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The present paper is a study of the Dirichlet problem of the Choquet boundary 

~X of a real or complex sup-norm space L over a compact Hausdorff space X. I t  

is proved tha t  a continuous and bounded function / on ~X can be extended to a 

function of the class L on X iff / is annihilated by  every L-orthogonal boundary 

measure and every limit point of ~X is a non-singular Shilov point for /. (Precise 

definitions follow). The case of a metrizable compact space X was treated in [2], and 

it was observed independently by  A. Lazar [8] and E. Effros [7] tha t  the metriza- 

bility could be avoided in the case where representing boundary measures are unique 

("simplicial case"). We have found it  convenient to state and prove the general theo- 

rem in the "analyt ic"  setting. A "geometric" version of the theorem is presented as 

a corollary. 

We shall assume tha t  X is an arbitrary,  but  fixed compact Hausdorff space. A 

subset L of CR(X), or Co(X), in said to be a real, or complex, sup-norm space if: 

(i) L is a linear subspace, 

(ii) L contains the constant functions, 

(iii) L separates points, 

(iv) L is closed in uniform norm. 

The a-field ~0 of Balre subsets of X is generated by  the sets FI(O), / f iCR(X), 0 

open in X. I t  is the smallest a-field rendering measurable every /ECR(X). A measure 

m on a a-field :~D B0 is said to represent a point x E X  (relatively to L) if 

a(x)= fadm, all aEL. (1) 
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More generally, m is said to represent a linear ]unction q on L if 

q(a)= fadm, all aeL.  (2) 

A subset Y of X is said to be a representing boundary for L if there exists a a- 

field : ~  B0 such tha t  Y E:~, and such tha t  every point x ~ X  admits a representing 

probabil i ty measure m on :~ with m(Y) = 1. 

The Choquet boundary ~X of L consists of all points x E X such tha t  the one-point 

measure e, is the only probabili ty measure on B0 which represents x. Clearly ~X is 

contained in any representing boundary. On the other hand, ~X is itself a represent- 

ing boundary since every point x E X admits a probabili ty measure m on the a-field 

:~0 generated by Bo U {0X}, such tha t  m represents x and m(~X) = 1. (Choquet-Bishop- 

de Leeuw Theorem [4], [5], cf. also [9]). Thus the Choquet boundary is the smallest 

representing boundary, and it appears tha t  it is an appropriate set for prescription of 

boundary values. 

The closure of the Choquet boundary of a sup-norm space L is the Shilov-boundary 

of L, i.e. i t  is the smallest closed subset of X on which every function of class L 

assumes its maximum modulus (cf. e.g. [3]). The Dirichlet problem of the Shilov 

boundary is quite well understood {cf. e.g. [2], [3]). If  we denote by L*(aX) the set 

of all L-orthogonal Baire measures supported by ~X, i.e. the set of all real (complex) 

measures /~ on B0 such tha t  

- / I ~ u l ( X ~ X ) = 0 ,  ad/~=O all aeL,  (3) 

then we can state a necessary and sufficient condition tha t  a continuous function / 

on ~X be extendable to a function of class L, as follows: 

L I d# = O, all # E L~(#X). (4) 

Similarly we denote by  L-t(aX) the set of all L-orthogonal boundary measures, i.e. 

the set of all real (complex) measures m on :~0 such tha t  

Iml(X\~X)=O, fadm=O all a e L .  (5) 

(Note tha t  this concept of "boundary measure" is formally distinct from tha t  of [1], 
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since the domains of definition are different. However, there is a canonical isomor= 

phism between the two spaces of "boundary measures", cf. e.g. [9].) 

Clearly a necessary condition tha t  a function / on ~X be extendable to a function 

of class L, is uniform continuity of / and 

foxf dm=O, all meLZ(aX).  (6) 

(Note tha t  a uniformly continuous function ] on ~X is extendable to a continuous 

fur~ction on X. Hence / is the restriction of a Baire measurable function on X to 

the set ~XE~o, and so the integral (6) is well defined.) 

The above condition is not sufficient for extcndability. There are simple examples 

of uniformly continuous functions on ~X which satisfy (6), and for which S/d/~ 4:0 

for some f~ e L• IrL fact, set X = [0, 1] U {i} U { - i} ~ (~, and consider the space 

L ~ Co(X) of all functions / such tha t  2/(0) =/(i) +/( - i). Here ~X = X~{0} ,  L• = 

(0), and L•  (2e0- ei-e_~).  Now an example of the desired type is furnished by  

f i Z Z  for any / e C v ( X ) k L .  

The L-envelopes of a continuous and bounded real valued function / defined on 

a subset Y of X containing ~X, are the functions 

f(x) = inf {a(x) I / ~< a I Y, a e Lr}, (7) 

and ](x) = sup {a(x) I / i> a I Y, a e Lr}, (8) 

where Lr is the linear space of real parts  of functions in L. 

Clearly ] is upper semi-continuous, ] is lower semi-continuous, and j~<f. Also 

](x) = / ( x ) = / ( x )  for every x e~X.  (This is s tandard for X =  Y, i.e. for / e  Ca(X). The 

two equalities prevail for 1.s,c. and u.s.c, functions on X, respectively. Hence both 

equalities are valid for continuous functions on a general Y m~X. For  details cf 

e.g. [2]). 

We shall say that  a point xE~X is a singular Shilov point for a continuous and 

bounded real valued function f on ~X, if 

](x)~=f(x). ( 9 )  

Similarly we shall say tha t  a point x E~X is a singular Shilov point for a cont- 

inuous and bounded complex valued function / on ~X if the inequality (9) is valid 

for either the real or the imaginary par t  of ] (or both). 
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Points of ~X are always non.singular Shilo~r points, by virtue of the above remarks. 

However, for every x E a X \ X  there exists a continuous and bounded real valued func- 

tion ] on ~X (one may choose ]E CR(X)I~X ) such that  x is a singular Shilov point 

for f. (Cf. e.g. [5], [9]). 

Note that  if ] is a continuous and bounded function on ~X for which all Shilov 

points are non-singular, then ] is uniformly continuous. A forteriori f is ~0-measur- 

able, and so the integral ~ f dm is well defined for any m EL-L(~X). 

T~no~]~M. A continuous and bounded real (complex) valued function / on the Cho- 

quet boundary ~X o] a real (complex) sup-norm space L over a compact Hausdorff space 

X can be extended to a ]unction o] the class L on X i]]: 

(i) There are no singular Shilov points for 1 

(ii) f o x / d m = O  /or all real (complex) measures mEL' (~X) .  

Proof. Necessity is obvious, and we shall prove the sufficiency in the case of a 

complex sup-norm space L. 

Note first tha t  the definition and basic properties of the Choquet boundary are 

independent of the requirement that  L be uniformly closed, and that  the Choquet 

boundaries of L and Lr coincide (cf. e.g. [9]). 

Assume that  ] is a continuous and bounded complex valued function on ~X sa- 

tisfying (i), (ii). Let  ] =] l  ~- i]2 where ]1, f2 are real valued, and observe that  f,  and f, 

have common, continuous restrictions It to ~X for i = 1, 2, by virtue of the hypo- 

thesis (i). In the sequel we shall write ]= ]1 + i]2. 

Let  M(~X) be the Banach space of complex Baire measures on ~X, and define 

maps 

as follows: 

M(~X) 

~ q)' xa 
X , L * -  ,C 

~(x)(a)=a(x), 

~(/~) (a)= f a  d/~, 

all aEL,  x E X ,  

all aEL,  /zEM(~X), 

(10) 

(11) 
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L ~(~) = ~dtu, all /~ E M(~X), (12) 

and finally 9'(q) = fox/dm, (13) 

where q EL*, and m is any complex measure on :~0 which represents q (in the sense 

of (2)), and for whichJmJ(X~OX)=O. Such measures exist by the Choquet-Bishop-de 

Leeuw theorem, and the function ~0' is well defined by virtue of the hypothesis (ii). 

Clearly ~p, ~, ~ are continuous with respect to the given topology of X, the w*- 

topology of L*, the vague topology of M(~X) (i.e. the w*-topology of M(OX) consid- 

ered as the Banach dual space of Ca(X)) and the customary topology of C. The w*- 

continuity of 9' is the crucial point. We shall derive it from the continuity of ~ and  

after proving that  the above diagram is commutative. 

The proof that  follows, is based on certain norm- and order- preserving properties 

of the linear functional ~0' on L*. Let #EM(OX), and consider the standard decom- 

position lu = (/z + -ju~) + i( /~ - / ~ )  into positive components. For ~ = 1, 2 the positive 

linear functionals a ~ ~ a d/~ +, a r-~ S a d/~j- on L r can be represented by positive measures 

m~, m~' on :~0, all vanishing off ~X, (Choquet-Bishop-de Leeuw Theorem). Clearly the 
t H _~_ .j �9 p�9 

m e a s u r e  m = ( m l -  m I ) $(m 2 - - m  2 ) r e p r e s e n t s  ~(/.~). S i u e e  1 ~ i t ,  w e  s h a l l  h a v e  ]] m j  H = 

JJ/~+ 0[, ][ m/" [[ ~ ]]/~; ]] for ~ = 1, 2. I t  follows that  JJ m ]J ~ 2V2 JJ/~ ]], and so we obtain our 

first estimate: 

[~'(e(~)) [=l f ox/dmJ <3[[~[[. [[/I [. (14) 

Writing m~=m'j-m/" for j = l , 2 ,  and separating into real and imaginary parts, 

we obtain the inequality 

L I~'(~(/~))- ~(/~) j ~< ~ /jdmk-- /jd/~k (15) 
1, k = l  X 

Assume for a moment that  aj, bj are such elements of Lr that  

(16) 

For each of the four choices of j, k =  1, 2, we shall have 
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and foxa~d~ + <~f~2]tdt~ <~f~xbld~ �9 

Hence 

Similarly I fox/jdm'k'- f~]jd~t~ [ <<- f~(br . 

Combination of these inequalities gives 

(17) 

By (15) and (17) we shall have 

2 L [ 9~ - 9~ [ ~< Z (b;-a,)dlpkl. 
t , k ~ l  

(18) 

Now we shall apply the general estimate (14) and the estimate (18) valid under 

the condition (16), to prove that  the diagram is commutative. 

Let ~uEM(OX), and let e > 0  be arbitrary. For every Baire subset B of 8X we 

define qb(B) 

such that: 

and 

to be the (possibly empty) subset of L~ consisting of all (a 1, bl, a2, b2) 

ajl~X < b < br (19) 

b~l B - aj[ B < e, (20) 

for ? '=1,2.  

We claim that  if C is a Baire subset of 8X such that 

I~l(ax~c)>o, 

then there exists another Baire subset B of OX such that 

(21) 

r  lgl(B)>0, B n e = ~  (22) 

By regularity there is a compact subset B '  of ~X"~C such that  I/~] (B') > 0. Let #'  

be the restriction of # to B', i.e. #'(A)=#(A N B') for every A EBo. Let zESupp(#') ,  

and apply the  definition (7), (8) of envelopes to construct elements a~, b~ELr satisfy- 

ing (19) together with the additional requirement: 
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(23) 

T= xeXi / , (z ) -~<a, (x) ,  b,(x)<L(z)+2; i = 1 , 2  

is a closed neighbourhood of z. Hence [# ' [ (B)>0.  with B = B ' N  T. By the hypothesis 

(i), ]~(z)=/l(z) for i =  1, 2, and so 

b,(x) - a,(x) <~ s, all x E T; i =,1, 2. 

Hence the quadruple (al, ha, a2, b~) satisfies the requirement (20), and so (I)(B) 4: O 

This gives (22), and the claim is proved. 

Now we can apply an inductive argument to construct a finite or infinite se- 

quence {B n} of pairwise disjoint Baire subsets of 0X together with four sequences 

n b n {a~}, {b~}, {a2}, { 2} from Lr such that  for n = l ,  2, ...: 

a][B'~<~Jj<~b'~IB '~, ~=1,2 ,  (24) 

b'][B'~-aT[Bn<~e, ] = 1 , 2 .  (25) 

and I/z [ (B n) > (1 - 2-n)An, (26) 

where A n = S U p { I # I ( B ) [ B E ~ o ,  B C ~ X ~ ( B 1 U . . . U B n - ~ ) ,  (I)(B) # ~}; 

and such that  the sequences break off after term number k iff 

We claim that  

I~1 ( O X ~ (  B1 U . . .  U Bn) )  = 0 .  (27) 

If the sequences break off, then (28) follows from (27). Otherwise limnAn=0, 

since the relation (26) implies An< 2[~t[ (B n) for n =  1, 2 .... Now assume (28)inexact, 

and consider a Baire subset B of 8 X  which satisfies (22) with U n B  n in the place of 

C. By the definition of An, we shall have I/~I(B)~<An for n =  1, 2, ..., which is a 

contradiction since [# [ (B) > 0. 

I~ I (ox\ O B") = 0. (2S) 
n 
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By (28) we can choose a natural number N such that  

]f](B~)<e. (29) 
n:>N 

Consider the restricted measures fo, f l  . . . . .  fN defined by 

f r0(A)- - f (A~(B 1 U ... IJ B~)) (30) 

and f in (A)  = f ( A  N B n ) ,  n : 1, ..., N, (31) 

for all Baire subsets A of ~X. 

Decomposing fn  = f [  + f~,  and making use of (25), we obtain for each of the 

four choices of j, k = 1, 2: 

f~ (b'/-a'/)d[ff~[<e[fl(B~), n = l , . . . , N .  (32) 

Now we may apply the estimate (14) for f0, and by virtue of (24) we may 

apply the estimate (18) for f~, n =  1 . . . .  , N. By (29) and (32) this gives: 

N 

I ~'(e(ff)) - ~(ff) l < ~ 0 l  ~'(e(f~)) - ~(ffn) [ 

N 

~<41[fo 11 " [[/[[ + 4 tn ~ l l f  [ (Bn) 

-<< 4(11111+ II f II)~. 

Since e > 0  is arbitrary, this gives the equality 

~ ' (O( f ) )  --  (p( f ) ,  (33) 

completing the proof that  the diagram is commutative. 

Let  MI(~X ) and L* be the closed unit balls of M(~X) and L* respectively, and 

observe that  0 maps MI(~X ) onto L~" (This does not require the full strength of the 

Choquet Theorem. I t  is merely an integral form of the Krein-Milman Theorem, cf. 

e.g. [9]). 

Consider an arbitrary closed subset F of C. :By the commutativity of the diagram 

we shall have: 

L~ r} ((p')-i(F) = e(M~(SX) r~ ~-~(F)). (34) 
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By the vague continuity of ~0, ~0-1(F) is vaguely closed, and so MI(~X)N Qg-I(F) 

is vaguely compact. By the continuity of Q, the set L~' ( /@')-I(F) is w*-compact and 

hence also w*-closed I t  follows that the restriction of ~' to the closed unit ball is 

w*-continuous. 

By the theorem of Banach-Dieudonnd (or Krein-~muljan, cf. e.g. [6, p. 429]), 9'  

is itself w*-continuous, and so there is an element ] E L  such that  

~'(q)=q(]),  all qEL*. (35) 

If x E X is arbitrary, then by (35) and by the definitions (10) and (13) 

](x) = ~(x) (]) = ~'(~(x)) = f o x /  dm, (36) 

where m is any measure on :~0 such that  [m[ ( X ~ X ) = 0  and such that  m represents 

~v(x) in the sense of (2); or what is equivalent, if m represents x in the sense of (1). 

If x E~X, then we may choose the measure m of (36) to be the positive unit 

mass concentrated at x. Hence 

](x)=/(x), all xE~X. (37) 

Thus [ is a function which belongs to the class L and extends /. The proof is 

complete. 

We shah apply the theorem to the case where L is the real sup.norm space of 

continuous affine functions on a compact convex subset X of a locally convex Haus- 

dorff space E. Here ~X is the same as the extreme boundary ~eX, and for a contin- 

uous and bounded real valued function / on ~X, f is the u.s.c, concave upper envelope 

of ] and ] is the l.s.c, convex lower envelope of ]. Also we note tha t  LI(~X) is (can- 

onically isomorphic to) the space ~(~eX) of generalized a//ine dependences on the ex- 

treme boundary o/ X ,  whereas L-L(X) is the space ~(X) of generalized a/line depend- 

ences on X .  (cf. [1]). 

We are now able to establish the theorem of [2] without any metrizability condition. 

COROLLARY 1. Let X~ be a compact convex set in a locally convex Hausdor// space 

E~ /or i-= 1, 2. A continuous map cf o/ the extreme boundary ~eX1 into X 2 can be ex- 

tended to a homomorphism (continuous a/line map) o~ X1 into X 2 i/ and only i/  the 

/ollowing two requirements are saris]led: 
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(i)' I /  ~E~(~XI) ,  them the trans/ormed measure q~u belongs to ~(X2). 

(ii)' The restrictions o/ /oq~ and /oq9 to ~eXi are continuous /or every /EE~. 

Proo]. Again the necessity is obvious. To prove sufficiency we assume (i)', (ii)' 

and choose an arbi t rary /EE~. The conditions (i), (ii) of the theorem are valid with 

/~ in the place of f by virtue of the conditions (i)', (ii)" above. Hence there exists 

a continuous affine function ]o V on X 1 which extends /o~.  

Let  x EX be arbitrary,  and let m be any probabili ty measure on ~0 such tha t  

m(~X) ~ 1 and such tha t  m represents x. (Geometrically, x is the barycenter of m). 

The continuous mal~ping ~: ~eXI-~X ~ has a weak m-integral z in the compact convex 

set K s. (Geometrically, z is the baryeenter of the transformed measure ~m.) By  the 

fact tha t  [o~  is continuous and affine, and by  the definition of weak integrals: 

= ( 1 o r  d m  = l(z). l~162  x 

I t  follows tha t  z is independent of the choice of m. Hence we may  write z=~(x),  

obtaining: 

/ o ~ ( x )  = / ( ~ ( x ) ) .  (38) 

Clearly ~ is affine, and for every xE~eXl: 

/ ( ~ ( x ) )  = l o ~ ( x )  = l((D(x)) 

Since / was arbi trary in E~, this implies ~(x)=~(x)  for x E~eX1. Hence q~ is an 

affine extension of ~ to the whole set X 1. 

Finally we observe tha t  (38) gives continuity of ~ in the given topology of X 1 

and in the weak topology of E 2. By the compactness of X2, the latter topology 

coincides with the given topology of X~, and the proof is complete. 
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