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Introduction

Let 4, B,, ..., B;, be compact linear operators on a Hilbert space H and let p and ¢ be
integers, p >0 and ¢>0. Consider the operator

h
CA)y=AT— A4~ 3 AP**B,, (0.1)
k=0

where I is the identity operator and A is any complex number. If for some-4 there is a non-
zero element « such that C(A)u =0 then we say that 1 is.an eigenvalue and u an eigenvector
of C(A). In case O(1) =4I — A and A is self-adjoint, a classical result asserts that. the eigen-

vectors of C(A) (or of 4) are complete. There is also a completeness theorem in case 4. is not

(1) The first author is partially supported by National Science Foundation NSF GP-5558. The
second author is partially supported by National Science Foundation NSF GP-6632.
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self-adjoint but is in some class C, (cf. Lemma 7.3 below). But in this case, one can only
assert that certain generalized eigenvectors of A are complete (see Sec. 2 for definitions).

In this paper we shall generalize these two results to the case where 11 — 4 is replaced
by the C(A) of (0.1). In Chapter 2 we consider the case where A is self-adjoint and we obtain
various completeness theorems for the generalized eigenvectors of (0.1). In Chapter 3 we
consider the case where 4 is not self-adjoint. We then obtain a generalization of the result
mentioned above for A7 — A, with 4 in C,.

In Chapter 1 we prove some preliminary theorems for operators of the form (0.1),
theorems analogous to well known results for A — 4. Thus, for instance, it is shown that
each complex number A0 is either an eigenvalue or else C—1(1) is a bounded operator.

Chapter 2 deals with the case where 4 is self-adjoint. In Sec. 2 we define the concept of
generalized eigenvector and, under certain hypotheses, prove the following fact. Let v be
any element of H orthogonal to all the generalized eigenvectors with éigenvalues in a dise
[A] <A.Let Cx denote the adjoint of C. Then C;'(A)v is an analytic function of A, regular
in the disc |A| <A. The idea of studying the analyticity properties of C;'(1)v is due to
Agmon [0] and to Dunford and Schwartz [4], who used it to study completeness of the
generalized eigenvectors of operators having the simple form: A — 4.

The result of Sec. 2 is used in Sec. 3 to derive various completeness theorems, the main
ones being Theorems 3.1 and 3.2. Theorem 3.2 is subject to a number of far-reaching genera-
lizations, and the next two sections are devoted to a number of these, culminating in
Theorem 5.1, which we consider to be the most profound result of this paper.

It is obtained in the following way. The results of Sec. 3 are limited to the case p >g.In
Sec. 4, we. introduce certain transformations which, while preserving generalized eigen-
vectors, have the effect of increasing p. Completeness theorems valid even when p <gq can
therefore be obtained by applying the results of Sec. 3 to the transformed versions of the
original operators. This method of transformation also gives new results when it is applied
directly to the situation of Sec. 3 in which p>g¢.

In Sec. 5 we apply a process we call “linearization” that transforms any equation for
generalized eigenvectors to a system of equations. In the computationally rather involved
Lemma 5.1 we show that the generalized eigenvectors of the resulting system are related
in a simple way to the generalized eigenvectors of the original operator. Therefore, the
results of Secs. 3 and 4 can be applied to the system of equations, and this gives results for
the generalized eigenvectors of (0.1). Finally, Theorem 5.1, mentioned above, is obtained
as a limiting case of the linearization process.

In Chapter 3 we drop the hypothesis that A (in (0.1)) is self-adjoint. We restrict ourselves
to the case where p+h <gq. The main result is stated in Theorem 6.2. The proof of this
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theorem is given in Sec. 7. The method we use is that of “linearization” of operators (0.1)
with respect to A, which means, in this context, the reduction of (0.1) to a matrix operator
of the form A7 —A. This technique has been used before by several authors, notably by
Agmon and Nirenberg [1]. In that paper they prove a completeness theorem for a reduced
weighted elliptic system. Their method depends upon a lemma of Agmon [0] concerning the
growth properties of the resolvent of a compact operator of a certain class in Hilbert spaces

¥4 H™(Q). The proof of that lemma makes use of the C, theory of Dunford and Schwartz
[4]. Our method also employs this theory, but in a different way.(1)

In Chapter 4 we give a few applications of the results of Chapters 2 and 3. We believe
that the methods and results of this paper should lend themselves to many other applica-
tions.

We conclude this introduction with a brief survey of the literature. Completeness

theorems were derived for operators of the form

m AZ
I-24-2B+ 3

i1 A—ay

H, (0.2)

by a number of authors, the first of whom was Miranda [11], who considered the case of
integral and integro-differential operators. Harazov [8] considered the more general case
where A, B, H, are compact operators in a Hilbert space. He assumed that B, (1/a,)H,
are positive Hilbert-Schmidt operators, that A4 is a Hilbert-Schmidt operator, and that
the range of each H, is finite-dimensional. More recently, Miiller [12] relaxed the last con-
dition on the H,. His paper also contains a thorough bibliography on the subject.

The results of Secs. 3 and 4 are related to the work of Shinbrot [14], [15]. In [14] he
considered the eigenvalue problem

M=Au+2*B(A)u (x>1) {0.3)

where 4 is a compact, self-adjoint operator with simple eigenvalues, and B(4) is a bounded
operator satisfying a uniform Lipschitz condition in 1. He proved that the closed subspace
spanned by the eigenvectors of (0.3) has finite codimension if

x |2
SIS < Gu=minlp—u, (04)

where u,, are the eigenvalues of 4. In addition, Shinbrot showed that if one adjoins a finite

number of eigenvectors of 4 to those of (0.3), the resulting system of vectors is complete.

(*) See also Addendum at the end of this paper.
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His method is based on a perturbation of the eigenvectors v, of A. The results were genera-
lized, in [15], to include the case o <1.

A more recent result is that of Turner [16], who considered (0.1) with ¢=1, p>2. He
assumes that 4 and the B,’s are compact, self-adjoint and positive. In addition, he assumes
either that A4 is in C, for some r <1/2 or'that 4 is in C, for some r <2/3 and that the B,’s are
in C;. He then proves that the eigenvectors corresponding to real eigenvalues form an un-
conditional basis. He also shows that the non-negative eigenvalues can be characterized
by variational principles provided the eigenvectors form a basis. Related results for the
case ¢=1, p=2, h=0 were obtained in [17], [18].

Chapter 1. Preliminary results on the spectrum

Let H be a Hilbert space and let A, B,, ..., B, be compact operators on H. We shall
establish completeness of certain sets of elements u of H related to solutions of the equation

1
%= Au+ S AP**B,. (1.1)
k=0

Here p and h are non-negative integers, while ¢ is a positive integer. We introduce the
operator

h
OW)=2"I~ 4~ 3 ¥**B,, 1.2)

and begin with preliminary results which show that the structure of the “spectrum” of
C(2), like that of the more familiar operator AT — A, consists only of “eigenvalues” of finite
multiplicity, forming at most a countable sequence without finite points of accumulation,
except possibly 0.

We need a few definitions. Let € denote the complex plane. We define two subsets of C:
a(4; By, ..., B,)={1€C; C(4) is not one-to-one},
o(4; By, ..., B,)={A€C; C(4) is one-to-one and onto}.

Note that'if 4, B,, ..., B, are merely closed and 1 €p(4; By, ..., By), then C(3) (the inverse
of C(4)) is a bounded operator in H (by the closed graph theorem).
Clearly o{4; B,, ..., B,) and o(4; B,, ..., B,) are generalizations of the ordinary notions

of point spectrum and resolvent set of an operator.

TreEorEM 1.1. Suppose p+h<q. Let A, By, ..., B, be bounded operators. Then o(A;
By, ..., B;) 18 a bounded set.

Proof. Let A€o{4; B,, ..., B,). Then there exists an element u of H with [lu| =1 satis-
fying (1.1). Hence
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3
A<l all+ 2 2Pl Bl
The right-hand side is a polynomial in |1] of degree < ¢. Hence || is bounded.

TaEOREM 1.2. Let A, B, ..., B, be compact operators. Then
C={0} U o(4; By, ..., B,) U a(4; By, ..., By).

Proof. Let A, be a non-zero complex number which does not belong to o(4; By, ..., By).
Introduce the operator

h
D=A+ > M**B,.
k=0

Then A§ I — D is either not one-to-one or is not onto. In either case A is in the spectrum
of D. Since 4§+ 0 and D is compact, this means that A} is an eigenvalue of D. Therefore,
A§I— D is not one-to-one. But this means that 1 € 6(4; By, ..., By).

TuEOREM 1.3. Let A, B,, ..., B, be compact operators and assume that o(4, B,, ..., B,)
18 not empty. Then the set 6(A; By, ..., B,) is either finite or countable. In the latter case it has
no finite limit-points except possibly A=0. If A€a(4; B,, ..., B,) then the space of solutions of
(1.1) ¢s finite dimensional.

Note that, by Theorem 1.1, if p +kh<gq then the set o(4; B,, ..., B,) is not empty.

Proof. Our proof follows one of the classical proofs for the case where C(A)=11—4. It
suffices to show that, for any A >1, the set

Sa=0(d4; By, ..., B N {Aec; %<|z|<1\}

is finite. Since 4, B,, ..., B, are compact, they can be decomposed as follows:
A=AV + 4%,
B,=BP + B,
where the ranges R(4") and R(BY) are finite-dimensional, and the norms of 4A® and

B can be made smaller than any prescribed positive number. We can thus assume that

h
AT 4@+ 5 AP BP[]1< 3. (1.3)
k=0
h
Set B(l)=A+ 3 AP**B,,
k=1

h
BOQ)=A®+ > PHBY  (i=1,2).
k=0

6 — 682903 Acta mathematica. 121. Imprimé le 18 septembre 1968.
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An equation of the form 1%u= B(A)u+ { is equivalent to
[I - %B‘z’(l)] u= )_T“ [BOAYu+ f]. (1.4)
Because of (1.3) we have, for any A in the region A™'<|A|<A,

h
<as(l4®0+ 3 AP <3,
k=0 ‘

Therefore, [I — 1 “B®(A)] ! exists and is a bounded operator. We can then write (1.4) in

the form

u=[A1—B®A)] ' [BYA)uw+ fl. (1.5)
Let {g,,} be an orthonormal basis for the finite-dimensional subspace
B
Rs{v EH; v=v,+ > w, v,€ R(AV), w. € R(B},”)}.
k=0
Denote the dimension of B by N and the scalar product in H by ( , ). Since BP(A)u is
in R, (1.5) is equivalent to

u=[T= B+ 3 (BOR), ) 0~ B¥0T . (L6)

Set zy(A) = (BP(1)u, ¢x). Then, (1.6) has a unique solution if and only if one can solve
uniquely the equations

N

2~ 2 (BYA) AL — B2 @, pr) 2= (BPA) [ - B®W] )  (k=1,...,N),
" (1.7)
i.e., if the condition
det {I— (BV(A)[A*I - BP(A)] g ¢)} =0 (1.8)

is not satisfied. In fact, applying B (1) to both sides of (1.6) and taking the scalar prod-
uct with ¢ we obtain the system (1.7). On the other hand, if (x,(4), ..., zy(4)) forms a
unique solution of (1.7) then the element

w=[I=BP@) " [+ 2 wlh) (L9)

is easily seen to satisfy (1.6). The correspondence (2,(A), ..., y(4))—>u is one-to-one.
In view of Theorem 1.2 it follows that A €a(4; B,, ..., B,) if and only if it satisfies (1.8).
Note now that BM(1) is a polynomial in A. Also, [49] — B?(4)]-1 is analytic in A for
A-1<|2| <A, since the Neumann series for this operator converges there. Thus the relation



NONLINEAR EIGENVALUE PROBLEMS 83

(1.8) has the form P(1)=0 where P(1) is an analytic function for A-1<|i|<A. Since
o(4; By, ..., B,) is not empty, P(2) = 0. Hence the equation (1.9) has at most a finite number
of solutions for A1 <|i| <A.

Finally, thé last assertion of the theorem is a consequence of the fact that any solution
w of (1.1) (with A1 <|A| <A) must have the form (1.6) with f=0. '

Remark. Note that the x;(1) occurring in (1.9) are analytic functions for A€g(4; B,, ...,
B,). This implies that C-1(4) is analytic for A€9(4; B,, ..., By).

Chapter 2. The case of A self-adjoint
2. Fundamental lemmas

In this chapter we shall continue to study equations of the form
n
u=Au+ > 2***Byu, 2.1)
K=o

but the basic hypothesis that A is self-adjoint will be made. As before, introduce the
operator

h
CN=iI-4- 3 #**B, (2.2)
k=

Assume that p(4; B,, ..., B;) is non-empty. Then, by Theorem 1.3, it is an open set.
As we remarked at the end of the last section, C-1(1) is an analytic function in C, regular on
the open set p(4; By, ..., B,). As (1.7) shows, the functions #,(1) occurring in (1.9) are ratios
of determinants of regular analytic functions. Therefore, by (1.9), C—1(A) has isolated singu-
larities at the points of 6(4; By, ..., B;). Furthermore, if ,€6(4; B,, ..., B;), then, in a punc-
tured neighborhood of 4,, C-1(4) is a finite sum of terms of the form (p,(1)/g(2))I'; where I';
is a bounded operator independent of 4 and p,(1), g(1) are regular analytic functions, g(A)
having an isolated zero at 4. Consequently, C-1(1) has a pole at 4,.

Definition. Let 2g€a(A4; By, ..., By), 4g=0, and let » be the order of the pole of C-1(i)
at A=24,. Let "=(d/dA). By a packet of generalized eigenvectors of C(A) (or of (2.1)) at A =2,,
we shall mean a vector (%, u,, ..., %, ;) Whose components are elements of H satisfying

the following system of equations:

C(Ao) uy=0,
ClAg)uy= — 0,(10) Ugs
(2.3)
_ 1
(n—1)!

Cla)6n1= = O o) a2 57" () = .. € i)t



84 AVNER FRIEDMAN AND MARVIN SHINBROT

The non-zero components u; of each such vector (uy, %,, ..., %, ;) will be called generalized
eigenvectors of C(A) at A=A1,.

It should be noted that if a set {u,, ..., u,_, | satisfies the first £ equations in (2.3), where
k<n, and if there do not exist elements u,, ..., %,_; such that the last n -k equations of
(2.3) have a solution, then the elements u,, ..., %,_, are not necessarily generalized eigen-
vectors.

Consider the special case where C(A) =11 — A. In this case Dunford and Schwartz [3]
have also defined the notion of a generalized eigenvector. They call an element v€H a
generalized eigenvector if v satisfies an equation

(4 =2 Iy+1p =0 (2.4)
for some non-negative integer £ and 1,€C. We wish to point out that when C(1)=AI—A4,
our notion coincides with the notion of Dunford and Schwartz.

If C(A)=AI — A, equations (2.3) reduce to

(4—21)u,=0,
(A=A L) uy =y,

(2.5)

(A _}'OI)un~1:un—2‘

It follows immediately that each wu, (0<k<n—1) satisfies (4 —2y1)*" u,=0 and is,
therefore, a generalized eigenvector in the sense of Dunford and Schwartz.

"Suppose conversely that » is an element of H satisfying (2.4) for some k>0. By
[3] it follows that v satisfies (2.4) with (possibly another) k such that 0 <k<n —1. Set
w,=(A -2, =% (0<i<n—1). Then (ugy, ..., %,_;) is & solution of (2.5) and is, therefore,
a packet of generalized eigenvectors of C(1)=A1 —4 at 4,. Since u,_; =v, it follows that v
is a generalized eigenvector in our sense. Thus, the Dunford-Schwartz definition coincides

‘with our definition.

Definition. Denote by spz(C) the closed subspace spanned by the generalized eigen-
vectors of the operator C(1) (given by (2.2)) when A varies in the disc [A| <R, and write
Sp(C) =8p,(C). Similarly denote by spz(C) the closed subspace spanned by the eigenvectors
of C(2), when A varies in the disc [1]| <R, and write sp(C) =sp%(C).

Let Ag€0(4; By, ..., By), Ay 0 and let »(4) be any function, with values in H, analytic
in a neighborhood of 1=4,. If we denote by = the order of the pole of C-1(1) at 1 =4,, then
‘we have

Yo “u + 2ol ), (2.6)

~1 —
C (A u(d) (l—lo)"-l_(l—lo)"*l—*_m A7

‘where w(4) is analytic at 1=A4,.
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Notation. We shall denote by G(C(4,)) the closed subspace spanned by all the genera-
lized eigenvectors of C(1) at A =1, We shall denote by G(C(4,)) the closed subspace spanned
by all the elements wu,, ..., u,_, occurring in the expansion (2.6), when u(A) varies over the

seb of all functions analytic in a neighborhood of A =4,.
LemMma 2.1. G(C(A)) =G(C(A,)).

Proof. If we apply C(4) to both sides of (2.6), we conclude that the function

g(A)EO(l)( g f}o)ﬁ 7 _";:))n,pu +l“_—‘llo) 2.7)
is analytic at 1=1,. Developing C(4) into Taylor’s series about 1=2, we find that (2.3)
holds. This shows that G(C(4,)) < G(C(4,)).

Suppose conversely that (u,, ..., %,_,) is a packet of generalized eigenvectors of C(4)
at A=2,. Then the function g(1) defined in (2.7) is analytic at A =,. Since (2.6) clearly holds
with (1) =g(4), w(2)=0, it follows that the u, belong to G(C(4,)). Thus we have proved
that G(C(Ae)) =G(C(A,)).

Lemma 2.1 gives a useful characterization of generalized eigenvectors. We shall use it

to prove the following lemma.

LEMMA 2.2. Let k be any positive integer and set T'(1) = C(A¥). Then Ay(==0) is a pole of
C~HA) of order n if and only if each k-th root A3'* is a pole of I'-1(A) of order n. Moreover, in
that case,

G(T'(A™) =G(C(Ay)). (2.8)

COoROLLARY. Spy(I") =spgk (O).
Proof. Let A, be a pole of order n of C-1(4), 4,=+ 0, and let u(4) be an analytic function in
a neighborhood of 2=2,. Then (2.6) holds. For any k-th root u, =A%, let u=u(d) =A"* be

the uniquely defined analytic funetion in a neighborhood of u, with (o) =, Setting v(u)
=u(A), we obtain from (2.6),

Yo Uy

T (u) v(p) = C~Y(A) u(d) = it et !7?"_—*/‘“,)# wo(u),  (2.9)

_l_
(W — o) (s
where wo(u) is analytic at g = p,. Note that v(u) is analytic at u= p,. From (2.9) we get

Y

vy V-1
(e = pmo)* -

r-! =
() v(p) = ”o)n_ﬁ u

+ +wy(p), (2.10)
( 0

where wy(u) is analytic at u=u,, and the v, are linear combinations of the u, (0 <j < 1) and
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vice versa. Clearly, when u(A) varies over the set of all functions analytic at A =4, v(u) varies

over the set of all functions analytic at u=u,. It follows that
G @) = O (). (2.11)

Suppose now that I'!(4) has a pole at some point u,+0. We claim that there is a
pole of C-1(4) at the point 1, =u%. Indeed, the map A—u(A) =A"* (with u(15'*) =p,) is a one-
to-one analytic transformation from a neighborhood of 4, into a neighborhood of y,. It takes
C-1(4) into I"'(). Since the latter is not analytic at y =u,, C~'(4) must have a pole at 4.

We have so far proved all the assertions of Lemma 2.2 with (2.11) instead of (2.8). Now
use Lemma 2.1 to deduce (2.8).

LemMa 2.3. Assume that o(A4; By, ..., B)) is non-empty. Then there is only a finite

number of linearly independent generalized eigenvectors of C(A) at A,.

Proof. By Theorem 1.3, there is a finite number, say N, of solutions u, for the first
equation in (2.3). For each such «,, consider the second equation in (2.3). If there is at least
one solution, then the number of linearly independent solutions is at most N. Repeating
this process a finite number of times, we cover all the equations (2.3) and obtain at most a

finite number of generalized eigenvectors at each step. The lemma follows from this.

Definition. Let A be a compact self-adjoint operator. Denote by {4,} the sequence of
eigenvalues of A. If

illnl'< oo (2.12)

for some r >0, then we say that 4 is in class C,.

We can now state our main lemma.

Lemwma 2.4. Let p>gq. Suppose that A, By, ..., By, are compact, that A is self-adjoint and
one-to-one, and in class C, for some r<(p/q)—1. Then the set9(4; By, ..., By) is non-empty.
Furthermore, if an element v in H is orthogonal to all the generalized eigenvectors of C(A), A€C,

then the function
v(A)=C; (I)v (Cx denotes the adjoint of C) (2.13)

8 an entire analytic function of A.

Note that the right-hand side of (2.13) is well defined and regular on o(4; By, ..., By).
The last assertion of the lemma is the statement that the right-hand side of (2.13) can be
extended into the whole finite plane so as to become an entire function.

In proving Lemma 2.4 we shall need the following lemma.
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LemMma 2.5. Let A be a compact self-adjoint operator with zero null space, and suppose
that A €C, for some r>0. Then there exists a sequence {@,}, i, "\ 0, such that

AL —4)™ <|AI~CT+T whenever |A|= pt,, 1 <n< oo, (2.14)
Proof. Denote the eigenvalues of 4 by A,, and let u, be an eigenvector correspond-

ing to A, such that {u,} is a complete orthonormal sequence. Then we have

8

(w, u,)
T (2.15)

AM—-4A)ru=

n

Therefore, if §(A)=min |4, — Al,

G- )l < g 5 [

It follows that (AL —4)Y < (2.16)

1
o(a)
Let {»,} be the sequence of distinct values of [Anls ¥ni1 <9y, and define

'}/n= %("’n"""nﬂ)-
Then, if |1|=y,,
2

V7 Vo4l

I -4y <

Therefore, it suffices to show that there are infinitely many values of » such that
Yo~ Vns1> ¢ ¥5'T, where c is a positive constant.

If this were false then, for some 7, >0,
Vo1 >2(l—cvy)  for all n>=ny. (2.17)

Since 4 €C,, 2, < oo. It follows that s}, 0. Therefore, for any &>0 there exists a

number n,( = n,) such that

& .
v, < .t if n>=n,. (2.18)

r
From (2.17), (2.18) we get — >vn(1 _ci)_
n

Inductively we obtain

~ C_(;‘r - e B ce’ \ ) '(n,) . I'(n —ce,)
Y >1’n,(1 71/1) (1 g+ 1)"‘(1 n— 1) ~Vm Pin,—ce) Tm) °

where I' denotes the I'-function.
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Using the asymptotic formula (see, for instance, [5; p. 47])

[(z)=e 2 @128z Ven (1 + 0(1)) (1<z< o),

4

we find that F(PZ(‘:)G) = (z + a)a (1 + O(g)) .

This relation with z=n—cs", a=ce" gives

sy em) 1
¥ =V I'(n; — ¢&™) 2n°
if n is sufficiently large. Choosing ¢ such that &"< 1/r¢, we find that, for some positive

constant ¢,

_ T 3
= nt T > o0 if m> oo,

This contradicts the fact that ny}, >0 as n—> co.
We now proceed with the proof of Lemma 2.4. Since A4 satisfies the conditions of

Lemma 2.5, we have
_ c
laer— 4y~ <|/1IT;’ for |A]= ui, (2.19)
where {u,} is a sequence which decreases to 0 and ¢ is a constant. Hence,

h
Hkgo(zal—A)-lxﬁkBk <c| A9 for |4 =pule. (2.20)

Since r< g —1, we have p—¢(1+r)>0. Hence the right-hand side of (2.20) goes to 0 as
pn—0. It follows that
13
(I— 2> (A9T—A4) TAP+*B,) ! (2.21)
K=o
exists if |1]=u}? and = is sufficiently large. It can now be immediately verified that,
whenever |A]= uy/?, C~*(4) also exists, and is given by
h
C Y A)=I— 3 A I—-A) A B) YA - A)™. (2.22)
£=0
We have thus proved that the set g(4; B,, ..., B,) is non-empty.

From (2.20) it follows that the norm of the operator in (2.21) is bounded by 2 if
|A|= p¥? and, say, n>n,. Hence, from (2.19), (2.22) we get

_ (4
" C 1(2.)" < |A|Tl+r) for |l| = ‘u}[", n= 7y. (223)
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Now, let » be an element in H orthogonal to all the generalized eigenvectors of C(4),

A €C. Consider the function
@A) =(CHA)u, v), (2.24)

where « is a fixed element of H.

@(2) is an analytic funetion, regular in the open set o(4; By, ..., By), and ¢(4) can have
singularities only at the points 0, oo and the points of ¢(4; B,, ..., B,). If A,€0(4; B, ..., B)),
then

C Y AMu=

Uy Uy Up—1
+ + ... A), 2.25
=y a gt (2:29)
where #n is the order of the pole of C-1(4) at 4y, and w(4) is regular at 1. Lemma 2.1 shows
that u,, ..., u,_, are generalized eigenvectors of C(A) at 4,. v is therefore orthogonal to them.
It follows that @(1) = (w(A), v), so that p(1) is regular at A =4,.
We next consider the singularity of ¢(4) at 1 =0. Introduce the function y(4) =4"p(4).

From (2.23) we see that
2@ < [APICH D ]l o] <e

on the boundary of each ring p}/¢; <|1| <u}?% n>n,.Since y(4) is regular in each such ring,

the maximum principle implies that y(4) is uniformly bounded in a punctured neighborhood
of 2=0. It follows that y(A) has a removable singularity at 1 =0. Consequently, (1) has a
pole at =0 of order <p. Since |p(1)| <c|1|7"*" and g¢(r+1) <p, the order of the pole
is actually <p-—1.

We thus have p(i)= Zg:i+ Z§:§+ ot ‘%1 +y(h), (2.26)
where y(4) is an entire function and
1
W=, YO YA u,v)dd, R>0.

2m' 1Al=R
If we choose R= u;/* for some sufficiently large fized n and make use of (2.23),
we find that

c
a< [ e ullol1a2] <const. u].
n

131=,?

Thus, a; = a,(u), which is obviously a linear functional of u, is also a bounded functional.
It follows that there exists a unique element w; in H such that ax(u) = (u, wy).
Next, if A€p(4; By, ..., B)) then

le@l <o @ [l lo]l,
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ie.,, @(A)=g(4; u) is a bounded linear functional in %. From (2.26) we then conclude that
there exists an element v(d) in H such that y(A)=v(4; ») has the form (u, v(4)) for all
A€g(4; By, ..., B,). Hence,

Wp-1

At

Wyp-_2

AD~2

T Y e e 1 SRS % +v(4) (2.27)

for all A€p(4; B,, ..., By):
The function »(4) is regular in p(4; By, ..., B;). We claim that at each point 4, of 6(4;
B, ..., By), v(A) has a removable singularity. Indeed, for any » € H, (2.26) gives

|, o@)| <c  (c=c(u)) (2.28)

for all 4 in some punctured neighborhood V of 4,. The principle of uniform boundedness
implies that |[¢(3)| <c in V. Therefore »(1) has a removable singularity at 4,. Defining »(4,)
by continuity, we thus have that »(1) is regular at A=1,. We now define C;(1)v at A=4,
such that (2.27) holds also at 1=4,.

Since (u, ¥(4)) =p(4) is regular at =0, (2.28) holds in a punctured neighborhood of
4=0.We conclude, as before, that »(1) is regular also at 1 =0. Thus, v(4) is an entire analytic
function.

We now apply Cx (1) to both sides of (2.27) and obtain:

h
v= (,101 ~A-3 zv+'°B:) (“"’_‘; T R ﬂl) + Cu(A)v().
o FET i

The only coefficient of A-?+1 is —Aw,_,. Hence Aw,_,=0. Since 4 is one-to-one, we get
wy_y =0. In the same way it follows that w,_, =0, and, in general, that all the w, are zero.
The last assertion of the lemma then follows from (2.27).

From the proof of Lemma 2.4 we also obtain the following result:

LEMMA 2.6. Let A, B,, ..., By, be as in Lemma 2.4. If an element v of H is orthogonal to
all the generalized eigenvectors of C(2) for which |A| <A, then the function v(2)=C'A)v is a

regular analytic function in the disc |A] <A.
3. Completeness theorems in case p >q
Our first completeness theorem is for equations of the form
Au=Au+A?Bu (1<g<p). (3.1)

TaeorEM 3.1. Let A, B be compact self-adjoint operators with zero null space. Assume
that A is in C, and B is in C; where r <(p—q)/q, s<q/(p —q). Then the generalized eigenvectors
of (3.1) are complete.
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Proof. Let v be an element of H orthogonal to all the generalized eigenvectors of (3.1).
We have to show that v=0. For any u€H, consider the function ¢(4) =(C-'(4)u, v). By
Lemma 2.4, v(A)=C;'(1)v is an entire function. Setting 1 =1/u we find that (1) = py(u)

where
@o(t) = ("~ — B—pPA)'u, v).

In view of our assumptions on B, we can now apply the considerations of Lemma 2.4 to the
function ¢y(u). We conclude (cf. (2.26)) that ¢,(u) has at most a pole of order p—1 at u=0.
It follows that ¢(1)—0 as A—co. This implies that »(4) is bounded in a neighborhood of
A=oco. Hence, by Liouville’s theorem, v(1)=const. Since, however, (u, v(1)) =¢(1)—~0 as
A— o0, v(A)=0. From (2.13), with fixed 4 in g(4; B), we then conclude that »=0.

Remark. Theorem 3.1 can also be stated in the following way. Consider the equation
lu=Au+i*B (a>1) (3.2)

where « is a rational number p/q. If A, B are compact, self-adjoint and one-to-one, and if
A€C,, BeO, wherer<o—1, s <1/(ee—1), then the generalized eigenvectors of 11 —4 —*B
are complete. Lemma 2.2 shows that the generalized eigenvectors of A2 — A —A?B and of
A¥]—A —3PB span the same subspace. Thus the above result does not depend on the
representation «=p/q of « as a ratio of integers.

We shall next consider the general case (2.1), and prove a completeness theorem in
case By, ..., B, have sufficiently small norms. We first derive some auxiliary results.

Let v be an element of H, and let {v,} be a sequence of elements of H (0 <n< o). Let
{ Dy} be a sequence of bounded operators in H (0 <k < co) and assume that D, is one-to-one.

Let v, v,, D, satisfy the formal relation

o= (Do—}."l+ S ,1°+ka) ( an vn), (3.3)
k=1 n=0
ie., v="2 ADyv,— > A0p_qt+ > ADyv, g1+ O ADyv,_got.... (3.4)
n=0 n=gq n=g+1 n=gq+2

Introduce the following column vectors with g components:

v Vmg
0

v= : 1, vm= ".”mq+1 K (35)
0 Um+1g-1

These vectors are elements of the space H?= H x ... x H (¢ factors). Denote by I the unit
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matrix in H? and set Dy= D,L. Then, the first ¢ equations obtained from (3.4) can be

written in the form
Dyvo=v. (3.6)

The next set of ¢ equations can be written in the form

Dyv;=v,— D, v, (3.7)
0 0 0 0 0
D, 0 0 00
where D=y Dp, D 0 0 (3.8)

, 0
D, 1Dy 2 Dys... D; O
Note that if ¢g=1 then D, =0.
By equating the coefficients of 1"?*’ on both sides of (3.4), we get generally
Dy Vpq+1= Vn-va+i ~ D1Van-1a+i-1~ - = Din-1g+i Yo- (3.9)
Taking j=0,1, ...,¢—1 we can write these ¢ equations in the matrix form
Dovn=vn_1—:§:Dn‘,v;, (3.10)

where, as is easily verified by induction,

D(m—l)a D(m—l)trl D(m—l)q—(q—l)
D D D
— (m—-1yg+1 m-1)g (m-1)¢—(q-2)
D,= ¢ (3.11)
-D(mvl)q+(qf1) D(m—l)l1+(q—2) D(m~1)q

for all m > 2.
The relations (3.6), (3.7), (3.10) enable us to solve for v, uniquely in terms of v. In
fact, v, is clearly a linear function of v, say v,= W, v, where the operators W, are uni-

quely determined. We introduce the linear operator V, by setting V,=D;*' W, so that
v,=Dy "V, v, (3.12)

If we can construct operators V, such that
n-1 3
D" V,=D"V, ;,— > D, ; Dg9*PV,, (3.13)
i=0
then the v, defined by (3.12) will satisfy (3.10). If we take

V,=1I (3.14)
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then (3.7) will also be satisfied. Thus, the unique solution of (3.7), (3.10) will be given by
(3.12) provided the V, satisfy (3.13), (3.14).
We shall try to construct the V, in the form

D" V,=(I-X, D) Do I—-X,_;Dg) D5 ... DgYI—X, D,) Dg I —X, D), (3.15)
For 7n=0 this relation becomes V,=I--X,D,. Recalling (3.14) we conclude that X,=0.

LeMmma 3.1. Assume that, for some 0<6<1,

oo k-1
> [ (”ﬂ”) <o. (3.16)
k=1 1-0

Then the system of equations (3.13),(3.14) has a solution of the form (3.15). The X, are uniquely
determined and satisfy the inequalities:

[ X, Dol| <6 (0<n<oo). (3.17)

Proof. We proceed by induction on n. The case n =0 was considered before: (3.14) has
a solution V,=I—X, D, with X,=0. We now proceed from n —1 to n. We try to determine
X, by substituting the expression (3.15) and the similar expressions (assumed by the
inductive hypothesis) for the Dy’V, (0<j<n—1) into (3.13). We find that

n-1
X, Do D5 (I-X, 1 Dg) Do ... Do Y(I— X, Dy) = S D,_, Do (I - X, D) Dgt... Do {(I— X, D).
i=0

Since, by the inductive assumption, ||X;Dy|| <0 (0 <j<n—1), each operator I — X, D, in the

last equation has an inverse. Thus X, is uniquely determined and
n-2
X,Dy=D,+ _20 D, I-X;41Dg) ' Dy ... Dy(I— X, _1 Dg) "1 D,
iz

Using the inequalities X=X, D) Y < 1—1—6

n-j—1
and (3.16), we get X, Dol < Z T (IIIDO(LI) <0,

This completes the proof of the lemma.

LeMMmaA 3.2. Let {Dy} be bounded operators in H with D, one-to-one, and assume that
(3.16) holds for some 0 <0 <1. Let {v,} be a sequence of elements in H satisfying:

lim sup || », 1’"=l, whereR>" °" (8.18)
ot 4 R

If v is an element of H which satisfies (3.3) forma,lly, then v=0.
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Proof. For ahy z in HY,

.

Also, by Lemma 3.1,
X=X, Do)z =1 -0)]z[| (i>1), X,=0

Therefore, we obtain from (3.15)

106 Vavl> (57 v

for any v€ H% Now let v be related to v by (3.5). Then, (3.12) shows that

IDovall= e Vvl > (1) 1= (15q) ol

Henco ol < B2l o, o

Using (3.18), we conclude that lim sup || »||/* < 1. But this is possible only if ||v|| = 0.

For the rest of this chapter, a certain hypothesis on the operators 4, By, ..., B, will be

repeatedly made. Therefore, it will be convenient to give this hypothesis a name.

Definition. We shall say that C(1), given by (2.2), satisfies the hypothesis ¥, if the
operators 4, B,, ..., B, are all compact while 4 is one-to-one, self-adjoint and in class C,.

We return to the equation (2.1) and introduce the following notation:
2¢-1 12 ’
Bn= { Z | Ben-230+1-0- } ifn>2,

b= {5 1B oolt]

(3.19)

where, by definition, B, =0 if either 1 <0 or if ¢>h. Note that 8,=0if n>1+(p+h)/q.
We can now state the following completeness theorem.

TaeorEM 3.2. Let C(A) satisfy the hypothesis N, for some r<(p|q)—1. If for some § <1
k-1
z B ("‘4") <0 (no [p*q'h] +1) (3.20)

then spx(C) =H for any B> ||A||/(1 —0). In particular, the conclusion kolds if || By, ....|| Bul|

are small enough.
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Proof. Let v be orthogonal to all the generalized eigenvectors of (2.1) with |4] <R.We
have to show that v =0. By Lemma 2.6, there exists an analytic function v(4), regular in the

disc |A| <R, such that _
v =021 R v(d).
Writing »(4) = >%_ov, A", we have

h 0
o= (}ﬂl—A— s A”“‘Bt) ( S vnl") if |4]< R. (3.21)

k=0 n=0
We now define the D; in (3.3) by
Dy=4, D,=0if 1<k<p—g—1 (provided p>q+2),
Dyypq=B; f 0Sk<h, Dyyp =0 if k>h.

Recalling (3.8), (3.11), and the fact that the norm of any matrix-operator D= (D,;) sat-
isfies
ID|| <sup {Z || Dy |17},

we easily find that (3.16) is a consequence of (8.19), (3.20).
Since »(4) is regular for |A|<R,limsup| v,|['"=1/R. We can therefore apply

Lemma 3.2 and conclude that v=0.
From Theorems 1.3, 3.2 and Lemma 2.3 we obtain:

CoROLLARY 1. Let the assumptions of Theorem 3.2 hold. Then, for any >0, the sub-
space sp(C) has finite codimension.

We shall now obtain some additional results in the interesting special case
Au=Au+2A2Bu. (3.22)

In this case §, =0, ,=|| B||, and the inequality (3.20) becomes

——”Al”_" f Iy (3.23)

Since we have ¢ =1, p=2, Theorem 3.2 yields:

COROLLARY 2. Let A, B be compact operators and assume that A is one-to-ome, self-
adjoint and of class C, for some r<1. If

F4llllBl <% (3.24)

then sp(C) =H. Even more, spp(C)=H if R> || A||/(1—6) for any 0 for which (3.23) kolds.
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CoroLLARY 3. Let A, B be as in Corollary 2. Assume, in addition, that B is self-adjoint.
Then sp(C)=H. Even more, sp%(C)=H if R>||A|/(1 —0) for any 6 for which (3.23) holds.

Proof. It suffices to show that if 1,€a(4; B) and if u, is an eigenvector corresponding
to 4y, then the second equation of (2.3) cannot be satisfied. Indeed, this will show that
C0-1(4) has a pole of order 1 at 4,. Therefore every generalized eigenvector is an eigenveetor.
Using Corollary 2 it will then follow that sp}(C) =spx(C)=H if R> || 4] /(1 —6).

We may suppose that ||u,| =1. From C(4y)u,=0, we get

Ao = (Aug, up) + A3 (Bug, uy).

1+ Vl — 4(Auy, ug) (Bug, u,)

Hence b= 2(Buy, uy)

(3.25)

Since 4 and B are self-adjoint and || 4] || B|| <1/4, 4, is real.
Since 2, is real, C(4,) is self-adjoint. Hence in order for the second equation in (2.3) to

have a solution, it is necessary that C"(1y)%, be orthogonal to u,, i.e. that

1 =(ug, ug) =224(Bug, ug)-

This equation and (3.25) imply that 4(Adw,, u,) (Buy, up)=1. This is impossible if
Il4] - | Bl <1/4, since ||u,|| =1.

Combining Corollary 3, Theorem 1.3 and Lemma 2.3, we obtain:

CorROLLARY 4. Let A, B be compact self-adjoint operators, and let A be one-to-one and
in class C, for some r<1. Assume further that 4||A|| | B|| <1. Then, for any £>0, spX(C) has
finite codimension.

4. Completeness theorems for general p

In this section we shall prove some completeness theorems for the generalized eigen-
vectors of (2.2), without any restriction on the integer p >0. We begin with the following
lemma.

LeMMa 4.1. Let O(A), C(A) be any two polynomials having the form (2.2). Let D(A) be an
operator-valued function analytic in a neighborhood V of a point A, such that D(A,) maps H
onto H and has a bounded inverse. Assume that

C(l)=D@A)CA) in V, (4.1)

that C-1(A) exists and is analytic in a punctured neighborhood of A=Ay, and that C-1(4) is an
analytic function and has a pole of order n at A=2,. Then C-1(A) also has a pole of order n at
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A=2, and every packet of generalized eigenvectors of C() at 4, is also a packet of generalized
eigenvectors of C(A) at 2.

Proof. Clearly _
C-1(A)=C-Y1) D(A).
Since C-1(A) has a pole at A=41,, -1(1) cannot be regular there. For the same reason, the
singularity of (-1(1) at A=A, must be a pole. Let the order of the pole of C-1(2) be m. Then,
we can write

=19y = é‘m Ci—m+1
Y M)_(l—lo)'”Jr(l—zo)”"ﬁ”' (C_,,+0)

for |4 — 24| sufficiently small, 1==1,. We also have
D(A)=D(Ag)+ (A— ) D'(Ag) + ...
in V. From the relation 0"*(4)= Y1) D(J), we then get

o-1(7y = C=n D0

A= do)™ + ...

Since the range of D(A,) is H, €_,, D(4,)+ 0. Hence m=n.
Now let (uy, ..., u,_1) be a packet of generalized eigenvectors of C(A) at 4y. Then

k

i )

=0 (0<k<n—1) 4.2)
In view of (4.1),

D(lo) C'("‘”(lo)=0~("‘”(lo) é ( ) DY i- z)(}b )C"”(J.o)

Therefore, multiplying (4.2) by D(4,) we find that

g C(k—i)(l )u ﬁ 1 ké ! (k_j)D(k—j_“(}»o) C(”(lo)u
j—o(k—9)! RO YT Y R W !
K k—j 1
= g Zl Gl DP(4) C*~7D(2g) uy
k1 k-t 1
= g @_D(i)(}"))j;) (k_i—-j)!o(k—i—l)ao)uj=0.

Therefore, (u, ..., %,_,) is a packet of generalized eigenvectors of C(4) at 1=A4,. This proves
Lemma 4.1.
In what follows we shall make frequent use of Theorem 3.2. Since the condition (3.20)

occurring in the statement of that theorem is somewhat complicated, it will be convenient
7— 682903 Acta mathematica. 121. Imprimé lo 18 septembre 1968.



98 AVNER FRIEDMAN AND MARVIN SHINBROT

to introduce a parameter % in C(1) and to state the condition (3.20) as the condition that
|17[ is small enough. Thus, in this section we shall consider, instead of (2.1), the equation

h
Mu=Au+n > PP Bu 4.3)
£=0
where 7 is a complex parameter. Setting
h
Q%) =k§0 KBy, (4.4)

we can write (4.3) in the simpler form
Au=Au+nA*Q(A) u. (4.5)
As before, we introduce the operator
C(A) =20 — A —nA?Q(A). (4.6)

In this new notation, Theorem 3.2 becomes:

THEOREM 4.1. Define C(1) by (4.6) and assume that it satisfies the hypothesis U, for
some r<(p[q) — L. If n is small enough, then spx(C) =H for all R sufficiently large.

In this section we shall proceed by transforming the equation (4.3) into another equa-
tion having the same form, but for which p is increased. Then we shall apply Theorem 4.1
to obtain completeness theorems for the original equation (4.3). Lemma 4.1 will be used to

show that the transformation preserves the set of generalized eigenvectors.

Our first transformation of (4.3) is obtained by multiplying this equation by I—
nA*Q(A) AL, In that way we shall obtain a result for the case p > ¢, which shows that if the

assumptions on By, ..., B, are increased then A can be allowed to belong to a larger C, class.

TaeorREM 4.2. Let p=q and let C(A) satisfy the hypothesis Y, for some 0<r<(plq) +
k—1, where k is a non-negative integer. Suppose further that Q(A) A~ is compact (for all 1).
If 7 is sufficiently small then spy(C)=H for all R sufficiently large.

CoROLLARY. Let the assumptions of Theorem 4.2 hold and let 1 be sufficiently small.
Then, for any ¢ >0, sp(C) has finite codimension.

The corollary follows immediately upon using Theorem 1.3 and Lemma 2.3.

Note that the assumption that Q(A) 4~ is compact is equivalent to the assumption that
each of the operators B, 4~ (0<i<h) is compact.

Proof of Theorem 4.2. Define
(8, Q) ()= Q) A7 — A" Q1) A7'Q(2)
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and set Ck(l)=ZqI—A —nlﬂ+kq(sp+(k_l)q Sp+(k—2)q eee SDQ) (A) (k> 1), (4:.7)
ColA) = C(). 4.8)

One easily verifies that
CulA) = [T — A2 DS,y g Spr -2 -+ Sp Q) A1 Ch_1(A) (4.9)

if £>2, whereas

Cy(A) =1 = ni* Q(4) A" 1 Cy(). (4.10)

Noting that Cy(4) has the form (4.7), we can apply Theorem 4.1. We thus conclude that

spa(Cy) = H if |n| <n, where 7, is sufficiently small and R is any sufficiently large positive
number.

From (4.9), (4.10) we see that
Ci(A) =Dy C(A),

where D,(4) is a bounded operator together with its inverse for all A in the disc [A| <E,
provided |7| <#,, where 7, is sufficiently small. By Lemma 4.1 we then have spg(C)=
8px(Cy) = H provided |n| <min (1, 7).

Our next theorem is based on the same transformations as before, but we now begin

with an equation (4.3) for which p <q.

THEOREM 4.3. Let 27° <p/q<27°*Y, where s is a positive integer. Let C(A) satisfy the
hypothesis W, for some 0 <r<2%(plq) +k—1, where k is a non-negative integer. Suppose further
that Q) A~C*% is compact. If  is sufficiently small then spg(C) = H for all sufficiently large R.

CorOLLARY 1. Let the assumptions of Theorem 4.3 hold and let 1 be sufficiently small.

Then, for any &>0, sp,(C) has finite codimension.
Proof of Theorem 4.3. Define
(R,Q) (A) =Q(4) A1 (—nQ(A) +A*-71).
Cy(A) =[1 —nA*Q(R) A~*] Cy(2)

Then the operator

can be written in the form
Cy(A) =41 - A —nA*(R,Q) (A).
If (¢/2)<p<gq, we apply Theorem 4.2 to C,(1) to conclude that spy(C,)=H for suffici-
ently large R.
Next we introduce

Cod) = ~n2*(R,Q) A7*) 0, (4)

which can be written in the form
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CyA)= 29I — A—nA”? (B, R, Q).

If (¢/2%)<p<q/2, we apply Theorem 4.2 to C,y(1) to conclude that spz(C,)=H for suffi-
ciently large R.

In this way we can proceed step by step, and thus show that, for any s, k as the state-
ment of the theorem, spy(C,)=H for all sufficiently large R provided || is sufficiently
small. We now use Lemma 4.1 to complete the proof of the theorem.

We shall derive from Theorem 4.3 a result in which s does not enter. In view of the

inequality 2°>gq/p, the condition r <2*p/g+k —1 is surely satisfied if r <k. We also have

logq/p
< =]
s 1+[ Tog 2

where [«] denotes the largest integer <. Therefore, Q(1) A ¢** is compact if

QM A~**1+P is compact, where
= [lgg q/ p] -

log 2
We can now state:
COROLLARY 2. Let 1 <p <q. Let C(1) satisfy the hypothesis . Suppose that Q(A) A—1-+:+5)
18 compact where k s an integer exceeding r and f is defined as before. If 1 is sufficiently small,
then spg(C)=H for all sufficiently large R.

In the previous two theorems we have assumed that all the operators B4/, ..., B, A~
are compact for an appropriate positive number j. In the next theorem we shall assume that
only some of the operators B; A~/ are compact. However 4 will be assumed to belong to a
class C, with a smaller  than in the previous theorems. The transformation we shall use is
that of multiplication of (4.3) by I —7A?Q(0)A-1.

Definitions. We write Q(1) € my(A4) if @Q(0) A~ is compact, i.e., if ByA-1is compact. For
polynomials @(4) in 7,(4) we define a transformation T, ; by:

(1@ ()= 2200 3e-1(0) 4=t~ nr-10(0) 4000, @1

Here p is any non-negative integer.
If Q(A) € my(A) and (T,,1 Q) (A) €y A), we write Q(A) € m,(A4) and define

(T5,2Q) (A= (Tps11Tp.1 Q) (A).

In general, we proceed inductively. If @Q(A) € m(4) and (T, Q) (A) €m(Ad), we write
Q(2) € my41(4) and define
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(Tp. 11 @) (D) = (Tp12.1 T, Q) (4). (4.12)
If Q(A) € mp(A) (k> 1) then we definé an operator function Ci(4) by
Ci(A) =211 — A —ni***(T, » Q) (A). (4.13)

We also set Cy(d) = C(4).
An easy calculation shows that
Ci(A) =[I —nA? Q0) A1 Cy(A), (4.14)
Cr 1) =[I =" ¥(T, Q) (0) A" 1C(A) (k>1). (4.15)

If we set T, (@ =@ then (4.15) for k =0 reduces to (4.14).
Note the difference between the definitions of the C,(1) in (4.13) and in (4.7). This
difference is very clearly exhibited by comparing (4.14) with (4.10). ‘
From (4.15) we get

C(A) =D, () C(A), (4.16)
k-1
where D)= [T [ = nd™(T,,,,Q) (0) 471, (4.17)

THEOREM 4.4. Let p+k=>q. Let C(A) satisfy the hypothesis M, for some 0 <r<(p-+k)/q
—1. Suppose further that Q(A)€Em,(A). If 5 is sufficiently small then spx(C)=H for all suffi-
ctently large R. ’

COROLLARY. Let the assumptions of Theorem 4.4 hold and let n be sufficiently small.

Then, for any £ >0, sp.(C) has finite codimension.

The proof of Theorem 4.4 is similar to the proofs of Theorems 4.2, 4.3 and is therefore
omitted.

We conclude this section with two results that will be useful in the sequel.

TaeorREM 4.5. All the preceding resulls of Secs. 2, 3, 4, with the exception of Corollaries
24 of Theorem 3.2, remain correct if the hypothesis that A is self-adjoint is replaced, wherever
it appears, by the hypothesis that A is normal.

In fact all the proofs remain the same, except that now the eigenvalues of 4 are com-
plex numbers.

Note that the definition of 4 €C, for normal operators is the same as for self-adjoint
operators.

It will be convenient to be able to refer easily to the condition ¥, with the condition
that A be self-adjoint replaced by the condition that 4 be normal. Therefore we make the
following definition.
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Definition. We shall say that C(A) satisfies the hypothesis J; if the operators 4, By,

...y By, are compact, while 4 is one-to-one, normal and in C..

Note that for any compact self-adjoint (or normal) operator A and for any positive

number «, there exists a fractional power A* and this power is a normal operator. In fact, if

o0

Au= Z An(ur ‘Pn) Pns

n=1

where A, are the eigenvalues of A, then we can take

A*u= 3 15, @) (4.18)

A” possesses the usual properties of fractional powers.
If C(2) has the form (4.6), so does 47*C(1) A*. In fact,

ATCMN) A* =211 — A —npA?A7"Q(A) A~

LeMMA 4.2. Let «>0. Suppose that C(1) and A~*C(1) A* both satisfy Hy. If spr(A~*CA%)
=H, then spp(C)=H.

Proof. If u is a generalized eigenvector of A~*C(%) A% then A% is a generalized eigen-
vector of C(A). Hence, if v is orthogonal to spy(C), then A%v must be orthogonal to spp(4™*
CA%). Therefore, A%v=0, so that »v=0.

THEOREM 4.6. Theorem 4.2 remains valid if the condition that Q(A) A™* is compact is
replaced by the condition that, for some a>0, A™"Q(A) A* ¥ is compact. Similarly, the condi-
tions that QA) A~ C*® and QA) A~ **P are compact, occurring in Theorem 4.3 and its Corol-
lary 2, can be replaced by the conditions that A~*Q(A)A* ©*% and A™*QA)A* 1P gre

compact, respectively.

Proof. We shall carry out the proof as it applies to Theorem 4.2; the other parts of the
proof are similar. Suppose, then, that C(A) satisfies #, and that 4A~*Q(4) A*~* is compact.
Then 47*@(4) A% is clearly compact and 4~ *C(A) 4% also satisfies 3,. Theorem 4.2 then shows
that sp(47*CA%)=H for all R sufficiently large, provided 7 is sufficiently small. Lemma
4.2 then shows that spy(C)=H.

Remark. Theorem 4.6 obviously extends to the case where the condition H, is replaced
everywhere by the condition TN:.
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5. Linearization and its consequences

We shall maintain the notation (4.3), and set

n
Q)= ,Zol"Bk, (5.1)

as before. Then we have
C(A) =21 — A —nA"Q(A). (5.2)

We wish to analyse the generalized eigenvectors of C(A*) for any positive integer k. We

consider then the equation
Aoy = Au, +nAPQ(A) u,. (5.3)

We shall transform (5.3) into a system of equations by considering the equations

Q. — ALKk
Aluy = ANy,

Muy= A%y, (5.4)

Auy_y= Al¥ Uy,

where A'Y* is the normal operator introduced in Sec. 4. As before, 4 is assumed to be

compact, one-to-one and either self-adjoint or normal. Then, (5.3) gives

9 Uy = Al/lcu1 + 7,Mlczz—(i—l) qA—(kvl)lk Q(ﬂ.k) A(i—l)lk w (5'5)
for any 4,1<¢<k. Here, we have used the relation A% V%4 = 4% V¥4, which follows
from (5.4).

Define
0 A0 .0
0 0 AYF 00
A=l . . C e
0 0 0 . L
AY* 0 0 .. 0

and let Q(1) be the matrix having zero entries everywhere except in the kth row and the ith
column, where it has the entry 4~ %~D*Q(3*) 44~V Tf we write u for the column vector
(#y, ..., uy), then the system (5.3), (5.4) becomes

Afu=Au+9AP Q). (5.6)
Set C(4) = AT — A —pakr-G-Deq(a), (5.7)

where I is the identity operator in H?=H x ... x H (q factors).
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We shall say that the system (5.6) is a linearization of the equation (4.3). This process of
linearization has important consequences for the generalization of the results of Sec. 4.
Before going on to some of these, we shall state a result that shows that the generalized

eigenvectors of (5.2) can be obtained in a simple way from the generalized eigenvectors of
(5.7).

LemMma 5.1. Let C(4) satisfy the hypothesis Uy for some r>0. Assume further that for some
fixed integers i and k with 1 <i <k, the operators

A~GDIkB 44Dk (520 1 ..., B)

are compact. Then C-1(A) has a pole of order n at a point Ay=+0 if and only if T(A)=C(#*) has a
pole of order n at Ay If (WO, ..., u™3) is a packet of generalized eigenvectors of C(A) at A=Ay,
denote the first components of these vectors by ul, ..., ul~*, respectively. Then (u3, ..., ui™!) is

a packet of generalized eigenvectors of C(A¥) at A=2,.
Note that C(4) has the form

AGI_A_,'Ii lkp"(i—l)dliBj,
7=0

where the B, are compact operators. Thus the results of Chapter 1 show that, if the resolvent
set of C(4) is not empty, C-1(1) is an analytic function in € except for a countable set of
poles with no finite points of accumulation except, possibly, zero.

Before proving Lemma 5.1, we derive some consequences of it.

One easily verifies that A is a normal operator. Suppose 4 is in class C,. Then A'* is
in class Cy,. As is easily seen, the sequence of eigenvalues of A is obtained from the séquence
of eigenvalues of A* by repeating k times each eigenvalue of the latter. Hence A is also in
class C,.

If 4, k are chosen so that ¢/k <p/q then Theorems 4.2 and 4.5 can be applied to C(4).
The result is that spR(C)=H" for n sufficiently small and R sufficiently large, provided

there is a non-negative integer I such that

kr<kP—i+1
q

while QA is compact. From the definitions of @ and A it can be seen that QA is

compact if
A—(k—l)/k Q(}.) A—(l—i+1)lk

is compact. Here ! is an arbitrary non-negative integer, k is an arbitrary positive integer,

and ¢ is an integer restricted by
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Therefore the number ¢ = (! —)/k can be chosen to be an arbitrary rational number sub-

ject only to the restriction
t> —min(l, 2).
q

Thus, if A €C,, r<(p/q)+t, while A~ *D*Q4-t-1% j5 compact, then spg(C)=H for ¢
sufficiently small and R sufficiently large. From Lemma 5.1 and the fact that spz(C) = HY,
it follows that spg(I") = H where I'(1) = C(4*). But Lemma 2.2 then shows that sp,(C)=H
for r=R" We sum up:

Lemwma 5.2. Let C(4) satisfy . Suppose there is a rational number t > —min(1,p/q)
such that r < (plq) +t, while for some integer k, with kt an integer, the operators

A—(k—l)/kBjA—(llk)—t (0 < 7 < h)

are compact. If n is sufficiently small, then spp(C)=H for all R sufficiently large.

If instead of applying Theorem 4.2 we apply Corollary 2 of Theorem 4.3, then we
obtain by the same method the following result:

Lemwma 5.3. Let C(A) satisfy ;. Let i, k and 1 be integers such that

¢t _p, g—1 l
S —.
etk Tk

L -]

Assume that the operators

A_(k_l)/kBjA(i—lfzfﬂ)lk (0<7<h)

B= [108 q/(kp—(i—1) Q)]
log 2 )

are compact, where

If 1 is sufficiently small, then spg(C)=H for all R sufficiently large.

We shall now prove the following theorem.

TuarorEM 5.1. Let C() satisfy the hypothesis Hy. Let s be a real number with r<
(p/q) +s and suppose that the operators

A-1B,A~* (0<j<h)

are bounded. If v is sufficiently small then spp(C) =H for all R sufficiently large.
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Proof. We shall apply Lemma 5.3 with ¢/k =p/q. Choose a rational number ¢ such that

t<s and r<-§+t,

and set 0 =1t+p/q. We can represent o as a fraction I/k with k so large that

2+

t+k

<s.

(Note that $=0.) Since i/k=p/q, it follows that the operators
A71B,A7t-@*Blk — 41 JG-1-2-BIk ()<< p)
are bounded. Therefore, the operators
AAO-IR, AG-1-2-PIk ()< F< B)

are compact. Since r <¢ =I/k, we can apply Lemma 5.3 to complete the proof of the theorem.

It is interesting to note that if we employ Lemma 5.2, instead of Lemma 5.3, then the
above argument yields the assertion of Theorem 5.1 provided we make the additional as-
sumption that s> — min (1, p/q).

We also note that variants of Lemmas 5.2, 5.3 and Theorem 5.1 can be derived by
employing Lemma 4.2.

Finally, we remark that the assertions of either Lemma 5.2, or Lemma 5.3, or Theorem

5.1 imply that sp.(C) has finite codimension, for any £>0.

Proof of Lemma 5.1. Set
ChHu=v; (5.8)

where v is the column vector (v, ..., v). A straightforward computation shows that

j-1
A'(i—l)llu1 = A(J—l)lk uj_l_ 1211(1—1—1) qA(l—l)llc v, (1 < ?'< ’C). (59)

Therefore,

Aeaq, = A%-VIK jay, 4 kill(kvl)qA(l—l)/k v
=1
=Au1 +lkp_(i—1)qQ(lk) A(i—l)/k u, + i /'l(k_b qA(l—l)/k v,
=1
i-1 k
= duy + 70 QU [, - 3 artage i u]+ S KTl Iy,

k i-1
Hence, C(AY uy= > A*~DagDiky — Jlw (k) 5 )19 40-Dik g
. 1=1 =1

From this and (5.9) we obtain
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k i-1
O A9~ DIk gy = S JUHi=1-Da A-Dik p, _ 2lo (%) S AU-1-Da a-Dlk
(#) 497V, = 5 0= R QU 3, :
-1
—O(AF) 3, 2U-17Daga=Diky, (5.10)
1=1
The right-hand side is analytic in 4 if A3=0. Therefore we can write
N k
C(Aey AV Dlky = > Ty, (5.11)
=1

in a neighborhood of a pole 4, of C(A), where I';(1) are operator-valued analytic functions

regular in the same neighborhood. Solving for u;, we obtain from (5.11),

k
uy=A%NE 0"1(2.")1;1 Ljv,

so that 0 *(4) has the form

I0 0..0 cY Ay 0 0..0
04V 0..0 0 CF) 0 ... 0
00 0 ... A~®-vik/ \g 0 0 ... CTYA"
| AR AR
le F22 "en F2k EEBI‘.
T The ... | P

E is constant and does not increase the order of the pole of BI'. I is analytic at 4,.
Therefore, if m is the order of the pole of C~'(4*) at 4y, and » is the order of the pole of
¢ Y1) at Ay, then m =>n.

Next, from (5.10), (5.11), we see that

ij= AJ‘-IA(kvl)lk.
It follows that the entry (4, k) of C"}(4) is
lelA—(J'—l)/k C_l(],k) A(k—l)/k.

Since 4 is self-adjoint with zero null-space, the range of 4% (for any « >0) is dense in H.
It follows that the last operator has a pole of order m exactly. But no entry in ¢ (1)
can have a pole of order greater than n. Hence m <n. Since we have already proved
above that m > n, we conclude that m=n.

Now let (u’ ...,u""") be a packet of generalized eigenvectors of C(4) at A= 1, and
denote the components of w by ui, ..., },. We have:
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> %G‘”(/l.,)us-’=0 (0<s<n—1). (5.12)
i=0 }!
We write R(A) = pAFP-¢-DaQh), (5.13)
so that CA)y=AT—-A—-R(4). (5.14)
Then, () = (qz—!?_)' MPT-RDA), =1, (5.15)

where, by definition, m!=0 if m < 0. Substituting (5.15) into (5.12), we get
CAg)u*+ 2> [(?) 71— %R‘”(Zo)] wi=0 (0<s<n—1). (6.16)
i1 !

This means that

(1]
gl 4*a8=0,

My — A" uf =0, 10
}'gu(,)c _ Al/k (1)_ A——(k—l)/lc(l(l)cp—(i—l) qR(lo)) A(i—l)lk ?: 0 (R(}.) — Q(Ak)),
and, generally, for 1 <s<n—1,
s q .
Adui— AP ug+ > (7) MWlui =0
i=1
.
Uigtam a3 () i (5.18)
Gus, — AVES + [i (q) A it — zs: .lA—(k~1)/k [AFP-C-DaR(1)]P 4G DIk uf’j] =0.
| =1 \J j=o !
The system (5.17) shows that
C(A§)ul=0 (5.19)
and, since 49" V%4 = 30~V also
C(Aky A=Vl 0 = 0. (5.20)
We now turn to equations (5.18). They imply that
s q q
AVous = 8uf |+ 21 (l) §luit]= go (l) APyl (6.21)

8 8
Therefore AVeqs=18us+ S (;’) Atui=S (?) A8 Tug . (5.22)
=1 1=0
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In what follows we shall make use of the formula (see, for instance, [13])

2 (n m n+m .
kgﬂ (k) (p— Ic) = ( » ) (m an integer >1). (5.23)

Using (5.21)—(5.23) we have:

A2/ku _Allklzlg +2()Aal sl]

43 124-1 W+ > (4
(e £ (1)a|
s q s~1 s-1 q
=/1%"ui+2 2 ( )lzq ! ui™ ty Zl ,Z'l (l) (m) 1(2)0—(l+m)u§—(l+m)

i=1 l I=
—Au+2 3

) 52¢-1 W+ 9 (g q 2q-1,5-1
=1 (l)ﬂ Z 2=: (m) (l’m)% “
=Ru+2 S (q) Bl S [(2‘-’)—2(9’)} Bty
IV 1=2 ! !
= A3t ui+ 2qA8% Tl + 2 ( ) Rty

s (v

Thus AFui=3 (2lq) Yol (5.24)

1=0

Agus l+ z ( )lg—mu.i—(l+m)]

8

We can similarly proceed by induction to prove that
k 'q
Alg, =S (’l)az,“-'ui-'. (5.25)
=0
In fact, if (5.25) is true then we can write, by (5.21),

A(1+1)/k s _A]/chllk ZAIIk[i ( )la luj+1]
1=0
and evaluate the terms on the right by using (5.25) and (5.23). We thus find that (5.25)
holds also with § replaced by §+ 1.
From the last equation in (5.18) and from (5.25), we get
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8

},SA(k—l)/k ';c:Aui" z (q) lg—jA(k—l)lkuiﬂ Z [lkp [ l)qR(}.)](DA(‘ ik s—j
' J

i=1 i=0 7

w5 (e

i [lkp+(i D"R(Z)]U) Z ((7' I)Q)M Da-1ys-i= 1
= 0

éh)(&hmwww

+ z 1kp - DGR(Z)](’)}.O’C Dg+i- ’ui 1

AP

by (5.25). Abbreviating u} to %', we then have

g 1— e+ 3 () gwt- s -o, 5.26)
where »S’(,1)=:0 ]éo%(( l—ly)q) AG-D @I JEp=G=DaR(2y[D g5~

E L (e e
£ L
3B e
e -
3 ()

L

— < l kp s$~—1
g I dat (A*R(A))u’~".
Combining this last result with (5.26) we find that, for A=A,

s 1
(AT — A)us+ z( )}.’“’ w3 11' ;/11 (A®R(A) w ! =0,

ie > 1 dlC(}.") Tl=0 (0<s<n-1)
- Sl dn ’
This shows that (ul,...,uf”") is a packet of generalized eigenvectors of C(1*) at A= 4,.

The proof of Lemma 5.1 is thereby completed.
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Chapter 3. The case of general A

6. The completeness theorem

In this chapter we consider the eigenvalue problem (1.1), not making the assumption
that A is self-adjoint. We shall establish a completeness theorem in case ¢ >2, p=1,h=¢—2.
In this case, (1.1) becomes

-2
Mu=Au+ > ’**1B.u.
K50

Setting 4, =4, A,.2= By, the last equation becomes

q
Mu= > 114, u. (6.1)
k=1
The method we shall use is entirely different from the methods of the previous sections.
We shall need the following assumption:
(H,) A7! exists and is a closed densely defined operator in H. Furthermore, the re-

solvent R(A; A7) = (A — A7Y) ™! of A7! exists for all ,, — o0 < A<0, and

C
1+|4

| R(4; 47 Y] < (— 00 < A<0). (6.2)

Note that if 4, is a bounded operator and A;! exists, then A;" is a closed operator.
If A, is compact, then 47! cannot be a hounded operator (since H is infinite dimen-
sional).

Set T'= A7 In view of (6.2), we can define the fractional powers 7% of T, for
0<0<1, by (see Kato [9])

-0 SL“;—”B f AT + T)~YdA. (6.3)
0

We have: 7T %= T-@+8_ Qne further defines 7° (0< §< 1) by 7%= (7% 1. It is easy
to show that

Tlu= sil;le f: 227YTAI + T) P udd
if » belongs to the domain of 7.
LemmaA 6.1. Assume (H,). If A, is compact then A% is also compact for 0<0<1.
Proof. T79 is clearly a bounded operator. Write

AI+T)T1=AT-+1.
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It follows that (I +A7-1)-! exists and equals T'(A + T')~1. Hence by (6.2), (I +AT-1)is a

bounded operator; in fact,

(L +AT-2)-1|| <||T@AI+T) || <C.

Writing (A1 4+ T)1=T-YAT-1+ I)~! and noting that 7' is compact whereas (A7T-1+ I)~!
is bounded, we conclude that (A + T')! is compact. Since the integral

N
Imzf AYAI+T) 'dA (0<e<N<oo)

is & limit in the uniform topology of sums X; %(4, I + T)-1A4, of compact operators, it follows
that I,y is a compact operator; Since, finally, I.y— I, in the uniform topology, as ¢—0,
N — oo, the assertion follows.

Notations. Let A, satisfy (H,). In this and in the following section we shall consistently

write
B= Al (6.4)

We set HY=H x ... x H (q times) and we shall write elements of H? as columns of elements

of H. In H* we define an operator A as multiplication on the left by the matrix

0 B 0 .. 0

0 0 B

0 0 0 .. 0 _ (6.5)
0 0 0 .. B

B4, B 9A,B B 9A,B* ... B"4 B}

We shall denote this matrix by A also. We shall denote by o(A) and o(A) the spectrum and
the resolvent sets of the operator A. Finally, we shall denote by I the identity
operator in HY.

THEOREM 6.1. Let 4,, ..., 4, be compact operators and let A, satisfy (H,). Suppose that

the operators
B-94, are bounded, k=1, ..., q. (6.6)

Then o(A)={0} U o(4y; Ay, ..., A) and o(A)=0(Ay; Ay, ..., A,). Moreover, if A€a(Ay;
4,, ..., A) then an element w€H satisfies (6.1) if and only if it is the first component of a

vector u in H? satisfying
(AI—A)u=0. (6.7)
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Proof. Let 2€0(4,; 4,4, ..., A,) and let u satisfy (6.1), u+0. Write u; —u. Then we can
rewrite (6.1) in the form
aq
Muy=B4' > AF1B Y, (6.8)
k=1

since B'-%4, is a bounded operator. The last relation shows that «, is in the range of B!

and, consequently, also in the range of B*". We can therefore define u,, ..., u, by
oly, =B, (k=2, ..., q). (6.9)

It is then seen that u,, ..., u, satisfy the equations

Au, = Bu,,
Aus= Bu,

: (6.10)
Aug_1= Bu,,

q
M, = ZlBl“’A,,B"‘luk.
K=

U
. . Uy
Therefore, if we write u=

Uq

we see that w satisfies (6.7) and 1€0(A). Thus, o(4,; 4,, ..., 45)<a(A).

Since (6.6) holds and B is compact (by Lemma 6.1) all the entries in A are compact, so
that A is compact. Consequently, 0 €o(A).

Suppose now that 1€c(A). We have to show that if A40 then A1€a(4,; 4,, ..., 4,).
Let u be a non-zero solution of (6.7). Then the equations (6.10) hold and u, %0 (since other-
wise 4, = ... =u,=0 by (6.10), i.e., u=0). But now one immediately verifies that (6.10) imp-
lies (6.9), (6.8), and the latter equation clearly coincides with (6.1) with »=1u,.

Since o(A)={0} U a(4;; 4,, ..., 4,), the assertion o(A)=0(4,; 4,, - A,) follows by
using Theorem 1.2. The last assertion of the theorem follows from the previous considera-
tions.

We now note that the transformation of (6.7) into the system (6.9) is very similar to
the transformation of linearization employed in Sec. 5, i.e., the transformation of (5.3) into
the systems (5.4), (5.5). The only difference is that the matrix Q in (5.6) has just one non-
zero entry, whereas in the present case it will have ¢ —1 non-zero entries at the positions

@, 1), i=2, ..., .
8 — 682903 Acta mathematica. 121. Imprimé le 18 septembre 1968.
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The proof of Lemma 5.1 can be extended to the present case since R(4,) (the range of
A,) is dense in H. In the proof that if (u°, ..., u®~?) is a packet of generalized eigenvectors of
C(4) at A =4, then (u, ..., u7 ") is a packet of generalized eigenvectors of O(A%) there are only

minor modifications. We thus conclude:

LeMMA 6.2. Let the assumptions of Theorem 6.1 hold. If (u°, ..., u"") is a packet of
generalized eigenvectors of Al — A (A given by {6.5)) at 2,50, then the vector of the first compo-

nents forms a packet of generalized eigenvectors of C(A%) at A=Ay, where
q
CA)y=2I~ > A 14,. (6.11)
k=1
From Lemmas 6.2 and 2.2 we have:

COROLLARY. If, for some R >0, spy(A)=H® then spu(C)=H where C(A) is defined in
(6.11).

Definition. Let T' be a compact operator in a Hilbert space X. Let {u,} be the sequence
of eigenvalues of the positive self-adjoint compact operator (T*7')'2, We shall write 7' €C,
(and say that 7' belongs to the class C,) for some r >0 if

In addition to the compactness of 4, ..., 4, and the condition (H,), we shall need the
following assumptions:

(H,) There exist positive constants ¢, 0, such that for all u€ H,
|B 441 B*u)| <¢)| B* tu]] (0<i<g—1,1<k<g-1), (6.12)

where, for each k, either (i) §,>1, or (ii) 6, =1 and ¢, is sufficiently small (more precisely,
¢.I' <c, where I is any bound on the norms of the operators B, 4,, ..., 4,and ¢, is a constant
depending only on g).

(H;) For some r>0, BEC,.
(Note that the compactness of B already follows from (H,) and Lemma 1.1.)

(H,) There exist differentiable ares y, (1 <j<s) initiating at the origin in C and ter-
minating, say, on [z[ =1, such that these arcs do not intersect each other except at the
origin, and such that the angle between each two neighboring arcs at the origin is less than

ntfr. Moreover,
(a7~ 4,)7 = 0479 \ (6.13)

as A—0 along each of the arcs y,.
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(H;) For u€H, A€y,,
|4y u| <c||(AU — 4,)%|| (c constant). (6.14)
Since (see [10]) (H,) implies that, for any «€H, 0<§ <1,
|ASu]| <Cl|41u|®=||*® (C constant),
it follows from (6.13), (6.14) that, for any u€H,
| 22004 u|| <c|[(A21 — 4,)u| (O<O<1, A€y)), (6.15)

where ¢ is a constant.

We can now state the following completeness theorem.
TEEOREM 6.2. Let A, ..., 4, be compact operators satisfying the assumptions (H,) — (H;).
Then the generalized eigenvectors of (6.1) are complete.

The proof of this theorem is given in the following section.

7. Proof of Theorem 6.2

In this section, the letter ¢ will be reserved for positive constants. The same letter ¢
will often be used to denote different constants, even in the same formula.

We begin with two lemmas.
LemMA 7.1. Let the hypotheses of Theorem 6.2 hold. Then A€C,.

Proof. From the definition of the matrix A we obtain immediately that
0 0 0..0 A¥BY ¢
B*0 0..0 B*A}BY
A*=1 0 B0 ..0 (BYAXBY* |

0 0 O0... B* (B)4AyB*)'¢

Define D,=B'4, B! (1<k<q).

Note that Dy =1. A direct computation shows that, since 4, = B,

A*A=B*1+D)B,

0 DiD, DiD; ... DiD,;
D;D, DiD, DiD, ... DiD,
where D=% piD, D}D, D{D, ... D;D,

% * * *
DD, DtD, D:D, ... DtD,
8% — 682903 Acta mathematica. 121. Imprimé le 18 septembre 1968.
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Using (6.12) with ¢=¢—1, we get
[ Disruf <cl AF'u|| (1 <k<q-1),

while D, = I. Therefore all the D,’s are bounded operators. Consequently D is a bounded
operator in H¢

A is compact because of (6.12) with 7=¢g—1 and the fact that B is compact. Denote
the eigenvalues of B*B by u2 and the eigenvalues of A*A by 3. Let M,_, denote an arbi-
trary (n—1)-dimensional subspace of H? Then, by the well known minimax property of

eigenvalues of selfadjoint compact operators,

2 . (A* Au, u) . (I+D)Bu, Bu) (B*Bu,u)
pa=min max ~———— = min max .
M,..10e M;{-_l (us ll) M,_1ue M#—l (Bll, Bu) (ll, ll)
%
<|I1+ D] min max BB L p

wuw

M, yueMi_,

where 42 are the eigenvalues of the operator B*BI. As is easily seen, A% = ‘uﬁﬂf for
1<i<gq. Hence, the last inequality and the assumption that B€ C, imply that A €C,.

LEMMA 7.2. Let the hypotheses of Theorem 6.2 hold. Then
[(AX— A~ = oA} (7.1)
as A—0 along each of the arcs y; (1 <j<s).

Proof. Define

0 BO ... 0
00B..0

B=1. - . ...
000 ..B
B0OO .0

We first prove that (7.1) is valid if A is replaced by B. Define

AL 2B pe%pE ., B!
Bt pe-lf 2e2R . AB%%
E= AB?2 Be-l  je-1p . a2pe-3

AT2B J9%R? Q9B L A0

each row is obtained from the previous one by a cyclic permutation. A straightforward
calculation shows that
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(I-B) '=(AI—-A4,)'E. (7.2)
Indeed, let (AI-B)u=f,
where f=(f;, ..., f,)*. Then
hu;— Bua=f, (1<j<q-1), (7.3)
Au,— Bu,=f{,. (7.4)
It easily follows that
Z"ul=B"uk+1+§l BT, (1<k<q-—1). (7.5)

Applying B to the last equation in (7.5), and evaluating A2~ 'Bu, from (7.4), we get
q-1
(A1~ A)u,= 3 2B+ 2T, (7.6)
i=

This gives u, in terms of f. Using (7.3) with j=¢—1, ¢—2, ..., 1 we can also express
Ug-1, Ug-32, -+, Uy in terms of £, and thereby derive (7.2).

Clearly, E remains bounded ag A—0. Therefore, by (H,),

lT—B) | = o(l(aaI — 4) )= 0(4]"%) if A€y, (1.7)

Next, let C=A —B. Then

0 0 0 . 0
0 0 0 .. 0
c=1 . - .
0 0 0 . 0
0 B“4,B B“4,B® ... B'"94, B"!
We have, by (7.2), E(JI— A)= (A1 — 4,)1— EC. (7.8)

Also, if u=(uy, uy, ..., u,)* is in HY,

I

‘ ‘1 a-1
ECu= }:B > A1 B up .
: k=1

Za—lB—(a—l)

Let P be the projection operator on the vectors in H? with zero first component,
ie., Pu= (0, u,, ..., u,)*. Then
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g-1qg~-1 q-1qg-1 .
IPECu| <e 3 2B i Brua || <e 3 5 ela] | B** i |
i= = = =
by (6.12). Using (6.15) with § =0, —¢/q, we then get (if 0<<0<1)
g-1g-1 .
IPECu]| <e 2 2 AP ATT — Ay e | (7.9)

along the arcs y,. Note that 0<0 <1 when 6, <1 +1/g. If however §,>1+1/q then all the
assumptions of Theorem 6.2 continue to hold when 0, is decreased so as to satisfy 6, =1 +1/g.
Thus we can always assume 6, <1+ 1/g, so that 0<H<1.

To estimate each term on the right-hand side of (7.9) we take |A| sufficiently small if
0.>1 and use the smallness of ¢, if G, =1 (recall the assumption (H,)). Thus we get

IPECu ]| <} |1 - 4,)Pu|
along the ares y;, provided |4| is sufficiently small. Hence, (7.8) yields
| PE(L— A)ul| = [|(A* - A,) Pu— PECu| > [|(A — 4,) Pu| — || PECu |
> 3T~ 4y Pu| o] 4[| Pu] (1.10)
as A—>0 along the arcs 4,, where (H,) has been used.
Let (AL—A)u=1. (7.11)

An argument like that used in proving Theorem 6.1 shows that u,, the first component
of the solution u of (7.11), satisfies

q-1 g
(}.qI - A]_ - kZIAkAIml) Uy = 1210’(1) fi’

where = (f,, ..., fs)* and the norms of the operators C;(i) remain bounded as A1-0.

Therefore,

q a-1
ltl>ell 3 e l=el( ) ml — 3 17 duul

a-1
Zoll@I= Ayl = Z 2P| B ),
by (6.12) with ¢ =0. Hence, by (6.15),
It >l @7 — Ay w| Ze[ 4]l

along the arcs y;, provided |4]| is sufficiently small.
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From the last inequality and (7.10) we obtain, for |1| sufficiently small,
[A|Yu]l <c|A]%(||w]| + |Pu]l) <c||f|] along thearcsy;; (7.12)

here (7.11) and the boundedness of ||E|| (as A—0) have been used. Since u=(AI—A)-'f
the assertion (7.1) of Lemma 7.2 follows from (7.12).

We can now easily complete the proof of Theorem 7.2 with the aid of the following
result (Theorem XT1.9.29 of [4]):

Lemma 7.3, Let T€C,. Let y,, ..., y, be differentiable arcs as in the hypothesis (H,).
Assume that for some positive integer N,
AL —1)*|=0(a™™)

as 1->0 along the arcs ;. Then the subspace sp(T) contains the range of T".

In view of Lemmas 7.1, 7.2, we can apply Lemma 7.3 to the operator T=A in HY,
with N —¢q. We conclude that sp(A) contains R(A?), the range of A% Now the formula for
A* displayed in the proof of Lemma 7.1 shows that the null space N(A*) of A* is zero,
whence it follows that N((A*)?) ={0}. Hence R(A% is dense in H% Since sp(A) is a closed
set which contains R(A?), we deduce that sp(A)=H Now use the corollary to Lemma 6.2.

Chapter 4. Some applications
8. Generalizations and applications of the results of Chapier 2

8.1. Generalizations. The results of Chapters 1, 2 can be extended to eigenvalue prob-

lems
Au=Adu+ > I***Beu, (8.1)
K=o
assuming that > A*||Be]l< o (8.2)
k=0

for some A >0. The assertion of Theorem 1.2 now becomes:

Qa={% |2 <A}={0} U oa(4; By, By, ...) U 6o(4; By, By, ...),
where g, (04) stands for the resolvent set (spectrum) in 24, and the proof remains the
same,

The assertion of Theorem 1.3 is valid for all 1in Q,. In extending the proof of

that theorem, we now first choose n, such that

Al 2 APF||Be] <3 (8.3)
k=n¢+1



120 AVNER FRIEDMAN AND MARVIN SHINBROT

Next we decompose 4; By, (1 <k <n,) into sums A = AP + A®, B + B respectively,

where AP, B have finite-dimensional ranges and A®, B are such that
AT A+ A 3 AT B <.
We then can proceed similarly to the proof of Theorem 1.3, taking

B(l)().)=A(l)+ g }.p+kB§cl),
k=0

No 00
B®(2)=A® + kzol”+"B§3>+ 2, AEBy.

k=no+

We next turn to the results of Chap. 2. We introduce
CA=MI—-A— 5 AP**B, (8.4)
k=0

and assume, as before, that (8.2) holds. Then C-'(4) is a regular analytic function in the
resolvent set g5 (4; By, By, ...). Since the estimate (2.13) obviously generalizes to the present
case, Lemma 2.6 also extends to the present case. Lemmas 3.1, 3.2 and Theorem 3.2 (with
R =A) clearly also extend, but instead of (3.20) we now require that

él B (H)H <8 (8.5)

for some 0 <f <1. Note that (8.2) implies that the series in (8.5) is convergent if A > ||4]|.
The results of Secs. 4, 5 also extend without difficulty to C(1) given by (8.4).

8.2. First application. Consider the differential operator
B(z, D,, 2)= By, D)+ nABy(x, D) + ... + nﬂ.a_qu_l(x, D)+ ¢
+5A ' Besa(x, D) + ...+ A" "Byin(z, Dy), (8.6)

where Bj(z, D,) is a linear differential operator of order s, in a bounded domain Q of R”,
and 7 is a fixed complex number. Assume that s,=2m and that s,<2m for all j+ 0. Assume
also that By, D,) is elliptic, that, furthermore, its principal part Bz, D,) is such that
(— l)mﬁo(x, &) is never a negative number for real £+ 0, and that the coefficients of all the
operators B, are continuous in Q. Assume finally that the boundary 6Q of Q is in class C*™.

Consider the eigenvalue problem for the Dirichlet problem associated with (8.6), i.e.,
B(x, D,, A)u=0in Q, (8.7)

du .
5i—0 ondQ (0<j<m-1). (8.8)
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Denote by B, the operator obtained by taking the closure of the operator u— B (x, D,)u
defined on the set of functions in C®™(Q) satisfying (8.8). Then, the domain of B, is
H*™Q) N HF(Q) (see [0], where general elliptic boundary conditions are considered).

Our assumptions on By(z, D,) imply that (A1 — B,)~! exists for all A< —k, where £ is

some non-negative number, and that

AL =By < if A< —k. (8.9)

For simplicity we shall assume that (8.9) holds with %=0.
Writing v = By % in the equation
Byu+nAByu+ ...+ 9A" 'By_1u+ A%+ pA ' By ut ...+ 9A "By u=0, (8.10)
and replacing 4 by 1/4, we obtain the equation
My=Av+gid v+ ...+ A7 Ao+ AT v+ o+ AT A, (8.11)
where A=B;', A,;=B, ;B;* for 1<j<q—1,¢q+1<j<q+h. (8.12)

We define the generalized eigenvectors of (8.10) to be the vectors B;'v where v is a
generalized eigenvector of (8.11). An equivalent definition can be given by considering
solutions of the equations (2.3) with C(1)u defined by the left-hand side of (8.10). It is
easily seen that the generalized eigenvectors of (8.10) (corresponding to 4 with |i| <R)are
complete if and only if the same is true of the generalized eigenvectors of (8.11) (correspond-
ing to A with |1| <R).

We now recall the fact (see [6]) that

o[l wlleme <N By ul < Cllflamer (8.13)
for any 0 <p’ <p <g"<1, where ¢, C are positive constants. It follows that

A-14, A%is compact in L2(Q) if s,_;<2mbfor 1 <j<gand
if s;<2mOforg+1<j<q+h. (8.14)
Assume now that By(z, D,) is formally self-adjoint. Then (see [7]) the eigenvalues 4, of

B, satisfy:
M=ck®™"(1+0(1)) as k- oo, (8.15)

It follows that 4 is in class O, for any r>n/2m. Applying Theorem 5.1 we obtain the follow-

ing result.
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THEOREM 8.1. Let the foregoing assumption on B, .., B, hold. Suppose that B, =...
=B, =0, and that
i

P for all §0. (8.16)

<P_5
g 2m

If n is sufficiently small then the generalized eigenvectors of (8.7), (8.8) corresponding to the

eigenvalues A with |A| <R form a complete set in L*(Q), for any R sufficiently large.

In Theorem 8.1 we have assumed that B, satisfies (8.9) with % =0. This assumption
can easily be removed if ¢=1. Indeed, making the substitution 1—A1+% in (8.11) (with

q=1), we get an equation of the form
1th
M=Au+n > NA, where A=A+ kI+nyA.
i=3

If 7 is sufficiently small then Theorem 8.1 can be applied to the new equation.

We next note that in view of the generalizations given in § 8.1, Theorem 8.1 extends
also to operators (8.6) where the coefficient of each operator B,(z, D,) has the form 7g(1),
where A%(1/4) is an analytic function in some disc {4; || <A}.

8.3. Second application. Let L be a one-to-one self-adjoint operator with compact in-
verse. Let M be another operator that will be looked upon as a perturbation of L. We shall
derive the completeness of the generalized eigenvectors of L+#M, where 7 is a small
complex parameter.

Let u be an eigenvector of L +#M with the corresponding eigenvalue u. Then
pu=(L+nM)u. (8.17)
It will be convenient to write u =1/4, so that (8.17) becomes
u=ML+nM)u. (8.18)
Define D)y=I—-ML+nM). (8.19)

As in Sec. 2, if D(2) has a pole of order n at Ay, then we define a packet of generalized
eigenvectors (u,, ..., ,_,) of D(4) at 4, by

U= Ao(L+ 9 M) u,,

Uy = Ao(L + n M) (w, + %), (8.20)

Up_1= 2.0<L+ nM) (un—l + un_g).
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The generalized eigenvectors are the components of the packet. They are also characterized

as solutions of the equation

[(L+nM) - ;Ll—ol]nv= 0.
Let A=L"', B=-L"'M
and define C(A)=AI—A —niB.

Then C(A)= —A-1D(A) and it is easy to see that (u,, ..., u,,_i) is a packet of generalized
eigenvectors of D(4) if and only if it is a packet of generalized eigenvectors of C(4). By
Theorem 5.1, if A€C, for some r, r<1+¢, and if A-2BA ¢=ML! is a bounded operator,
then sp;(C) = H for all R sufficiently large, provided # is sufficiently small. (Note that B is
compact if ML is bounded.) Setting {=s—1, we have:

THEOREM 8.2.(1) Let L be a one-to-one self-adjoint operator with compact inverse in C,,
and assume that ML~ is a bounded operator for some s>r. Then the generalized eigenvectors

of D(A) are complete provided n is sufficiently small.

9. Applications of the results of Chapter 3
Consider the differential operator
B(@, D,, ))=By(x, D,) +ABy(x, D,) +... + 1B, _4(x, D,) +1%, (9.1)

where By(x, D,) are linear differential operators of order s, in a bounded domain £ of B”, and
Sg=2m, 8;<(2m[q)j if 1<j<q—1. Assume also that B,(z, D,) is elliptic, that B, and the
B, satisfy the same assumptions as in Sec. 8.2 and that 8Q is in class C*". Consider the ei-
genvalue problem (8.7), (8.8).

Agmon and Nirenberg have proved (see [1], Theorem 5.8”) a completeness theorem for
the generalized eigenfunctions of the system obtained by linearizing a reduced weighted
elliptic boundary value problem. We shall show how such a completeness theorem follows
from Theorem 6.2 in the more special case of the Dirichlet boundary value problem. We
should like to remark that our assumption s;<<(2m/q)j is not essential, and that our
method can actually be extended to the case s;<(2m/q)j under some restriction on the
leading coefficients of B,(z, D,). Furthermore, we actually get the completeness of the
generalized eigenfunctions of the problem (8.7), (8.8) and not just of its linearized form.

We first transform the problem (8.7), (8.8) into the form (cf. (8.11))

(*) See Addendum at the end of this paper.
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Au=Au+idu+...+214,_yu. 9.2)

Now we have to verify the conditions of Theorem 6.2.

(H,) follows from (8.13). (H,) and (H;) (for any r >0) follow from [0]. To prove (H,), let
A be the operator defined similarly to 4 when By(z, D,) is the differential operator
(—A)™41. The eigenvalues of A satisfy (8.15). Since 4 is self-adjoint, it follows that, for
any 0 <6 <1, A7 is of class C,, for any r >n/2m. Using (8.13) we conclude that the operator
I'=A47%4is a bounded operator if o >0. We now recall (see [4]) that if Bisin C, and I is
bounded, thenI" B is also in C,. It follows that A*= A%(4~°4%) is in class C, for any r > n/2ma
(provided 0 is properly chosen). This implies (H,).

Eigenvalue problems of the form (8.7), (8.8) (and also problems with more general

boundary conditions) occur in many physical applications. For examples, see [2].

Addendum. We have discovered several papers in the Russian literature dealing with
completeness for equations as in Chapter 3; see [19], [20] and the references given there.
These results are related to ours. They all assume roughly that A is normal, but the assump-
tions on the By are somewhat simpler than ours. The concept of completeness in these papers
is not as direct as ours, since they do not have the result of Lemma 6.2.

As to Theorem 8.2, we have discovered that a more general result was proved in [19;
p- 336], namely, that the assertion of Theorem 8.2 holds if L is one—to-one, self-adjoint with
Lt compact, ML1 compact, LML ‘'in C, for some r < oo, and n=1 The proof, however,
is based on the deep result of Lemma 7.3. We also wish to point out that the restriction on
77 made in Theorem 8.2 can be removed without difficulty (so that one can take %= 1). Indeed,
we consider L+idal (instead of L) with a>0 and note (by [19; Lemma 7.1]) that
”M(L—I—iaI)_l” <7’ 17'—>0 if @+ cc. One now can check that the proof of Theorem 8.2
extends to the case where ““ is small” is replaced by “z’ is small”.

References

[0]. Aamon,S., On the eigenfunctions and the eigenvalues of generalized boundary value prob-
lems. Comm. Pure Appl. Math., 15 (1962), 119-147.

[1]. AemoN, 8. & NIRENBERG, L., Properties of solutions of ordinary differential equations in
Banach space. Comm. Pure Appl. Math., 16 (1963), 121-239.

[2]. CaaNDRASEKHAR, S., Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon
Press, 1961.

[3]. Duwrorp, N., & ScawarTz, J. T., Linear Operators, vol. I. Interscience Publishers,
New York, 1958. :

[4]. Linear Operators, vol. I1. Interscience Publishers, New York, 1963.

[5]. ErpELYI, A., e al., Higher Transcendental Functions, vol. I. McGraw-Hill, 1953.

[6]. Friepmaw, A., Singular perturbations for partial differential equations. Arch. Rational

‘ Mech. Anal., 29 (1968), 289-303.

[7]. GArpiNG, L., On the asymptotic distribution of eigenvalues and eigenfunctions of elliptic
differential operators. Math. Scand., 1 (1953), 237-255.

[8]. Harazov, D. F., On a class of operators which depend nonlinearly on a parameter. Dokl.
Akad. Nauk SSSR, 112 (1957), 819-822.




[91.
[10].
[11].
[12].
[13].
[14].

[15].
[16].

7.
(18].
[19].

[20].

NONLINEAR EIGENVALUE PROBLEMS 125

Kato, T., Fractional powers of dissipative operators. J. Math. Soc. Japan, 13 (1961),
246-274.

Kowmatzu, H., Fractional powers of operators, II. Interpolation spaces. Pacific J. Math., 21
(1967), 89-111.

MiranDAa, C., Su di una classe di equazioni integrali il cui nucleo e funzione del parametro.
Rend. Circ. Mat. Palermo, 60 (1936/7), 286-304.

MiLier, P. H., Eine neue Methode zur Behandlung nichtlinearer Eigenwertaufgaben.
Math. Z., 70 (1959), 381-406.

Rizuig, I. M. & GrapstEIN, 1. S., Tables of Integrals, Swms, Series and Derivatives.
Moscow, 1951.

SHINBROT, M., Note on a nonlinear eigenvalue problem. Proc. Amer. Math. Soc., 14 (1963),
552-558.

—— A nonlinear eigenvalue problem II. Arch. Rational Mech. Anal., 15 (1964), 368-376.

TurnNER, R. E. L., A class of nonlinear eigenvalue problems, Univ. of Wisconsin, Mathe-
matical Research Center, Technical Report no. 792, August, 1967,

—— Some variational principles for a nonlinear eigenvalue problem. J. Math. Anal.
Appl., 17 (1967), 151-160.

WEINBERGER, H. F., On a nonlinear eigenvalue problem. J. Math. Anal. Appl., 21
(1968), 506-509.

GoHBERG, I. C. & KrrN, M. G., Introduction to the theory of linear non-selfadjoint opera-
tors. Moscow, 1965,

Marous, A. 8., On the spectral theory of a ray of polynomial operators in Banach
space. Stbirski Math. J., 8 (1967), 1346-1369.

Receiwved January 29, 1968



