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Section 1 

A presentat ion of deficiency zero (on n symbols and n defining relations) of a group G 

m a y  define the trivial group, G = 1. 

The present work is a contr ibution to the decision problem: when does the  presentat ion 

P :  (a x . . . . .  an; r l (a) ,  ..., rn(a)) 

of G give the trivial group? 

I t  can be decided at once whether  the r i freely generate the free group F n  = F ( a )  

(see [12]). The question is how to  reduce P to  this case if G = 1. 

The next  simplest case is t ha t  all bu t  one of the r~ form a set of associated generators  

(one tha t  can be completed to a free generating set of Fn) [8]. The simple fact  t ha t  the 

consequence of such a set (r I . . . . .  rn_l) contains the commuta to r  subgroup F '  of Fn mot ivates  

the introduct ion of wha t  I will call root-extract ion.  For  example if (a 1, as; a 1, r~) = 1 then 

there is a word s~ such tha t  a 1 and s~ generate F~ = F ( a )  and r 2 - a  2 modulo a 1 and r~ - - s2  

modulo s 2. (See Sections 4 and 5.) 

The introduct ion of Nielsen t ransformations (automorphisms of free groups) combined 

with con juga t ions - - I  will call these Q-transformations---hardly needs mot iva t ing  in this 

context.  Root-ext rac t ion  on t-tuples r = (rl  (a) . . . .  , r t(a) ) in F ~  = F ( a )  will consist of replacing 

a proper  subset of r by  another  set wi thout  changing normal  closure and deficiency of 

presentation. 

For  n-tuples r for which the presentat ion P above is t ha t  of the trivial group, the fol- 
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lowing facts will emerge. Q-transformations form the largest group of mappings tha t  can 

transform two such n-tuples into each other. Modulo this group a single root-extraction R 

can be found tha t  takes a given r into a given r*. While certain of these pairs of n-tuples 

are Q-transforms of each other, r* =Q(r), it may  happen tha t  also r* = R(r) modulo Q-trans- 

formations and R is not a Q-transf0rmation. Examples  will be given for which Q-equiva- 

lence seems to be an open question. Thus, it remains to be decided whether any two n-tuples 

rendering P a presentation o f  the trivial group are equal modulo Q. The remaining results 

of this paper, properties of presentations of G = 1 of deficiency zero, were found during my  

study of this problem. 

The first five sections set up the machinery for the study and give some labor-saving 

devices. 

Section 6 gives a set of generators of the mappings between any two presentations 

on n generators (and so on n defining relations) and gives two basic properties. These 

lead naturally, as it were- - to  remarks on unsolvable problems in group theory (Section 

7) and, via examples, to algorithmic posers (Section 11). 

Sections 8 and 10 lead off with examples, to illustrate what  had gone before and to 

mot ivate  the next  step. 

Section 9 draws on the literature for devices to change or manufacture presentations 

for study. 

All the examples are contained in Sections 8, 10, and 11. 

Theorems comparing two presentations which share some defining relations are, akin 

to a problem posed by  Magnus: if the consequence in F~ of (r 1, ..., rn) is Fn, can r 1 be 

~eplaced b y  some free generator of F= without loss of the property? 

Numbers  in brackets refer to the reference list. 

I am indebted to Tekla Taylor for helpful critical remarks. Above all it is hoped tha t  the 

work done here suggests methods of at tacking this difficult problem. 

Section 2 

A presentation of a group G consists of two sets of elements written as (a 1 . . . .  ; r 1 . . . .  ), 

of which the first is a set of symbols a = (a 1 . . . .  ) tha t  freely generate the free group F = F(a), 

the second a set r of elements (words) in F, given in terms of the a-symbols. The presenta- 

tion is finite if both sets are. G is the factor group Fir  of F by  the normal closure {r} of 

t i n  F. 

F n = F(a) is the free group generated by  the n-tuple a = (al, ..., a~). 

= abbreviates w -1. 
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5wz; for example ~ = w  -x, w -~+~ =~w ~-z 4 ~ +  ~ = (~)z+~ =w_~_~, and (wX) ~ =w~.. 

Here x, y, z are elements of F n. 

is the length of w c  F(a);  t ha t  is, the number  of a-symbols in ~ w. 

is a polynomial  in the "integral  group r ing" of F with neither operat ion com- 

mutat ive .  Thus, w-~+~=w P, with x, z, w in F, P =  - z  + ~2:~-z .  

is said here t o  be cyclically reduced if w is both freely reduced and cyclically 

reduced. 

is the commuta to r  subgroup of G. 

is an au tomorphism of F acting on the given generating symbols (a 1 .. . . .  ); 

thus Aw(a)=w(Aa 1 ..... Aak .... ). 

The Aak are a-words Sk=Sk(a), abbrevia ted to  sk where no misunderstanding 

arises f rom doing s o .  

Small Greek letters are units; thus 

s =+I. 

{r} = {q .. . .  } is the normal  closure of the elements r = (q  .. . .  ) in F(a). 

N(t) = N is a Nielsen t ransformat ion act ing on a t-tuple of elements (t fixed) regarded 

as symbols. 

The generators of choice for the group of Nielsen t ransformations will be the set of 

mappings 

Nkh(W 1 . . . .  , W t ) = ( W  1 . . . . .  Wk_I,V, Wk+ 1 . . . . .  Wt) w i t h  v=wkw~ or w~wk; k~=h. 

I n  NtjNkh, ~V~r acts on the t-tuple Nkh(w ) (ef. [8], p. 125 ff.). While N(t) is isomorphic 

to  the au tomorphism group of Ft, the manner  of action just  defined will no t  be referred to  

as an  au tomorphism bu t  as a Nielsen t ransformation,  even if w(a) freely generates Ft(a ). 

My reason for defining A and N differently will appear  later. A is so defined tha t  direct 

length-reductions be possible for "reducible" words (words whose length can be reduced 

by  some automorphism of the group) [12]. The distinction is indispensable (cf. Section 11). 

[T~TI(w ) =v is a direct reduct ion if Tl(w ) has fewer a-symbols than  w, and v fewer than  

Tl(w).] 

Section 3 

For  the purpose at  hand  a combinatorial  definition of invertibil i ty is needed. I t  is 

given below. Invert ible  transformations, Q=Q(t), acting on a t-tuple in Fn, form a group, 

with Nielsen t ransformations a subgroup. A set of generators is f o u n d  in Section 5. The 
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other  t r ans fo rma t ion  I need, roo t -ex t rac t ion ,  R = R(t), is no t  going to  be inver t ib le ,  b u t  

A, N, Q(n), R(n) share the  p r o p e r t y  of t ak ing  an  n - tup le  in Fn  whose no rma l  closure is 

Fn  into  ano ther  such. 

Le t  r be a t - tuple  of e lements  r i =r~(a) in F n = F(a) ,  x 1 some one of the  r~, x~ some one 

of the  r~, poss ib ly  the  same as x 1, and  so on. F ina l l y  le t  Kl=x~lx~" em �9 .. xm , so t h a t  K 1 is 

consequence of r wr i t t en  in f ixed fashion in t e rms  of r -conjugates  in F=. 

Tha t  is, K 1 des ignates  no t  jus t  t h a t  word  in Fn which i t  represents  bu t  also the  par-  

t i cu la r  way  here given of wr i t ing  i t  as an  r-consequence.  

I f  K2 ..... K t are s imi lar ly  defined,  let  K be the  t - tuple  (K1, ..., Kt). Fur the rmore ,  le t  

K* be a t - tuple  def ined exac t ly  l ike K except  t h a t  the  symbols  x i s ignify e lements  K v of 

K ra the r  t h a n  e lements  r v of r. 

Suppose t h a t  for a given t - tuple  K = (K 1 .... , Kt) the re  is a t - tuple  K* of consequences 

of K in F n such t h a t  upon  cancell ing segments  r~f x formal ly ,  each K* reduced  to  r~. Then  

the  mapp ing  t h a t  t akes  r in to  K is invertible. 

F o r  in tegra l  exponen t s  P this  defines K as a Nielsen t r ans fo rm of r; if t hen  the  set r 

f reely genera tes  Fn, the  m a p p i n g  t h a t  t akes  r in to  K is an  a u tomorph i sm  of Fn. Else K 

mere ly  genera tes  the  same norma l  subgroup  in F as r does. 

Le t  t = n, and  {r} = F , .  Then  there  are  endless ways  of wri t ing the  r~ as power -p roduc t s  

of the  a-symbols;  r will be an  inver t ib le  t r ans fo rm of t he  l a t t e r  if a t  leas t  one such is in- 

ver t ible .  F o r  example ,  the  pa i r  rl=52$ab, r~=b~Sba is no t  inver t ib le  consequence of t he  

pa i r  (a, b) in F~=F(a,  b) under  Nielsen t rans format ions ,  or  au tomorph i sms  of F2; b u t  

the re  is a K,  and  a K* t h a t  inver ts  it ,  such t h a t  K(r(a, b)) = (a, b) in F~ (Example  3). 

Section 4 

Though  i t  is no t  essential  to  t ake  t = n, let  r = r(a) be an  n - tup le  in Fn, and  (r} = ~ ' , .  

Then  there  is a t  leas t  one n - tup le  of consequences,  K', of the  a -words  r t h a t  freely reduces  

to  (a 1 . . . . .  an), so t h a t  5iK[(r(a))= 1 for i: 1 . . . .  , n. 

Turn ing  th is  process a round,  p ick  an  n - tup le  E(a) of (unreduced)  words  in F n such 

t h a t  each E~(a) reduces  to  t he  e m p t y  word.  F o r m  the  (unreduced)  words  E~ai and  m a r k  

ou t  each into  segments .  Le t  v~ . . . .  be  those  segments ,  and  v 1 . . . .  t he  resul t  of reducing  

them.  I f  the  vt are  conjugates  or  inverses of conjugates  of j u s t  n d i s t inc t  ones among them,  

say  r 1 . . . .  , rn, t hen  K~(r) =a t for cer ta in  consequences Kt  of the  set. I f  one calls r = (r l ,  . . . ,  rn)  

a set of roots  of a = (a I . . . .  , an), t hough  t r iv ia l ,  i t  is t rue  t h a t  {r} = F .  if and  on ly  if ( the 

n- tuple)  r is a set of roots  of the  n- tup le  a. Similar ly ,  if {r} = F~ and  r~___ {r[}, t hen  {r'} = F, .  

The following def ini t ion suggests  itself: 
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If  r is a t - tuple ,  {r 1 . . . . .  rk)___(r I . . . . .  r~}, and  ei ther  k = t = l  or  0 < k < t ,  t hen  the  set  

r '  = (r~ . . . . .  r~, rk+l . . . .  , rt) is a root of r. I n  symbols:  r '  = R(r). I t  will be convenien t  to  a s sume  

t h a t  a conjugate ,  or  inverse of a conjugate ,  is no t  a roo t  of a word. W i t h  th is  r e s t r i c t ion  

a n d  for a r b i t r a r y  t, Rt will be called a root-extraction in a t - tuple.  I f  t = n, the  subscr ip t  wil l  

be omi t ted .  

Section 5 

Let  r = ( r  1 . . . . .  r t)  be a set of f ixed cycl ical ly  reduced  words  ri(a ) in Fn  = F(a), x or - x ,  

y or  - y  . . . .  r educed  words  ranging  over  Fn, x=x(a) ,  y=y(a) ,  e =  + 1. Le t  f i r  ~ =yv~j, with  

v =v(a)  cycl ical ly  reduced.  Then  v and  y m a y  be chosen in more  t h a n  one way;  le t  (rlr~)Y= 

r~ s t and  for a f ixed choice of y (and v) for g iven ri and  x. F o r  example ,  uSw~= (~w)~= 

uz .wz . zu  = (w~) zu and  so y m a y  be chosen as u or as u5 depending  on which cycl ica l ly  

reduced  conjugate  of 5w is to  be r~ : wz or zw. 

The proof  of Theorem 1 hinges on the  formal ism embodied  in th is  def ini t ion.  F o r  

example ,  r~rl=rl(~lr2rl) in a group,  bu t  rl(~lr2r1) will no t  be t a k e n  as rlr~ even i f x = x ( a )  

is rl(a ). The po in t  and  the  reason for i t  should become clear f rom the  con tex t  in which,  

l a te r  on, n new symbols  will be in t roduced  as new genera tors  to  replace  a 1 . . . . .  am in t he  

exponen t s  (and only there).  

I f  x or - x  is an  e lement  of F~, and  the  same holds for y, le t  Ql~(rt)=(rxr~) v, and  

Ql~(ri)=r~ for i > 1 .  Le t  Q~j be s imi lar ly  def ined for each pa i r  (i, j) wi th  i # j  and  g iven  

t - tuple  r = (r 1 . . . . .  rt) in F~ = F(a). I f  t = 1, wr i te  Q(r) = r ~. These mapp ings  will be mul t ip l i ed  

as follows. 

I f  Q~j(r)=r*, t hen  

Qak Q,j(r) = Qak(r*) = (r * . . . .  r *_ 1, [r~(r~)~*] ~*, r* ~§ . . . .  , r ~ ) .  

F o r  f ixed  t - tuple  r and  Fn, the  set of these  mapp ings  as the  exponen t s  v a r y  genera tes  a 

group,  Q =Q(t). Q will also mean  any  e lement  of the  group when the  mean ing  is clear f rom 

the  context .  

I t  m a y  be no ted  t h a t  images under  Q are  t a k e n  cycl ical ly  reduced,  so t h a t  con juga t ion  

alone, to  be effected b y  Q, is l imi ted  to  cycl ical ly  reduced  images.  This  is done to  avo id  

c lu t t e r  and  t r ivia .  Mere ly  d ropp ing  the  requ i rement  t h a t  Q~s(ri) be a cycl ica l ly  r educed  

word  allows one to  genera te  any  conjugat ion.  Thus  one gets  bab b y  l e t t ing  a ~ a $  be fol- 

lowed b y  (ab)-+ [(ab)b]~. All  conjugat ions  y ie ld ing  cycl ical ly  reduced  words  can be ef fec ted  

in th is  w a y  b y  the  Q~j. 

THEOREM l .  Q(t)  i8 the set o/ all invertible trans/ormations o/ the t-tuple r=r(a)  in 

F= = F(a) into t-tuples o/cyclically reduced words. 

8"~  -- 682903 Acta  mathematica. 121. I m p r i m 6  le 18 sep tembre  1968. 
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Proo]. Let  Q b e  an  e lement  of Q(t). To prove Q invertible it suffices to  f ind Q for 

Q =  QI~ w h e n  t ~  2.. Le t  Q(r )  = p with Q ( r l ) = ( r i r ~ ) ~ , Q ( r ~ )  = r~; then  Q*(pl) = ( p l p ~ )  ~, 

Q*(p~) = ps gives 

Q*Q(rl) = [(rl r ~ ) ~ ]  ~ = r1 r ~  = r~, 

Q*Q(r~) = r 2 

identical ly in the  r-conjugates:  t h a t  is, regardless of the  expression of the  rt as a-words.  

Thus  Q* =Q.  

Note  t h a t  in this necessarily formal  definit ion of " ident ical" ,  r ~ is not  identically r 

for  w = r ;  ra ther ,  rW~=r ~-1 and this is 1 only  for w =  1. 

To prove  the  converse, let r and  p be t-tuples in F~ = F(a) ,  with p invert ible conse- 

quence of r. 

To show t h a t  p =Q(r),  I will in t roduce a set  b = (b I . . . . .  b,) of new symbols  and  conver t  

the  (n+ t ) , t up l e  (Pl, .... p~, b~, ..., b,) i n to  a Nielsen t r ans form N(r ,  b) of the  (n+ t ) - tup le  

( r l ,  , . . ,  r t ,  hi ,  . . . ,  b,) in F ~ t = F ( r l ,  .... rt, bl, . . '  b,).  This N will become a Q- t ransformat ion  

on the  t- tuple r(a) when the  b-symbols are eliminated. 

Since p is invert ible consequence of r, the  following holds. 

(1). P l =  r~l(a)x'(a)ri2(a)~'('~)...rtk(a)%('~) with similar expressions for P2 . . . . .  Pt; 

(2 ) .  rl=pyll(a)p~2~(a)...p~h(a),with similar expressions for r~, ~..rt; 

(3). I f  (1) is subs t i tu ted  in (2) then  r-conjugates  cancel in pairs to yield identi- 

t ies r~= r~ for each i. 

Now replace in (1) the  exponents  x(a) by  the  corresponding words x(b) and replace 

e a c h  a - w o r d  r~(a) b y  the  symbol  r~,i: 1 , . . . ,  t. Call ~Jhe result ing words:(1 ') ql . . . .  , qt. 

Replace  the a-w0rds y(a)  in (2) b y  the  b-Words y(b) a n d  call t h e  result  (2 ' )Sl ,  . . . , s t .  

Thus ,  in Fn+t = F ( r  I . . . . .  rt, b 1 . . . .  , bn), 

(1'). ql  = ql~ "r," '~v; . . . . . .  -- 'ri, (~) '~,ux'(b) . . .  r~(b) = e~l(b)r~ ' eXl(b). , .  ' 

(2'). r 1 = sl(q, b) = qy~O) . . . .  etc. 

Because x m a y  be - w  for an e lement  w of the group, so t h a t  - x c F  but  x~= F ,  the  

th ree  e-symbols  t ake  on the  value - 1 if this is the  case, and  + 1 otherwise. 

I f  follows f rom the definit ion of invert ibi l i ty  t h a t  (ql  . . . .  i qt, bl, .-., bn) freely generate  

(r 1 . . . . .  r~, b 1 . . . .  , b,), i.e. the  free group F,+t  = F(r ,  b), 
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Final ly  set  qt+i=bl . . . . .  qt+n=bn, q=(qi  . . . . .  qt+n) and 8 w l = b  I . . . . .  St+n=bn, 8=(81 ,  

.... s ~ ) .  Then  both  (n +t ) - tuples  generate  Fn+t and if the  r ight  sides in (1') are subs t i tu ted  

in (2') for the  q~, i :1  . . . . .  t, the  result  freely reduces to identities. Therefore,  q = N ( r ,  b), 

s = N ( r ,  b) for some N of F~+t. 

I will show tha t  N can be expressed as a p roduc t  N *  ... N~ of Nielsen t rans format ions  

N* each of which leaves the b-symbols fixed and for the  rest  tu rns  into a p roduc t  of some 

Qa~(r) when the  x(b) are replaced by  the  x(a), the  y(b) by  the  y(a), and the  ri b y  the  r,(a). 

Then  the  same will be t rue  of 27 so t h a t  q = Q(r) will result.  

I f  w = (w~, w~), denote  I wl l + ]w2] b y  ]w]. 

I t  is well known (see e.g., [2]) t h a t  if IN(w)] ~< Iwt for a finite set of e lements  w = w ( z )  

in F(z), then  N can be wr i t ten  as a p roduc t  of generators  Ntj  none of which increases 

z-length. Since in t e rms  of (r, b)-length [r[ + [bl ~< [ql and  2V(q)=(r, b), /V has such a 

representat ion:  N = Nc ... N1. This will now be changed into the  N *  ... IV~ described above.  

IV i leaves all bu t  a single q~ fixed, and  i ~< t since otherwise N i would increase (r, b)- 

length. Suppose Nl(qi ) 4=qr Then  N 1 mult ipl ies qi by  q~ on the  left, or else on the  right.  I t  

m a y  be assumed t h a t  IV i(qi) =qlqJ. Similarly, each IVj multiplies some (r, b)-word by  ano ther  

or by  some b-symbol  (or its inverse). I will express N as a product  

of generators  N~j such t h a t  if N~' mult ipl ies a word by  some b~, say N [ ( w i ) = b l W  x, then  

N~+lN~(wl)=biWl~ 1 or w l = ~ i ~ = N ~ _ 1 ( ~ ) .  Set t ing N*=IV~+IN[ in the  first  case and  

N* =N[N~_I  in the  second, and  assigning a suitable subscr ipt  to  N* will then  result  in the  

desired expression. 

I t  remains  then  to show t h a t  N = N ' h  ... N~ exists. I f  Nr act ing on the  (n+ t ) - tup le  w, 

changes wj., i t  m a y  he assumed t h a t  Nj(wr)  = wj, w F. Then  j '  ~< t, as Wt+l = bi . . . .  , wt+,~ = b,~ 

for each N r 

For  t rans format ions  of the  t ype  N = N c ... N~ under  considerat ion here, let k be the  

n u m b e r  of factors  Nr for which j" <~ t. I f  k = 0 then  the  effect of N is the  remova l  of the  b- 

symbols  f rom (ql . . . . .  qt). Since N(q~)=r~ contains no b-symbol  for i<<.t and the  q~ are con- 

jugates  of the  rt, it is easy  to  see t h a t  in this case N = N ~  ... N~ = N c  ... N i  with  each N~' 

an Nj.  (See the  r emark  before Theorem 1.) 

Suppose now t h a t  the  value of k is k0 > 0. The  proof will be completed b y  reducing the  

case to one with k = k 0 - 1 .  

Le t  j be the  least  subscript  in N = N  c ... N 1 for which N j ( w r ) = w j , w  F has j"<<-t. I f  

j = 1 there  is nothing to prove  since N 1 is a Q- t ransformat ion  and  so only Nr ... N~, with  

k = k 0 - 1, remains.  
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I f  ~>1 ,  I will express N in a form N ~ . . . N j + I N * * N j N * N j _ I . . . N  1 with the follow- 

ing property:  N j N * N j _ I  ... N 1 can be rewritten as a product N ' = N ' h  . . .N~ ,  while for 

N o . . .  Nj+IN** the value of k is /r 

Let  Nj-1 . . . N l ( q ) = w ,  so tha t  N ( q ) = N ~ . . . N j ( w ) .  Let N j ( w l ) = w l w 2 ,  and suppose 

tha t  w arose from q by  the removal Of some b-symbols from (ql,-.. ,  qt). I t  is no loss 

of generality to assume further that  only ql and q~ were changed by  N~-I ... N1, since 

any  other action of this transformation can be postponed until after Nj is applied 

(without affecting the value of ]c). I t  follows tha t  

Let 
ql = ul(b)wl vl(b), q2 = u~(b)w~ v2(b). 

N*(wl) = Vl(b)ul(b)wl, N*(w~) = wz v2(b)u2(b), N*(w,~) =wm for m > 2. 

Setting v , (b ) "u i (b )=  1 for i >2 ,  and (vlql~l, v2q2~ ~ . . . .  )=v(b)q~(b) gives 

N*(w) = N*Nj_  1 ... Nl(q) = v(b)q~(b). 

Thus N*(w) is a Q-transform of q. Therefore N*N~_ 1 ... N 1 Call be rewritten as required. 

I f  now Nj  acts on N*(w) one gets 

N jN*(wD = Vl(b) ul(b) wl w2v~(b) u~(b), 

N jN*(w2) = w~ v~(b ) us(b ), 

NjN*(W,n) = wm for m > 2. 

I f  N** is the transformation tha t  removes the u~(b) and v~(b) displayed here then 

N**NjN*(w) = Nj(w) ~-N~Nj_ 1 ... Nl(q). Therefore 

N(q) = Nc ... N t+IN**NjN*Nt-1  ... Nl(q) 

and, as Nj is also a Q-transformation, only Nc ... Nj+IN** remains to be considered. By its 

definition, N** contributes nothing to the value of k for Nc ... Nj+I N**, so tha t  value is 

k o - 1. 

This concludes the proof of Theorem 1. 

THEOREM 2. Two t-tuples, r a n d  r* of F~ = F(a), are Q-trans/orms o/ each other, Q(r) =r* 

/or some Q c Q ( t )  i f  and only i / / o r  every automorphism A of Fn: Ar*=Q*(Ar)  ]or some Q* 

depending on A .  
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Proo/. L e t  r~= Q(rl) = r~,X' r~,X~ ,.., A(x~) = y~, for A any automorphism of F(a) and 

x~=x~(a), y~=y~(a). Then Ar~ = (Ar~)Y'(Art,)Y~ ... and I will show tha t  Ar~ is Q-trans- 

form of Ar 1 under a mapping Q* that  takes (Ar 2 . . . . .  Art) into A(r* . . . . .  r~). Let  p(r*) 

be a t-tuple in {r*}, and let Q(r)=r*. To show that  Ar-~Ar* is a Q-transformation, 

let p(r*) reduce to r when r* is replaced b y  the r-consequences given for it above; 

then r*->p(r*) inverts Q: r-~r* and 

pl(r*) = (r*)Z~(r*)Z~..., 

with similar :expressions for P2, ..-,Pt. Let  

~l ( r* )  : (r~)AZl(r~)Az' . . . ,  

so thatA2l(r* ) = ~l(Ar*), etc. for P2 ....  , Pt. Then Ar*-~(Ar*)  is a map that  inverts Ar-~Ar*. 

By virtue of Theorem 1, the latter is then a Q-transformation. 

To show the converse, let A be an automorphism of F n and suppose the two t-tuples 

Ar and Ar* connected by  a Q-transformation, Q*: Ar-+Ar*. To prove that ,  for some Q, 

r* =Q(r), one need only apply the argument given above to Ar* =Q*(Ar), using the auto- 

morphism .~: 

A(Ar*)=.4[Q*(Ar)], with 

A(Ar*)=r*, and 

~[Q*(Ar)] = Q**(.4Ar); 

therefore r*=Q**(r), as claimed. (See in this connection Example  7, Section 11 below.) 

This proves Theorem 2. 

Remark. I t  does not follow that ,  for given A, A(r)=Q(r) for some Q. For example, 

if H = ( r }  and AH~=H then ' (A(r)} . ( r}=(Q(r)} .  (Cf. Example 1, Section 8.) However, 

when G = 1 = (a; r) and the presentation has deficiency zero, the following holds. 

THEOREM 3. I] r i s  an n-tuple in Fn=F(a)  and Q(r)=a, then, /or every A o/ Fn, 

A(r) =Q*(r) /or same Q*. 

Proo/. r =~)(a) and A(a)=s  give A(r)=AQ(a)=Q(A(a))=Q(s) .  I will show that  s =Q'(a) 

and this will give A(r)=~)Q'(a)=QQ'Q(r). 

I t  is clear from the definition of Q-transformation at  the beginning of this section 

tha t  when all exponents x, y tha t  occur in the product Q' =Q~, j, Q~lJ, are integers, then 

9 -  682903. Acta mathematica. 121. Imprim~ le 18 septembre 1968. 
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Q'(a) is a Nielsen t ransform N(a) of a; and vice versa. Since the n-tuple s generates F~, 

s = N ( a )  and so s=Q'(a), for some Q-transformation Q'. 

The following lemmas will shorten proofs in the sequel. 

L E M ~ A  1. Let A be any automorphism o/ F~=F(a),  A(a)=s,  R a root-extraction, 

r a t-tuple in Fn, R*[w(a)] = R[w(s)], and Q* the map de/ined in the proo/o/  Theorem 2. 

Then RQ(r)=,4R*Q*A(r). 

The proof is the same as for Theorem 2. 

LE~I~A 2. I /  r is an n-tuple in Fn=F(a)  then { r ) = . F  n implies that r~=s~C~, /or C~ 

in F', and a set (81,  . . . ,  8n) Of/tee generators o/ F~. 

Proo/. r generates F/F '  and so the matr ix  (n~j), with n~j the exponent  sum of aj in 

r~, has determinant  +_1. Hence [8] for some Ct' in ~", (rlC1, ..., rnC~ ) freely generate Fn. 

Setting ri C~' = s~ and C~ = C~ gives r i =s~ C~ as claimed. 

L ~ M ~ A  3. I /  (s 1 ..... sn) /reely generate Fn=F(a)  then (siC, s 2 .. . .  , s~) =Q(a) /or any C 

in F'. 

For  F '  is in the  consequence of (s 2 .. . .  , Sn). 

Section 6 

Let  r* be an n-tuple and Fn=F(a)=(r*}  with r*=a~C~, C~ in F~. Let  Ck+l, ..., Cn= 

(al  . . . .  , ak} with k minimal in the sense tha t  no n - k + 1 of the C~ vanish modulo tha t  subset 

of the aj not  associated with them in r*. I f  r* =a ,  set k =0 .  

Replace r~, ..., r* by  a 1, ..., ak to get  

Ra(r* ) = r** = ( a  I . . . . .  a k ,  r k + l ,  . . . ,  rn). 

Then  (r**} = F(a). Note  tha t  R~ need not  be a root-extract ion even if k <n ,  as for example 

when r~ . . . . .  r* ~: (a 1 .. . . .  ak}. 

T~EORV.M 4. Let r be an n-tuple and Fn= F(a)= (r}. Let C~ designate an element o/the 

commutator subgroup F' o / F  n. Then there exists three Q-trans/ormations Q1, Q2, Qa and a root- 

extraction R such that Ql(r)= (al C 1 ..... a~Cn) =r*, RQ~QI(r ) = R~(r*) with k < n in the de/ini- 

tion o/Ra, and QaRa(r*)=a. 

Proo/. By L e m m a  2, there is a set of free generators s =(s 1 .. . .  , s~) of F ,  for which 

r~ =s,C~, and the  C/ are in F ' .  As in the  preceding proof, s =N(a) for some Nielsen trans- 

format ion N, and the formal  application of _N to r is a Q-transformation,  Q1- T h u s  Ql(r~)= 
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N(s~ C l )  ' * ' =N(s~)N(C~)=aiC~=ri ,  fo r . each  i. Since F '  is conta ined  in t he  consequence of 

al ,  ..., a,_~, a t  most  n - 1 of the  C~ need be d roppe d  f rom r* to  ge t  a set  of the  form R~(r*) 

whose norma l  closure is again  F(a). Thus  Ra(r* ) exis ts  wi th  k < n .  This  allows the  following 

procedure  which effects Ra b y  a roo t -ex t rac t ion  R ac t ing  on a Q-t ransform Q~QI(r) of 

Ql(r). H a v i n g  chosen k as small  as possible and  having  so r e numbe re d  the  r* =s~Ct t h a t  

Ck+l . . . . .  Cn ~ {al, ..., ak}, mul t ip l i ca t ion  of r~(a) b y  sui table  conjugates  of  5k_~_lOk_F1 , wil l  

replace  all ak+ 1 symbols  in r*l(a) b y  Ck+ 1. I t  is no t  ha rd  to  see t h a t  such s teps  are  Q-trans-  

fo rmat ions  and  t h a t  r l (a  ) can, b y  s teps  of th is  sort ,  be cleared of all  ak+l and  5k+l. S imi l a r ly  

for k + 2  . . . . .  n and  r~(a) . . . . .  r*(a). Le t  Q~, ac t ing  on Ql(r)=r* accompl ish  all this.  Then th~ 

�9 r*)=R~(r*) is a roo t - ex t r ac t ion  R on Q2(r*)=Q2QI(r) mapp ing  Q~(r*)-~ (a 1 . . . . .  ak, rk § 1, ..., 

and  so Ra(r* ) = RQ~QI(r ). 

Fina l ly ,  the  resul t ing  n - tup le  RQ~QI(r ) is reduced  to  the  n- tup le  a b y  sending  

�9 * in to  a~ .  Since r*+ 1 = ak+ 1 Ck+l and  Ck+l vanishes  modulo  a I . . . . .  ak, th~  r k + l ~  � 9  rn a k + l ,  . . . ,  

mapp ing  t h a t  sends Ra(r* ) in to  itself except  t h a t  r*+l-~a~+l is a Q- t ransformat ion .  S imi l a r ly  

for * * rk+2-->ak+2~ . . . ,  rn-->a n. 

The ma in  po in t  here is t h a t  if ( r  1 . . . . .  rn} = F(a) t hen  modulo  Q- t ransformat ions  a singIe 

roo t - ex t r ac t ion  t akes  r in to  a: Q'RQ(r) =a. I t  will be seen in the  examples  t h a t  a t  t he  same 

t ime  r m a y  be a Q-t ransform Q*(r) of a even though  Q'RQ is no t  a Q- t ransformat ion .  Nex t ,  

Theorem 5 takes ,  s imilar ly,  a in to  r and  Theorem 6 gives a subs t i tu t e  for the  non-ex is ten t  

inverse  of. R. 

THV, OREM 5. I]  F ~ = F ( a ) = ( r }  /or the n-tuple r, then either r - Q ( a )  or r=Q~RQI(a): 

r is Q-trans/orm o / a  modulo at most one root-extraction. 

Proo/. Again,  the  r~ can be changed  to the  form aiCt, Ct c .F '  b y  a Q-transfor-  

mat ion ,  So assume aC = (a 1C a ...... an Cn) = r. Le t  Ck+i . . . . .  Cn c (a l  . . . . .  ak}, so t h a t  F (a )  = 

{ a l  . . . . .  ak, rk+l, . . . ,  rn}. A p p l y  a n y  Q- t ransformat ion  to  aC t h a t  reduces  k as  much  as  

possible bu t  re ta ins  this  form of r; call the  resul t  r*. Since ( r ~ , . . . , r * } - - F ( a ) m o d u l o  

the  remain ing  r~, there  exis t  words v I . . . .  , v~c(r*  . . . . .  r~} and  words  w I . . . . .  wk~  (r*+l~ 

. . . .  r*} such t h a t  v~w~=a~, i : l , . . . , k .  Set  

i r  , 
r = ( v l w l , .  . . . . . . .  r * )  ?)k Wk~ r k + l ,  

and  r '  = ( v ,  . . ,  v~, * r * ) .  �9 r k + l ~  � 9  

Then r"=Q'(r ' ) ,  and  since r~+l * = ak + 1 Ck § 1, wi th  C*+ 1--  1 rood (a 1 . . . . .  ak) = (v 1 w 1 . . . . . .  

v~wk), on e gets  r " = Q ' ( r ' ) = Q " ( a ) .  This in t u rn  gives r'=-Q'Q"(a). Together  w i th  r*= 

R(r'), t hen  r = "Q*R(rl) = -Q*RQ(a). 
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Remark. Here v 1 .. . . .  vk m a y  be replaced by  ai ,  ..., a k in r' and t h a t  would be a mapping  

R a with (R~(r')} = F(a), but  R~ can be done as a Q-~ransformation in the present case. 

I n  preparat ion for the  examples, these results will now be spelled out  for F 2 (cf. 

[14]) in t w o  corollaries. They  are followed by  two easy consequences of Theorem 3 for 

Fn in genera l  

COROLLARY 5 1 In  F~=F(a,  b), /or any C in F', (aC, b}=F(a,  b) and any pair r 

8uch that (r} = F(a, b) is Q-trans/orm o/ a pair RQ(aC), Q(b). 

COROLLARY 5.2. I /  K~c  (s~CI}, K 2 c  (s~C~} in F(a)=F2=F(s~,s2)  , and K~K2=Sl, 

then (K1, s2C2)=Q(a). 

Proo/. As (sl, s2) is a free generating set for F(a),  the normal  closure of either s~ con- 

tains the commuta to r  subgroup F '  of F(a) and so the following are Q-transformations: 

(K1, s2C~) ~ (K1K2, s2C~) = (sl, s2C2), 

(81, 82 C2)--> (81, 82}' 

B y  definition, (sl, s2)=A(al, a2) and so by  Theorem 3, (s 1, s2)-+ (ai, as) is a Q-transforma- 

tion. 

COROLLARY 5.3. I /  the set s=(s  1 ..... s,) /reely generates Fn=F(a  ) and i/ C is in the 

commutator subgroup F' o/ F(a) then any root o/ s i c  has a completion to an n-tuple RQ(a). 

In  particular, any root o/ s 1 C has the/orm 8"1 C*. 

COROLLARY 5.4. I f  ( r }=Fn=F(a) ,  the subset (r 1 . . . .  , rk) o/ the n-tuple r may be 

replaced by the subset (,Si . . . . .  sk) o/a/ree generating set so/  F(a) without diminishing the normal 

closure if and o~ly i/ {r~+l ..... r~} contains sk§ ..., sn modulo (sl ..... sk). I] ] c = n - 1  the 

condition is always satls/ied. 

Proof.:Let 81C c {r~} so tha t  r* is root  of s 1 C. Then (r*, 83 . . . . .  sn) = R ( s  i C ,  8 2 . . . . .  

sn) and since C is in the consequence of (s 2 . . . . .  s,), the set (s I C, s2, ...8~) is Q-trans- 

form Q(s) of (s 1 . . . . .  s~). As s=A(a) ,  by  Theorem 3, Q(s)=Q(A(a))=Q(a).  Now it fol- 

lows tha t  (r~, s 2 . . . . .  s~} = F(a), whence, with Lemma 2, one gets r~ =s~  C~. 

Section 7 

The question whether  the  n-tuple r is always Q-transform of the n-tuple a when 

F(a) = (r} depends then on the  nature  of root-extractions:  can every  R be effected by  a 
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Q-transformation? (This in turn depends on the na ture  of the identities the r~(a) satisfy.) 

I t  was remarked already tha t  some can; thus in Example  3 below r i c  (a~} for each i and 

r =Q(a). To my  knowledge Examples ] and 4, in F a and F~ respectively, leave the question 

open. One may  well recall here tha t  there is a growing list of undecidable grQup-theoretie 

problems [11]. 

Suppose tha t  it is undecidable whether all root extractions can be written as Q-trans-  

formations. Then it is useless to s tudy examples: if faced with root-extractions R not 

negotiable by a Q-transformation, the fact cannot be proven, while if all are so negotiable 

examples are pointless. 

This came to the fore when I had to scrap what  looked like a proof tha t  the set (R, Q) 

is larger than the set (Q) (The abstract  announcing it was withdrawn before presentation 

to the American Mathematical Society but  unfortunately not before printing [15].) 

THEOREM 6. I /  R '  is a root-extraction on the n-tuple r in F n =  F(a ) =(r~  and R ' ( r )=r ' ,  

then modulo Q-trans/ormations at most two/urther root-extractions take r' back to r. 

Proo/. Let T4(r ) = a in Theorem 4, so tha t  T 4 is an R rood Q. Let T s (a) = r in Theorem 

5, so that  Tg is an R mod Q. The choice of T depends on r. Then the diagram below contains 

Theorems 4 and 5. An arrow is reversible there only if the mapping involved can be effected 

by some Q. 

R ~ ! 

r ~ r~4�9 
T 

(3 

I f  r '  =Q(r), ~) takes r '  back to r; otherwise T 5 T~ does, with each T containing at  most 

one root-extraction: if r' =Q(a) then T~, if r =Q(a) then T 5 is the identity transformation 

modulo Q. Accordingly, the effect of R'  is undone by at  most  two successive root-extrac- 

tions separated by Q-transformations. 

So it is possible to reverse the effect of a root-extraction by further such steps, but  the 

latter do not constitute an inversion in the combinatorial sense (as given above in the 

definition of invertibility). 

This is just what Theorem 1 says. On the other hand, it can happen tha t  r' =Q(r), 
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while also r ' =  R(r). In  this case ~) inverts Q and not R, since inversion is a formal pro- 

cedure by definition. 

I f  not every R can be effected by some Q, then the set of all n-tuples r with conse- 

quence F n = F(a) in F(a) falls into several subsets, S 1 . . . .  such tha t  each subset is closed 

under the group Q(n), each is connected to the one containing a = ( a i ,  . . . ,  a n )  by a single R, 

and each pair of subsets is connected by at most two R's. 

Section 8 

In  the proof of Theorem 1, the expression under (1) gives the a-word Pl as a conse- 

quence of the n-tuple r of a-words. I t  is chosen so as to make statement  (3) there correct 

for each p~ in p = (Pl . . . . .  P n ) "  By going over to the expression (1') the machinery to deal with 

Nielsen transformations (in F2n though) is made available [12, 8]. This will be utilized 

to study n-tuples r whose consequence is all of F n. 

In  the expression (2) replace p~ by a s for each i and drop the requirement (3) for it. 

Tha t  is, for a given n-tuple of a-words r, consider any expression of r as a-consequence. 

I t  will represent a Q-transformation if a matching n-tuple of expressions of the type (1) 

exists making statement (3) true. A necessary condition is that  the corresponding expres- 

sions (2') reduce to the n-tuple a under an automorphism of F2n. The condition is not 

generally sufficient since only certain automorphisms of F2= correspond to Q-transforma- 

tions of F n. 

For example, in F2, on the pair of (single) symbols a and b, let r = (a2bS$, b) be written 

as (abab -1, b). Then Q12(r) = (ab% b), Q~2QI~(r) = (a, b) for the obvious choice of Q~j. In  this 

sense the expression (ab~b -1, b) of r in terms of (a, b)-conjugates represents r as Q-transform 

of (a, b): 

r=Q(a,b) for Q=[Q;2Q12] -1. 

Now if r = (a2bS[~, b2abS) is written as (ab~b -x, baba-1), then no such Q exists even though 

this r is Q-transform of the pair (a, b). The latter fact is shown in Example  3 below, the 

former is seen as follows. Replace the a-symbols in the exponents by c, and the b-symbols 

by  d, to get (ab~b -1, bada-1). Write this as the pair of elements (acbSb, bdac75) in F 4 = 

_F(a, b, c, d). I t  can be shown [12, 8] tha t  this pair is not reducible in terms of (a, b, c, d)- 

length by  automorphisms of F 4. 

The foregoing is geared to certain generators Qij of the group Q(n). For example, each 

Q~j in the Q given above reduces the number  of conjugates of a and b in the pair of words 

it acts on. (Of course this s tatement  is meaningful only when the words are given as products 
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of specific conjugates of a and b.) Thus Q effects here a "direct" reduction of the length 

in question. In  special cases an element of Q(n) can be so written on the generators Q~s 

defined in Section 5 tha t  it reduces a-length directly (that is, Q =Qk -.. Q1, each Qh some 

Q~j and each shortens Qh-1 ... Ql(r)) �9 In  other cases another set of generators Q~j may  do 

this and the Q~ needed can actually be found. For each of these cases an example will be 

given along with another for which the method fails. (See also [14].) 

Example 1: G = (a, b, c; $~5bc, 5~5ca, 5~bab) = (a, b, c; rl, r2, ra). Conjugation and sending 

the generators into their inverses take r into the triple known [10] (see also [13]) to give 

a presentation of the trivial group and so G = 1. 

I t  remains undecided whether r=Q(a, b, c); the problem will now be reduced to a 

presentation of the trivial group on two generators. 

Let  

Al(a, b, c) = (a, cb, c), As(a, b, c) = (a, b, cb52~a), 

Q~(T, W, Z) = (T, W ~, Zb), Q~(T, W, Z) = (T, W, ZW),  

and let Qa remove every c-symbol from the (a, b, c)-words T, W: Qa(T(a, b, c), W(a, b, c), c) = 

(T(a, b, 1), W ( a ,  b, 1), c). 

Then Q~QtAI(r) = (($5)2bc, 55ca~, b52baS), and if one sets T(a, b, 1) = U(a, b), W(a, b, 1) = 

V(a, b), then Q3AeQ1AI(r)=(U(a, b), V(a, b), c). The words U and V will be explicitly 

needed only in Example  4 below, so these two long words are not given here. 

The Ai are automorphisms of F 3 = F(a, b, c) and the Q~ are clearly Q-transformations. 

I t  can be shown tha t  the product .~I.~2QaA~Q2Q1A1 is a Q-transformation, but  the product 

tha t  is of interest here is Q3A~Q2Q1A 1. I t  differs from the former by  an automorphism of 

F 3. The situation is as follows. Since Theorem 3 is applicable only when r =Q(a, b, c), and 

I have been unable to decide whether or not it is in the present example, it is clear only 

that  Q3A~Q~Q1AI takes r into a triple tha t  gives a presentation of the trivial group and 

tha t  (a, b; U(a, b), V(a, b))= 1. 

I t  may  be noted tha t  while r=Q(a, b, c) would follow from (U, V)=Q(a,  b), whether 

the converse is true remains an open question. 

Computation shows further tha t  the, subgroup H generated by rl, r~, and r~c con- 

tains the element 5b52bcaS=r~cr~ which is a free generator of F(a,b,c).  While this 

word generates F(a,  b, c) with a and 5b, it generates H with rl and r~. 

What  follows is a general s tatement  for which this is an example and a few related 

facts. 
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THEOREM 7. I / t h e  t-tuple w in F n generates a subgroup, H ,  containing a /ree  generator 

81 O/Fn, then there is a Q-trans/orm o / w  that contains sl and generates H. 

Proo/. Let A(Sl) =a  1 and A(w) =v. Then v generates H * = A H ,  a I is in H*, and [2] there 

is a Nielsen transformation N such tha t  N(v) contains a 1. Of course N(v) generates H*, 

and N(w)=N[,4(v)] = A N ( v ) .  Hence N ( w ) c o n t a i n s  ~(al)=81 and generates H. N is a Q- 

transformation, so tha t  the proof is complete. 

COROLLARY 7. I / t  = n  and {w} = F(a), then s I o /Theorem 7 is contained in w modulo Q. 

TH]~OREM 8. I / , / o r  arbitrary n, w = ( w  1 . . . . .  wn) and F ~ =  F(a) = ( w }  imply  that the sub- 

group H generated by w contains a / t ee  generator o /F(a ) ,  then a =Q(w). 

Proo/. Let s = s(a) =.~(a) and s 1 =.~(al) the free generator contained in H. Then Theorem 

7 applies. Form the Q(w) of Corollary 7 tha t  contains s~ and set Q(wl)=s  1. Rewrite the 

remaining Q(wt) in terms of the generators s(a) of F(a) and drop all the sl(a ) occurring in 

them. This results in a Q-transform Ql(w) consisting of s 1 and Ql(w~ . . . . .  wn). The ( n - 1 ) -  

tuple Ql(W2 . . . . .  w=) is written on the ( n -  1)-tuple s~(a), ..., s~(a) and its normal closure in 

the free group Fn_l=F(s2(a), ...,.8n(a)) is F(s2(a ) . . . . .  s=(a)). Since F(a) is the free product 

of this F=_ 1 with the free cyclic group generated by  sl(a), the element sl(a ) completes any 

full set of free generators of this Fn_ 1 to a full set of free generators of F(a). Thus, if the 

theorem holds f o r n - 1 ,  it holds for n. Since the case n = 1 is trivial (for then w =a~), the 

proof if complete. 

THEOR]~:~ 9. Let r=(r l ,  ..., rt) , r*=(r~, r 2 . . . . .  r )  in F n. Then r and r* are conse- 

quences o/ each other i / a n d  only i /e i ther  1) r*= RQ(r) and r = R*Q*(r*) with Q and Q* pro- 

ducts o /Qt j  which leave r~ . . . . .  rt /ixed or 2) r* =Q(r). 

Proo/. Let K ( X )  mean a consequence of X in Fn. The sufficiency of either condition 

is clear. To prove their necessity, let (r}={r*}. Then r ~ = K l ( r x ) g ( r  2 . . . . .  rt) and r l =  

K~(r~)K*(r~ . . . . .  rt). I f  now r* =#Q(r), then r* may  be constructed from r (or vice versa) as 

follows: the mapping tha t  takes r 1 into K~(r~) and leaves r~, ..., r~ fixed is the product Q 

of certain QlJ with )'>/2, each of which leaves r~ ..... r t fixed. In  the resulting t-tuple 

Q(r) =(g~(r~),  r~ . . . .  , rt), Q(r l )c  {r~} so r~ =RQ(rl  ) and RQ(r)=r* with R(r j )= rj for j >  1. 

I t  may  be noted tha t  when r* =Q(r), then Q may  not possess the property stated 

under 1). 

Remark. Both 1) and 2) may  be true, as in Example 2 below. Whether  some Q 

can be effected by root-extractions when (r} ~=F(a)=F n seems to be an open question. 
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Also this: under what conditions is ( R ( r ) } = ( r }  =VF(a) possible. Fn/R(r) ~ _ F n / r = G  may 

be another matter, as indeed it is when (r} is proper subgroup of (R(r)}  (and G is non- 

Hopfian). 

The following is easily verified. 

TttEOREM 10. Let r - - ( r  1 . . . .  , rn), r*=(Sl, r s . . . .  , rn), and s~ 4r~ /or any x in F~= F(a) = 

(r}. I / s  = (s 1 .. . . .  s~) /reely generates F(a) then each o/ the/ol lowing/our  conditions is necessary 

and su//icient /or (r*} = F(a). 

1. r I and s I are roots o / o n e  another modulo r~, ..., r n. 

2. The consequence modulo s~ o/r~ . . . . .  r~ contains s s . . . . .  s~. 

3. I /  r 1 =#s~ modulo r s . . . . .  r~ /or any  ex in F(a) then it can be replaced by some conse- 

quence K(si)  ~ o/ s 1 without altering (r}. 

4. r 1 is consequence o/r2, .... r~ modulo s 1. 

Example  2. If rl=alC1,  rs=a~C 2 and (rl, r~} = F(al, as) = Fs, then a 1 is a root 0f alC1, 

and (al, a2C2)=Q(al, as) (Lemma 3). For n = 2  Theorem 10 says just this. A narrower 

generalization of this observation is the following direct consequence of Lemma 3. 

THEOREM 11. I /  ( r l ,  . . . ,  r n } = F n = F ( a )  then any n " l o / the  rt may  be replaced by a 

suitable subset o / some/ree  generators Sl, ..., s n o /F(a ) .  

Example  3. If X=a2bh$,  Y=b2a$5,  then b = R ( Y ) ,  and Q*(X ,b )=  (a,b). Thus, 

R ( X )  = X ,  Q*R(X, Y ) =  (a, b). While this does not prove that  (X, Y} = F(a, b), finding 

a Q' to replace R would.  Such a Q' can be constructed from the Qt given below. 

For Q=QsQ2Q1, Q(X,  Y ) = ( a ,  b), and since Q4(a, b ) = R ( X ,  Y),  one gets Q4Q(X, Y )  

= R ( X , Y ) .  Thus Q'= QaQaQ2Q1. The Q~ are as follows: 

Q~(v, w)=  ( v w  b, w), 

Q~(V, W ) =  (V, WVl-b), 

Qs(V, W) = (VW, W), 

Q4(V, W) = (VW ~-~, W). 

In this example Q4Q(X) reduces to X in terms of the symbols (a, b) but  not in terms of 

the (X, Y)-conjugates tha t  define it. In contrast, an automorphism A that  leaves the symbol 

a fixed, changing only b, can be carried out (as a product of generating automorphisms) 

so the symbol a never changes. For in this case the set A(a, b)=(sl ,  ss) has the form 

(a, a~b~a h) [2, 12]. 
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Example 4. Let X=g2bab serve as an abbreviation to write U and V of Example 1. 

Then U = bX bx, V = X x-2~', and R( U, V) = (U, X) = Q(a, b). This Q has the effect of stripping 

U of X bX and then reducing X = d ' b  -a+ l  to 5. Can the work of the root-extraction R b e  

done in an invertible manner? My many  a t tempts  to decide this, only some fortuitous, 

revealed nothing. For example Marshall Hall 's  commutator  calculus [5] stumbles over 

identities, while an algorithm involving length-arguments stumbles over the necessity to 

distinguish between relative and absolute minima [12]: if ]r] is the sum of the lengths 

]r~l (the number  of a-sumbols in r~ cyclically reduced), then the shortest Q(r) for all Q 

may  be shorter than minima relative to direct reductions, whether under the generators 

Q~j or some others. This is true even if one allows I Q~j(r)] ~ ]r ] instead of strict inequality. 

That  ]U] + I V ]  is minimal with respect to the Q~j follows by  inspection from the next  

theorem. I t  is readily (if a little messily) established tha t  this pair is minimal under auto- 

morphisms of F(a, b). That  all this is not decisive will be seen from further examples. 

To simplify some statements, I will call conjugates w x of w in F(a) short conjugates 

if lwZ[ = ]w I. Thus w=abc has the short conjugates abc, bca, cab and their inverses. The 

cyclic word w will mean some one of these, chosen in advance. 

In  the definition Q12(r1)=(rlr~) y the 

cyclically reduced once it is reduced. Thus 

z (or - z )  of Fn. 

word ey was chosen to make the image-word 

(r l r~)  z would be at least as long for any element 

~ n  x y y x y  (rlr2) =rl r2 the factors, r~ and r2XY, need not reduce to short conjugates. I f  r~, 

r~u do, rUr ~ I  ~ need not reduce to a short conjugate. To avoid the verbal complications this 

would cause the theorem below does not mention Q-transformations. A rough but  simple 

way of putting it is: reductions by  Q-transformations can be effected by using only short 

conjugates. 

TH]~OR~M 12. In F(a), let A ,B  be cyclically reduced words and neither the empty word; 

let A y, B ~ and all words appearing in exponents be reduced, and A u, B ~, A y B ~ cyclically reduced 

when reduced. I /  I A yBzl <~ I A ] then there is an A ~ and a B" such that I A ~B€ <<. ]A yB~I 

and (A~ BV)~=AYB ~. 

Proo/. Suppose first tha t  B z is a short conjugate. Assume BZ= B (this will be cor- 

rected for). So ]AYB] <~ ]A I" Ay can be taken reduced as written, for if it is not then A 

can be replaced by a short conjugate A w and y replaced by  ~y  (this too will be corrected 

for). 

I f  y = _+ 1 there is nothing to prove. Otherwise some segment of B, and some of y, 

certainly cancels in A~B: y= Uw, B=(vC. Then AYB=~vOAUw.(vC, AV=A y~, ]A~I < 

J A~ I , IBm[= ]B I, and A~WB w = (AYB) ~. This process reduces the length of y, until a short 
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conjugate, A u, of A and a short conjugate, B ~, of B give a conjugate AUB ~ of A~'B ~. 

Clearly lA~'BV I < I I. To effect the promised corrections one need only replace A 

respectively B by  a suitable short conjugate. 

I t  remains to reduce B ~ to a short conjugate. Again take B ~ reduced as written. Since 

I A'B i < IAI, at least half of B z, and so of B, must  cancel; hence all of g does: A~B ~ = 

Uz. 5Bz. Then A ~ B  = (A~B~) r, I I < I A~I, and B is cyclically reduced. The necessary cor- 

rection now consists of replacing B in A~XB with a short conjugate B ". This concludes the 

proof. 

Let  Q=]-[1Q, with the Q~ chosen from a fixed set of generators of the group of Q- 

transformations of n-tuples in Fn=F(a) ,  and X=y]~_~Q,(r)=X(a). I f  [Q~(X)I ~< IXl for 

each i: 1 ..... k, then Q is said to be semidirect on these generators (cf. [2] and [12]). That  

semidirect reductions take the presentation (all ..., an; rl, ..., r~) of the trivial group into 

the trivial presentation (a 1 ..... an; sl, ..., sn) only in some cases will be seen in Section 10. 

S e c t i o n  9 

The machinery gotten so far generates all presentations of zero deficiency of G = 1 

for fixed n. In  the process of applying it, new, often interesting, presentations arise. This 

can be most helpful with the work on the decision problem: when is a presentation tha t  of 

G = I .  

Two further methods of generating presentations of deficiency zero of G = 1 follow. 

They are essentially Tietze-transformations (see for example [8]) and do not keep n fixed. 

One is a construction from (a; r) when r =Q(a). I t  is a by-product  of a result on Q-trans- 

formations (Theorem 13). The other uses the method of Magnus [6] and is tied to my  next  

example. 

Let  r and Q(r) be two n-tuples in Fn = F(a). Let F2n = F(bl, ..., bn, Cl . . . . .  ca). Fix the 

manner  in which the Q(r~) are written as products of r-conjugates (in case this is not uni- 

que) by  setting Q(rl)=Kl(r  ) =r~l,r~l~ .... and so on for each r~, using fixed short con- 

jugates of each r~ throughout (Section 8), and reduced a-words in the exponents. 

Next  replace the exponents x(a) by the exponents x(b), and the words r~(a) by the 

symbols c~. This turns the Kj(r) into (b, c)-words K~(b, c) =K~. On setting Q(b~) =b~ for each 

i, Q turns into an element Q' of Q(2n); Q'(b, c)=(b, K') .  Clearly, Q'(b, c) generates F(b, c) 

freely so Q' is an automorphism of F2n. The inverse, written as a combination of the 2n 

symbols b 1 ..... K1 .. . .  freely reduces to (b, c) when K~(b, c) is substituted for each symbol 

K~. Combinatorially then one may  put  ~)'(b, c)=zi(b, c )=  (b D ..., bn, wl(b, c), ..., wn(b, c))= 

(b, w(b, c)). They are associated free generators of F(b, c). 
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Suppose now that  Q(r) =a. Then the n words K~(5, c) reduce to the n symbols ai when 

the c-symbols are replaced by the words r(a) and b-symbols by a-symbols, subscripts 

matching. I t  follows that  the n-tuple w(b, a) (gotten from w(b, c) by writing a~ in place 

of c t for each i') generates F(a,  b) with the n-tuple b: F(a,  b) is a free product 

F(a, b) = Fn(w(b, a)) * Fn(b), 

while the wt(a, a) freely reduce to the ri(a). To get w(a, a) from w(b, a) the substitution 

b = a  was made. This amounts to setting b5 equal to 1. Let  A* be the automorphism that  

takes bt into b~a~ for each i, and let A*(ai, ..., an, bl .....  bn)=!ai ..... an, biai, ..., bnan)= 

(a, ha), A*(w(b, a)) =v(b, a). To get the n-tuple w(a, a) from the n-tuple v(b! a), one must 

set A*(bS)=b equal to 1, since v(b, a)=w(ba,  a). Thus, v(1, a)=r(a)  identically in F(a). 

This gives (cf. [13]) 

THEOREM 13. I f  Q(r) =a then by using dummy  symbols b i ..... bn, the n-tuple r(a) can 

be v~ri$~en as an n-tuple v(b, a) such that the 2n-tuple (v(b, a), ba) /reely generates the 2n-tuple 

(a, b), and v(1, a) =r(a) identically. 

The converse is of course not true: if b l ,  . . . ,  bn are dummy symbols and the  r~(a) can 

be written as words st(a , b) that  freely generate F(a, b) with blal, ..., bnan, it does not follow 

that  Q(r) =a;  not even if s(a, 1) =a.  For this to happen the n4uple s(a, b) must be a special 

kind. But  when Q(r) =a, the n-tuple r =r(a) may now be said to arise from a free generating 

set in F2n by dropping half the symbols in half of the set. 

This may be compared with the following situation. Let G be any group having a 

presentation on n § 1 generators and n defining relations 

P'  : (g, a 1 . . . .  , an; r; ... .  , r~) 

for which G/g = 1. Knot  groups are the most studied among these. (See [4] for example.) 

Thus, droppping all g-symbols in P '  gives 

P: (ai, ..., an; r 1 . . . . .  rn) = 1. 

Conversely, the insertion of powers of a new symbol in any way into the rt in P gives some 

presentation P' .  

But  knot groups are small comfort here: the topologist manufactures his presentations 

from knots [3] or braids [1] and then the resulting P has the form (a; s) for a set of free 

generators s=s(a)  of F~. Every known presentation of knot groups seems to be derived 
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from these. So the shoe may  be on the other foot: one must  first decide how to make P 

i n t o a  presentation of a knot  group [3]. 

Replacing the r~ of Example 1 (Section 8) by 52Y$agb, bUSbc, 5~gSca gives a presentation 

of type P ' .  (This is no knot  group as its Alexander polynomial is 2g a _ g 2 - 4 y  + 2. [4]). 

E x a mp l e  5. This starts ou t with 

r 1 = ba55 u, 

Section !0 

a variant [9] of Example 1: 

r~ = cbSb 2, r a = ac552. 

Let Q = Q3 Qu Q~, A(a ,  b, c) = (ac, b, c), 

Q~(U, v, w)= (uv aca, v, w), 

Q2(U, V, W ) =  (U,  U ~ V U  -b'~, W),  

Q3(u, v, w)= (u, v, uwu-ca-o). 

Use w = ~25ba as an abbreviat ton to write Q(Ar) = (c, w 2-~,  awP), P = 5~ - $u_  ~ 5 .  Set 

u(a, b) = w u-~ '= Q(Aru), 

v(a, b) = aw e = Q(Ara). 

Then u(a, b) = $C x, v(a, b) = abCu, with C~ in 2", and [u [=  15, Iv I= 16. Of course, 

P*: (a, b; u, v) = 1. 

The pair (u, v) is minimal with respect to automorphisms of F(a,  b) and the Qw 

Let  $Zab ~ = ak, k: 0, +_ 1, .... When rewritten in terms of these symbols and powers 

of b, t h e  Q-transform (u b,u~v ~) of (u, v )becomes  

Uo= ub-= 55oa_ ld laod_za_ l ,  

Vo = u~v ~ = ao a_ 15~ 5 _ 1 a~ 5 _ u ao a_ ~ 51 a o 5 _ u a_ 1. 

Uo = ](a-u, a - l ,  ao, al, b) and define U k to be /(ak-u, ak-1, a~, ak+l, b) for  every inte- 

k. Similarly for V0, and any  other word Wo=g(a~,a~+l . . . . .  a~,b). This gives a 

Set 

ger 

presentation 

P':  (b, ak; U~, Vk, Skbak+l$, k: 0, •  . . . .  ) = 1 .  
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Let  Wo= ~oa_1~1aoa_2a_l so tha t  W0= bU o. Then the relation Uo= 1 can be written 

as b = W o and the relation U~= 1 as b = W~. I t  follows that  the Uk may  be replaced 

by the wkWk+l, for every k, in P" and the symbol b by any Wk. Choosing W o to 

replace b changes P' to 

w 

P" :  (ak; V~, ak Woak+l Wo, Wk W~+I, k: O, + 1, ...) = 1. 

Since F o and W 0 contain only a-z, a- l ,  do, al, 

Ho= (a-2, a- l ,  ao, eh; Vo, a~ Woai+l W o, i: - 2 ,  - 1, O) 

is a group. I f  there are no further relations between these symbols in the presenta- 

tion P "  then H 0 = 1 (and conversely). By introducing the symbol b and the relation 

b =  W o and replacing Wo with b in the ai Woai+l W0, Ho gets the new presentation 

P**: (b, a-z,  a- l ,  a0, al; V0, Uo, 5ibai+l $, i: - 2, - 1, 0). 

Eliminating a-2, a-l,  and a 1 in the obvious way reduces P** to (a 0, b; u(a 0, b), v(a 0, b)), 

which is just P*. Thus P** and H o are presentations of the trivial group. 

Note tha t  in P** the last four words are free generators in 2' 5 = F(a_2, a-i,  do, al, b), 

though not associated. In  particular U o is a way of writing the word u(a, b)of  P* as 

a free generator on five symbols. 

Section 11 

Concerning a-length of words, absolute minima and minima obtained by random 

semi-direct reductions relative to given generators of the group Q(n), may  not coincide. I f  

they do then r=Q(a) only if any semi-direct reduction of r yields a, and so one has an 

algorithm to decide whether r =Q(a) or not. Naturally, the generating set of Q-transforma- 

tions must  be a reasonable set, in the sense tha t  if [Q'(r)l ~< Ir[ for some member  Q' of 

the set (for the r in question), one can actually find Q'. The following examples show tha t  

the two minima in question do not coincide for any reasonable choice of generators (cf. 

[11]). 

Example 6. Let u = $~bbc, v = ~bc3$. To simplify the notation allow Q12(u) tO take the 

form u% ~ as well as vZVu y. The transformation Q given below reduces l u ] + I v  ] = (5 + 9) 

to (1 +8). L e t  Ql(u)=u, Ql(V)=uP'vu l '=  V, P I =  - ~  =bcb-~cbcb, P~= - 2 ~ c - ~ 2 c  ~. Let  

Q2(u) = Vu b' V b" = U, Q~( V) = V, Then Q1 is the product of Q21-transformations, Q~ t h a t  of 

Ql~-transformations, and Q =QaQ1 takes (u, v ) i n to  ($, 5b?). As [Ql(U, v)[=(5 +8), Q1 is a 
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reduction on (u, v) and Q~ a reduction on Ql(u, v); but  the Qij tha t  make them up produce 

fluctuations of length which cannot be avoided; tha t  is, the transformation is not semi- 

direct. 

QI and Q2 above are instances of a transformation of the type 

Q(X, Y ) =  ([x~Y~] w, Y). 

I f  z is an arbi trary monomial, P an arbi trary polynomial in the group ring of F~, X and Y 

elements of F~, then these transformations include all Q~j. Thus they generate but  are not 

a reasonable choice of generators in terms of which length-reductions might be made 

semi-direct. For there is no way of saying what  z and P will reduce the length of a given X. 

For example we do not know whether X has a conjugate X z equivalent modulo Y to some 

given word W; if we did, we could check through alI the W tha t  are shorter than  X. As 

Theorem 12 does not apply here, the arbitrariness of z is already a stumbling block. 

Example 7. This will show tha t  for an n-tuple which is minimal with respect to the 

Qi~ but  not minimal Q, Theorem 2 may  provide an algorithm for finding the Q-minimum. 

Let u = b2cbb, v =cb 7. Then if Q =QaQ2Q1, then Q(u, v)= (b, c) for 

QI(X, Y)=: (xb'yb '-b, Y), 

Q2(X ' y)= (X c y-c, y), 

Q3(X, Y)= (X, yX7). 

Let  A(b, e)=(b, eb), so tha t  A(b, e)=(b, cb). As Ql(u, v)=(cb 6, e$7), Q1 is not direct; in fact 

there is no direct reduction here on the generators Q~s. How was Q found then? First one 

notes tha t  A7(u, v) is direct for each application of A, and tha t  Q~A7(u, v)= (b, c) is direct. 

Then Q is found by  converting this into a Q-transformation as follows. Q1A7(u, v)= (b, c) 

implies Ql(u, v)=A7(b, c); this is used to find Ql(u, v). Then A 7 is converted into a Nielsen 

transformation and is applied to Q~(u, v). Nielsen transformations are Q-transformations 

and this one turns out to be Q3Q2. The reason for the appearance of Q2 is tha t  an auto- 

morphism, such as A, changes both words of a pair while a Nielsen transformation N,j 

changes only one. 
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