof has been greatly simplified by Y. Sampei [26] and by Y. Suzuki 

[37]. 

A year before Kond6's  work S. Braun [1], by  a much simpler method, showed, in the 

Euclidean plane, tha t  any  closed set E can be uniformized by  a ~ $ - s e t ,  and tha t  any  

Y~-set can be uniformized by  a Os~-set: 

I t  is easy to extend the results of Lusin and Sierpinski and of Kond5 to the case when X 

and Y are complete separable metric spaces by  the following mapping technique. I f  X is a 

complete separabIe metric space there will be a continuous function / that  maps a relatively 

closed subset I o of the set I of irrational numbers between 0 and 1, regarded as a subset of 

the set R1, of real numbers, one-one onto X. Similarly there will be a continuous function 

g tha t  maps a relatively closed subset J0 of the set J of irrational numbers between 0 and 1, 

regarded as a subset of the set $1, of real numbers, one-one onto Y. Then the product map 

] • g maps I 0 • J0 continuously and one-one onto X • Y. Hence the inverse map/--1 X g--1 

maps Borel sets and complements of analytic sets in X and Y into Borel sets and comple- 

ments  of analytic sets in I 0 • J0, which remain Borel sets and complements of analytic sets 

in R 1 • S 1. So the results of Lusin and Sierpinski or of Kond5 can be applied in R 1 • $1; 

when the uniformizing set is intersected with I 0 • J0 and mapped by / • g back to X • Y 

there results in X • Y a uniformizing set that  is the complement Of an analytic set as 

required. These results will not hold, in general, when we merely take X and Y to be 

separable metric spaces; but it is easy to verify (by passing to the completions of the spaces) 

tha t  they hold, if X and Y are separable metric spaces tha t  are absolutely Borel relative 

to metric spaces. We recall that  a space is absolutely Bore], if it is a Borel set in every metric 

space in which it can be embedded; a necessary and sufficient condition for this is that  it be 

a Borel set in its completion under its metric. 

Although other authors, see for example [21, 36] have obtained results that  have some 

similarity with these results, the only further work, with which we are acquainted, tha t  lies 

in the main line of development is a generalization of Sierpinski's result by K.  Kunugui 

[17] and further developments due to M. Sion [28]. As Sion adopts a slightly different point 

of view, it will be convenient to defer consideration of his main work until we have stated 

some of our results. 

Although Braun's  work is based on a very simple idea we have not discovered any direct 

generalization in the literature. But  a parenthetic remark in Coroliory 4.2 t o  Theorem 4.1 

of Sion [28], suggests that  he had a generalization of Braun's  work covering the case  of a 

compact set in the cartesian product of two metric spaces. This suggestion is reinforced by  

the fact tha t  such a result can be obtained by  a minor development of his method. For sake 

of completeness we use his method to prove: 
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T~EOREM 1. Let X be any topological space. Let Y be any (;-compact metric space. Let O 

be the/amily o//inite unions o/di//erences o/closed sets in X • Y. Then a closed set in X • Y 

can be uni/ormized by a ~$-set, and a ~z-set in X • Y can be uni/ormized by a ~r 

Before proceeding further we need to introduce generalized analytic sets. The natural  

generalization of analytic sets to general }tausdorff spaces seems to have been first given 

by  V. E. ~nejder [33, 34, 35]; this was rediscovered and a considerable theory developed by  

G. Choquet [3, 4, 5]. I t  was further developed by  M. Sion [28, 29, 30, 31, 32] (in par t  inde- 

pendently of Choquet) and by  Z. Frollk [7, 8, 9, 10, 11, 12, 13]. Further  results are due to 

C. A. Rogers [23, 24], J .  D. Knowles and C. A. Rogers [14] and C. A. Rogers and R. C. 

Willmott [25]. For useful summaries see Z. Frolik [9] and D. W. Bressler and M. Sion [2]. 

We will use the following terminology in the introduction; further concepts Will be neces- 

sary later. 

I will denote the space of all infinite sequences or vectors 

of positive integers with the metric 

i = i 1, i S . . . .  

if i= i ,  
if i~ = ]~ for v < k, i~ =~ ]k. 

I f  n is a positive integer and i 6 I  the symbol i [n will denote the finite sequence il, ie ..... i n 

of the first n components of the vector i. We will use Illn or sometimes I( i ln  ) to denote the 

set of j in I with j ] n = i I n. These sets I(i ln ) are called Baire intervals. 

A function K from I to the space 3( of compact subsets of a t tausdorff  space X will be 

said to be semi-continuous, if, given any  i 0 in I and any open set G in X with K(i0)c G, 

there is a positive integer n=n(i0, G) such tha t  

K(II~ c G, 

i.e. such tha t  K(i) c G for i in I sufficiently close to i 0. 

A set A in a Hausdorff  space X will be said to be analytic if it is of the form A = K ( I )  

where K is a semi-continuous function from I to :~. A s e t B  in a Hausdorff  space will be 

said to be a descriptive Borel set if it is of the form B =K(I) ,  where K is a semi-continuous 

function from I to ~ with the property 

K(i) f] K(j) = 0  

whenever i # j  in I. A set A will be called a Souslin set if it is of the form 

A = F(I),  iv(i) = f~ ~v(iln), 
n - 1  
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where each set F(i [ n) is closed. A set B will be said to have a disjoint Souslin representation 

if it has the form 

B = F ( I ) ,  F ( i )  = f~ F(iln), 
n - 1  

where each set F ( i l n  ) is closed and 

F(i) N $ ' ( i )=  O, 

whenever i # j  in I. Such sets were introduced and studied by K. Kunugui in [17] under the 

name 'ensemble d'unicitd'. 

We remark tha t  is is possible to show tha t  any  analytic set is a Souslin set and that  any  

descriptive Borel set is a Borel set and has a disjoint Souslin representation. 

We can state our main result in terms of these concepts. 

TH~ORE~ 19. Let X be a topological space. Suppose that Y is a Hausdor// space with a 

representation Y = K ( I )  as a descriptive Borel set. Suppose that each open set in X • Y has a 

disjoint Souslin representation. Let E be the complement o /a  Souslin set in X • Y. Then there 

is a set U that is the complement o /a  Souslin set in X • Y and that satis/ies 

(a) U c  E, 
(b) u x U = ~ x  E, and 

(c) /or each x in z x  E the set 

~Y{~2(*) n u} 

is compact, and is contained in some set K(i)with i EI. 

In  this result the set U will not in general be a set uniformizing E, but  it may  well be 

a suitab]e substitute for such a set, more especially as a given space Y can often be frag- 

mented into a descriptive Borel representation :Y =K( I )  where the sets K(i), i EI are chosen 

to be small from some point of view. For an example of such a decomposition see Theorem 7 

below. Of course, we obtain a genuine uniformization in the case when each set K(i) contains 

at  most a single point; this can, naturally always be arranged when Y is a complete separ- 

able metric space (see Theorem 18 for a slight refinement of the result in this case). The 

condition that  each open set in X • Y has a disjoint Souslin representation arises natural ly 

in our proof, but  it is not a particularly convenient condition to verify. We remark tha t  it 

~ l l  be satisfied if: 

(a) each open set in X is an :~-set; 

(b) each open set in Y is an :~-set; and 

(e) either: 
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(%) X has a countable base for its topology, or 

(%) Y has a countable base for its topology, or 

(ca) each open set in X • :Y is the union of a countable sequence of rectangles 

U • V with U and V open. 

The proof will depend on the mapping technique we have already explained. This 

enables us to reduce the general theorem to the special case when Y = I .  The proof in this 

special case is closely modelled on Sampei 's  simplified version of tha t  of Kond5 (see Theo- 

rem 17). 

Till now we have been concerned with the problem of finding a 'respectable'  uniformi- 

zing set U for a given set E in X • Y. Associated with this set U is a function / defined on 

~x E mapping a point x of ~ x E  onto the unique point y in Y lying in the set 

3~y{3~xl(x) n u}. 

We say tha t  such a function uniformizes the set E. In  his work on uniformization M. Sion 

transfers his at tention from the problem of the 'respectability'  of U to that  of ]. He proves 

a theorem, which is in its general form very similar to Theorem 19 above, l ie  allows X 

and Y to be arbi trary l iausdorff  spaces, but insists on E being an analytic set. He proves 

the existence of a set U satisfying (a), (b) and the first par t  of (c) of Theorem 19, and with 

the property that,  if F is any  closed set of X • Y, the set ~zx(U fl F) belongs to the smallest 

system of sets ~ tha t  contains the analytic sets in X and is closed under the operations of 

countable union and set difference. By applying a second theorem he shows that,  provided 

the space Y has certain properties, he is able to define a uniformizing function / on ~x E 

with the property t h a t / - I ( V )  lies in the above system 7t/for each open V in Y. The condi- 

tions on Y are tha t  it should be a regular l iausdorff  space, with a base whose power is at 

most that  of the first uncountable cardinal, and tha t  every family of open sets should have 

a countable subfamily with the same cover. 

By using some of Sion's arguments in conjunction with a transfinite inductive applica- 

tion of Theorem 19 we obtain 

THEOREM 20. Let X be a topological space. Let Y be a Hausdor// space that is descriptive 

Borel, suppose that open sets in Y are :~.sets, that the topology has a base whose power is at 

most that o/ the/ irs t  uncountable cardinal and that every open set is a countable union o] base 

elements. Suppose that each open set in X • Y has a disjoint Souslin representation. Let E be 

the complement o /a  Souslin set in X • Y. Then there is a uni/ormizing /unction / / rom ~zz E 

to Y, with the property 

(x • e E 
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]or each x in ~xE,  and such that/or each open set V in Y the set ]-I[V] is the pro~ection on 

X o/the complement o / a  Souslin set in X • Y. 

Note tha t  the example V =  Y a n d / - l [ y ]  =z~xE shows tha t  it would be unreasonable 

to expec t / - I [V]  to satisfy any stronger condition. 

In  w 2 we give a summary  of definitions and notational conventions, in w 3 we prove 

the generalization (Theorem 1) of Braun's  theorems; the remaining sections do not depend 

on this section. In  w167 4-7 we develop some preliminary results. In  part icular  in w 4 we study 

sets tha t  have disjoint Souslin representations. In  w 5 we study some procedures for the 

decomposition of spaces with the property tha t  each open set has a disjoint Souslin repre- 

sentation. In  w 6 we study a rather  special mapping tha t  can in certain circumstances be 

found mapping a space X x Y into the space X x I; the results will be used to reduce the 

general Theorem 19 to the more special Theorem 17. In  w 7 we study sets defined in terms 

of sieves and make comparisons between different sieves; the results are vital for the sequel. 

In  w 8 we digress to use results of w 7 to prove a generalization of Lusin's second separation 

theorem due to Kunugui [17] and to obtain a form of the first separation principle due to 

Kond5 [16]. I n  w 9 we give the main proof, tha t  of the 'reduced' Theorem 17. In  w167 10 and l l  

we use the results of w 6 to establish the more general theorems 18 and 19. In  w 12 we use 

Theorem 19 together with Sion's methods to obtain the final Theorem 20 above. 

2. Definitions and notational conventions 

The notations and definitions are all s tated elsewhere in this paper  at  the places where 

they are first needed; they are repeated here for ease of reference. 

The space o/sequences of positive integers. We use lower case bold letters, typically the 

letter i, to denote a corresponding sequence, such as il, i2, ... of positive integers. We use I 

to denote the space of all such sequences i. When i E I and n is a positive integer we use 

i ln to denote the finite sequence il, i2 ..... i n formed by  truncating the sequencee il, i s . . . .  

after n terms. For each positive integer n we use Illn or I ( i ln  ) to denote the set of all ] in I 

with ] In  = i ln .  When we have occasion to use the space I in two different contexts within 

a" single argument we use J and H to denote copies of I and use similar notations JJIn. 

J(j In), Hhl~ and H(hln).  

Classes o/sets. I f  X is a topological space we use Q(X), :~(X), ~ (X)  and  ~(X)  to 

denote respectively its classes of open sets, closed sets, compact sets and set differences 

between open sets. When no ambiguity can arise we drop the '(X)'  from this notation. I f  

is any class of sets we use ~4r and 74~ to denote the class of all countable unions of sets of 
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~4 and the class of all countable intersections of sets of ~.  We use Souslin-~ to denote the 

class of all sets of the form 

H(I), H(i) = f~ g ( i l n  ), 
Tt~l 

where all sets H(iln ) belong to ~H for i E I and n a positive integer. 

We say that a set is a Souslin set in X if it belongs to the family Souslin- :~(X) and that  

a set is bi-Souslin if both it and its complement are Souslin. We say that  a set has a disjoint 

Souslin representation if it is of the form 

~(I), F(i) = S F(i[ n) 
n = l  

where all the sets F(i] n) are closed and F(i) N F(j) = O, whenever i, j are distinct sequences 

in I; such sets are called 'ensemble d'unicit6' in Kunugui [17]. 

A function K from I to the space ~(X)  of compact subsets of a ttausdorff space X 

will be called semi-continuous, if, given any i o in I and any open set G in X with K(io) c G, 

there is a positive integer n = n(i0, G) such that  

K(Ii, ln) ~ G. 

A function F from I to the space :~(X) of closed subsets of a topological space X will be 

called weakly semi-continuous if given any i o in I and any point e of X not in F(i0) there is 

an open set V containing e and a positive integer n with 

V N F(I~~ I n) = 0 .  

Both these semi-continuities are discussed in G. Choquet's paper [6]. 

A set in a Hausdorff space X will be said to be analytic if it is of the form K(I) where K 

is a semi-continuous function from I to ~(X). A set in a Hausdorff space X will be said to 

be descriptive Borel if it is of this form K(I) where K is a semi-continuous function from 

I to ~ (X)  that carries distinct elements of  I into disjoint compact sets of X. 

When we have a disjoint Souslin representation F(I) or a descriptive Borel set K(I) 

the disjoint sets {F(i)}l~i or {K(i))l~i will be called the fragments of the representations. 

Cartesian product spaces. When we study a cartesian product X • Y of two spaces we 

use Zx, Zr to denote the projection operators onto X and Y respectively, so that  

~x(x• ~r(x• 
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for x E X  and  yE Y. I f  C is a n y  set  in X x Y we use C Ix), for x E X ,  to  deno te  the  set  of y in Y 

wi th  x x y E C; a n d  we use C [y], for y E Y, to  denote  the  set of x in X with  x x y E C. W e  also 

define the  cyl inder  on a set E in X x Y to be the  set 

(~x E) x Y 

a n d  use cy E to denote  th is  cyl inder .  

A set  U will  be  sa id  to  uniformize  a set  E in  X x Y, if 

U c E ,  

~x U = ~xE ,  

a n d  U (x) contains  a single po in t  for each x in ~xE .  A funct ion  / will be sa id  to uniformize  

a set  E in X x Y, if / is def ined on ~x  E a n d  maps  ~x E into  Y so t h a t  

x x/(x) e E, 
for all  x in ~xE .  

Sieves. Le t  X be a n y  space and  let  Y be a n y  subset  (not necessar i ly  proper)  of the  

space of rea l  numbers .  A n y  set  in X x Y is called a sieve. The  set s i f ted b y  a sieve C in X x Y 

is the  set E of those  po in ts  x in X for which C (x) (which is a set of real  numbers)  conta ins  an  

infini te  s t r ic t ly  decreasing sequence. The complemen ta ry  set E = X \ E  will be called the  com- 

p l e m e n t a r y  set  de te rmined  b y  the  sieve. 

Ordinal/unctions T and a. I f  R is a n y  set  of real  numbers  we associa te  two ordinals  

TR a n d  a R  wi th  R, t ak ing  

~R = ~R = ~ ,  

where  ~ denotes  the  first  o rd ina l  wi th  uncoun tab le  cardinal ,  when R conta ins  an  inf ini te  

descending sequence, and  t ak ing  a R  = ~ T  + 1 a n d  TR to be the  ord ina l  s imilar  to R, when R 

is well-ordered.  

3. Brama's mliformi~ation theorems 

Our aim in th is  sect ion is to  p rove  Theorem 1. W e  first  in t roduce  some no ta t ion  a n d  

p rove  a lemma.  

W e  will call  a set Z in X x Y a cyl inder  para l le l  to  Y if i t  is of t he  form Z = P  x Y for 

some subset  P of X.  I f  E is a n y  set  in X • Y, we use c y E  to denote  the  cyl inder  (~xE) x Y. 

L E ~ M A  1. Let Y* be a compact subset o/ a Hausdor// space Y. Let J be a set o/the ]orm 

2 ' \Z  in X x Y with F closed and Z a closed cylinder parallel to Y. Then the sets 

J o = J f l  { X •  Y*}, 

J1 = J \ e y { J 0 } ,  
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are both o/the same/orm as J and 

(n~Zo) n (~J~) =0, 

(~xJo) U (~xJ1) = ~xJ. 

Proo/. Let J = F \ Z  with F closed and Z a closed cylinder parallel to Y. Then 

J0= {F\z} n {x • r*} : {F n (x  • y*)}\z 

is of the required form, as 2' fl (X x Y*) is closed. As Y is compact, it follows easily tha t  

•x{Y 0 (X x Y*)} is a closed set in X. Hence the set 

z~ = cy {F n ( x  • r*)} = [ ~ { F  n ( z  • r*)}] • r 

is a closed cylinder parallel to Y. Further  

cy Jo= cy [{F n (Z • r*)}\z] =z~\z. 

So J1 = J \ c y  Jo = {F \Z} \  {Z~\Z} = F \ {Z  U Z~}, 

and J1 has the required form. 

The formulae for the intersection and union of the projections of Jo and J1 follow 

immediately from the facts that  Jo is a subset of J and tha t  J1 = J \ c y  Jo. This proves the 

lemma. 

Proo/ o/ Theorem 1. Let E be a closed set in X • Y. As Y is (r-compact and metric, we 

can choose a sequence Y1, Y2, -.. of compact sub-sets of Y with the properties: 

(a) the diameter of Y~ tends to 0 as i tends to infinity; 

(b) each point of Y belongs to infinitely many  sets of the sequence. 

We define sets Do, D1, D 2 ... .  inductively by taking D o = E, 

D~+ 1 = [D~ ~ (X • Y~+I)] U [D~\ey {D~ A (X • :Y~+~)}] (2) 

for n = 0, 1, 2 . . . . .  I t  follows inductively, by  use of the lemma tha t  D n is the union of 2 n sets, 

each of the form F \ Z  with F closed and Z a closed cylinder parallel to Y, having disjoint 

projections with union 7exE. 

Write U = N Dn. 
~z0  
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Then each set D ,  belongs to O and U is a O~set. As 

gx  U ~ x D o  = ~xE,  

it will suffice to show that,  given any x in :~xE, there is a unique point y~ with x • y~E U. 

I f  x is any point of X and A is any set of X • Y we use A (x~ to denote the set of points 

y of Y with x •  So, if x is given in z x E ,  the set D(o ~) =E~ x) is closed and non-empty.  

Our aim is to show tha t  the sets D(~ x), n=O, 1, 2, ..., are closed, decreasing, non-empty,  

compact for n sufficiently large and with diameter tending to zero. This will ensure tha t  the 

set 

U(~)= [~ D(~ ~ 

consists of a single point, as required. 

I t  follows from the formula (2) tha t  

D<~) = D~ ~) D(~ ~) n+l A Y~+I, if N Y~+i~=O, 

/)(x) r)(~) =D(x) if ~ A Y n + i = ~ ,  ~ n + l  ~ n  

~cz) n = 0 ,  1, 2, ..., are closed, de- for n = 0, 1, 2 . . . . .  I t  follows immediately tha t  the sets ~,~ , 

creasing and non-empty. As the sequence ]71, Y2 ....  covers Y, it follows tha t  for some first 

integer n(x), the set D([0~)fi Y,(~)+I is non-empty.  This implies tha t  D(g ) is compact for 

n>~n(x) + 1. As each point of Y lies in infinitely many  sets of the sequence Y1, Y~ . . . . .  and 

as the diameters of these sets tend to zero, it follows tha t  the diameter of D(~ x) also tends 

to zero, This completes the proof of the case when E is closed. 

Now consider the case when E is an :~-set.  As Y is a-compact we can express E in the 

form E = U ~ 1  E, ,  where each set En is closed and each set ~rE~ is a subset of a compact 

set in Y. Then each set gxEn is closed (being effectively the projection of a closed set 

through a compact space). Let  Un be a On-set uniformizing E,,  for n = l ,  2 . . . . .  

Let  Un = N Dn~ 
~ = 1  

where each set Dnm belongs to O. I t  is clear tha t  the set 

U =  U{U~\cy (U U,)} 
n=l ~<~ 

uniformizes E. But  Un\ey ( U U~) = n {Dnm\,ey ( U E~)}. 
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As ~,  E, is closed for v < n, the set 

D~m\cy ( U E,) 
Y < } 2  

belongs to  ~ .  Hence U is a O$~-set as required. 

COROLLARY. I/each open set in X is a :~.set, the uni/ormizing set/or a closed set can be 

taken to be a ~-se t  and that/or a :~.set can be taken to be a ~ - s e t .  

Proo]. I n  this case each open set in X • Y is a countable union of open rectangles 

U • V. Then, as each open set U in X and  V in Y is an  :~-set ,  each open set in X • Y is an  

:~-set .  So each closed set and so each set of ~ is a Qs-set in X • Y. The result  follows. 

4. Sets with disjoint Souslln representations 

I n  this section we develop some of the properties of this class of sets, proving a little 

more than  will be essential in the sequel. 

We first prove a result, noted  by  Frollk [13], showing tha t  the Souslin sets can be 

characterised as images of I under  certain mappings.  We say tha t  a funct ion F from I to 

the space :~ of closed subsets of a space X is weakly semi-continuous if given any  i 0 in I and  

a n y  point  e of X not  in F(i0) there is an  open set V containing e and an  integer n so large 

tha t  V 0 F(Iloln) = 0 .  I n  terms of this definition we obtain Frol ik 's  result: 

T ~ 0 ~ E ~  2. A set A is a Souslin set i / a n d  only i] A = F ( I )  ]or some weakly semi. 

continuous map F / r o m  I to :~. A set B has a disjoint Souslin representation i / a n d  only i/ 

B = F ( I ) / o r  some weakly semi-continuous map F ]rom I to :~ that satis/ies the condition 

FCi) n F ( j )  = 

whenever i ~ j and i, j are in I. 

Proo/. Suppose A is a Souslin set. Then 

A = F(I),  F(i) = N F( i [n) ,  
n = l  

-~ th  all the sets F(i  [ n) closed. Now F(i) is closed for each i in I. So we need to prove tha t  F 

is weakly semi-continuous. Given i 0 in I and  e n o t  in 

F(~) = ~ F(~ In) 
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we can choose n o wi th  e ~ F( i  o ] no); 

and  e belongs to the  open set  V=i\F(io]no). Then  for all i wi th  i l n 0 = i o l n  o we have  

_F(i) c F(i[n0) = E(i  0 [no) = X \ V  

and  V fi F ( i ) = 0 .  Thus  F is weakly  semi-continuous. 

Now suppose t ha t  A =F*( I )  where F* is a weakly  semi-continuous m a p  f rom I to 5 .  

We  define the set _F(i]n) to be the  closure 

d F*(Ill~), 

for each i E I and  each n. To prove  tha t  A is Souslin i t  suffices to prove  t ha t  

•*(i) = ~ ~ ( i l ~ )  
n - 1  

for each i in I. Clearly 

F* (i) c [~ E* (Ii Is) c N cl F* (Ii ~) = N F( i ln ) .  
3 = 1  n ~ l  n ~ l  

Thus  it  suffices to prove  t h a t  

5 2'(il n) ~ F* (i). 
3 - - 1  

Suppose e ~ F*(i). Then we can choose an open set  V containing e and  an integer n o 

so t h a t  
V (~ ~*(h[~.)=~. 

Then  

As X \ V  is closed it follows t h a t  

F(il no) c X \  V 

so that n ~(iln) ~ X\V.  

Hence 

This proves the required result 

oo 

e~ f ' ) F ( i l n  ). 

oo 

F* ( i )  = I'1F(i In). 
3f f i l  

The corresponding result  for a set B with a disjoint Souslin representa t ion  follows in 

the  same way.  
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COROLLARY. The relationship between the Souslin representation A = F ( I ) ,  F ( i ) =  

N ~-z F( i  [ n) and the representation A = F*(I) in terms o/a  weakly semi-continuous/unction 

F* is provided by the /ormulae 

2"* (i) = F(i) ,  

F(i] n ) =  el F*(I~ I n). 

Our nex t  result  shows t h a t  the  intersection of a countable  sequence of sets with 

disjoint Souslin representat ions  is again  a set with a disjoint Souslin representat ion.  To s ta te  

the  result  in a refined form it is convenient  to introduce a fur ther  definition. I f  the  set B has 

a disjoint Souslin representa t ion  
oo 

B = F(I),  ~(i)  = fl  F( i  In), 
n = l  

with each F ( i l n  ) closed, we will call the  sets F(i) the  f ragments  of the  representat ion.  

THEOREM 3. Let B1, B~ . . . .  be sets having Souslin representations 

B~ = F (') (I), F (') (i) = f~ F (r) (i In), r = 1, 2 . . . .  , (3) 
n = l  

the sets F (r) (i [ n) being closed. Then the intersection B = N ~=1 Br has a Souslin representation 

B = F ( I ) ,  Y(i) = N F( i ln ) ,  (4) 
r t = l  

each F ( i l n  ) being closed, with the property that,/or each r >~ 1, each set F(i), i EI is contained 

in some set F(~)(j), j EI. Further i/ the representation (3) is disjoint, the representation (d) will 

be disjoint and, /or each r >~ 1, each non.empty/ragment F(i) meets just one/ragment o/ the 

representation (3). 

Proo/. Let  I (r) denote  a copy of I for r = l ,  2 . . . . .  Le t  ~ be one of the s tandard  homeo-  

morphisms  (see for example,  [19] or [18] mapp ing  I onto the cartesian produc t  

)~ I ('). 
r = l  

W e  m a y  write r = r r . . . ,  

where ~(r) maps  I onto  I (r) for  r = 1, 2 . . . . .  Define a funct ion F f rom I to :~ by  tak ing  

oo 

F(i)  = / 7  F (~) (r 
r - 1  
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Then ,  for  each  r, 

so t h a t  

C. A. ROGERS AND R. C. WILLMOTT 

F( I )  c F (" (I) = B .  

F ( I )  c B.  

Co n v e r se ly  if bEB, t h e n  bEBr, r =  1, 2 . . . . .  a n d  so, for  some  sequence  j(1), j(2) . . . . .  

b e F (" (j(r)). 
~ o w  we can  choose  i G I w i t h  

~(r)  (i) = j(r), r = 1, 2 . . . . .  

H e n c e  b G N F (r) (j(r)) = ~ F(r)(r (i)) = ~'(i) c E( I ) .  
r= l  r = l  

T h u s  B = F ( I ) .  

I t  is n o w  clear ,  b y  v i r t u e  of T h e o r e m  2, t h a t  i t  wi l l  suffice to  p r o v e  t h a t  t h e  f u n c t i o n  

is w e a k l y  s emi -con t inuous .  B y  v i r t u e  of T h e o r e m  2, we m a y  s u p p o s e  t h a t  t h e  f u n c t i o n s  

F (r) a r e  w e a k l y  s e m i c o n t i n u o u s  for  r = 1, 2 . . . . .  L e t  i o be  g i v e n  in  I a n d  s u p p o s e  t h a t  e is a 

p o i n t  n o t  in  

F(io) = N ~(r)(~(,  (i0)). 
r = l  

W e  can  c o n s e q u e n t l y  choose  a n  i n t ege r  r o so t h a t  e is n o t  in  

F(ro) (r ,)(i0)). 

B y  t h e  w e a k  s e m i - c o n t i n u i t y ,  we can  choose  a n  o p e n  se t  V a n d  a n  i n t ege r  m 0 such  t h a t  

eEV a n d  
V n F <r~ (V ~ = O 

for  a l l  i (r') in  I (r') w i t h  i(ro) ] mo = ~(r.) (io) I too. 

T h e n  we can  choose  n o so l a rge  t h a t  

$(~~ (i) [ m 0 = ~(r~ { mo ' 

for  a l l  i w i th  i I n o = i o }n o, T h e n  for  i in  I w i t h  i] n o = i o l n  o we  h a v e  

V N 2'(i)  c V N ~(ro) (r (i)) = O,  

as  ~(~.) (i) [ mo = ~(ro)(io) I m ~ = i<r~ I mo" 

T h u s  F is w e a k l y  s e m i - c o n t i n u o u s .  

W h e n  t h e  r e p r e s e n t a t i o n  (3) is d i s j o i n t  t h e  r e p r e s e n t a t i o n  

B = F ( I ) ,  ~'(i) = 17 _~<r) ($<~) (i)) 
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is disjoint (but is not  a Souslin representat ion) .  I t  follows t h a t  the  Souslin representa t ion  

provided  b y  Theorem 2 is a disjoint Souslin representat ion.  I t  is now clear t h a t  the  frag- 

ments  sat isfy our requirements .  

This proof  is only a minor  modificat ion of a s t andard  proof  t ha t  the intersect ion of a 

countable  sequence of analyt ic  sets is analytic.  

COROLLARY. Given i* in I and an integer r >~l, there is a ]* in I with the property that 

/or each positive n there is an integer m with 

Proo/. Take j* = r 

Then, for a n y  integer n~> 1, we can choose m so large t ha t  

for all i in Ii* Ira. Then  we have  

~(I~,lm) = U 
i e I  (l* ] m) 

as required. 

~(r) (i) l n = j .  I n 

F(i) = U ~ F (~) ($(~)(i)) c F (r) (Ij. in), 
iEI  (l* Ira) e = l  

T H E O R E ~  4. Let B be a descriptive Borel set o/ the /orm B = K ( I )  where K is a semi- 

continuous/unction/rom I to :K and the sets K(i), i EI are disjoint. Let E have a disjoint Souslin 

representation 

= F ( i )  = r ( i l n ) ,  
n = l  

the sets F ( i l n  ) being closed. Then B N E has a descriptive Borel representation B N E =L(I ) ,  L 

being a semi-continuous/unction/rom I to ~ ,  the sets L(i), i EI, being disjoint and each such set 

being o/the ]orm K(j)  N F ( h ) / o r  some j, h in I. 

Proo/. Let  J and  t I  be two copies of I. Le t  ~ be a homeomorph i sm mapp ing  I onto the  

cartesian produc t  J • t l .  Wri te  

r = j(i) • h(i) ,  

with j(i) E J, h(i) EH. Define 

L(i)  = K(j ( i ) )  N F(h( i ) ) .  

As in the  proof  of Theorem 3, it is clear t h a t  B N E =L(I )  and  t h a t  L maps  I into :KI So it 

remains  to prove  t h a t  L is semi-continuous.  
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Let  i 0 be given in I and suppose tha t  G is an  open set with 

L(io) c G. 

Then  K(j(io) ) N F(h(io))C G. 

So {K(i(i0))\G } N F(h(io)) = ~ .  

B y  the weak semi-continuity of F ,  for each point  x of K(j(i0))\G we can choose an  open set 

V(x) containing x and  an  integer n(x) such tha t  

V(x) n F(h) = ~  

for all h with h I n(x) = h(io) ] n(x). 

As K(j(io))\G is compact  we can choose xl, x 2 . . . . .  xr so tha t  

K(j(io))\G c tJ V(x~). (5) 

We can then choose m so large tha t  

h(i)In(xQ) =h(io)]n(xQ), Q = 1, 2 .. . . .  r, 

for all i with i Ira =iolm. This ensures t ha t  

b V(xQ) N F(h(i)) = O, 
Q=I 

for all i in I with i I m = i o Im. B y  (5) and the semicontinuity of K we can choose m'  so tha t  

K(](i)) ~ G U { U V(xQ)) 
Q=I 

for all i in I with i I m'=i0  Ira'. Taking m"= max (m, m'} we have 

L(i) = K(j (i)) N F(h(i)) c G, 

for all i in I with i Ira" =i0]m". This proves the semi-continuity as required. 

COROLLARY. Given i* in I there are j* in J and h* in H with the property that/or each 

n ~ l there is an m >~l with 

L(Ii, Ira) c K(Jj, Ix) N F(Hh* Ix). 

Proo[. The  corollary follows b y  the a rgument  used to prove the Corollary to  Theorem 3. 

To justify one of the assertions of the In t roduc t ion  we need 
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THEOREM 5. I/each open set in a space is an :~-set then each open set in the space has a 

disjoint Souslin representation. 

Proo/. This theorem is merely a restatement of the result tha t  is actually proved in the 

first two paragraphs of Lemma 2 of Rogers [24]. 

We conclude this section on sets with disjoint Souslin representations with the remark 

that,  if each open set of X is a Souslin set, then each set A with a disjoint Souslin representa- 

tion is bi-Souslin in the sense tha t  both A and X \ A  are Souslin. This result, due to K. 

Kunugui [17], is established later as a Corollary to Theorem 16. 

5. Fragmentat ion o f  a space 

In  this section we consider spaces with the property tha t  each open set has a disjoint 

Souslin representation. We show tha t  such a space has disjoint Souslin representations 

whose fragments can be made sufficiently 'small '  to ensure tha t  certain sets are unions of 

fragments. 

T~EOREM 6. Suppose that each open set in a toploqical space X has a disjoint Souslin 

representation. Let F1, F~ ....  be a countable sequence o/ closed sets in X .  Then X has a disjoint 

Souslin representation 

x = E(~) ,  F ( i )  = [~ F ( i l n ) ,  
n = l  

with the sets F(i[n) all closed, such that each set Fr, r = 1, 2, ..., is the union o/ those /ragments 

F(i) that it meets. 

Proo/. For each r, the set X \ F r  has a disjoint Souslin representation 

X\FT=E~(I ) ,  E r ( i )=  ~ E~(i[n), 

with the sets E r (iln) closed. Define closed sets F* (iln) by  taking 

F* 0)=F*(1 ,  1)=F* (1,1, 1)~ ... =FT, 

~* (~,/i, ix, . . . ,  in) = ~ ( i ,  is . . . . .  in), 

and F* (iln) ~ O 

for all other finite vectors i ln. Write 

F~* (i) = ~ F* 0In). 

2 -- 682901 Acta mathematica 120. I m p r i m ~  le 8 avr i l  1968 
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I t  follows immediately tha t  

X = F* (I), F* (i) = N F* (iln), 

gives a disjoint Souslin representation of the space X. Further  in this representation, de- 

pending on r~ both 2'~ and X~F~ are unions of fragments. 

The required result now follows immediately from Theorem 3 with B 1 = B 2 . . . . .  X .  

o r  

COROLLARY. For each i in I and each r >~ 1 there is an integer n with either 

F(Ilj n) c F~ 

F(Iil n) c X\F~. 

Proo/. This follows from the Corollary to Theorem 3 a n d  the choice of the sets F*(i I n) 

in the proof  of Theorem 6. 

Theorem 6 generalizes to yield 

THEOREM 7. Suppose that each open set in a topological space X has a disjoint Souslin 

representation. Let A ~, A2, be a countable sequence o/sets that are either Souslin sets or comple- 

ments o /Sous l in  sets. Then X has a disjoint Souslin representation 

X = F(I), F(i) = f~ F(i ln) ,  
n = l  

with the sets F(i ] n) all closed, such that each set A ~ is the union o/those o/the/ragments F(i) that 

it meets. 

Proo/. We first remark that  given a disjoint Souslin representation of X, a set will be 

the union of those fragments tha t  it meets if and only if its complement is the union of 

those fragments tha t  it (the complement) meets. Hence we may  suppose that  each of the 

sets A1, A2, ... is a Souslin set. 

Suppose A r = F r ( I ) ,  r r ( i ) =  N F~(iln), 
r~=l 

the sets Fr( i ln  ) being closed. Let  F1, F 2 ... .  be an enumeration of this countable system of 

closed sets 

Fr(iln), r = 1, 2, ..., iCI, n = 1, 2, .... (6) 

r162 

Let X = F ( I ) ,  F ( i )=  f ' lF(i]n),  
rt--1 
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with  F(i]  n) closed, be  the  disjoint Souslin representa t ion  provided  b y  Theorem 6, Then  each 

set  of the  sys tem (6) is the  union of those  f ragments  t h a t  it meets .  Hence  each set  

F,(i),  iEI ,  r = l ,  2 . . . . .  

is the union of those f ragments  t h a t  it meets .  Hence  each set  A r is the  union of those frag- 

ments  t h a t  it meets.  

C o R 0 I ~  AR Y. I n  this construction each o/the closed sets F involved in the Souslin represen- 

tation o] the Souslin sets o] the sequence or in the Sonslin representations o] the complements o~ 

the sets o/ the sequence that are complements o/ Souslin sets (i.e. the sets Fr(i,] n)) ha~e the pro- 

perty that/or each i in  I there is an n >~ 1 with either 

or /~(Iil n) ~X\_F.  

Proo]. This follows b y  the  corollary to Theorem 6. 

6. A mapping from X x Y to X x I 

I n  this section we discuss circumstances when a certain m a p  can be set up  f rom X x Y 

to X x I wi th  the  p rope r ty  t h a t  it and  its inverse t ake  certain Souslin Sets into Souslin sets .  

Clearly such a result  is po tent ia l ly  useful in reducing T h e o r e m  19 to Theorem 17, we  

discuss this in more  detail  in some remarks  af ter  we have  s ta ted  

T ~ , o ~ ] ~  8. Let Y be a descriptive Borel space o~ the /orm Y = K ( J )  where K is semi.  

cont inuous/ tom J to ~: (Y) and the sets K(j),  j CJ  are disjoint. Suppose that the space X • Y 

has a disjoint Sonslin representation 
o r  

X • Y =  F(I) ,  F(i)  = n F(i{n),  
n = l  

the sets F( i [n)  being closed. Suppose that /or  each i in I there is a j in J such that /or  each 

integer m >~ 1 there is an integer n with 

Let the map oo: X • Y - + X  • I be defined by 

m@ x y) = x •  

where i = i ( x  xy)  is the unique i in I with x x y 6  F(i) 
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I / A  is a closed set in X x Y that is the union o/those/ragments F(i) that it meets, then ~oA 

is closed in X x I. 

I f  A is a Souslin set in X x Y with a representation 

A=A(I), A(i)= I~ A(iln), 
n = l  

the sets A(iln ) being such closed sets (that are the unions o/those/ragments F(i) that they meet), 

then ~oA is a Souslin set in X • I. 

Further, i / B  in X • I is Souslin, then co-l B is Souslin in X • Y. 

Remarks. Our plans for the reduction of Theorem 19 about X x Y to the more special 

Theorem 17 about  X x I should now be becoming clearer. We shall be able to apply Theorem 

8 to the situation of Theorem 19 provided we can introduce an appropriate disjoint Souslin 

representation for X x Y. To obtain such a representation we need to apply Theorem 7 

and Theorem 4 and its Corollary. This explains why we need the condition on X x Y in 

Theorem 19 asserting tha t  each open set has a disjoint Souslin representation. 

The proof of this mapping theorem is based on a recent result [25] of ours on the projec- 

tion of Souslin sets. 

Proo/. Let A be a closed set in X x Y tha t  is the union of those fragments F(i) tha t  it 

meets. Consider any  point x x i* of X x I tha t  is not in eoA. Then 

A n ( {x)  • y )  n F(i*) : ~.  

We can choose j* in J with the property that,  for each m>~ 1, there is an integer n with 

F(I1, In) : X • K(Jj ,  Ira). 

B y  the semi-continuity of K we have 

~(j*)  = f)  ~ ( J j ,  fro) 

so tha t  F(i*) = ~ F(Ii ,  in) : N {X • K(Jj ,  I~)} = X • K(j*). 
n = l  m ~ l  

(8) 

As D = ({x} • Y) n F(i*) = ({x} • K(j*)) N F(i*) 

is the intersection of a compact set and a closed set, it is compact. By  (7) this compact set D 

is contained in the open set X \ A .  By the definition of the product topology, the set D is 

covered by  a union of open rectangles not meeting A. So D is covered by  a finite system, say 

Uo• ~ = 1 , 2  . . . . .  r, 
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with U 0 open in X and V o open in Y for ~ = 1, 2 . . . . .  r. I f  D 4:O, we have r ~> 1, and we may 

suppose that  none of the rectangles forming the covering are redundant. Then, taking 

U = h Uo, V= b VQ, 
0-1 ~=1 

we obtain open sets, U, V in X and Y satisfying the conditions 

x6U, 

D c U x V ,  

( U x  V) NA = 0 .  (9) 

When D={~, we satisfy these three conditions trivially by taking 

U=X,  V=O. 

:Now ({x} • K(j*))\(U • V) c ({x} • K(j*))\D 

=({x} • g(j*))\[({x} x Y) ;/F(i*)] 

c (X • Y)\F(i*).  

So E = ({x} xK(I*))\(U x V) 

is a compact set that  does not meet F(i*). Hence, by the weak semicontinuity of F, we can 

for each e in E choose open sets U(e) and V(e) in X and Y and an integer n(e) so that  

e e U(e) x g(e) ,  

{ U ( e )  x Y(e)} N Y ( I i * l n ( e ) ) = 0 .  

When the compact set E is non-empty we can reduce this cover of the separate points e of E 

to a non-redundant finite cover and as before we can construct open sets U*, V* in X, Y and 

choose an integer n* to ensure that  

x E U*, 

E c U* x V*, 

{U* x V*} Cl $'(h* In*)=0.  (I0) 

When E is empty we satisfy these conditions by taking 

U * = X ,  V*=O,  n * = l .  

We now have 

{x} x K(j*)c E U (U x V)c  (U x V) U (U* x V*). 
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Hence K( j*)c  V U V*, 

By the semi-continuity of K we can choose an integer M so that  

K ( J j . l ~ ) c  V U V*. 

Hence we can choose an integer N >~ n* so tha t  

F(II*IN) c X  • K(Jj - I~)  c / • (V U V*). (11) 

Now consider any  point p x i in the open set 

(U N U*) x Ii*lN 

in X x I containing the original point x x i*. We have 

A N ({p} x Y) N F(i) 

c A N [(U N U*) x Y] N F(II.  IN) 

c A  N [(U N U*) x { V U V* U ( Y \ ( V  U V*))}]N F(Ii*lN) 

c {A n (U x V)} U{(U* x V*) A E(Ii. In.)} U {(X • { Y\(V U V*)}) N F(Ii.  IN)} 

~ ,  

on using (9), (10) and (11). Thus the open set 

(U N U*) x I1"1~ 

does not meet coA. As x x i* was any  point, not in coA, this proves tha t  ~oA is closed~ 

We note, in particular, tha t  co(X x ]5) is a closed set in X x I. Now, as 

o~(F(i))~ X x (i}, 

the sets toE(i), i EI, 

are all disjoint and together form the closed set o)(X x Y). So as long as we take unions or 

intersections of sets that  are made up as unions of the fragments F(i), iEI  of X x Y, the 

mapping o~ will commute with the union and intersection operators. I t  follows tha t  if co is 

applied to any set A in X x Y tha t  has a Souslin representation 

oo 

A = A ( I ) ,  A ( i ) = n A ( i [ n ) ,  

the sets A(i] n) being closed sets tha t  are the unions of those fragments F(i) that  they meet, 

then ~oA has the Souslin representation 

~oA =A~ A~ A coA(iin) 
n--1 

the sets ~oA(i[n) being closed in X x'I. 
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Now suppose tha t  B is a Souslin set i n  X x I. We prove tha t  w - l B  is a Souslin set in 

X x Y. As eo(X x Y) is closed, the set B N w(X x Y)  is Souslin in X x I. Since 

eO-1B = co-liB n ~o(X x Y)], 

it is clear tha t  we m a y  suppose tha t  B c ~o(X x Y).  Using Theorem 3 and  its Corollary, we 

m a y  suppose tha t  B has a Souslin representat ion 

B = B ( I t ) ,  B ( h ) =  [ ' l B ( h l n  ), 
i t - - 1  

the sets B(h I n) being closed in X x I, with the proper ty  that ,  for each h* in It ,  there is an  

i(h*) in I with 

B(h*) c X • {i(h*) }, 

and for each positive n there is an  integer m with 

We define sets 

in X x Y for each h in I t .  Since 

it follows tha t  

B(I th-  I m) c X x II(h*)ln. 

A(h) = eo-'B(h) 

B(h) c X • {i(h)}, 

A(h) = ~o-lB(h) = F([(h)) N [ (~xB(h) )  x Y]. 

Thus A(h) is closed for each h in 1t. 

Since eo -1B = U A(h), 
h e l l  

(12) 

e E U x  Y, 

(U x. V) D F(ll(h,) I n) = O. 

B y  (12), we can choose m so tha t  

B ( H h .  Ira) = X X Ii(h*)l n. 

the required conclusion t h a t  co-lB i s  a Souslin set in X x Y will follow from Theorem 2, 

p rovided  we prove t h a t  A is a weakly semi-continuous function. 

Suppose h * 6 t t  and e~iA(h*). I f  e~,F(i(h*)), by  the weak semi-continuity of F ,  we can 

choose an  open rectangle U • V in X •  Y and an integer n>~l with 
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Then e E U x V 

and (V • V) N A(Hh, I,n) C (U x V) N {F(Ii(h,)l n) N [{rexB(Hh* I,n)} X Y]} = O. 

On the other hand, if e E F(i(h*)) then the point (:~x e) • i(h*) in X • I is not in B(h*), as 

otherwise e would be in A(h*). By the weak semi-continuity of B we can choose an open 

rectangle U x II(h*)l n and an m ~> 1, with 

e E U, i(h*) E II(h*)ln, 

(U • II(h*)ln ) N B(Hh, lm) = ~ .  (13) 

Here it is clear that  m may be chosen so large that  

B(Hh. Ira) ~ X • II(h*)ln. (14) 

Combining (13) and (14) U N (gxB(Hh* Ira))= O, 

so that  e E U x Y 

and (U • Y) N A(Hh.f~) =O .  

This shows that  the criterion for weak semi-continuity is satisfied in each case. The result 

follows. This completes the proof. 

7. Properties of sieves 

In  this section we develop those properties of sieves that  will be essential for our uni- 

formization theorems. Although the methods we use are very similar to the classical meth- 

ods we give the proofs in some detail to make the section accessible to those not already 

familiar with the subject. 

If  X is a space, a sieve is a set in a space X • Y where Y is a space ordered by a rela- 

t i on '  < '. The set sifted by the sieve C in X • Y is the set E of those points x in X for which 

the set C (x), of those points y in Y, with x • yEC, contains an infinite strictly decreasing 

sequence. The complementary set ~ determined by C is the set of those points x for which 

the set C (x) in Y is well-ordered by < .  We shall only consider such sieves when Y is taken 

to be either the real line R 1 or the set Q of rational numbers lying strictly between 0 and 1. 

Although we shall not change the accepted terminology, we have not found the analogy 

with the sieves used by gardeners and cooks very helpful. I t  may help to think in terms of a 

game to be played by the points x of X. At each of a countable sequence of turns each 

player x is forced to choose a point y of his set C (*) that  is strictly smaller than any of his 

previous choices or to loose if he can make no such choice. Then assuming that all players 

play to their best advantage, E is the set of winners and E is the set of loosers. 
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T ~ E O ~ E M  9 .1]  A is a Souslin set in X there is an ~ - s e t  C in X • Q whose sifted set is A .  

Proof. We m a y  suppose t h a t  

A = F ( I ) ,  F(i) = ~ F ( i l n  ) 
n = l  

the sets F ( i l n  ) being closed in X. We  suppose as we m a y  t h a t  each sequence F( i ln) ,  

n = 1, 2 . . . . .  is monotonic  decreasing. Define rat ionals  r(i I n) in Q b y  taking 

r ( i ]  n )  = 1 - 2 -~ '  - 2 - i ' - l '  - . . .  - 2 - ~ ' - ~ 2 -  . . . .  ~', 

for all i E I and  n >~ 1. Take  

c = U [F( i ln )  x {r(il n)}]. 
l l n  

Clearly C is an  :~ - se t  in X • Q. I t  is easy  to ver ify t ha t  A is the set sifted b y  C. 

COROLLARY. Let ~ be any class o/sets that is closed under/ ini te  intersections. I / A  is a 

Sous l in -~  set in X there is a set C o / t h e / o r m  

C = S H n •  
n = l  

with H~ e ~4 and q~ e Q/or  n = 1, 2 . . . . .  whose sifted set is A .  

Proof. This follows b y  the  same method.  

The nex t  result  is essentially due to Kunugu i  [17]; he took X to be a Tl-space and  used 

his 'project ion '  theorem 4 in place of our more  general  result  [25]. 

THEOREM 10. I]  C is a Souslin set in X x R 1 the set sifted by C is a Souslin set in X .  

Proof. As we can m a p  R1 b y  a continuous order preserving m a p  into the  open in terval  

(0, 1) it is clear t h a t  we m a y  suppose t ha t  C is contained in the cylinder 

Xx(0, 1). 

Let  r(1), r(2) . . . . .  

be an enumera t ion  of the  ra t ional  numbers  str ict ly between 0 and  1. Define a sys tem of half- 

open half-closed intervals  R( i ln  ) by  taking R( i ln  ) to be the  set  of all y with 

r(il) r(i2) ... r(i~) <~ y < r(il) r(i~) ... r(in_l) , 

with the na tura l  convent ion 

r(ii)r(i~) ... r(in_l) = 1 when  n = 1. 
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Wri te  A (i] n) = ~zx[C ;~ {X • R(i] n) }]. 

B y  [25] this  set A( i  In) is a Souslin set  in X.  Hence  

o~ 

A(I),  where A ( i ) =  f ] A ( i ] n ) ,  
n = l  

is a Sousl in-Sousl in  set and  so is a Sousiin set. Thus  i t  remains  to .show t h a t  A(I)  is the  set A 

s i f ted b y  C. 

I f  x E A we can choose first  an  infini te decreasing sequence Yl, Y2 . . . .  , in C (~ and  then  a 

sequence of posi t ive  integers il ,  is, ..., def ining a vec tor  i wi th  

ynER(i]n),  n = l , 2  . . . . .  (15) 

This ensures t h a t  ~ x E A (i I n), n = 1, 2, ..., (16) 

so t h a t  x C A ( i ) c A ( I ) .  On the  o ther  hand,  if xEA( I )  we can first  choose i in I w i t h  xEA(i )  

so t h a t  (16) holds and  then  choose poin ts  Yl, Y2 . . . .  in C (x) so t h a t  (15) holds.  T h e n  Yl, Y~ . . . .  

is s t r ic t ly  decreasing and  x C A.  This p roves  t h a t  A = A(I)  as required.  

Our nex t  resul t  is essent ia l ly  the  main  l emma t h a t  Lusin  [19] uses in the  proof  of his 

second separa t ion  principle.  W e  follow the  proof  given b y  K ura tow sk i  [18] r a t h e r  t h a n  t h a t  

of Lusin.  We recal l  t h a t  two sets of rea l  number s  are  sa id  to be s imilar  if the re  is a one-one 

order-preserving m a p  from one set onto  the  other .  

T H E 0 R E M 11. Let A and B be two sets in X • Q. Suppose that the sets 

(X •  and B 

are Souslin sets in X • Q. Then the set C o /  points x ~ in' X with 

A (x) 8imilar to a subset o / B  (~) 

is a Souslin set in X .  

Proo]. Le t  r(1), r(2) . . . .  and  s(1), s(2) . . . .  be enumera t ions  of the  po in ts  of Q. Le t  J be 

a copy of I. 

W i t h  each i in I we associate  the  sequence 

R(i): r(il) , r(i~) . . . . .  

and  with  each j in J we associa te  the  sequence 

S(j): s(j,), s @  . . . . .  
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We ask the nature of the  set T in I. x ' J  of  ~hoSe pairs i, j such ~that the sequences R(i) and 

S(j) are similar: Le t  T be the  set of all pairs i, j in I x J wi th  the properties: 

for all integers n, m with n @m we have either 

(a) r(in)<r(im) and s(jn)<S(jm), or 

(b) r(in)>r(im) and s(j~)>~(jm). 

Let  L be the set of those sets of positive integers i, i*~ j, j* with either 

(a) r(i)<r(i*) and s(j)<s(j*), or 

(b) r(i)>r(i*) and  s(j)>s(j*). 

For  each set of positive integers i, i*, j, j* let IIn, ~(i, i*, ], j*) denote the set of those points 

i x j  of I x J w i t h  

i~=i, ~m=i*, j,~=j, jm~j*. 

Then Its. ~(i, i*, j, j*) is a closed set in I x J. So the set 

U tI , ,~( i ,  i*, j, j*) 
i,i~*,j,J*~L 

is an :~o-set in I x J. So  the set 

T =  D O tI~.~(i,i*,j,j*) 
n~:m i . i * , j , j * e L  

is an :~r in I x J. 

Now consider the set U of points x x i in X x I for which A (~) c {R(i)}. Let  A trl denote 

the set of points x in X with x x rEA .  Then x x i  belongs to U, if and  only if, for all r in Q 

either 

x e X \ A  E~ 

r e  {R(i)}. o r  

Let  W~ be the set of i in I with 

r E (R(i)  }, 

i.e. the set of i i n  I w i t h  r(in) =r for some n. 

This set Wr is clearly a :~-set~ in i. 

Fur the r  U = [7 [ [{X\A Er:} x I] U [X x W,]]. 
r ~ Q  

As X \ A  ~rJ = [(X x Q)\A] CrJ, 

in  the obvious notat ion,  the set X \ A  ~rJ is a Souslin set in X and so U is a Souslin set in X x I. 
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Let  V be the set of points x • j in X x J with {S( j )}c  B (x). Let  B ES] denote the set of 

points x in X with x • s E B. Then x • j is in V, if and only if, for each positive integer m, 

there is an s in Q with 

x E B Ee] and  s(j~) = s. 

Let  Ysm be the set of all points  j of J with s(jm) =s. Then Ysm is a closed set in J, and  

v = u • n { X  • Ysm}l- 
m = l  s e Q  

As B ts] is a Souslin set in X,  for each s in Q, it follows tha t  V is a Souslin set in X x J. 

Now pu t  

f f = X •  N = U x J ,  

and  let ~ be the set of all points  x x i • j in X x I x J with 

x x j E V ,  i~I .  

This last set 19 is, of course, a Cartesian p roduc t  like • and  ~ ,  bu t  our nota t ion  does no t  

enable us to define it so simply. Then the set 

gn 'un 'v  
is a Souslin set in X • I • J. 

Now a point  x belongs to C if and only if there is an i in I and a j in J such that :  

(a) the sequences R(i) and  S(j) are similar; 

(b) A(X)c {R(i)); 

(c) {S( j )}c  B(% 

Hence C = :~x {ff N ?2 n ~9 } 

and  so is a Souslin set, as required by  [25] or by  [17]. 

We now associate an  ordinal ~R with each subset R of Q. Let  ~ be the first uncountable  

ordinal. I f  R contains an infinite descending sequence we write vR = ~ ,  otherwise R is well- 

ordered and we take vR to  be the ordinal similar to R. Here we allow 0 as the ordinal similar 

to  the e m p t y  set. Thus  either T R < ~  or ~ R = ~  and  R contains an  infinite descending 

sequence. We also define a R  by  

a R = ~ R + I ,  if v R < ~ ,  

a R = ~ R ,  if T R = ~ .  
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We recall  t h a t  a set  is said to  be bi-Sousl in if bo th  i t  and  i ts  complement  are Souslin 

sets. Clearly the  class of bi-Sousl in sets  is closed unde r  the  opera t ions  of complementa t ion ,  

countable  union and  countable  intersect ion.  This  class a lways  conta ins  the  e m p t y  set and  

the  whole space, b u t  i t  need no t  necessar i ly  conta in  a n y  o ther  set  (consider,  for example ,  

the  case of a n y  uncoun tab le  space where the  open sets a re  t a k e n  to  be the  complements  

of countable  sets). W e  prove  

THEOI~EM 12. Let A and B be bi-Souslin sets in X • Then the /our subsets o/ X 

de/ined respectively by the conditions: 

C: ~A (z) >~ v B  (x), 

D: vA(X) = vB(~), 

E: ~A (~) ~>aB (x), 

F:  aA (~) >~ v B (~), 

are Souslin sets. 

Proo/. B y  Theorem 11 the  set  G of po in ts  x wi th  

B (~) s imi lar  to  a subset  of A (z~ 

is a Souslin set. F u r t h e r  the  set  H of po in ts  s if ted b y  A is a Souslin set b y  Theorem 10. Hence  

the  set G U H is a Souslin set. W e  prove  t h a t  C = G  0 H. I f  xEC,  a n d  x(~H, t hen  TA (x) < ~ ,  so 

t h a t  
TB(~) ~<~A (~) <f~, 

which implies  t h a t  B (~) is necessar i ly  s imilar  to  an  ini t ia l  segment  of A (z) a n d  x fi G. Hence  

C c  G U H.  On the  o ther  hand,  if x ~ a  I.I H then,  when x E H  we have  

TB (z) <~f~ = vA (Z), 

and  when x E G, x CH we have  B (~) s imilar  to a subse t  of the  wel l -ordered set A (~) so t h a t  

I n  e i ther  case x E C. Thus  C = G U H and  is a Souslin set. 

S imi la r ly  the  set  C'  of x wi th  

vB{') >>- vA (~) 

is a Souslin set so t h a t  the  set D = C N C' is also a Sousfin set. 

Now let  B 1 be the  set  of all  po in ts  x x �89 wi th  x x q in B, a n d  wri te  

= B1 u E x  • 
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Then  for all  x in X we h a v e  

Thus  E is the  set of po in ts  x wi th  
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O. D(x) _ l:)(x) 

zA(,)  j> .n(z )  

and  so is a Souslin set, as B~ is c lear ly  bi-Sousl in  in X x Q. 

Defining Ai ,  A 2 in the  same w a y  we see t h a t  iv is the  set of poin ts  x wi th  

and  so is a Souslin set. 

COROLLARY. Let A be a bi-Souslin set in  X • I / T  is a countable ordinal, the set A~ 

el points x o / X  with 
TA m =T 

is a bi-Souslin set in  X .  

P r o @  I f  ~ is a countab le  ord ina l  we can choose a countab le  set T in Q s imilar  to  v. 

Then  the  set 
B = X •  

is a bi-Sousl in set in X • App ly ing  the  theorem to the  sets A a n d  B we see t h a t  A~ is a 

Souslin set. F u r t h e r  the  set  B~+I of all po in t s  x wi th  

zA(X)>~T+l 

is a Souslin set. So the  set U A~ = X\B~+I 

is a bi-Sousl in set, for  each countable  ord ina l  V. So the  set  

A~: [U A~]\[U {U &}], 

being the  difference of two bi-Sousl in sets, is a bi-Sousl in set. 

Our nex t  resul t  is one of the  key  l emmas  used in the  .proof of. the  un i formiza t ion  

theorem.  I t  is a genera l iza t ion  of l emmas  1 and  2 of Sampei ' s  pape r  [26]. I t s  re levance  can 

perhaps  be seen most  clear ly a t  th is  s tage b y  considering the  special  case when k = 1; in th is  

case i t  enables  us to  f ind in the  complement  of a Souslin set de te rmined  bY the  sieve A1 in 

X • I • Q a smal ler  complement ,  C1, of a Souslin set hav ing  the  s ame  pro jec t ion  on X.  

T H E 0 ~ ]~ ~ 13. Let Al ,  l = 1, 2 . . . . .  k, be b i-Souslin sieves in  X • I • Q. Let d o = X • I, and 

let C1 . . . . .  Ck be defined inductively, by writing 

~ t ( x ) =  min  TA~ ~• 
l e I  

xX |~GCI- i, 
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with the convention that a m i n i m u m  taken over 0 is given the value g2~ and by takinq Cz to be 

the .~et o /po in t s  x • i in dl_ 1 with 

~:AI ~• = ~ ( x )  < ~ ,  

al l /or  1 = 1, 2 . . . . .  k. Then C~ is the complement o/ a Souslin set in X • I. 

Proo/. Suppose t h a t  for some h wi th  1 ~< h ~< k we know t h a t  Ch-~ is the  complemen t  of a 

Souslin set Ch-1 in X • I. Now Ch is the  set of all  po in ts  x • i sa t i s fy ing  the  condi t ion  

x x i e C ~ _ l ,  

the  condi t ion (~• 

and  the  condi t ion t h a t  for  al l  j in J wi th  

X •  j E C h - I ,  

~ A ( x  x j) ~ ~ A ( x  x 1) we have  ~ h  ~ ~ h  �9 

:Now, given t h a t  x • i E Ch-~ the  condi t ion  t h a t  x • j E Ch-~ is equiva len t  to  the  condi t ion  

t h a t  x • ~j satisfies 
~AI x~j) = ~AI ~• l = 1, 2 . . . . .  h -  1. 

F u r t h e r ,  g iven t h a t  ~A(~ z~l) < ~ ,  

the  condi t ion  t h a t  x • j satisfies 

is equ iva len t  to  the  condi t ion  t h a t  x • j satisfies 

aA(hx• > v A  a<~• . 

Hence  Ca is the  set  of po in ts  x • i sa t is fying the  condi t ion  

x• 
the  condi t ion  TA(h ~• < ~ .  

and  the  condi t ion  t h a t  for all j in J wi th  

TA~ ~• = vA~ x• l = 1, 2 . . . .  , h -  1, 

we have  o'A~ x• > VA~ x'• 

The th i rd  condi t ion  here  is t h a t  for all  j in J we have  e i ther  

for some l wi th  1 < l < h - 1 or a A  h > . 
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Hence Ch is the complement  of the set Ch of points x • i satisfying either the condition 

x • iECh-1,  

or the condition ~A(~ ~• = ~ ,  

or the condition tha t  for some ] in J we have 

~AI~• = <~• . .  zA l , / = 1 , 2 ,  . , h - l ,  

and ~a(x • j) _< ~A(x • i) 
t ) J " [  h ~ b r l  h . 

Thus Ch = Ch-1 fi Ah  fi ~x• D, (17) 

where Ah is the set sifted by  the sieve An, and D is the set of points x • i x j in X • I x J with 

TAI x• = ~A~ ~• 1 = 1, 2 . . . . .  h -  1, 

(xxJ) ~ (xxi) and ~A h "cA h . 

Now let Ez, ~z, l ~ 1 ,  2, . . . ,  , h, be the sets of points x x i • 2 1 5  in X • 2 1 5 2 1 5  

satisfying the conditions 

Ez: x x j  x q E A z ,  i E I ,  

:~z: x x i x q E A z ,  j e J ,  

/ = 1 , 2  . . . .  ,h .  Then Ez and :~z are two different cartesian products  of Az with I and are 

bo th  bi-Souslin sets in X • I • J • Q, for l = 1, 2 . . . . .  h. Now D is the set of points x • i • j 

in X • I • J with the properties 

vEl  *•215 = z : ~ • 2 1 5  1 = 1, 2,  . . . ,  h -  1 ,  

By Theorem 12, the set D is a Souslin set in X • I • J. Hence by  [25], or by  [17], the set 

~ x •  

is a Souslin set in X • I. Now, it follows from (17) and our inductive hypothesis  t ha t  C h is a 

Souslin set in X • I. So the required result follows by  induction. 

Remark.  No very  special properties of the space I are used in this proof; the result 

would clearly hold with I replaced by  any  analyt ic  space as the results of [25] hold for such 

spaces. 
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8. Separatiom Theorems 

I n  this section we digress f rom the main  purpose of this paper  to use the results 

obtained in the last section to prove two separation theorems due to Kunugui  [17] and  

Kond5 [16] and to establish a result on sets having disjoint Souslin representations due to  

Kunugui  [17]. The first result [Kunugui]  generalizes Lusin 's  second separation principle, 

the proof follows his closely. As it is no more difficult, we state the result in terms of the  

class of Souslin-(bi-Souslin) sets (i.e. the class of sets obtained by  applying the Souslin 

operation to the bi-Souslin sets); we remark  that ,  if we know tha t  each open set of a space 

is a Souslin set, then every closed set is bi-Souslin, so tha t  every Souslin set is a Souslin- 

(bi-Souslin) set. 

T ~ E  OR]~M 14. Let A and B be Souslin-(bi-Souslin) sets. Then there are sets C, D that are 

complements of Souslin sets in X and that satis/y 

A \ B c C ,  B \ A c D ,  C a D = O .  

Proo/. By Theorem 9 we can construct  bi-Souslin sets A and B in X • Q so tha t  A and B 

are the sets sifted by  A and B respectively. 

B y  Theorem 12, the set C of points x with 

TA (x) > TB (~), (18) 

and the set D of points x with TB (~) > TA (~) (19) 

are complements of Souslin sets. Fur ther  for each x in A \ B  we have 

~A (x) = ~2 > ~B (~), 

so tha t  A \ B ~  C. Similarly B \ A c  D. Finally C N D = ~ )  as the conditions (18) and (19) are 

incompatible. 

We now prove KondS 's  result in [16] which is in some ways a substi tute for the first 

separation principle, by  use of the methods usually reserved for the proof of the second 

separation theorem. 

THEOREM 15. Let A1, A 2 . . . .  be a sequence o/pairwise disjoint Souslin-(bi-Souslin ) sets. 

Then there is a sequence B1, B 2 .... o/pairwise disjoint bi-Souslin sets with A~c B~, i = 1, 2, .... 

Proo], By Theorem 9, we can construct  bi-Souslin sets A~, i = 1, 2 . . . . .  in X • Q so t h a t  

A~ is the set sifted by  A~ for i = 1, 2 . . . . .  For  each i we define a set B~ by  taking B~ to  be the 

set of all points 
x x � 8 9  

3 -- 682901 Acta mathematica 120. I m p r i m ~  le 8 avr l l  1968 
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with  x x q E ,~ ,  

together  wi th  all points  x x {~ ~- 2 -j-2} 

wi th  x E X and ] a posit ive integer,  together  wi th  all points  

x • { 1  - 2 - k - 2 }  

with x E X  and k posit ive integer not  exceeding i. This ensures t ha t  A, is the set sif ted b y  

B~ as well as b y  A~ and t h a t  for each x in X 

~BF ) 

is of the  form a + i wi th  6 a l imit  ordinal, or is the  ordinal ~ .  

As the sets A~ are pairwise dis joint  we cannot  have  

with  i 4- j. I-Ience, when i 4= j, 

Le t  B, be defined to be the  set of all x in X with  

~B~ x) > T E  ~) for all j 4 = r 

Then,  in fact,  B, is the set of all x in X wif, h 

z ~  ~)>/~B~ x) fo rn l l  j4=i. 

I t  follows immedia te ly  t ha t  
B, DAi,  

and tha t  the sets Bi are pairwise disjoint. Fur ther ,  b y  Theorem 12, the sets B,  are bi-Souslin, 

as required. 

:By use of one of the s tandard  techniques t h a t  leads f rom the first separa t ion  theorem 

to a proof  t ha t  a continuous one-one image of the  irrat ionals in a metr ic  space is a B0re ! set, 

we use the last  theorem to p rove  

TI~EOl~E~ 16. SUppose that a set A in a space X haz a disjoint representation as a 

Soustin-(bi-Souslin) set. Then A is bi-Souslin itsel/. 

Proo]. We know tha t  A has  a representa t ion  

oo 
A ~A(I)~- A ( i ) = / ' )  A(i ]n) ,  

n 7 1  

where each set A( i ln  ) is a bi-Souslin set, and  where the  sets A(i), i E I  are all m u t u a l l y  

disjoint. 
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For  each fixed n ~> 1, the sys tem of sets 

A(Iil~), i E I ,  

form a countable  family  of disjoint Souslin-(bi-Souslin) sets. B y  Theorem 15 we can choose 

a corresponding fami ly  

B( i ln  ), iEI ,  

of mutua l ly  disjoint bi-Souslin sets wi th  

A(Iiln)CB(i]n),  for all iEI .  (20) 

We suppose such sets chosen for e a c h  n >~ 1. We define sets C( i i n ) induc t ive ly  b y  taking 

c(i] 0) = X ,  

and  C(i]n) = B(i]n)  N A(i in)  N C ( i ] n - 1 ) ,  (21) 

for n ~> 1. Then  for all i and  n the  set  C(i ] n) is a bi-Souslin set, and  so is the set 

C = ~ [ U C(iln)]. 
n = . l  i e I  

Thus  to prove  t ha t  A is a bi-Souslin set  it will suffice to prove  ~hat A = C. 

Now if aEA there is an  i with aEA( i in  ) for n = l ,  2, .... I t  foliows b y  induction,  using 

(20) and  (21) t h a t  aEC(iIn) for n = l ,  2 . . . . .  Hence  aEC. Thus  A c C .  On the other  hand,  

if c E C it follows f rom the propert ies  of disjointness and  inclusion of the  sets C(iin) t h a t  a 

sequence of integers il, i s . . . .  i s  de termined uniquely  by  the  condition 

cEC(iln), n =  1,2 . . . . .  

the integers being determined one a t  a t ime, i~ being fixed b y  the  relat ion c E C(iIn). Then  

c E A ( i ) c A .  Thus  C c A  and  C = A  as required. 

COROLLARY. (Kunugui, Theorem 11) I /each open set in X is a Souslin set then each 

set in X having a disjoint Souslin representation is a bi-Souslin set. 

9. Un i formiza t ion  on X x I 

We can now s ta te  our uniformizat ion for the  complement  of a Souslin set  in a space of 

the form X • I. After  the  first  stage, showing t h a t  a Souslin set in X • I can be expressed 

as a Sousl in-~ set the  proof  is closely modele d on Sampei ' s  [26] simplified form of KondS ' s  

proof. 
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be the complement o / a  Souslin set in X • I. 

Souslin set in X • I and that satisfies: 

(a) U c  E; 

(b) 7exU =z~xE; and 

(c) /or each x in zex E the set 

C. A. ROGERS A:ND R. C. WT_LLI~OTT 

T~EOREM 17. Suppose that each open set in a topological space X is a Souslin set. Let E 

Then there is a set U, that is a complement o / a  

(ix} xI) n u 
consists o] a single point. 

Proo]. Let  R denote the system of rectangles in X • I of the form F • J where F is 

closed in X and  J is a Baire interval in I. Our first aim is to show tha t  the Souslin set 

A = (X • I ) \ E  belongs to the system of Souslin- R sets. 

We have 
oo 

A = F(I),  F(i) = E(i) = N E(i In), 
~ 1  

the sets E(i [ n) being all closed in X • I. We m a y  fur ther  suppose t h a t  

F(i[ m) c F(i[ n) 

whenever i E I and m > n >~ 1. 

For  each n ~> 1, let Jn(1), Jn(2) .. . .  be an  enumerat ion of the Baire intervals 

Iiln, i E I ,  

of order n. 

We define a system of sets R( i In  ) of ~ b y  taking, for each i in I, 

R(i]  1) = • ( i [ 2 )  = X • Js( i , ) ,  

and  

R(i [2  n - 1) -- R( i [2  n) = C1 [z~x{F(i s, i 4 . . . .  , is a-z) N (X • J~n(is.-1))}] • J~. (is n-l), 

for  n = l ,  2 . . . . .  I t  is clear t h a t  these sets belong to  R so tha t  the  set 

B = U  n R ( i ] n )  
i r  n ~ l  

is a Souslin-~ set. Thus we will have achieved our first aim if we can show tha t  A = B. 

First  consider a ny  point  a • a in A.  Then  for some i* in I and some j* in I we have 

oo 
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oo 

J "* and {a} = f'l 2n (?n). 
n f f i l  

Write  1"*-"* "* "* i* U - - ~ 1 ~ $ 1 ~ 2 )  2~ . . . .  

Then, for each n/> 1 we have 
F/~* h* * a E  ~,~2, 4 , . . . , h 2 n - ~ ) ,  

a~ J~ ~(h2~-1), 

so tha t  a x a e N R(h*] n) c B. 

Thus A c B. 

Now suppose tha t  b x b 6 B. Then  there is an i* in I with 

b •  N R(i*]n). 
, nffil 

Suppose tha t  b • b does not  lie in the corresponding set 

pIi , " *  ?'2 n).  
nffil 

Then for some positive integer N we have 

b • k "* "* "* r F(~2, ~4, . . . ,  ~2~). 

As F(i~,  i*, i* �9 . . ,  2N) is closed there are open sets G and G in X and  I with b E G, b E G and 

F' i*  "* . "* ( 2,  $ 4 , ' '  , $2N) ~ ( G  X G)  = ~ .  

As b • k e N R(i* ] n) 
nffil 

we have b E N i* 
nffil 

Since J ~  ( i~-1)  is a Baire interval  of order 2n,  we can choose a positive integer M with 

b E J 2 M ( i ~ M _ l ) c  G. Wri te  L = m a x  { N +  1, M}. Then 

�9 * .* . ,  .* .* .* 
-F( t2 ,  '4  . . . .  , $2 L-2)  $2N) 

and, as J2L ( i 'L- l )  N J2M (i~M-~) ~ {b} 4 = 0 ,  

w e  have J2L  ( i ~ L - 1 )  ~ $2M ( i~M-1 )  ~ (~~ 

F "* ~ ~ "* Hence (~2, i*, , iuL-2) ~ [G • J2L (~2L-1)] = 0 ,  

�9 * .* .* 
s o  t ha t  [zz{F(*2, $4, . . - ,  i ~ L - 2 )  N ( X  • J2L (*2L-1) )} ]  N ( ~ = ~ .  
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Since b fi G, and  G is open, it follows tha t  

/ ~  e l [ ~ x { F ( ~ , ~ * ,  .. , ~L-~)  n ( Z x  ~* �9 "* J~L( L~-~))}], 

so t h a t  b • b ~ R(i* 12L), 

contrary  to our supposition. This shows tha t  b • b mus t  lie in the set 

F ( i * ,  . . . .  i* 2n ) 
n = l  

and  so mus t  lie in A. Hence B ~ A .  As we have already A ~  B it follows tha t  A = B  and  

tha t  A is a Sousl in-~ set. 

:Now the system ~ of rectangles of the' form F •  J w i t h  F closed in X and J a Baire 

interval in I is closed under  finite intersections. Hence, b y  the corollary to Theorem 9, 

we can choose a sequence of sets R1, Re, .'.. in R and  a sequence of points ql, q2 .. . .  in Q so 

t h a t  A is the set sifted by  the  sieve C in X • I • Q given by  

c = 0 Rn x {qn).  
a = l  

We need to modify  this sieve to ensure tha t  it has certain special properties. We form a 

sieve C' f rom C by  taking x • i • q to be in C' if either x • i • (2q) is in C or q has one of the  

values �89 ~, ~ . . . . .  1-2 -n, .... Then C' can be expressed in the same form 

with R~ E R and  qn Q for n = 1, 2 .. . .  and A is still the set sifted by  C'. This ensures t ha t  

for each x x i in X • I the set 

has infinitely m a n y  elements. 

Now, for each n, 

c '(x• = ~Q[V' n ( (x  •  • 

Rn = Fn x Jn 

for some closed set Fn in X and for some Baire interval Jn in In. Let  k(n) be the order of 

the B a k e  intervM Jn. Wri te  

k"(n) = n + max {k(r)}. 
l ~ r ~ n  

Then  Sn can be expressed as a disjoint union 
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where each set It~m is a Baire interval  of order ]c*(n). As the unions are disjoint,  it follows 

tha t  if K1, K S . . . . .  Kr are Baire intervals choosen from the system 

tInm, n , m = l , 2 ,  .... 

so t ha t  each pair has at  least one point  in common, then  they  must  be sets Hnm correspond- 

lng to different values of n and so at  least one is a Baire interval of order at  least r. Now the 

system of triples 
t 

Fn, tInm, qn, 

is countable; let -Fn, J~, qn, 

be an enumerat ion of these tr 'ples. P u t  

and 

Then 

n , m = l , 2 ,  . . . ,  

n == l ,  2, . . . ,  

R~ = F~ x J'~, n = l , 2  . . . .  , 

o o  t t  

c" U R. • {q;}. 
n = l  

C " = C ' ,  

so tha t  A remains the  set sifted by  C". All the sets 

[{x• • C" 

t t  H 
are infinite. Further ,  if Jn(1), Jn(2) . . . .  is any  subsequence of the sequence of Baire intervals, 

with the proper ty  tha t  

J~(~) N J~(j)4= O, / , ] , =  1,2 . . . . .  

then the order of J~o tends to infinity with i. These are the properties we will require. We 

shall in the remainder  of this proof work with this sieve C" but,  for convenience, we shall 

drop the double dashes (double primes). 

Since each open set in X is a Souslin set, the closed sets in X are bi-Souslin sets. Simi- 

larly each Baire interval  in I is a bi-Souslin set in I. Hence each set 

R,~ x {q,~} = .Fn x J,~ • ~q,~}, n = t ,  2 . . . . .  

is a bi-Souslin set in X x I x Q, so tha t  the sieve 

is a bi-Souslin set in X • I • Q. 

ot~ 

C = U IF ,  • J ,  x {q,}] (22) 
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W e  now in t roduce  two sequences of sieves. W e  wri te  

0o=C, 

a n d  we define Ca for n >/1, b y  t ak ing  

C,~= CF~ ( X  x J. xQ~),  (23) 

where  we t a k e  Qn to be the  set  of ra t iona ls  q in Q with  0 < q < qn- 

F o r  each n 1> 1 we t a k e  

Knm = Sn+m- l \  U Jl; m = 1, 2 . . . .  , (24)  
n ~ l < n + m - 1  

a n d  define Dn to  be the  set  of all  po in ts  of the  form x • i • q wi th  

1 1 1 
xEX, iEKn~,  q = ~ + ~ + . . . + ~ ,  

wi th  m>~l and  1 <~l<m. Then D= is a bi-Sousl in set in X • • andzrx• •  for all  

n >~ 1, as  the  sequence J~, J~ . . . .  covers I inf in i te ly  often. 

W e  define sets  H o, H 1, H~ . . . . .  

Eo, El,  E2 . . . . .  

dl,  d2, ..., in tegra l  va lued  funct ions  

on X, and  ord ina l  va lued  funct ions  

on X, induc t ive ly  as follows: 
70, 71, 73, " " ,  

g 0 = x •  

7= (x) = rain (~• . . ,  vC~ , n = 0 , 1 , 2 , .  �9 

Zxl~Hn 

E ~ = ( x  • i l x •  i E H ~  a n d  "rC~X• n=O, 1,2,  . . .  ; 

dn(x) = rain ~-r~(t• n = 1, 2 . . .  ," 
i d  

x •  

H,~={x • i l x  • i f i E n - 1  a n d  _~(x• ~ ,  =d~(x)}, 

Thi s  ensures t h a t  the  sequence 

Eo , / /1 ,  El ,  H~ . . . .  

n = l , 2 , . . . .  

(25) 

(26) 

(27) 

(2s) 
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is a non-increasing sequence of sets t ha t  coincides with the sequence of sets generated,  as 

in the definition in the s ta tement  of Theorem 13, f rom the sequence of sieves 

C = Co, D1, ~1, -D2 . . . . .  

As all these sieves are bi-Souslin sets, it follows from Theorem 13, tha t  all the sets 

E0, H1, E l ,  H~ . . . .  

are complements of Souslin sets. Hence the  set 

U =  [~E~ 
n=O 

is a complement  of a Souslin set. 

Our aim will be to show tha t  the set U defined in this way  is a set uniformizing E. As E 

is the complementary  set determined by  the sieve C = C o it is clear f rom (25) and  (26) t ha t  

E 0 c  E. Hence U c  E. So it will suffice to prove that ,  for each point  x of ~ z  E, the set 

U (x) is a one point  set. 

For  the remainder  of this proof we can regard x as a given point  of ~ x E .  Where  no 

confusion can arise we shall not  show explicitly the dependence of our parameters  on x. 

As x 6:~xE, it follows from (25) and (26) t ha t  E (~) 4 0 .  Once we know tha t  E ~) n-I :=~ for some 

n >-- l, the minimum 
rain TD(n *• 
i e |  

zxieEn-1 

is necessarily a t ta ined for some i in E ~x) H~ x) ~-1 so tha t  4 ~ on using (27) and (28). Given 

tha t  H(~ *) ~= {D for some n ~> 1, the min imum 

ra in  T~ (xxi) 
i e |  

XxIEH** 

is a countable ordinal, as H~ ) ~ E (*), and is necessarily a t ta ined for some i in H(~ ~), so tha t  

E(~) =~ O on using (25) and (26). I t  follows inductively tha t  all the sets 

j~(x) TAr(x) ~'~(x) T_ir(x) 

are non-empty .  

Now for each integer n>~ 1, the  set H(~ x) is the set of all i in ~n-x~(x) with 

"cD (~Xl) d,~ (x). 

By the construct ion of the sieve Dn the points i satisfying this condition, are those in the set 

n<~! <n-:-dn(x)- I 
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i .e .  those  in the  set" Ja(ni t h a t  lie in  none  of t h e s e t s  

J n ,  J n + l  . . . .  , J d ( n ) - l ,  

where we wri te  d(n) = n + dn(x ) - 1. 

Thus  for n >7 1, ~.(x) ~ rJ(x) ~ ~(~) ~ n  "-"~n ~-'-~n-1 N Jd(n), (29) 

H(~ "~) fl Jz = 0 ,  n <~ l < d (n) .  (30) 

Compar ing  (30) wi th  the  fo rmula  

T ~ " L n + I  - -  a"Ln+l  ( ~ J d ( n + l )  N 

which fol lows f rom (29), and  no t ing  t h a t  d ( n + l ) ~ n + l ,  w e  see t h a t  we mus t  have  

d ( n + l ) > ~ d ( n )  for n~>l .  

Now,  for a n y  posi t ive  in tegers  m, n, there  is an  in teger  I wi th  l >~ m, 1 >~ n, so t h a t  

Since (~) E~ 4 O th i s  implies  t h a t  

As d ( n ) ~  ~ ,  as n-~ ~ ,  we have  an  infini te  sequence of Bai re  in te rva ls  

Jd(~), n = 1, 2 . . . .  , (31) 

w i t h t h e  p r o p e r t y  t h a t  a n y  two have  a t  leas t  one po in t  in common.  B y  our or iginal  choice 

of the  sequence J~, J2 . . . . .  i t  follows t h a t  the  orders  o f  the  Baire  in te rva ls  of th is  sequence 

(31) t e n d  to inf ini ty.  Hence  the  set  

consists of a single point .  Le t  u = u(x) denote  th is  point .  As 

n =0 n =1 

i t  follows t h a t  e i ther  U (~) = (u(x)} or U (x) = 0 .  

I t  remains  to  p rove  t h a t  u(x) E U(~. To this  end  we first  s t u d y  the  set  of in tegers  d wi th  

u E J~, 

B y  the  def ini t ion of u we have  

uEJ~(~, n = l ,  2 . . . . .  
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Suppose we h a d  u E J m for some m >~ 1 no t  in t h e  sequence {d(n)}. Then w e  would have 

n* <~ d(n*) < m < d(n* + 1) 

f o r  some n* >~0, on writing d(O)=0.  As u E Jm and  u E J~(~) for all n, and  as the order of 

Ja~) tends to infinity as n-~ oo, we can choose n >1 n * §  1, so tha t  

Jd~n) c Jm. 

E<~ => ~ Ja<~) c J~, E(~ x) ~ ~<~) a z n * + l ,  Hence 

so tha t  

cont ra ry  to (30) as 

H<:2+1 N Jm # ~ ,  

n* -4-1 <<.m <d(n*-4-1). 

Thus we have u E Jm if, and only if m belongs to  the sequence {d(n)}. 

We now s tudy  the order relations between the rational numbers  qa(.), n = 1, 2 . . . .  and  

between the ordinals Ya<~)=Ya<,o(x), n = l ,  2, .... Suppose n, m are integers with 1 ~ n < m .  

Choose a point  i in E~)~). T h e n ,  using (29), 

u, .s..~ d (  m )  ~ .t~ m ~ J d ( m ) ,  

Similarly i E Ja<n). Also  i E E(0 x). Thus, us ing (25) and  (26) 

~C<= • l) = Y0 (z), 

T( '~ , ( x  x 1) va(~) = ya(~>(x), i E Ja<~)' 

T ( 7 , ( x  x 1) ~a(m) = Ya(m) (x), i ~ J~<m). 

Comparing the definitions of t h e  sieves C, Ca(~), Ca(m), see (22) and (23), it follows tha t  

Ya(=) ~<Y0, 

and  t h a t  ya(~<Ta(~), 7a~n)=~a(m) O r ~"a(nl>~'a(m) according as ffa(,)<qa(m), qa(n)=qa(m)or 

qaln) > qa(m). 

Hence sup ya<,) ~ Yo. 
n 

:Further, the order equivalence, implies t ha t  the set of all rationals qa(n), n = 1, 2, ... is well 

ordered. As this set coincides with C (x• it follows tha t  x • u belongs to E. 

Also, for each n>~l, the ordinal 
~ ( z  x u)  

T v d ( n )  
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is t he  ord ina l  of t he  set  of ra t ionals ,  of the  form f~(m~ wi th  q~(m~ <qd(~), a set which is order-  

i somorphic  to  the  set  of ordinals  of the  form 7a(m) wi th  7~(m) <TaCn)- Hence  

(~• < (33) "rCa(n) 7a(n), for  n = 1, 2, . . . .  

S imi la r ly  ~C ~x • u) 

is t he  ordinM of the  set of al l  r a t iona l s  of t he  form qa<.), so t h a t  

"~C ~• < s u p  7a(n) <70, (34) 

b y  (32). 

W e  now prove  induc t ive ly  t h a t  u belongs to  each set  of the  sequence 

E(o x), H(~ x), Z(1 x), H(~) 2 ~ . . . .  

Combining (25) and  (34) we have  

vO~ x• = t o  (z) < ~ ,  

u(x) for some n >~ 1, t hen  b y  the  def ini t ion (27) of dn(x) so t h a t  uEE(o ~) b y  (26). I f  u E ~ _ I  

W e  h a v e  

d~(z) < TD~ ~• 

and,  b y  the  cons t ruc t ion  of D~ and  the  resul t  u E Ja(.), we have  

~D([ ~') < d~ (x), 

so t h a t  ~D~ • = dn(x) 

a n d  u E H(z) 

:Now, if u E H(~ ~) for some n >~ 1, b y  the  def ini t ion (25) of 7 , (x) ,  

7~ (x) < ~c~ ~• 

I f  n is no t  a ,  m e m b e r  of t h e  sequence {d(m)} t hen  u q J~ and  so ~,n (x) = vC~ • u) = 0. I n  

th is  case u E E(~ ~) b y  {26). B u t  if n = d(m), for some m >~ 1, t hen  u E Ja(m) so t h a t  

~ d ( m )  

b y  (33). Since u E H(~ ), i t  fol lows f rom t h e  def ini t ion (25) of 7n(x) ,  t h a t  

Hence  TC(, x ~ u) = 7n (x) 
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and  u E E(~ x) b y  (26). T h u s  i t  follows b y  induc t ion  t h a t  u lies in each set  of the  sequence 

H(0 x), E(0 x), H(~) E(X) H(~) I - ,  1 ~ 2 , ' ' ' ~  

and  so to  U (~). This  completes  the  proof.  

lO. Uniformizatiom in X x Y, where Y is a complete separable metric space 

Our aim in th is  sect ion is to  use the  mapp ing  technique  expla ined  in the  I n t r o d u c t i o n  

to  ex tend  our un i formiza t ion  Theorem 17 to a corresponding theorem t h a t  appl ies  in a space 

X • Y where Y is a complete  separable  metr ic  space. The proof  depends  on the  wel l -known 

resul t  t h a t  a complete  separable  met r ic  space is a cont inuous  one-one image of a closed 

subset  of I,  see, for example ,  C. K u r a t o w s k i  [18] page  443. As i t  is no more  difficult ,  we 

s t a t e  and  prove  the  resu l t  for  any  Hausdor f f  space Y t h a t  is a one-one cont inuous  image  

of a closed subset  of I. 

T H E O R ] ~  18. Suppose that each open set in a topological space X is a Souslin set. Let Y 

be a Hausdor/] space that is a continuous one-one image ol some closed subset o / I  (lot example, 

any complete separable metric space). Let E be the complement el a Souslin set in X x Y. Then 

there is a set U, that is a complement el a Souslin set in X • Y, and that satis/ies: 

(a) U c  E; 

(b) xexU = g x E ;  and 

(c) /or each x in ~ x E  the set ( (x} • Y) N U consists o] a single point. 

Proo/. Le t  / be a funct ion,  def ined on a closed set  H of I t h a t  maps  H one-one onto  Y. 

Define a funct ion ~ on X • H b y  t ak ing  

~(x • i) = x •  

for all  i in H. Then  ~ maps  X • H one-one onto X • Y. As the  inverse image  of a n y  open 

rec tangle  in X • Y is an  open rec tangle  in X • H, i t  follows t h a t  ~ is cont inuous  f rom X • H 

to  X • Y. Thus  the  inverse image of a n y  closed set in X • Y is closed in X • H a n d  so 

closed in X • I. Hence  the  set A* =q~-l(A), where  A is tl~e Souslin set 

A = (Z  • Y ) \ E ,  

is a Souslin set  in X • I.  W r i t e  

E* = (X • H) \A* .  

As I \ H  is a Souslin set  in I 

E* = ( X •  i ) \ [ ( X  • { I \ ~ } )  U A*] 

is a complement  of a Souslin set  in X x I. 
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Now, by  Theorem 17, we can choose a complement  U* of a Souslin set in X • I t ha t  

uniformizes E* in X x I. As 
U * ~  E * ~  X x H,  

and ~ is a one-one map  from X x H to X x Y it follows immediately  tha t  the set 

U = ~(U*) 

uniformizes E in X x Y. I t  remains to prove tha t  U is the complement  of a Souslin set in 

X x Y .  

We introduce some nota t ion to facilitate an  application of Theorem 8. We note  t ha t  :Y 

has the descriptive Borel representat ion Y = K ( I )  where K is the semi-c0ntinuous funct ion 

f rom J to  ~ (Y) defined by: 

K(j) = {/(j)}, ~ i ~H; 

K(j)=~D, if j f H .  

Fur the r  the sets K(j), j E J are disjoint. Similarly the space X x Y has t h e  disjoint Souslin 

representat ion 

x x y = F(I),  ~v(i) = ~ F ( i ln ) ,  

where we take _F*(i) = X x K(i) 

for each i in I and define F ( i I n  ) b y  

~( i ]~ )  = e l  F*(I~I~). 

B y  the Corollary to  Theorem 2, this yields the formula 

F(i) = F*(i) = X x K(i). 

Hence for each i in I and each integer m ~ 1 we have 

F(Ill~) ~ X • K(Jil~). 

Fur ther  the map co: X • Y--)-X x I tha t  takes x x y in X x Y to the  point  

co(x x y) = x • i, 

where i - - i (x  • y) is the unique i in I with x x y E F(i) clearly coincides with t, he m a p  q9-1. Now 

all the prel iminary conditions o f  T h e o r e m  8 are satisfied. Fur ther  

(X • I)\tT* 
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is a Souslin set in X • I. So, by  the last assertion of Theorem 8, 

( D - - l [ ( / X  I ) \ U * ]  = ( ~ - x ) - l [ ( X  x I ) \ U * ]  = ~)[(X x H ) \ U  $] = ( X  x : Y ) \ U  

is a Souslin set in X x Y. Hence U is the complement of a Souslin set in X • Y as required. 

11. Partial uniformization in X x Y ,  when Y is a descriptive Borel space 

In  this section we use the mapping Theorem 8 together with the uniformization Theorem 

17 to prove the partial  uniformization Theorem 19 stated in the  Introduction. 

Proo/ o/ Theorem 19. Let the complement A of E in X x Y have the Souslin representa- 

tion 
oo 

A=A~I), A ( i ) = r ) A ( i l n  ), 
nffil 

the sets A(i] n) being closed. 

As each open set in X x Y has a disjoint Souslin representation, it follows from Theorem 

7 that  X x Y has a .disjoint Souslin representation 

X x Y = F 1 (I), $'1 (i) = N F~ (iln), 
n--1 

with the sets F~(iln ) all closed, such that  each set A(j ] m) is the union of those of the frag- 

ments Fl(i ) that  it meets .  

As Y has the representation Y = K(I) as a descriptive Borel set it has the repesentation 

Y = K(I), K(i) = N Y(iln ), 
n=l  , 

where Y(i I n) = cl K(hln), 

by  the corollary to Theorem 2. Hence X x Y has the disjoint Souslin representation 

X x Y = X x K ( I ) ,  X x K ( i ) = f ~ [ i x Y ( i l n ) ] .  
n = l  

Applying Theorem 3 to these two disjoint Souslin representations of X x Y we obtain 

a disjoint Souslin representat ion of X x Y as 

X x  Y=F(I), F ( i ) =  f~F(i ln) ,  
n = l  

the sets F( i ln  ) being closed, so tha t  each set FI(j) and each set X x K(k) is the union of those 

fragments F(i) tha t  it meets. This ensures that  each set , A (j ] n) is the union of thQse sets 
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F(i) t ha t  it meets. Further ,  b y  the corollary to Theorem 3, we can ensure that ,  f o r  each i 

in I there is a ] in J such tha t  for each integer m >/1, there is an integer n with 

F(Illn) : X x K(JjI m). (35) 

We now define a map  w: X • Y-->X •  by  taking 

oXx• = x •  

where i = i (x  • y) is the unique i in I with 

x x y e  F(i).  

We note tha t  all the conditions of Theorem 8 are satisfied by  the sets and mappings tha t  

we have introduced in this proof. I t  follows from Theorem 8 tha t  r is a Souslin set in 

X • I, and tha t  eo(X x Y) is closed in X • I. 

Now, given an  open set G in X, the  Set G • Y is open in X • Y and  has a disjoint 

Souslin representation, and is in part icular  a Souslin set in X • Y. I t  follows by  [25] tha t  

G --- ~x{~ x Y}  

is a Souslin set in X,  so tha t  G x I is a Souslin set in X • I. As I has a countable basis for its 

open sets it follows tha t  each open set in X • I is a Souslin set. Hence 

[~o(X x Y)]\[esA] 

is the complement  in X • I of the Souslin set 

[oA]  q {(X X I)\~o(Z x Y) }. 

Thus the conditions of Theorem 17 are satisfied and  there is a set W, tha t  is the com- 

plement of a Souslin set B in X x I and tha t  satisfies: 

(a) W= [~(X x r)]\[~oA]; 
(b) ~x W = ~ x [~ (x  x Y)]\[~A]; 

(e) for each x in g x W  the set ({x} •  f) W consists of a single point.  

B y  Theorem 8 the set (o-aB is a Souslin set in X •  Y, Then  

U = [X  • Y]\o~-tB = o - I W  

is a complement  of a Souslin set in X x:Y. 
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By (a) we have 

B = IX X I ] \ W ~  coA 

so that  eo-IBDA and U ~ E .  This implies tha t  

~ z U ~ z z E .  

Now, if xE~xE , then 

x EzzcoE = zx{[m(X x Y)]~[mA] }. 

Hence, by (b) we have x ~ x W .  So there is a point w in I with x x w in W, and so in o)(X x Y) 

but not in o~A. Hence there is a point y of Y with x x y in 0 -1W = U. Thus 

axE~7~xU, 

and ~ x E  ~ ~x U. 

:Now, for each x in ~xE, we have xE~ x W from the last paragraph, and so by  (c), the set 

({x} xI) n w 

consists of a single point, w(x) say, and 

({x} •  N U= [{x} x Y] n F(w(x)): 

So, by (35), there is j in J with 

({x} • y)  n v ~  {z) x g(j) .  

Thus 7@{Zx'(X) N U} ----~y[((X} x K(j)) N F(w(x))], 

and so is a compact subset of K(j). This completes the proof. 

12. Uniformizing functions 

In  this section we use some of the arguments of Sion [28] in conjunction with a trans- 

finite application of Theorem 19 to prove Theorem 20, stated in the introduction. 

Proo/ o/ Theorem 20. Let (G~)~< n be a base for the Open sets of Y. For each ordinal 

with a < ~ ,  the sets Ga, Y\Ga are :~-sets. 

By  Lemma 2 of [24], it follows, from the suppositions tha t  Y is descriptive Borel and 

tha t  each open set of Y is an ~r tha t  each '~r of ]z is descriptive Borel. Hence Ga 

and Y\Ga are disjoint descriptive Borel sets and Y has a representation 

Y =/s  

4 - 682901 Acta  mathematica 120. Imp r im~  le 8 avr i l  1968 
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where Ka is a semi-continuous map from I to :K (Y), with 

K~(i) N Ka(i) = O  

whenever i, j are distinct points of I, and both G~ and Y\G~ are unions of the fragments 

Ka(i), with iEI, that  they meet. 

Write UI=E. For each ordinal ~, with 1~cr  let U~+ 1 be the set obtained from 

U~ by applietion of Theorem 19 with the descriptive Borel representation 

y = K , ( I ) .  

For each limit ordinal a with ~<~2, let 

G =  N u~, 
fl<:r 

This provides an inductive definition of U~ for 1 ~< ~ ~< ~2. 

I t  follows inductively that the sequence U:, 1 ~ ~ ~ is a decreasing sequence and that 

the sets Ua, 1 ~< ~ < ~ ~re complements of Souslin sets in X • Y. 

Now for each x in zxE, Theorem 19 ensures that U(~ x) is compact and non-empty. Simi- 

larly, given that  ~rT (x) is compact and non-empty, Theorem 19 ensures that ~+lrT~) is compact 

and non-empty. :Further if ~ is a limit ordinal with at ~ ~,  knowledge that the sets U(j ), t~ < ~, 
are compact and non-empty, ensures that U(~ ) is compact and nonempty. I t  follows, by 

transfinite induction, that  U~ x) is compact and non-empty for all ~ with 2 ~< ~ ~<~ and for 

all x in z~ x E. 

We now prove that  for each x in zrxE the set Ug ) consists of a single point. Suppose 

we had 

x• x• 

with y # z. Then we can choose ordinals ~, fi with 

yEG~, zEG~, G~,NGt~=O. 

By Theorem 19, T7 <x) v~+l  K ~ ( i )  

for some i in I. So y E U~ ) ~ v~+lrT(x) ~ K~ (i), y E G~. 

Thus, G~ N K~(i) ~: ~ and, by the choice of K~ we have  

K~ (i) c G .  

Hence (x) (x) Ua c U~,+I~G~. 

Similarly U~ ) c U~+)I c Gp, 
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con t r a ry  to  the  resul ts  U ~ ) +  ~ ,  G= N G~ = ID. This  shows t h a t  U~ ) consists of a single 

po in t  for each x of zcxE and  enables  us to  define a funct ion  / on z x E  b y  the  r equ i rement  

{/(x)} = v i i  > 
for all  x in ~x  E.  

Clear ly  ] is a uniformizing funct ion  f rom ~ x E  to  Y wi th  t he  p r o p e r t y  x • ](x) s E for all  

x in ~xE .  

Le t  V be a n y  open set in Y. B y  hypothesis ,  V is the  union of a countable  sequence, s ay  

of e lements  of the  basis  for Y, So 

/-1[V] ==x[(X • V) n un] = U zx[(x • a~r n Un]. 
n=l 

Hence  to p rove  t h a t / - I [ V ]  is the  p ro jec t ion  on X of the  complement  of a Souslin set  in 

X • Y i t  suffices to  p rove  t h a t  each set 

z~x[(X xG~)n Un], 1 < ~ < s  

is of th is  form. 

But ,  g iven an  ord ina l  ~ wi th  1 ~< ~ < ~ / i t  is clear t h a t  

On the  o ther  hand,  if x6z~x[(X X Ga) (] ~J~+l] 

TT(x) -u we have  G~ r] ~ + 1  --  ID. 

As before th is  implies  U~ ) c ~+1r7(~) ~ G~ 

so t h a t  xezex[ (X  • G~) N Ua]. 

Thus  z~x[(X • G~) n Ua] =zex[(X x G~) N U~+I] 

and  so is the  p ro jec t ion  on X of the  complement  of a Souslin set in X x Y. This  completes  

the  proof.  
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