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I n  th is  pape r  we in t roduce,  and  u n d e r t a k e  the  s t u d y  of a class of Banach  a lgebras  

associa ted  wi th  a local ly  compac t  group G. These a lgebras  are  r e l a t ed  to  the  two-s ided  

Laplace  t r ans fo rm in the  same way  t h a t  the  group a lgebra  LI(G) and  the  measure  a lgebra  

M(G) are  re la ted  to  the  Four ie r  t ransform.  I n  the  following pa rag raph ,  we indica te  t he  

na tu r e  of some of our f inal  resu l t s  b y  exposing t hem in the  s imples t  non t r iv ia l  case. 

I f  A is a compac t  convex subset  of R" le t  s  denote  the  space of measurab le  func- 

t ions  on R a for which 

II/II~=SRI~'(~)I~A(~),Z~<~, ,,,,here ~A(x)=sup~A~ -~~ 

Note  t h a t  for /E  ~(A),  the  Laplace  t r ans fo rm 

/^(z) = S~ fix) e-Z.Xdx 

converges abso lu te ly  for Re  z = (Re z 1 . . . . .  Re  za) E A.  The  following facts  concerning ~(A)  

are  special  cases of resul ts  of this  paper :  

F1.  (Lemma 2.2) ~(A) is a Banach  a lgebra  under  the  no rm I] IIA and  convolu t ion  

mul t ip l ica t ion;  

F2.  (Corollary to Theorem 6.1.) The  ma x ima l  ideal  space of ~(A)  can be ident i f ied  

wi th  {zEC~:Re zEA},  and  the  Gel fand t r ans fo rm of / E ~ ( A )  can be ident i f ied  wi th  t h e  

Lap lace  t r ans fo rm/A r e s t r i c t e d  to  {z E C a: Re  z E A) ;  
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Portions of these results were announced at the meeting of the American Mathematical Society 
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F3. (Theorem 6.3.) I f  J is a regular ideal of s for which h(J)={z:/^(z)=O for all 

/E J} is contained in the open tube {z:Re zEint A}, then h(J) is a finite set {z I ..... zk) 

and there exists a finite dimensional subspace J "  of C(R n) such that:  

(1) Each g E J "  is a linear combination of functions of the form P(x)e -~'~, where 

P is a polynomial in n variables, and 

(2) If/EY~(A), t h e n / E J  if and only if S/g=O for every gEJ • 
For the setting described above, F1 and F2 are simple t o  prove; however, as far as 

we know, F3 requires most  of the machinery of this paper. Of course, all three results are 

trivial in the case n = 1. 

We shall actually s tudy a situation considerably more general than that  described 

above. Rather  than working with R ~, we shall work with a more general class of locally 

compact abehan groups. Also, we shall work with algebras ~(A) consisting of measures 

which satisfy a growth condition like that  defining s When the measures in ~(A)  are 

all absolutely continuous, then ~ ( A ) =  s 

�9 We were led to the results of this paper  in the process of studying another problem. 

Let  G be a locally compact abelian group and let M(G) denote the convolution algebra of 

finite regular Borel measures on G. We say N is an L-subalgebra of M(G) if it is a closed 

subalgebra for which/x EN implies v EN whenever v is absolutely continuous with respect 

to /~. A surprisingly involved question is the following: For which L-subalgebras N of 

M(G) is it true that  the maximal ideal space of N is the dual group of G? A partial  solution 

to this problem was obtained in [9]. The missing link for a general solution is supplied by  

Theorem 6.2 of this paper. The generalizations of F1-F3 obtained here can be considered 

spin-off from Theorem 6.2. The fitting together of Theorem 6.2 with results of [9] to obtain 

the general solution to the above problem is reserved for another paper, [10], in which we 

also s tudy the implications of this result for the structure theory of M(G) and other con- 

volution measure algebras. 

In  section 1 we define the class of groups to be considered and discuss certain back- 

ground information concerning Laplace transforms and analytic functions in this setting. 

We define, in section 2, the class of measure algebras to be considered and develop 

the elementary properties of these algebras. For a given group G, we begin with an L- 

subalgebra N of M(G) and construct an algebra ~(A) consisting of measures which are 

locally in N and satisfy a growth condition which insures that  their Laplace transforms 

exist in a " tube"  based on A. The set A plays the same role tha t  it did in our opening 

discussion. 

Sections 3, 4, and 5 are devoted to developing machinery to process t he  combinatorial 

problems that  arise in working with the correspondence A ~ ~(A) (these problems are not 
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apparent  in the one variable case, which is precisely why F2 and F3 are so easily proved 

in this case). In  Section 3 we develop a cohomology theory for the correspondence A ~ ~(A),  

which is essentially just the ~ech cohomology of presheaves. In  Section 4 we use the results 

of Section 3 and elementary double complex arguments to s tudy linear equations in ~(A).  

For certain types of linear equations we obtain a measure, called the residue measure, 

which is locally in N and determines the solvability of the equation. In  Section 5 we deter- 

mine the form of this residue measure through the use of the inverse Laplace transform 

and the Cauchy integral theorem. We show tha t  the residue measure is absolutely continuous 

and its Radon-Nikodym derivative is a linear combination of exponentials multiplied 

by  polynomials. 

Finally, in Section 6 we put  together the results of the previous sections to obtain ideal 

theoretic results for ~(A).  These results depend strikingly on whether or no t /V contains 

absolutely continuous measures. Because of this, we are able to give a spectral condition 

(Theorem 6.2) which ensures tha t  N contains absolutely continuous measures. In  the case 

where N =Le, the algebra of absolutely continuous measures with the identi ty adjoined, 

We obtain a generalization of F3 (Theorem 6.3). Theorem 6.1 gives a generalization of F2 

for general N. 

Our discussion comprises only a bare beginning of the study of the algebras ~(A).  

There are many  problems concerning these algebras that  we have not touched on. We have 

not completely solved those problems that  we have touched on. We list below several ways 

in which one might a t t empt  to extend our results: 

(1) Work with a larger class of groups. 

(2) Work with algebras of distributions satisfying growth conditions rather  than with 

measures. 

(3) At tempt  to characterize a larger class of ideals. 

(4) Study algebras ~(A) for which A is allowed to be noneompact  or have dimension 

less than  that  of the space X. 

(5) Obtain our results by  a direct application of analytic function theory, without the 

machinery of Sections 3, 4, and 5. 

In  attacking some of the above problems, one may  be able to use directly the machin- 

ery of Sections 3 and 4. With this in mind, we have stated the results of these sections 

in slightly more generality than is necessary for our later results. 
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1. Preliminaries 

Let G be a locally compact abelian group. Mackey, in [5], began the study of the 

Laplace transform in this setting. His concern was primarily with Laplace transforms of 

L~-functions. Arens and Singer, in [1], considered a one-sided Laplace transform in con- 

nection with certain subalgebras of LI(G). Our initial discussion in this section will overlap 

Mackey's to a certain extent. We shall use freely the modern theory of harmonic analysis 

on groups as expounded in [3] and [6]. 

Definit ion 1.1. We denote by ~ the group of all continuous homomorphisms of G 

into the multiplicative group of nonzero complex numbers. By F we shall mean the sub- 

group of ~ consisting of the bounded functions in ~;  i.e., F is the dual group of G. The 

real vector space consisting of all continuous homomorphisms of G into the group of 

additive reals will be denoted by X. 

We shall use additive notation in G and multiplicative notation in F and ~.  If  x E X 

then the equation to(g)=e x(g~ defines an element to =e ~ of ~ which is positive in the sense 

that it has positive range. Conversely, if to E~  and to is positive, then x(g) =log to(g) defines 

an element x = log to of X such that o = e x. If  to E ~ then 0 < [to [ E ~ and m/ lw  [ E F. I t  follows 

that each element of ~ can be uniquely written in the form eX7 for some x E X and ), E F. 

If  A c X ,  B c F ,  we shall often use the notation eAB for { e ~ : x E A ,  7EB}. The map x--->e ~ 

is clearly a group isomorphism of X onto a subgroup e x of L). 

If  W = X + i X  is the complex vector space of continuous homomorphisms of G into 

the additive complex numbers, then there is an analogous homomorphism w ~ e  w of W 

into ~. If  w E W  then w is a purely imaginary element of W if and only if eWEF; in this 

case w = ix  for some x E X. 

Suppose / is a function defined on a subset of ~ and toE~, x E X .  If/(e~to) is defined 

for z in a neighborhood of zero in (~ and is a holomorphic function of z in this neighborhood, 

then we shall say that / is holomorphic at to in the x-direction. The derivative/x(to) of / in 

the x-direction at to will be the derivative of/(e~to) with respect to z at zero. 

We may topologize ~ by giving it the topology of uniform convergence on compact 

subsets of G. With this topology, ~ is a topological group. 

Definit ion 1.2. If  U is an open subset of ~ and ] is a function which is defined and 

continuous on U and holomorphic in every direction at each point of U, then we shall 

say that / is holomorphic on U. The algebra of all holomorphic functions on U will be 

denoted by 9~(U). 

By a measure/~ on G we shall mean a complex valued set function defined on the 

bounded Borel sets of G, such that if K is any compact subset of G and tzK(E) =l~(E N K )  
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for each Borel set E ~  G, then/XK is a finite regular Borel measure on G. If/X is a measure 

on G, we define the total  variation measure I/X] for/X by I/xl ( E ) = s u p  ~_I[/X(E~)], where 

the supremum is taken over all finite disjoint collections {Et}n=l Of bounded Borel subsets 

of E. I t  follows that  l/x] is a positive, inner regular, Borel measure. I f  II/xll = ]/~](G) < cx~ 

then/X is called finite. If/X and v are finite measures, then their convolution product/x-v is 

the unique measure satisfying Sfd/x .v = ~ / (g l  + g~-)d/x (g~)dr(g2) for all continuous functions / 

with compact support on G. We denote by M(G) the Banach algebra of all finite regular 

Borel measures on G under convolution multiplication. The subalgebra of M(G) consisting 

of measures with compact support will be called M~(G). 

De/inition 1.3. If/X is a measure on G we define its Laplace transform #^ by  the equa- 

tion 

/x^(eo) = fm-l(g)d/x(g) 

whenever o is an element of ~ for which this integral converges absolutely. 

Note tha t  r is in the domain of/X^ if and only if S I r176 [d[/xl (g) < c~. 

LEMMA 1.1. (a) I//X is a measure on G, then the domain o//X^ has the/orm eAF, where 

A is a convex subset o / X .  (b) I]/XEMc(G) then/X^E ~(~);  the map/X~/X^ is an isomorphism 

o/Mc(G) onto a subalgebra o/9~(~). 

Proo/. Part  (a) follows from HSlders inequality and par t  (b) is obvious. 

The next lemma gives the form of the inversion theorem that  we shall use in Section 5. 

LEMMA 1.2. I] /X ̂  exists on eXF ]or some x E X  and /x^(e~,) is an integrable ]unction o] 

relative to Hair  measure on F, then/X is absolutely continuous with a continuous Radon- 

Nikodym derivative h~ given by 

h ~(g) = f /x^(~e x) r(g ) e~(~) d~ ' , 

where d~ represents integration with respect to an appropriately normalized Hair  measure 

on ~ .  

Proo]. If  /X  ̂ exists on e~F and dv(g)=e ~(g)d/x(g), then vEM(G) and v^(y)=/x^(e~,). 

The lemma now follows from the inversion formula for the Fourier transform (cf. [6], 

Chapter 1). 

Many of our later results depend heavily on the theory of holomorphic functions of 

several complex variables. For this reason, we impose conditions on G which ensure tha t  
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is a n  ana ly t i c  manifold.  Hencefor th ,  we shall  assume t h a t  G satisfies the  following 

condit ions:  

G1. The vec tor  space X is f ini te  dimensional .  

G2. The  subgroup  F o = e  *x of 1TM is open (hence closed). 

Using the  s t ruc ture  t heo ry  for local ly  compac t  groups  (cf. [6], chap te r  2), one can 

deduce t h a t  G1 and  G2 are  equ iva len t  to  the  following: The subgroup  H = {g E G:x(g)=0  

for al l  x EX} is compac t  a n d  G/H has the  form R p • Z q, with  R the  add i t ive  group of reals  

and  Z the  add i t ive  group of integers.  

I f  we set ~o = { ex+~:x, Y E X}, then  ~3 o consists of e xa c t l y  those  funct ions in gs which 

are  cons tan t  on cosets of H.  Thus,  we m a y  consider  a funct ion ~o E E2 o to  be a funct ion  on 

G/H = R ~ • Z q. Since co is a homomorphism,  i t  mus t  have  the  form 

(D(t 1 . . . .  , tp, ]~1 . . . .  , k q )  = e~'Z' + ' "  +$PzP ~ k '  . . ,  ~kq ,  

where Zl, ..., % are  a r b i t r a r y  complex  numbers  and  ~1 . . . . .  ~q are  nonzero complex  numbers .  

I t  follows t h a t  E] 0 is i somorphic  to  the  group 

r ~ • (C*) q = {(zl . . . . .  z, ,  ~1 . . . . .  ~ )  e C'+~: ~1 . . . . .  ~ ~=0}, 

where the  opera t ion  is add i t i on  in the  f irst  fac tor  and  mul t ip l i ca t ion  in the  second factor .  

A glance a t  Def ini t ion 1.1 shows t h a t  if U is an  open subset  of ~0, t hen  ]E 9~(U) if a n d  

on ly  if / is a holomorphic  funct ion  of the  var iables  z 1 . . . . .  %' ~1 . . . . .  ~q in U. Condi t ion  G2 

implies  t h a t  ~0 is an  open subgroup  of ~ and,  hence, E2 is the  discrete  union of t he  eosets 

of ~o. I t  follows f rom these considerat ions  t h a t  E~ is a p + q  d imensional  ana ly t i c  mani fo ld  

and  the  space ~ (U)  of Def in i t ion  1.1 is precisely  the  space of holomorphic  funct ions  on U 

in the  o rd ina ry  sense. 

I f  we represent  G/H as R p • Z q and  g~ 0 as (~ • (C*) q, t hen  we also have  

F o = F n ~o = e~x 

={(Zl  . . . .  , zp, ~1 . . . .  ~io)e CP • (r : Re  Zl = . . . = l ~ e z p = O , [ ~ l l = . . . = ] ~ q ]  = l } .  

We m a y  represent  X a s  R ~+q, where x =  (x 1 . . . . .  x~, x~ . . . . .  x~) E X  ac ts  on G//H = R ~ • Zq 

as follows: 
x(t l  . . . .  , G, k~ . . . . .  ]c~) = x~t~ + . . .  + x~G + x;k~ + . . .  + x'~]% 

I f  co = (z~ . . . .  , %, $~ . . . . .  ~q) E ~0, x = (x~ . . . . .  xp, x~ . . . . .  x~) E X,  and  y = (YI, . .- ,  Y~, Y~, . , . ,  Y~) E X,  

then  the  equa t ion  co = e x+~y s imply  means  zj = xj + iyj and  Sk = eXi+~'~ for ] =  1 . . . . .  p a n d  

k = l  . . . . .  q. 

W e  shall  use the  above  coord ina t ized  represen ta t ions  of G/H, ~o, and  X in the  re- 

ma inde r  of this  sect ion bu t  no t  in l a te r  sections.  
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If  ~g is the point  mass a t  g E G, then its Laplace t ransform e~, restricted t o  ~o, has 

the form 

~g(O)) : (~o-- l (g)= e tlZl . . . . .  t p Z P ~ l k l . ,  " ~qkq, 

where g determines the point  (t 1 .. . . .  tp, k I ..... kq) of R p • Z q= G/H and o) determines the 

p §  (z 1 .. . . .  %,~1 ..... ~q) of C~• q. If  /eg~(~o) then  ] m a y  be expanded in a 

multiple Lauren t  series in the variables ~ .. . . .  ~q with coefficients holomorphic in the 

variables z I ..... z~. Linear combinations of exponential  functions are dense in 9~(C ~) in 

the topology of uniform convergence on compact  subsets. I t  follows tha t  the space of 

functions in ~(~0) which are linear combinations of the functions oe ̂ for g E G, is dense in 

~(~o) in the topology of uniform convergence on compact  subsets of s 

LEMMA 1.3. I /  M~ denotes the space o] Laplace trans/orms o/measures with compact 

support on G, then Mc is dense in 0I(s in the topology o/uni/orm convergence on compacta. 

Proo/. Based on the above discussion, we have tha t  M~ restricted to s is dense in 

~(s I f  K is a compact  subset of s then K is contained in a finite union [ - J ~ = l ~ o  of 

cosets of ~0: If  # E Mc and ~ is Haa r  measure on H, we set d#~ =~id(#'~). We have ~u~(~Vo) = 

~u^(eo) f o r  eoE~ 0 and ju~=0 elsewhere on ~ .  I t  follows tha t  if/E9~(s then  / m a y  be uni- 

formly approximated  on K N 7 ~ 0  by  functions in M~ which are zero on K fi ~j~o for i ~=j. 

Hence, / m a y  be uniformly approximated  on K by  linear combinations of such functions. 

The space ~o is not  only an analytic manifold; it is also a Stein manifold (cf. [4], 

Definition 5.1.3). This is easily seen from the rep re sen t a t i on  of s as CP• (C*) q. If  U is 

an open convex subset of X, then eVFo = {e ~+ ~y E ~ :  x e U, y E X} is holomorphically convex 

in s since e o : ( z  1 .. . . .  %, ~1 . . . . .  ~q) EeUF0 simply means tha t  (Re z 1 .. . . .  Re  %, log ]~I]  . . . . .  

log ]~q[) lies in an open convex set U ~ R  "+q. If  ~0 does not  have countable order in s 

then ~ m a y  not  be a Stein manifold, since a Stein manifold is, by  definition, countable at  

infinity. However,  the following is t rue and  is all we shall require: 

L E ~ M A  1.4. Each coset o / ~ o  in ~ is an n-dimensional Stein mani/olcl where n is the 

dimension o/ X .  Also i/ U is an open convex subset o] X ,  then the intersection v/ eVF with 

each cosei o /~o  is holomorphically convex in this coset. 

We shall apply results f rom the theory  of holomorphic funct ions on Stein manifolds 

in several key  places in the paper.  The following lemmas state explicit ly two such appli- 

cations. 

LEMMA 1.5. I /  U is an open convex subset o / X ,  then the space M~ o/Laplace trans- 

forms o/measures with compact support, is dense in 9~(eVF) in the topology o/uni/orm conver- 

gence on compact subsets o/ eVF. 
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Proo/. This follows directly from Lemmas 1.3. and 1.4 and VII.A.9 of [2], and the 

fact that  eUF is the discrete union of its intersections with cosets of ~0. 

L~MMA 1.6. Let U be an open convex subset o / X  and let /1 ..... /m, k be elements o/ 

~(eVF). I /  /or each wEevF, the equation /lhl +...+/mhm=k can be solved /or /unctions 

hi, ..., hm holomorphic in a neighborhood o /w ,  then this equation can be solved globally /or 

/unctions h i . . . . .  h~ E 9~(eVF). 

Proo/. Note tha t  it is enough to prove this for the intersection of eVF with each coset 

of ~0. In  view of Lemma 1.4, this is just a special case of Theorem 7.2.9 of [4]. 

A pr imary obstacle to extending the results of Section 6 to general groups is the lack 

of analytic function theory, including results like Lemmas 1.5 and 1.6, for ~ in the 

general case. I t  is possible tha t  extensions can be obtained by placing more emphasis on 

the group theoretic aspects of the problem. 

2. The algebras ~ ( A )  and ~(A) 

Recall that  M(G) denotes the algebra of all regular Borel measures on G under con- 

volution mutiplication. We shall work with a closed subalgebra N of M(G) which satisfies 

the following conditions: 

N1. If /~ E N and v E M(G) with v absolutely continuous with respect to/~, then v E N; 

N2. N is dense in M(G) in the weak-* topology of M(G); 

N3. N contains the identi ty e of M(G). 

Condition N1 makes N an L-subalgebra of M(G) in the terminology of [8]. In  the 

presence of N1, condition N2 is equivalent to the requirement that  no open subset of G 

is a set of measure zero for every measure in N. Condition N3 is simply a convenience; if a 

subalgebra N does not contain the identity we can always adjoin it. The identity of M(G) 

is the point mass at  0 in G. 

Of particular importance is the algebra L consisting of all absolutely continuous meas- 

ures in M(G). The Radon-Nikodym derivative defines an isomorphism-isometry between 

L and LI(G), the algebra of Haar  integrable functions on G. Clearly L satisfies N1 and N2 

but  not, in general, N3. Hence, we shall work with the algebra L~ consisting of all measures 

in M(G) of the form/~+ze,  where/~EL and z is any complex number. 

Definition 2.1. Let Nloc denote the linear space of all measures/~ on G such that  the 

restriction/xK of # to each compact subset K of G, is in N. 

Note tha t  M(G)loc consists of all measures on G, with the te rm measure used as in 

Section 1. Also, (Le)lo r consists of all measures of the form/x+ze ,  where zE(~ and/x is an 
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absolutely continuous measure (i.e., #(E) =0  whenever E is a bounded Borel set of Haar 

measure zero). 

If A is a convex subset of X, then the convex tube in ~ based on A is the set e~P = 

{co E ~: log [o~ I E A}. Given a compact convex subset A c X and the subalgebra N of M(G), 

we shall define a Banach algebra ~(A) whose elements are in Nloc and have Laplace 

transforms defined in the tube based on A. 

Definition 2.2. If A is a nonempty compact subset of X, set ~a(g)=sup {e x(o): xEA}  

for each g E G. 

LEMMA 2.1. I] A and B are nonempty compact subsets o / X ,  xEX,  and ill, g2 EG, then: 

(a) ~s A is continuous on G; 

(b)  q~A(gl d-~/2) ~(PA(gX)~A(g2) and ~gA(O ) : 1; 

(e) ~A =~O<A>, where (A}  is the convex hull o / A ;  

(d) A c  B implies q~a <~Cfs; 

(e) ~A B =max  (~0a, ~B); and 

(f) ~A+~ =e-~OA. 

Proo]. Part  (a) follows from the compactness of A; part  (b) follows from the multipli- 

cativity of e -x as a function on G; and part (c) follows from the convexity of e -~(g) as a 

function of x. The remaining parts of the lemma are immediate from the definition. 

Definition 2.3. If A is a nonempty compact subset of X, then 

(a) for/~ E M(Ghoo set II/z IIA = i ~oA(g)d I# I(g) and [[/* II A = ~ ~Aa( -- g)dl/z [ (g); 

(b) set ~J~(A)={#EM(G)~oo: ]I#IIA < oo} and ~PJ~'(A)={/~eM(a)~oo: II/zll~ < co}; and 

(c) for the subalgebra N of M(G) set ~(A)=N~oe N ~J~(A) ={/~eN~oc: H#II~< oo} and 

~ ' ( a )  =N~oo fi ~J~' (A)= {#EN~oo: I[/~[l~ < ~ } .  

We also set ~ ( ~ ) = ~ ( ~ ) = ( 0 ) ,  where ~O is the empty set and (0) is the subalgebra of 

M(G) consisting of the zero element. 

LEMMA 2.2. Let A be a compact subset o / X .  1 / # E ~ ( A )  and vEt ' (A) ,  then tz.v exists, 

# . v E ~ '  (A ), and H#-V]la ~ I[#HA[H]A. I//~, vE~(A  ) then t z . ve~ (A  ) and Hiz.vll a ~ I/zHAH~HA. 

Under convolution multiplication, ~(A)  is a Banach algebra and ~ ' (A)  is an ~(A)-module. 

Proo]. Clearly ~(A) and ~ ( A )  are Banach spaces under the rtorms ]l Hn and ]] ]]~ 

respectively. 

If Nc denotes the space of measures in N with compact support, then Nr is a dense 

subspace of both ~(A) and ~'(A); this follows from condition N1. 
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I t  follows from (b) of Lemma 2:1 that  ~j~(-gl-g2)<~(gl)q~j~(-g2).  Thus, i f /  is 

a continuous function on G with compact support, then 

and 

-< v 2 (  - v~)II ! I1~ II ~ I1~ 

I. * t I I /  II~ I I "  IIA [I v IIA ~ 

I t  follows from the Riesz representation theorem that  there is a finite measure ~ such 

that  

f /  = ( f / ( g l  + 1(_ _ d~ g~)~- g~)d#(gl)dv(g~) gl 
J J  

for every continuous function / with compact support, and II Q II <~ II ~ ll~ 11~ I1~. i f  we set 

d ~ ( g )  = ~ A (  - g) d~(g), then II ~ 115 = II Q II ~< II ~ IIA II ~ I1~ and ~ [d2 = ~.~ [(g~ + g2) d#(g~)dv(g2) 
for every continuous function [ with compact support. Hence, ~t is the convolution product 

# .  ~. If # and ~ have compact support, then/z"  v G N~ ~ ~'(A ), since N is an algebra. That  

/z-v E ~'(A) in general now follows from the fact that  N c is dense in both ~ (A )an d  ~'(A) 

and the inequality II ~ ~  ll5 < II ~ II~ II ~ II~. 
If #, ~ E~(A) then we may repeat the above argument, using the inequality ~A(gl + 

g~) <~CfA(g~)cfA(g2), and conclude that  ~ .vE~(A)  and II~~llA ~< II~ll~ II~ll~. 
Since the associative, distributive, and commutative laws hold in Nr they hold 

also in ~(A). Hence, ~(A) is a commutative Banach algebra. Through convolution, ~(A) 

acts as an algebra of bounded linear operators on ~'(A).  In this sense, ~ ( A ) i s  an ~(A)- 

module. 

For each compact subset A of  X, let 9~(e~F) denote the algebra of functions on the 

tube eXlP which are uniform limits on eAF of functions bounded and holomorphic in a 

neighborhood of e~F. We give 9J(e~F) the supremum norm. 

LE~MA 2.3. The Laplace trans/orm is a norm decreasing isomorphism o/ ~(A) into 

9/(eAF). 

Pro@ If /~e~(A) and xEA,  then Se-~dl/~] <<.S~fAdI# ] =]l/aliA< ~ .  I t  follows tha t  

#^(co) exists at every point w of e~r and Iju^(w) I ~< I[~uilA. If/~ E Nc then #^E ~ (~)  and/~^ 

is bounded in a neighborhood of e~F. Since Nc is dense in ~(A) we have/~^E 9.1(eAF) for 

every # e ~ ( A ) .  Thus,/z-~/~ ̂  is a homomorphism of ~(A) into 9~(eAF), If for some xeA, 



IDEAL THEORY AND LAPLACE TRANSFORMS 261 

#^(e~) = 0 for all y 6 F, then v^(?) = 0 for all ~ 6 F, where dv = e-~d#. However, the Fourier 

transform is one to one on M(G) and so v=0 ;  i.e., # =0  if/~^ = 0  on e~F. This completes 

the proof. 

LEMMA 2.4. I /  A and B are nonempty compact subsets o / X  and x6X ,  then 

(a) B c  A implies ~(A) c ~(B) a ~ ' ( B ) c  ~'(A); 

(b) ~ (A  U B ) = ~ ( A )  n ~(B),  and ~(A)=~(<A>); 

(c) ~({x})=~ ' ({x})  and ~({0})=N;  

(d) i/ we set dTx#=e*d#, then T ,  is an isomorphism-isometry o/ ~(A) onto ~(A +x); 

(e) /or/ixed #6~(A) ,  the map x ~  T ,# is a continuous map o /A  into N. 

Proo/. Part  (a) fo l lows  f r o m  t h e  inequality ~0AI( -- g) ~ ~0BI( -- g) -~< ~B(~) ~ (~A(g) (cf. 

Lemma 2.1 (b) and (d)). Par t  (b) follows from (e) of Lemma 2.1, Par t  (c) follows from 

the fact tha t  ~0~)(g)= e -x(~) = (eX(g)) -1=  ~ ( -  g) and ~0(0~ 1. 

Clearly the map T ,  preserves convolution and is linear. Par t  (f) of Lemma 2.1 shows 

that  T ,  maps ~(A) isometrically onto ~(A +x).  I f  x6A  then T_,  maps ~(A) onto ~(A - 

x ) c ~ ( { 0 } ) = N .  If  x6A  and # 6 ~ ( A )  then e-X<~cfA6Ll(t~ ). I t  follows from the Lebesgue 

dominated convergence theorem tha t  if {xn}~_lc A and xn-~x6A, then e-x'-+e -* in/l(~a) 

norm and, hence, T_x~->T_~/z in measure norm in N. This establishes (d) and (e). 

We should point out that  par t  (a) of the above lemma refers to set theoretic contain- 

ment.  The norms in the spaces ~(A),  ~(B)0 ~ ' (B) ,  and ~ ' (A)  are all different. However, 

the linear structures of these spaces are consistent and convolution is consistent in ~(B)  

and ~(A). Note that  we also have the following: ~(B)  is not only a linear subspace of 

~ ' (A) ,  but  it is also closed under multiplication by  elements of ~[~(A); hence ~(B)  is a 

submodule of the ~(A)-modnle ~ ' (A).  One must, however, exercise care in using these 

relationships. A typical situation is the following: There may  be disjoint subsets B and C 

of A and a measure # 6 ~ ( A )  such that  # has an inverse vs as an element of ~(B)  and an 

inverse rC+VB as an element of ~(C); since Vs, : ' Vc6?~ (A); the computation ~u-(VB--VC) = 

e - - e = 0  is valid; however, the computation O=vB'O=vs'g'(vs-Vc)=e(vB--VC)=VB--VC is 

not valid because v B ~ ( A )  and we cannot t reat  ~ ' (A)  as an ~(B)-modnle.  In  the case 

where X has dimension one, the residue measure constructed in Section 4 has precisely 

the form VB--VC as above. The situation described above cannot occur when B f/C=t=O, 

for in this case ~(A),  ~(B),  and ~(C) are all subalgebras of ~ ( B  n C). 

The following lemma will be important  when we apply the results of Section 4 to ideal 

theory in ~(A): 
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L E ~ r A  2.5. Let A be a compact subset o/ X and #~ ..... f fnE~(A) .  I /  x e A  and the 

equation ]AI~ 1 § . . .  § =e has a solution /or ~ .. . . .  ~ ~ ( { x } ) ,  then there is a closed set E, 

containing x in its interior, such that this equation can be solved /or ~ ..... v ~ ( A  ~ E). 

Proof. Choose rx ..... v ~ ( { x } )  such tha t  ff~vt+.. .+ff~u~=e. Since N~ is dense in 

~({x}), we may  choose v; ..... v~EN c such that  I lff iv;§247 For each n 

let U~ be the open ball of radius 1/n in X centered at  x, and set B~ = (/~ ~A.  Since ffxr; +.. .  + 

f f~ r~-e  =~ ~ ( A ) ,  the function ~ is )l-integrable. We have T s - ~ e  -x pointwise on G and 

~s~ ~<~VA for each n. Thus, IlXll.~ = ~v .~d l  Xl -~ ~e "dlXl = IIXlI,., < ~, by the Lebesgue dom- 
ina ted  convergence theorem. Hence, we may  choose an n for which II;~IIB <1.  This 

implies that  ff~r; +.. .  +ff~v~ has an inverse p in ~(B~). I f  we set ~)~ =pv[, then ~1~1 + "'" § 

ff~p~=e and Pl ..... p ~ ( B ~ )  = ~ ( A  0 U~). This completes the proof. 

The next two lemmas give the crucial  facts needed in calculating the cohomology 

modules defined in Section 3. 

LEM~A 2.6. I / A  and B are compact subsets o / X  with A U B convex and i] f f ~ ( A  ~ B), 

then there exist ff A ~ ~ (  A ) and ff ~ ~ ~ (  B) such that ff = ff ~ +fiB. 

Proof. We first show that  if A O B is convex, then ~AnB=min (~A, ~ss). For a fixed 

gEG, choose x E A  and y E B  such that  qA(g) =e-Z(~ and q~B(g) =e-Y(g); such a choice is pos- 

sible because A and B are compact. Since A U B is convex, the line segment joining x 

and y lies entirely i n A  U B. Since A and B are closed, there must  be a point u =tx + (1 - t ) y  

on this line segment such tha t  u E A  N B. We have u ( g ) = t x ( g ) + ( 1 - t ) y ( g )  lies between 

x(g) and y(g), and so e -u(g) lies between ~A(!/) =e-Z(g) and q~B(g) =e-~(g). However, e u(g) ~< 

~Aos(q) ~< min (qA(g), TB(g)). I t  follows tha t  ~o~a,(g ) = min (~A(g), ~B(g)). 

I f  we set /=qAnsTA 1, then 0</~<1, q~f=~Aos, and cfz(1-/)~<qAos; the last in- 

equality follows from the fact that  for each gEG either/(9) =1 or ~B(g ) =~Aa~(g)" We set 

dff~ =/d/~ and d /~  = ( 1 - / ) d # .  We then have 

l i sa  IIA = f .,dls  I = fs Zdls I = f .,n dl. I = l i f t  IIA,,B < oo, 

and, similarly, II s ~  I1~ ~< II s IIAn~ < o o  

Thus,/~A E ~(A),  ff~ E ~(B), and clearly ff = ff~ + ffs. 

LEMMA 2.7. I f  A 1 .. . . .  A~, and B are compact subsets o / X ,  ff~E~J~(A~) /or i = )  ..... n, 

and/~x§ then there are measures v lE~((A~,  B}) /or i = 1  . . . . .  n such that 

r l+ . . .  + ~ = # ,  where (A~, B}  represents the convex hull o /A~  U B. 
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Proof. We may  assume without loss of generality that  the measures /~1 ..... /~n are 

absolutely continuous with respect to/~, for the/~-singular parts of the measures #1, ...,/~n 

must add up to zero. Hence, we assume d ~  -f~d# for i = 1 ..... n. We shall choose h 1 ..... h~ 

such tha t  Ih~l ~<min (I/~l, l) and h l + . . . + h ~ = l .  Let EI={gEG: Ifl(g)l > l }  and E~= 

E,_~U {gEG: [/~(g)l >1} for i=2  ..... n. We define h~(g)=f~(g) for g E G ~ E ~ ,  h~(g)=l for 

h g E E ~ E ~ _ I ,  and h~(g)=O for all other gEG. Clearly, { i}t=l has the required properties 

and each h~ is #-measurable. 

I f  we set dv~=h~d~, then ]v~[~<I#i] and [v~]~<l#], since ]h~]~<min(if~],l) .  I t  

follows tha t  v~E~(A~)N~t~(B)=~(A~UB)=~((A,  B>). We have h + . . . + v ~ = / x ,  since 

h l §  

Note that  throughout this section we have tacitly used the fact that  N satisfies 

condition N1. We used condition N3 in Lemma 2.5 and we shall use it extensively begin- 

ning with Section 4. Our first use of condition N2 comes in the next, and final, lemma of 

this section. This is an approximation result that  we shall apply in Sections 5 and 6. 

LEMMA 2.8. I /  U is an open convex subset o / X ,  then the space Nc o/Laplace transforms 

of elements of No, is dense in 9~(eVF) in the topology of uniform convergence on compact subsets 

of eVF. 

Proof. By Lemma 1.5, M~ is dense in ~(eVF). Thus, it suffices to prove that/V~ is 

dense in M~ in the topology of uniform convergence on compact subsets of eVF. Let K 

be a compact subset of eUF. If /~ E Mc and #^ is not in the uniform closure on K of N~, 

then there exists a finite regular Borel measure 2 on K such that  S #^d), 4= 0 but S v^d,~ = 0 

for all v e N c. However, ~ v^d2 = ~ X^dv, where ,~^(g) = ~ o~ l(g)d;t(r is a continuous function 

on G. Since N is weak-* dense in M(G) (condition N2), we have that  2^=0.  However, 

~t̂ d/z = S #^d~t 4= 0. The resulting contradiction shows that  M~ is contained in the uniform 

closure of N~ on K. This completes the proof. 

3. Cohomology 

In  this section we develop a cohomology theory which greatly facilitates the s tudy 

of the spaces defined in Section 2. Our theory is pat terned after the ~ech cohomology theory 

of presheaves. We shall need only the more primitive notions of this theory. Introductions 

to the theory of sheaves and presheaves appear  in [2], Chapters IV and VI, and [4], Chap- 

ter VII .  Our development will initially parallel that  of [4]. 

Rather  than working explicitly with the spaces ~(A) of the previous section, we shall, 

in this section and Section 4, work with somewhat more abstract  spaces. We do this with 

17 - 682904 Acta  mathematica. 121. Imprim6 le 6 d 6 c e m b r e  1968 
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the hope that possible future generalizations of our results might be obtained without 

excessive reworking of these sections. 

Definition 3.1. Let R be a ring, A a set, and $ a family of subsets of A such that  S 

is closed under finite intersection and contains the empty set (~. Let ~ be a map which 

assigns to each BES  an R-module ~(B), and let 0 be a map which assigns to each pair 

(B, C)cS,  with B c C ,  an R-module homomorphism 0B.C: ~ ( C ) ~ ( B ) .  We shall call 

a stack of R-modules on S if the following conditions are satisfied: 

(a) ~:(O) =(0); 
(b) OB. COOC. D=OB.D for B c  C c  D; and 

(c) 0~.B=id: ~ ( B ) - ~ ( B )  for BES. 

Ordinarily, A is a topological space and S consists of all open subsets of A. The term 

presheaf, rather than stack, is more common in this situation. Swan in [7] uses the term 

stack. We have borrowed this term to use in our peculiar setting. In  our development, 

A will be a compact convex set and S will consist of compact convex subsets of A. How- 

ever, in defining our cohomology modules, we shall use only finite collections of sets in 8 

and we shall not pass to the direct limit. Therefore, the topological properties of the sets 

in S will be unimportant. 

Note that  if A is a compact convex subset of X and S consists of all compact convex 

subsets of A, then the correspondence B-)~(B)  of Section 2, defines a stack ~ of ~(A)- 

modules on S, where OB.e is the injection of ~(C) into ~(B) for 0:4:BcC and Oo.c=O 

for all C. 

Throughout this section ~ will denote a stack of R-modules on a collection of sets $. 

If B, CES, B~C,  and #E~(C), we will often write #[B for 0z.c~t. 

De/inition 3.2. (a) By a complex B in $, we shall mean a finite indexed family 

{B 1 ..... B~} of elements of $. 

(b) Let I~ +1 denote the collection of all ordered (p+l)- tuples  (s o ..... %) of integers 

between 1 and n. If B={B 1 ..... Bn} is a complex and p~>0, then a p-coehain c will be a 

map a-~% which assigns to each 0=(% ..... sp)EI~ +1 an element %E~(Bs, N...NB~p) 

such that %= -ca. whenever o' is an odd permutation of o. 

(c) For p~>0 let CP(B, ~) denote the R-module of all p-eochains for the complex B 

and the stack ~, where for b, c E Cv(B, ~) and r E R we define (b + c)a = ba + % and (rc)~ = r%. 

(d) If ceCV(B, ~) and 0=(% ..... s~+l) eI~ +~, we set 

p + l  

(5"c)~= Y. ( -  1)~%1~,,o......~+. 
k - O  

where ok = (so ..... ~k ..... %+0 is a with the index sk deleted. 
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Note that  for p>~0, the map 5 Y is an ~-module homomorphism of CY(B, ~) into 

CY+x(B, ~). A simple calculation shows that  5V+*o(~=0 for p>~0. Hence, we have a se- 

quence 

~ 5P o_~co(B, %) ~A r ' ~) . . . .  cY(~, ~) ~ r247 ~)-~... (U 

in which the image of each map is contained in the kernel of the succeeding map. 

Note that  if a = ( s  0 ... .  ,8y)EIvn +1 and si=s j for some i # j ,  then the requirement tha t  

% =  -c~,  when a '  is an odd permutat ion of a, forces c~=0 for cECY(B, ~). Hence, if the 

complex B contains n sets, then CY(~, ~ ) = 0  when p > n -  1. 

De/inition 3.3. We denote the image of 5v by BY(B, ~) and the kernel of 5 Y+l by  

ZY(B, ~). Elements of ZY(B, ~) will be called p-cocycles and elements of BY(B, ~) will be  

called p-coboundaries. We set Hv(B, ~) =ZV(B, ~)/BY(B, ~) for p > 0, and H~ ~) =Z~ ~)- 

The ~-module HY(B, ~) is called the p th  cohomology module of the complex B with coeffi- 

cients in ~. 

A subcollection S' of S which is closed under finite intersection will be called a 

subdomain of S. I f  S' is a subdomain of $, ~ and ~ '  are stacks of ~-modules on $, and 

assigns to each set B e  S' an ~-module homomorphism a B : ~ ( B ) - ~ ' ( B ) ,  then :t will be 

called a stack homomorphism from ~ to ~ '  on S' provided a commutes with restriction; 

i.e., provided a~0~.c=0~.c cec for B, C~S' with B~C.  A sequence . . . . .  ~ ' ~ " - - > . . . ,  

of stack homomorphisms, each defined on the same subdomain S', will be called exact  

on $' if the sequence . . . .  ~(B) ~ ~ ' (B)  @ ~"(B) . . . .  is exact for each Be$ ' .  Where it 

will not cause confusion, we shall write simply a for each of the homomorphisms as  making 

up a stack homomorphism. 

If  a : ~ - + ~ '  is a stack homomorphism on a subdomain $ ' ~  $, and if B is a complex 

whose elements are elements of $', then a defines a homomorphism $: CY(B, ~)-->CY(B, ~') 

for each p, by (ac)~ = ~(c~). Clearly, a commutes with 5 and, thus, defines a homomorphism 

a*: HY(B, ~)-+HY(B, ~'). We have the following version of the standard lemma for exact  

sequences (cf. [4], Theorem 7.3.4): 

LEMMA 3.1. Let $' be a subdomain o /$  and let 73 be a complex whose elements are in $'. 

I] 0--->~ ~ ~ ' ~  ~"-->0 is an exact sequence o/stack homomorphisms on S', then the sequence 

O-+~(B,~) L C'(B,~') ~ CY(B,~")-~0 

is exact/or each p. Furthermore, there is a homomorphism ~*: HY(B, ~")-+HY+I(B, ~)  such 

that the/ollowing sequence is exact: 

0-+H~ ~)-+. . . -+HY(B, ~) ~ HY(B, ~') ~ HY(B, ~") ~ HY+I(B ' ~)-~ ... .  
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I f  B=(B~ . . . . .  Bn) and C =  (C1 ..... C~) are complexes in $, we shall say  tha t  C is 

a refinement of ]~ if each set in C is contained in some set in ]~. I n  such a case, we m a y  

choose a map k : I m ~ I  n such tha t  C~c B~( o for i = 1 ,  ..., m. For  cECV(B, 7s we set 

( ]cC)( ........ p) = c(~(~.) ..... ~(s~,)) l c,on...nc,p. 

Clearly, this defines a homomorphism k of CP(B, 7s into CP(C, 7s which commutes  with 

6. Thus, k induces a homomorphism k*: HP(B, 7s ~). 

LEMMA 3.2. I / C  is a refinement o /B,  then the map k*, defined above, is independent o/ 

the choice o/k .  I /  B is also a refinement o/ C, then k* is an isomorphism o] HP(B, 7s onto 

H~(C, 7s 

Proo/. The first s ta tement  is essentially Proposit ion 7.3.1 of [4]. The second s ta tement  

follows from the first. I n  fact, if B and C are mutual  refinements of one another,  then there 

are maps k: Im-+ In and l: ln-+ Im such tha t  C i c  Bk(i) and B j c  Cz(j)(i = 1 ..... m; j = 1 ..... n). 

Thus,  we have maps k l : I n ~ I n  and lk: Im-->Im, with B(j)c Bkl(j) and C~c Clk(o. The first 

s ta tement  of the lemma implies tha t  l 'j*= (kl)*=id:HV(B, 7s 7s and  k'l*= 

(kl)* = id :  H'(C, ~)~HP(C ,  7s I n  other  words, k* is an  isomorphism with inverse l*. 

Let  S' be a subdomain of S and C a subset of A with the proper ty  tha t  C t3 B E S' 

whenever BE S'. We m a y  define a s tack 7s on S' as follows: Let  7s N C) for 

each B E S ' ,  and define the restriction maps in the obvious way. The restriction map 

f rom 7s into 7s C) defines a stack homomorphism ~c:  7s163 on S', and hence, 

a homomorphism 5c: Cv(B, ~)~CP(B, 7s whenever  B is a complex contained in S'. 

Also, note tha t  if B = (B1, ..., Bn) c S', then C determines a new complex Bc = (B1N C ..... 

Bn N C). There is, trivially, an isomorphism between CP(B, 7s and  CP(Bc, ~) which com- 

mutes  with ~. Hence, there is a homomorphism of Cv(B, 7s to CP(Bc, 7s which we shall 

also call ~-c; this clearly commutes  with b. 

If  C and D are both  subsets of A for which C N B and D N B are in the subdomain S' 

whenever  B is, then we have a sequence O-+7s174163 of stack homo- 

morphisms,  where (~c �9 ~o) (#) = 7c(/X) | ~D(/~) =/~ I cns |  Dan for # 67s and (fie-rio) 

(/,t | =#[CnDnB--Vlcnonn for # 67s v ETs If  this sequence is exact  on S', then, 

by  Lemma 3.1, it induces an  exact  sequence 

O-~ H~ 7s ~ H~(~, 7s (~| Hv(B, 7s174 

(~c-~)* H~(B ' ~C,D) ~'~ Hp§ . . . .  

whenever B is a complex contained in S'. I f  we note tha t  Hv(B, 7s | 7s is natural ly  iso- 

morphic  to HP(B, ~c) | Hv(B, 7s and use the isomorphisms between Hv(B, 7s HP(B, 7s 
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HP(B, %cnD) and HV(Bc, ~), Hv(BD, ~), HV(BcnD, ~) respectively, then we 

exact sequence 

O~ HO(B ' ~) . . . .  ~ H~(B, ~) ~.'c. e ~  H~(Bc, ?g)| ~) 

~c-~5, H~(Bcno) ~* Hv+~(B, ~ ) ~  .... 

have the 

This is called the Mayer-Vietoris sequence. The next lemma summarizes this discussion. 

Conditions (1) and (2) of the lemma simply insure that  the sequence 0 - - ~ - ~ c ( ~ D - - ~  

~CAD--->'O is exact 

LEMMA 3.3. Let S' be a subdomain o] $ and C and D subsets o / A / o r  which C N B and 

D N B are elements o] $' whenever B is. Let ~ be a stack on S satis/ying the ]ollowing conditions: 

(1) q BES" and/~6~(B) then ~t]cnB=/~[DnS=0 implies g = 0 ;  and 

(2) i/ B E $' and ~t E ~ (B  N C N D), then there exist /xc E ~(B fi C) and ix D E ~(B N D} 

such that [~ =~c] BflCflD ~- ~D [ BflCf~D" 

Under these circumstances, there is a Mayer-Vietoris exact sequence 

0-~H~ ~:) . . . . .  H'(B, ~) 

for each complex B c $' .  

, H~(Yc, Y) |  ~) 

~c ~D H~(BCnD, ~) --  Hp+,(B ' K ) + . . .  

At this point we impose conditions on ~: which are satisfied by the stack 9~ of Sec- 

tion 2, and which allow us to calculate HP(B, ~[) in certain special cases. 

De/inition 3.4. Let A be a compact convex subset of a locally convex topological 

vector space X, and let S be the family of all compact convex subsets of A. Let Q be a 

fixed R-module. A stack ~ of R-modules on $ will be called a convex stack of submodules 

of Q on A if the following conditions hold: 

(1) for each BES, I~(B) is a submodule of Q; 

(2) if B, CE$ and O # B c C ,  then ~[(C)c~(B) and the restriction map OB.C is the 

inclusion map of ~(C) into ~(B); 

(3) if B, CE S and <B, C> is the convex hull of B U C, then ~(B) N ~(C) =~(<B, C>); 

(4) if B, CES and B O C is convex, then ~(B N C) =~(B)+~(C); 

(5) if B 1 ..... Bn, C6 S then [~(B~) + ... +~(Bn)] N ~(C) = [~(B1) N ~:(C)] +.. .  + [~(Bn) A 

~(c)]. 

Referring to the stack 9% of Section 2, we find tha t  the conditions of Definition 3.4 

are satisfied when R =9~(A), Q =9%'(A), and ~:(B)= 9~(B) for each compact convex subset 
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B of A. Conditions (1), (2), and (3) follow from Lemma 2.4, while conditions (4) and (5) 

are simply restatements of Lemma 2.6 and 2.7 respectively. 

LEMMA 3.4. Let ~ be a convex stack o/submodules of Q on A.  Let 79=(B,, ..., Bn) be 

a complex, and let C and D be closed convex subsets of X with U ~_IB~c C U D. I f  we define 

a refinement B ' = { B ;  ... .  ,B~,}  o/ B by B ~ = B i N C  /or i = 1  ..... n and B~=B~_~ND /or 

i = n  + l ..... 2n, then the map k* : HP(B, ~)-+HP(B ', ~) o / L e m m a  3.2 is an isomorphism 

/or each p. 

Proof. Note tha t  the conditions of Lemma 3.3 are satisfied for ~, C, and D with 

$' = $. In  fact, if B is a compact convex subset of A, then so are B N C and B N D; and if 

B N C = B  N D ={D then B ={D. Hence, if ~u6~(B) and tZIBnC=#IBnD =0, then (2) of Defi- 

nition 3.4 implies tha t  B N C = B N D = B = {D and # = 0; this gives condition (1) of Lemma 

3.3. Condition (2) of Lemma 3.3 follows from (4) of Definition 3.4. 

The Mayer-Vietoris sequence of Lemma 3.3, applied to B and B', gives us the following 

diagram: 

0-+ -+14 ~-11~' ~) ~* ~'c~b . . . . .  ,*:,cnD, ~ HP(B, ~) , HP(Bc, ~)| K) 

O-e-. . .  - ->HP-I(~cnD,  ~) 6"_..~* Hp(~,, ~) 

, HP(Bcn , ) ,~ )~ . . .  

l ;'~cnD 

H~(~'~, ~)| ~) ~-~ H~(~,~,~)~... 

Note that  the two rows of this diagram are exact and are both induced by the sequence 

0 -+ ~-+ ~c | ~D-+ ~cnD -+ 0. The maps It*enD, k*, IC*C, and/c~ are induced, as in Lemma 3.2, 

from the map k : I2~-+I~ defined by  k(i) = k(i + n) = i for i = i . . . . .  n. I t  follows tha t  the 

above diagram is commutative.  Furthermore, the complexes Be, BD, and Bend and the 

complexes Be, BD, and Bend are, respectively, mutual  refinements of one another. Hence, 

k'c, /c*, and k*nD are isomorphisms, by  Lemma 3.2. I t  follows from the diagram that  k* 

is also an isomorphism. 

A refinement B' of B, of the type given in the above lemma, will be called a one-step 

regular refinement. Let C be a refinement of B. If  there exist refinements B = B0, B1 ..... B~ 

of B such that  B~ is a one-step regular refinement of B~-I for i = 1 ..... n and C and B~ 

are mutual  refinements of one another, then we shall call C a regular refinement of B. 

The passage from •n to C might eliminate redundancies introduced in the refinements 

Bt ..... Bn. We have the following corollary to Lemma 3.4: 

COROLLARY. I f  ~ is a convex stack on A and B1 and ]92 are complexes with a common 

regular refinement, then HP(B1, ~) and HP(B~, ~) are isomorphic/or each p. 
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We now proceed to define the cohomology of a set as opposed to a complex. Let  

= (B 1 ..... B~} be a collection of compact subsets of A. I f  P is a hyperplane in X, then 

P = C  f~ D where C and D are closed half-spaces in X. We obtain another collection 

B' = (B1 ..... B~} by setting B~ = B~ n C for i = 1 ..... n and B; = Bi_ n fl D for i = n  + 1 ..... 2n. 

I f  B is a compact subset of A and (P1 .... , Pn) is a sequence of hyperplanes in X, then iterat- 

ing the above process yields a sequence (B0 ..... B~} of collections of compact sets, with 

B0 = {B} and B~ obtained from ~ - 1  by decomposing relative to the hyperplane P~ for 

i = l  ..... n. :Note tha t  a given Bt may  not be a complex because the sets composing it may  

not be convex. If, however, B~ is a complex, then we shall call it the polygonal decompo- 

sition of B relative to (P1 ..... Pn). A given compact set B may  not have a polygonal decom- 

position; however, if it does we shall call B a semipolygonal set. We have the following 

lemma concerning these notions: 

LEMMA 3.5. (a) Compact convex subsets o / A  are semipolygonal, as are finite unions o/ 

ordinary polygons in A. 

(b) The intersection o] any finite number o/semipolygonal sets is semipolygonal. 

(c) I /  B1 and B~ are polygonal decompositions o / a  semipolygonal set B, then B1 and 

B~ have a common regular refinement. 

Proo/. Parts  (a) and (b) are obvious. To prove par t  (c), we simply note tha t  if B1 

and B2 are decompositions of B determined by  (P], ..., P~) and (P1 z . . . . .  P~m) respectively, 

then the polygonal decomposition B3 of B, determined by (P~, ..., P~, P~, .... Pm),Z is a 

regular refinement of both B1 and Bz. 

Definition 3.5. Let ~ be a convex stack on A and let B be a semipolygonal subset 

of A. We define HP(B, ~) to be H~(B, ~), where B is any  polygonal decomposition of B. 

Note that  Lemma 3.5 (c) and the corollary to Lemma 3.4 imply that  the definition 

of H'(B, ~) is independent of the choice of B. 

The cohomology modules HP(B, ~) could be defined for a larger class of sets B, by 

using more general kinds of decompositions or by taking direct limits; however, the class 

of semipolygonal sets is large enough for our purposes. 

THEOREM 3.1. I] C, D, and C U D are semipolygonal subsets o] A and ~ is a convex 

stack on A, then there is an exact sequence 

O~ H~ (J D, ~ ) ~  ...--->HP(C U D, ~) , H,(C, ~) | ~) 

~-~'D 
Hv(C N D, ~) ~* Hp+I(C U D, ~ ) ~ . . .  
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Proo]. We can find a sequence (/91 ..... Pn) of hyperplanes which induces a polygonal 

decomposition ]g of C 0 D such tha t  Be, BD, and BCnD are polygonal decompositions of 

C, D, and C N D respectively. I f  $' is the collection of all convex compact subsets E of A 

for which E N C and E N D are convex, then $'  is closed under finite intersection and 

B c  $'. From this and (2) and (4) of Definition 3.4, it follows that  the conditions of 

Lemma 3.3 are met. The theorem follows. 

Let B={B~ ..... B~) be a complex, let B =  [3~ffi~B~, and ( B )  be the convex hull of B. 

There is a natural  injection i :~((B))-~C~ ~) given by  (i#)(~)=/~ IBm. Clearly, the image 

of i lies in Z~ ~)=H~ ~), and so i determines an injection i*: ~ ( ( B } ) ~ H ~  ~). 

I f  B is connected, then it follows from (3) of Definition 3.4 that  i* is onto. Hence, we 

have: 

L EMMA 3.6. I /  B is a compact connected subset o/ A and ~ i8 a convex stack on A, 

then i*: ~( ( B} )--> H~ B, ~) is an isomorphism. 

We are now in a position to compute the cohomology modules of the sets we shall be 

dealing with in later sections. 

THEOREM 3.2. 1/ B is a compact convex subset o / A  and ~ is a convex stack on A, 

then HP(B, ~ ) = 0  /or p >0  and i*: ~(B)~H~ ~) is an isomorphism. 

Proo/. The complex B, consisting of the set B alone, is a polygonal decomposition of B. 

For this complex, we have C~(B, ~ ) = 0  for p >0  and C~ ~)=Z~ ~ ) = ~ ( B ) .  

Let  x 0 ..... xn be the vertices of an n-simplex S = ( x  o ..... x n } c A .  The collection, 

B={B0, ..., Bn}, of all (n-1)-faces ,  B~=(x o ..... &~ ..... x~}, of S, forms a complex with a 
= n B regular refinement which is a polygonal decomposition of 0S [J ~=0 ~. Hence HP(~S, ~) = 

H'(B, ~) for any  convex stack ~ on A, by  the corollary to Lemma 3.4. I f  cEC~-I(B, ~) 

then n ... (~c)(0 ...... ) = ~ = o ( - 1 ) k c ( 0  ..... ~ . . . . . .  )lBafl...f~Bn=O, since B 0 N N B~=O.  However, the 

expression (~0C)(o ...... ) = ~ o ( - 1 ) k c ( o  ..... k ...... ), where the addition takes place in the 

~-module Q, may  not be zero. The map r : Cn-l(]g, ~)->Q is an ~-module homomorphism 

and 60(~c=0 for cEC~-2(B, ~). Thus, ~0 determines a homomorphism (~:Hn-I(B, ~)-~Q. 

I f  we identify H = 1(~S, ~) with Hn-l(B, ~), then we have a homomorphism ~$~: 

Hn-l(aS, ~)~Q.  

TH]~OREM 3.3. Let S be an n-simplex in A and let ~ be a convex stack on A. I / n > l  

then H'(aS, ~ ) = 0  /or p 40,  n - 1 ,  ($~ : Hn-l(aS, ~ ) ~ Q  is one to one, and i*: ~(S)---> H~ ~) 

is an isomorphism. I / n  = 1 then the sequence O~ ~(S)~H~ ~)~QO~ ~s" exactand HP(aS, ~) =0 

/or p > 0 .  
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Proo/. I f  n = l  then S=<xo, Z1)  , ~S={x0, 21} , and  H~ ~ ) = C ~  .~) where B is 

the complex ({x0}, {x~}). If  c6C~ ~) then 5oc=c~-co where c~6~:({Xl} ) and co6~:({Xo} ). 

I f  ~o c = 0  then 

C 1 = C o e ~ ( { X l }  ) ~ ~ ( { 2 0 }  ) = ~ (<Xo ,  ~1>) = ~ ( S ) .  

I t  follows tha t  O~Ih(S)~H~ ~)-+Q is exact. Since ]~ contains only two elements and 

their intersection is empty,  H'(B, ff:)=H"(~S, 7~)=0 for p >0.  

We now prove the theorem b y  induction on n. The above paragraph  establishes the 

case n = 1. We assume the theorem is true for any  convex stack and any  simplex of dimen- 

sion less than  n > 1. Let  ~ be a convex stack and S = <x 0 ..... xn) be an n-simplex with 

( n -  1)-faces B 0 . . . . .  B n. We set C = (J ~=#B~. We first prove tha t  H~(C, ~) =0 f o r p  40 ,  n -  1. 

Define a new stack ~ '  on B~ as follows: Let  ~ ' ( E ) = ~ ( < E ,  x~)) for each compact  

convex subset E of Bn ,where x, is the vertex of S opposite the face Bn. I t  can be verified 

directly t ha t  ~ '  is a convex stack of submodules of Q on B, ,  according to Definition 3.4. 

If  we let E ~ = B ~  B~ for i=O ..... n - l ,  then the complexes C=(B o . . . . .  B~_~) and E =  

(E 0 ..... E,_~) have regular refinements which are polygonal  decompositions of C and 

~B n = [J ~Zo~ E~ respectively. Note  tha t  

p p 

B~ = <E~, x~) for i < n and [7 B~ = < [7 E~, x~) for 
k = O  k =0  

s o .. . . .  sp < n and p < n -  1. I t  follows from this and the definition of ~ '  tha t  C~(C, ~)  and 

CP(E, ~ ' )  are isomorphic for p + n -  1. Since B~ is an ( n -  1)-simplex, we have H~(E, ~ ' ) =  

HP(@Bn, ~')=0 for p4=0, n - 2  and 61 :Hn-~(E,  ~ ' ) ~ Q  is one to one, by  our induct ion 

hypothesis.  Hence, HP(C, ~) = H~(C, ~.) = HP( E, ~') = 0 for p +0 ,  n - 2, n - 1. I f  c 6Zn-~(C, ~) 

then  c corresponds to c'6C~-~(E,~')=Z~-~(E, ~') such tha t  6oc'=O. I t  follows tha t  

5b'=c' for some b'6C~-a(E, ~'). There is a corresponding element b6C~-a(C, ~) such 

tha t  (~b =c.  Hence, H~-~(C, ~)=H~-~(C, ~ ) = 0 .  This completes the proof t ha t  H'(C, ~)=0 

for p ~0 ,  n - 1 .  

Since ~S=C U Bn and ~Bn=C ~ B~, Theorem 3.1 yields an  exact  sequence 

.. .  (~B,, Y) ~ HP(~S, 'I.) , H~(C, ~) ~ H~'(Bn, ~) , H~'(OBn, 'I.) . . . . .  

B y  the induction assumption, HP-I(~Bn, ~)=0 for p 41 ,  n - 1 .  B y  the result  of the above 

paragraph,  HP(C, ~)=0 for p + 0 ,  n - 1 .  Since Bn is convex, Theorem 3.2 implies tha t  

H~(Bn, ~) =0 for p +0.  

Hence, we can conclude f rom the above sequence tha t  H~(~S, c~)=0 for p +4=0, 1, n - 1 .  

To handle the case where p = 1 and n > 2, we note t ha t  H~ ~)= ~(S), H~ ~ ) =  ~(S),  
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H~ ~)=~(Bn), and H~ ~ ) = ~ ( B ~ ) ;  this follows f rom L e m m a  3.6 and  the fact  

tha t  each of these sets is connected when n > 2. The above exact  sequence then yields 

O--->Z(S) ~,e~, Z(S)| ~' ~' ~(B~) ~ ~* HI(~S,Z)--->O. 

A glance at the definitions of the maps involved (cf. Lemma 3.3) shows tha t  a l = i d :  

~(S)--->~(S) and fi2 = i d  : ~(Bn)~(B~).  Hence, f l l - f l2  is onto and  5*:~(Bn)~HI(~S, ~) 
is the zero map.  Thus HI(~S, ~)=0. 

I t  remains to  show tha t  8~: H~-I(aS, Z)~Q is one to one. Le t  B =(B0,  ..., B~)be  

the complex consisting of the ( n - 1 ) - f a e e s  of S. I f  c~Cn-l(B,cs and ~oc=O, then 

c ~ 0 = ( - 1 ) n ~ _ - - l ( - 1 ) ~ c ~ k ,  where a = ( 0  . . . .  ,n) and a k = ( 0 , . . . , ~  . . . .  ,n ) .  Note  tha t  

c~ k e ~ (B  0 . . . .  , & . . . . .  Bn) = ~({xk}), where xk is the ver tex of S opposite Bk. Condition (5) 

of Definition 3.4 yields elements b~:kE~((xk, xn} ) = ~ (B  0 . . . . .  /~k . . . . .  B~_I), such tha t  
n - - 1  c~, = ~k=0 ( - 1) k b~, where Tk = (0 . . . .  ,1~ . . . . .  n - -  1). I f  ~' is any  (n -- 1)-tuple of integers 

in [0, n], we set b~ .=b~  if T' is an  even permuta t ion  of vk, b~.=-b~, if ~' is an  

odd permuta t ion  of v~, and b~, = 0 if ~' is not  a permuta t ion  of any  v~. We then have an  

element b ~ C~-2(B, ~) such tha t  ( c -  ($b)~ = 0 and  ~0(c - (~b) = (~0 c = 0. This process can be 

repeated for each of the vertices of S and finally yields ce  Bn-~(]~, ~). Hence, 50c= 0 for 

ce  C~-~(B, ~)  implies c eB~-l(ig, ~); i.e., ~ : Hn-I(~S, ~)~Q is one to one. 

We should note tha t  our only use of condition (5) of Definition 3.4 comes in the 

above proof. 

I f  we set 0 ( E )  = Q  for each nonempty  compact  convex subset E of A, then we obtain 

a convex stack ~ of submodules of Q on A, which we shall call the constant  stack. For  

any  semipolygonal set B ~  A, the cohomology H~(B, Q) is just  the ordinary p t h  (~ech 

cohomology module with coefficients in Q. I f  we denote the injection of ~ into Q by  q, 

then q induces a homomorphism q*: H~(B, ~ ) ~ H ~ ( B ,  Q) for each p and  each semipolygon 

B. For  Q, Theorem 3.3 gives the well-known result tha t  5~: H'(~S, Q)--->Q is an isomor- 

phism. We thus have the diagram 

05 
H n-~(~S, ~.) , Q  

which implies tha t  q* : Hn-~(OS, 3;)--,H~-I(0S, Q) is one to one. Theorem 3.3 also implies 

tha t  q*: H~(OS, ~)~H~(OS, Cl) is one to one for/~ =l=n- 1 as well. Trivially, fl*:II~(B, ~)--, 
It~(B, ~) is one to one if B is convex. This indicates tha t  q* m a y  be one to one for a fairly 

large class of semipolygons B. 
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I t  is not  true tha t  q* is one to one for all semipolygons B. If  x0, Xl, x 2 are points of A 

which are not  colinear and if B = (x 0' x2} U (x  i, x2}, then Hi(B, Q) =0 ,  bu t  there are convex 

stacks ~ for which Hi(B, ~) ~:0. I n  fact, if ~ is the s tack ~ of Section 2, then a nonzero 

element of Hi(B, ~) corresponds to a measure #E~((x2})  which cannot  be wri t ten as 

# i - / t 0  with # i E ~ ( ( x i ,  x2> ) and #0E~((x0,  x~>). If  we choose a line l, th rough  x~, which 

is parallel to  the line containing x o and xi, then it is trivial to pick a measure # which 

is in ~( l ' )  for each finite segment l' of l, but  which is not  in ~(C) for any  set C no t  contained 

in 1. If  we could write tt as / t  i - / t  o with #0E~((x0, x~>) and t t iE~( (x l ,  x2>), then Lemma 2.7 

would imply  tha t  ~u i and tt0 can be chosen from ~( ( l ' ,  xi> ) and  ~ ( ( l ' ,  xo>), respectively, 

for any  segment l ' c l .  I t  would follow t h a t / z E ~ ( ( / ' ,  xi> A (l ' ,  x0> ). This contradicts the 

choice of #, since (l ' ,  xi> A (l ' ,  x0> dg 1. 

The above example shows tha t  the cohomology theory  developed here seems to 

measure not  only the "holes" in a set, bu t  also the various degrees of nonconvexi ty  of 

this set. This should, perhaps, be investigated further. 

4. Linear equations 

Let  ~ be a s tack of n-modules  on a collection $ of subsets of A. Let  r 1 . . . . .  r n E ~  , 

~t E~(A) and consider the equat ion 

r l v  1 -~- . . .  + rnv  n ~-- ~, ( 1 )  

where we seek a solution v I . . . . .  vnE~(A). If  we set ~ i ( B ) = ~ |  for BES, then we 

m a y  th ink of the n-tuple (r i . . . . .  rn) as defining a map d : ~ 1 - ~ ,  by  d(# x ..... tin) =r i f t  i + ... + 

rn#,EZ(B) for (#i ..... #n) E~ i (B  ). Equa t ion  (1) has a solution if 2Eim d. I f  (1) has a solu- 

t ion for every ). E ~(A),  then the sequence ~I(A)~ ~(A)--> 0 is exact. 

There is a fairly well-known technique for s tudying the above situation. Suppose 

there is a sequence of stacks and  stack homomorphisms,  

*' ' '-->~n dn-1)~ ~ n - 1  t in-2  d x d 
-. .-+ ~:~ --~ ~ i  --~ ~ - ~ 0 ,  (2) 

which is exact  on a subdomain $'  of $. (Later in the section we shall show one way  tha t  

such a sequence m a y  be obtained.) I f  B = (B i ..... Bn) is a complex whose elements arc 

in $' ,  then (2) induces the following diagram 
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~0 
(~n (A) ~1 C~ ~n) ~ el(B,  ~n) ~ "'" "+ CP( B, ~'~") 

($o 
~n I(A) ~l  Co(B ' ~n-1) "-+ CI(B, ~n-1) . . . . .  CP(B, ~n-1) . . . .  

dl o 
~ I (A  ) d C~ B, ~1) CI(B, ~1) "-> -+ CP( B, ~1) '-> 

~ ( A )  ~-~ C~163 ~ C~(B ,~ )  . . . .  -+ C v ( B , Z )  . . . .  

r r 4 r 

0 0 0 0 

(3) 

All columns of this diagram are exact  except  possibly the first one. I t  is the first column 

tha t  we wish to draw conclusions about.  The following discussion of this diagram is derived 

f rom s tandard  double complex theory:  

When  convenient in discussing diagram (3), we shall use c$ to denote any  one of the 

maps i, (~o .. . . .  ~ .. . .  and d to denote any  one of the maps d, d 1 .. . . . .  dr, .... We shall also 

use the nota t ion ~ o = ~  and C-I (B ,  ~ v ) = ~ v ( A )  �9 

De/ in i t ion  4.1. For  the diagram (3), we make the following definitions: 

(a) DV- l= i ln  5 p 2+ira  dp=CP-I (B ,  ~ )  for p ~ 0 ,  where ~ - 2 = 0  and  ~-1 = i ;  

(b) A residue sequence a ~  I . . . . .  a v . . . .  is a sequence with a v e C V - i ( B , ~ v )  and 

cia p§ = ~a v for p ~>0. 

LEMMA 4.1. (a) I]  2 E~.(A) then there is a residue sequence; a ~ a 1 . . . . .  aV . . . . .  u~ith 2 = a  ~ 

(b) I / 2  = a  ~ a 1, ..., a v .. . .  and ~ =b  ~ b I . . . .  , b v . . . .  are two residue sequences starting at 2, 

then a V - b V E D  v-1 ]or each p.  

(c) 2 7 / ~ = a  ~ a 1, ..., a v . . . .  is any  residue sequence/or  which aqEn q-l, then a P E D  v 1 /o r  

p>~q. 

Proo/.  We construct  the sequence a ~ a 1 .. . . .  a v . . . .  by  induction on p. Suppose we have 

a ~  1 . . . .  , a  ~-1 defined with ; t = a  ~ and (~aq=Sa q-1 for q < ~ p - 1 .  Since cTSaP-l=Ot~a ~-1= 

&~aV-2=0, the exactness of the columns of (3) implies tha t  there exists avECV-I(B,  ~v) 

such tha t  claY= 6a v-1. This proves par t  (a). 
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Note  tha t  if we consider the sequence O=a o - b o ,  a l - b  1 . . . . .  a n - b  . . . . . .  then par t  (b) 

follows from part  (c) with q = 0. To prove par t  (c), note tha t  if a ~ E D" 1 then a~=  ~b~+ ~c ~+~, 

where b" ~ C" ~(B, ~ )  and c "+ ~ ~ C" -I(B, ~ +  ~). I t  follows tha t  ~(a ~+~ - (~c "+~) = (~a" - (~c ~+~ = 

&~b~=0. Hence, there exists c'+~EC~(B, ~+~)  such tha t  ap+l-(~c~+l=c~c~+~; i.e., a ~+l= 

~tb "+~ +dc  ~+~ if we set c ~+~ =b  "+~. We conclude by  induct ion tha t  par t  (c) is true. 

Note that ,  in the above lemma, D -~ is the image of d in ~(A). Thus, par t  (c) of the 

lemma says in part icular  t ha t  if ~Eim d, then  a ' ~ D  ~-~ for all p>~0. Under  appropr ia te  

conditions on the cohomology groups H ' (B ,  ~ ) ,  we can prove an  analogue of par t  (c) 

which goes the other  direction. 

LEMMA 4.2. Suppose H ~ I(B, ~ p ) = 0  ]or l < p < m ,  and i*: ~ ( A ) ~ H ~  ~) and 

i*: ~.I(A)-~H~ ~1) are isomorphisms. I] ~ = a  ~ a 1 .. . . .  a ~, ... is a residue sequence starting 

at ,~ E ~ ( A )  and a '~ E D m 1, then a ~ E D ~-1 /or 0 <~p <~ m. I n  particular, ~ E im d under these 

circumstances. 

Proo/. I f  amED m-1 then am=~bm~-c~c 'n+l, where bmEC'~-~(B,~m) and cm§ 

Cm-I(B, ~m+l)- I t  follows tha t  O(a ~-1 -~bm)=d(am-(~bm)=~(~cm+l:O. I f  m>~2 it follows 

from the hypotheses tha t  there exists b~-IEC~-a(B,  ~m-1) such tha t  a rn-1 - d b m = ~ b  m 1; 

i.e., am- l=Sb  m l +dc m if we set cm=b m. If  m = l ,  then a l = S b l  +dc ~ implies i ~ b l = d a l = i a  ~ 

Since ~(A) L C~ ~) is one to one, we have db 1 = a  ~ =~t. Hence ~tEim d, in this case. We 

now have tha t  the lemma is true, by  induction. 

De/init ion 4.2. Let  A be a set and S a collection of subsets of A which is closed under  

finite intersection and contains O. Let  ~ be a map which assigns to each BE $ a ring 

~(B)  with ident i ty  eB, and let 0 be a map which assigns to each pair (B, C ) c  $, with 

B c  C, a ring homomorphism O B . c : ~ ( C ) - ~ ( B )  such tha t  OB.C=eB. We shall call .~ a s tack 

of rings with ident i ty  on $ if ~ ( O ) = O ) ,  0 satisfies the transit ive law, and  0B. s = i d ,  as in 

Definition 3.1. 

Note tha t  if ~ is a stack of rings with ident i ty  and (B, C)E $ with B ~  C, then we 

m a y  consider ~(B)  as an algebra over the ring ~(C) under  the ope ra t ion /~ 'v=(0B.c# ) ' v  

for # E~(C), v E~(B).  I n  particular, ~(B)  is an  algebra over ~(A)  for every B E S, and the 

maps 0~. c are ~(A)-algebra homomorphisms.  If  we consider only the addit ive s tructure 

in ~(B)  for each B, then ~ m a y  be considered a s tack of ~(A)-modules  as in Definition 3.1. 

De/init ion 4.3. Let  A be a compact  convex subset of a topological vector  space X 

and let ~ be a s tack of rings with ident i ty  over the compact  convex subsets of A. Let  Q 

be a ~(A)-module  which contains ~(B)  as a submodule for each BE S, in such a way  tha t  

the maps  OB.c are inclusion maps for B4=O. If  ~,  considered as a s tack of ~(A)-modules,  
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is a convex s tack  of submodules  of Q according to  Def ini t ion 3.4, t hen  ~ will be called a 

convex s t ack  of r ings wi th  i d e n t i t y  in Q. 

Note  t h a t  wi th  Q = ~ ' ( A ) ,  the  correspondence B ~ ( B ) ,  of Sect ion 2, defines a convex 

s t ack  of r ings in Q. I n  fact ,  Def ini t ion 4.3 abs t r ac t s  precisely  those  proper t ies  of the  cor- 

respondence  A - ~ ( A )  which are  needed to  ca r ry  out  the  resul ts  of this  section. 

I f  ~ is a s tack  of r ings wi th  iden t i ty ,  the re  is a canonical  w a y  of cons t ruc t ing  a se- 

quence like (2). This is the  Kosza l  complex,  which we descr ibe below. F o r  each BE S we 

set ~ I ( B ) = ~ n ~ ) ~ ( B ) .  F o r  m > 1, we le t  ~ ( B ) =  A m~l(B) be the  re,fold exter ior  p roduc t  

of ~ I (B)  over  the  r ing ~ (B) .  This space m a y  be descr ibed  as follows: Le t  e be the  i den t i t y  

of ~ (B)  and  for i = 1 . . . . .  n set ei = (0 . . . . .  e . . . . .  0) E ~I (B) ,  wi th  e appear ing  in the  i th  posi- 

t ion; the  e lements  e I . . . . .  e~ form a basis for "~I(B) over  ~(B) .  F o r  m > l ,  we let  ~m(B) be 

the  free ~:(B)-module having  as  genera tors  the  symbols  e~, A ... A e~,  where  we make  the  

ident i f icat ions:  e a A ... A e~m=(--1)*e~, A ... A e~  if (j~ . . . . .  ]m) is a p e r m u t a t i o n  of (i~ ..... ira) 

with  ~ = 1 if the  p e r m u t a t i o n  is odd  and  e = 0  if the  p e r m u t a t i o n  is even, and  e~, A ... A e~m = 0  

if the  subscr ip ts  il ..... im are  no t  all  d is t inct .  Note  t h a t  ~m(B) is a free ~ (B) -modu le  of 

d imension  (~). I n  par t i cu la r ,  ~m(B)=(0 )  for m > n  and  ~ ( B )  is i somorphic  to ~(B) ;  i.e., 

~n(B) is a free ~ (B) -modu le  wi th  a single gene ra to r  e 1 A ... A e~. 

F o r  # E ~ ( B ) ,  v E ~q(B) with  

and  r = Y. #j  ...... ~ e~, h . . .  A e~q, 
,q , . . . Jq  

we set /~ A v = ~ /~ ...... ~-  vj ...... ~e~, A .. .  A e~ A ey~ A .. .  A e~ 
~1, -..,)'q 

We then  have  # A~E~p+q(B) and  ~u A r = ( - 1 ) P %  Aft. Unde r  the  mul t ip l i ca t ion  induced 

b y  the  wedge p roduc t  # A ~, the  space ~ = 0  |  is an  associat ive  a lgebra  over  ~ (B) ,  

where we set ~ 0 ( B ) = ~ ( B )  a n d / ~  A r = # ' v  for #,  vE ~(B) .  

I f  (B, C ) = $  wi th  B = C ,  t hen  the  m a p  0a.c: ~(C)---.'-~(B) induces a homomorph i sm  

0B, c: Y . ~ - 0 ~ ( C ) - ~ = 0 |  which preserves  wedge p roduc t s  and  carries ~ ( C )  into 

~ ( B ) .  I n  pa r t i cu la r ,  if we consider  ~p(C) a n d  ~ ( B )  as  ~(A)-modules ,  t hen  OB.c is a ~ (A) -  

module  homomorph i sm of ~ ( C )  in to  ~ ( B ) .  I n  o ther  words,  we m a y  consider  ~p to be 

a s t ack  of ~ (A) -modu le s  on $. 

I f  #1 . . . . .  #nE~:(A),  t hen  we m a y  define a s tack  homomorph i sm  dr: ~ + 1 - + ~  as fol- 

lows: F o r  

~ , =  Z ~,, ...... j , + ,  e,,  A . . .  Aej,+,e~+,(a), 
J t , . . . , ip  + l 
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we set 
p + l  

d~,v = ~. ~.. ( - 1)'~+',u~ "~,~ ...... ~),+, e~, A ... A eS~ A . . .  A ej ,+, .  
I~, ...,Jp + 1 k = l  

A simple calculation shows tha t  d~_~ od~ = 0  and dp+q+l(Y A ~)): (d~v) A ~)+ (--1)~ A (dq~) 

:[or ~E~p+i(B ) and ~E~q+i(B).  

LEMMA 4.3. I /  the equation/.~1~,1-}-... + # n v ~ = e  can be solved/or ~1 ..... v~E~(B), then 

the sequence O--->~n(B) ~ ~. . .~ c s  is exact. 

Proo/. The hypothesis  says tha t  d o is onto, since do(vial + ... +~,~e~)=fflri + ... +ff~v~. 

Since d,_id,=O , we need only show tha t  if d~_ig=O then 9=d~,~ for some 2E~(B) .  We 

set 2 = v A ~ ,  where V=~lel+...+vne~ and H i ~ l + . . . + f f n ~ = e .  I f  d~_l~=0,  then d , 2 =  

(doV) A ~- f - r  A (d~_l~) =e  A 0 + r  A 0 =  0. 

Thus, if $ '  is a subcollection of S which is closed under  finite intersection, B is a 

complex whose elements are in S', and the equat ion 

/.~1 721 - ~ - . . . - ~ n Y n  = e (/A 1 . . . . .  jt$ n E ~(A)) (4) 

is solvable in ~(B) for each B ES ' ,  then we have a sequence 0 ~  d,-1 do . . . .  -~ ~ l - -~  ~ - * 0  

which is exact  on S', and the results of Lemmas  4.1 and 4.2 apply  for the  complex B. 

I f  ~ is a convex stack of rings with ident i ty  in Q, then we define Qp = {~j ...... jpvj ...... jp 

ejl A ... A ejp: ~j ...... jp EQ}, with the appropriate  identifications among the symbols ejl A ... A ejp. 

We m a y  consider Qp to be a ~(A)-module  containing ~ ( B )  as a submodule for each B e  $. 

Since ~ is just the (;)-fold direct sum of copies of the stack ~,  it follows tha t  ~ is a convex 

stack of submodules of Qp for each p. We m a y  now apply  the results of the previous section 

and  Laminas  4.1 and  4.2 to obtain specific theorems concerning equation (4) for convex 

stacks. 

Let  ~ be a convex stack of rings in Q, on a compact  convex set A = X. I f  x E X and 

ffi . . . . .  fin E ~(A), we shall say  tha t  equat ion (4) is solvable locally at  x if there is a convex 

neighborhood U of x such tha t  (4) can be solved for ~l . . . .  , ~ E ~ ( B ) ,  where B =  0 N A. 

If  ~ is the stack ~ of Section 2, then Lemma 2.5 says exact ly t ha t  (4) is solvable locally 

at  x E A  if (4) is solvable in ~({x}). 

THEOREM 4.1. Let ~ be a convex stack o/rings on A and fll . . . . .  #nE~(A).  I /  (4) is. 

solvable locally at each point o / A ,  then (4) is solvable in ~(A).  

Proo]. Since A is compact,  we have tha t  the topology of A is the weak topology 

generated by  the family of linear functionals on X. I t  follows tha t  if (4) is locally solvable 

at  each point  of A, then  we m a y  choose hyperplanes P1 .. . . .  Pk such tha t  if B = {B1 ... . .  Bz} 

is the polygonal  decomposit ion of A induced by  P1 ... . .  Pk, then (4) is solvable in ~(B~) 
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for i = 1 ..... l. Also, if $' is the collection of all finite intersections of elements of B, then 

(4) is solvable in ~(B) for every BE S'. Hence, by Lemma 4.3, we have a sequence of the 

form (2) which is exact on $', and Lemma 4.1 applies. This gives us a sequence e =a ~ ..... 

a p ..... with a~eCP-I(B, ~ )  and ~a~=~Ta ~§ 

By Theorem 3.2, H~(B, ~q)=0  for p > 0 ,  and i : ~q(A)~H~ ~q) is an isomorphism 

for all q. Hence, the hypothesis of Lemma 4.2 is satisfied for all m. Thus, if a m E D m-1 for 

some m, then eED -1 = i m  do, and (4) is solvable in ~(A). However, Cm-I(B, ~m)=0 = D  m-1 

if m > n or m > l + 1. This completes the proof. 

The above theorem shows that  local solvability implies global solvability in ~(A) 

for the equation/~lv~ + ... +/znv~ =e. I t  would be useful to have a similar theorem for the 

equa t ion /~ lv l§  with e=4:~E~(A). To prove such a theorem by our present 

methods would require constructing a sequence . . . .  ~ . . . .  ~ 1 ~ 0 - > 0  which is exact in 

sufficiently small neighborhoods of each point of A, where ~ is a convex stack for p ~> 1 

and ~0(B) is the submodule/~I~(B) +.. .  + # ~ ( B )  of ~(B) for each B~S.  We have not 

been able to do this in the case of the stack ~ if Section 2. A solution to an analogous 

problem for the sheaf of germs of analytic functions is presented in IV.F.5. of [2]. This 

solution is quite involved and requires a great deal of information concerning the local 

structure of the sheaf. 

In  the next  two theorems we will be concerned with the case where (4) is locally 

solvable on a subset of A. Using Theorem 3.3, we obtain a particularly useful result in the 
case where (4) is locally solvable on the boundary of an m-simplex S =  A. 

THEOREM 4.2. Let ~ be a convex stack o/ rings on A ,  S an m-simplex in A,  and 

/z 1 . . . . .  /~  E~(A) .  I//UlV 1 + ... +/a~rn = e is locally solvable at each point o / ~ S ,  then 

(a) i] n < m  the equation/~1~1 + ... +/~nv~ =e is solvable in ~(S);  

(b) i / n  = m  there is an element Q EQ such that, /or each 2 E~(A), the equation/~lVl § ... + 

Iz~vn=~ is solvable in ,~(S) i / a n d  only i/,~o =0. 

Proo]. Let B = { B  0 ..... Bin} be the complex consisting of the (m-1) - faces  of S. Since 

(4) is locally solvable at each point of ~S, Theorem 4.1 implies that  (4) is solvable in ~(B) 

for each compact convex set B which is a subset of some Bi. Hence, by Lemma 4.3, we 

have that  Lenma 4.1 applies for the complex B. By Theorem 3.3, HP(B, ~q)=0  for 

0 < ~ o < m - 1  and H~ ~ q ) = ~ ( S )  for all q, provided m > l .  Hence, for m > l ,  Lemma 4.2 

also applies. 

Let e = a  ~ a I . . . . .  a p . . . .  be the residue sequence guaranteed by Lemma 4.1. I f  n < m  

then ~m=0  and a m = 0 E D  m-1. Hence, by  Lemma 4.2, e E i m d  and #lVl+.. .+/~n~n=e is 

solvable in ~(S). 
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I f  n = m > l ,  then Theorem 3.4 implies tha t  (~ : Hn-I(B,  ~n)--->Qn=Q is one to one. 

If  ~t E ~(A)  then ~t = 2a ~ 2a 1, .:., )~a p .... is a residue sequence, since (~ and a are ~(A)-module  

homomorphisms.  I t  follows from Lemma 4.2 that/ZlV 1 + ... + / ~ v . = 2  is solvable in ~(S) 

if and only if ~ta ~ E D n 1. However,  Cn-I(B, ~+1)  =0 ,  since ~n+l =0 ,  and so D n-1 = B n l(B,~n). 

I t  follows that/ZlV ~ + ... +#~v~=2  is solvable i n  ~(S) if and only if 25oan~(~o2an=O. The 

proof is complete for m > l if we set ~ = ~0a ~. 

For  m = n = l ,  we use the last s ta tement  of Theorem 3.3. This gives us the d iagram 

0 

i do 
0 -~ ~:l(Z) -~ ~~ ~ )  ~ Q 

l ~ l ~ 
i 60 

0 -~ ~: ( s )  -~  C~ ~:) -~ Q, 

0 

with exact  rows and exact  second column. If  ~tc~0al=0 then 2=db, where ib=2a 1. Thus,  

= 50 a 1 is the required element of Q in the case m = n = 1. 

Definition 4.3. The element ~)EQ, given by  Theorem 4.2, will be called the residue of  

the system/~1 .. . . .  #~ on the n-simplex S. 

An  impor tan t  feature of the residue ~ is tha t  it is an element of the ~(A)-module  Q. 

I n  working with ~(A),  Q will be ~ ' (A) ,  and so  Q will be a measure which is locally in our 

original subalgebra N of M(G). We will show, in the next  section, t ha t  ~ must  be a very  

smooth absolutely continuous measure. Hence, Theorem 4.2 gives a strong connection 

between spectral properties in ~ (A)  and  the  existence of absolutely continuous measures 

in N. 

THEOREM 4.3. Let r163 be a convex stack o/rings on A.  Let B and C be compact semipoly- 

gonal subsets o / A  such that A = B 0 C. Suppose that i~1 ..... ~ ,  ,~ E~(A) and B and C satis/y 

the/ollowing conditions: 

(1) B is connected and ( B )  =A;  

(2) the equatio~ #~1 +... +#nUn =e is locally solvable at each point o / B ;  

(3) the equation ]u1~1+ ...+ l ~ , n = 2  is solvable in ~ ( (  E~ ) /or each connected c~mponen~ 

E o / B A C :  

Then the equation/~lV 1 + ... +l~nV~ =2 is solvable in ~(A)  

18- -  682904 Acta mathematica. 121. I m p r i m ~  le 6 d~cembre 1968 
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Proo[. Since B and C are scmipolygonal sets, we may choose a polygonal decomposi. 

tion .,4 of A such that  A~, Ac, and ABnc are polygonal decompositions of B, C, and B n C 

respectively. As a first step in the proof, we reinterpret conditions (1), (2), and (3) in terms 

of the complexes AB, ~4c, and ~4~c. 

In view of Lemma 3.6, condition (1) is equivalent to 

(1') i*: ~(A)~H~ ~)=Z~ ~) is an isomorphism. 

By Lemma 4.3, condition (2) implies that  0-~ ~ .  ~"-~ ' " . - > ~ t  ~ ~ O  is an 

exact sequence on $', where $' is the collection of all compact convex subsets of B. In 

view of Lemma 4.1, we have that  condition (2) implies 

(2') there are residue sequences : t=b  ~ . . . .  ,b ~ . . . .  and l = a  ~ . . . . .  a ~,... with b~6 

C~-I(As,Z~) and a~ 6 C~-' (A,nc , ~ ) .  

If Et ..... E~ are the components of B f l C ,  then i: ~p(<Ei>)(~. . .~p(<Ek>) -'> 

H ~  Y~)=Z~ ~,) is an isomorphism for each p. Condition (3) implies that  

d: ~1(<E1>) (~... ( ~ 1  (<Ek>)--> ~(<EI>) (~--- (~<Ek> has the element t I<~,> | | 

in its image. In other words, the element a'6C~ ~t), of the residue sequence 

= a  0,  a 1 . . . . .  a ~ ..... may be chosen from Z~ ~,). Thus e~a* =0  and we may choose 

a * =0. Hence, condition (3) implies 

(3') there is a residue sequence t = a  ~ a* ..... a ~ .. . .  for the complex Aca~ such that  

a~=O. 

Recall, from the proof of Theorem 3.1, that  the sequence 

0-~ ~, 7s #B-~, ~Bnc -~ 0 

is exact on a subdomain containing A, As, .,'iv, and Ashy, and it  induces the exact 

sequence 

This, in turn, induces the exact sequence 

... ~ H~(A, ~) , IF(As ,  ~)@HP(Ac, ~) , H~(ABnc, ~) --~ HP+I(A, ~) -~ . . . .  

Since H~(A, ~:)= 0 for p > 0, we have that  f l*- f l*  is an isomorphism for p > 0. This 

implies that  f18 - fig carries Bn(j4B, Z) @Bn(~4c, ~:) onto BP(~4snc, ~) for each p > 0. These 

considerations hold for each ~:q as well as for Z. In  particular, for p = 1 and q = 2, 3 this 

yields the following commutative diagram: 
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C ~ (A~, 7;~) ~ C~(Ac, 7;~) 

, Ol(A~nc, 7:~) -~ O. 

(5) 

In (5) the rows are exact and ~B--f]c maps B'(AB, ~q)|  ~q) onto B'(ABnc, ~q) 

for q = 2, 3. 

If 2 - b  ~ b 1 ..... b p, ... is the residue sequence for AB given by condition {2'), then 2 =~c b~ 

~c bl, ..., ]~cb ~ .. . .  is a residue sequence for the complex As.c. However, it follows from 

condition (3') and Lemma 4.1 (b), that  f~c b~ E Dl(.~Bnc) = BI(ABnc, ~ ) + i m  (d: CI(ABnC, ~a) 

-+Cl(~4~nc~)). Diagram (5) then gives us that  b 2 E DI(,4B). Condition (1') implies that  the 

hypothesis of Lemma 4.2 is satisfied with m = 1. Hence, 2E ira (d: 5~a(A )-+~(A)), i.e., the 

equation/UlV 1 + ... +/t~v~ =2 is solvable in ~(A). 

We shall apply the above result in Section 6. In this application, C will be a finite 

union of disjoint simplices in A, and B will be A ~ i n t  C. 

5. The residue for ~(A)  

In this section and the next, we return to the study of the algebra ~(A) of Section 2. 

The results of Section 4, concerning convex stacks of rings, apply with X as defined in 

Definition 1.1, A a compact convex subset of X, ~ = ~ ,  and Q=~'(A) .  Our purpose in 

this section is to determine the form of the residue measure ~ constructed in Theorem 4.2. 

We assume throughout this section that  X has dimension n, int A contains an n- 

simplex SI and/~1 ..... g~e!~(A) have the property that  ]ju~] >~e>0 in a neighborhood of 

infinity in eAF, and the equation 

/~lYl + ... +~nYn = e  (4) 

is locally solvable at each point of ~S. 

Theorem 4.2 yields a measure ~EO2'(A) such that  if 2E92(A), then the equation 

/~1~1+..-+ ~u~vn=2 has a solution in ~(S) if and only if 2~=0. If •={B  o . . . . .  Bn} is the 

complex consisting of the (n-1)-faces of S, then according to the proof of Theorem 

4.2, there exists a 'E  Cn- I (B  , ~ n ) =  c n - I ( B ,  ~)~) such that  ~ = ~o an. 

Let  x o . . . . .  xn be the vertices of S, where {xt} = N~.t Bj; i.e., x~ is the vertex opposite 

the face B i. We set 

~, = (a")(o ..... L.,..n) E ~ ( n Bt) = ~({x,)). 
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Thus Q = O0a n = ~ ( - 1) ~ q~. 

Note  tha t  for each i, the Laplace t ransform ~)~ of ~ exists on e~F. 

Let  C be a ny  closed subset of P. I f  E is a compact  convex subset of A, we let 9~c(E ) 

be the algebra of functions on e~C which are uniform limits of functions bounded and 

analyt ic  in a neighborhood of e~C. The correspondence E - ~ c ( E )  defines a s tack ~{c of 

rings with ident i ty  on A, where for ~ ~ : E ~  F the map 0~.~: 9~c(F)-~9~c(E ) is the restriction 

map 1-~/[ e~C. 

The Laplace transform, #~/~^, defines a homomorphism of ~ ( E )  into ~ ( E )  for each 

E = A ,  and, hence, a homomorphism of the s tack ~ into the stack ~c  (cf. Section 1 and 

Lemma 2.3). 

L E M ~  5.1. There is a closed set C ~  F and a set (/~) o/ /unctions, with/~e9~c((z~, x~)), 

such that U = F ~ C  has compact closure in F, / , ~ = - / ~ ,  and e;=~?_~(-1)~/~ on eX'C /or 

i = 1 ,  ..., n. 

Proo/. Let  U be an open set with compact  closure in F such tha t  I#~[ ~>e>0 on F ~ U .  

I f  we set C = F ~ U ,  then (/~)-1 is bounded on eAC. Also, /~ can be uniformly approximated  

on  eAF by  elements of N~. I t  follows tha t  (/~)-1E 9~c(A ). 

Let  e = a  ~ a 1, ..., a" . . . .  be the residue sequence appearing in the proof of Theorem 4.2. 

This determines a residue sequence 1 = (a~ ^, (al) ̂ , .... (a~) ̂ , ... for the s tack 9~ v and the 

complex B. However,  the equation/~;/1 + ..- +/~n/~ = 1 is trivially solvable in ~c(A), since 

(#~)-IE~c(A). I t  follows f rom Lemma 4.1 (e) tha t  ( a ~ ) ^ = ~ f l + ~  ,, where flECn-2(B, (9~c)~) 

.and ? E Cn-I(B, (~c),+l) = (0); i.e., (an) ̂  = (~fl. I f  we set/~j =fl(0 ..... ?.....ii .... n) for ~ < i,/,~ = - / ~  

for  i <] ,  and/** =0,  then/~,  q~v([') ~.,.iB~) =9~v(<x~, x~>) and 

Q~ = (an)~(o.1 ..... ~ ...... ) = ((~fl)(0,1 . . . . .  ~ . . . . .  n) 

- 1 )  fl(0 . . . . .  ~ . . . . .  j . . . . . .  ) = ~ (  1)Jl~j. = - ,  ~(0 ..... ~ ..... ~ ...... ) -  
1=0 1=i+1  J=0 

This completes the proof. 

If  h is a continuous funct ion with compact  support  on G, then the convolution prod- 

uct  ~ h ( q ) = S h ( g - - g ' ) d ~ i ( 9 '  ) defines a continuous funct ion ~ h  on G, with Laplace 

t ransform (~t-)r ^. I f  h^(eX?) is integrable with respect t o  H a a r  measure on F 

for each fixed x EA, then (~h  ̂ ) (ex~,) is integrable for each i, and  we m a y  recover the 

funct ion ~ ~- h = ~=0(  - 1 ) ~  -)(- h f rom the inversion formula. This leads to: 
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LEMMA 5.2. There is a /inite regular Borel measure T, with compact support on  cap, 

such that 

e ~+ h(g) = f h  ^ (co) co(g) d~(co) 
d 

/or every continuous/unction h, with compact support on G,/or which h^(e~r) is y-integrable 
/or each x E A. 

Pro@ Let  h be continuous, wi th  compact  suppor t  on G, such tha t  h^(e~r) is y- integrable  

for each xEA. F r o m  the inversion formula  (Lemma 1.1), we have  

n-1 f e~ -h (g )=  ( - 1 ) ~ e ~ - h ( g )  = ~ ( - 1 )  4 e~(e~'y)h^(e~'7)e~(g)r(g)dy. 
i :0  i =0 

By L e m m a  5.1, we m a y  write ~ = ~ 0  ( - 1)J/4j on ex~C, for some C = F ~ . U ,  where U is 

an open set with compac t  closure and/4j  E 9ft. c ((x 4, xj}). Hence  

e ~+ h(g) = 4=o ~ ( -  1)~ f ~ e; (e~'r) h"(e~'r)*x"~ r(g) dr 

+ i~=o [j~o( -1)4+J fc/~j(e~r) h^(e~r) eX~(~) r(g) dr ] �9 

The first sum in the above  expression represents  an  integral  of h^(co)co(g)=h^(e~r)e~(g)r(g ) 
�9 ' '~ ex~U We use the  with respect  to a finite measure  v concent ra ted  on the  bounded  set u i : 0  �9 

fact  tha t /~ j  : - / j~ in the expression in brackets  above and  simplify, obtaining 

h(g) = fh^(co) co(g) dv'(co) 

f c  Xi ^ X= Xl(g) X t ^ X~ x~(g) + ~ ( - - 1 )  4+j ~ij(e r ) h  ( e ' r ) e  -/4j(e r)h (e r ) e  ]r(g)dy. 
4=0 j<i 

I t  suffices to prove  t ha t  each of the integrals in the double sun: can be reduced to the  

proper  form. To do this, we fix i and  j and  set/(co) =/ij(co)h^(w) co(g). Thus,  the  inte- 

gral we are interested in is just  ~c [/(eX~Y)-/(eXJy)] dr .  Fur thermore ,  /E 9~c(<x4, xj>). 

We m a y  assume wi thout  loss of genera l i ty  t ha t  xj = 0 and  set  x~ = y. We then  have  

/E ?I~ y>) and  

fc[/(e~y) -/(eX~y)] dr = fo [/(e' r) -/(r)] dr. 
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To finish the proof, we shall show t h a t  there is a measure r" on e<~ with compact  

support ,  such tha t  this integral is S ](w)dr"(w). 

We choose an ( n -  1)-dimensional subspace X 1 of X such tha t  X = (y) + X 1, and set 

r 1 = e ix'. We choose a set F =  r such tha t  F contains exact ly  one element f rom each 

coset of r 0 = e ~x in P. We set da(y' ) = ~ F  dal(y + 7'), where ~1 is H a a r  measure on I~1. 

I f  al is properly normalized, we can write 

f c [ / (y ) - / (eXy)]dy=f~r , f~ :~ , [ l (e '~7 ' ) - / (e ( l+ ' t )Yy ' ) ]d tda(y ' ) ,  

where K r . : ( t e ( - m , m ) :  e't~r'eC } and  2m is the period of the map  t-~e ~y ( m =  oo if 

t ~ e lty is one to one). Note  tha t  since F ~ C  is bounded,  ( - m ,  m ) ~ K ~ ,  is bounded  for 

each Y' and K r, : ( - m, m) except  for Y' in a bounded subset J of FF1. 

I f  Y' ~$ J then 

fK  r 1 f'," /(eZyy,)d z / ( e ~ y , ) d z = 0 ,  
__ - -  ~ l + i r a  

�9 [/( eay Y') - / (  e(i+u)~ Y')] dt = i J-t," .I I-t,, 

since t-+e a~ has period 2m and / E ~ ( < 0 ,  y))  implies z-~/(eZy ') is bounded and  holo- 

morphic for I m  z E ( - m, m) and  Re z E (0, 1). Hence, we can write 

~c[/(7)-/(e~7)]dT=fjf~[/(e'~7')-/(e(i+'~)~r')]dtda(7')" 

If  m < oo then K r, is bounded and we are through.  I f  m = oo then  K r. = ( - oo, a(y')]  (j 

L,, U [b(y'), oo) for numbers  a(y') ,  b(y'), and a bounded  set Lv.. Note  tha t  the Cauchy 

integral formula yields 

[/(eity7, ) /(e(l+~t)y~v,)]dt = 1 /(czar, ) /(ez~y,)d z 
(v) ~(v') d l+~b(v') 

1 fl+t~(r') 
= i J~b(~') / ( e~7  ') dz, 

and a similar formula for the integral over ( - co, a(y')].  Pu t t ing  all of this together,  one  

can see tha t  we have reduced Sc [/(7) -/(e~Y)] dY to an integral of [(o)) with respect to a 

measure r" concentrated on a compact  subset of e<~ This completes the proof. 

LEMMA 5.3. The residue measure ~ is absolutely continuous, with a Radon-Nikodym 

derivative h e given by 

he(g) = j 'w(g)  dr(o)), 

/or some/ini te  measure r with compact support in eSF. 
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Proo/. We choose a net {h=} of continuous functions, with compact support on G, 

such that:  (1) for each a, h~(e~y) is an integrable function of y for each xEA ;  and (2) {h~} 

converges uniformly to 1 on each compact subset of eAF. In  fact, h ~ = z v ~ e Z v ~  defines 

such a net if {U~} is a neighborhood basis at  0 in G with 0~ compact for each zr Let v 

be the measure of Lemma 5.2. We have, 

( fto(g) d (to), e ~- h= (g) = J h  ^=(to) to(g) d~(to) 

since z has compact support. I t  follows tha t  for each continuous k with compact support  

on G, .fk(g)Q~h=O)dg--,fk(g)hq(g)dg, where h~(g)=Sto(g)dz(to). From this it follows tha t  

de(g ) = hq(g ) dg. 

THEOREM 5.1. I /  2E~I~(A) and the equation lug~l+... +/x~/ ,=; t  ̂  has a solution in the 

class o/ /unctions holomorphic in a neighborhood o/eSF, then 2Q = O. 

Proo/. I t  follows from Lemma 5.3 tha t  2~eh~(g)=S2^(to)w(g)dz(to). By Lemma 2.8, 

each of the functions /~ is the uniform limit on compact subsets of eSF of a sequence 

{v~j}~s, with v~jEN~. I f  we set As=/AVlj+...+/x~vnj, then 2 ; ~ 2  ̂  on compact subsets of 

eSF. Furthermore, we have 2r  by  Theorem 4.2. Hence, 

Thus 2" ~ = 0. 

Since we have assumed that/x[ is bounded away from zero in a neighborhood of infinity 

on eAF, the set V of common zeros of the functions F~ ..... /~, is a compact subset of eAF. 

Under the assumptions of this section, V N e~ = O  and so V A (e lnt sF) is a compact subset 

of e mt sF. However, V n (e ~t sF) is also an analytic variety. By III .B.17. of [2], V N (eSF) 

must consist of a finite set  of points to1 ... .  , tok. 

THEOREM 5.2. Let to1 . . . . .  tok be the common zeros o/F'x . . . . .  ~t~ in eSF, as above. I /  

x I . . . . .  x,~ is a basis/or X ,  then there are polynomials P1 .. . . .  Pk, in x 1 . . . . .  xn, such that 

k 

h~ (g) = ~ P, (g) to,(g). 
t = l  

Proo/. I f  g E~(A), consider the function q~(z) =/x^(e~Xto) for fixed x e X ,  to EF2. We have 

(' d zxcg) 1 = _ _  (e-ZX(O) to-l(g) to- j x(g)dg(a). 

Hence, q/ (O) = S to( - g) x( - g) dtt(g) = g ~ h(0), where h(g) = x(g) to(g). 
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We choose a basis x 1 ..... x~ for X, and for each m and each i we let :~m. l be the linear 

span of the functions x~', .... x~o~ for j l+. . .+jn~<m. We may consider each hE~m. ~ to 

be:an element of ~(A)* if we set h(#)=Sh(-g)d/x(g)=#-x-h(O) for/XE~(A). Likewise, h e 

can be considered an element of ~(A)* if we set he(/x ) =/x-x-he(0 ). We shall show that there 

exists an m such that he(/x)-0 , whenever /xe~(A) and h(/x)=O for each he~=l:~m.~. 
Y,=l:~,n.~. From this and the Hahn-Banach Theorem it will follow that  h e E k 

Let O denote the ring of germs of functions holomorphie in a neighborhood of zero 

in (~=. The ring of germs of functions holomorphic in a neighborhood of co~ in ~ is isomor- 

phic to 0 through the map ] - ~ ,  where ~0~(z 1 ..... z~) =/(e .... +-.+z~x~r We let Ym be the 

ideal in 0 consisting of functions all of whose derivatives of order ~< m are zero at zero. 
�9 i ^  i A  ,'. ^ We fix i and let J be the ideal in O generated by the functmns ~ , ,  ..., ~v,,,. Since/Xl . . . .  , /xn 

have an isolated common zero at w~, the ideal :1 is contained in a unique prime ideal 

of O; in fact, this unique prime ideal is the maximal ideal Y0 = {/E O :/(0) =0}. I t  follows 

that Ym = (:/0) z ~  : / fo r  some m (cf. [2], Ch. II). This implies that  the equation/x~/1 +... + 

/x~/==2 ̂  is solvable in ~{(U), for some neighborhood U of eo~, provided (~/~z{' ... az~) 

2^(e~'~'+:"+~'z~co~)=0 whenever ] l + . . - + J = < m .  By the result of the first paragraph, this 

last condition is equivalent to h(2)=2~-h(0)=0 for all hE :~m.~- I t  follows that  if h(2)=0 

for every h E ~=l:~m.~, then the equation/x~/1 +-.- +/x~/~ = 2  ̂ has a holomorphic solution 

in a neighborhood of ~ for each i. Since 0) 5 ..... ok are the only common zeros o f / i  ..... /= 

in eSF, we conclude that/x~/x +-.. +/x~/~ = 2^ has a holomorphic solution in a neighborhood 

of each point of eSF. 

Since S c i n t A ,  we may choose an open convex set V such that S ~  V ~ A .  If 
k 2E~(A)  and h(2)=0 for every hE~i=x re.t, then we may choose V in such a way that 

^^ + ^ 2^ /X~/1 + . . .  /X[~ = has a holomorphic solution in a neighborhood of each point of eVF. 
By Lemma 1.6, the equation /X^/x+ ... +/X~]==2 ̂  has a global holomorphic solution in 

eVF. By Theorem 5.1, it follows that  2 " ~ =  0. Hence, 2(h) = 0 for every hE ~=0:~z.~ 

implies 2(he)= 2-x-hq (0)= 0. This shows that h~ E ~ - 0  :~z. ~ and completes the proof. 

We should point out that  the blanket assumption that ]/x~I ~>e >0  in a neighborhood 

of infinity, which was used throughout this section, is probably not necessary and should 

be removed�9 Also, we have assumed that dim S =dim X. I t  should be possible to say 

something about a residue measure ~ for a simplex S with dim S < dim X. 

6. Ideal theory in 9~(A) 

We are now in a position to generalize the facts F2, F3 of Section 1. In  the process, 

we obtain a fairly surprising connection between spectral theory in ~(A) and the smooth- 

ness of the measures in ~ .  
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Our first result is a characterization, analogous to F2, of the maximal ideal space of 

the Banach algebra ~(A).  We seek a compact Hausdorff space A(A) and a homomorphism 

#_~/~v of ~(A) into C(A(A)) with the following properties: (1) eV=l; (2) ~ (A)~={p  v : 

# E~(A)} separates points in A(A); (3) every maximal ideal of ~(A) has the form {~u E~(A): 

#V(m) = 0 }  for some mEA(A). In  the presence of condition (1), condition (3) is equivalent 

to the following: (3') If  ~1 ..... #~E~(A) and the funct ions/~  ..... #~ do not vanish simul- 

taneously at  any point of A(A), then the equat ion/alVl+. . .+lunvn=e has a solution in 

~(A). 

For the algebra N = ~ ( ( 0 } )  let the maximal ideal space be A and the Gelfand trans- 

form be /~-->#~. For # E ~ ( A )  and xEA we set dT_x/~=e-'d/~. By Lemma 2.4, T_~ is a 

homomorphism of ~(A) into N, and for fixed # E ~ ( A )  the map x-->T_x~u is continuous 

from A into N. I t  follows that  if we set #" (x, m) = (T_~lu)*(m) for x E A, m E A, and/~ E ~(A),  

then /~-~/~- is a homomorphism of ~(A) into C(A • Since T_~:e=e, condition (1) is 

satisfied for/~-~#~. We shall show that  (3') is also satisfied. 

If  /~1 . . . . .  / .~nE~)~(A) and /~ ..... /~  do not vanish simultaneously on A • then for 

each xEA the functions (T_x/~l) ~, .... (T_x~an)" do not vanish simultaneously on A. Since 

A is the maximal ideal space of N, the equation (T_x#l)vl+...  + (T_xlUn)vn=e has a solu- 

tion in N. If we apply T~ to such a solution, we find that /~v~ + ... +/~v~ =e  has a solution 

in ~((x}) for each xEA.  By Lemma 2.5, this equation can be solved locally on A, and 

by  Theorem 4.1, it can be solved in ~(A). Hence, (3') is satisfied for the map/~-+/~'. 

Unfortunately, condition (2) is not generally satisfied for /~-~#'. For some m~A,  

x, yEA  it may  be that  /a'(x, m)=lu~(y, m) for all /~E~(A). However, if m~4m 2 then 

(x, m~) and (x, m~) can be separated for each xEA; this follows from the fact tha t  T_x 

carries ~(A) onto a dense subalgcbra of N. 

We set (x, m l ) ~ ( y  , m2) i f /z ' (x ,  ml)=/~~(x, m~) for all/~E~[~(A) and let A(A) be the 

factor space of A • modulo the equivalence relation ,~. Let :r A • be the 

natural  map. If  we set #~(~(x, m)) =/~'(x, m), then A(A) a n d / ~ # ~  satisfy conditions 1-3. 

This gives us the following theorem: 

THEOR]~M 6.1. I /  A(A) is the maximal ideal space o/ ~(A)  and/~[~v is the Gel/and 

trans/orm, then there is a continuous/unction ~ /rom A • A onto A(A) such that #v(~(x, m)) = 

(T_x/~)V(m) /or ~uE~(A), where (T_x#) ~ is the Gel/and trans/orm o/ T_xf~ as an element 

o /N .  The/unction ~ is one to one on (x} • A /or each xEA.  

The Fourier transform/~-+#^, is a homomorphism of N into C(F). I t  follows that  F 

may  be continuously embedded in A in such a way tha t  #^ is the restriction to F of the 

Gelfand transform #~. I n  the case where N =Le, the space of absolutely continuous meas- 

19 - 682904 Acta mathematica. 121. I m p r i m ~  le 6 d6cembre  1968 
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sures with the identity adjoined, we have that  this embedding is just the embedding of 

F in its one-point compactification if F is noncompaet. If F is compact then F = A in this 

ease. We let F'  denote the one-point compaetification, F U {c~}, of F if F is noncompact 

and set F'= F if F is compact. 

COROLLARY. I /  the maximal ideal space o / N  is F', then the maximal ideal space o/ 

~(A)  is (e~F) ', where (eAF) ' is eAF i / F  is compact and the one-point compacti/ieation o/eAF 

otherwise. The Gel/and trans/orm [av /or/~E~(A) is the natural extension o/ the Laplace 

trans/orm /a ̂  to (e~F) '. 

Proo]. If we set a(x,y)=e~7 for xEA,  7 e F  and ~(x, ~ ) = o o  when 

then g is a continuous map of A • F' onto (eAF) '. Also, ~u^(:c(x, y)) =#^(e~7) = ( T  ~ju)^(~) 

for x CA, y e F. Since ~(A)  ̂  separates points in eaF, the corollary will follow from Theorem 

6.1 if we can show that  #^(~  ) =limr_. ~ (T x#)^(7) exists and is independent of x (in case 

1 ~ is not compact). However, since F' is the maximal ideal space of N, we have/~^(~)  = 

limr_~:~#^(~) exists for each/~ E N. This implies that  each # E N has the form/z  =/u 1 + ze, 

where/~1 is a continuous measure and limr_~r =0. I t  follows that  each ~e~(A)also 
has this form and limr_, ~ (T_x/~)^(~)=limr_~ (T~/~l)^+z=z for every x eA.  This com- 

pletes the proof. 

Unfortunately for the significance of the above result, the case of greatest interest is 

the case where N =L~, and in this case we may trivially prove that  A(A)= (eAF) ' by using 

the fact that  the adjoint space of ~r is a space of measurable functions on G. 

More surprising results may be obtained by applying the results of Section 5. 

TH~O~E~ 6.2. Let N be any subalgebra o/M(G) satis/ying N1, N2, and N3 o] Sec- 

tion 2. Let the dimension o / X  be n. I],/or some n.simplex S ~  X and some collection [~1 ...... /~ E 

~(S), the equation/~1v1+... + ~ v ~ = e  is solvable in ~({x})/or  each xe~S  but is not solvable 

in ~(S), and i] [/~[ is bounded away/rom zero in a neighborhood o/ c~ in eSF, then Lec  N. 

Proo/. The results of Section 5 apply. Hence, there is an absolutely continuous measure 

e e l ' ( A )  with the property that  the equation # lV~+. . .+~u~=A is solvable in ~(A) if 

and only if 2.~ =0. Since, by hypothesis, the equation/~lV~ + ... +/~v~ =e is not solvable 

in ~(A),  we have e.~=~ =4:0. Since the restriction of ~ to any compact subset of G is an 

element of N, it follows that  L~ fi N ~=(0). Conditions N~, N~, and N a now imply that  

L e o n  (cf. [9]). 

COROLLARY. I] the maximal ideal space o / N  is F', then L e o N .  

Proo/. We chose measures/~1, '..,/~n ENc such that  ~ ..... /~ have a nonempty discrete 

set of common zeros in eVF for some neighborhood U in X. We choose/~1 such that  I/~1 
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is bounded away from zero in a neighborhood of infinity in e~l ~. That  we can so choose 

these measures follows f rom Lemma 2.8i and the fact tha t  ~ is an n-dimensional complex 

manifold. We now choose a simplex S c U such that  eSI ~ contains a common zero of ~ ..... /~ ,  

but eaSF does not. The corollary now follows from Theorem 6.2 and the corollary to Theo- 

rem 6.1. 

I f  a subalgebra N of M(G), without identity, satisfies N1 and N2 and has F as its maxi- 

mal ideal space (e.g.: N =L) then we may  adjoin the identity to obtain an algebra Are to 

which the above corollary applies. We conclude tha t  L ~ / V  in this case. In  combination 

with results of [9], this leads to a complete characterization of all such algebras N. The 

result is this: For any 1.c.a. group G, a closed sulabgebra N of M(G), satisfying N1, has 

P as its maximal ideal space if and only if L ~  N ~  ~/L, where V-L is the intersection of all 

maximal ideals of M(G) containing L. A discussion of this result and its implications for 

the structure theory of M(G) will be found in [10]. 

Unfortunately, one aspect of Theorem 6.2 is this: I t  shows that  the situation described 

in Section 5 can lead to only the trivial residue measure Q =0,  unless Le~ N. This suggests 

that,  once Theorem 6.2 has been proved, the residue theory  has further significance only 

for the algebra L e. Thus, we shall restrict at tention to this algebra from here on. 

If  / is a measurable function on G for which / ~ 1  is bounded (cf. Definition 2.2), 

then / is /~integrable  for every/~ E ~ (A)  and / may  be considered an element of ~(A)* 

if we set/(/~) = ~/(-g)d#(g). In  fact, every element of ~O~(A)* clearly has this form. Hence, 

we may  identify ~(A)* with the space ~ ( A )  of all equivalence classes of measurable 

functions / for w h i c h / ~ j l  is bounded. Two functions /, g are equivalent in this space if 

](0) =g(0) and /=g almost everywhere with respect to Haar  measure. 

De/inition 6.1. (a) A function /E ~ ( A )  will be called exponential if/(g) = P(g) w(g) 

for some ~oEeAF and some polynomial P(g)= ~j,+ a x j'l-~ x~"(g) with . . . + j n ~ m  J t . . . . . Jn  1 ~ Y ] ,  " ' ' ,  

x 1, . . . , x n E X .  

(b) I f  J is an ideal in Qe(A), we set J ' = { / E ~ ( A ) : / ( / ~ ) = 0  for every/~EJ}.  

The correspondence J->J" is one to one and onto from the class of closed ideals of 

Qe(A) to the class of weak-* closed, translation invariant linear subspaces of Q~(A). 

Since J"  is translation invariant, we have that  /E J '  if and only if/g(/~) = S / (g-  g')d/~(g')= 

# ~ / ( g ) = O  for each # E J  and gEG, where /g(g')=/(g'-g). The obvious analogue of the 

spectral synthesis problem for LI(G) (cf. [6], Ch. 7) is the following: Under what conditions 

on an ideal J c  Qe(A) is it true that  J "  is the weak-* closed linear span of its exponential 

elements? Note that  F3 gives a partial result on this problem in the case G = R ~. We now 

prove this result in our more general situation. 
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B y  the corollary to Theorem 6.1, the maximal  ideal space of s m a y  be identified 

with (e~P) ', where for/~fi  ~ ( A )  the Gelfand t ransform /z ~ is  t he  Laplace t ransform /x ̂  

extended to (e~F) '=e~F U {cr ((eAF)'=e~F if F is compact).  I f  g is an ideal of ~e(A), 

then we set h(J)= {to E (e~[') ' :/x^(eo) = 0 for all/x ~J}.  

LEMMA 6.1. I /  the dimension o / X  is n, and J is an ideal o/ ~e(A) such that h(J) N 

(e~ ' =~), then 

(1) h(J) is a/ ini te  set {co 1 ..... eok}; and 

(2) i / K  is any compact subset o] int A, then there exist n elements ~t I ..... ~ o / J  such 

that there are only/initely many common zeros o//x~ ..... /x~ in eKF and ~ does not vanish 

at infinity. 

Proo/. Since (eOAF) ' is compact  in (eAF) ', we can choose Vl .. . . .  VmEJ such tha t  no 
A ^ ^ A c o m m o n  zero of vl ..... v,n lies on (e~ '. However,  the set of common zeros of Vl .. . . .  Vm 

is then a compact  subvarie ty  of et~tAF. I t  follows tha t  this set is finite (cf. [2], I II .B.17) .  

To prove par t  (2), we choose any  measure /XlEJ such tha t  ~t~ does not  vanish at 

:infinity. If  V =  {eo Ee~tAF :/x^(r then  V is an analyt ic  space of pure dimension n - 1  

(cf. [2], Ch. V). I t  is a direct application of V.D.4 of [2], tha t  we can choose v2 ... . .  v~ from 

the  closure of J such tha t  v~, ..., v~ have a discrete set of common zeros on V. Hence, if 

K is a compact  subset of int A, we m a y  choose ~t2 ..... / ~ E J  close enough to v, . . . .  , v~ so 

t h a t  /x~ ..... /x~ have a finite set of common zeros on eKF. This follows from I I I .B .17  of 

[2] and  the fact tha t  eKF N V is compact.  

THEOREM 6.3. 1/ J is an ideal o/ s such that h(J) N (e~ ' = O ,  then J is closed 

and J• is ]inite dimensional. Furthermore, J '  is the linear span o/ exponential elements o/ 

~he /orm P(g)eo(g), with to Eh(J) and Po)EJ' .  In  other words, there are/initely many exponen- 

tial elements P1r ..... Pke% E J" such that r E h(J) /or  each i and J = {), E ~e(A) : ),*(P~o~)=0 

]or i = 1 ..... k}. 

Proo]. Note  tha t  if eoEeAF, then {Po~ : P  is a polynomial  in x I . . . . .  x= of degree <~m} 

is a finite dimensional t ranslat ion invariant  subspace of s  (A). I t  follows tha t  if # E s 

~oEeAF, and  P is any  polynomial  in x I . . . . .  x~, then # ~ e ( P w ) = P l w  for some other  poly- 

nomial P1. Hence, if h=~P~to~Es with r  for i # j  and  # ~ - h = 0 ,  then 

~t-x-(P~o~) = 0  for e a c h / .  Thus, if J is an  ideal and h = ~ P ~ o ~ E J  1 with ~o~: r162 for i=~?', 

Shen PVo~ E J  ~ for each i. 

I f  J contains an  ideal J1, and if the conclusions of the theorem hold for J1, then  they  

also hold for J .  I n  fact, if J1 is closed and J~ is finite dimensional, then s 1 is finite 

dimensional  and contains J/J~ as an  ideal. I t  follows tha t  J is closed and  J "  is finite 
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dimensional. Since J" c J~, we have tha t  J •  is generated by  exponential  elements of J~. 

However,  the first paragraph then  implies tha t  J •  is generated by  exponential  elements  

of J ' .  Necessarily these exponential  elements have the form P0), with 0)Eh(J). 
B y  Lemma 6.1, h(J)={0)  1 ..... 0 ) k } - a  finite subset of etnt AF. We Choose a compac t  

convex set K = int  A such tha t  h(J)= e ln t  KF. In  accordance with Lemma 6.1. (b), we choose 

#x ..... /xnEJ such that/z~(cr  # 0  and ju~ ... . .  ~t~ have a finite set of common zeros in eKF. 
This implies tha t  the points 0) 1 .. . . .  0)k are isolated common zeros of the set {/x~ ... . .  ~t~ }. 

Hence, we m a y  choose a pairwise disjoint collection S 1 .. . . .  St of n-simpliees contained 

in A, such tha t  the common zeros of~t[ ..... /x~ lie in Ul_i(eS~F). Let  J1 be the ideal of ~e(A) 

generated by  #1 ..... /~n. We have Jl=J, and ; tEJ  1 if and only if ]tEY~e(A) and the equa- 

t ion #iVx + ... +/x~v~ =;t  has a solution in ~e(A). 

Consider the case where n > 1. This implies tha t  the set B = A ~ ,  (j ~ = 1 (int S~) is con- 

nected. Note tha t  the functions ~t~ ..... /x~ have no common zeros on (e~l~) '. Applying 

Theorem 4.3 with C =  I,J~=IS~ and B as above, we obtain: the equat ion/XlVl+. . .+#~v~ 

has a solution in ~ ( A )  if and only if it has a solution in Y~e(St) for each i. B y  Theorem 4.2 

and Theorem 5.2, there are exponential  elements Pl0)1,-.., Pk0)k, such tha t  ~1~ '1 -~ . . .  + 

lanV~=l is solvable in ~(S~) for each i whenever  ~t-x-(Pj0)j)=0 for each j. Hence, if 

J 2 = { t E s  2-x-(Pj0)j)=0 for ] = 1  ..... k}, then J~=Jl=J, J~ is closed, and  J~ is 

generated by  exponential  elements of the form P0) with 0)Eh(J$)=h(J~). In  view of our 

previous remark,  the proof is complete in the case n > 1. I n  the case n = 1, A itself is a 

1-simplex (an interval) and we can apply  Theorem 4.2 directly wi thout  using Theorem 4.3. 

The above result is not  very  surprising and seems small reward for all of the effort 

of the previous sections. We would be very  interested in a simple proof of this result. I t  

m a y  be possible to obtain such a proof directly f rom the theory  of several complex var-  

iables, wi thout  resorting to the special sheaf theoretic constructions of Sections 3 and  4. 

The s tudy  of ideals J of s for which h(J)[7 (e~  would seem to be a far  

more difficult task. 

We conclude with the following remark  concerning Theorem 6.2: I n  the case of a 

general algebra N~M(G), satisfying N1, IV2, and  N a, it m a y  be possible to find fu r the r  

connections between spectral properties of ~ (A)  and  measure theoretic properties of N ,  

by  investigating the si tuation described by  Theorem 4.2 in the case n >m.  
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