
ASYMPTOTIC BEHAVIOUR OF SPECTRA OF COMPACT 

QUOTIENTS OF CERTAIN SYMMETRIC SPACES 

BY 

R. GANGOLLI 

University of tVashington, Seattle, Wash., U.S.A. Q) 

l .  Introduction 

Let G be a connected noncompact semisimple Lie group with finite centre C, and 

let K be a maximal compact subgroup of G. Let F be a discrete subgroup of G such 

that  the quotient F\G is compact. F acts on the symmetric space G/K by left transla- 

tions and the quotient space F\G/K is also compact. 1 ~ is unimodular and so there 

exists a G-invariaut measure d~ on the quotient space F\G. We denote by L~(F\G) 

the space of complex valued measurable functions / on G such that  ( i ) / (~x)=  [(x)for 

y E F ,  xEG and (ii) j ' r \~l/(~)12d~< ~ ,  where [ is the function induced on F\G by ] 

by virtue of its F-invariance. By L2(F\G/K ) we denote the subspace of L2(F\G)con- 

sisting of functions / which in addition to (i) and (ii) satisfy (iii) /(xk)=/(x), x E G, 

k E K. For short, a function / on G will be said to be automorphic (with respect to 

F and K) if /(Txk) =/(x), 7 E F, x E G, k E K. We denote by ~(G/K) the algebra of dif- 

ferential operators on G that  commute with left translations by elements of G and 

right translations by elements of K. 

I t  is well known [1], [2] that  L2(F\G/K) is the orthogonal direct sum of subspaces 

H ~ { i}~=0 of the following description: (a) Each H i is finite dimensional. ( b )Each  func- 

tion in each H~ is infinitely differentiable. (c) On each Hi, the natural  action of each 

element DE~(G/K) is by scalar multiplication. Thus, given a DEO(G/K)and a 

function ~ E H i, we have D~ = hi(D)~, with h~(D) E C. The mapping h~ : ~(G/K) -+ C is 

obviously a homomorphism of ~(G/K). 

The role of the subspaces H~ in the harmonic analysis of L~(F\G/K)is analogous 

to the role played in the harmonic analysis of functions on a compact group by  the 

(1) Research suppor ted  part ial ly by  Nat ional  Science Founda t ion  gran t  GP-5713 and  a fellowship 

of the  Alfred P. Sloan foundat ion.  
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spaces of representative functions associated to the various irreducible representations 

of the group. At present not much specific information is known about the spaces H i. 

In  this paper we shall be interested in the dimensions of the spaces Hi, and 

under the assumption that  G is a complex group we will establish a result about the 

asymptotic behaviour of the dimensions of Hi in a sense which we shall now describe. 

Let eo be the Laplace-Beltrami operator of the symmetric space G/K with respect 

to its canonical G-invariant Riemannian structure, eo can be regarded as an element 

of O(G/K), so that co acts on each H i by the scalar h~(o~). I t  can be shown that 

hi(co) ~<0 and that the number of spaces H i for which I hi(r is less than any given 

positive real number r is finite. Assume then that  the spaces H i are so numbered 

that [h0(o))l ~<lhl(eo)l ~<lh2(eo)] ~< . . . .  and let us define the function N(r) for r~>0 by 

.N(r) = ~ dim Hi. (1.1) 
{i; Ihi(o~)l<~ r} 

I t  is the asymptotic behaviour of N(r) as r-+ ~ that will be investigated. The 

final result is contained in Theorem 5.9. I t  connects the asymptotic behaviour of 

N(r) with certain integrals of the Plancherel measure for spherical functions on G/K 

and with the volume of F\G/K. Since the Plancherel measure for G/K is known in 

terms of the root structure of (G, K), we get in this way a description of the asymp- 

totic behaviour of N(r) in terms of intrinsic objects involving G, K and F. 

Our method uses the analogue on G/K of the classical Gauss-Laplace function 

(4 gt) -�89 exp - x ~ / 4  t on the real line. One defines on G/K, the function gt(x), x E G/K, 

t > 0 as the fundamental solution of the heat equation eou - au/~t = 0 on G/K • [0, cr 

gt determines a convolution operator on L~(F\G/K) which turns out to be of trace 

class. Evaluation of the trace of this operator in two different ways yields an ana- 

logue of the classical theta-relation of Jacobi adapted to our context. (It will be ob- 

served in the course of the proof that  this procedure in our case is nothing more 

than an application of Mercer's theorem to our set up, and is incidentally also the 

prenatal version of Selberg's trace formula applied to this situation). 

I t  turns out that  when G is complex, the various terms in this formula can be 

analysed further, using various properties, of gt. This analysis, combined with the 

Plancherel theorem for spherical functions on G/K and standard Tauberian theorems 

then yields the desired result. I t  is to be noted that  no knowledge of the fine struc- 

ture of conjugacy classes of P is needed for our method to work. 

In  his address at the International Congress of Mathematicians in Stockholm, Gelfand 

announced a result similar to ours, without assuming that G is complex. [3, page 77]. 
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Gelfand's formulation is marginally inaccurate, as will be pointed out below, and in 

any event, no proof of his result has appeared in the last six years. In  the book 

[4] of Gelfand, Graev and Pyatetski-Shapiro, which appeared in 1966, Gelfand's an- 

nounced result of [3] is asserted to hold for G=SL(2,  It) and G=SL(2, C), and the 

proof of the result is formally reduced to establishing the existence of a family of 

functions on G which are to have assorted properties detailed on pages 118-119 of [4]. 

The existence of such functions is not proved in [4], even for the cases G = SL(2, R) 

or SL(2, C), nor has the proof appeared elsewhere, to our knowledge. For other G, it 

is even less obvious that the method of [4] works. In  view of these phenomena, 

Gelfand's announcement of this result must be regarded as less than final, and it 

seems to us that it would be useful to have an accurate formulation and complete 

proof of this result. This will be done below assuming that G is complex. Our method 

is different from the one aspired to in [4]. 

I t  follows from our method that N(r),,~Car ~/~ where n = d i m  G/K and Ca is a 

constant. If  F was assumed to act freely on G/K, i.e. if F\G/K wer~ a manifold, 

this much information could have heen gleaned from the paper of Minakshisundaram 

and Pleijel [5]. Indeed, were F\G/K a manifold, our result can be deduced from theirs 

used in conjunction with the Plancherel theorem for spherical functions on G. However, 

the elements of P which act with fixed points on G/K do seem to cause some prob- 

lems and their method does not seem to generalize to the case when such elements 

exist, and in any case it does not relate N(r) to the Plancherel measure of G/K. 
Thus our contribution here is in obtaining a relation between N(r) and the root struc- 

ture of G/K, and this without assuming that  F acts freely on G/K. Moreover, our 

method is group theoretical and does not involve the detailed estimates of Green's 

functions that  are used in [5]. 

The assumption that  G is complex is used at two points in this paper. First in 

showing that  the functions gt satisfy a condition of regular growth. (See condition 

(3.48) below.) Second, in the evaluation of the contributions to the trace formula by 

the elements of I ~ that act with fixed points on G/K. (See w 5.) We have every reason 

to believe that the condition of regular growth (3.48)is satisfied by gt in general, 

even if G is not complex. In  fact it can be shown to hold if rank G/K = 1. The proof 

will be sketched below. Unfortunately we do not know how to prove it in general. 

The second use of the hypothesis that  G is complex is likely to be more difficult to 

avoid, as will appear from our analysis below. Nevertheless, with the hope that  this 

hypothesis will be eventually removed, we shall expound matters without the assump- 

tion that G is complex except when these two steps are involved. 
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The paper  is organized as follows: w 2 is devoted to notation and preliminary in- 

formation. We briefly describe the Plancherel formula in it. w 3 defines the func- 

tions gt and deduces various properties of these functions. w 4 and w 5 are devoted 

to the proof of our result. In  w 6 are inserted some remarks about a possibility of 

realaxing the hypothesis on G and also to outlining possible generalizations of the 

result. 

We would like t9 express our thanks to Dr. S. Raghavan and to Dr. T. S. 

Bhanu-Murthy for helpful conversations regarding Selberg's formula. 

2. Preliminaries 

Let go, ~o be the Lie algebras of G, K respectively and let go=~0 +p0 be, the 

Cartan decomposition of go, so that  ~o and Po are orthogonal complements of one 

another  with respect to the Killing form B on go x ~0- B is negative definite on 

~0 • ~o and positive definite on P0 x Po. B induces a norm on P0 denoted b y ] ' ] .  The 

space G/K is endowed with the G-invariant Riemannian metric induced by the form 

B. We denote by  d(x, y) the distance between x, y E G/K in this metric. 

Let  Dr, be a maximal abelian subspace of Po. Extend ~)r, to a maximal abelian 

subalgebra ~o of go and put  D~~ = ~o N ~o. Let  ~, ~), ~, p, ~t, ~0 be the complexifications 

of ~o, ~o, ~o, Po, ~~ ~o- Then ~ is a Cartan subalgebra of g, and we have ~o= Dro| 

Let  A be the set of nonzero roots of g with respect to D. Fix compatible orderings 

on the duals of the real vector spaces [),o and ~*=iD~ .+  D~0. [6, p. 222.] Each root 

zr E A is real valued on D*, so we can order A by means of this ordering. Let A+ de- 

note the set of positive roots. Then we have A + = P +  U P  where P+={zcEA+;  g :~0 

on D~0} and P _ = { ~ E A + ;  ~ 0  on to,}. Let  ~ be the root space corresponding to 

in ~. Put  l t = ~ p +  g~ and l to=g o N n. Then ii 0 is a nilpotcnt subalgebra of ~0 and 

go=~o |  is the Iwasawa decomposition. Let  A0, N be the analytic subgroups 

of G which correspond to ~, ,  11. respectively. Then G = KA~N, and At, N are simply 

connected. Let l =  dim A~. For a EAo, put  log a for the unique element in ~0 such 

tha t  e x p l o g a = a .  Similarly for x E G put  H(x) for the unique element of ~,o such 

tha t  x = k e x p H ( x )  n with k E K ,  h E N .  

Let A o be the real dual of Dr, and A the complexification of A 0. A can be 

regarded as the dual of D~. Indeed we can identify A and D~ as follows: ~EA~-~ 

H~ E ~, where H~ is defined by B(H, H~) = 2(H) for each H E Dr. Put  <,~, g> = B(H~, H,) 

for 2 , # E A ,  and for yEA o put  ]vl=(v,v> �89 Evidently ]'] is a norm. Since A, A0 are 

thus identified with D~, t0~ respectively, any function on D~ or D~~ will be regarded as 

a function on A, A 0 under this identification. 
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As usual, we put  ~ = � 8 9  Then ~ is positive under the above ordering. 

Further,  since each ~E A is real on Dr. and purely imaginary on D~,, ~ has these prop- 

erties too. For any linear function v on Do (or on D) we shall denote by v. the re- 

striction of ~ to D~,- This notation will be employed often below. Let  Z={~,i~eP§ 
and let Z 0 = { ~ e Z l ~ / n C Z  for any integer n ~ l ) .  For :r let m~ be the number 

of elements of P+ whose restriction to DUo is ~. Clearly, ~).=�89 ~ z m ~ a .  

We put z =  1-I a (2.1) 
~E~o 

Clearly ~ is a polynomial function on ~,0, and 7e(H~)= ~Z~zo fl(Hx)= ~Ip~zo (fi, ~t>, ~tE A0. 

The Weyl group of (G, K) is the group W of linear tranformations of ~o induced 

by those elements of Ada(K ) which map ~),0 into itself. Here Ad o stands for the 

adjoint representation of G on g0. W is a finite group of linear transformations and 

preserves the Killing form B. W acts on A~ by exponentiation, on ~ by complexi- 

fication and on A0, A by duality. We also make it act on various functions on these 

spaces in the obvious way. 

Let  $(A0) (resp. $(D~o)) be the Schwartz space of C ~ functions on Ao (resp. D,.) 

which together with their derivatives decreuse rapidly at ~ ,  and by :7(Ao) (respec- 

tively y (D~,)) the subspaces of W-invariants in $(A0) ($(D~.)). These spaces are equipped 

with their usual topologies. 

A function / on G is said to be spherical if/(kxlc')=/(x); k , k ' eK ,  xEG. For any 

2EA, the function defined by 

%~(x)  = fgeXp ( i~- ~) H(xIc) dk (2.2) 

is called the elementary spherical /unction corresponding to 2. ~v~ satisfies (i) ~va (e)= 1 

(ii) ~ (kxlc') = ~v~ (x), k, k' E K, x E G and (iii) the functional equation ~ ~ (xky) dk = 

~v~ (x) ~ (y); x, y ~ G. Further,  each ~ is an eigenfunction of every operator D E O(G/K) 

and ~v~--~va,, if and only if ~ and ~t' belong to the same orbit of W on A. I t  is 

known that  if ~EA 0 then ~v~ is a positive definite function on G. For all these: 

matters see [6], [7] and [8]. 

Let  L~(K\G/K) be the space of spherical functions belonging to L~(G). For  

/ eLI (K\G/K)  we define the Fourier transform ](2) by 

f(~) = ~G/(X) Cf). (X -1)  dx, (2.3) 

for those ~t ~ A for which the integral converges absolutely. ~ is defined at least on 
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A 0 for each /ELI(K\G/K ) and indeed for all 2 E A  for which ~ is bounded.  I t  is 

obvious tha t  ] is invariant  under  W. For  /eLI(K\G/K) let (I) I be the funct ion on 

A ,  defined by  
/ *  

(I)i(a) = exp ~(log a)jg/(an )dn. (1) (2.4) 

Then it is known tha t  (PleLI(A,) and for 2EA0, ](2) equals the Eucl idean Fourier  

t ransform of (I)f i.e. 

](2) = jA@i(a) exp - i 2  (log a)da.  (2.5) 
f D  

We shall now describe the Plancherel theorem for spherical functions on G, due 

to Harish-Chandra.  Let  dm be the G-invariant  measure on G/K normalized by  the 

condition dx=dmdlc and let dX be the volume element on P0 determined by  the 

metric I" I on P0. Let  @(X) be the positive funct ion on P0 determined by  

f f(m)dm=f/(expX)O(X)~dX~ o (2.6) 

for each compact ly  supported continuous funct ion / on G/K. The space C(K\G/K) 
is defined as the set of functions /EC:C(G) satisfying the following conditions ( a ) a n d  

(b) viz.: (a) /(kxb')=/(x), x E G, k, k 'E  K. (b) For  each left invar iant  differential operator  

D on G and each integer r ~> 0, we have To, r ( / )<  c~ ; here ~D. r is the seminorm defined by  

TD.~(/) = s u p  (1 -t-IX/r) O(X)I(D/)  (x)l, (2.7) 
x ~ G  

where as usual x=/c exp X, X E P0. Note tha t  C ~ spherical functions of compact  

support  are contained in C(K\G/K). The space C(K\G/K) is topologized by  the 

seminorms T, given by  (2.7) with varying D and r. I t  is a Frechet  space. 

The space C(K\G/K) is precisely what  Har i sh-Chandra  calls I(G) in [9], [10]. 

I n  the tdrminology of [11], the space C(K\G/K) is just  the collection of functions in 

C((7) which are bi-invariant under  K,  i.e. /(kxk')=/(x). 
The Plancherel  theorem for spherical functions on G/K, as formulated and proved 

by  Har i sh-Chandra  in [9], [10] and [11] can now be s ta ted as follows. 

TH]~OR~M. C(K\G/K) is a commutative topological algebra under convolution. The 
Fourier trans/orm ] o] a/unction /E C (K\G/K) is de/ined /or 2 E Ao and belongs to Y(A0). 

(1) It  is known [9] that the Haar measures da, dn on A~I, N, can be so chosen that dx= 
exp 2 ~ (log a) dk da dn, where dk is the normalized Hair measure of K. This choice is implicitly 
made here and carried throughout. 
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The map l--->] is a topological isomorphism o/ the algebra C(K\G/K)  onto the algebra 

:/(Ao) (with pointwise operations and the Schwartz topology on Y(Ao) being understood). 

Moreover, there exists a [unction c(X) on A o such that c(~) -1 is a tempered distribution, 

]c(s,~)J=Jc(X)J /or s e W ,  and the inverse o/ the map [--->~ is given by 

l (x) = I w l-'JA. 1(4) ~ (x) i c(X) i -~ dX, 

where J W I is the order o I W. 

(2.9) 

I t  follows from this theorem that  if [ E C(K\G/K)  then 

foll(x)p d~=lwI 'fA If(;~)P le(~)pd~. (2.10) 

Since C(K\G/K)  is dense in L2(K\G/K),  the relation (2.10) can be extended in 

the usual way to all functions in L2(K\G/K), s o  that  the Fourier transform [ ~ f  can 

be viewed as a uni tary equivalence between L2(K\G/K)  and the t t i lbert  space of 

functions on A 0 which are invariant under W and are square integrable with respect 

to the measure ]c(it)]-2d~t. 

Harish-Chandra's proof of this theorem is contained in [9] and [10] except for 

two conjectures left unproved there. The first of these conjectures was proved by  

Gindikin and Karpelevi6 [12] who also obtained an explicit formula for c(2), described 

below. The second conjecture was proved recently in [11] by Harish-Chandra. The 

explicit formula for c(2) is as follows. 

c(~) = I ( i ~ ) / I ( q , ) ,  (2.11) 

(m~ ~ <~, ~>~ 
where I(v) = 1-I fl ~ ,  m~l~ . ~ 4 <:r a> ] '  y E A  (2.12) 

and fl( -, �9 ) is the classical beta function. Special cases of this formula had been proved 

earlier by  Harish-Chandra [9] and Bhanu-Murthy [13]. See also Helgason [7] for 

further explanation of these matters.  

When G is a complex group, a number  of simplifications occur. Since we shall 

be using these, it is necessary to spend some time on them. Suppose then tha t  ~o 

carries the complex structure J .  Then one knows in this case that  P0 = J~0. For ~o 

we can take the subalgebra ~)~~ so that  ~ , = J ~ , .  Under the multiplication 

( a + i b ) ~ e X = a X + b J X  go becomes a Lie algebra over C and ~G is a Caftan sub- 
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algebra. Let  A' by the set of nonzero roots of g0 with respect to ~0. For each ~ 6 A' 

let us define H~6 ~0 by B'(H,  H~)= ~(H) for all H 6 Do, where B' is the Killing form 

of go regarded as a Lie algebra over (~. Then it is known tha t  H~6 D0,, ~ is real on 

~o and purely imaginary on D~.. See for example [6, Chapter VI]. 

Now regarding go as a Lie algebra over R, we have of course the constructs 

g, D, A, A+, P+ etc. as earlier. Recall that  A was ordered by means of a basis of ~)*= 

iD~o + ~)0,, and that  ~)* and D~o were ordered compatibly. I f  ~ 6 A', then H~ 6 D0,, so the 

lexicographic ordering of ~)~. also can be used to order A'. Let  Q be the set of positive 

elements in A' under this ordering. Then the relation between the constructs A, A+, 

P + , P _ , A ' , Q  is known to be as follows [14, p. 513]. For ~ 6 A ' l e t  ~+ a n d ~  be the 

complex linear functions on D defined by  

~+(H)- -~(H)  ~ _ ( H ) = ~ ( H ) ;  H6D0. (2.13) 

Then A = (~+, ~_ I~ 6 A'} and A+ = {~+, ~_ I~ 6 Q}. Moreover, since each ~ 6 A' is complex 

linear on Do (when D0 is regarded as a complex space) and since Do= ~)0o § J~0o, it fol- 

lows tha t  r cannot vanish identically on D~.- Hence neither ~+ nor ~_ can be iden- 

tically zero on Do~ so P_ = O in the present case, and A+ = P+ = {~+, ~_ I~ 6 Q}. Now 

let //6~0o. Then ~(H) is real for a6A' so (2.13)shows that  o~+(H)=a_(H)=~(H)for  

H 6  D,o. Thus the set Z of restrictions to D0o of elements in P+ coincides in this case 

with the set of restrictions to ]~)0o of elements of Q. I t  is also obvious tha t  Z = ~:o in 

this case. Thus the function 7r of (2.1) is actually equal to I-L~Q g. (1) in this case. 

[See 9 ,  pp. 303-304.] 

The elementary spherical functions ~ have a simple expression in the complex 

case. Since H = K A o K  , it is enough to describe ~ on A,. The formula is 

c(s2) exp is~t (log a) 

5 �9 ~z(a) = ~ {e~log a _  e_~loga) , a6.40. (2.14) 
g e Q  

The function c(2) also" has the simple form given by  

c(2)=~(e.) /~(i2 ) t e a  o. (2.15) 

Continuing to assume that  G is complex, let A~ be the analytic subgroup of K 

corresponding to ~ro. Then A~ is a maximal torus of K. Let  A = A , A  o. Then A is 

a Cartan subgroup of G. A is connected and the exponential map maps Do onto A. 

Let  h 6 A  and let H6Do be such that  exp H = h .  I f  H' is any other element of Do 

(1) Recall that a.  denotes the restriction o[ ~e to ~)~. 
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such tha t  exp H ' =  h, then exp ( H - H ' ) =  e so that  H - H '  belongs to the unit lattice 

of K, viz. to the lattice {X E ~~ I a(X) E 2 ~ i Z for each ~ E A'}. I t  follows that  for any 

:r A' we can define a function ~ on A by ~ ( h ) = e x p  a(H) where H is any element 

of ~)o such that  exp H = h .  Now consider the functional Q=�89 ~ a +  ~. Since A+ = 

{~+,:r ]~EQ}, we see that  for HE~O, Q(H)=�89  Now, by (2.1a), 

~+(H)=~_(H)  for HEro , so ~(H) is real for HE~0. On the other hand, each aEA+ 

is purely imaginary on ~r,, so ~ is purely imaginary on ~~ I t  follows tha t  Q is zero 

on ~~ Hence we can unambiguously define a function ~Q on A by  ~q(h)=exp ~(H), 

h EA, where H is any  element of ~0 such tha t  exp H = h .  

Now let D(h) be the function on A defined by  

D(h) = ~q(h) I ]  (1 - ~(h)-X) .  (2.16) 

We claim that  in the present case, i.e. when G is complex, D(h) i s  real and 

nonnegative. To see this, pick HE~0 so tha t  exp H = h ;  then D ( h ) = e x p  ~ ( H ) ] - L ~ +  

( 1 -  e-~(m). Now, we know tha t  ~ = �89 ~ +  ~, so D(h) = ]-L~a+ (e �89 e �89 But  

A+ = {~+, ~ I~ e Q} so we have  

D(h) = ~ Q (e �89 ~+(')- e ~ ~+(m) (e �89 , (H) _ e-�89 ~_(m). (2.17) 

The definition of ~+ and ~_ shows that  ~ + ( H ) = g _ ( H )  for HE~0. Hence each 

term in the above product is real and nonnegative and hence D(h) is real and non- 

negative. We shall use this fact in w 5 below. 

3. The  Gauss  kerne l  gt 

The main tool we shall use below is a family of functions {gt, t >O}. which play 

on G/K, a role analogous to the Gaussian functions 

1 x 2 

4V4~gt exp 4t 

on the real line. We shall loosely call gt the Gauss kernel on G/K. Here we shall 

define and establish some properties of gt, and also get an integral representation 

for it. 

How should gt be defined? The classical function 

1 x 2 

V ~ t  exp 4t 
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is the fundamental  solution of the heat equation ~ u / ~ x ~ = ~ u / ~ t  on the line. One 

would thus hope to define gt as the fundamental  solution of the equation o~u = ~u/~t 

where ~o is the Laplaee-Beltrami operator of G/K.  One hopes of course tha t  gt 

would be a spherical function on G. Though it is not in general possible to write 

down gt explicitly, it is fairly easy to guess what its Fourier transform ought to be, 

Indeed, since it is known that  eoq~ = - ([212§ IQ. 12) CA, we know tha t  under the Fourier 

transform, the operator w goes over into multiplication by  - (1213 + l e* ]2). This makes 

it plausible that  if a spherical fundamental  solution gt of 

~U 
o n = - -  (3.1) 

~t 

~ 2  is being sought, then its Fourier transform gt( ) ought to satisfy 

d 
- (121~+ le, I ~) ~,(2) = ~/~,(2).  (3.2) 

or gt (4) = C exp - t([212 + ]Q, [2). (3.3) 

The constant C ought to be equal of 1, because formally, go should behave like 

the Haar  measure of K, so its Fourier transform should be identically 1. Thus a 

candidate for ~t(2) would be exp- t ( [212§  Now, this function is clearly in 

y(Ao) , and this suggests tha t  via t tarish-Chandra's  Plancherel t heorem gt would have 

the representation 

= IwI-lfodA exp -- t(121 s + I~o, I S) q~ (X) [ C(2)1-3 d2. (3.4) gt (=) 

The following proposition justifies all these speculations. Our procedure is to 

define gt by  (3.4), and then to prove tha t  it is indeed the desired fundamental  solu- 

tion of the heat equation eou =~u/~t. 

PROPOSITION 3.1. For each t > 0 ,  define the /unction gt(x) on G by 

g t ( x )  = [W[-lfA exp _ t([212+ [~), [2)q~,~ (x)[c(2)[-2 d2. (3.5) 

Then gt possesses the /ollowing properties: 

gt e C(K\G/K) 

~,(2) =exp -t(12J2 + [ e*["). 

(3.6) 

(3.7) 
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~gt gt(x) satis/ies w g t = ~  (3.8) 

gt-)eg~=gt+ ~ t,s >O. (3.9) 

(3.10) For any continuous spherical C :r /unction / with compact support in G, the 

/unction ut=/-)eg t satis/ies wut=~ut/~t , and /urther l]ut-]l]2~O as t->O. H/[[2 is the L~- 
norm o~ /. 

gt>~O, (3.11) 

f gt(x) dx= 1 each t >0. /or (3.12) 

Proo/. For each t > 0 ,  the function exp-t(l~l~+lo,  I ~) is in y(A0), so that  

the Planeherel theorem of w 2 implies that  gtEC(K\G/K) and also that  ~7t(2)= 

exp-t([~t[2+[~),[*),)~Ao. This proves (3.6), (3.7). Next, if we apply eo to g, as de- 

fined in (3.5), and carry out the differentiation under the integral sign, we see that  

(~og,) (~) = I wl-*f~o exp - z(121S + Iq, 1~) (~o~a) (x) I c(Z) I ~ d2 

- Iwl-~f~ (exp -t(l~l~+ le, l~))(l~l~+ I~,l ~) ~(~)l~(~)t-~, (3.13) 

where we used co~vx = -  (1~1~+ I~,1 ~) ~ ,  The differentiation under the integral is valid 

because exp -t([212+ I~,l 2) e J(Ao) and because (l~12+ I~,1 ~) Ic(~)1-2 is tempered. In 

a like manner we see that  

~-t gt(x)= (l~tl~-~- 1~)*12) exp -t(l~tl2 + I~,12) q~(x)[c(2) I-2 d)~ (3.14) 
0 

and this proves (3.8). Next, gt~eg~(2)=gt( )gs(2)=exp (t+s)([212+[e,[2)=~t+~(2). 

Since gteC(g\G/K), and the Planeherel theorem quoted in w guarantees that  /-~] 

is a topological isomorphism between C(K~G/K) and Y(Ao), this implies that  gt-)eg~ = 

gt+~, proving (3.9). Now let / be as described in (3.10). Then /eC(K\G/K); I t  is 

obvious because of (3.8) that  the function ut=/-)eg~ satisfies eout=~u~=~ut/~t. Now, 

/-)eat(2)=f(2)~t(2)=f(2 ) exp-t(]~t[2+ [e,]2). So, by the Plancherel theorem, we have 

]]/-~gt--/H 2= fG [(/-~t) (X)--/(X)[ 2 dx [Wl-lfAo[/(~)[2(gt(~ )- 1)2Ie(~)[ 2d~.  (3 .15)  

As t-~0, we see that  (~(~t)-1)2-~0 boundedly, and certainly S]/(~)l~lc(~)l-~d~ ~ .  
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So by Lebesgue's theorem, the integral on the right goes to zero as t-+ 0. This proves 

(3.10). 

The properties (3.6)-(3.10) are tantamount  to asserting that  gt is_the fundamental 

solution of the heat equation ~ou =~u/~t for the class of L2 spherical functions. I t  is 

well known that  fundamental solutions of such parabolic equations are non-negative. 

and have total integral equal to 1. See for example S. Ito [15] or Nelson [16]. This 

proves (3.11) and (3.12). 

The above proposition shows that  for each t >0,  the measure gt(x)dx is a non- 

negative spherical measure of total mass 1. Its Fourier-Stieltjes transform is clearly 

exp - t(l~tl s + I Q* 12) �9 Now, as t-+ 0, this transform approaches the function identically 

1 on A 0. This function is the Fourier-Stieltjes transform of the Haar  measure dk of K. 

By applying Theorem 4.2 of Gangolli [17], we see that  for each bounded continuous 

spherical function / on G, we have 

f /(x)gt(x)dx~f /(k)dk=/(e) (3.16) 

as t --~0. In particular, if V is any neighbourhood of e in G such that KVK= V, then 

fvjt(x)dx--->O t ~ 0 ,  (3.17) a s  

where V c is the complement of V. Of course, this is no more than to say that  gt is 

an approximate identity. This fact will be used decisively below. The reader who is 

familiar with the theory of parabolic equations will of course realize that  (3.9) can 

be considerably strengthened, but  we shall not need its strongest version. 

For future use, it will be necessary to know what the function (I)g t is (cf. w 2). 

Since ~t(2)= exp -t(1212+1•.12), we know from (2.5) that  the Euclidean Fourier trans- 

form of Og, is precisely exp--t(1212+1~,12). That  is 

fA (I)g, (a) exp i2(]og a) = exp t(12 da 13 + 
P 

(I)o, (a) = (4~t) -Z/2 exp -- (t [0.[2+ ]lOgdt a[2~'1 (3.18) I t  follows that  

Now let )~EA 0 and let ~0~ be the corresponding elementary spherical func t ion  

Then we see that  

fagt(x)q~(x)dx= f Oa,(a) exp i~(l~ a)da" 
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Since Og~ is of the above form, it follows easily tha t  this integral converges abso- 

lutely for all 4 e A  (and not  merely 4EA0). I t  is obviously a holomorphic funct ion 

of 4, and coincides with exp - t ( ( 4 ,  4} § (9*, 9*}) on A 0. Hence if follows tha t  for all 

4 E A we must  have 

fGgt( x ~ (X) dx = exp - t((4, 4} + (9.,  9*})- 

Now suppose 4 E A  is such tha t  q~ is positive definite. Then  ]cf~(x)]<~cfz(e)= 1 

for all x e G, and since gt ~> 0, we see tha t  ] ~a gt (x) cfz (x) dx] <~ So gt (x) dx = 1 for such 4. 

Moreover, since ~.(x-1)=~0z(x) and gt(x 1)=gt(x), we see tha t  Sagt(x)cf~(x)dx is real. 

Thus e x p - t ( ( 4 , 4 } + ( 9 , , 9 , } )  is real and ~< 1. Since this is t rue for each t > 0 ,  it 

follows tha t  (4, 4} ~ (9*, 9,} is real and ~> 0 for all 2 E A for which ~z is positive de- 

finite. We shall have to use this below. 

When  G is complex, we can compute  gt explicitly. Since G = K A , K ,  and gt is 

spherical, we only need to know gt on A~. 

P~Ol"OSITION 3.2. Let G be a complex group and suppose aEA~. Let q=number 

o/ elements in Q, n = dim G/K and l = dim A 0. Then 

gl(a) = C ( 4 t )  n/2 exp - t[9,] 2 ~ a ( l o g  a )  
~Q exp ~(log a) -- exp -- a(log a) 

where C = 2 q ~ z/2 7e(9.) 1. 

X e x p  - ( l l o g  a[2/4t), (3 .19)  

Proo/. Whether  or not  G is complex, it is known tha t  ]e(4)]2=e(4)c(-4) = 

e(s4)c(-s4), sEW. See [9]. When  G is complex, we use this in (2.14) to get 

~" C( - -  8 4 )  - 1  e x p  is4(log a) 
s E W  

~.  (a) ]c(4) l 2 = 1-[ (exp a(log a) exp - a(log a) )" 

Use this in (3.5) to get 

(3.20) 

gt(a) ~ (exp ~(log a )  - e x p  - a ( l o g  a ) )  
~EQ 

:lwl-ls~w f~ (exp-t(14[~+[Q,I ~) exp is4(log a) r ~d4.  (3.21) 
o 

On the right side the funct ion e x p -  t(t41 + l e, I 2) is invariant  under  each s e W, and 

also under  the subst i tut ion 4 - ~ -  4. Thus 
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g,(a) I~ (exp a(log a) - exp - a(log a)) 

= f oeXp - (t( + Iq, I + i (log a)) -1 d;~ 

= exp - t[Q.I 2 f exp - (t [;t12+ i;t(log a)) 7e(i2)d;t, 
=(~,) JA. (3.22) 

where we used (2.15) for  the  last  step. 

This integral  can be computed  by  using the theory  of Fourier  t rans forms  on 

Eucl idean spaces. We know t h a t  

fh0 exv  -- t] 21 ~ - i)~ (log a)d2 = (4 gt)-z/2 exp  - I log a 12/4 t. 

with l =  dim A 0 and  also t ha t  g ( i 2 ) =  l - I~o i2(Ha.). Hence  if Da is the differential  opera- 

tor  corresponding differentiat ion in the direction of Ha. ,  it follows tha t  

f h  (exp -- t I~l 2 -- i;t (log a)) z(i;t) d2= (4 ~ t)-z/2 (1-I - D a )  (exp - ([log a12/4t)). (3.23) 
o ac~Q 

I f  2 E A 0 and  D~ is the corresponding differential  operator ,  t hen  D~ exp - [log a I /4 t = 

- (2 t) -1 ~(log a) exp - Ilog a]2/4t. Hence  we get  

( I~ - D~) (exp - I  log a 12/4 t) = (2 t) -q ( 1-[ ~. (log a ) +  P( log a)) exp - ([ log a l~/4 t) 
r gEQ 

= (2 t) -q (~ (log a) + P(log a)) exp  - (I log a 12/4 t), (3.24) 

where P is a polynomial  funct ion on ~~ whose tota l  degree is less t han  t ha t  of ~. 

We claim t h a t  P ~ 0 .  To prove  this, recall t ha t  a funct ion ~o on ~vo is said to be 

skew if F(sH)=dets~o(H),  s E W ,  HED~,. I t  is known t h a t  z is skew and t h a t  

divides each skew polynomial  funct ion on ~0 [9]. A glance a t  (3.21) shows t h a t  the 

r ight  side of (3.21) is skew, so t h a t  the funct ion (z  (log a ) +  P( log a)) exp - (]log a[2/4t)  

mus t  be a skew funct ion of log a. Now e x p - ( l l o g a [ 2 / 4 t )  is invar ian t  under  W. 

Hence  ~ ( l o g a ) + P ( l o g  a) mus t  be skew, hence divisible by  z .  Therefore  P is divisible 

b y  ze, and being of to ta l  degree less t han  t h a t  of ~, we mus t  have  P------0. Thus 

( I-[ - D~) (exp - [log a[2/4t) = (2t) -q 7~ (log a) exp - (]log a]2/4t). (3.25) 

Pu t t ing  all this together ,  we see 
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exp -tl0,1 ~( log  a) Ilog al z 
gt(a) = 2  -z-q r ~ z 7 ~  ~ e~(log~--~-~(loga) • exp (3.26) 

~ Q  -- 4 t  

Recalling t ha t  l §  2 q =  n = dim G / K  we get  the  result  of the proposit ion.  

I n  the above proof,  we have  not  been ve ry  careful to distinguish be tween regular  

and  singular e lements  of ~)~0. We m a y  car ry  out  the computa t ion  assuming t h a t ' a  is 

regular,  and  then  ex tend  the above  formula  to all e lements  of G, observing t ha t  the  

r ight  side of (3.25) is C oo on A~. 

Le t  ~ be the project ion of G onto G/K.  Recall  t ha t  d(x, y) is the metr ic  on G/K.  

I t  is obvious t h a t  if xEG and x=kak '  with aEA~, then  d(~(x),~l(e))=d(~(a), 

~?(e)) = Ilog al, since d agrees on Av with the euclidean metr ic  on Av given b y  the  

Killing form, 

I )ROPOSITION 3.3. Let G be complex and let g~ be as above. Let co be the Laplace- 

Beltrami operator o/ G/K.  Then given any real number r > O, there exists t o > 0 such that 

/or all 0 < t ~ t  0 and all xEG /or which d(~/(x), ~(e))>~r we have (cog~)(x)>~O. 

Moreover, given any s >0 ,  there exists r o > 0 such that /or all 0 <  t ~ s  and /or all 

x e  G with d(~l(x), ~(e)) ~ro, we have (cogt) (x) >~ O. 

Proo/. Let  x E G, and  suppose x = kak', k, k' e K, a E A~. Then d(~(x), ~](e)) = I log a I. 

Fur ther ,  observe t ha t  cogt is a spherical function, so (cogt)(x)= (cogt)(a). Hence  we 

only need to prove  the proposi t ion for e lements  in A~. 

We know gt(a). On the o ther  hand,  we also know tha t  gt satisfies wg,=~gj~t.  

Different iat ing the expression for gt(a) with respect  to t we get  

(o)gt) (a) = (I log a ]2 _ 2 nt -- 4 t ~ I 0,12) 
4 t 2 gt(a) (3.27) 

f rom this expression the proposi t ion follows easily, since gt(a)>~ O. 

We now need to establish a p rope r ty  of gt which will be ve ry  useful in w167 4, 5. 

We first  need two lemmas.  

Le t  ~ be the project ion of G onto G / K  and let o be the point  ~](e)E G/K. For  

any  point  p E G / K  let r denote  the distance of p f rom o. I t  is obvious t ha t  r is a 

C ~162 funct ion on G / K - { o } .  

LEMMA 3.4. Let n = d i m  G/K.  I /  n > 2 ,  the /unction v = r  -~+~ is C~176 G / K -  

{o} and satis/ies cov <~0 on G / K - { o } .  I /  n = 2 then the /unction v = - l o g  r is C ~ on 

G / K - { o }  and satis/ies coy <~0 on G / K - { o } .  Here co is the Laplace-Beltrami operator 

o/ G/K.  
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Proo]. First suppose n > 2 .  I t  is clear that  v = r  n+2 is C ~ on G / K - { o } .  We 

shall compute o~v. 

Let mE G/K and let X be the unique element of P0 such that  Exp X = m, where 

Exp is the exponential mapping of P0 considered as the tangent space of the Rieman- 

nian manifold G/K. Let dm be the invariant Riemannian measure on G/K, and let 

] be any continuous function with compact support on G/K. Then one knows [18, 

p. 251] that the following formula holds 

f ~,K/(~,~)dm= f ~,o /(Exp X) det A x d X .  (3.28) 

Here dX is the Euclidean measure on P0 regarded as a Euclidean space with the 

Killing form B. A x is the endomorphism of p0-~Po given by 

A x =  ~ (Tx)J//(2]+ 1)! (3.29) 
y>~0 

T X being the restriction of (ad X) 2 to P0. [18, p. 251]. 

We can of course regard the Euclidean coordinates of X as giving a coordinate 

system on G/K, and it follows that in this coordinate system, the invariant measure 

dm is given by d e t A x d X .  Now for any Xep0  let Ix{=r and put f ~ = Z / { X {  for 

X 4 0 ,  so that X = r X .  Then ~: is a vector on the unit sphere in P0- I t  follows 

that 2~ can be described by angular coordinates 01 . . . . .  0n 1, so that r, 01 . . . .  ,0n-1 are 

the polar coordinates of X. Note that  X depends only on 01 . . . . .  0n 1. These polar 
coordinates of X, when regarded as a coordinate system on G/K are precisely the 

geodesic polar coordinates with pole at o E G/K. 

We shall compute the measure de tAx  dX in these coordinates. For any Y EOo, 

it is well known that (ad y)2 maps p 0 ~ 0  . and if Tr  is the restriction of (ad y)2 to 

P0, then Tr  is symmetric with respect to the Killing form B and has nonnegative 

eigenvalues. Now since X = r X  it is obvious that Tx=r2T2.  Let t~,t~.., t~ be the 

eigenvalues of T~. Then the eigenvalues of T x are r ~ t21 . . . . .  r ~ t~. Hence the eigen- 

values of A x are ~j~>0 (rt,)2s/(2~+ 1)! with i = l ,  . . . ,  n. This power series is just the 

power series of sinh rt,/rt,. Thus A x has these eigenvalues, and we find that det A x =  

1-[~-1 sinh rt,/rt~. Note that t~ are real, nonnegative. Since ti are defined by means 

of 2~, which depends only on 01 . . . . .  0n-l, they are functions only of 01 . . . . .  0n 1, On 

the other hand, it is clear that  d X = r  n ~drdO~,d02 ... dO~_l. If follows that in polar 

coordinates the invariant measure dm is given by rn-1 lrlnl~=l sinh rt~/rt~, dr dO1 ... don 1. 

Now let gij(r, 01 . . . .  ,0n-l) be the functions which define the components of the 

Riemannian metric tensor at the point whose coordinates are r, 0~, . . . ,  0n-~, and let 
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g= det g~j. g is positive. I t  is well known that  the Riemannian measure is given by 

l/g dr d01 ... don-1. Comparing this with the above, we get 

~gg = r ~ 1 i~i sinh rt i (3.30) 
~=1 rt~ 

Now, due to the classical lemma of Gauss, we know that  the geodesics emanating 

from o intersect the sphere of radius r around o at right angles. Hence it follows 

that  the metric form ds ~ of G / K  must have the expression 

n 1 
ds 2 = dr 2 + ~ g~j dO~ dOj (3.31) 

L]=I  

and thus the Laplace-Beltrami operator ~o is given in geodesic polar coordinates by 

e~ Or O r + ~ g ~  g"Vg , (3.32) 

where g~J is the inverse matrix of gir [18, p. 278]. 

Let us now apply co to the function v = r  -n+2. Then (3.32) shows that  

( d 2 10~/gg d) (r_~+2) (3.33) 
~ov= dr~r2+ Vg ~r dr 

Because (1/l/g)(9 m/g/Or)= (log Vg)O/~r and Vgg is given by (3.30) with tf depending 

only on the 01, . . . ,0~ 1, it is easy to compute (1/~/g)~l/gg/Or. The result is 

1 o __Z r Ug or t~ c o t h r t i - 1  + n - 1  (3.34) 

Using this in (3.33) there results 

o)v ~t~ coth rt~- . (3.35) 
1= 

When n =2,  a similar computation with v = -  log r results in 

m y = - -  ~,.~ t~ eothr t~-  . (3.36) 

11 - -682904  Aeta rnathematlea. I21. I m p r i m 6  le 4 d6eembre  1968. 
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Now i t  is easi ly  seen t h a t  coth  x -  1/x >~ 0 for x > 0. This  implies  t h a t  ~ov 4 0, 

(We have  s lurred over  the  poss ib i l i ty  t h a t  some of the  t~'s could be zero. Note  t h a t  

if one of t hem say  t 1 is zero a t  some po in t  r,  01, . . . ,  0~-1, t hen  a s imple con t inu i ty  

a r g u m e n t  can be used to  show t h a t  cove<0 a t  such a point . )  This  finishes the  proof  

of L e m m a  3.4. 

Le t  V be a connected  open set in G/K with  a smooth  b o u n d a r y  ~V, and  suppose  

t h a t  u, v are  C 2 funct ions  def ined on an  open ne ighbourhood  of V + ~V. 

A s t ra igh t fo rward  genera l iza t ion  of the  classical Green 's  formula  yields 

f v[v(o)u)- u(a~v) ] dP= fov (V ~ n -  U ~n) da, (3.37) 

where  ~/~n is d i f fe rent ia t ion  a long the  ou tw a rd  po in t ing  normal  to ~V (angles being 

under s tood  in the  sense of the  R i e m a n n i a n  g e o m e t r y  of G/K) da s tands  for the  ele- 

m e n t  of surface a rea  on ~V in the  R i e m a n n i a n  s t ruc tu re  on ~V which i t  inher i t s  f rom 

the  l~ iemannian  s t ruc ture  of G//K. Of course,  dp is the  R i e m a n n i a n  inva r i an t  measure  

of G/K. 
Moreover,  if we le t  v =  1 in this  fo rmula  we ge t  

v(WU) dp = for ~u 

These two formulas  will now be used. 

(3.38) 

LEMMA 3.5. Let / be a /unction o/ class C 2 defined on an open set U in G/K. 

Suppose that ] >~ 0 on U and that (co/) (y) ~> 0 /or each y E U, o) is the Laplace-Beltrami 

operator o/ G/K. Let m oE U be any point o/ U and suppose (~ > 0  is a real number 

such that the ball o/ radius (~ centred at m o is contained in U. Then there exists a con- 

stant C~ depending only on ~ and the dimension n o/ G/K such that 

? 
/ (mo) <~ C ~ |  / (m) dm, (3.39) 

j B  ~(mo) 

where Bo(mo)= {m] me G/K, d(mo, m)<.8}> and dm is the invariant measure on G/K. 

Proo/. L e t  o be the  po in t  ~(e) of G/K. Because  the  met r ic  d and  the  measure  

dm are  bo th  i nva r i an t  under  G, we can  assume for the  purpose  of this  l emma t h a t  

m 0 is the  po in t  o, and  ] is C z in a ne ighbourhood  U of o conta in ing the  bal l  of rad ius  

a round  o, a n d  satisfies / />0 ,  ~o/>/0 on U. F o r  a n y  r > 0  let  Br be the  bal l  of 
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radius r around o and S~ be the sphere of radius r around o. Thus S,=OB,. Let s, 
R be two numbers such that 0<  s<  R ~< b and let V be the annular region bounded 

by Ss and Sn. We shall now apply the formula (3.37) to V, by setting u=/  and 

v=r ~+2 in that  formula. (We assume n > 2 .  A similar argument with v = - l o g r  

works when n = 2). I t  is obvious that the boundary of V consists of SR and Se in 

opposed orientation. We get 

j "  or _ 1 ov] ol L[v(~l)-l(~v)]~,= (v~ on,a,+ L (v l~)d~,, an -  (3.40) 

fsR ~r daR= fBRe)/ dP = f vw/ dP + fB~ o/ dp" 

_ n - - 2  1 ( 0 t  [ t da,. (3.42) 

At each point of V 0 we have v=r -~+2 >~R -~+2 so the expression (v-  1/R n-2) (a)/) 
is 7> 0 by our hypothesis. Moreover, ] >~ 0, and eov ~0 by Lemma 3.4. Hence we see 

that  

, r ol < ~ (oi) ap + / az~-  ! a~ .  (3.43) 0 
R ~ ~ ~ e j s ~ r  e~:Y-1 j se 

This is true for each 0 <  e<  R. Now let e-+0. The first term on the right goes 

to zero as s ~ 0  because co/ is continuous and volume (B~)->0 as s ~ 0 .  The third 

-O/Or. Using all this we get 

L n f. Iv(co/) -/(ogv)] dp= ~ ~ ~r da~ + ~-_-~ / daa 

i (or  
~ -  2 - -  d a e -  - -  

e JsOr 

Now, {3.38) shows that  

n-2  
on_ ] / dae. (3.41) 

where dan is the surface element on SR, d ae on Se and 0/Sn is outward normal dif- 

ferentiation. Now, v is constant on Sa and S~, equals R -n+2 on S R, and equals e -n+u 

on S~. Further we know that geodesics emanuting from o intersect spheres around 

a t  right angles. This means that  on SR, 0/0n is just 0/0r. While, on S~, 0/0n is justG 



170 m GAMGOLLI 

term is majorized by  (sups~la//~r[)A(e)/e "-2 where A(e) is the area of S~. Now it is 

well known tha t  as e-+0, A(e)/e  ~-i approaches a finite limit ~ equal to the area of 

the unit  sphere in n-dimensional euclidean space. Since ] is of class C 2 it follows tha t  

(sups~ [~//~rl)A(e)/e~-2~O as e->0. Hence the third  term -~ 0. The four th  term ob- 

viously approaches ( n - 2 ) ~ / ( o )  as e ~ 0 .  The result  is 

n - 2 f s  ~ 0 < ~ ! d ~  - (n - 2) g2. /(o).  (3.44) 

I f  n=2,  we Can carry  out  the above analysis with v = -  log r and we get  the 

inequali ty 

l_ 
j s  ]daR-- ~2/(o).  (3.45) 0~R'< R 

Thus in a n y  event ,  we have 

1 ? 
/(o) <~ ~ ~ _ ~  | ]d~R. (3.46) 

n J S ~  

This holds for each R ~< 6. Since dm= daRdR we can integrate this inequali ty to get  

/(m) dm = /dcrRdR>~n/(o ) R n - l d R > ~ n  --/(o)  
n 

so our proposit ion follows with C~ = (~nS") 1 n. 

(3.47) 

For  any  xEG and (3>0 let U~(x)={x'EGid(~(x),~(x'))<~}. I t  is obvious tha t  

U~ is a compact  neighbourhood of x in G. 

1)~OI"OSITIO~ 3.6. Giver r > 0 ,  there exists t 0 > 0  and a constant C r > 0  such that 

/or each xEG /or which d(~(x),~(e))>~3r and /or each 0<t~<t0,  we have 

g~ (x) <~ Cr ~ gt (z) dz. (3.48) 
J Ur(x) 

Further, giVeR any t > 0 ,  there exist r > 0  and a constant C ~ > 0  such that /or each 

xEG /or which d(~(x),~7(e))>~3r we have 

g~(x) <<. C~ ~ gt(z) dz. (3.49) 
J Ur(x) 

Proof. Since gt(x/c)= gt(x), we can regard gt as a function, say  gt on G/K. Given 

v > 0 there exists t o > 0 such tha t  for all 0 < t ~< t 0, and all x E G with dO?(x), .q(e)) >~ 3 r, 
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one has (o)gt)(x)>~0. (Cf. the first half of Proposition 3.3.) Let  x be such a point 

of G and let mo=~7(x), o=~l(e). If  Br(mo) is the ball of radius r around m 0 in G/K, 
we see that  the function gt satisfies all the hypotheses of Lemma 3.5 in the ball 

Br(mo). Hence from the lemma, 

(fit (mo) <~ Cr fB,(m~ gt (m) dm. (3.50) 

Under the projection map, U,(x) projects onto Br(mo), and by  our convention, 

the Haar  measure dz of G is normalized by  the relation dz =dm dk. Finally, since gt 

is spherical, "we see tha t  

fB,(mo)gt(m) dm= f~,(~) qt(z) dz" 

Hence then we get (3.48). The second half of the proposition follows in the same way 

upon using the second half of Proposition 3.3. 

The reader who is familiar with Selberg's paper [1] will recognize tha t  the above 

proposition means that  gt satisfies the condition of regular growth of Selberg. The 

technique that  we have used above gives us a handy condition on a function /~> 0 

which will guarantee that  / satisfies a condition of regular growth, and should be 

useful in other contexts as well. 

4. The theta relation 

~Te begin by  making a few conventions. Suppose H is a closed unimodu]ar sub- 

group of G. Then the coset space H\G (or G/H) has a G-invariant measure, say d~. 

Let  / be a continuous function on G such tha t  / ( h x ) = / ( x ) , h 6 H ,  x6G.  Then / 

induces a continuous function [ on H\G in the obvious way. We shall have to con- 

sider integrals of the form ~H\G[(~)d~2 quite often. For typographical convenience, 

we shall omit the bars and write ~s \a / (x )  dx for this integral bearing in mind its 

precise meaning. Similar remarks apply to integrals of the form So/n/(x) dx, or 

Sh',\~/H, / (X) dx. 
In  the situation of w 1, when F is a discrete subgroup of G with compact quo- 

tient F\G, we shall normalize the invariant measure d~ on F\G in such a way tha t  

if / is a continuous function with compact support  on G, then Sr\a(~y~r/(~'x))d~,= 
So/(x) dx. 

The existence of the spaces H i described in the introduction is due to Tamagawa 

[2]. Briefly, the commutat ive convolution algebra LI(K\G/K ) acts on L~(F\G/K)via 
the representation /-~ T:, where T:g = g -)e /, g 6 L 2 (F\G/K). For  each / 6 L 1 (K\G/K), T: 
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turns out to be a compact operator. I t  follows that  L2(F\G/K ) can be decomposed 

H ~ into an orthogonal direct sum of finite dimensional subspaces { i}~=0 such that  each 

H~ is an eigenspace of each of the commuting family of compact operators {TI, 

]EL~(K\G/K)}. The restriction of any T r to H~ is a scalar equal to h~(/) say. Then 

for g E H~ and ] E L 1 (K\G/K) one has g-x- ] = h i (/) g. Choosing ] to be C ~ with compact 

support, one sees immediately that g must be C ~176 Thus all the functions in H~ are 

differentiable. Finally, it is not hard to show that  if a function g on G is an eigen- 

function of each operator T I then g must also be an eigenfunction of each D E O(G/K). 

I t  follows that  each D EO(G/K) acts on H i by a scalar, say h~(D), so that  Dg= 

h i (D) g, for g E H i, D E O(G/K). Now suppose that g E H i and g i 0. Choose x 0 so that 

g(xo)#O and define gr by 

~ (x) = g(xo) ~ |  g(xo kx) dk. (4.1) 
3~ 

Then gr is an elementary spherical function on G and g~ does not depend on the 

choice of x0, [2, p. 370]. Since g* is an integral of le/t translates of g, we see that 

if D is a left invariant differential operator on G, then (Dg)~=D(g~)~ But (Dg) * =  

(hi(D)g)~=hl(D)g ~ for DEI)(G/K). Thus g* is an eigenfunction of  each DEO(G/K) 

with eigenvalue hi(D). If  gl, g, are two functions in Hi, and ~ gl,  g~ the corresponding 

elementary spherical functions, then we have Dg~ = h, (D) g~, Dg~ = h i (D) g~ for D E O(G/K). 

Thus * gl ,  g2 have the same system of eigenvalues relative to O(G/K). Hence by [6, 

Corollary 7.3, p. 438] we have g~ =g~. Thus all nonzero g EH i give the same elemen- 

tary  spherical function g*. We shall label it ~0~, with 2iEA. Each ~ ,  is positive de- 

finite [2, p. 380, Proposition 10]. As a consequence let us note that the scalar h,(~o), 

which is equal to - ( (~i ,  2 i )+  (Q,, ~,~) (this being the eigenvalue of m applied to ~ , )  

must be nonpositive, in accordance with a result of w 3. All this identifies the spaces 

H, with the spaces which Tamagawa calls ~)~(o)) in [2, Theorem 2]. We shall say that 

the space H, lies over the elementary spherical function ~ .  

At this juncture it is not clear that  the function N(r) talked about in w 1 is 

finite valued. However, let us pretend that it is, and ask how one might investigate 

its asymptotic behaviour, as r-~ o~. The classical procedure is to investigate the be- 

haviour of its Laplace transform L(t) = ~ exp - tr dN(r) as t-> 0. One must first show 

that  L(t) exists. To see how this might be done, notice that since the measure dN(r) 

is a collection of point masses of size dim Hi at the points -hi(w) on the real axis, 

L(t) can be formally written as ~ 0  exp t hi(w) dim H i. If we show that this series 

converges, then we shall not only be able to show that  L(t) exists, but also, inci- 

dentally show that N(r) is finite valued, as we will find below. 
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The operator o) acts on H, as the scalar h, (w). Thus, formally, (exp t h~ (co)) dim H~ 

is the trace of the operator e t~' on Hi, and the sum ~, dim H, exp th~(w) is seen to 

be formally equal to the trace of e t~ on L, (F \G/K) .  This discussion suggests tha t  we 

should look to showing that  e TM exists in some sense and has a trace on L~(F\G/K).  

Now the formal operators e t~' exist in a precise way on L , ( K \ G / K )  and indeed form 

the semi-group associated with the heat equation eou=~u/~t on G/K.  Moreover, 

et~/=/-)egt for nice / in L~(K\G/K)  as we saw in w Thus e t~ is an integral opera- 

tor  whose kernel is just gt(y-~x). This raises the hope tha t  on L~(F\G/K)  we m a y  

be able to realize the analogous operator by  means of a kernel which is just g~(y-~x) 

"periodized" by  "wrapping i t"  around F \ G / K  along the orbits of F on G/K.  That  

is to say, by means of the kernel 

G~ (y, x) = Zr~ r gt (Y-~ ~,x). (4.2) 

In  what  follows, we shall justify this hope, by showing tha t  this last series converges 

and defines a continuous function Gt(y, x) on P \ G / K  x F \G/K.  The integral operator on 

L~ (F \G/K)  whose kernel is G t will then turn out to have all the properties tha t  were 

hoped for. Writing down the trace of this operator in two different ways then yields 

the theta  relation. 

LE~MA 4.1. Let P, Q be compact subsets o/ G and let r > 0  be a given real num- 

ber. There exist only a ]inite number o/ elements 7er such that d(~(y-~Tx),~(e))<~r 

/or some x E P, y e Q, 

Pro@ The condition d (~(y- 17x), ~ (e)) ~< r means tha t  y- 17x E Ur (e) = {x' ] d(~)(x'), 

~(e)) <~ r} so tha t  ~, E y Ur(e) x -1~  QUr(e) p-1.  This last set is compact, so it contains only 

a finite number of elements of F. I t  follows that  at  most this finite number  of ele- 

ments of F can satisfy the condition d(~(y-17x), ~(e))<~r for some xEP,  yEQ. 

LEMMA 4.2. Let P be a compact subset o[ G and let ~ > 0  be a given real number. 

Then there exists an integer M depending only on P,(~, such that /or any xEP,  y~G,  

at most M o/ the sets {Uo(y-lyx),  7EF}  can have a nonempty intersection. 

Pro@ Fix x E P, y E G and suppose that  m (possibly infinite) of the sets { U~ (y-17x), 
--1 rn 7EP}  have a nonempty  intersection. Let  {U~(y 7~x)t~l be these sets and suppose z 

belongs to their intersection. For any  1 ~< i<~m, we have 

d(~(y-17~x),~(y 171x))4d(~(y-17~x),~(z))+d(~(y-~71x),~(z))<.~+5<~2& (4.3) 

So, d (~(x -1 ~17~x), ~ (e)) = d (~](y- 1 ~,i x), ~ (y-171X)) 4 2 (~. (4.4) 
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This means that x- 17117~ x E U~ (e), so 711 ~ E x U~ (e) x- 1 c PU2~ (e) P-1. This last 

set is compact and can contain at most a finite number, say M, of elements of F. 

Thus for each i, 7117i must be one of these M elements. This proves that  m ~ M  

and the lemma is proved. 

P~OPOSITION 4.3. For any t > 0 ,  let gt be the Gauss kernel de/ined in ~ 3. Then the 

series ~r ~ r gt (Y-1 ~x) converges uni/ormly /or x, y E G, to a continuous /un ~_tion G t (y, x) 

on G• 

Proo/. Since F\G is compact we can find a compact subset P of G such that 

O r e r  7P  = G. I t  is enough to show that  the series converges uniformly for (x, y) E P • P. 

Because of Proposition 3.3, there is an r > 0 such that if dO?(x), ~7(e)) >~ r then (wgt) (x) >~ O. 

Fix such an r > 0. There is a finite subset Fr of F such that for ~ E F -  Fr, we have 

d(~(y-17x),~7(e))>~3r for ( x , y ) E P •  by Lemma 4.1. We only need to show that 

~r_F,g~(y-lTx) converges uniformly. Now, for 7 E F - F r ,  we have, by (3.48) of Pro- 

1)osition 3.6, 

(Y- ' 7x) <" C" J u,(~-' r~) gt (z) dz. (4.5) 
i )  

gt 

Also, because of Lemma 4.2, for any ( x , y ) E P •  the sets (U~(y- 'Tx) ,TsF}  

cover G at most M times. Hence 

gt(y-iTx) ~ CrM ~g t ( z )  dz 
~F-Fr J~ 

and since ~Ggt(z)dz=l, we have proved that  ~Ergt(y-17x)  converges uniformly on 

G • G to a continuous function Gt(y, x). 

I t  is obvious that Gt(Tyk, 7'xk') = Gt(y, x) for any (x, y) C G • G, (7, 7') E P • F, and 

(k, k') E K • K. Thus Gt may be regarded as a continuous function on F\G/K • F\G/K. 
Let Rt be the integral operator on L 2 (F\G/K) whose kernel is Gt (y, x). Thus, given 

/ E L2 (F\G/K), 

= J r\a/~ / (y) G~ (y, x) dy. (4.6) (R~/) (x) 

Since Gt(y, x) is continuous and F \ G / K  is compact, it is clear that  Rt has ~inite trace 

equal to ~r\c/KGt(x, x)dx. On the other hand, we can identify the eigenfunctions and 

the eigenvalues of R~ directly. 

PaOPOS~TXON 4.4. Let /EH~, and let q~, ~ A  be the elementary spherical /unc- 

tion that underlies H~. Then R~/= (exp - t(<)~, ~t~> + <~,, ~,>))/. 
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P r o o f .  

l(y)a (y,x)d =fr l(y) 5 g (ylrx) y 

f , ix/(y ) gt(y- l x) dy= f /(y) gt(y-l x) dy= (f -x-gt) (X) = ( Y j )  (x). (4.7) 

Now, we know t h a t  since gtELI(K\G/K), the  opera to r  Tg, acts b y  some scalar 

on H~. Hence  we mus t  have  R~/=Tg,/=c~/ for some scalar ct. Le t  us ident ify this 

scalar. To do this, m a p  each side of the equat ion Tg, f=ci/ by  the m a p  / ~ / ~  de- 

scribed above.  Since the m a p  /--->]~ is defined b y  averaging left t rans la tes  of /, it is 

obvious t h a t  it commutes  wi th  right convolut ion b y  any  function. Thus (TgJ) ~= 
(/-)r So we have  /~->egt=ci] ~. Now /~ is exac t ly  cf~, so c~ is to be de- 

t e rmined  by  ~ ~- gt = c~ ~ .  Let  us compute  ~ ~e gt- 

(~,~+g~)(x)=f~,(xY-~)g~(y)dy=f~fJ~,(xky-1)dkg~(Y)dY 
f w,(y g (y) = f (y') g (y)dy 

= ~ (x) gt (~t~) = (exp - t ((~t~, ~,> + <~., ~.>)) ~a, (x). (4.8) 

Here  we used, successively, the  following facts: gt(yk)=gt(y), ~q~x(xky)dk= 
qa (x) ~ (y), and  ff (2) = exp  - t((2, 2> + (e*, q*>)- 

This computa t ion  shows c~ = exp  - (t<2~, 2~> + <~., ~.>). 

COROLLARY 4.5. The series ~ o  exp the(w) dim H~ converges. 

Proo/. h~(w)=-(()~,)~>+~.,~.>). Thus  the  series is just  the trace of R t on 

Lz(F\G/K). Since this opera to r  has finite t race,  the  series mus t  converge.  

I t  follows immedia te ly  f rom the convergence of this series t ha t  ]h~(eo)] can be 

less t h a n  a given r > 0 for only finitely m a n y  indices i. We can thus assume the spaces 

H~ so ar ranged t h a t  O=[h0(w)[<[hl(tO)[~< . . . .  and t h a t  for any  p, @ H,  has  finite 

dimension. Clearly, this means  t ha t  IV(r) is finite valued.  

Finally,  let for each i, {~}~u~ ~ be an or thonormal  basis of H~. Then  we m a y  

app ly  Mercer 's  theorem to the  posit ive kernel  Gt(y , x) on F\G/K • F\G/K to get 

ddm H i 
G~(y,x)= ~ 5 exp  th~(o~)q~,~(x) ~ (y )  

~=0 i=0 

and this expansion converges uniformly.  



176 R. GA/~GOLLI 

The above results can be summarized as follows. 

PROPOSITION 4.6. For any r > 0 ,  there exist only a /inite number o/ indices i 

such that I h~(eo)l~<r. The /unction N(r) de/ined by 

N(r) = ~ dim H~ (4.9) 
{L I~i(~)l~<r} 

is /inite valued. For any t > 0 ,  the series ~ ,erg t (y - l  $x) converges uni/ormly /or (x ,y)E 

G • G to a continuous /unction Gt(y, x). Gt(y, x) admits the expansion 

dim H~ 
Gt(y,x)= ~ ~ exp thi(e))qJ~j(x)q~j(y), (4.10) 

~=O j=O 

where { ~ j } ~  g~ is an orthonormal basis o/ H~. The Laplace trans/orm L(t) o/ N(r), L(t) = 

~o e x p -  tr  dN(r) exists /or each t >0,  and indeed, 

L(t) = Z (exp t hi (co)) dim H, = Gt (x, x) dx = 
~=0 \~/~: \u/K 

gt(x lTx) dx. (4.11) 
~,eF 

The analogue of formula (4.11) when applied to G = R e a l  line, r = z  yields pre- 

cisely Jacobi 's  theta relation for the function 

1 X 2 

exp 4t" 

5. Asymptotic behaviour of N(r) 

We must  s tudy the behaviour of L(t) as t-~0. 

Let  r c  = F (7 c where C is the centre of G. Since C is finite and contained in K, Fe 

is finite and contained in K. Let s be the order of rc .  Next,  let FE be the set of 

those elements in F -  Fc whose action on G/K leaves fixed some point of G/K. 

I f  ~ E Fs and y '  is any element of F which is conjugate in G to ~, then ~' E FE. 

For, if ~'=x~x -1 and if ~, leaves yK fixed, then ~' leaves xyK fixed. Thus l~e is a 

union of classes of G-conjugate elements of r .  

Finally let FH be the complement in r of the union of r e  and FE. Clearly FH 

is also a union of classes of G-conjugate elements in F. Further,  no element of F~ 

can have a fixed point on G/K. 

Let A -- {x- '~x I x E G, y E r~). 

L~M~A 5.1. A is closed, and K N A is empty. 
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Proo/. Suppose xjE G, ~,jE FH are such that x~l?jxj converges in G to z say. Since 

F \G is compact, we can assume by passing to a subsequence that  there exist fl~ C F such 

that  fljxj converges in G to an element x E G. Then fljTj~/1 = (fljxj) xil~jxj(fijxj) -1-~ xzx -1. 

:But ~ E  FH, and fl~yjfl 1 is an element in F which is conjugate to ~j, so fl~yjflilE FH, as 

was remarked above. Since F is discrete, it follows that xzx 1EF~. Thus z=x lyx 
for some ~EPH, and so z EA, and A is closed. 

To prove the second part, suppose an element kEK is also in A. Then ]c=x-l~x 
for some xEG and some ~GFH. Then 7=xlcx -1. I t  is obvious that ~ leaves fixed the 

element xK of G/K. This contradicts ? E FH. 

COROLLAEY 5.2. There exists r > 0  such that U s r ( e  ) N A=O. 

Proo/. Since K is compact, A is closed, and K N A is empty, there is an open 

set B in G which contains K, and misses A. Then ~(B) is open in G/K, contains 

~](e) and misses ~(A). Since G/K carries the topology of the metric d, it follows that  

there is an r > 0, such that the ball of radius 3r around ~(e) in G/K is contained in 

~(B), and therefore is disjoint from ~(A). This means exactly that Usa(e)N A =0. 

Let F be a fundamental domain for F in G/K. The expression 

fr ~ gt(x-l~x) dx 
\G[K r~F 

on the right side of (4.11) can then be written 

~gt  (x- 1 yx) dx. (5.1) 
7eP J~ 

(Since g~ >~ 0 and the series converges uniformly on compact subsets of G • G, there is 

no problem about any rearrangements that  we shall do.) We break up this sum into 

three parts, over Fc, FE, l~g respectively. 

Let Jc ( t )=  ~v~r~, ~Pgt(x-ly x) dx, and let JE(t), Jg(t) be defined similarly. We shall 

now estimate each of these. 

Jc(t) is simple to compute. For any ~EFc, gt(x-l~x)=gt(~) since y commutes 

with x, and gt(~)=gt(e) since ~ e K  and gt is spherical. Thus each term in Jc(t) is 

equal to gt (e) volume (F). Hence Jc (t) = s gt (e) volume (F), where s = order of Fc. 

L~MMx 5.3. JH(t)--->O as t~O. 

Proo]. Let P be a compact in G which covers F under the projection map of G 

onto G/K. Then, since gt~> 0, it is clear that  
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JH(t)<- ~ f g~(x-~x) dx. (5.2) 

Now choose r > 0  such tha t  U3~(e)N A = O as in Corollary 5.2. Then choose t o so 

small tha t  for t ~< to we have (~ogt) (x) .>i 0 whenever  d(~(x), ~(e)) >~ r according to Propo- 

sition 3.3. Let  7 6 FH and x 6 P .  Then x-lTx 6 A, and since A N Ua~ (e) = O, we see tha t  

(cogs) (y)~>0 whenever  yE U~(x-lTx). Thus by  Proposit ion 3.6, wee see tha t  for xEP, 

gt(x-l~2x) < C r f , g~(z) dz. (5.3) 
J Ur(x- ~,x) 

Now, if y6 Ur(x-17x), then  d(~(y), ~(x l~x))<.r so, 

d(~(y), ~(e)) ~> d(~(x-l~x), ~(e))- d(~(y), ~i(x-~x) ) 

> / 3 r -  r = 2r, because Ua~ (e)/1 A = ~ .  (5.4) 

Hence yEUr(x-lyx)=~y~Ur(e). So the union of the sets {U~(x lyx), xEP, yEFH} is 

contained in the complement  of U,(e). Further ,  there exists an  integer M so tha t  ~or 

xEP, at  most  M of the sets {U~(x-lyx),?EFH} can have a n o n e m p t y  intersection. 

Therefore for x 6 P 

Z gt(x-l~ 2x) <<" OrMI-  gt(Z) dz. (5.5) 
~,�9 J G Ur(e) 

Now, Ur(e) is a spherical neighbourhood of e in G, so by  (3.17), we see tha t  as t -+0 

the r ight side of (5.5) goes to 0. Thus the integrand in ~p~rBgt(x-iyx)dx goes to 

zero uniformly on P as t-~0. This shows tha t  J~(t)~O as tha t  t-~0. 

Remark. I t  can be shown by  more delicate considerations tha t  JH(t)goes to zero 

as t -~0 like e x p - ( c / t )  where c is a constant .  

We now have to deal with the term Js( t)  and s tudy  its behaviour  as t-~0. 

Following Selberg [1]  we m a y  write J~(t) as 

J~(t)= : ~ ~ gt(x-lyx)dx = : vol(Fv\Gr) ~ gt(x-lyx)d~r (5.6) 
{~'}=F~ ,)p re{y} {y}cFz JGy\G 

where {~} stands for the conjugacy class of 7 in F, F ,  is the centralizer of y in F, 

G r is the centralizer of y in G. The sum ~{r}=r, means tha t  the summat ion  is over 

those G-conjugacy classes of ~ which are contained in F~. 

d ~  stands for the invariant  measure on Gy\G, so normalized t h a t  d~ r dx~ =dx 
where dx, is a H a a r  measure on G~. The volume of Fv\G v is to be computed  in the 
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measure on Fr\Gv induced by  this Haar  measure on G r. I t  is clear tha t  the choice 

of this Haar  measure on G~ does not effect the product 

vol (F r \G , ) f  gt(x-lyx) ds 
j Gr\ G 

even though it may  effect each factor in this product. Note also that ,  the integral 

~ar\agt(x-17x)d~r depends only on the G-conjugacy class of ? i.e. only on {?}. We 

saw above tha t  1~ is a union of classes of elements which are conjugate in G. The 

following proposition is well known, but  we include a proof, as it is not readily avail- 

able in the literature. 

I:)ROPOSITIO~T 5.4. FL. is a /inite union o/ classes o/ elements which are conju- 

gate in G. 

Proo/. Let  ? 6 F E  and suppose ? leaves x- IK  fixed. T h e n  2~]x -1 leaves K fixed, 

so x~x - i6K .  Let F ,  be the G-conjugacy class of ?, F r =  U xeo {x-i?x}. Then Fv inter- 

sects K. Thus the G-conjugacy class of each element ? in FE intersects K. The propo- 

sition is therefore evidently contained in the following lemma. 

LEMMA 5.5. Let G be a locally compact separable group and suppose F is a discrete 

subgroup in G such that F\G is compact. Let K be a compact subset o/ G. Then only 

finitely many G-conjugacy classes o/ elements o/ F can intersect K. 

Proo/. Suppose that  F x is the G-conjugacy class of an element x 6 G. If  the lemma 

were false, there exists a sequence of elements 7'n 6 F such that  for each n, Fr ,  =t = Frj for 

any j <  n and Fv, f3 K +  •. Let  Kn 6 Fr ,  f~ K. Since K is compact,  we can assume, by  

passing to a subsequence if necessary, that  k n converges to an element k~r Now kn 6 Ft , ,  

so k~=y~ly~y~ for some yn6G. Because F\G is compact,  we can assume, by passing 

to a subsequence ff necessary, that  there exist fl, 6 F  such tha t  flnya converges in G, 

to an element y say. Then fln7~fl~l=(flny~)y~lT, y~(flny~)-l-+yk~y -1. But  f l ,7~ f l~6F 

and 1 ~ is discrete. So the sequence fl~?nfl; 1 is eventually constant, i.e. for n > a  large 

n o, flnTnfi~=fl~+~?~+~fi~l+i. However, this means that  Fr=Fv,+~ for n > n  o. This con- 

tradicts the choice of F,n, and the proposition is proved. 

Returning to Js(t), the proposition above implies tha t  J~(t) is a finite sum of 

terms of the type 

vol (Fv\Gr)J%\v gt (x- 17x ) d~y. 

We shall now compute each term of this sum. 



1 8 0  1{. GANGOLLI 

Fix ~,EI~E. We wish to compute ~o:,\Ggt(x-17x)d~v. We shall utilize the invarianV 

integral on G which was introduced by Harish-Chandra. First note that  ~%\G gt (X-1FX)d~ r 

depends only on the G-conjugacy class of 7, so in computing this, we may  replace y 

by  any  element conjugate to 7 in G. 

I f  7EI~E leaves the point xK of G/K fixed, then x-17x leaves the point K of 

G/K fixed. Hence x-17xEK. Thus each element ~, of FE is conjugate in G to some 

element of K. Hence we can assume tha t  7 E K  when computing ~%\ag~(x-17x). Now 
let A, be the analytic subgroup of K whose Lie algebra is ~r,. Then because G is 

complex, we see that  At is a maximal torus of K, and the subgroup A =A~A~ is 

Cartan subgroup of G whose Lie algebra is just ~)0- Note that  A is connected. I t  is 

well known that  any  element in K is K-conjugate to an element of At. Hence we  

may  further assume that  7eA~. Thus our problem is to compute ~%\~gt(x-17x)d~ r 
for an element 7EAt  such tha t  7 is not in the centre of G. 

Let  hEA.  Pu t  h = h  h+ with h_EAt,  h+EAv. 

Let  H be any element in Do such that  exp H = h. Then H = H_ + H+ with H E ~)~,, 

H+ Eh~.. 
Let / be any function in C(K\G/K). Harish-Chandra has shown tha t  if h is ~. 

regular element of A and /eC(K\G/K) then Sah\a/(x-lhx) dx converges [11]. (Harish- 

Chandra makes this assertion for the space C(G) defined in [11]. However, it is clear that~ 

C(K\G/K) is just the space of those functions in C(G) which are biinvariant under K).  

For a regular element h EA, Ga has A as its connected component of the identity, 

and A has finite index in G a. In  the following we will regard the case Ga = A. This modi- 

fies the integrals involved only by  a constant factor and does not effect the results. (1) 

The integral in question will now be SA\cl(x-lhx)dx. Such integrals occur frequently. 

For example it is known [14, pp. 502, 503] tha t  

f a\G/(x-lhx) dx= ~xN/(k-'n-l hnk) d]c dn. (5.7) 

Since / is biinvariant under K, we see that  

~\J(x-~hx)dx= ~l(n lhn)dn. (5.8) 

Now for any  regular h E A, the mapping n-+ h ~ n-~hn of N to Z r is a topological 

isomorphism, whose Jacobian can be computed. See for example [6, Chapter X, Propo- 

sition 1.13]. Using this we see that  

(1) I am grateful to Dr. Garth Warner for bringing this to my attention. 
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fNl(n-l n)an=l (5.9) 
~r162 

Now since P+ = A+ here, it is clear tha t  

1-[ (1 - ~ (h)  -1) = exp - e(H) D(h); ]exp - e(H)I = exp - e(g+)  
aeeP+ 

since ~(H_) is purely imaginary. See w Moreover ]D(h)[=D(h) by our remarks a t  

the end of w Hence 

exp ~(log h+)fJ(h+ n) dn = D(h) -1 (I)i(h+), (5.10) D(h) -1 

where for the last step but one we used tha t  h_ E K and /(/cx)=/(x) for k E K, x E G. 

I t  follows tha t  for regular h, 

f A\ o/(x- lhx) d~2h = O r (h+ ). (5.11) D(h) 

Now the left side of this equation is precisely what  Harish-Chandra calls Fi(h ) 
in [11], [19] (Note that  in the present case each root ~ is complex in ~he terminology 

of [19] so tha t  sR(h)= 1 in the notation of [19]). Further,  it follows from [19, Lemma 40] 

that  in the present case, Ff  is a C ~~ function on A. (Since each root in the present 

case is complex, so tha t  the set of singu!ar imaginary roots is empty . )Since  the func- 

tion Of(h+) is obviously a C ~ function of h, and it agrees with Ff  on the regular 

elements we have the result that  .Fr(h)= Of(h+) in the present case. 

Now suppose h is not regular and h does not lie in the centre of G. Let  30 be 

the centralizer of h in ~0. Then $0 is reductive in ~0 and ~0 is a Cartan subalgebra 

of ~0. As in [11], let P~. be the set of positive roots of 30 with respect to Do (the 

ordering being understood to be the one induced by  the ordering of ~)0 fixed before). 

I t  is obvious tha t  P~.={o:_, (z+IaEQ, $~(h)= 1}, so the cardinality of P~~ is even, equal 

to 2q(h) say. Mso, since h is not central in G, we must  have P~o~P+. So, since 2q 

is the cardinality of P+~ we have q(h) < q. We know tha t  via the Cartan-Killing form, 

can be identified with its dual. For  any root a, let H~ be the element of t} which 

corresponds to a under this identification. Then H~ E ~)~~ + i~r~ In  the usual manner,  

we can regard /J~ as a differential operator on G. Let  ~r~ be the differential operator 

YI~ee~0H~ and let P,,/~~ be the complement of P~~ in P+. Then $~(h)4=1 for any 

o~EPoo/~o. According to [11, Lemma 28], we have 
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(~3~)  (h) =cor ) I-I (1-  r d~a, (5.12) 

for all ]~C(K\G/K) (Note that  C(K\G/K)~C(G)),  where c o is a constant # 0. Thus 

f ~ \ J ( x - l h x )  (co~e(h) (I (~o F/)(h). (5.13) dx Vi ~(h) - l ) )  -1 

Now, H~ E ~,0 + i~t,. Let  B ,  = H~+ + i l l ;  with H + E ~)~,, B~ fi ~,. We have seen above that  

for f~C(K\G/K) ,  we get F~(h)= (I)t(h+). I t  follows that  the differential operator H~ 

annihilates ~I. Hence (X~oF~)(h)=(~r/r where ~+  is the differential operator 

~ep~0 ~. Therefore, 

f~ l(z-~hx) dZ~ = (%tAb) 1~ (1 - r -~ ( ~ O ~ )  (h+). (5.14) 

Let us note that this formula is valid whether h is regular or singular. If h is 

regular, we have of course that  3o =~)o, so P~, is empty, and P~~ =P + .  The differ- 

ential operator ~r~0 is to be construed as 1 in this case. 

We are interested in the value of the left side of (5.14) with h equal to an 

element belonging to a conjugacy class in FE. So put  h=-7 in (5.14). We have seen 

that  we may assume that  ~ A t .  Then ~+=e,  and we see from (5.14) that  in order 

to compute ~Gv\a/(x-l~x)d~:,, it would be necessary to compute (~r[(I)r)(e). Indeed 

%\ol(x-lyz) a~  = (coCAs,) VI (1-  ~(~)-~))-~ (e). (5.15) 

Now set [ = qt in this, as we may do because gt E C(K\G/K). We shall now com- 

pute (w~(I)o~) (e). We have seen that  for hqA~ with e x p H = h ,  Hf i~0,  we have 

(I)o, (h) = (4~t) -t/2 (exp - t }e* 12) exp - (I H 1214t). (5.16) 

Now, if H a is an element of ~0~ regarded as a differential operator, it is obvious 

that  (H0) (exp - [H[~/dt) = - i t  <H0, H> exp - (IHIVdt). Using this inductively, we see 

that  ( ~ r ~ ) ( e x p -  I H[~/dt) is of the form 

(P~ (H) .  P2 (H) L)  - - ~ - ~  ~ +  "'" + Y" exp - (IH[Vdt) (5.17) 

where 2% (1) is the cardinality of P~~ PI(H) . . . .  Pr are polynomial functions on 

(1) Thus q0 depends on ~. 
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~o without  constant  te rm and L is a constant .  Setting H = 0  in this expression we 

see tha t  (~r+)(exp -]HI2/4t)lH=O equals L i t  q., with L a constant.  L depends only on 

P~o in fact. Note tha t  all this is valid whether  7 is regular or not.  I f  7 is regular,  

q0=0.  Since (1)g~ is given by  (5.16), it is obvious tha t  

(~+ (I)g,) (e) = (4~t) z/2 (exp - t [~, [2) Lt q' = L(4~) z/2 t~ (~+2q0)/2 exp - t [~. 12. 

Recall tha t  ~, is not  central  in G, so tha t  q0 < q, where 2 q =  cardinali ty of P+.  

Therefore l + 2 q o < l + 2 7 = n = d i m G / K .  I t  follows tha t  limt_.0tn/2(z~/(I)gt)(e)=0. I n  

view of (5.15), this implies t ha t  limt_~0t n12 SGv\Ggt(X-IFX)d~ r = 0 whenever  7 is a non- 

central element of G lying in A~. whether  ~ is regular or not.  

We remarked above tha t  JE(t) is a /inite sum of terms of the type  

and tha t  for the evaluat ion of the integrals appearing here, it is enough to assume 

tha t  ~EA~; since every  element of F~ is noncentral  in G, the above considerations 

imply tha t  each term of JE(t) is o(t -~12) as t ~ 0 .  Since there are only finitely m a n y  

such terms in JE(t), we have proved the following result. 

PROPOSITI01~ 5.6. Let G be a complex group. Then lim~_.0 t~/2JE(t) = 0, n = dim G/K.  

We now consider the behaviour  of Jc(t) as t o O .  Since Jc( t )=svol (F\G/K)gt (e ) ,  

we mus t  consider the behaviour of g~(e) as t->0. 

PROPOSITIO~  5.7. t~/2g~(e) approaches a finite limit Ca as t-~O, where n = dim G/K.  

Proo[. If  G is complex, this is obvious because 

gt(e) = 2 q ~ - 1 1 2 ~ ( 0 , ) - 1 2  nt-n/2 exp - t l~ , 12. 

Thus Ca = 2q~-1/2~(~,)  -12  -n. 

I f  G is not  complex, we have no explicit formula for gt and we need to proceed 

somewhat  differently. 

B y  (3.5), we have 

gt (e) = I W] -1 exp - t [ e ,  I fA. (exp - t [~t 12) I c()~) [ -2 d~. (5.18) 

Now introduce polar coordinates in A0; then  if 121 = r and 2'= 2/r, we m a y  re- 

gard r, 2' as the polar coordinates of 2, with 2' varying over the unit  sphere ~ of A0. 

Let  d2' be the surface element on this unit  sphere, and let us define for any  r > 0, 

12 - 682904 Acta mathematica. 121, I m p r i m ~  le 4 d~cembre  1968. 
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mo(r) = Iw1-1Y  Ic( , 2')l- dZ ', where c(r, 2') is just the function c(2) expressed in polar 

coordinates. I t  is obvious that  

gt(e) = exp - t le ,  I e - t r ' m o ( r ) r Z - l d r  , (5.19) 

where 1 = dim Ao. We will investigate the behaviour of mo(r ) as r-~ ~ .  The result of 

the proposition will then follow from the Tauberian theorem. 

Recall our definition of Z 0 in w 2. Let ~E Z0 and let g~ be the subalgebra of 

generated by the root vectors in go corresponding to those roots of go whose restric. 

tion to ~0 coincides with ~ or - ~ .  Let ~ =  g~ (~ ~o, P~= go Q Po. Then g~ is semisimple, 

and g0~-- ~ +  Po ~ is a Cartan decomposition. The symmetric space S ~ corresponding to 

the pair (g~, ~) is of rank one. Let ~)~0= ~0 N p~. Then ~~ is one dimensional, and is 

a maximal abelian subspace of O~. For any 2 E A 0, let 2~ be its restriction to ~)~~ Then 

if c~ is Harish-Chandra's function for the space S ~, so that  Ic~(2~)1-2d2~ is the 

Plancherel measure for S ~, the following relation holds between c and the various 

c~, ~E Z0- See Gindikin and Karpelevi6 [12], Helgason [7]. 

c(2) = Vi c~(2~). (5.20) 
~GZo 

Let Z~, Z ~ be the analogues of Z0, Z for the space S ~. Then Z~) consists of one 

element say 0 ~. Then 20 ~ is the only other possible element of Z ~. Let p~, q~ be their 

multiplicities. Then p~> 0, q~> 0. Denote the Killing form of g~ by ( . ,  .)~. Then by 

(2.11), (2.12) applied to S ~, we have 

c~ (2~) = I~ (i2~)/I~ (Q,), (5.21) 

where Q, is the analogue of ~. for the space S ~, and 

I , ( v ) = f l ( ~ ,  (v '0~)~  q~ p" (5.22) 

The second factor is to be interpreted as 1 if q~= O. 

Now let 2CA0, and suppose 121 =r .  Pur 2 ' = 2 / r .  Then 2~=r2-', so 

1, (i2~) = fl ~ ,  (0 ~, 0~)~] fl \ 2 ' ~4 + ir (20~, ~20 )~]l " (5.23) 

We have the asymptotic formula, with a, b real 

lim F(a+ ib) exp (�89 Ibl)Ibl (1-a)/z = (2n) �89 
Ibl~oo 

(5.24) 
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See e.g. [20, p. 151], where F(x) is the classical g a m m a  function. Since fl(x, y )=  

F(x) F(y ) /F (x+y) ,  we deduce t ha t  if x , y , z  are real, 

l im fl(z, x + iy) l Y ] ~ = F(z). (5.25) 

I t  follows t h a t  

IZ~(i2~)12r('~+"~)R~(2s 2r as r - ~ ,  (5.26) 

, <2:,0~}~ ,~ <2~ , :20~  q~ (5.27) 
with R~ (2~) = ~ ( 20~, 20~}~1 " 

We have  c~,(2~,)=1~,(i2:,)/L,(~,), and c(~)=](ia)/z(e*)=l-k,,~.L(i2~)/Fl~,~..i:,(e%), iv  

follows f rom this and  f rom (5.26) t h a t  if c(r, ~') is the expression of c(2) in po la r  

coordinates,  we get  

2 F = say, as ~ .  Ic(r,Z)121I(Q,)l 2 YI R(Z) 17 r Bo (5.28) 

Note t h a t  the  convergence here is uniform in 2', because the  l imit  relat ion (5.27) in- 

volves only l Y[. 

A m o m e n t ' s  reflection shows t h a t  if 11 o is the ni lpotent  pa r t  of the Iwasawa  de- 

composi t ion of 60, so t h a t  go = ~o + ~)v, + no'  we mus t  have  p~ + q~ = dim n o = cardinal i ty  

of P~,  where P?~ is the  analogue of P+, for S ~. A scrut iny of [12, p. 964] shows tha~ 

It~ is jus t  ~+ in the nota t ion  of t h a t  paper ,  and  fur ther  t h a t  the cardinal i ty  of P+  

is the sum of the  cardinalities of P?~ as ~ ranges over  Z o. Thus  ~ z o ( p ~ + q ~ ) i s  equal  

to cardinal i ty  of P+ = dim Iio, and  this last  equals n - l where n = dim G/K,  l = d im ~0 = 

d im A 0. Thus,  
Ic(r, 2')21Z(e,)12r = 'R(X ' ) -~Ba  (5.29) 

I c(r, ;t')1-2 ~ ii(o,)12 R(~t') B~ 1. (5.30) 
o r  rn_ l 

Since the convergence is uniform in 2', we see immedia te ly  t ha t  

mo(r) fJc(r, 2')l 2d2' 
rn_ t rn_ l -->Ca as r ~ c o .  (5.31) 

�9 -1 where Ca=I (Q , )2B  G S a R ( 2 ' ) d 2 ' .  Since R(2') is > 0  on ~ except  possibly for a se t  

of measure  zero, it is clear t h a t  C~ > 0. 

~TOW gt (e) = e x p  -- t I Q, 12 e - t r '  mo (r)  r l - 1  d r .  ( 5 . 3 2 )  
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A change of variable shows that  

f :  e-tr~mo(r)rZ i dr= l foe- t~ mo(V~)z"~-~ dz, 

and because of (5.31), it is obvious that  

1 m e ( V z )  z l/2 1 

2 Z n/2-1 

say. I t  follows from the Tauberian theorem for the Laplace transform that  

~n/2 f ~  F ( n / 2 +  1) e-t~'mo(r)rl-ldr-+C~ as t-+0. (5.33) 

This proves the proposition, with Ca= F ( n / 2 +  1)C~. 

I t  can be checked that  if G is complex, this complicated expression for Co col- 

lapses to the one mentioned at the beginning of the proof of this proposition. 

Collecting the results of Proposition 5.3, 5.6, 5.7 and taking into account L(t)= 

Jc(t) + JE(t) + JH(t), we get 

PROPOSITIOS 5.8. lim tnl~L(t) = s vol (F \G/K)  CG, 
t--M) 

where Ca is a constant >0, and s is the order o/ the centre o/ G. 

I t  follows, since L(t)= So e t~dN(r) that  N(r)/r'/2-+Cc/F(n/2+ 1) as r-+cr 

Now for any r ~>0 put 

= I w I lf,~,+,0.,..<~ le(~)I -~ ~m. M(r) 

I t  is understood that  M(r )=  0 if r~<tr 2. Clearly 

= ]W]-lfAo(eX p --t(lxl~ + le, I~))Ic(X)l-2 d~, gt(e) 

so gt(e) = e t~dM(r)= e-t~dM(r). 
e,P 

Since we know that tnl2gt(e)-+C a as t-+O, we see that  t~/2S~e-trdM(r)-+Co as t-+O, 

hence M(r)/r ~/2-~ CG/F(n/2 + 1) as r-+ ~ ,  by the Tauberian theorem for Laplace trans- 

forms. 

Putting these facts together we see that  
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N(r)/M(r)--->s vol ( F \ G / K )  as r-+ co. (5.34) 

We write this as N(r),,,s vol ( F \ G / K ) M ( r ) .  The results obtained above can be 

summarized as follows. For  the sake of clarity we also incorporate some results of 

Tamagawa in the statement.  

THEOREM 5.9. Let G be a complex connected semisimple Lie group and K a maxi- 

mal compact subgroup el G. Let F be a discrete subgroup el G such that F\G is compact. 

Let L~(F\G/K) be the space o/ measurable /unctions on G that i) satis/y /(~xlc)=/(x), 

y eF ,  x E G, k e K ,  and ii) are square integrable with respect to the invariant measure on 

F\G when considered as /unctions on that space. Let V(G/K)  be the algebra el le/t in- 

variant di//erential operators on G which commute with right translations by elements o / K .  

Then (Tamagawa) L2 ( r \ G / K  ) is an orthogonal Hilbert space sum o/ subspaces 

{H~}~o such that i) each Hi is finite dimensional ii) H~ consists o /C  ~ /unctions iii) the 

action el ~ (G/K)  on each H~ is by scalars. C/. [2]. 

1! ~o e D(G/K)  is the Laplace-Beltrami operator el G/K,  and hi(w) the scalar by 

which eo acts ~n Hi, then h~(o~)<~0 /or each i, and/or any r > 0 ,  the number o/indices i 

such that I hi(e~)l <~ r is finite. 

Let N(r) be the /unction defined /or r >~ 0 by 

N(r) = Z dim H, .  (5.35) 
{~; Ih~(~o)l~<r} 

Then N(r) is finite valued. Finally, i/ c(~) is Harish-Chandra's /unction /or the sym- 

metric space G/K, so that I c(~)l -~ d2 is the Plan:herel measure el G/K,  then 

N(r) ~ s  vol ( F \ G / K ) M ( r )  as r-+ co, (5.36) 

where s=: order el the intersection el F with the centre el G and vol ( F \ G / K )  stands/or 

the volume el F \G/K,  the /unction M(r) is defined by 

M(r) = flal~+le, l~<~ I c(~) I-2 d2, (5.37) 

where ~. is hall the sum o/ the positive roots el the symmetric space G/K,  and the inte- 

gral is over the dual el a Caftan subalgebra el the symmetric space G/K. 

Moreover, both the /unctions N(r) and M(r) behave asymptotically as C"ar n/2 when 

r-+ co, where n = dim G/K, and C'G is a constant > O, dependin9 only on G. 

Let  / e L 2 ( F \ G / K  ). Then / can be expanded as a Fourier  series 

~o d im H-~ 

1= ~. Z a,j~,j 
5=0 j = 0  
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converging in L~(F\G/K). I t  is obvious tha t  the coefficients a~j are the Fourier coeffi- 

cients of / with respect to the orthonormal system q~j. One then has the Parseval 

relation 
111113= lad (5.38) 

Suppose now tha t  g is a continuous spherical function of compact support in G. 

Then we can periodize g with respect to F as follows, and define a function gr by  

gr(x) = • g(7'x). (5.39) 
y c F  

I t  is obvious that  grEL2(F\G/K): Moreover, it can be shown tha t  if b~s are the 

:Fourier coefficients of gr  with respect to the orthonormal system ~j ,  then, in fact 

b~j are independent of j, (equal to b~ say) for 1 ~ j ~< dim H~. Indeed, bi = ~(;t~) where 

is the Fourier transform of g defined in w 2, and ~a~ is the elementary spherical func- 

tion that  underlies H~. We thus have 

d im H~ 

g= ,t,,= Ilgl?= Ib, l dimH, �9 (5.40) 
t = 0  J=1 i ~ 0  

Let L~(F\G/K) be the closed subspace of L2(F\G/K) that is generated by such gr. 
In an obvious way, we may regard the sequence {2~}~0 as the dual object on which 

the Fourier transform of a function in L~(F\G/K) may be defined and the Parseval 

relation above shows that the sequence {dim H~}~0 can be interpreted as the Plan- 

cherel measure that is appropriate to the harmonic analysis of functions in L~, i.e. 

of functions in L s(F\G/K) which arise as periodizations of spherical functions on G/K. 
While we will not labour this point of view, it does give rise to an interesting way 

of looking at formula (5.36). Namely, N(r) is now just the total Plancherel measure of the 
2 ~ region of the dual object { ~},=0 where ];t~]s + ]e.[S~<r. Indeed N(r)= ~{i:la~l,+le.V<~}dimH~. 

On the other hand, Ao/W is the natural  dual object for the harmonic analysis of 

Ls(K\G/K), on which the Ylancherel measure of G/K, viz. [c(~)[-Sd2 lives, and i(r) 
is just the total  Plancherel measure of the region in Ao/W where I~l ~ + I~. I ~ ~< r. Thus 

the result N ( r ) ~  s vol (F\G/K)M(r) shows that  the Plancherel measures of L;(F\G/K) 
and of Ls(K\G/K ) look alike when viewed from infinity. Nature, as it were, allows 

the subgroup F to modify the behaviour of the Plancherel measure of L~(K\G/K) 
only in a very simple way. 

Before passing to the next  section, it may  be worthwhile to remark here tha t  

our technique also enables us to get results about  the asymptotic  behaviour of the 

eigenfunctions that  constitute Hi, much in the spirit of [5]. Thus fix x E G and con- 

sider the expansion 
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dim Hi 
yexp  IQ, I Y gt(x lrx) (5.41) 
t = ~ ' e r  

which ensues from (4.10). If  for fixed xEG, we let 

dimH~ 

Nx(r) = y Y Iv,J( )5 
{t; ]),il~+]O,]~r} j = l  

the left side of (5.41) is just the Laplace transform of Nx(r). The right side can be split into 

two sums J~(x, t) and J2(x, t). Here J~ runs over all elements :7EF such that  x-17xEK. 
This is clearly a finite sum, since x-lFx is also a discrete subgroup of G. J2 runs over 

the remaining elements of P. The technique Lemma 5.3 shows that  J~ (x, t ) ~ 0  as t-~0, 

while Jl(x, t) =n(x)  g~(e), where n(x) is the cardinality of x-17x N K. Clearly n(x) >~s = 
order of the intersection of F with the centre of G. Indeed n(x)=s unless the element 

�9 n /2  or xK in G/K is a fixed point of some ~EF .  One finds thus tha t  llmt_~0t ~o e-trdN~(r) 
exists and is equal to n(x)Ca. In  other words Nx(r),..n(x)Carn1~/F(n/2+ 1)as  r - + ~ ,  

n = dim G/K. I f  F acts freely on G/K, then n(x)= s for every x e G and substantially 

the result of [5] is recovered. 

We saw above tha t  underlying each subspace H~, there is an elementary spherical 

function ~ ,  which is positive definite. Now, it is known tha t  for ~t E A 0, ~ is positive 

definite, but  the converse is not correct. Indeed for the element - iQ. E A, it is obvious 

that  ~0_~o. = 1 which is positive definite, yet  i~.  r A0. In  formulating his result on p. 77 

of [3], Gelfand overlooks this complication entirely, and assumes implicitly tha t  the 

only ~ tha t  can occur are those tha t  arise from Fi G A0. This is not accurate, since 

the constant 1 occurs, and we see no reason why, similarly, other positive definite 

elementary spherical functions which correspond to elements of A - A o  should not 

occur. This assumption makes Gelfand's formulation marginally inaccurate. The point 

is of some relevance, since one does not yet  know precisely which 2 C A  give rise to 

positive definite elementary spherical functions. 

The reader should note tha t  once the theta-relation L(t) = ~r~r ~r\a/Kgt (x-]~x) dx 
is at  hand, one can guess readily at  the result one wants to prove. Namely, experience 

from similar problems in analytic number  theory shows that  in the analysis of such 

sums, one expects the term arizing from 7 = e to predominate. In  our situation this 

term is easily computed. I t  is just vol (F\G/K)gt(e). One also knows tha t  the point 

mass at  eK has as its Fourier transform the P]ancherel measure of G/K. Thus, once a 

theta-relation or a formal analogue of it can be surmised, it is possible to arrive a t  

the conjecture outlined in [3]. As in other similar problems, it is the proof tha t  is 

tedious, but  crucial, and is likely to introduce unexpected constants. 
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The hypothesis that  F acts without fixed points on G/K is never made in [3]. 

Without this hypothesis, one cannot avoid having to deal with terms like JE(t)which 

involve the elements of F that have fixed points on G/K. ~re cannot think of any 

method of dealing with these terms that  would avoid using Harish-Chandra's invariant 

integrals. No mention of these terms is made by Gelfand in [3]. I t  would be very 

interesting indeed to see an approach which surmounts this difficulty without using 

the invariant integral. 

6. Concluding remarks 

Our method relies heavily on the fact that  the condition (3.48) of regular growth 

holds for gt. This condition is used first to prove that ~rEr gt (Y-17 x) converges uni- 

formly, and then again in showing that JH(t)~O as t-~0. So far as the convergence 

of ZrErgt(Y 1~ x) is concerned, it would be enough to show that  gt has a majorant 

which is in L 1 (G/K) and which satisfies (3.48). Using a technique of G&rding, this 

can in fact be demonstrated, so that one does in fact have the theta relation in 

general. However, for the purpose of estimating JH(t), it is definitely not enough to 

know that (3.48) holds for a majorant of gt, for, in showing JH(t)->0, crucial use is 

made of the fact that  gt approaches the Haar measure of K as t ~ 0 ,  i.e. that  gt is 

an approximate identity in L 1 (K\G/K). In order to salvage this part of the argument, 

it would be necessary to majorize gt by an approximate identity in L 1 (K\G/K). We 

do not know how to do this in general. 

However, if rank G/K = 1, it is possible to show that for each t >0, there is some 

r > 0  so that (cogt) (a) >10 for ]loga] >/r, and also that  for each r > 0  there is a t 0 > 0  

so that for all t<~t o and I log ale>r, one has (mgt)(a)>~0. The proof of this uses the 

explicit knowledge of the elementary spherical functions available in this case, and 

also the fact that  spaces of rank 1 have been classified. At the time of writing, we 

do not have a proof which does not use the classification. 

However, it is to be noted that  even when gt has the above property, so that 

the convergence of ~,gt(y-l~x) and the estimation of JH(t)can be carried out as 

above, it is not at all trivial to carry out the evaluation of JE(t), even in the case 

rank G/K= 1. If  F is assumed to act freely, the problem is of course, absent. In 

general, when rank G/K > 1, we cannot conceive of a method of estimating JE (t) which 

does not rely on Harish-Chandra's study of the invariant integral. 

I t  should be suspected that in general gt would have the property (3.48). 

In the complex case, one could at tempt some extensions of our result. For ex- 

ample, instead of L~(F\G/K) one could study the subspace of functions in L2(F\G ) 
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which transform under K on the right according to some class (~ of irreducible repre- 

sentations of K. Some experimentation indicates that a similar result holds, the constant 

s vol (F\G/K) now being replaced by 8 degree ((~) vol (F\G). Of course, one does not 

count the eigenvalues of the Laplace-Beltrami operator any more, but the eigenvalues 

of the restriction of the Casimir operator of G to those functions which transform 

under right translations by K according to ~. But we have no proof of these con- 

jectures. 

When this paper was almost completed we have come across a paper of McKean 

and Singer [21] dealing with the problem of recovering information about a compact 

Riemannian manifold M from data involving the spectral features of its Laplace 

operator. Bearing in mind the classic example of the vibrating string or membrane, 

one notices that if one thought of a "solid membrane" in the shape of M set in 

vibration, then the eigenvalues {~}n~>0 of the Laplace operator would be characteristic 

of the normal modes of vibration, and the amplitudes of these normal modes. Following 

the picturesque sensory terminology of Kac [22], one says that a topological or geo- 

metric invariant of M is audible if it can be recovered from the spectral data {~t~}. 

Even though F\G/K is not a manifold in our situation, we can nevertheless extend 

this terminology to our context as well. Now, the function N(r) and its Laplace trans- 

form L(t) are objects involving only the spectrum of the Laplace-Beltrami operator r 

and any information about F\G/K which can be recovered from them may be termed 

audible. Our result shows of course, that  vol (F\G/K) is audible, but  on further con- 

sideration one sees that some characteristics of F are likewise audible. For example, 

the coefficients of the various powers of t that  enter into JE(t) give us information 

regarding regular and singular points among those elements of F which have a fixed 

point on G/K. To mention but one instance of this, consider the coefficient of t -zj2 

in JR(t). A closer look at our analysis shows that one can read off from this coeffi- 

cient the number of G-conjugacy classes of elements of F which have a fixed point 

on G/K and which consists of regular elements in G. Thus we may say that  this 

invariant of F is audible. I t  is at any rate evident that  some information is to be 

gleaned from combining the methods of this paper and [21], and we hope to return 

to this question in a future paper. 
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