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Throughout this note R denotes a local, Noctherian ring with maximal ideal m and 

residue field K = R/m. I t  is well known tha t  K as an R-module has a minimal resolution 

X, i.e. d X c  reX. I t  was shown by  Tare [4, Theorem 1] tha t  K has a free resolution which 

is a differential skew-commutative algebra, briefly called an R-algebra. 

In  the present note we prove tha t  K always has a minimal resolution which is an 

R-algebra. This settles a question raised by  Tate, see footnote in [4, p. 23]. 

The existence of minimal R-algebra resolutions simplifies the s tudy of the R-algebra 

Tor R (K, K), cf. [4, w 5]. In  particular one immediately obtains generalizations of known 

results on the Bett i-numbers of R; see [1, w167 2, 4]. 

Notations and definitions 

The te rm "R-algebra" will be used in the sense of [4] i.e. an associative, graded, 

differential, strictly skew-commutative, algebra X over R, with unit element I,  such tha t  

the homogeneous components Xq are finitely generated modules over R. We require tha t  

X 0 = l ' R  and Xq=O for q<0 .  

R is considered as an R-algebra with trivial grading and differential. 

We shall use the symbol 
X(S~; dS = s 

to denote the R-algebra obtained from an R-algebra X "by the adjunetion of a variable" 

S which kills a cycle s. Cf. [4, w 2]. 

Let  ( .... S~ .. . .  ) be a set of variables indexed by  an initial par t  of the natural  numbers,  

which may  be empty  or infinite. I f  these S~ are adjoined successively to an R-algebra X 
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to kill cycles s,, there results a natural  direct system of R-algebras and inclusion maps. 

We denote the direct limit of this system by  

X( . . . ,  Si  . . . .  ); dS, = s, 

The degree of a homogeneous map  ~" or a homogeneous element x will be denoted by  

deg ~" and deg x respectively. B-algebras and elements are indexed by superscripts and 

subscripts respectively. 

The vectorspace dimensions dimKTorR(K, K) are called the Betti-numbers of R. 

They are denoted by b~(R). The Betti-series of R is the power series 

B ( R ) =  ~ b ~ ( R ) Z  ~ 
2a~O 

Definition. Let X be an R-algebra with differential d. A derivation j on X is an R- 

linear homogeneous map j: X - + X  satisfying 

(i) dj = jd 

(ii) j(xy) = ( - 1 )  ~'r j ( x ) y+x j ( y ) ,  

where w = deg j and y E X a. 

LE~lVIA. Let j be a derivation on an R-algebra X ,  and s a cycle in X .  Put  Y = X ( S ) ;  

dS = s. Then j can be extended to a derivation j" on Y i / a n d  only i[ 

/(s) e B ( y ) .  (1) 

Proo[. I f  j can be extended, (1)is  satisfied because 5(8)=](dS)=dj '(S).  On the other 

hand, if (1) is satisfied, choose an element G E Y with the property 

d~  = i(s). 

We treat  the cases deg S odd and deg S even separately. I f  deg S is odd, we have 

Y = X |  
For x0, x x e X define 

j" (x o + x 1 S) = j(Xo) + ( - 1)dor j j (Xl) S + x 16.  (2) 

I f  deg S is even, we have 

For %, . . . ,  x m ~ X  define 

y = f i  XS (~ 

I t  is a straightforward mat te r  to check tha t  in both eases ] '  becomes a derivation on Y. 



A P R O O F  OF T H E  E X I S T E N C E  O F  I~IINIMAL R - A L G E B R A  R E S O L U T I O N S  55 

T HV, O R ] ~ .  Let R be a local Noetherian ring with maximal ideal m. There exists an 

R-algebra X which is an R-/ree resolution o/R/i l t  with the property 

(i) d X ~  m X  

d being the differential on X .  

In  ]act every R-algebra satis/ying (ii)-(v) below has the property (i). 

(ii) H , ( X ) ~ 0  ]or p4-O. Ho(X)=R/m.  

(iii) X has the ]orm X =  R< .... S~ . . . .  >; dS~=s~ 

(iv) d e g S , + l > ~ d e g S  , ]orall i>~l. 

(v) The cycles s~ o/degree 0 ]orm a minimal system o/generators ]or m. I[ deg s s >~ 1 

then s~ is not a boundary in R<S~, ..., S~_1>; dS, =s,. 

Proo[. I n  [4] Tare  showed t h a t  there  exists  an  R-a lgebra  X sa t i s fy ing (ii)-(v) above.  

Le t  X be such an  R-a lgebra .  W e  are  going to  show (i). W e  assume t h a t  m ~ 0 ,  otherwise 

i t  follows f rom (v) t h a t  X = R .  W e  also assume t h a t  the  set  of all  ad jo ined  var iab les  is 

infinite.  Only  t r iv ia l  modif ica t ions  m u s t  be carr ied ou t  if th is  set  is finite.  

Le t  X ~ denote  the  R-a lgebra  R. Define i nduc t ive ly  

X~=X~-I<S~>;dSs=s= for ~ > 1 .  

Le t  i s denote  the  n a t u r a l  inclusion m a p  i~:X ~- 1_. X ~. W e  have  

F o r  each a >~ 1 define a de r iva t ion  

X = l i m  X ~. 

~: X~---> X ~ 

in  the  following way.  Le t  ] = 0 be the  t r iv ia l  de r iva t ion  on X - . P u t  G = 1 and  let  i s  be 

the  extens ion  of 1" given b y  (2) resp.  (3). Then  

deg i s = - deg Ss. 

F i r s t  we show t h a t  for all  a >~ 1, ?'s can be ex t ended  to a de r iva t ion  J~ on X which is 

of nega t ive  degree. B y  pass ing to  a d i rec t  l imi t  i t  c lear ly  suffices to  show the  following: 

I f  a ~ and  ?'s. ~ is a de r iva t ion  on X 7 which is an  extens ion  of ~'s, t hen  is. 7 can be ex t ended  

to a de r iva t ion  is. 7+1 on X7+1. 

Now let  is. ~ be a de r iva t ion  on X r which ex tends  ?'s. W e  will  prove  t h a t  ?'~' 7 can be 

e x t e n d e d  to  a de r iva t ion  on X r+l.  B y  the  l emma  i t  suffices to  show t h a t  

i ~' 7(s~+1) E B(X~'). (4) 

To prove  (4) we consider  two cases. F i r s t  assume t h a t  deg Sa 4 d e g  87+ 1. This  yields  
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0 * deg j~, r(%+O < deg st+ 1 

However, it follows from (ii) and (iv) tha t  

H_v(X r) = 0 for 0 # p  < deg st+ 1. 

Hence in this case (4) follows. Next  assume tha t  deg S~=deg  st+ r Then j~. v(sr+l)EX 0. 

Let  S m ..., Sg+~ be all the adjoined variables of degree deg st+ r Then there exist elements 

xEXZ-~and r~ ..... r~+~eR such tha t  

/z+v 

s~+l = z + ~ r~ &. (5) 
t=~t 

Differentiation yields 

I t  follows from (v) tha t  r~ E m for i =/z, , . , /z  +v. Since # -  1 < ~ we have 

i:.r(x)=i~(z)=o. 

Hence applying j~. r to (5) one deduces 

]~, r(sr+l) e reX0. 

However, deg se+ x =deg  S~ > 1 so lrtX o is already killed. Again (4) follows. 

In  the rest of the proof we consider the underlying complexes of the respective 

R-algebras. For each ~>~ 1, j= leads to an exact sequence of complexes 

0 -  x ~-* g x~ ~ x~ (6) 

which splits as a sequence of R-modules, ef. [4, p. 17-18]. Consider the functor X e+ X, 

where X =X/mX.  For ~ > 0  let l ~ denote the natural  inclusion map F :  X~-~X. I t  follows 

tha t  I ~ is direct, hence we may  identify X ~ with its image in X. From (6) we deduce a 

commutat ive diagram 

ll.. 
_ J =  _ 

X . + X  

(7) 

in which the upper row is exact. This yields 

[') ker j r  c X ~ (8) 
7/>1 
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I n d e e d  le t  xE [1~1  ker  i t .  Le t  ~ ~ 1 a n d  suppose  t h a t  xE X~. I t  follows f rom (7) t h a t  

xE X ~-1. Repea t ing  this  i t  follows t h a t  xE •0. 

B y  induc t ion  on q we are going to  show t h a t  

Bq(X) = 0, (9) 

F o r  q = 0 th is  is clear b y  (v). Le t  r/> 1 and  assume t h a t  (9) has  been es tabl i shed  for q < r. 

F o r  eve ry  y ~> 1, 0 rr is of nega t ive  degree and  commutes  wi th  the  di f ferent ia l  on -~. Hence  

J ' ( B r ( X ) ) - ~  HBq ( X) = O for y > ~ l .  
q < r  

I t  follows f rom (8) t h a t  B r ( X ) -  Br(X)N XT~ 

Since B ( X ) = 0  we have  B ( X ) c u t X .  Q.E.D.  

Le t  X be a min ima l  R-a lgebra  resolu t ion  of K as descr ibed in the  theorem (ii)-(v).  

There  is an i somorphism of R-algebras ,  cf. [4, w 5]: 

Tor  R (K, K) ~ H ( X |  = X |  

This yields  the  following genera l iza t ion  of a resul t  due to  Assmus  [1, w 4]: 

COROLLARY 1. The Betti-series o / R  may be written in the [orm 

(1 + z) TM (1 + z~)~.... 
B(R) 

(1  - z ~ )  ~, (1  - z ~ ) ~ , . . . '  

where nq q = 1, 2, ... is the number o/adjoined variables o/degree q in a minimal R-algebra 

resolution. 

COROLLARY 2. The Betti-numbers {b~(R)} o / a  non-regular local ring R /orm a non- 

decreasing sequence. C/. [2]. 

Proof. I n  the  above  no t a t i on  we have  

n 1 = dimK lrt/lrt 2 

and  n~ = dimK HI(X"~). 

Le t  R be  non-regular .  I t  follows f rom the  Ei lenberg  charac te r iza t ion  of r egu la r i t y  t h a t  

n 2 4=0, ef. [4, L e m m a  5]. (1) Since also n I =#0, B(R) conta ins  a fac tor  1/(1 - Z ) .  Hence  {bp(R)} 

is non-decreas ing.  Q.E.D.  

(I) Tare has requested me to point out that his "outline of proof" of Lemma 5 in [4] is neither 
correct, nor due to Zarlskl, and that a correct proof can be obtained (for example) by using Prop. 3 
on page IV-5 of Serre [3], with M = A, together with Cor. 2, page IV-35, and the characterization 
of regular local rings as those which are l~Toetherian of finite homolog~cal dimension. 
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