A PROOF OF THE EXISTENCE OF MINIMAL R-ALGEBRA RESOLUTIONS

BY

TOR HOLTEDAHL GULLIKSEN
University of Oslo, Norway

Throughout this note R denotes a local, Noetherian ring with maximal ideal m and residue field $K=R / \mathfrak{m}$. It is well known that K as an R-module has a minimal resolution X, i.e. $d X \subset \mathfrak{m} X$. It was shown by Tate [4, Theorem 1] that K has a free resolution which is a differential skew-commutative algebra, briefly called an R-algebra.

In the present note we prove that K always has a minimal resolution which is an R-algebra. This settles a question raised by Tate, see footnote in [4, p. 23].

The existence of minimal R-algebra resolutions simplifies the study of the R-algebra Tor ${ }^{R}(K, K)$, cf. [4, §5]. In particular one immediately obtains generalizations of known results on the Betti-numbers of R; see $[1, \S \S 2,4]$.

Notations and definitions

The term " R-algebra" will be used in the sense of [4] i.e. an associative, graded, differential, strictly skew-commutative, algebra X over R, with unit element 1 , such that the homogeneous components X_{q} are finitely generated modules over R. We require that

$$
X_{0}=1 \cdot R \quad \text { and } \quad X_{q}=0 \text { for } q<0
$$

R is considered as an R-algebra with trivial grading and differential.
We shall use the symbol

$$
X\langle S\rangle ; d S=s
$$

to denote the R-algebra obtained from an R-algebra X "by the adjunction of a variable" S which kills a cycle s. Cf. [4, § 2].

Let $\left\langle\ldots, S_{i}, \ldots\right\rangle$ be a set of variables indexed by an initial part of the natural numbers, which may be empty or infinite. If these S_{i} are adjoined successively to an R-algebra X
to kill cycles s_{i}, there results a natural direct system of R-algebras and inclusion maps. We denote the direct limit of this system by

$$
X\left\langle\ldots, S_{i}, \ldots\right\rangle ; d S_{i}=s_{i}
$$

The degree of a homogeneous map j or a homogeneous element x will be denoted by $\operatorname{deg} j$ and $\operatorname{deg} x$ respectively. R-algebras and elements are indexed by superscripts and subscripts respectively.

The vectorspace dimensions $\operatorname{dim}_{K} \operatorname{Tor}_{p}^{R}(K, K)$ are called the Betti-numbers of R. They are denoted by $b_{p}(R)$. The Betti-series of R is the power series

$$
B(R)=\sum_{p=0}^{\infty} b_{p}(R) Z^{p}
$$

Definition. Let X be an R-algebra with differential d. A derivation j on X is an R linear homogeneous map $j: X \rightarrow X$ satisfying
(i) $d j=j d$
(ii) $\quad j(x y)=(-1)^{w \cdot-q} j(x) y+x j(y)$,
where $w=\operatorname{deg} \mathrm{j}$ and $y \in X_{q}$.
Lemma. Let j be a derivation on an R-algebra X, and s a cycle in X. Put $Y=X\langle S\rangle$; $d S=s$. Then j can be extended to a derivation j^{\prime} on Y if and only if

$$
\begin{equation*}
j(s) \in B(Y) . \tag{1}
\end{equation*}
$$

Proof. If j can be extended, (1) is satisfied because $j(s)=j(d S)=d j^{\prime}(S)$. On the other hand, if (1) is satisfied, choose an element $G \in Y$ with the property

$$
d G=j(s)
$$

We treat the cases deg S odd and $\operatorname{deg} S$ even separately. If $\operatorname{deg} S$ is odd, we have

$$
Y=X \oplus X S
$$

For $x_{0}, x_{1} \in X$ define

$$
\begin{equation*}
j^{\prime}\left(x_{0}+x_{1} S\right)=j\left(x_{0}\right)+(-1)^{\operatorname{deg} j} j\left(x_{1}\right) S+x_{1} G . \tag{2}
\end{equation*}
$$

If $\operatorname{deg} S$ is even, we have

$$
Y=\prod_{i=0}^{\infty} X S^{(i)}
$$

For $x_{0}, \ldots, x_{m} \in X$ define

$$
\begin{equation*}
j^{\prime} \sum_{i=0}^{m} x_{i} S^{(i)}=\sum_{i=0}^{m} j\left(x_{i}\right) S^{(i)}+\sum_{i=1}^{m} x_{i} S^{(i-1)} G . \tag{3}
\end{equation*}
$$

It is a straightforward matter to check that in both cases j^{\prime} becomes a derivation on Y.

Theorem. Let R be a local Noetherian ring with maximal ideal \mathfrak{m}. There exists an R-algebra X which is an R-free resolution of $R / \mathfrak{m t}$ with the property
(i) $d X \subset \mathfrak{m} X$

d being the differential on X.

In fact every R-algebra satisfying (ii)-(v) below has the property (i).
(ii) $H_{p}(X)=0$ for $p \neq 0 . H_{0}(X)=R / \mathrm{m}$.
(iii) X has the form $X=R\left\langle\ldots, S_{i}, \ldots\right\rangle ; d S_{i}=s_{i}$
(iv) $\operatorname{deg} S_{i+1} \geqslant \operatorname{deg} S_{i}$ for all $i \geqslant 1$.
(v) The cycles s_{α} of degree 0 form a minimal system of generators for m. If $\operatorname{deg} s_{\alpha} \geqslant 1$ then s_{α} is not a boundary in $R\left\langle S_{1}, \ldots, S_{\alpha-1}\right\rangle ; d S_{i}=s_{i}$.

Proof. In [4] Tate showed that there exists an R-algebra X satisfying (ii)-(v) above. Let X be such an R-algebra. We are going to show (i). We assume that $\mathfrak{m} \neq 0$, otherwise it follows from (v) that $X=R$. We also assume that the set of all adjoined variables is infinite. Only trivial modifications must be carried out if this set is finite.

Let X^{0} denote the R-algebra R. Define inductively

$$
X^{\alpha}=X^{\alpha-1}\left\langle S_{\alpha}\right\rangle ; d S_{\alpha}=s_{\alpha} \text { for } \quad \alpha \geqslant 1
$$

Let i^{α} denote the natural inclusion map $i^{\alpha}: X^{\alpha-1} \rightarrow X^{\alpha}$. We have

For each $\alpha \geqslant 1$ define a derivation

$$
\begin{aligned}
& X=\lim _{\rightarrow} X^{\alpha} . \\
& j^{\alpha}: X^{\alpha} \rightarrow X^{\alpha}
\end{aligned}
$$

in the following way. Let $j=0$ be the trivial derivation on $X-$. Put $G=1$ and let j^{α} be the extension of j given by (2) resp. (3). Then

$$
\operatorname{deg} j^{\alpha}=-\operatorname{deg} S_{\alpha}
$$

First we show that for all $\alpha \geqslant 1, j^{\alpha}$ can be extended to a derivation J^{α} on X which is of negative degree. By passing to a direct limit it clearly suffices to show the following: If $\alpha \leqslant \gamma$ and $j^{\alpha, \gamma}$ is a derivation on X^{γ} which is an extension of j^{α}, then $j^{\alpha, \gamma}$ can be extended to a derivation $j^{\alpha \cdot \gamma+1}$ on $X^{\gamma+1}$.

Now let $j^{\alpha, \gamma}$ be a derivation on X^{γ} which extends j^{α}. We will prove that $j^{\alpha, \gamma}$ can be extended to a derivation on $X^{\gamma+1}$. By the lemma it suffices to show that

$$
\begin{equation*}
j^{\alpha, \gamma\left(s_{\gamma+1}\right) \in B\left(X^{\gamma}\right) .} \tag{4}
\end{equation*}
$$

To prove (4) we consider two cases. First assume that $\operatorname{deg} S_{\alpha} \neq \operatorname{deg} s_{\gamma+1}$. This yields

$$
0 \neq \operatorname{deg} j^{\alpha \cdot \gamma} \gamma\left(s_{\gamma+1}\right)<\operatorname{deg} s_{\gamma+1}
$$

However, it follows from (ii) and (iv) that

$$
H_{p}\left(X^{\gamma}\right)=0 \quad \text { for } \quad 0 \neq p<\operatorname{deg} s_{\gamma+1} .
$$

 Let $S_{\mu}, \ldots, S_{\mu+\nu}$ be all the adjoined variables of degree deg $s_{\gamma+1}$. Then there exist elements $x \in X^{\mu-1}$ and $r_{\mu}, \ldots, r_{\mu+\nu} \in R$ such that

Differentiation yields

$$
\begin{equation*}
s_{\gamma+1}=x+\sum_{i=\mu}^{\mu+\nu} r_{i} S_{i} . \tag{5}
\end{equation*}
$$

$$
\sum_{i=\mu}^{\mu+\nu} r_{i} s_{i} \in B\left(X^{\mu-1}\right) .
$$

It follows from (v) that $r_{i} \in \mathfrak{m}$ for $i=\mu, \ldots, \mu+\nu$. Since $\mu-1<\alpha$ we have

$$
j^{\alpha} \gamma(x)=j^{\alpha}(x)=0 .
$$

Hence applying $j^{\alpha, \gamma}$ to (5) one deduces

$$
j^{\alpha, \gamma}\left(s_{\gamma+1}\right) \in m X_{0} .
$$

However, $\operatorname{deg} s_{\gamma+1}=\operatorname{deg} S_{\alpha} \geqslant 1$ so $m X_{0}$ is already killed. Again (4) follows.
In the rest of the proof we consider the underlying complexes of the respective R-algebras. For each $\alpha \geqslant 1, j^{\alpha}$ leads to an exact sequence of complexes

$$
\begin{equation*}
0 \rightarrow X^{\alpha-1} \xrightarrow{i^{\alpha}} X^{\alpha} \xrightarrow{\dot{j}^{\alpha}} X^{\alpha} \tag{6}
\end{equation*}
$$

which splits as a sequence of R-modules, cf. [4, p. 17-18]. Consider the functor $X \leftrightarrow \bar{X}$, where $\bar{X}=X / \mathrm{mX}$. For $\alpha \geqslant 0$ let I^{α} denote the natural inclusion map $I^{\alpha}: X^{\alpha} \rightarrow X$. It follows that I^{α} is direct, hence we may identify \bar{X}^{α} with its image in \bar{X}. From (6) we deduce a commutative diagram

$$
\begin{align*}
0 \rightarrow \bar{X}^{\alpha-1} \rightarrow & \bar{X}^{\alpha} \rightarrow \bar{X}^{\alpha} \quad \alpha \geqslant 1 \tag{7}\\
& \downarrow \bar{I}^{\alpha} \downarrow \bar{I}^{\alpha} \\
& \bar{X} \xrightarrow{j^{\alpha}} \bar{X}
\end{align*}
$$

in which the upper row is exact. This yields

$$
\begin{equation*}
\bigcap_{\gamma \geqslant 1} \operatorname{ker} \vec{J}^{\gamma} \subset \bar{X}^{0} . \tag{8}
\end{equation*}
$$

Indeed let $x \in \bigcap_{y \geqslant 1} \operatorname{ker} \bar{J}^{\gamma}$. Let $\alpha \geqslant 1$ and suppose that $x \in \bar{X}^{\alpha}$. It follows from (7) that $x \in \bar{X}^{\alpha-1}$. Repeating this it follows that $x \in \bar{X}^{0}$.

By induction on q we are going to show that

$$
\begin{equation*}
B_{q}(\bar{X})=0 \tag{9}
\end{equation*}
$$

For $q=0$ this is clear by (v). Let $r \geqslant 1$ and assume that (9) has been established for $q<r$. For every $\gamma \geqslant 1, \bar{J}^{\gamma}$ is of negative degree and commutes with the differential on \bar{X}. Hence

$$
\widetilde{J}^{\nu}\left(B_{r}(\bar{X})\right) \subseteq \coprod_{q<r} B_{q}(\bar{X})=0 \text { for } \gamma \geqslant 1 .
$$

It follows from (8) that $B_{r}(\bar{X}) \subseteq B_{r}(\bar{X}) \cap \bar{X}^{0}=0$.
Since $B(\bar{X})=0$ we have $B(X) \subset \mathfrak{m} X$. Q.E.D.
Let X be a minimal R-algebra resolution of K as described in the theorem (ii)-(v). There is an isomorphism of R-algebras, cf. [4, §5]:

$$
\operatorname{Tor}^{R}(K, K) \approx H(X \underset{R}{\otimes} K)=X \underset{R}{\otimes} K
$$

This yields the following generalization of a result due to Assmus [1, §4]:
Corollary 1. The Betti-series of R may be written in the form

$$
B(R)=\frac{(1+Z)^{n_{1}}\left(1+Z^{3}\right)^{n_{3}} \cdots}{\left(1-Z^{2}\right)^{n_{2}}\left(1-Z^{4}\right)^{n_{4}} \cdots}
$$

where $n_{q} q=1,2, \ldots$ is the number of adjoined variables of degree q in a minimal R-algebra resolution.

Corollary 2. The Betti-numbers $\left\{b_{p}(R)\right\}$ of a non-regular local ring R form a nondecreasing sequence. Cf. [2].

Proof. In the above notation we have
and

$$
n_{\mathbf{1}}=\operatorname{dim}_{K} \mathfrak{m} / \mathfrak{m}^{2}
$$

Let R be non-regular. It follows from the Eilenberg characterization of regularity that $n_{2} \neq 0$, cf. [4, Lemma 5]. $\left.{ }^{1}\right)$ Since also $n_{1} \neq 0, B(R)$ contains a factor $1 /(1-Z)$. Hence $\left\{b_{p}(R)\right\}$ is non-decreasing. Q.E.D.
(1) Tate has requested me to point out that his "outline of proof" of Lemma 5 in [4] is neither correct, nor due to Zariski, and that a correct proof can be obtained (for example) by using Prop. 3 on page IV-5 of Serre [3], with $M=A$, together with Cor. 2, page IV-35, and the characterization of regular local rings as those which are Noetherian of finite homological dimension.

References

[1]. Assmus, E. F., On the homology of local rings. Thesis, Harvard University, Cambridge, Mass. (1958).
[2]. Gulliksen, T. H., A note on the homology of local rings. To appear in Math. Scand.
[3]. Serre, J.-P., Algèbre local multiplicités. Springer Lecture Notes in Math., 11, 1965.
[4]. Tate, J., Homology of noetherian rings and local rings. Illinois J. Math. 1 (1957), 14-27.
Received June 9, 1967

