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Let  p be a fixed odd prime. Let  q =  pro, for some fixed integer m>~ 1. Let  ~ be 

a primitive qth root of unity. Let  G be the Galois group of the cyelotomic field of 

the qth roots of unity over the rational field, Q. Let  ~ (R) be the group ring of G 

over the rational integers (the rational p-adic integers, Z~). 

The main idea of the first par t  of this paper is a generalization of Iwasawa 's  

work [3] on the group index of certain additive sub-groups of ~ (R). The main result 

of this p a r t  is contained in the Corollary to Proposition 3, namely: 

I f  ~(a) E G be such tha t  a(a) (~)= ~a, and if B n ( x ) = n t h  Bernoulli polynomial, 

then let 
eon= ~ a q n - l B n ( a / q )  a(a) -1 (O~<a<q, ( a , p ) = l ) .  

~o n is an element of the group algebra of G over the p-adic number field. Let  

+ _ _  I n - ( ~ ( 1 ) + a ( - 1 ) ) R N R e o n  (neven)  

I ;  = (a(1) - a ( -  1)) R fl Reo,, (n odd) ; 

then, JR+: I +] = q- [pth par t  of ( 1-I B~)] (n even) 
g r e s i d u e  c h a r -  

a c t e r  m o d  q 
X(-1)=I 

JR- :  I ; ]  = q. [pth par t  of ( 1-I B~)] (n odd). 
g r e s i d u e  c h a r -  

a c t e r  r ood  q 
g ( - 1 ) = - I  
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(See the appendix for the definition of B~, the nth  generalized Bernoullli number asso- 

ciated with the residue character Z modq.) There is an analogous but more compli- 

cated result for the group ring over the rational integers. 

The second part of this paper has two loci of interest. First, an elementary com- 

I + putation shows that  p [ [R- : I~] if and only if p I [ R+ : ~ ]" This suggests the existence 

of an isombrphism ~of R - / I f  and R + / I ~  and more  generally of the additive groups 

R- / I~  and R+/I++~ (n odd) ,  R+/I~ * and R-/I~+~ (n  even). We don't quite obtain these 

isomorphisms. We do obtain the following. If ~ : R - ~ R / q R  is the canonical coset 

mapping, then Theorem 1 says that  if p~:2, pXn, PX n +  1, then 

g(R +)/g(In +) -- g(R=)/:#(I;+l) (n even) 

7~(R- )//g(I~ ) ~ 7t(R + )//g(I++l) (n odd) .  

As Corollary to Theorem 1, we have if p~e2, pXn, pXn+ 1, then 

p{{q" [pth part (XmI~dq B~)]} 
Z(-1)= -1 

if and only if p]{q. [pth part ( 17[ B;+I)]} (~ odd). 
g mod q 
g(-1)=l 

An analogous result holds for n even. 

The other focus of the second part of this paper is  related to Iwasawa's work 

in [4]. For each m ~>1, define qm= pro, $,m= cyclotomic field of the qmth roots of unity, 

Gin= Galois group of F m over the  rational number field. We have for each m : Rm, R~ +, 
R/n, n I+ (n even), nI/n (n odd). The additive groups form, inverse systems with respect 

to the mappings "generated" by the restriction mappings on the Galois groups. If 

"~ = ~.~ m~l Fro, then the group ring Zr[G(F/Q)](1) operates naturally on Rm, R +, R/n, mI + 

(n even), and ~I; (n odd). Iwasawa defines a u-isomorphism of Zv[G(F/Q)].modules to 

be an additive isomorphism such that  

v(x ~ = u(a) v(x) ~ (x e the module, a E G(F/Q)), 

where ~r is the isomorphism 

: G(F/Q) ~ group of units in the p-adie number field 

given by ~,= ~x(o) 

for any a E G and ~ any qmth root of unity. 

Iwasawa [4] introduces various Z~ [G(F//Q)]-modules which are of interest in deter- 

mining the arithmetic structure of the eyelotomie fields. Two such modules are (X/Z) + 

(1) (~( / ) shall denote the Galois group of the Galois extension in the parentheses. 
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and ( ~ / ~ ) - .  To study the algebraic  structure of (X /Z )  + it would suffice to find a 

Zr[G(F/Q)]-module M whose structure is known and for which we have a x-isomor- 

phism of M - ~ ( ~ / 3 ) - ;  indeed, we would have induced a Zp[G/Q]-isomorphism 

M ~ (X /Z)  + 

and we could then recover the structure of (X /Z )  +. (See section 2.4 of this paper  fo r  

l i~ D+/  T+ (inverse limit). We define a map details.) Our choice for M is ,~,ml,,,n/ml2 

v :  lim R~/mI~ -~ (~//3)- 
m 

which has the property of being an additive isomorphism, but  v(x ~ = ~(a) "-~ v(x) . While, 

failing to obtain the u-isomorphism, we do obtain a theorem of interest in itself: 

(Theorem 2) If  pXn,  p ~ n + l ,  p:4=2, then 

lim R~/mI~ = hm R~/~I~+1 (n odd) 
m m 

lim R~/mI~ ~ lim R~n//mI~+i (n even) 
rn ~n 

(all limits being inverse). 

This paper is based upon my doctoral dissertation done under the direction of 

Professor K. Iwasawa at  M.I.T. I gratefully acknowledge Professor Iwasawa's  assist- 

ance and encouragement in writing the dissertation. 

w  

1.1. Let  Z and Q denote t h e  ring of rational integers and the rational field,. 

respectively. Let  ( be a primitive qth root of unity. As above let G be the Galois. 

group of the cyclotomic f ie ld of the qth roots o f  unity over the: field of ra t ional  

numbers. The elements of  G are isomorphic with the group (Z/qZ)*: of invertible ele- 

ments  of the residue class ring Z/qZ  under the mapping: 

(z/qz)* 

amodq~a(a )  where a(a)(( )=~ a ( a , p )=  1. 

Let  T e G correspond to - 1 under this mapping, i.e. T(() = (-1. For the rest of the paper" 

we adopt  the following notation: 

Ya = Y ; 5 ; 5'. '= 5 . 
O~a<q O<~a<q/2 l<a<q/2 
( a , p ) = l  ( a , p ) = l  ( a , p ) = l  

Let R = Z[G] and $ = Q[G]. Iwasawa [3] put  R-  = (x ~ R I (1 + T) x = 0} which is an ideal_ 

in }~. He then defined 
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o) = q-1 ~a aa(a)-' 

and put  Y - =  ~ - N  ~ o .  Iwasawa calculated 

[ ~ - :  ~-]  = 2q YIz ( - ~qq ~ ,  a i ~ l  _i(a) ) . 

where g ranges in the product over all characters of (Z/qZ)* such that  g ( - 1 ) = -  1, 

or, otherwise stated, over all residue characters modq  such that  g ( - 1 ) = -  1. 

A key part  of the proof is the fact that  (1 - ~) qeo is regular in the ring ~ -  which 

in turn follows from the fact that  ~a aZ(a):4:0 if and only if g ( -  1)= - 1 .  

In considering one possible generalization of Iwasawa's work, we define 

(D = q -  1 ~ a  a2 a ( a ) -  1 o) o = qo). 

If X is a character on (Z/qZ)* and ~=~aXaa(a) is an element in S, we define 

z(~) = Ya xaZ(a). 

I f  we let e + = � 8 9  e - = � 8 9  then 

S= e+S@e-$. 

~+$ is a semi-simple commutative algebra over Q with identity ~+, and its absolutely 

irreducible (one-dimensional) representations ~ are obtained from the characters g of 

G with Z(~)= 1 in the obvious manner. Hence the determinant of the matrix for e + co 0 

in a regular representation of e+S is given by 

1-I~ ~(~+ o~0) = 1- I~  Z(o~0), 

where the p roduc t  is taken over all Z mod q such that  Z( - 1) = 1. For Z~ = 1, Z-l(OJo) = 

~aa~Z(a) = qB~ where by  B~ we mean the n th  generalized Bernoulli number associated 

with the character Z. See statement (A8) in appendix of this paper for proof of this 

assertion. In general (An) refers to the nth numbered formula or statement of the 

appendix. Also for X=~I, B ~ = 0  if and only if Z ( - 1 ) =  1 (by (A6)). Finally if Z=  1, 

the principal character, then 1(o~0) q(p-1)(2q~'P)  Hence I-~ Z(o)0)~=0 and 8+eOo 
6p z rood q 

g(-l)=l 

is  regular in ~+$. Thus it is natural to define ~ + =  ( x e  ~ 1 ( 1 - ~ ) x =  O} a n d  define: 

We then have: 

P R O P O S I T I O N  1. 

Y = ~ n ~ ,  3 + = ~+ n ~ .  

[~+ :Y+]=q]  YI q-'~,~a~z(a)]. 
g rood q 
g(-1)=,  
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Proo[. Let  • be the additive group in ~ generated by q and a(a) = a 2, (a, p) = 1. 

Then A has a basis over Z consisting of q, 2e-, a ( a ) - a  ~, and a ( - a ) - a  9, 1< a < q / 2 ,  

( a , p )=  1. Then, we have 

:/=#leo, q : /=/ taJ  o, and q: /+=/ tol  o f3 e+S. 

Let  B={e+~cI~EA, ~eoEe+S}, B ~ e + R .  Then 

Y+ = Be  + o ,  qY+ = Be  + al o 

and [e + R : qY+] = [e + R : e + R e + COo] [e + R e + eoo : Be + ~Oo]. 

But  e+Wo is regular in e+$, hence 

[e + R :qY*] = [e + R : e + R ~+ ~0] [~+ R : tt]. 

e+R is a free Z-module with basis over Z consisting of e + ~ ( a ) = � 8 9  

(a, p)  = 1, 0 <.a< q /2 .  Let •(a) = e+a(a). Thus, 

[~+n:~+n~+~.]=l II z(~.)l:l 1-I z-l(~.) l : l  1-I ~ . < , a ' X ( a ) l .  
mod q Z rood q ~ rood q 

~ ( - 1 ) = 1  i f ( - 1 ) = l  X ( - 1 ) = I  

Thus, [e+R:qY+]=I l-I ~, ,aSX(a)][e+R:B] .  
rood q 

X(-1)=l 

If ccE~t, then ~ = s q + t ( 2 e - ) + ~ ' [ ~ { s a ( a ( a ) - a ~ ) + s _ ~ ( a ( - a ) - a S ) }  for unique choice of 

s, t, sa, s-a E Z.  Thus e+ ~ E e + R and e + ~ = ~ uaT(a ) where 

u 1 = sq + ~a - -  a s (sa + s_ ~) 

u~= s~ + s_~ for l < a < q/2 ,  ( a , p ) = l .  

t 2 Thus ~ a % = q s  or ~'a~ua=~O (q); 

hence ~+A-~{~uaT(a)  E e + R l ~ ' a a 2 u a ~ O  (q)}. 

t 2 Conversely, suppose for Ua E Z ,  ~.[~ ua~(a ) E e + R satisfies the condition ~ a  % ~ 0  (q) 

then letting 
~=  sq+ t(2e-) + ~ {sa(a(a) - a S) + s_a(a( - a) - aS)}, 

where S=q- l~ .aa~Ua,  S_~=Ua--Sa, and t and s a ( l < a < q / 2 ,  ( a , p ) = l )  arbitrary, w@ 

have that  
~ '  Ua'~(a ) = e + :r 

Hence e+A = { ~  uaT(a) E e+R I ~a2ua=---0 (q)). On the other hand, i f~  E S, ~= ~axaa(a) ,  

x a E Q ,  then ~eoEe+$ if and only if 2e-~oJ=0. But  2 e - o ~ = ~ a ( - q + 2 a * ) q ( a ) ,  where 
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from now on R ( a ) =  least positive residue o f  a modq  ~ and a*=R(a  -1) for ( a , p ) =  1. 

Hence 2e-~r = 0 ~:if and o n l y  if for all c, 0 <~c< q, (c, p ) =  1, we have ~ x b ( -  q +  2a*) = 0 

(summation taken over all a, b such tha t  ab=--c (q), O<<.a, b<q).~ Combining all of the 

above we have if f lE~+~,  fl=~'~UaT(a), then f l E E  if and only if f l=e+~,  for ~r 

and ~eo E e+S where 

~= sq + t(2e-) + ~a {s~(q(a) - a s) + s-a(a( - a) - aS)} 

= [Sq -t- $ -{- Z a  -- as (Sa -4- 8-a) ] a(1) + ( - t) a(q - 1) + ~ 8a(~(a ) A- Z a  8-aft(  -- a) 

t 2 for  some s, t, sa, s_~EZ,  which is true if and only if ~aa  Ua~-O (q) and there exist 

integers t and s~ (1 < a < q/2, (a, p) = 1) such tha t  

u~(q - 2c*) + ( ~  (2R(ac*) - q )  u~ ) -  2 {(2c* - q) t ~  '~a (2R(ac*) - q) so} = 0 

for  all c, 0 < c <  q, (c, p ) =  1; the lat ter  assertion is true if and on ly  if there exist in- 

tegers t and s~ (1 < a <  q/2, (a, p) = 1) such tha t  

( q -  2c*) (u~ + 2t) + ~ (2R(ac*) - q) (u~-  2Sa) = 0 

for all c, O<<.c<q, ( c , p ) = l .  But  the square-matrix 

]12R(ac*)-qll (O<a,c<.q/2,  ( a , p ) = ( c , p ) =  l) 

has non-vanishlng determinant; indeed the determinant is equal, up to a factor of +_ a 

positive integral power of two, to the value of Maillet's determinant.  Carlitz and 

Olson [1] showed for q = p  tha t  Maillet's determinant does not vanish. Their method 

generalizes completely to the case q=  pm m >~ 2. Hence the above system of homoge- 

neous equations is solvable if and only if u a ~ 0  (2) for 0 ~<a< q/2, (a, p ) =  1. Therefore, 

t~=~_~aUaT(a) is in B if and only if 

(i) ~'~aSua--O (q) 
(ii) u ~ 0  (2) for O<~a<q/2 ( a , p ) = l .  

~]~herefore, [~+ ~ : ~]  = q2 M, 

where M =ep(q)/2 and ~ is Euler 's  totient function. Therefore, 

[e + ~ : qY+] = I 1-I g(eo) l q2 M. 
rood q 

g ( - 1 ) = l  

Hence qY+ is a Z-module of the same rank as e+~, namely M. Therefore [Y+ : qY+] = qM. 

Also [e + ~ : ~+] = 2 M because ~+ = 2(e* ~). Put t ing all these indices together we con. 

clude tha t  
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[R ~ :Y+]=ql H z(~)l. 
rood q 

Z( -1)=I  

1.2. Considerations of such sums as q-1 ~-a a3~(a) -1 and q-1 ~a a4a(a) -1 as generators 

of ideals do not prove fruitful since they lead to difficult to evaluate determinants. 

Also it is not clear that  e - ~ a a a ( a )  -1 and e+ ~aaaa(a) -1 are regular in e-$ and e+$ 

respectively. However, the fact that  for a non-principal character g on (Z/qZ)* with 

conductor g = /  and the n th  Bernoulli polynomial Bn(x), we have (v. AT) 

5 f a = i  Z ( a )  B n ( a / / )  :~= O 

if and only if Z ( - 1 ) ,  n even or g ( - 1 ) = - l ,  n odd (where it is understood that  

g(a) =0 ,  if (a,/)=~ 1) leads one to consider eleme/lts i r i $  of the form 

qn-i Za B,(a/q)  a(a) -1. 

This leads to consider the following more general situation: 

PROPOSITION 2. Let / ( x ) = ~ o c i x  t be a polynomial o/ degree n such that: 

a) c iEZ  ]or O < i < n ,  c~=c/q, cEZ ,  c:~O 

b) / ( q - x ) =  ( -  1)'/(x). 

Let co( = ~ol) = ~ ](a) a(a) -1 E S 

and suppose that e+eoEe+S is regular in e+$ i/ n is even and e - eoEe -$  is regular in 

e -$  i/ n iS odd, then 

[~+ :~+N~eo]=q '2 -M[  1"I Z(eo)I /orneven  
X mod q 
g ( - 1 ) ~ l  

[R-:R-nRo)]=q'2-MI 1-I Z(o~)[ /ornodd, 
X rood q 
g ( - 1 ) = - I  

where q" is defined by ~=c/~-d /q ' ,  (d,q')=l, q'>O, and M=~(q). 

Proo/. I t  follows from assumption b) that  

a) Ee+$ f o r n e v e n  

coEe-$  f o r n o d d .  

We give the proof of the proposition for n even, although a completely analogous 

proof holds for n odd. Let A be the additive group in ~ generated by q', and a(a) - a  m, 

(a, p) = 1. A basis for A Over Z is q', 2~-, a(a) - a m, and a( - a) - a s, 1 < a < q/2, (a, p) = 1. 

Clearly AoJ c ~+ N ~m. Conversely, if ~ = ~a xaa(a) E ~ (xa E Z), then ~o) E }~ implies that  
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(~a Xa(7(a)) ( ~ ,  a'~a(a)-l) =_ 0 m o d  q ' ~  (because q' I q and  eo ~ cq- 1 ~a aria(a)-1 m o d  ~)  

which in tu rn  implies t h a t  ~.ax,~an-=O (q') for  a n y  b, ( b , p ) = l .  This implies, in par-  

t icular,  for b =  1 t ha t  ~ , , x~a"=O (q'). Thus  ~ , , xaan=q 'v ,  for  some v E Z .  Thus  ~oJ= 

[~a Xa (a(a) - an) - vq'] oJ or ~a~ 6 Aw. Thus,  

R + n Ro~ = A~o. 

Let  B = e + A , B _ _ _ e + R ;  fur ther  p u t  eo0=qm. Then  

B y  assumpt ion  to is regular  in e+ $, hence 

[~+~:q(~+ n ~)3= [~+~:~+~03[~+~o:~o]=r H z(~)  [~+~:~]. 
X rood q 
X ( - I ) = I  

To calculate [ e + R : ~ ]  we consider the  ep imorphism 

O:R~e+R 

0 (~ )=e+~  for ~ f i R .  

The  kernel  of 0 is ]~-. Moreover  .,4-~ R - ,  for R -  is g e n e r a ~ d  over  Z b y  ( a ( a ) - a  n) - 

(a( - a) - a n) E A.  Hence  

[R :A] = [0(R) : 0(A)] = [e + R : e+A] = [e+R : B]. 

B u t  [R : A] = q', since 1, 2s - ,  a(a) - a n, a( - a) - a n for  all a, 1 < a < q/2,  (a, p) = 1 con- 

s t i tu te  a basis for  ~ over  Z. Hence  we have  tha t :  

[~+ ~ :  q(~+ n ~o~)]= q'. r YI z(~)] .  
g mod q 
g ( - 1 ) = l  

Thus  q(R + fl Roe) is a Z-module  of r ank  M.  Thus  [~+ fl ~r : q(~+ f~ ~oJ)] = q~; also 

[~+~:~+]=2 M. Hence [ R + : R  + 0 ~O)]=q '2 -MI  l~ X(oJ)], q.e.d. 
X rood q 
X ( - I ) = I  

For  n >/1, the  n th  Bernoull i  polynomial  Bn(x) can be wr i t t en  as:  

n - 1  

B n ( x ) = x n +  ~ (av.n/b,.n) x' ,  

where a~.n, b,.n E Z (v = 0 . . . . .  n - 1), b,.n >/1, and  (a .... b~.n) = 1. Le t  a= = the least  common 

mult ip le  of b ... .  v = 0 . . . .  , n - 1. L e t  q~ be defined b y  o~n/q = :r (ccj, q~) = 1 and  q~ > 0. 

COROLLARY. With the notation as above, let hn (x )=  anqn-aBn(x/q)  and ton= 

~a hn(a) o'(a)'i; then 
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[R+:R+NR~.]=q~2-M[ I-I )[(o~.)[= " M q.(a./2) O-p"-')[ I-[ B;[ lorneven; 
Z mod q Z rood q 
X ( - 1 ) = I  Z ( - 1 ) = I  

[R-:R-NReo.]=q~2-M[ ]-I z(o).)l=q;,(~./2)~'[ H B~l [ornodd, 
g rood q g rood q 
g ( - 1 ) = - 1  g ( - 1 ) = - I  

where M = of(q). 

Proo/. We notice tha t  h.(x) has integral coefficients except for the leading coeffi- 

cient, which is a./q. In order to apply the previous proposition we must verify that  

h . (q -x )=( -1 ) "h . ( x )  and that  co. is regular in e+$ for n even and regular in e-S 
for n odd. As for the first assertion: 

h, (q - x) = o:, q"- l B~ ( (q - x) /q) = ~, q"- t B, ( 1 -  q) 

= ( -  I)"a.q"-lB.(x/q) by (A2) 

= ( -  D"h.(x). 

As for the latter assertion, it suffices to calculate Z(o~.) and show that  g(eon)*0 if 

and only if n even, X ( - 1 ) =  1 or n odd, Z ( - 1 ) = -  1, for Z a character mod q. Let  

[ = conductor of Z. ]]q. We first consider non-principal Z, so [ > 1. If (a, p ) ~  1, we agree 

to let g(a)= 0. Then Z(w)=~ 0 if and only if 

q,-X ~ g(b)B,(b/q)#O. 
O~b<q 

But 
f 

q"-~ ~ g(b)B,(b/q)=q"-l~g(b) ~ B,(a/q) 
O~b<q b = l  O<~a<q 

a=-b(,O 

f (qlf)-I 
=qn-'~g(b) ~. B.((b+k])/q) ( b y h 4 )  

b = l  kffiO 

f ( q l f ) - I  n 

=qn-15Z(b) 5 5 C~.,(b/q)~B~-~(kJ/q) 
b = l  k=O r=O 

_ _ . - 1  "~ ,~,b  ~ "~ C ( b / q )  (q lr ) -x  - u  b~=~ "~ J~o ,.~ (q/l),-~-~-i (q//),-,-1 k~oZ B,_, k~ (byh3) 

=["- tSZ(b  ) C~..(b//)rB~_~ .0 
0 = 1  r = 0  

f n 

=/~-~Z(b)~C~.~(b//yB~_~(O) 
b = l  r=O 

f 
=/n-1  ~ Z(b) Bn(b/[) 4 0  

b = l  

(by A 1) 
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if a n d  only if n even, g( - 1),= 1 or n odd, Z( - 1) = - 1 (by A7). I t  remains to treat  

the case g = 1: 

1(o~)~:0 i /and  only i/ qn-~ ~ B.(b/q)+-O. 
O~b<q 
(b.p)=l 

q n - 1  ~. 

O~b<q 
(b.p)=l 

But  
�9 q-1  (q/p)-I  

B,,(b/q) = q"-~ 5 B.(b/q) - qn-~ ~ Bn(pt/q) 
b = 0  triO 

q-1  (q/p)-1 
=qn-~B . (O+b/q ) -q '~ - t  Y. Bn(pt/q) ( b y A 3 )  

b =0 t=0 

(q/p)-I  (q/p)-I t ~ )  '~B. (O'q) -q  "-~ 2 B,~(Pt/q)=B,~(O)-q n-1 • B. t~ q 
tffi0 t=O 

B n (0) - qn-1 (p/q)n-1 {(q/p)n-1 (ql')-I [ = t~=O B . ( O + t / q ) }  (by A3) 

= B. (0) - q.-t (p/q).-~ B. (0. q/p) 

= Bn(O ) _ pn-1Bn (0) = (1 - pn-1)B.(0) + 0 

if n is even, because then Bn(0)= ___B./s+0. W e  may  now apply Proposition 2 to 

hn(x)= ~nqn-lB,i(x/q). I t  remains  only to observe tha t :  

for Z +  1, Z(o~) = cr 

f o r  Z = 1, l(eon) = ~n(1 -- p"-~) Bn(0) = ~n(1 - p n - 1 )  B~. 

(The fact tha t  B . ( 0 ) =  B~ is adduced as follows: 

B.(O)=B,~(1) (for B . ( x ) = ( - 1 ) " B . ( 1 - x )  and B . ( 0 ) = 0  for n odd) 

= B*(0) (by (A5)) 

= B .  = B~ (from definitions in the appendix).) 

Thus, [R + :R+ n Ro~n]=q~(~/2)~(1-p"-l)[ YI B~:I (n even) 
Z rood q 
g(-1)=l 

t M ['R-:R- N Ro~.]=q,~(~./2) [ II  B~[ (n odd). 
Z rood q 
Z(-1)ffi--1 

1.3. Let  Q~ be the p-adie number field and Z~ be the subring of p-adic integers 

(p + 2). Pu t  
R = Z,[O], S = O,[O] 

S+= ~+S, S - = r - S  

R * = R  N S + = e + R ;  R - = R  N S - - e - R .  
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If  u E Q, and u = (r/s) p',  (r, p) = (s, p) = 1, r, s, v E Z,  then define: 

(u)~ = p'. 

Analogous~ to the classical results used for the group ring over the: rational num- 

bers, we recall the following facts: 

1) Let ~ E S, ~ = ~a Xa a(a), xa E Q~. Define 

z(~) = Y xo Z(a) 
f$ 

for any residue character modq. Then ~ is regular in S if and only if lrI g(~) # 0 .  
mod q 

Similarly, if ~E S + (S-) then ~ is regular in S + (S-) if and only if 

YI z(~) # 0, ( Yi z(~) # 0). 
mod q X rood q ~(-1)=1 x(-~)=-~ 

2) If ~ E R is regular in S, then [it : ~it] = ( 1-[ Z(~))v. Similarly if ~ E It+ is regular 
g rood q 

in S +, then [it+ :~it+]= ( 1-I g(~))r and if ~E It- is regular in S-, then [ i t - : ~ i t - ] =  
rood q 

g(-1)=l 

( 1-[ Z(~))~. We now state a proposition analogous to Proposition 2. 
Z rood q 
g ( - 1 ) = - I  

Let /(x)= ~=0 c~x t be a polynomial of degree n such that  

1) c~EZv, for 0~< i<n  and cn=c/q ,  eEZv ,  c:~O 

2) / ( q - ~ ) =  ( -  1)~/(~). 

Let  o~x= ~./(a) (l(a) -1. 
s 

Let  q' be defined b y  c ,=  c / q = c ' / q ' ,  (e', q ')= 1, and q '>0 .  Let A be the additive group 

generated over Zv by q' and a ( a ) - a ' .  :Let B=e+A for n even, B = e - A f o r  n odd. 

P~OPOSITION 3. With the above definitions and hypotheses, suppose now that w s 

is  regular in S + /or n even, w t is regular in S-  /or n odd. Then 

(i) [ a  § R § n a ~ , l  = q'(  1-[ X ( ~ ) ) ~  /or n even 
g mod q 
g ( - - 1 ) = l  

l i t -  : R-  n It~1] = q'( 1-f z(~A),  /or n odd. 
g rood q 
X ( - 1 ) = - 1  

(ii) It+ N Ito~I= B~o r /or n even 

I t -  N Itwl = Bo~ r for n odd. 

Proo[. Proof proceeds exactly as in Proposition 2, but the formula simplifies since 

R ~ = e •  (for p~2) .  
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For each n ~> 1, let 
(-On = ~ qr t -  1 B, (a/q) a(a)- 1 q S. 

a 

I n = R  N R o ,  (n even); I ; = R - f )  Ro~ (Note the omission of the constant ~ . )  Let  + + 

(n odd). Let  A~ be the additive group generated over Z~ in R by q and o ( a ) -  a n. 

Let  Bn = e+An for n even; B . =  e-A~ for n odd. 

COROLLARY. With the above delinitions 

(i) [R+ :I+,]=q(zm~dqB~)~, (n even) 
g ( - 1 ) = l  

[ R - : I ; ] = q (  1-[ B~)p (node/). 
if meal q 
g ( - 1 ) f f i - 1  

(ii) I + = B n o .  (n even) 

I ; = B n o n  (n odd). 

Proo[. For any  n ~> 1, 
[n /2]  

Bn(x)=xn-�89 ~ ( - .I.]'l'u-lt'~,,.,n,2ul.Su,,Tl~ n - 2 u  

[n /2]  
and qn-XBn(x/q)=q-l(xn_�89 + ~. ( _ _ l / u - i / - ~  12~ n - 2 u  2u'~ sL ) ~ n , ~ u . ~ u X  q ) .  

u=l  

By the yon Staudt-Clausen theorem, B~ has square-free denominator; hence because 

p=~2, we have tha t  all the coefficients of qn-lBn(x/q), except the leading coefficient, 

are p-adic integers. The leading coefficient is 1/q and so in all eases q'= q. In  the 

proof of the corollary to Proposition 2 we saw that  qn-lBn ( (q-  x)/q)= ( -  1) 'qn-lBn (x/q), 

Also just as we derived in the proof of the same corollary, we have: for Z=~I, 

Z(on)=B~40  if and only if Z ( - 1 ) = I ,  n even or Z ( - 1 ) = - I ,  n odd; for Z = I ,  

l(on)=(1-pn-1)B'~=4=O for n even. As previously noted, o n E S  + if n is even and 

o n E S -  if n is odd. Hence we have tha t  on is regular in S + for n even and on is 

regular in S- for n odd. All the hypotheses of Proposition 3 are fulfilled. I t  only 

remains to remark that  ( 1 - p n - 1 ) =  1 if n>~2. 

We recall tha t  R += e+R and R - =  e ' R  have bases over Z~ consisting of o(a)+ 

o( -- a), 0 < a < q/2, (a, p) = 1 and a(a) - o( - a), 0 ~< a < q/2, (a, p) = 1, respectively. I t  

is a simple calculation to show tha t  

? n Bn=e+An={~'Ua(O(a)+o(--a))luaEZv, ~ a Ua~--O (q)} n even 
a 

B . =  e - a . =  {~'  u~(o(a) -  o ( - a ) ) [ u ~  e Z~, , = a u~--0 (q)} n odd. 
a a 
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Let  , t 
B , - { E  u~(a(a) + ct(-a)) lua E Z~, ' , a ua--O (q2)} n even 

a 

and * - B n - { ~ ' n ~ ( a ( a ) - a ( - a ) ) l u a e Z , ,  ~'anua~--O (q~)) n odd. 
a a 

Clearly B* is an additive subgroup of Bn. 

LEMMA 1. I~ + = Bneon = R+qoJn+ B~*o~ /or n even 

I~ = Bno~n= R-qo~ + Bn*wn [or n odd. 

Proo/. We do proof for n even, and proof for n odd is entirely analogous. 

We have from corollary to Proposition 3 tha t  I+=Bneon. I t  is also clear from 

the definition of I + - R + N  Reon tha t  R+qeo,_I+;  also * Bn _ B~ implies tha t  B~* eo~ ___ n - -  

+ * C + B~oJ~ = I +. Thus I t  qeon + Bn co. _ In = Bneon. Consider the following diagram 

I + = Bn ~o~ 

I 
R+qo)n + B *  o~n' 

/ \ 
R+qcon * nn con 

\ / 
R+q~on N B * ~  

Because Bn and B* are additive subgroups of R + and con is regular in S § therefore 

[Bneon �9 Bn con] = [Bn : Bn] = q. 

Going to the bot tom part  of the diagram, we obtain 

B~o~ N R+qcon = B.qco.. 

Indeed, if ~ E B* con N R+q~on, then ~ = ywn = qzo~n where y E B* and z E R +. Because con 

is regular in S + we obtain qz=y.  Using the basis of R +, we see tha t  z = y / q E B ~ .  

Hence ~ E Bnqco~. Conversely, Bnqeo~___ B*w~ N R+qo)n. 

[Remark. If  one tries to prove this lemma for group rings over the rational num- 

bers and integers, an obstacle to the proof is encountered on the lat ter  inclusion; for 

B n -  e+ ~, and ~+ ~ e+ R in the case where R = Z[G].] 

F ina l ly ,  [R+q~on:B~qeo=]= [R+:B~] because con is regular in S +. A simple calcula- 

tion gives [R + : Bn] = q. 

Applying the well-known isomorphism theorem to the diagram we obtain: 

[it+q~n + B* o~n : B* ~on] = q. 
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But we proved [Bno~n :B*o~] = q. Therefore 

[B~w. : R+qco. + B* ~o.] = 1 

+ _ _  or In -- Bn con = R+qo~n + * B n fD n �9 

by 

w 

2.1. Define an additive homomorphism 

/(a(a)) = a21a(a), 

t(a(a') ) = a -  l q ( a ) ,  

[:R~R 

0~<a<q,  ( a , p ) = l  

for ( a ' , p ) = l ,  a ' - - a  (q),O<~a<.q. 

/ extends by linearity to a Zfhomomorphism of R into R such that  ](qR)~ qR. Hence 

] induces an additive homormorphism: 

f : R / q R ~ R / q R .  

[ is also a multiplicative homomorphism. I t  is clearly.injective; and since [(aa(a))-----a(a) 

rood qR we have that  [ is surjeetive, and hence an automorphism. (Remark: / itself is nob 

multiplicative.) 

Let  g:  R-~ R / q R  be canonical coset mapping. 

L E M ~ A  2. I /  p~=2, p X n ,  and p X n +  1, then 

h ~ ( a * ~ . ) ) =  * u(B,+i o),+1) 

except in case q = p = 3 and n = 1. 

Proo/. Recall that  
oJn = ~,~ q"- lB.  (a/q) a(a)-1, 

In/2] 
1 ~u--l/7 B a n-2u where Bn (a) = a n -  1 ha"-  1 "4- ~ ( - -  I v n ,  2"  It " 

u = l  

Hence, eo,-~ q- l ~a (a n -  12 qna n- i )  a(a) - a mod qR. 

By a simple calculation: 

B* ~o,~{q: l  ~e[Z~ ua(2 R(ca:a) " -  qn(ca-a) "-1] a(c); ua'e Z~,, ~'~ anu,,=--O (q2)} rood qR. 

(The above characterization of B* w, is valid whether n is even or odd. Recall that  R(a) 

is the least positive residue of a rood q.) 

Let  ~ e B* wn, then 
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/(~) __ q,  1 ~c [ ~  Ua (2 R(c-  1 a)n C- 1 __ qnc- n a n- 1)] a(c) rood qR, 

where u a E Zr, ~a  an ua--O mod q2Zr. We wish to  show tha t  ~t(/(a)) E ~t(B*+l oJn+l). 

For  0 ~< a < q/2 ,  (a, p) = 1, let v a = nua / (n  + 1) a, then  va E Zr (because p X n + 1) and 

~a a n+l va------0 (q2). L e t  fl = q-1 ~c[~'~ Va (2 R ( c - l a )  TM - q(n + 1) (c-la)n)] q(c). Then  fl E R and 

~t(fl) E ~t(B*+I ton+i). ~t(/(a))= ~t(fl) if and only i f / ( a )  = fl rood qR which is if and only if 

( -  ) q-12c(~.'aua2R(c-1a)nc-1)ff(c)=q-12c ~a ~ "lta2R(c-la) n+la-1 o'(:c) m o d q R  

which is t rue  if and only if 

~a  (3 § l) Ua c-IR(c-Ia) n -- ~a n~u~aR(c-la) n+la- i  rood q~ (*) 

for c, 0 ~< c < q, (c, p) = 1. 

Bu t  R ( c - l a )  n -  (c- la)  n :  qt(c- la)  and R ( c - l a ) -  ( c - l a ) =  qs(c- la)  

for some s (c- la)  and t ( c - la )E  Z.  Multiplying both  equations together,  we have 

R ( c - l a )  TM - ( c - l a ) n R ( c - l a )  - (c- la)  R ( c - l a )  n + (c- la)  TM -- 0 rood q~ 

or R(c - la )n+la  -1 =- c-n a n - l R ( c - l a )  + c - l R ( c - l a )  n -  c-(n+l) a n mod q~. 

Subst i tut ing this result in the congruence (*), we h a v e / ( a )  = fl mod qR if and only if 

~ a U a r  n - -  ~ 'a nUa [R(c - l a )  c -nan-1  - c-(n+l)an] rood q2 

for c, 0 ~< c<  q, (c, p ) =  1. Bu t  by  hypothesis  ~ '  u~a n - O  (q2), h e n c e / ( a ) -  fl mod ql{ if and 

only if 
~ ' u a ( c - l R ( c - l a )  n - n R ( c - l a )  c-n a n- l )  - - 0  rood q2 (**) 

for c, 0 < c<  q, (c, p) = 1. But  R ( c - l a )  = (c- la)  + qt(c- la) ,  t (c - la)  e Z ;  therefore 

R ( c - l a )  n =-- ( c - l a )  n § ~ 1 "  ( c - l a )  n - I "  t (c- la)  mod 92. 

Hence c - l R ( c - l  a)n =- c -(n+l) a n + nqc -n an-  l t (c-  l a) rood q2 

- n R ( c - l a )  c - h a  n - l -  - nc - (n + l )a n -  n c - n a  n-1 qt(c- la)  rood q2. 

Subst i tut ing these congruences in (**) we h a v e / ( a )  - fl rood qR if and only if: ~a  Ua(1 -- 3)  

anc-(~+~)--O m o d q  2 for all c, O<~c<q, ( c , p ) = l .  Bu t  ~'~anua=-O (q2). Thus / ( a ) = f l  

- B* * mod qR and hence/(z~( n con))-~(Bn+leon+l). 

B* Conversely, let ~(fl) E ~( n+l wn§ then 
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fl=_q-l ~c [~ '~va (2R(c - la )n+l -q (n+  l)(c- la)n)]a(c  ) rood qR, 

where %EZp and ~'~an+1% - 0 (qZ). Le t  u~= (n+ 1/n)ava; then  uaEZp (for p )~n) and 

~aanUo--O (qS. 
Le t  cr q-1 ~c[~" ua ( 2 R(e-  l a),~_ qnR(c-  l a)n-1) ] a(c) 

then a e R and re(a) E re(B* oJn). Then, we prove, just  as in the first par t  of the proof, t ha t  

/ (a) - - f l  mod qR. Thus  
/ ( r e ( B * ~ n ) ) =  * 3T(Bn+ 1 (Dn+I)). 

T H E 0 R E M 1. Let ]: R / q R  -~ R / q R  be the automorphism previously defined. Let re: R-~  

R / q R  be the canonical coset mapping. Suppose p ~: 2, p X n and p )~ n + 1, then ] induces the 

/oUowing isomorphisms: 

~z(R+)/~(In+) ~ re(R-)/~z(I;+ 1) (n even) 

re(R-)/re(I ;)  ~ ~(R+)/re(I~++ 1) (n odd) 

Proo[. We do the proof first for n even. We first note  tha t  

f(re(R +)) = re(R-) 

for /(a(a) + a( - a ) )~-a- l (a(a)  - a ( -  a)) mod qR; and thus  / ( a - l ( a ( a )  + o'( --  a)))----a(a) - 

a( - a) mod qR. Since a(a) + a( - a) and a(a) - a( - a) generate R + and R-  respectively,  

we have ](re(R+))= re(R-). Secondly, because [ and ~z are multiplicative it follows tha t  

] ( re (R + qcon)) = ~ ( R  + qcOn+l) 

since clearly [(~z(qcon))= re(qeon+l). 

Hence [(re(I+)) = [(re(B* co~ + R + qeon)) (Lemma I) 

=/(re(B* oJn) + re(R + qeon)) =/(re(B* con) §  + qw~)) 

zr(B*+i con+i) T g (R-  qeon+l) (Lemma 2) 

7r(B*+icon+ 1 § R-  qCOn+l) = re(In+l). 

Thus ] induces an isomorphism: 

re(R + )/re(I~ + ) -~ re(R- )/re(I;+ 1). 

In  case n is odd, everything is analogous, except  for the case n = 1 and  q = p--- 3 where 

Lemma 1 i~ inapplicable. In  case q-- p = 3, Corollary to Proposi t ion 3 shows tha t  
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[ R ~ : I ~ ] = [ R ' : I ~ ] = I ,  so R§ and R : = I s  

and the isomorphism still holds. 

COROLLARY. / / p # 2 ,  p~n,  a n d p ~ n + l ,  then 

(1) p[[R-:I~]i/andonlyi/p[[R+:I++x] (nodd) 

(1') p[[R+:I+]i/andonlyi/p[[R,:I;+~] (neven). 

Otherwise stated, 

(2) p lq( FI B~), i/ and only i/ p lq( YI B~+~)~ (n odd) 
g rood q ~ rood q 
Z(-1)=-1 g(-1)~1 

(2 ' )  plq(m~ q B;)~ i~ and only i/ P l q (  z modl-I q ~zl:~rt+l~/p (n even)~ 
g( - i )= l  g(-1)==l  

Proo/. Reformulations (2) and (2') follow from (1) and (1') by Corollary to Proposi- 

tion 3. We prove only (1), since (1') is proved completely analogously, Define a homo- 

morphism : 
0 : R-/I~ ~ I F / ( I ~  + qR-) 

O(x+I;)=x+(I; +qR-) (xER-) 

0 induces an isomorphism 

O:(R-/I;)/q(R-/I;)-c-R-/(I; + qR-) 

Define a homomorphism 
: l~ - / ( I ;  + qR-)-~ ~(R-) /~(I~)  

by ~p(x+(I; +qR-))=g(x)+~t(I~) (xER-). 

y~ is an isomorphism. Hence, 

is an isomorphism. Analogously, 

(R+/I~+I)/q(R§ ~- ~t(R +)/~r(I++l). 

From the isomorphism of Theorem !, jus~ derived, we have the following isomorphism: 

(R- /I;.) /q(R- / I i  ) ~ (R + /I  +, ~) /q(R + /I  ++ ,). 

It  is clear from Corollary to Proposition 3 that R-/I~ and R+/!++I are additive p-groups. 

Therefore, p][R- :I~] if and only if R-/I~ =l=q(R-/I~) which is if and only if R+/I~++I # 

q(R+/I++l) which is if and only if p[ [R + : I~§ 
5--  682903 Acta mathematica, 121. Imprim6 le lS sepSembre 1968. 
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2.2. Until now we have considered q= pz to be defined for some fixed integer 

m, m/> 1. We now consider m to vary and let qa = P,n, m >~ 1, p # 2. Let $,n be a primitive 

q~th root of unity. Let F,n = Q($z), and let Gz = Galois group of Fm over Q. Let a(a),n E G,n, 
(a, p) = 1, be the automorphism of F,n over Q such that  a(a)m (~,n) = ~am. 

Let S,n = Q,[G,n] ,  Rm = Z~[~m] ,  

~ �89 +-- = ~ m - - � 8 9 2 4 7  

+ R~ = 8 ~ R m ,  R~=emRm 

q~-X ,nO)n= ~ B,,(a/q,n)(r(a)Tn x 
0 4 a < q  m 
(a. ~)=X 

+__ + rain = Rm N R m ,no)n (n odd), .,In - Rm N R m mo)n (n even). 

Let ,nBn={ ~ ua(a(a),n-a(-a)~lu~EZ~,, ~ anUa~--~O (qm)} (nodd), 
04 a < qml2 04 a < qm/2 
(a. p ) = l  (a. p ) = l  

,nB=={ ~ % ( a ( a ) , n + a ( - a ) , n l % e Z  ~, ~, an~Ua~O(qm)} (~even) 
0 4 a  <qml2 0 4 a  <qml2 
(a, p) = 1 (a, p) = 1 

+ 
�9 mIn -- mBn " mo)n then ,nI~ = ,nB~ mo)~ (n odd), + - (n even). {Sm}m>~l, {R~}m>~l, {Rm}m~>x, {Rm}~>l, 

I + {mln}m~X (for fixed odd n), {~ n}m~l (for fixed even n), form inverse systems with re- 

spect to homomorphisms to be defined presently. 

Define t , n , m + x : S , n + x  -~sz  (m>~ 1) 

b y  tin, r e + l (  ~ X a f f ( a ) m + l )  = ~ XaO'(a) ,n  ( X a E Q p ) "  
04a'<qm+ 1 O<~a<qm+ 1 

(It will be understood that all summations are over integers prime to p.) t,n. ,n+x is clearly 

- -  Rrn  ~ . m + l  ( a m + X )  t,n. ,n+x ( R m + x )  = l~m.  additive (m>~ 1). It  is also multiplicative. Clearly, tm + -- + 

W e  now take a fixed even n. Let "r(a),n = a(a),n + a(qm - a),n, then 

m+lBn = { ~ Ua'r(a)m+l]UaEZ~,  ~. anUa -~-0 (qm+l)} .  
04a<qm+l]2 04a<qm+l]2 

(a. p ) = l  

We will show tin. m+l(m+lBn) - mBn. Indeed, 

O~a<qm+l l2  " O~a<qra+l l  2 O ~ a < q m + l / 2  
a=--b(q m) a~=b(q m ) 
0<. b < qml2 qm/2~ b < qm 
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= 0 Z ( Z ?/a) ~(5)m "4- 
~b<qml2 0<~a<qm+ll2 

a=-b(q m) 

= Z ( Z u.)~(b)m+ 
O<~b<qml2 0~a<qm+ll2 

a~b(q m) 

Z ( Z ,,o) ~(b),. 
qml2~b<qm O~a<qm+l/2 

a=---b(qra) 

Z ( Z ~.)~(b)., 
O~b<qml2 O~a'<qm+l/2 

a "~- b (gin) 

(for 3( - b)m = "g(b)m ) 

= Z ( Z ~.+ Z ~o.)~(b)~. 
O~b<qml2 0~a<qm+l/2 O~a'<qm+ll2 

a~b(qm) a '=- _ b(q m) 

To show that  tin. m+ X (~0< a < q,.+1/2 Ua 7:(a)m+l) E mBn, we mus t  show that  

Z b"( Z ,~o+ Z u o . ) - o  (qm). 
O~b<qml2 O~a<qra+ll2 O~a'<qm+ll2 

a~b(qra) a'-~ - b(q m) 

B y  hypothes is  ~O<a<a,.+l/2anUa~-O ( q m + l ) .  Hence  ~o<a<a~+~/2a ~ = 0  (qm)" T h u s  

o -  Y a"uo + Z a",,. 
O~a<qm+ll2 O<~a<qm+ll2 

a ~--b(q m) a~b( q m) 
04 b < qm/2 qml2~ b < qra 

--- Z b-( y .o)+ Z (q.-b)-( Z .o) 
O~b<qra/2 O~a<qm+l/2 O~b<qml2 O~a<qm+l]2 

a=--b(q m) a=-- - b(q m) 

--- ~ bn( ~. Ua+ ~. Ua') rood qm 
O~b<qml2 O~a<qm+l/2 O~a'<qm+ll2 

a~b(q m) a'~ - b(q m) 

(because n is even,  s o  (qm-b)n~b n mod qm), which implies  what  w e  wanted  to p r o v e ;  

hence, tin. m+l (re+lB,)--~ turn �9 A quite similar argument  is val id  for n odd. 

Secondly,  

tm, m+l (m+l(-On) - -  n -1  --~m m+l (qm+l Z B n ( a / ~ m + l )  ~  
�9 O~a<qm+l 

-q~+l  Z ( Y. B.(b/q.+l))~(a)2 
O~<a<q m O~b<qm+ 1 

b=-a(q~ 

"n-1 ( ~ 1  ( a + q . ' ~  
= q.,+~ 7. B .  a(a)m 1 

O~<a<om \tffiO \ qm+l / /  

_ n-1 p l -n  n 1 a -t- - qm+1 ~. Bn ala)m 1 
O~<a<qm 

(by  A 3)  
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__ r t - -1  --qm+l ~ Pl-nBn(p'a/qm+a) a(a)ma 
O<~a<q m 

=q~-i ~ Bn(a/q,n) a(a)~l=n~n 
O ~ a < q  m 

that  is, tm.m+l(m+leO,) = ~O~. 

Because t~.m+, is multiplicative, we have that  

§ _ _  . tin, m+1 (~+iI . )  - tm rn+l (m+l]~n) tm,m+l (m+l~n) ~-- mBn " m~n = mI + 

for n even. Similarly for n odd. 

If  we compose the maps tin.m+ 1 we thus obtain by suitable restriction the maps of 

our inverse system�9 

2.3. Let  7/: m :R m ~ R m/qmRm be the canonical eoset map (m >/1). Since tm.m+l(qm+aRm+a) ~_- 

qmRm, we have that  tm.m+ 1 induces a map tm.m+ 1 :~m+l(Rm+l)-->~m(Rm) given by: 

tmm+l ( ~ XaO'(~)m+l)~ ~ x a a ( a ) ,  ~ mod qmRm (x~EZv).  
" O ~ a < q m + l  0 ~ a < q m + l  

By abuse of notation, we denote the homomorphisms of our inverse systems {gm(Rm)}~> 

by t~,~+ 1. Clearly {gm(R;,)}, {:~m(R~+)}, {Xem(nI~+)} (n even), {~m(nI;~)} (n odd) (m>~l) 

form inverse systems with respect to these homomorphisms. We therefore also have that  

the finite p-groups R+/~I  +, R~/mI; ,  ~ ( R + ) / ~ ( j + ) ,  ~m(R/ , ) /~(mI;)  (m~>l) all form 

inverse systems of groups with respect to the homomorphisms tm.m+ 1 (for the finiteness of 

these groups v. Corollary to Proposition 3 and the proof of Corollary to Theorem 1). 

What  is more, if we endow our finite groups with the discrete topology then our groups 

are compact and our homomorphisms tin,m+ 1 are continuous. 

As in Sectlon 2. i ,  we define for m >~ 1, the automorphism [~ : Rm/qmRm ~ Rm/qmRm by 

[(a(a)m + qmRm) = a-1 a(a)m + qml~ra 

and  then extend by linearity to the whole ring. 

Clearly, tm.m+sO[m+1 = [mOtto.m+1 . On the other hand  (v. Theorem 1), we have proved 

t ha t  if p # 2, p X n, p J/n + 1 then [m induces isomorphisms: 

�9 - _ ~ + + 

[m.~m(Rm) /nm(mIn)=~m(Rm) /~m(mIn+l )  (n odd) 

/m:~m(R+)/~(~I. +)=~(l~)/~m(~I;+~) (n even) 

Because tm and tin.m+ 1 commute, we have that  {[m}m>~l is a map of the in- ~for all m >~ I). 

verse system 

{um(R;~)/~m(mI;)}m~>l into {~m(R~*)/~m(~I~++l)}~>~ (n odd) 
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and {gm(R+)/gm(mI+)}m>~l into {gm(gm)/Y~m(mI~+l)}m>~l (n even). 

Hence when we pass to the inverse limit we have that  the isomorphism is preserved and 

therefore if 10 / n, p X n § 1, p =~ 2 

limm 0~m{Rm)/0~m(mI;)~lim ~m(R+)/~m(mI++l) (inverse limit) (n odd) (*) 

+ + 
lim ~m(Rm)/~m(mI~)~lim Y~m(Rm)/Y~m(mIn+l) (inverse limit) (n even). (*) 

m m 

On the other hand, we have from the proof of Corollary to Theorem 1 that  

(R~/mI~)/qm(RV./mIX) ~ ~zz(RT.)/~rm(mI~) (n odd) 
+ + + + 

(Rm/mI.)/qm(Rm/mI.) = :zm(R+~)/~z~(~I. +) (n even). 

Furthermore, the isomorphisms involved commute with tm,m+1, hence when we pass to the 

limit we have 

lim (Rm/mI;)/qm(R~n/mIn) "~ lira 7~m(R m)/y~m(mln ) 
m m 

+ + q- q- ~ + § 
lim (Rm/mI.)/qm(Rm/mI,~ ) = lira ~,n(Rm)/gm(mIn ) 

m BI 

(n odd)) 

(n even) 

Combining these results with (*) we have that,  if p ~ n, p X n + 1, p 4 2 then 

and 

+ + + + 
lira (R~//,fl~)/qm(R~/,~XX)~lim (R,~/,~I.+a)/qm(Rm/,fl.+~) 

m m 

+ + + + 
lim (Rm/mI,, ) /qm(Rm/~I. ) = lim (Rm/,JX + l) /qm(Rm/mI~ + l) 

i l l  ~71 

(n odd) 

(n even). 

lim qm(R~/~I~)= 0 (n odd) 
m 

+ + 
lim qm(Rm/mIn ) = 0 (n even), 

rn 

then we will have proved that  if p X n, p X n + 1, p ~ 2 

+ + 
lim Rm/mI~ ~- lim Rm/mIn+l 

m ?n 

§ + lim Rm/mI~ -~ lira R~/mI;+l 
m m 

(inverse limit) (n odd) 

(inverse limit) (n even). 

We show that  ]imm qm(Rm/mI~) = 0 (n odd) (proof same for n even). Indeed, if 

Because all the factor groups involved are compact, the operations of passing to the in- 

verse limit and constructing factor groups commute. Hence if we can show 
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(Um)m~> 1 ~ lira qm(R~/mI;), 
m 

then for a n y  m >/1, and for a ny  r > m, 

urn= tin.m+1... G-l.~(q~v~)= q~t,,.~+l.., t~-l.~(v~) (urn E qm(R~/mI;), v~ E R~-/,I;) .  

Suppose order (R~/mI~) = qr, (recall Rm/~I~ is a p-group). Let  r > max (m, %), then 

u~= qrtm.m+I . . .  t r - l , r  (vr) = q~-r,(qr, tm.m+l.." tr-~.r(vr))= qr-~," 0 =  0. 

Thus  (Um)~>~l= (0)m~>~ or limm qm(R~n/mI~)= O. Hence we have proved: 

T ~ O R E M  2. I] p~n,  p X n +  1 and p#:2, then 

lira R~/mI ~ ~lim + " + Rm/,~I~+t (inverse limit) (n odd) 
m m 

+ + lim Rm/mI~ ~- lim R~n/,nI~+l (inverse limit) (n even). 
m m 

2.4. Recall tha t  qm = pro, p + 2, Sm is a primitive qmth root  of unity,  F m = Q(~m), and 

Gm= G(Fm/Q). Now let F = [J m~>l F~. Then F/Q is an abelian extension. Let  G = G(F/Q). 

Fur ther ,  let (I) m = Qp($m) (m ~ 1); let U be the multiplicative group of all p-adic units in Q. 

There  exists an  isomorphism ~ : G-~ U such tha t  ~ = ~(a) for any  a E G and ~ any  qmth root  

of  un i ty  (m ~> 1) in F .  Let  T E G be such tha t  u(~)= - 1 .  (There is no need to  worry  about  

confusing this T with previously defined v in Section 1.1 or a( - 1)m.) 

Let  e + = �89 + ~), e- = �89 (1 - 3); then  e+, e- EZ~[G]. I f  M is a Z~[G]-module, we de- 

fine submodules of M by  M + =  e+M, M -  = e - M  (our notat ion is slightly different f rom 

Iwasawa [4]). I f  T is a commuta t ive  ring and  H is any  group, let T[H] be the group ring 

of H over T. I f  there is a homomorphism G-~ H, we also make T[H] into a G-module by  

defining ~ ( ~  H aq ~) (% E T, a E G) to  be ~q~H aesQ where s denotes the image of a under  

G->H. Hence Rm and S,n are both  G-modules by  means of the natural  homomorphism 

G-~G~, hence also Z~[G]-modules. 

I f  M 1 and  M2 are Z,[G]-modules and if h:MI-~M2 is such tha t  

(i) h(x+ y) = h(x) + h(y) (x, y EM1) 

(ii) h(x ~ = x(a) h(x) ~ Ca E G) 

then  h will be called a u-homomorphism. The definition of a ~-isomorphism of two Z~[GJ- 

modules is clear. 
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Iwasawa introduces (v. [4]) two Zv[G]-modules (among others) ~ and ~ which are 

defined as inverse limits of certain subgroups 3~ and 3m respectively of the additive group 

of (I)z, m ~> 1; ~ is a sub-module of ~. He also introduces two Zp[G]-modules 9~ and !D 

which are defined as inverse limits of certain submodules ~m and ~m respectively of the 

Zv[G]-modules Sz, m >t 1. I n  detail, let N ~ denote the sub-module of all ~ a .  a (a E G, 

a. E Zr) in R~ such that  ~ .  a. = 0, and let 

?Im=~3~+~ ~ ~z=Rz~,  

~m=qml:(a--qm:~Pl(l(a)m , O<~a<qm , ( a , p ) = l .  where  
a \  ~ / 

It  is then shown that there exists a Z~[G]-isomorphism of 

~m "-> ~m, ~m ---> 3m, ~m/~m"+ ~ra/3m (m >1 1). 

Since the isomorphism commutes with the homomorphisms of the associated inverse systems, 

we have that  the isomorphism induces a Zv[G]-isomorphism of ~/!~-+ 3~/3 ([4], Theorem 

2). Furthermore, the algebra Sm has an involution :r zr such that  a* = a -1 for any a E G~. 

If we denote by 9X* the inverse limit of 9~*, m >~ 1, then the maps ~m~ i~*, m >t 1 define 

a Zp-isomorphism (not a G-isomorphism) ~-+ ~* such that  (a~)* = a- 1~. (a E G, :r e ~). The 

inverse limit of ~* ,  m ~ 1, gives a Zv[G]-submodule ~* of ~*; the above isomorphism in- 

duces similar isomorphisms ~-+ ~* and 9~/~-~ 9~*/~* (again not G-isomorphisms). 

Iwasawa further introduces two more Zv[G]-modules X and Z. They are defined as 

the inverse limit of certain subgroups Xz and Zz respectively of the multiplicative group 

of non-zero elements in (I)m, m ~  1; Z is a submodule of X. He then defines a u-isomor- 

phism 
h : X ~  

such that  h(Z)= 8, and hence h induces a u-isomorphism 

h: x/z-  

Putting all the isomorphisms together we have the following diagram: 

Z~ [G] -isomorphism 

X/Z ~ o r p h i s m  
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Because (e• ~, and h(xY)=u(~)h(x) ~= -h(x )  ~, we have the following diagram of 

isomorphisms: 

(~'1~*)- 
Zp [G]-isomorphism 

(21~)- * (~13)- / /  
J h  a ~-isomorphism 

(X/Z) + 

Iwasawa (Prop. 1 and Prop. 2, [4]) gives the algebraic structure of 9~/~ and hence 

the algebraic structure of ~ / ~ .  However, since h : X / Z ~  ~./3 is only a z-isomorphism, 

knowing the s t ructure  of 3~/~ does not provide us with such knowledge of X / Z .  As as- 

serted in the introduction, in order to s tudy (X/Z) + in particular, it would suffice to find 

a Zr[G]-module M whose structure is known and for which we have a u=isomorphism of 

M-+ (~ /~ ) -  or (9~/~)-; indeed, we would have induced a Zr[G]=isomorphism M~' (X /Z )  + 

and we could then recover the structure of (X/Z) +. Our ultimate goal had been to find 
+ + such an M. Our M was supposed to have been lim Rm/mI2. We do obtain an isomor- 

phism of lim R+/zI~---> (~ /3)  ~, but  it is not a x-isomorphism as we will presently see. 

I t  follows immediately from the definitions of 9Xm and ~ z  that  ([4], p. 76): 

* -  # s - ~  ~ m / ~  =R;~/(lt~ n R~m). 

Because ~m = mr + �89 qml-i ~ a(a)z, we have 
O ~ a  < q  m 
( a , p ) = l  

=I~ = =B 1 =co I _ Rg N R= ~ (v. Corollary to Prop. 3.) 

Thus we have an epimorphism of finite groups: 

R[n/mI~ ~ R~/(R~ N Rm ~m)" 

The order of R~n/~I~ = qm( l~ B~)~ (v. Corollary to Prop. 3.) 
Z m o d  qm 
Z ( - 1 ) f f i - 1  

The order of 

Rm/R m rl R m ~m = order 9/*-/~3"- (by isomorphism) 

= order 9~;,/~7. (again by isomorphism) 

= exact power of p dividing the first factor 

h~ of the class number of Fz (v. [4], Prop. 4) 
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=q.( 1-[ BI), 
nlo d ~o m 

X(-1)=-I 
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(v. [3], p. 171 and  proof of Corollary 

to Proposi t ion 3 of this paper.) 

Thus, R~/~II "" R~/(R~ n Rm ~m) (m/> 1). 

And hence, for each m >~ 1, we have a Z~[G]-isomorphism 

; 

furthermore,  this isomorphism commutes  with the homomorphisms of the associated in- 

verse systems. Therefore, 

lira i ~ * - / ~ * -  ~ lim R~/mI~ (Z~[G]-isomorphism). 

B u t  (9~[*/~*)- = lim *- *- ~[m /~m , thus  we have t h a t  

lim R ~ / m I ;  ~ (9~*/!~*)- (Z~[O]-isomorphism). 

Recall f rom Theorem 2 tha t  since p X 1, p X 2 we have an isomorphism of lira R+/mI~--> 

lira RTn/mI1. Call this isomorphism u. A little consideration of how u was constructed 

shows t h a t  u is a u-isomorphism. We thus have the following diagram: 

R + /  I + i lim Rm/,.Ii- ~ (9~*/~*)- -> (9~/!~)- -> ( ~ / ~ ) -  lim m / m  2 

S h  

( X / Z )  + 

+ + I f  we compose the maps  from lim Rm/mI2 -> ( ~ / ~ )  , calling this composit ion v, we have  

v(x") = u(a) v(x) "-~ (where x E lira X'~m/m 2, w + /  I + a E G). Thus we failed to  obtain a u-isomor- 

phism. 

Appendix  

Define the sequence of Bernoulli numbers  Bn, by:  B 0 = 1, and for n >~ 1, by  the gen- 

erating function,  

(1 - e-t) - 1 •  t -1 + �89 -- ~ (--  1) n Bn t2n-1/(g•)! 
n = I  

The Bernoulli numbers  are rational, and, for example, B 1 = 1/6,  B 2 = 1/30,  Ba = 1/42, etc. 

Define the sequence of Bernoulli polynomials,  Bn(x), n ~ O, by  

fe xt $ n 
~. B,,(x) -~.t." 

e t-I n = o  
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Then Bn(x) = x n -  �89 n x  ~-1 § (__ 1)u-1 Wn.2u p Buxn-2u .  Notice that  Bn(x) has rational 

coefficients. Bn(x) ,  n >1 O, satisfy the following relations. (Davis, [2], p. 183): 

(A 1) B, (x)= [x+ B(0)] ~ where by B(0) = we understand B,(0): 

(A2) B , ( 1 - x ) = ( - 1 ) ' B ~ ( x )  

(A3) B~(kx)=k ~-1 ~ B~ x + ~  
r = 0  

~C (A4) B~(x+h)=r~ ~ n.rBn-~(x)h'. 

Leopoldt ([5], p. 131) defines a different sequence of Bernoulli numbers B* by: 

te ~ 
- ~ B*t~/n! 

e t -  1 n=o 

and the nth Bernoulli polynomial by: 

B* (x) = (B* + x) ~ (n ~ O) where by B *n we understand B*. 

The B*(x)  can also be defined with the aid of a generating function: 

te(l + z) t r162 
-- ~ B* (x) thin! 

e t -  1 n=o 

Note that: 

(A5) B * ( x ) = B , ( x + I ) .  

For a residue character Z with conductor [, Leopoldt defines the nth generalized 

Bernoulli number associated with the character Z, B~, by: 

r te"t ~ B'~ t~ /n  ! 
Y z(/~) dt 1 -  

p = l  - -  n = 0  

B1 = Bn.  Leopoldt where Z(#)= 0 if (#,/)  > 1. Of course, for Z= 1 (principal character), = * 

then shows that  for g # 1, n >~ 1: 

(A6) B ~ # 0  if and only if either X ( - 1 ) = I ,  n e v e n o r  

Z ( - 1 ) = - I ,  n o d d .  

Furthermore, if Z # 1, B~ = 0. He expresses B~ in terms of B* and Bn(x) .  Indeed, 
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n B z -- 

Hence for • 4= 1, 

= Z ( l ~ ) ( / B * + l ~ - l ) "  (where B * n = B * )  

f 
1 "-1 Z Z(,u) ( B * + l ~ / l -  1)" 

.u=l 

[~-1 ~ Z(#) B* - 1 (by definition of B*(x)) 
~=1 

f 
]n-1 2 Z(l~) B~(#/]) (by A5).  

f 
(A7) 1~-1 ~ Z(/~)B~(#/[)+O if and only if either Z( - 1 )=  1, n even or 

Z ( -  1 )=  - l,  n odd. 

Leopoldt  fur ther  proves t h a t  for Z a character  with conductor  ]: 

kr 1 
Z(a)a 'L- { ( B z §  +1} (n>~O), 

a=l n +  1 

where Z(a) = 0 if (a, q) 4= 1 and (Bz) ~ is symbolic and means B~. I n  particular for Z a 

character  rood q, Z ( -  1 )=  1, Z4= 1: 

q 
(A8) 5 Z(a)a  2= �89 {(Bz+ q)3_ BSz} = qB~=O 

a = l  

(for by  (A7), 1_  3 B z -  B~ = 0; Z 4= 1 implies o B z = 0; and Bz 2 4= 0, also by (A 7)). 
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