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1. Introduction 

In  this paper  we shall obtain the best possible estimates for the remainder te rm in the 

asymptotic formula for the spectral function of an arbi trary elliptic (pseudo-)differential 

operator. This is achieved by  means of a complete description of the singularities of the 

Fourier transform of the spectral function for low frequencies. 

In  order to describe the results and methods more precisely we must  recall some 

standard notations and hypotheses. Let  ~ be a paracompact  Coo manifold and let P Ice 

an elliptic differential operator in ~ with C ~ coefficients. We assume tha t  P is formally 

positive, tha t  is, 
(Pu, u)>~c(u,u), uEC~C(g2), 

where c > 0 and (u, v) = f u~ dx 

for some positive Coo density dx, kept  fixed throughout. In  the space L~(~) obtained by  

completing C~(~) in the norm Ilull = (u, u) ~, the operator P with domain C~r is symmetric,  

and by a classical theorem of Friedrichs it has at  least one self-adjoint extension P with 

a positive lower bound c. Let  {E~} be the spectral resolution of such an extension, and let 

e(x, y, 2) be the kernel of E~. This is an element of Coo(~ • ~)  called the spectral function 

of the self-adjoint extension/5. 

Let  p be the principal symbol of P, which is a real homogeneous polynomial of degree 

m on the cotangent bundle T*(~). The measure dx defines a Lebesgue measure d~ in each 

fiber of T*(~); which is a vector space of dimension n. With the notation 

R(x, ~)=~-,~I,n e(x, x, ]t)- (2~) -n [ d~, (1.1) 
J Bx 

where B x = {~E T*; p(~)< 1}, our main result is 

(1) This paper was written while the author was a member of the Institute for Advanced Study, 
Princeton, N. J. 
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T H ~ O R E ~  1.1. On every compact subset o/f2 we have R(x, 2 ) = 0 ( 2  l/m) uni/ormly when 

Many special cases of this theorem are known before. Tha t  R(x,2)-+O when 2=+ ~ is a 

classical result of Carleman [3] in the second order case and Gs [4] in general. When  

P is an operator  with constant  coefficients in an  open set in R n, the theorem is due to 

Gs [5]. I n  the second order case it has been proved by  Avakumovi5 [2] and in par t  

by  Lewitan [10, 11]. Avakumovi5  also noted tha t  for the Laplace operator  on a sphere 

the jumps of R(x, 2) caused by  the high multiplicities of the eigenvalues are so large tha t  

no bet ter  error estimate is possible. (See Section 6 below.) Apar t  from these cases the 

best previous results are due to Agmon and Kanna i  [1] and HSrmander  [8] who proved 

t h a t  R(x, 2) = 0(2 ,jm) for every a < 1 when the leading coefficients of P are constant  and 

for every a < �89 in the general case. 

All of this work has been based on the s tudy  of the kernel of some function of _f) 

which satisfies a differential equation; information about  the spectral funct ion is then 

obtained by  application of a Tauberian theorem. The following transforms have been used: 

(i) The Stieltjes t ransform 

G 1 (z) = j ( 2  - z) -1 dE~ 

which is defined when z is not  in the spectrum was considered already by  Carleman [3]. 

We have (/5 - z) Gl(z ) = l, so G 1 is the resolvent of t5. When  z is outside an angle I arg z I < e, 

one can determine an  asymptot ic  expansion of G 1 where the error terms are as small as any  

powers of l/z, but  this gives only the conclusion tha t  R(x, 2) = O(1/log 2). To obtain stronger 

results one must  either determine G 1 outside such an angle with an exponential ly small 

error or else one must  produce good estimates much closer to the spectrum. (See Ava- 

kumovi5 [2], Agmon and Kanna i  [1], HSrmander  [8].) This is not  surprising since dE~ 

is essentially the jump of G 1 across the positive real axis. 

(ii) The Laplace t ransform 
f D  

= je-'~dE~, t >0 .  Gz(t) 

We have (~/~t +-f)) G~(t) = 0 and G 2 (0) = 1, so G 2 can be regarded as a fundamenta l  solution 

for the diffusion equation (~/~t +/5). This is the method used for example by  Minakshi. 

sundaram and Pleijel [12] and Gs [5]. I f  t is real the results are parallel to those 

obtained by  s tudying the resolvent outside an angle. 

(iii) The ~-function 
f b  

Gz(x, y, s) : | 2  -s de(x, y, 2). 
d 
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The integral defines a continuous funct ion when Re s >n/m,  and this function can be 

cont inued to a meromorphic  funct ion in the whole plane (Carleman [3], Minakshisunda- 

ram and Pleijel [12], Seeley [14]). I f  G a is represented in terms of G 1 or G 2 this follows 

from the properties of these t ransforms which are needed to prove t h a t  R(x, 4)->0. More 

precise error estimates are related to growth conditions on G a at  infinity. However,  these 

seem hard to prove directly, and as far as the au thor  knows the s tudy  of G a has only been 

used to prove tha t  R(x, ~)-~0. 

(iv) The work of Lewitan [10, 11] (and a long series of other  papers) on the second 

order case is based on the s tudy  of the cosine t ransform 

G4(t ) = f c o s  t V~dEa. 

We have (~2/~t2 +~)G4(t ) = 0  and G4(0 ) = 1, G~(0)=0, so G 4 is closely related to the funda- 

mental  solution of the hyperbolic operator  ~2/~t2 +P.  (Note tha t  ~2/~t2 is a negative operator  

while P is a positive operator,  which makes the operator  hyperbolic.) Avakumovi5  [2] 

also used his estimates of G 1 to draw conclusions concerning the Fourier  t ransform 

G 5 (t) = f e  -n~ll~ dE~ 

when m = 2. I t  was fur ther  proved in HSrmander  [8] t ha t  the singularities of G 5 are local 

objects in the sense tha t  the restrictions of the coefficients of P to  a neighborhood of a 

compact  set K c  ~ already determine the kernel of Gs(t ) on K • K for small t modulo a 

C ~ funct ion which is analyt ic  with respect to t. This paper  is based on the s tudy  of G 5. 

The reason why  the methods of Lewitan have not  been applied to operators of order 

m > 2 seems to be tha t  the differential equat ion 

(im ~ / a t  m - P) as (t ) = 0 

is not  hyperbolic then. However,  one can avoid this obstacle by  considering the equat ion 

(i3/~t - ~ ) i / r n )  G5 (t) = 0 (1 .2 )  

which is obtained if irrelevant factors destroying the hyperbolici ty are omitted.  Here 

pl/m is defined by  the spectral theorem. I t  is no longer a differential operator  bu t  is is a 

(classical) pseudo-differential operator  (Seeley [14]) even if P is only a pseudo-differential 

operator.  This follows from the estimates used in methods (i) or (ii) to  prove only tha t  

R(x, X)~0.  For  the sake of simplicity we assume tha t  ~ is compact ,  bu t  in view of Theorem 

5.3 in HSrmander  [8] this is no essential restriction in the proof of Theorem 1.1. 
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There are two reasons why the Fourier transform G 5 is particularly pleasant to work 

with. The first is tha t  the Tauberian arguments needed to pass from information con- 

cerning the kernel of G 5 to the spectral function are extremely simple since there is an 

inversion formula for the Fourier transformation. The second and main reason is tha t  the 

s tudy of G 5 turns out to be very close to the proof of the generalized Huyghens principle 

for hyperbolic equations given by Lax [9]. Thus the singularities of the kernel of G5 pro- 

pagate with a finite speed. (Note that  this would not have been the case if we had defined 

G 5 without taking an mth root.) We recall that  the main point in the arguments of Lax 

is the construction of a good approximation to the f lmdamental  solution by  means of the 

asymptot ic  expansions of geometrical optics. I t  is interesting to note tha t  these methods 

were introduced to replace a classical construction of Hadamard  for the second order 

case which was based on the use of normal coordinates. I t  is the lat ter  technique which is 

the main tool in the work of Avakumovi5 [2], though he applied it to G 1 instead of Gs. Our 

constructions could also be used to study the resolvent G 1 rather  than the Fourier transform 

G 5 but  for the reasons indicated above the proofs would then be somewhat less simple 

and natural.  

The plan of the paper is as follows. In  Section 2 we discuss some of the main prop- 

erties of operators of the type which occurs in the Lax construction of a parametr ix for a 

hyperbolic operator. Further  developments should yield an extension of the calculus of 

pseudo-differential operators with many  applications to the s tudy of non-elliptic dif- 

ferential operators. However, we have decided to discuss in this paper  only the facts 

which we must  use and a few results which seem to clarify them. Section 3 gives the con- 

struction of a parametr ix  of i-l~/~t + A where A is a first order elliptic pseudo-differential 

operator on a compact manifold. Asymptotic properties of the  spectral function of A are 

then derived in Section 4, and the results are applied to differential operators in Section 5. 

In  Section 6 finally we give an example of Avakumovi5 which shows tha t  Theorem 1.1 

cannot be improved in general. 

2. Fourier integral operators 

In  this section we shall discuss some classes of operators containing both pseudo- 

differential operators (of type 1, 0 in the terminology of HSrmander [7]) and parametrices 

of hyperbolic operators. Our discussion will be local but everything we do is invariant  so 

an extension to manifolds would not involve any difficulties. 

As a motivation we first recall that  a pseudo-differential operator in an open set ~ c R n 

is essentially defined by  a Fourier integral operator 
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p(x, D) u(x) = (2=) " fp(x,  e) de, ue  xe . (2.1) 

Here the symbol p shall satisfy some conditions to be specified later. If  we insert the 

definition of the Fourier transform d, we obtain 

p(x, D) u(x) = ( 2 ~ ) - ~ f f p ( x ,  e) e t<~- y" ~> u(y) de dy. (2.1)' 

The integral may  not be absolutely convergent so it should be interpreted as a repeated 

integral: integration with respect to y followed by integration with respect to e. Our 

purpose is to study operators defined by using a more general function in the exponent, but  

first we recall the usual condition on the symbol p. 

Definition 2.1. I f  ~ is an open subset of R n and N is a positive integer, we denote by 

SZ(~, R N) the set of all pEC~(~ •  N) such tha t  for every compact set K c ~  we have 

ID~D~p(x,e)l<cK.~.~(l+l@"-% x E K ,  e E R  N. (2.2) 

The elements of S ~ are called symbols of order m. A subset M of S ~ is said to be bounded 

if the same constants can be used in (2.2) for all pEM. 

On bounded subsets of S m the topology of pointwise convergence coincides with the 

topology of Cw(~ • R N) and will be referred to as the (weak) topology in what follows. 

LEMMA 2.2. Every bounded set M c S  m is contained in a bounded set M ' c S  m where 

symbols vanishing/or large I ~ ] are dense/or the weak topology. 

Proo[. Let Z E C3O(R n) be equal to 1 in a neighborhood of 0. Then the set M '  of all 

functions p(x, ~) Z(e~) with p E M and 0 ~< ~ ~< 1 has the required properties, for l e [l~lD~Z(ee) 

is a, bounded function of e and e for every :r 

Remark. The space S m is the space of symbols of type 1, 0 and order m in the termino- 

logy used  in Hbrmander  [7], and (2.1) is a pseudo-differential operator of order m (and 

type 1, 0) if pES "~. I t  is often useful to note tha t  (2.2) means precisely tha t  ,~-mp(x, ,~) 

belongs to a bounded set in C~176 • {~; �89 ]el <2}) when 2>~1. Occasionally we shall use 

the phrase p E S ~ for large I ~ I to mean tha t  p is defined at  least when ] ~ I is large and tha t  

(2.2) is valid for large e; this means tha t  ,~-mp(x, 2e) belongs to a bounded set in C~(~ • 

{e; �89 <2}1 when 2 is large. 

We shall now describe the conditions which should be satisfied by  the function which 

is to replace the exponent < x - y ,  e> in (2.1)'. 
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De/inition 2.3. Let  ~ be an open set in t t  ~, ] =  1, 2. A real valued function 

E S t (~1 x ~2, RN) will be called a phase function if for every compact  set K c ~ t  x ~ 

there is a constant  C such tha t  

I P<c I l>c, (x,y)EK; (2.3) 
1 

I#F<c ; I#l>c, ( x , y ) E K .  (2.4) 
x 

The purpose of these conditions is of course to  guarantee tha t  e ~r is highly 

oscillatory for large ~ even if x or y is fixed. I n  the case where q0 is a homogeneous funct ion 

of ~ of degree 1 for I~l ~> 1, which is really the only one tha t  is essential for us, the con- 

dit ion (2.3) (or (2.4)) means tha t  the restriction of ~v to the sphere bundle {(x, y, ~); I~1 = 1} 

has no zero which is a critical point  if x or y is fixed. 

Let  ~0 E S 1 (~x x ~)~, R N) be a phase function. For  every p E S m (~)t x ~2, R~) we wish 

to define a linear operator  by  

= f f p ( x ,  y, ~) e ~(~" ~' ~) u(y) d~ dy, u E C~(~2), x E ~t-  (2.5) Pu(x) 

I t  is obvious tha t  the double integral exists if m < - N .  I f  k is a non-negative integer such 

t h a t  m + ]c < - N  it is also obvious tha t  P is an  integral operator  with kernel E C~(~t x ~a). 

I n  particular, P defines a continuous mapping C0(~)-~C~(~t) .  More generally, we have 

T~EOREM 2.4. For any m there is a unique bilinear map 

8'~(~t x ~2, RN) x U (~22) ~ (p, u)-~Pu E D'(~t) 

such that Pu  is given by (2.5) when u is a /unction and the double integral is absolutely 

convergent, and in addition 

(i) /or any integers v,/~ >~ 0 with m + N +/~ < ~ we obtain by restriction a bilinear 

mapping S m x C~(~2)-~C~(~t) which is continuous when p is restricted to a bounded subset 

o / S  m with the weak topology. 

(ii) the map S m x ~'~(~2)-~]0'~(~1) has the analogous continuity property. 

Proo/. The uniqueness is obvious in view of Lemma 2.2. If  Z is the funct ion used in its 

proof we even conclude tha t  

Pu = lira I I p ( x ,  y, ~) Z(e~) e i~(x' ~' ~) u(y) d~ dy; (2.5)' 
e-->0 J J  

with the obvious interpretat ion of the integral this remains t rue for distributions u. 
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To prove  the  existence it suffices to prove  (i), for (ii) is jus t  a dual  s ta tement .  We 

have  a l ready seen t h a t  (i) is valid when ~ =0 ,  so we can prove  (i) assuming t h a t  v > 0  and  

t h a t  the s t a t emen t  is p roved  for smaller  values of u. Firs t  note t ha t  if p vanishes for large 

I~l then  

iffp~/~y,e'~dyd~=- ff~p/~y/~dyd~- ffpe'~u/~y, dyd~, (2.6) 

Next  it follows f rom (2.4) t ha t  

= (E (~/~y~)~ + ~1~1 ~ (~ /~ ; )~ ) -~  e s -~. 

(We define ~ smooth ly  when I~1 < C.) For  large I~1 we have  

p = ~ q~ /~y~  + 5 r ~ / ~ ,  

where q ~ = p y ~ V j ~ y ~ S  m-~ and r ~ = p v I ~ I ~ q ~ A ~ E S  'n. 

In  view of (2.6) and  (2.7) we can therefore rewrite Pu as a sum of operators  of the  type  (2.5) 

of order m - 1 act ing on u and ~u/~yj, j = 1 ..... n~. Since m - 1 +/~ <v  - 1, this completes  the  

induction proof  of (i). 

For  la ter  reference we also note  the following consequence of (2.7): 

L~MMA 2.5. The symbols i~p / ~  j and P~q~ / ~  i de/ine the same operator according to (2.5)'. 

We shall nex t  consider the singularities of the  kernel  Ke of P.  Le t  ~ r  be the set  of all 

(x, y) E ~1 • ~2 such t h a t  for some constant  C, depending on (x, y), 

N 

l < c V l ~ v / ~ , [  ~, I~l>c. (2.8) 
1 

(In the homogeneous case this means  t h a t  0 is not  a critical value of the  restr ict ion of 

to the  uni t  sphere for fixed x and  y.) The set  ~ r  is a lways open. I n  fact ,  if w is a compac t  

neighborhood of (x, y) the fact  t h a t  ~ ES 1 implies t h a t  for (x', y')E eo 

la~(x',  y' ,  ~ ) / a ~ j - ~ ( x ,  y, ~) /~Jl  <~C(Ix-x' l  + lY -Y ' I )  

for large I~l" I f  (2.8) is valid a t  (x, y) it  follows with ano ther  cons tant  for all (x', y')Eeo 

in a neighborhood of (x, y). Le t  Fr  be the complement  of ~ which is therefore closed. 

T ~ E O ~ E M  2.6. The singular support o/ the distribution kernel KpE~)'(~ 1 •  o/ 

the operator defined by (2.5)' is always contained in Fv. 
13 - 6 8 2 9 0 4  Acta mathematica, 121. I m p r i m 6  le 4 d ~ e e m b r e  1968. 
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Proo/. We have to show tha t  the kernel is a C ~176 function in ~r The proof is similar to 

tha t  of Theorem 2.4. I f  (x, y) E ~r we have in a neighborhood of (x, y) tha t  

v, = I 12) -1 E 5 'o. 

Since  for large P = Z 

it follows from Lemma 2.5 that  the kernel of P near (x, y) coincides with the kernel of an 

operator defined by a symbol of order m -  1. I f  we repeat  this argument  we may  conclude 

tha t  Kp coincides near (x, y) with the kernel of an operator of arbi trary low order. In  

view of Theorem 2.4, this proves the theorem. 

COROLLARY 2.7. I /uEE' (~2)  and P is de/ined by (2.5)', then 

sing supp Pu c Fr sing supp u. (2.9) 

Here we have written for subsets K of ~2 

F c K  = (xE~l ;  (x, y)EFr for some yEK}.  

Proo]. That  sing s u p p P u c F ~  supp u follows immediately from the fact tha t  

Kp E C~~ Now u can be written as a sum u = v + w where v E C~ r and supp w is arbi- 

trari ly close to sing supp u. Since Pv E C~(~1) by Theorem 2.4, this proves the corollary. 

The preceding result is of course the analogue of the pseudo-local property of pseudo- 

differential operators; in tha t  case ~1 = ~2 and ~ = ( x -  y, ~) so Fr is the diagonal. 

Since we shall now star t  to vary  ~ it is useful to have a notation for the class of operators 

of the form (2.5)'. 

Definition 2.8. I /  q~ is a phase /unction we denote by Lm(q~) the class o/ operators 

C~r176 which modulo an operator with C ~ kernel can be written in the/orm (2.5)' 

/or some p E Sm(~'~l X ~2,  l~N) �9 

I t  is clear tha t  L'n(q)) only depends on the residue class of ~ modulo S ~ For assume 

tha t  q E S ~ Then e ~q E S ~ and the operator defined by  p and the phase function ~ is equal to 

the operator defined by pe- ~q and the phase function ~0 + q. Since pe ~q has the same order 

as p, this proves the assertion. 

We shall now prove a less trivial result containing the fact tha t  the class of pseudo- 

differential operators is invariant  under diffeomorphisms. Let  Ir  be the ideal in S O generated 

by the derivatives ~q/~$r and let J~ be the functions of (x, y) (locally) in the ideal I~. (We 

regard I~ as consisting of germs at ~ =  c~ so equality is only required for large I~l ") I t  is 

clear tha t  J~ contains C~(~r and more precisely tha t  F~ is the set of common zeros of the 
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elements of Je .  Let  J~S 1 denote the S o submodule of S 1 spanned by  products  of two  

elements of J r  and one of S 1. 

THEOREM 2.9. I/q)l and qJ are phase/unctions with q~1 - q  )EJ2 S1, it/oUows that Lm(q~)c 

Lm(~l). 

Note  tha t  there are no restrictions on ~1 over ~ so we cannot  expect equal i ty  irL 

general. 

Before the proof we note a corollary: 

COROLLARY 2.10. Let ~-~1=~2 and N = d i m  ~j; assume that F~ is the diagonal and 

that ~(x, y, ~ ) = < x - y ,  ~> §  at the diagonal. Then Lm(qD) is equal to the space 

L mo/ pseudo-di//erential operators o/order m (and type 1, 0). 

To obtain Corollary 2.10 from Theorem 2.9 we first note t ha t  Taylor 's  formula applied 

to ~v (y+ t ( x - y ) ,  y, ~)/~j gives for x close to y 

~q~(x, y, ~)/~j = (x j -y j )  + ~ aj~(x, y, ~)(xk-y~), 

where ajkES ~ and a j k = 0  on the diagonal. I t  follows t h a t  det  ((~j~+ajk)ES ~ and equals I 

on the diagonal, which implies t ha t  (Sjk +ajk) has an inverse with matr ix  elements irr 

S o in a neighborhood of the diagonal. Hence (xj - y j )  EJr so if ~01 is any  other  function satis- 

fying the hypotheses of the corollary we have Lm(~v)=L=(~I). I n  view of the s y m m e t r y  

between ~ and ~1 it follows tha t  L~(~)=L~@I)  and taking ~z(X, y, ~)=  < x - y ,  ~> we obta in  

the corollary. 

Proo/ o/ Theorem 2.9. Set ~ t = ~ + t ( ~ v l - ~ )  , 0~<t~<l, which causes no confusion for  

t = 1. By  hypothesis  we can write 

qv I - q~ = ~ q~a~a~, (2.10) 
J , k = l  

where q~ ~ S 1 and a~ ~ J~ so tha t  for some b~ ~ S o 

N 

ar = Z br ~ 0 / ~ .  (2.11 ) 
1 

Our first purpose is to show tha t  ~ can be replaced by  qt in (2.11). We have 

br ~ q h / ~  = ar + t ~ br 1 - ~) / ~  = a~ + t ~ c~a~, 

where cr ~ S o and c m = 0 on Fr Hence the matr ix  (r + tcr has an inverse with elements i n  

S o over a neighborhood of Fr  for 0 ~<t~ < 1. We need only consider operators in Lm(~v) of  



202 LARS HORMANDER 

the form (2.5)' where the support of p belongs to that  neighborhood, for the par t  of p 

away from F~ only contributes an operator with C ~ kernel. Thus we have in the support  

of p 
N 

= 

where b~, E s and depends continuously on t for 0 ~< t ~< 1. 

Now consider 

Pt u(x) = j ' f  p(x, y, ~) e tr ~" e) u(y) d~ dy. 

I f  the support of p is sufficiently close to Fr as we may assume, then ~0 t satisfies (2.3), 

(2.4) there uniformly with respect to t E [0, 1]. We have 

drPt u /d t  r = f f p(x, y, ~) i ~ (q~l - q))~ e~  u(y) d~ dy. 

Here we substitute for (~1 -q0) ~ the sum given by (2.10) and obtain a number  of terms each 

of which is of order m + r but  contains 2r factors aj. But  if we replace one factor aj by the 

expression (2.12) it follows from Lemma 2.5 tha t  one can reduce the order by  one unit 

without affecting the other factors a t. Repeating this argument 2r times we conclude tha t  

d~P~u/dt r is actually in Lm-~(q)t), hence as smooth as we wish uniformly with respect to t 

for large r. 

If  we write Qj = ( - 1)J dJPt/dtJ/j ! ]t-1E L m-j (q)~), 

i t  follows from Taylor 's  formula that  

k-1 f ~  
P0=  Z Q,+ ( -  1) k ~k-1/ (k-  1)!d~Pt/dCdt.  

0 

Let Q be an operator in Lm(?l) defined by an asymptotic  sum of the symbols defining 

Qs, J =0,  1, 2, ... (see Theorem 2.7 in HSrmander [7]). Then P 0 - Q  has an infinitely dif- 

ferentiable kernel, which proves that  P0 ELm(~I) �9 The proof is complete. Clearly the proof 

could also give formulas for the symbol of Q but  we have no need for them here. 

Remark. I f  ~, (~1 and p are asymptotically sums of homogeneous functions of ~, then 

Q is also defined by means of such a kernel. 

Corollary 2.10 is of course closely related to the invariance of the class of pseudo- 

differential operators under a change of variables. (See also HSrmander  [6], [7].) 

We shall now pass to the study of multiplicative properties of L(~). The main point is 

the following lemma. 
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L E P T A  2.11. Let q(x ,D)  be a compactly supported pseudo-di//erential operator o/ 

order /~ (and type 1, O) in ~ .  Let ~F be a compact subset o/Cr162 R) such that no element 

o] ~ has a critical point, and let :~ be a compact set in Cr162 For y)E �9 we set 

~v(z) = y~(x) + (z - x, grad y~(x)> + ~)~ (z). 

Then we have /or  every positive integer N 

e 'Z~q(x, D) ( /d ~)  = ~ q(~)(x, 2 grad y~(x)) D~(/(z) e~(~) ) /~ !  I~=~ + 2 ~ ~ R ~ ( x ,  4), 
Ir162 

where R~ lies in a bounded set in C(~)  /or y~ E XF, / E :~, ~ >~ 1. 

Proo]. This is actually what was verified in the proof of Theorem 2.16 of HSrmander  

[7], although that  theorem as stated does not contain Lemma 2.11. (Naturally one should 

also be able to obtain the lemma from Corollary 2.10 above.) For homogeneous symbols 

Lemma 2.11 is Theorem 3.3 in [6]. 

The following consequence of Lemma 2. I 1 will allow us to apply a pseudo-differential 

~p ~rator ruder the sign of integration in (2.5). 

THEOREM 2.12. Let 

order # (and type 1, 0) 

o / ~ 1  • ~ 

q(x, D) be a compactly supported pseudo-di//erential operator of 

in ~1. Let ~ E S 1 (~1 • ~ ,  ItN) and assume that on compact subsets 

Ie o/exA > c .  (2.13) 

We set q~( z, y, ~ ) = qD( x, y, ~ ) + < z - x, grad~ q~( x, y, ~ ) > + ~( x, y, z, ~ ) . For p E S ~ (~1 • ~2, R~) we 

have then 

e-*Vq(x, D) (pal ~) = ~ q(~)(x, grad x ~0) D~(p(z,y,~)e'q)/a! L=x + RN(x, y, ~), (2.14) 
I~[<N 

where RN E S m +~- ~12 (~-~1 X ~'~2' RN)  �9 

Proo/. We may restrict y to a compact subset K of ~ and assume that  I ~1 >~ 1. 

Since the hypotheses of Lemma 2.11 are satisfied by the closures :~ and ~F of the set of 

functions 

/(x)=2-mp(x,y, 2~), ~)(x)=~-lq)(x,y,~); y E K ,  I ~ l = l ,  ~>~l, 

we conclude that  RN(x, y, ~ )  ~ . . . .  + NI~ 

is bounded in C(~x) when y E K  and [~1=I ,  2>~1. The statement now follows f rom 

Theorem 2.9 in H6rmander  [7] if we note tha t  the general term in the sum in (2.14) is 

in S m+'-I~l/e, in fact in Sm+" (1~1+1)J2 if lal is odd. (See the beginning of the proof of Theo- 

rem 2.16 in [7].) 
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Terms of order ~ > m + # - 1  can only occur in (2.14) when l~[<2, and for [~ [=2  

they only occur when both z-derivatives fall on e ~Q. This gives 

COROLLARY 2.13. Let the hypotheses be as in Theorem 2.12 and set 

b = ~ q(~)(x, grad• ~) D~iqD/zd E S Ix-1. 
1~1~2 

Then we have 

e-~ q(x, D) (pc ~r = ~ q(~) (x, grad• q) D~ p + bp + R(x, y, ~), 
l~l<2 

where R E S m+1'-2. 

(2.15) 

(2.16) 

I f  q satisfies (2.13) it is clear tha t  we can form the composition of q(x, D) and the 

operator (2.5) by  operating under the integral sign, and by  Theorem 2.12 the product will 

again be in the same class. In  fact, operation under the integral sign is legitimate when p 

vanishes for large ~ and is therefore justified in general by continuity arguments based on 

Lemma 2.2. However, the condition (2.13) is not a natural  one since it would not be in- 

variantly defined if we replace ~ 1  and ~2 by manifolds and ~1 • ~2 x R N by a real vector 

bundle over the product. On the other hand the condition (2.3) is invariant  and it is the 

only one tha t  is really needed. For the contributions from the par t  where [ ~ / a ~  I is bounded 

from below give an operator with a C ~ kernel so it is clear tha t  one can split P in a sum 

where one term has a C ~~ kernel and the other only involves integration over a set where 

(2.13) is valid. This proves tha t  the product o/ a compactly supported pseudo-di//erential 

operator o/order ~t in ~1 and an operator in Lm(q~) is always in L'n+'(q~). Analogously we 

have multiplication to the right by pseudo-differential operators in ~2, which follows by  

taking adjoints. The details are left for the reader to supply. 

3. The Fourier  t ransform of the  spectral measure  

Let ~ be a compact C ~ manifold with a given positive C ~~ density dx, and let A be 

a formally self-adjoint semibounded elliptic pseudo-differential operator of order 1 (and 

type 1, 0) in ~ .  In  local coordinate systems A is thus (modulo operators with C ~ kernel) 

of the form a(x, D) where a E S 1, the limit 

a~ ~) = lim t-l a(x, t~) (3.1) 
t--~ Oo 

exists when ~=t=0, and a~ ~)>0, ~ # 0 .  (3.2) 

(Since aES 1 the limit (3.1) exists in the C ~ topology on the set where ~ # 0 . )  I f  the given 

density dx agrees with the Lebesgue measure in the local coordinates, the formula for the 



T H E  SPECTRAL F U N C T I O N  OF AN E L L I P T I C  OPERATOR 205 

adjoint of a pseudo-differential operator (Theorem 2.15 in [7]) shows tha t  I m  aES ~ The 

closure in Z2(~) of A with domain C~176 is a self-adjoint semibounded operator. We shall 

denote it by  ~4; the domain is equal to H(1) (/2). (For the definition of the space H(s) see e.g. 

H6rmander  [7], section 2.6.) The notation A will also be used for the extension of the 

pseudo-differential operator A to ~ ' (~ ) .  

Let  {dE~} be the spectral resolution of ~4 and form the Fourier transform 

~(t) = f e  -'~ dE~ = e -~tA. 

$(t) is thus a one-parameter group of unitary operators. Moreover, E(t) defines a continuous 

mapping of H(~) (~) into itself for any  integer s, and this mapping is strongly continuous as 

a function of t. This follows from the fact that  if A >~c, then E commutes with (A - c  + 1) ~ 

for any s and the H(s) norm of u is equivalent to the L ~ norm of (A - c  + 1)~u. Note that  for 

uoEH(1), the unique solution of the equation 

Dtu + .,4u = 0 (3.3) 

with initial data  u(0)= u 0 is given by  u(t)= $(t)u o. 

Our purpose is to determine the singularities of the kernel $(x, t, y) for small I t l" To 

do so we shall use the techniques of section 2 to construct a parametr ix for the operator 

Dt +A,  which solves the initial value problem for this equation approximately. Let  w x 

be a local coordinate patch in ~ which we identify with the corresponding open set in 

R n. We assume tha t  the given density in ~ agrees with the Lebesgue measure in 0) 1 and 

choose aeSl(Wl, R ~) so tha t  a(x, D) is compactly supported in 0) 1 and A - a ( x ,  D) has a 

C ~~ kernel in eo 1. (Cf. HSrmander [7], pp. 148-149.) Let  eo be a relatively compact open 

subset of ~o r We want to find an approximate representation of the operator E(t) of 

the form 

(Q(t)/) (x) = f f q(x, t, y, ~) e '~(~' t. u. ~)/(y) dy d~, / e C~(w), ( 3 . 4 )  

where q shall vanish for x outside some compact subset of wl so tha t  Q(t)/can be extended 

to be 0 in ~ e o  1 without introduction of any  singularities. 

The construction will rely on Corollary 2 .13 - - and  is of course essentially the same as 

tha t  in Lax [9]. The first step is to choose the phase function ~ as in geometrical optics, 

tha t  is, so tha t  
~cf/~t +a(x, grad~ ~) eS  ~ (3.5) 

which makes the term in (2.16) with ~ =0  harmless. Furthermore,  we want  Q(0) to be the 

identi ty operator, and in order to be able to check this using Corollary 2.10 we require tha t  
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q~(x, O, y, ~) = ( x - y ,  ~) +O(Ix-y{~{~{ ) when x ~ y .  (3.6) 

However, we shall now differ from Lax [9] by demanding tha t  ? shall be linear with respect 

to t, which is natural  in view of the translation invariance of the operator Dt §  with 

respect to t. Thus we set with some function a' to be chosen later 

q~(x, t, y, ~) = y~(x, y, ~)-ta'(y,  ~). 

The condition (3.6) then becomes 

yJ(x, y, ~) = ( x - y ,  ~> § when x ~ y ,  (3.6)' 

and (3.5) gives when x = y  
a'(y, ~) -a(y ,  ~) ES ~ (3.7) 

From (3.7) it follows tha t  we may  replace (3.5) by 

a'(x, grad x v2) -a '(y ,  ~) ES ~ (3.5)' 

Definition 3.1. A phase function v2ESI(U, R n) where U is a neighborhood of the dia- 

gonal in ~o • and a real valued function a'ESl(eol, R n) will be called adapted to A if 

(3.5)', (3.6)' and (3.7) are fulfilled in U and ~ i  respectively. 

I t  is obvious that  a real valued function a '  satisfying (3.7) exists if and only if I m  a E S o 

- - o n e  can then take a' = R e  a - - a n d  we have seen above tha t  this is true if A is formally 

self-adjoint. The condition (3.5)' is independent of the choice of a' .  Clearly (3.5)' and (3.6)' 

are implied by  
a'(x, grad x ~p) = a'(y, ~), (3.5)" 

yJ(x,y,~)=O when ( x - y , ~ > = O  and gradxy~(x,y,~)=~ w h e n x = y .  (3.6)" 

These equations define a Cauchy problem for the non-linear first order differential equa- 

tion a'(x, gradx ,p) =a'(y, ~), depending on the parameters  y and ~. I f  a" were homogeneous 

with respect to ~ we could restrict ~ to the compact set {~{ = 1, and then extend the defini- 

tion of yJ by homogeneity. In  the general case we set ~ =2~ where �89 < 171 4 2  and 2 is large. 

With ~ =2X, the conditions (3.5)", (3.6)" become 

2-1a'(x, ~ grad~ X) = '~-la'(Y, ~7), 

Z = 0 when (x - y, ~> = 0, gradx X = ~ when x = y. 

Since ~-la'(x, ~ )  ~a0(x, v~) in the C r176 topology for v~ 4 0  when 2 ~  oo, this is also defined for 

= ~ and we now have a compact parameter  space. From the standard existence theorems 

for first order partial differential equations it follows tha t  for large ~ there exists a unique 

solution in a fixed neighborhood of the diagonal, independent of 2 and ~, and the solution 
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belongs to a bounded set of C ~ functions of x, y and ~7 for large 2. I n  a neighborhood U of the 

diagonal of ~5 • (5 in (D 1 X 170 1 we have therefore constructed a funct ion y)E S 1 such tha t  ~0 

and a '  are adapted  to A. (See a remark following Lemma 2.2.) 

F rom (3.6) and the hypothesis t ha t  ~ E S 1 it follows if U is replaced by  a smaller neigh- 

borhood of the diagonal of ~ • ~ tha t  

I~l < C ] g r a d x w ] ;  

I x - y [  < C l g r a d g  ~o1 ; 

[~i > C, (x, y) E U; (3.8) 

I~1 >~ C, (~, y) e U. (3.9) 

I n  what  follows we assume tha t  U is chosen so tha t  these est imates are valid. This was 

taci t ly  assumed already in the passage from (3.5) to  (3.5)'. 

Let  Z E C~(U) be a funct ion which is equal to 1 in an open neighborhood U 0 of the 

diagonal in w • ~o. We shall choose the funct ion q in (3.4) so tha t  q = 0  except over a compact  

subset of U, so it will not  ma t te r  t ha t  ~fl is not  defined everywhere.  Since the set F r  in 

Theorem 2.6 is a closed subset of U •  and is contained in the diagonal when t=O, it 

follows tha t  we can choose e > 0  so tha t  (x, y) E U 0 if (x, y, t) EFr [t[ <e  and y E S .  Thus we 

need no t  be concerned with the definition of q outside U0, for i t  can only  contr ibute  an 

operator  with a Coo kernel when [t[ <e.  

I n  view of Corollary 2.10 and the proof of Theorem 2.9 we can choose a kernel 

IES~  R n) vanishing outside a compact  subset of U such tha t  I - (2~r ) -nES- I (Uo ,  R ~) 

and 

[-+ ffI(x,y,~)e~(x'"'~)/(y)dyd~-/(x), /eC~(~o), xef~, 

is an integral operator  with C ~ kernel. I n  order t ha t  the operator  (3.4) for t=O shall re- 

present the ident i ty  operator  (modulo operators with Coo kernel) we therefore pose the 

boundary  condition 
q(x, O, y, ~) = I(x,  y, ~). (3.10) 

Furthermore,  in order t ha t  (D t +a(x,  D))Q(t) shall have a Coo kernel we must  make sure tha t  

e - ~  (Dr + a(x, D)) (qd ~) ~. S -  ~ ( U 0, Rn). (3.11) 

To solve (3.10), (3.11) we shall use Corollary 2.13. Wi th  b defined by  (2.15) set 

b 1 = b + a(x, grad x ~p) - a '  (y, ~) E S ~ (U, Rn). We shall successively determine kernels q0, ql . . . .  

in eo 1 • ( - e, e) • co • R n so tha t  for large [ ~[ 

~. a (~) (x, gradx ~p) D~qo + Dtq o + b I q0 = 0 (3.12) 
I~1 = 1 

qo(x, O, y, ~) = I(x,  y, ~), (3.13) 
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e- ~ (D t § a(x, D) ) (qk e ~) - ~ a (~) (x, grad x yJ) D~qk -- Dt q~ - bl q~ § Rk (x, t, y, ~) = O, k >~ 0 
I~l=l 

(3.14) 

a (~) (x, grad,  ~) D~ qk + Dt q~ + bl qk = ZR~_ i (x, t, y, ~), k >~ 1, (3.15) 
i~1=1 

qk(x ,O,y ,~)=O,  k>~l. (3.16) 

Thus we argue in each step as if there were no remainder  term in (2.16) and a(x, gradz yJ) = 

a'(y, ~), but  we take care of the  error in the following step. Since a(~)(x, gradx~f) is real 

valued and has a uniform bound for l al = 1, it is clear t ha t  for sufficiently small ~ these 

recursion formulas have solutions with compact  support  in U for [t I <e;  as in the discussion 

of the funct ion yJ above we conclude first t ha t  q0 E S ~ hence tha t  R 0 E S -1 (Corollary 2.13), 

then tha t  qlES-1; inductively we obtain qjES -j, R j E S  -j-1. Adding (3.12), (3.14), (3.15) 

gives 
k - 1  k k - 1  

e - '* (n t  + a(x, D))((qo + . . .  + qk)e ~) = g ~o R j -  ~o Rj  = ()~- 1) ~0 Rj - -Rk ,  

and adding (3.13), (3.16) we find tha t  

(qo + . . .  + qk) (x, O, y, ~) = I(x,  y, ~). 

Now define q ~  ~ o  qJ (see H6rmander  [7], Theorem 2.7). I t  follows immediately tha t  q 

has the required properties (3.10), (3.11). Thus Q maps C~(~o) into C~r • ( - e, e)); 

Q ( O ) / = / + k / ,  /EC~(o)),  (3.17) 

where k has a C ~r kernel, and for It I < e we have 

( n  t + A)  Q(t) / =  K( t ) / ,  /E C~ (co), (3.18) 

where K has a C ~r kernel as a funct ion of t also. To prove (3.18) we note tha t  A differs 

f rom a(x, D) by  an operator  with C ~ kernel in o)1, so K(t) has a C ~ kernel over o) 1 • m. 

Since A is pseudo-local the kernel is also C r162 over ~ • ~o outside a compact  subset of U, 

hence over ~ • o~. 

F rom (3.17) and (3.18) we conclude tha t  for It] < 

fo Q(t) / = l~(t) ( /+ k/) + J~(s) K(t  - s) / ds, 

or more briefly Q(t) - ]~(t) = J~(t) k + f l  JE(s) K(t  - s) ds, (3.19) 

as an  equali ty between operators from C~(co) to C~r Since ~(t) is a C ~r funct ion of t 

with values in the space of continuous mappings of C~r into itself, we conclude t h a t  

Q(t) - ~(t) has a C ~r kernel in ~ • ( - ~, ~) • ~o. 
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4. Asymptotic properties of the spectral function 

Having determined the singularities of the kernel of the Fourier transform ~(t) of the 

spectral measure when ] t I < e, we shall now invert the Fourier transformation to obtain 

precise information concerning the spectral function at infinity. Let ~ be a positive function 

in S(R) such that  supp ~ ( - e ,  e) and 6(0) = l .  If  ~(x, t, y) and Q(x, t, y) denote the distri- 

bution kernels of ~(t) and of the operator Q(t) of the form {3.5) constructed in the pre- 

ceding section, we have found that  

~(t ) (~(x ,  t, y ) - Q ( x ,  t, y ) ) E C  ~, x q ~ ,  yeo) ,  

and the support of this function is bounded in the t-direction. Hence 

f 1 A Q(X - # )  de(x, y, #)  - :~- (9(.)  Q(x, ., y)) (),) (4.1) 

is a rapidly decreasing function when 2-~ ~ ,  uniformly with respect to x E ~ and to y in a 

compact subset of oJ. Here we have assumed that  the local coordinates are chosen so that  

the given density in ~ is the Lebesgue measure in r 

To evaluate the inverse Fourier transform in (4.1) we introduce 

R(x,  ]t, y, 2) = f 6(t)q(x, t, y, 2)eitX dt. (4.2) 

This is a function in S~ • R • ~o, R ~) and it is rapidly decreasing as a function of X in 

the sense that  XNR(x, ~, y, 2) and its translates with respect to ~t belong to a bounded set 

in S o for each integer N. This follows immediately if we multipy (4.2) by ,~N and integrate 

by parts with respect to t. 

If  q had compact support in 2 we would have 

Q(x, t, y) = f q(x, t, y, 2) e i(v(x" y' ~)-a.(~. ~)t) d2, 

so the inverse Fourier transform would be 

5 -  (~o(. )Q(x, ., y))(~) = R(x ,  2 - a '  (y, 2), y, 2) e~v'tx'~'~) d2 �9 (4.3) 

In  view of the rapid decrease of R as a function of ~t this integral is a well defined continuous 

function of x, y, ~ for any q E S  ~ and using Lemma 2.2 as in Section 2 we conclude that  (4.3) 

is valid in general. Thus we have proved: 
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LEiVIMA 4.1. I /  R is de/ined by (4.2) with the/unction q constructed in Section 3, then 

f ~ ( 4 - / a )  de(x, y,/,) f R(x, -a ' (y ,  ~), y, 4 ~)e,~< ~, Y ' ~) d ~ (4.4) I 

J 

is rapidly decreasing as 4---> c~. 

To obtain the asymptotic formulas we must  s tudy the function R more closely. With 

the notation 
re(y, a) = m{~; a'(y, ~) <~cl}, 

we have for any integer N 

I f R(x, 4-a'(y, ~), y, ~)e'~(~.Y'+) d~ < C f (l +14-al)-N dm(y, a). (4.5) 

To estimate the integral on the right we need a simple lemma. 

L E M ~ x  4.2. The/unction re(y, 2) belongs to Sn(o~, I t ) / o r  large 4. 

Proo/. Set 2 =t/~ where ~ ~<tz~<2 and t is large. Then 

t=am(y, t#) = m{~; t-la'(y, t~) <~ /z}. 

Since t-la'(y, t~)-+a~ ~) in the C ~~ topology for ~ 4 0  when t-~ ~ ,  it follows from the impli- 

cit function theorem that  the function defining the surface t-*a'(y, t~) =/~ in polar coordi- 

nates also converges in the C ~~ topology when t-~ r Hence 

t-am(y, tl~ ) -+ #am{~; a~ ~) <<. 1} 

in the C ~~ topology, which proves the statement.  

By Lemma 4.2 we have Idm/da] <<.C(r a-* for large a, hence if N > n  

= 0 ( 4  -N) + C(1 + i4I)n-lf(1 + 14 - - (71)n- l :  N d q  

= 0(2 -N) + C'(1 + 141r-'. 

Here we have used that (t +1~1)< (1+141)(1 + 1 ~ - 4 1 ) i n  ~e w  of the triangle inequality. 
When x = y  we can therefore conclude from (4.4) and the positivity of Q and of de tha t  

e(x, x, 4 + l ) - e ( z ,  x, 4) < C(1 +141r-', 

when x is in a compact subset of o), hence for all x E ~ .  Since e(x, y, 4 + l ) - e ( x ,  y, 4) is the 

kernel of a positive operator, this result can immediately be extended to points outside the 

diagonal (el. Lemma 3.1 in HSrmander [8]) so we have proved the crucial 
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L ] ~ M ~  4.3. There is a constant C such that 

]e(x, y, ~ + 1 ) - e ( x ,  y, 2)1 ~<C(1 + 121 )~-1. 
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(4.6) 

f e(;~ tt) e(x, I 

F r o m  (4.6) we obta in  

Nex t  we shall es t imate  the spectral  funct ion by  in tegra t ing (4.4) f rom - oo to 2. This 

gives 

y,#)d#-ffo<oR(x,(x-a'(y,~),y,~)e'~(x'~")d~dc~l<~C. (4.7) 

I 
J ~ ( 2 - # ) e ( x ,  y,/~)d#-e(x, y, 2) 1<<. C(1 + ]2 [)n 1, (4.8) 

if we note  t ha t  (4.6) implies 

le(x, y, y, + 121 + )n 1( 1 + I 1). (4.6)' 

In  order to derive an  es t imate  for e(x, y, ,~) i t  only  remains  to s tudy  the  double integral  in 

(4.7). To do so we note  t h a t  by  the definit ion of R 

f R(x, (~, y, ~)d(~ =~(O)q(x, O, y, ~) I(x, y, ~). 

(The nota t ion  I is explained in Section 3.) Set 

Rl(x, ~:,y,~)= ~ R ( x , a , y , ~ ) d a ,  T < O  

Rl (x, ~, y, ~) = ~ ~R(x ,  (~, y, ~) d(l-  l(x, y, ~) = ~ R(x, (x, y, ~) d(~, 7 > 0 .  

Then R 1 (x, ~, y, ~) )t N is uni formly bounded for any  N and we have  

f f~  R(x, a (y, ~), y, ~) d~ 
a' ei~(x. y, ~) 

da  
<,1 

= ~ I(x, y, ~) e'~(x'Y'~' de + f Rl (x, X-  a' (y, ~), y, ~) e'~(~'~'~) d~. J a'(y, ~e) <), 

B y  an es t imate  analogous to (4.5) and  by  L e m m a  4.2 the  last  integral  can be bounded  

by  C(1 + [2])n-~. Since I(x, y, ~) - (27e) -~ = O(1/[~I ) when (x, y)E U 0 and  ~-~ co, it follows 

when (x, y) E U 0 t ha t  

fa(y.8)<g I(x'Y'~)e'~(x'u'8)de-(27e)-n(d a'(u, ~)<)~e'wcx'Y'r ~ C(1 -~ lit [)n-l" 

On the other  hand,  we have  I = 0 when (x, y) ~ U. Hence  we have  proved  
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THEOREM 4.4. For x and y in a compact subset o/ the coordinate patch to and su//i- 

ciently close we have uni/ormly 

e(x,y, 2)-(2zt)-"f j  ~'(~. ~, <a e'~(~' ~'r d~ I ~< G(1 +121) ~-1 (4.9) 

i/ the phase /unction ~p and a' are adapated to A over a neighborhood o/ the diagonal in 

to x to (Definition 3.1). In  particular, 

e(x, x, 2 ) -  (2rt)-~ f ~.(x.r d~ I <<. C(1 + 121) n-1 (4.10) 

uni/ormly in ~2. On compact subsets o~ the complement o/the diagonal in ~ x ~ we have also 

le(x, y, 2) 1 < C(1 +/2IF -1. (4.11) 

Here  the local coordinates are assumed to  be chosen so t h a t  the  Lebesgue measure  in 

the local coordinates is equal  to the  given posit ive densi ty  in the  manifold.  I n  the  proof 

of (4.11) we choose U so t h a t  (x, y)(~U. 

Remark. I n  m a n y  cases it  is not  necessary to make  a ve ry  careful choice of the  phase  

funct ion yJ in (4.9). For  example ,  if the  surface {~; a~ ~) = 1} has only posit ive curva tures  

and  n >~3, it  follows easily f rom (4.9) t h a t  in local coordinate  sys tems 

le(x, y, 2) - (2:o-= f o,(~.~)< d<~-~'r < C(l +12l)"-L (4.9)' 

I n  the one dimensional  case on the other  hand there  is hard ly  any  f reedom a t  all in the choice 

of 9. 

We shall now s tudy  the Riesz means  e~(x, x, 2). (See H S r m a n d e r  [8] for the definitions.) 

To do so we mus t  eva lua te  the double integral  in (4.7) more precisely. We now choose the 

funct ion ~ E $ so t h a t  supp ~ c  ( - s ,  s) and ~ = 1 in ( - s / 2 ,  e/2). (Clearly ~ cannot  be posit ive 

then.)  Firs t  note  t h a t  

fa  R(x, a, x, 8(x, a, 2) = ,(x.~><~ ~) d~ 

belongs to sn(to • R, R) for large 2 and is rapidly  decreasing a3 a funct ion of a.  The proof 

is essentially a repet i t ion of t h a t  of L e m m a  4.2: We set  2 = t# where 1 ~</x ~< 2 and  t is 

large and  obta in  

t-aS(x, a, t#) = I- R(x, a, x, t~) d~. 
J t - l a ' ( x ,  t~) < tt 
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The only new feature is t ha t  the integral on the r ight could cause trouble for small ~. 

This difficulty is eliminated if one subtracts  a function S x defined as S bu t  with a'(x, ~) 

replaced by  a homogeneous funct ion independent  of x, for the assertion is easily proved for 

S 1. We leave the details for the reader. 

Now we rewrite the double integral  in (4.7) with x = y  as follows 

f f o< R(x, ,~- a' (x, ~), x, ~) d~ da= ( I R(x, ,~, x, ~) d~ d(r= f S(x, cr, 2 - ,~) da. 
J J a<).-a'(x,~) 

Since S(x, a, 4) is rapidly decreasing as a funct ion of a, the contr ibution to the integral 

when l a 1 > 2 / 2  is rapidly decreasing. For  l a 1 < 2 / 2  we have by  Taylor ' s  formula for 

a ny  N, since S 6 S ", 

k - 1  
S(x, a, 2 - a) = 5 ( - q)~/J! diS( x, a, 2)/d2J+ 0((1 + la]) N2n ko~). 

0 

The integral of the error terms is O(2n-k), and 

f lo.<~/2( - a)' dJS(x, a, ,~)/d2 da= f:]:c( - a)' dJS(x, a, 2)/d2~ da + O(2-N) 

for any  N. The infinite integral we can express in terms of the Fourier  t ransform in 

view of (4.2) and this gives the expression 

dJ /d~J f  D~q(x, t, x, ~) d~ It=o 
J a  '(x, ~)<), 

which is a funct ion in S n J (w, R). Hence the asymptot ic  sum 

eo(x, 41 ~ ~ ( -  i02/ot o2/~/j ! q(x, t, x, ~1 d~ I,=o (4.~21 
0 J a'(x. $)<,~ 

is defined. We choose e 0 equal to 0 on the negative half axis and set as usual for Re a >~ 0 

e~ (x, 4) = (1 - ~/;t) ~ deo (x, i~). 

If  q)(x, 2) is a continuous funct ion on f2 x R which is rapidly decreasing when 4--> ~ ,  

t ha t  is, O(2 -N) for every N,  we set 

~ (x, 4) = f~  ~ (1 - ~/2)  ~ ~(x,/~) d~. 

Note  tha t  ~0~ is bounded and has an asymptot ic  expansion in non-negative integral powers 

of 1/X at + o o .  
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THEOREM 4.5. I /  e o satisfies (4.12) there exists a continuous/unction ~(x, 2) on ~ • R 

which is rapidly decreasing when 2 ~ (>o such that /or  Re :r > 0 

le~(x, x, 2 ) -  e~(x, 2) - q~(x, 2) 1 < C~(1 + 121) n-l-ae~. (4.13) 

We have ~ q~(x, 2)d2 = -I t (x ,  x) i / k  is the operator in (3.17). 

The presence of the funct ion ~ in (4.13) is required since e o only takes into account  the 

symbol  of the operator  A. The effect of adding to A an operator with a C ~~ kernel is ac- 

counted for by  the term ~ .  

Proo/ o/ Theorem 4.5. The definition of e 0 and (4.1) mean tha t  

~ de(x, 2) -d%(x ,  2) = ~(x, 2)d~, 

where ~ is rapidly decreasing and ~ qJ(x, 2) d2 = (J~(x, t, y) - Q(x, t, y))t=0.x=~ = - k(x, x). 

Hence de-deo-qpd2=((~-Q)  ~ de, or 

e - % - ~ ~  = (~_0) ~ e = / .  (4.14) 

Now it follows from (4.8) t ha t  

I/(2) I = ] ( ~ - ~ ) .  e(2)) I <C(1 + 1 2 I t  -1, 

and by  {4.14) we also know tha t  / is rapidly decreasing at  - ~ .  Fur thermore  / has no 

spectrum in the neighborhood of 0 where ~ = 1. I t  follows tha t  

1I'(2) I <c(1  + 121 

(See e.g. HSrmander  [8], Theorem 2.6.) Since e ~ - eo  ~ - ~ a  =/% the theorem is proved. 

5. The case o f  differential operators 

I n  Sections 3 and 4 we have studied the spectral funct ion of an  elliptic pseudo-dif- 

ferential operator  of order 1 on a compact  manifold. We shall now prove analogous state- 

ments  for differential operators of order m. As in the introduct ion we shall consider a 

positive self-adjoint extension P of an elliptic differential operator  with C ~176 coefficients on 

a paracompac t  manifold ~ of dimension n. I n  a local coordinate pa tch  ~o where the Lebesgue 

measure agrees with the given densi ty  in ~ we choose a funct ion V(x, y, ~) for x and y 

close to each other  so tha t  y~ is homogeneous of degree 1 with respect to ~ E R n and 

p(x, gradxy))=p(y ,~) ,  v 2 ( x , y , ~ ) = ( x - y , ~ ) + O ( [ x - y l 2 ] ~ [ )  asx-+y.  (5.1) 

Here p is the principal symbol  of P .  
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T H E 0 R E M 5.1. For x and y in a compact subset o/r and su//iciently close we have uni. 

]ormly 

] e(x, y, ~) - (27t) ~,1 v(~. o <4 e'V'~'v'~) d~ l <~ C(l + l~l)(~-l)/m (5.2) 

i /~  is homogeneous in $ o/degree 1 and satis/ies (5.1). In  particular, 

[e(x ,x ,~)- (2ze)-~j  ,(~. ~)<~d$ ~< C(1 + I ~. b('~-l)/m (5.3) 

uni/ormly in compact subsets o / ~ .  On compact subsets o/the complement o/the diagonal in 

• ~ we have also 
le(x, y, ~.)[ < C(1 + [).[) (=-~)~m. (5.4) 

Proo/. Note first of all tha t  by Theorem 5.3 in HSrmander [8] it suffices to prove the 

theorem when ~ is compact, for example a toms.  Set ~4 =/51/a, which is a pseudo-dif- 

ferential operator of order 1 whose symbol a(x, ~) is asymptotically the sum of p(x, ~)l/m 

and homogeneous functions of order 0, - 1 ,  - 2  . . . .  (Seeley [14]). Since v 2 and pl/m are 

adapted to A the theorem now follows from Theorem 4.4. In  particular, we have proved 

Theorem 1.1. 

Theorem 5.1 allows us to apply Theorems 6.1-6.4 in H5rmander  [8]. For example, 

by  Theorems 6.1 and 6.2 there we obtain the following localization theorem. 

THEOREM 5.2. I /  /ELV(~), l <~p<~2, and i / /  has compact support in case p<2,  it 

/ollows that the Riesz means e~(x, /, 4) o/the eigen/unction expansion o//converge to 0 locally 

uni/ormly in the complement o/ the support o/ / when Re a ~ (n - 1)/p. 

For further references and applications we refer the reader to [8]. However, we shall 

give some remarks here concerning the Riesz means e~'(x, x, ,~) of the spectral function on 

the diagonal. First note tha t  the function e 0 in Theorem 4.5 is asymptotically a sum of 

integral powers of ~ if the symbol a of A is such a sum of homogeneous terms of integral 

order. Hence Theorem 4.5 applied to pl/m gives, again in view of Theorem 5.2 in HSrmander  

[8], tha t  the Riesz means of e(x, x, ~") can be approximated by a sum of integral powers 

of ~ within an error which is O(;tn-l-~e~). Now 

e~(x,x, 2m) = (1 -zm/2m)~de(x,x,z m) 

=f~[m(1-~/2)-(2)(1-~A)~+...+(-l)m-'(I-~/a)~]~de(x,x,~ m) 
14 -- 682904 Acta mathematica. 121. I m p r i m $  le 4 d6cembre  1968. 



216 LARS HORMANDER 

SO results on the Riesz means of e(x, x, ~m) can be carried over to s ta tements  on the Riesz 

means e~(x, x, ,~). (See also the proof of Theorem 2.7 in [8].) Thus e~(x, x, ,~) d i ] /ers / rom a 

f ini te  sum o/ integral powers o/,~l/m by an error which is 0(2 (~ 1-Re~)/m). To compute  the 

coefficients it is easier to use the s tandard  techniques of pseudo-differential operators; 

we refer the reader to Theorem 5.2 in [8] for such formulas. They  can also be obtained from 

the  asymptot ic  expansion of the fundamenta l  solution of the heat  equat ion a / a t + P  on 

the diagonal at  t = 0  since this is the Abel mean of e(x, x, t). Note  tha t  in contrast  with 

Theorem 4.5 the coefficients can be expressed completely in terms of the symbol of P .  

Our methods can be applied with no essential modification in the case of systems for 

which the eigenvalues of p(x,  ~) are distinct. I n  particular,  (5.4) remains valid for such 

systems and we have 

e(x, X, ~) -- (UTc,)-n ~p(~)  -hIm 0)(~) : 0(~ l/m) (5.3) 

Here eo(~) is the differential form 

o)(~) = n -  ~ (~, d ~  A ... A d ~  + . . .  + ( - l)n ~ d ~  A ... A d ~  _ ~) 

in R n, carried over to T* by  a linear map  preserving the Lebesgue measure. The integrat ion 

takes place over the sphere (T* - {0})/R+, oriented by  eo >0 .  

However  for systems with multiple eigenvalues we have no information beyond the 

results of A g m o n - K a n n a i  [1] and HSrmander  [8]. 

6. A eounterexample 

I t  was pointed out  by Avakumovi6  [2] t ha t  it is not  possible to improve Theorem 1.1 

for the Laplacean on the  sphere S a c  R 4. For  the sake of completeness we shall recall his 

arguments  here for the case of the n-sphere. First  we give some well-known facts coacern- 

ing spherical harmonics. (See e.g. Mfiller [13].) 

I f  in R n+l we use the polar coordinates x=roJ where r E R +  and toES n, the Laplace 

operator  assumes the form 

A = r-  2A s + ~ / ~ r  ~ + n ~/~r 

outside the origin, where A s is the  Laplacean in SL If  u(x) =r~v(o)) is a homogeneous func- 

t ion of degree #, it follows tha t  outside the origin 

A u  = r-2+~(Asv + /~(# + n - 1)v). 

Hence Au = 0 outside the origin if and only if v is an eigenfunction of - A  s with eigenvalue 

=ju(# + n  - 1). Since ~ describes all values >~0 when # ~ 1 - n ,  we obtain all eigenfunctions 
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Of --A s by  restricting to S n all distributions u in R n which are harmonic and homogeneous 

of degree ~< 1 - n  outside the origin. Then Au has to be a linear combinat ion of the deriva- 

tives of the Dirac measure, so we conclude t h a t / l  = 1 - n - k  where k is an integer >~0 

and tha t  
u ( x ) =  ~ a~D~E, 

where E is the fundamenta l  solution of A and a~ are constants.  (When ]c=0, n = l ,  the 

logarithmic potential  E must  be replaced by  a constant.)  The Fourier  t ransform of u is 

a ~  ~ I~1 -~, so it follows tha t  u is supported by  the origin if and only if I ~]~ divides the  

polynomial  ~ a ~  a. Let  N k be the dimension of the space of homogeneous polynomials  

of degree Ic in n + 1 variables, 

N k =  ( n +  k) " n 

We define N k =  0 for k < 0. Then it follows tha t  the multiplici ty of the eigenvalue 

~ k = / c ( k + n - -  1) of - A  s is N k - N k - ~  for ]c=0,  1, . . . .  I f  Vn is the volume of S n and e is 

the spectral funct ion of - As, it follows tha t  

e(x, x, ~k + O) - e(x, x, 2k - O) = (N~ - Nk  2)/V~ (6.1) 

e(x, x, ~k + O) = (Nk + Nk_  l) / W n (6.2) 

Since N ~ - N ~  2 is a polynomial  in/c of degree n -  1, it follows from (6.1) t ha t  

e(x, X, 2 k ~- O) -- e(x, X, 2k -- O) ~ C~(k n 1)/2 (6.3) 

for some c > 0 and large ]~. This shows tha t  Theorem 1.1 cannot  be improved. F rom (6.2) 

we also obtain tha t  

e(x, x, ~) ~-~12 _ 2 / ( n  ! Vn) = 0(Jr -�89 (6.4) 

which confirms Theorem 1.1 in this special case, if we note tha t  

2/(n!  Vn) = (2;Tf,)-n Vn_i/'l'~ 

and tha t  V n - 1 / n  is the volume of the uni t  ball in RL 
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