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As pointed out  in [4], a number  of known results in the theory  of approxima- 

t ion m a y  be interpreted in terms of the behaviour,  for small values of the parameter ,  

of an expression (called by  us the a-deviation) based on convolving a funct ion with 

a measure o. More specifically, so called direct, inverse, and saturat ion theorems of 

approximat ion theory  are all interpretable in terms of comparison (for f ixed / )  of the 

01-deviation with the o2-deviation, where o 1 and a2 are suitably chosen measures. This 

is basically a Tauberian problem; results of considerable generali ty are proved in the 

present paper, and some applications to approximat ion  theory  are given (a more sys- 

tematic  account  of applications will appear  elsewhere). 

1.1. Notation and preliminaries. By R m (m >~ 1) we denote real Euclidean m-space. If  

x = (x 1 . . . .  , xm) and y = (Yl . . . .  , Ym) are elements of R m, x ' y  denotes ~n-1 x~y~ and ]lx]] = 

(x ' x )  �89 The letters t, u,v,  ..., y always denote elements of R z. By  C we denote the 

class of complex-valued bounded continuous functions on R ~. M denotes the class of 

complex-valued finite countab ly  addit ive measures on the Borcl sets of R m, made into 

a ring under  the convolution ~- characterized by :  ~ = o~-~  if and only if, for all(1) 

g E G, S gd~ = ~ g(t + u) dat dvu. (Greek letters shall always denote measures.) W denotes 

the isomorphic (Wiener) ring (with respect to ordinary multiplication) of Fourier  trans- 

forms d :  (?(x)= ]e-~X'tdat of elements of M. V(a) denotes the total  variation of o, and 

W is normed by  taking II(?l[w= v(a). Observe tha t  for any  positive scalar a, d(ax) has 

the same norm as ~. 

For  p ELI(R  m) we write ~ to denote the Fourier  t ransform of the measure pd,~ 

(1) A subscript on a measure indicates the variable with respect to which to integrate. 
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(A=Am:Lebesgue  measure on Rm), i.e., ~(x)=ye=*~'tp(t)d),t. ~ always denotes a unit  

mass concentrated at  the origin. 

For  a E M, and a positive scalar a we define the a-deviation of a funct ion /E C by  

D~ (1) 

An evident consequence of the definition is 

Do+~ (1; a) <Do (/; a)+ D~(/; a). (2) 

LEM~A 1. I /  a divides ~ (in the ring M), say cr-~ ~=~, 

D e (/; a) ~< V(~) Do (/; a). 
Proo]. 

if,,, fj',,,- 
and the result  follows. 

a u -  av) daud~ <<. V(v)sup J / ( t  

= V(T) Do (/; a) 

au - av) da~ 

Combining this with (2) above gives the more general result(1) 

(3) 

L]~MMA 2. I /  ~ belongs to the ideal generated by ~1, ..., ~ ,  say ~ = ~  a~ ~e v~, 

D e (/; a) < ~ V(~,) Do i (/; a). (4) 
t = l  

Clearly the hypothesis  of Lemma 2 can be phrased:  " I f  ~ belongs to the ideal 

(in W) generated by  ~1, ..., ~r." This formulat ion is more convenient  for us. Our main  

result is tha t  an  inequali ty slightly weaker than (4) is t rue if we assume only tha t  

belongs locally to  the ideal generated by  ~1,-.. ,  ~r, i.e., t ha t  for some ~, E M,  

~ - ~ = l ~ d i  vanishes in a neighborhood of the origin (for a precise s ta tement  see 

Theorem 2). 

1.2. We leave to the reader the proof of 

LEMMA 3. I /  a pair o/ measures satis/y the relation ~(x)= (r(cx), where c is a posi- 

tive scalar, then /or any / and a > 0, D e (/; a ) =  Do(l; ca). 

Remark. Since a and ~ uniquely determine each other,  we may,  by  an abuse of 

language, speak of Do(l; a) also as the b-deviation of ]. This is convenient  since we 

(1) Conversely, an inequality of the form (4) implies p belongs to the ideal generated by 
a 1 . . . . .  a n (this was shown and kindly communicated to us by D. L. Ragozin). 
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shall speak mostly not of measures but of their Fourier transforms. Thus, Lemma 3 

says simply that  ~ and the ~-deviation are covariant with respect to scale change in 

the independent variable. 

We shall say a sequence an E M  is s-convergent to a, written a ~  a to mean 

limf/d~=f/d~, all /EC.  (5) 
n---~ o~ 

The notion of s-convergence when n is a continuous parameter  is defined similarly. 

By  abuse of language we shall also speak of s-convergence of elements of W, tha t  is 
^ 8 
an --~ ~, in case (5) holds. An example, which we shall need later, is given by  

LEMMA 4. For /cELI(R m) we have as a---> + co 

m 8 a k(at) d2---* It(O) d5 

Proo/. The two relations are equivalent, and we prove the first. For / E C we have 

(all integrations being over R m) 

as a ~  + oo by dominated convergence. 

Some useful properties of s-convergence are summed up in 

LEMMA 5. Let R~, S~ denote elements o / W .  Then 

(i) I /  R~ ~ R, S~ ~ S, then aR~ + bS~ ~ aR § bS /or any real scalars a, b. 

(ii) I /  Rn ~-5. R, then S R ~  SR /or any S E W. 

(iii) I] R~ ~ R, then R~ (ax) s_~ R(ax) /or a > O. 

(iv) I /  n~ = ]]R~l[< oo, and T(x)=  R~(x), T~= ~ R~ is s-convergent to T. 
= 1  n = l  j = l  

Proo/. (i) and (iii) are immediate and left to the reader. As for (ii), let R~, R, S 

be the Fourier transforms of ~ ,  ~, a respectively. For any /E C we have 

{where we nave written g(u) for ~/(tTu)da(t)) ,  showing that  
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As for (iv), write T = T n + Z n ,  where HznH-+0. Let t ing T, T~, Z~ be the Fourier  

t ransforms of T, z,,, ~n respectively, we have for fEC  

which tends to zero as n-~ ~ .  

LEMMA 6. I/ an ~--~a, then /or any [eC,  a > 0  

Do (/; a) ~< lira inf Don (]; a). 
n-~oo 

Proo/. Let  e >0 ,  and choose t o so tha t  

if/(to-au)da(u)l>Do(/;a)-e. 
By hypothesis,  

If,  0 I 
hence Do (/; a) - e ~< lim inf D,,~ ([; a) 

n-~>oo 

and the result follows. 

We also require the following well-known result  on Fourier  transforms: 

L]~tMA 7. Let R, S1, S2, . . . ,S~ be elements o/ W, and K a compact set in R m 

such that 

(a) R (x )=  0 outside K, 

(b) ~ ] S , ( x ) ] > 0  lot x e K .  

Then R belongs to the ideal in W generated by S 1 . . . .  , St. 

For the proof we refer the reader to the l i terature (e.g., Rudin  [3]). 

1.3. The Tauberian theorem 

LE~MA 8. I /  ~ is di//erent /rom zero /or Ilxll= 1, and ~ divides ~ at the origin 

(that is, ~ - ~ vanishes in a neighborhood o/ the origin, [or some T E M), we have/or any 

/ E C  and a > 0  
oo 

Do(l; a) <AD~(/; a) + B ~ Do (/; Cbia). (6) 

Here A, B, C are positive constants depending only on (~ and ~, and b (0< b<  1) depend~ 

only on (~. 
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Proo/. By continuity, there is a number c > l  such that  ~(x):~0 for any x EE, 

where E={xil~<llxi]  ~<c}. Let  P he a function of class C ~ equal to one for ]]xi] ~<1 

and to zero for IIz]l~>c~. Then, setting b=c-~, P(bx)-P(x) vanishes for all x in the 

complement of E and therefore by the case r = 1 of Lemma 7, 

P(bx) - P(x) = ~(x) Q(x), Q E W. (7) 

Now, ~ (P(b" lx) - P(bix)) = P(b~+lx) - P(x) ~--~ 1 - P(x) 
i=0 

as n - ~ ,  by Lemma 4. Therefore, in view of (7) 

P(x) + ~ ~(b%) Q(b~x) ~ 1. 
~=0 

Therefore, by Lemma 5, (iii), for any C > 0  

P(Cx) + ~ ~r(Cb~x) Q(Cb~x) _L~ 1 
t=0 

and applying Lemma 5, part (ii) 

P(Cx) ~(x) + ~ #(Cb%) Q(Cb~x) ~(x) ~ ~(x) (8) 
t=0 

Finally, recall that  by hypothesis, for some T E W, 

~(x) T(x)= ~(x) 

holds in some neighborhood N of the origin, and therefore we can find a positive con- 

stant C such t h a t  
P(Cx) ~(x) = P(Cx) ~(x) T(x) (9) 

holds for all x, since when x is outside 2V, P(Cx) vanisheS, if C has been chosen large 

enough (P being of compact support). From (8) and (9) we have, with such a choice of C 

P(Cx) T(x) ~(x) + ~ Q(Cbix) ~(x) ~r(Cb~x) ~-~ ~(x). (10) 
t=0 

We now apply Lemmas 2, 3 and 6 to (10), and we get, for any /EC and a > 0  

n~(/; a) < l]Pll~ ]]T]]wD~(/; a) § HQHw V(~)i~oD, (/; Cb'a) 

and the Lemma is proved. 

Remarks. I t  should be observed (for purposes of application) that,  for a concrete 

choice of q, r the various constants occurring can usually be estimated quite explicitly. 
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Also, if (? is fairly smooth (this is generally the case in applications) the depth  of 

Lemma 7 is not  required (since then the quotient  of P ( x ) -  P(bx) by  #(x) is smooth 

and of compact  support,  which guarantees,  by  e lementary theorems, tha t  it is an L 1 

transform). We are indebted to C. O. Kiselman for calling this point  to our at tent ion.  

LEMM.r 9. I f  (~1 . . . . .  (rr are measures such that ~=l l~t (x) l  is different from zero 

/or Ilxll = 1, and ~ belongs locally (at x=  O) to the ideal generated by ~1, ..., ~r, then 

De(f;a) <~ ~ .A,Do,(f;a)* B ~ ~ D,,,(I; Cbka), 
i = l  k=O i = l  

where A~, B, C are positive constants depending only on ~ and a, and b (0<  b <  1) depends 

only on a. 

Proof. We construct  P as in the previous proof, and now get in place of (7) 

r 

P(bx) - P(x) = ~ Q~ (x) ~ (x). 
t = l  

The rest of the proof is similar to the proof of Lemma 8 and we omit  it. 

LI~MMA 10. Consider any family of continuous complex-valued functions on a com- 

pact topological space. I f  every finite subcollection has a common zero, there is a point 

where all the functions o/ the family vanish. 

Proof. Assume the contrary.  Then to each point  x in the underlying space X we 

can associate a funct ion /x in the given family which is different f rom zero in a neigh- 

borhood N~ of x. B y  compactness,  X =  U~-IN~ for sui tably chosen x~. The associated 

/xi ( i =  1 . . . . .  n) have, by  hypothesis,  a common zero y. Since ye/Vxj for some ?" (1 <?" ~<n) 

we have /xj (Y) # 0. Contradiction. 

Definition. A funct ion F on R m satisfies the Tauberian condition if, on each half- 

r a y  through the origin, there is a point  where F does not  vanish. ( In other  words, 

if for every x with ]]xll= 1 there exists c>~0 such tha t  F(cx)#O.) 

A measure a will be said to satisfy the Tauber i an  condition if ~ does. 

Examples. (a) Any  real non-nu l l  measure a on R 1 satisfies the Tauberian condi- 

tion, since (~(-x)  = ~(x), therefore there exist at  least one positive and one negative 

value of x for which # ( x ) # 0 .  

(b) On R 1, the measure dt / ( t+ i) ~ doesn ' t  satisfy the Tauberian condition, because 

its Fourier  t ransform vanishes for x ~< 0. 
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(c) If  (~ denotes a unit  mass concentrated at  the origin, and KELI(Rm), d~-Kd2  

satisfies the Tauberian condition, since its Fourier  t ransform is 1 -  ~ ,  which is non- 

zero for all sufficiently large ]]x]l , by  the Riemann-Lebesgue  theorem. 

L E M ~ X  11. A continuous complex-valued /unction F on R" satis]ies the Tauberian 

condition i/ and only i/ there exist positive numbers c1<... < cr such that 

~lF(c~x)]>O, all ] N [ = I .  (11) 
4=1 

Proo/: I f  F fails to satisfy the Tauber ian condition there exists x 0 with ]]xol I ---1 

and  F(exo)=O for all c>~0, so (11) cannot  hold. Suppose on the other  hand  F satisfies 

the Tauberian condition. Then the functions Fr where c ranges over all 

positive numbers,  do not  all vanish at any  point  of the uni t  sphere. B y  Lemma 10, 

there is a finite subcollection of the F c with no common zero on the uni t  sphere, 

and this gives (11). 

We come now to our main  result. 

THEOREM 1. I] ~ satis/ies the Tauberian condition, and ~ divides ~ at the origin, 

we have /or any /E C and a >O 

De(l; a) <~A ~ ~ Do(l; Bjbka). (12) 
k=0j= l  

Here A, n, Bj are constants depending only on Q and a, and b (0<  b <  1) depends only on (r. 

COROLLARY. / /  0" satis/ies the Tauberian condition, and ~ vanishes in a neigh- 

borhood o/ O, then (12) holds. 

Remark. The hypothesis  tha t  a satisfies the Tauberian condition cannot  be dropped. 

For  a counterexample,  take m = 1 and consider any  measure ~ such tha t  ~(x) = 0 for 

x >7 0. Suppose the conclusion of Theorem 1 were to hold for this a. Choosing t ( t )=  e ~t, 

we have for any  a > 0 ,  

f / ( t -  au) d~(u) = f e~(t-a~) d(~(u) = e~t ~(a) =O 

so tha t  D,(/;a) vanishes for all a > 0 .  I f  Theorem 1 were applicable to this a, we 

should have De(ea; a)=O, and hence ~ (a )=0 ,  for all a > 0  and any  ~ such tha t  

vanishes in a neighborhood of zero, which is obviously untrue.  A similar example can 

be constructed in R m. 

Theorem 1 is the case r = 1 of the  following theorem (we have s ta ted  it  separately 

because it i s impor tan t  for applications). 

1 9 -  682902 Acta  mathematica 120. Imprim6 le 24 juin 1968 
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T ~ E O ~ M  2. I /  al, ..,aT are measures such that ~=11 ~[ satisfies the Tauberian 

condition, and ~ belongs locally (at x= O) to the ideal in W generated by 61 . . . .  , ~ then 

/or any /EC and a>O 

De(/ ;a)<A ~ ~ ~Do,(/;Bib~a). (13) 
k~O i=l  t=l  

Here A, n, Bj are constants depending only on ~ and the g~, and b ( 0 < b <  1) depends 

only on the a~. 

Proo/. By Lemma 11 there are positive constants c 1 < . . - <  c~ such that  

> o  for  lixll = 
i ~ l  j = l  

Also, ~(c~x) belongs locMly (at 0) to the ideal generated by (a~(c~x))~=~ ...... and a 

/ortiori to the ideal generated by {a~(csx))~ ~ ..... r:j=~ ....... Therefore, by Lemmas 3 and 9 

) De(/; c~a) <~ j i AiD~,(/; cja) + B  k~o i=~D~(/; Cbkcja) 

and replacing a by a/c I gives the result, with a slight change of notation. 

Remarks. In  the most important  applications we will have D~ (/; a) = O(aV), i = 1, ..., r 

for some positive p. (13) then gives De(/; a) = O(aV). 

An example of a situation where Theorem 2 is applicable but  not Theorem 1 is 

obtained by  taking m = 2, and #~(x) = (1 - e-~-z)~, n = 1, 2, 3 where the y~ are pairwise 

linearly independent vectors in R 2 and ~(x)=(1-e-~Y'x)  ~. Then ~[~=1 satisfies the 

Tauberian condition and it is not hard to verify that  ~ belongs locally (at 0) to the 

ideal generated by  the ~ .  From this one can deduce tha t  if the second-order moduli 

of smoothness (see [2]) of the restrictions of an f E C(R 2) to each of three lines through 

the origin(1) a r e  O(aq) ,  the same is true for the restriction of / t o  every line through 

the origin (for more general results of this type see Boman [1]). 

2. We shall now deduce some useful results from Theorem 1. 

T H E O ~ E ~  3. Let (l, ~ be measures on R m. Suppose a satls/ies the Tauberian condi. 

tion, and ]or some ]EC, Do(/; a)=O(a q) with q > 0 ,  as a-->O. Suppose there exists a/unc- 

tion P defined and positive-homogeneous o/ degree r > 0 in a neighborhood N o/the origin 

(i.e., P(bx)= brp(x) /or small positive b) such that both P(x) and ~(x)/P(x) coincide in 

2I with elements of W. 

(1) Actually two directions suffice, as further analysis shows (remarked by D. L. Ragozin). 
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Then De(/;a) is large 0 o/ a q, aqllogal, or a ~ according as q is tess than, equal 

to, or greater than r. 

Proo/. We remark first that  there is no loss of generality in assuming that  ~ is 

itself positive-homogeneous in N. Indeed, suppose the theorem were known in this 

case. Writing P(x)=7~(x) for x EN  we obtain the desired conclusion first for D=(/; a), 

then for De(l; a) by an application(i) of Theorem 1. Consider now the function 

T(x) = ~(x) - 2-r ~(2x). 

Because of the homogeneity of ~, T vanishes in a neighborhood of 0, hence by the 

Corollary to Theorem 1, 
D~(/; a) <~Aa q (~= T), 

where A does not depend on / or a. Now, 

oo 
~(x) = ~ 2-nrT(2nx), 

n - 0  

where the series on the right is s-convergent by Lemma 5, part (iv). Therefore, by 

Lemmas 3 and 6 

De(]; a) ~ Z 2-nrn~(/; 2ha) -<<A 1 ~ 2 -~r min ((2~a) q, 1) 
n - 0  n = 0  

where A 1 is a constant (as also A~ . . . .  below). If q< r the sum is less than 

A1 ~ (2q-r)na q= A2a q. 
n = 0  

If q~>r observe that  for each m 
m 

De(/; a) ~ A l  ~_o2(q-r)n aq + A22 mr. (1) 

For q = r  this is O(ma '+2  -m~) which is O(aq[loga]) i f  we take ~  f ~ ~  Finally, 

if q>r ,  the right side of (1) is O(2(q-r)rnaq•2-mr) which is O(a ~) if we choose 

m =  [ l o g ~  ~. This completes the proof of Theorem 3. 

Remark. I t  is clear that  similar results could be obtained with a q replaced by 

more general functions of a. 

COROLLARY. I]  / E C ,  and a is a non-nuU real measure on R 1 such that D~( / ;a)= 

O(aq), then the modulus o[ smoothness o/ /, o/ order r, is large 0 o/ a q, a q log (I/a),  or 

a r as a-~O according as q is less than, equal to, or greater than r. 

(1) We m u s t  ar range tha t  ~ satisfies the  Tauber ian  condition, which we can certainly do 
wi thout  dis turbing .its values in /V. 
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Proo/. The modulus of smoothness of order r is defined by 

eor (/; s) = sup De, (/; a), 
O<~a<~s 

where f l= flr is the discrete measure w i th  "mass"  ( - 1 ) J  ( ; )  at the point j ( j=O, 1 ..... r), 

fl(x) = (I - e-'X) r. The function P(x) = (ix) ~ is positive-homogeneous of degree r, and both 

P(x) and f l (x) /P(x)  coincide with elements of W in a neighborhood of 0. Since a satisfies 

the Tauberian condition (as remarked earlier, any real non-null measure on R 1 does), 

we have only to take fl for Q in Theorem 3, and the Corollary follows. 

We give some applications to approximation theory of the Corollary. 

THEOREM 4. I] /EC(R1) ,  K E L i ( R  1) and /or some q > 0  

]/(t)- f :  f(t-u)sK(su)du =O(s-~ s-> + (2) 

uni]ormly in t, the modulus o] smoothness ol 1, o/ order r, is large 0 o I a q, a q log ( l /a) ,  

or a ~ as a->0, according as q is less than, equal to, or greater than r. 

Remark. We could not find this result in the literature (nor the following theo- 

rem) even for special kernels K, e.g., K(t )=  (I/7t)(sin t/t) 2 in which case the integral 

in (2), for / of period 2z, reduces to the Fejdr sum of order s of the Fourier series 

of 1. I t  is rather striking that  in this theorem no hypothesis beyond integrability 

need be imposed on K. 

Proo I o I Theorem 4. Making the change of variable v = s u ,  and writing a =  l / s ,  

we may reformulate (2) as saying that  the (~-deviation of / is O(a q) as a->0, where 

da=  d (~ -Kd2  (~: unit mass at 0, ~: Lebesgue measure on R1), and the result follows 

from theCorol lary .  

T~wol~]~M 5. 1 t ]EC(R1), K E L I ( R  1) and K is not identically zero and has an 

integrable derivative o/ order n, and /or some q ( 0 < q < n )  

dt ~ l ( t - u ) s K ( s u ) d u = O ( s q ) ,  s-> + co (3) 

unilormly in t, the modulus o I smoothness o I 1, o1 order r, is large 0 o I a n-q, a ~ log ( l /a)  

or a ~ as a->O, according as r is greater than, equal to, or less than n -  q. 

Proo 1. The left side of (3) equals 

dtnJ-dn ~ ~ ( u ) s K ( ~ t - s u ) d u = s ~ f : ~ ~  _ _ 
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Hence, taking da = K ( n ) d u ,  the a-deviation of / is O(a~-q), and the conclusion follows 

from the Corollary. 

I t  is easy also to deduce from the Corollary "inverse theorems" of Bernstein and 

Zygmund, i.e., to infer from the existence of trigonometric polynomials (or entire func- 

tions of exponential type) which approximate / corresponding upper bounds for the 

moduli of smoothness (see [4]). Theorem 3 provides a convenient tool for proving higher- 

dimensional versions of these theorems. This method has perhaps some methodological 

interest in that  the "Bernstein inequality" for the derivative of a trigonometric poly- 

nomial is not used. 

3. L P theory 

I t  is easy to extend the provious analysis to L p, rather than uniform, norms. 

We outline the main steps. In this section ~ always denotes the total variation of 

the complex measure a. If a is any non-negative countably additive measure on the 

Borel sets of R m, we define LP(cr to be the set of complex-valued Borel measurable 

functions on R m such that  j" ]/]~d~< oo. By  []/]], we always denote the usual L p norm: 

][/]];= (~ [/[~d;tm) 1/;, ;Lm: Lebesgue measure on R ~, and L2 always denotes L~(;tm). When 

there is no ambiguity we write ~ for R~. 

We shall always suppose 1 <t0< oo  I t  will be convenient to introduce the fol- 

lowing notations. 

Fo(t;a)=j/(t-au)d   for /EL  p, a e M ,  (1) 

D`,.,(/;a) = IIF`,( ;a)ll,. (2) 

D`,.~ (as a function of a) we call the a, p deviation of /. Let  us first verify that  for 

/EL  p, F~( ;a)EL'. We have from (1), 

(t; o) 1 < f l/(t-au)[d(ru, If,, 

IF`, (t; a) I" <~ v(a)'-l f l/(t- au) lP da~, 

f[F`,(t;a)[ 'd2<~ f f v(~)" -:~ [ / ( t -  au)[ ~' d~,,d~ 

and, carrying out the t integration first we see that  the double integral on the right 

equals V(~)~]/]Pd~, and we have proved that  F`,( ;a)EL ~ and 

D`,. p (/; a) < V(a) II/I]~- (3) 
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Thus the a, p modulus of an L" function is finite and bounded. The reader may easily 

verify that  it is uniformly continuous in a and vanishes at a = 0. 

We omit the simple verifications of 

D~. ~ (f + g; a) ~ Do,. (f; a) + Da,. (g; a), (4) 

D~+~,. (/; a) -~< D. , .  (/; a) +Dr , .  (]; a). (5) 

L~M~A 12. I] a divides ~ (in the ring M), a~T=Q,  then 

Do~,.(/; a) < V(v) D~,.(/; a) (6) 
for all [E L ~. 

Proo/. For any g e L" we have S g(t + u) dat dTu = ~ g d~. Hence 

I f /(t-au) deul= f f /(t-au-av) d  dv, =l f F.(t-av; a) ,, 

hence I-Re(t; a)l" < f lFo(t- av; a)l" dv v. 

Multiplying by d~t and integrating, and on the right side performing the t-inte- 

gration first gives 

fiFe(t; a)l~ V( )fIFo(t; a)l'd  
and this implies (6). 

From (5) and Lemma 12 we obtain the analog of Lemma 2. We can now easily 

prove 

LEMMA 13. Let ~, a be as in Lemma 8. Then /or any /EL" and a > 0  we have 

De," (/; a) <AD. , .  (/; a) + B ~ D~.. (/; Cb~a), 
i - 0  

where A, B, C are positive constants depending only on q and ~, and b (0< b< 1) depends 

only on ft. 

Prvo[. With the same notations as in the proof of Lemma 8 we have 

n 

P( Cx) ~ (x) § ~ d( Cb~ x) Q( Cb~ x) ~(x) = d(x) P(b~ + l x). 

The only place where the proof of Lemma 8 must be modified is in showing 

De,.(/; a) ~< lim infDq.,.(/; a), (7) 
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where ~ (x) = ~(x) P(b~+lx). Now, if / e L ' ,  

f/(t-au)de (u)=ff/(e-au-av)s k( v)deudXo, 
where s=b -n-I, since P(x/s) is the Fourier transform of smk(st)d~ ~ (here we write 

P =  $, rather  than ~, to avoid notational confusion, and dQ~(u) to indicate that  inte- 

gration is with respect to u). 

(t; a) = f F (t- av; a) k(sv) 

= f F  e (t - bn+lau; a) k(u) d~u. 

Let us for brevity write F(t) in place of Fe(t;a), and c~=bn+~a. Then 

Let Gn denote the first term on the right; H51der's inequality gives 

where A depends only on k. Therefore 

Performing first the t-integration on the right, and noting that  as n-> ~ ,  c~-+0, and 

consequently .~ IF(e)- F ( t -  c,~u)] '~ Ik(u)l d ~ O  for each fixed u, we see by dominated 

convergence that  [[G~I[,-~0. Now, from (8), lIFli,<lia ll +lIF .( ;a)ll,, i.e., 

De," (/; a) ~< IIG~ll, + DQ.,~ (f; a) 

which implies (7). Thus Lemma 13 is proved. 

We can now extend all the theorems of the preceding sections from C to L ' .  

One has only to replace C by  L p and Do by  D,.~ in each theorem. 

4. Concluding remarks 

4.1. I t  is natural  to ask whether one can prove similar results for other spaces 

of functions. For example, suppose X is a linear topological space of functions on R ~, 

which contains the exponentials (e-~X't}x~Rm, and the linear span of these is dense in X. 
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Suppose  also t h a t  / ( t - a u ) E  X (as a funct ion  of u) wheneve r  /E X.  I f  (r is a cont inuous  

l inear  func t iona l  on X,  and  the  funct ion C~u](t-au)=F(t; a) belongs to L p, we m a y  

define the  a, p dev ia t ion  of / to  be the  L ~ no rm of F .  Since ~(x)=trt(e -~x't) can be 

def ined in th is  s i tua t ion  we  m a y  ask  w he the r  Theorem 1 holds or not.  P r e l im ina ry  

inves t iga t ions  show t h a t  for cer ta in  choices of X (e.g., X =  C 2 w i th  a qui te  n a t u r a l  

topology)  Theorem 1 is no longer  t rue.  On the  o ther  hand,  the  much  more  t r iv ia l  

L e m m a  2 (i.e., the  case where  ~ is globally, and  no t  mere ly  locally,  equal  to  a l inear  

form in the  ~ wi th  e lements  of W as coefficients) is widely  extendib le .  This  po in t  of 

v iew leads  to  s imple proofs of J ackson ' s  Theorem in h igher  dimensions,  Sobolyev ' s  

inequal i ty ,  cer ta in  s a tu ra t i on  theorems,  etc. These resul ts  shall  be p resen ted  elsewhere.  
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