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1. Introduction 

Let  (~ be a locally compact  Abelian group and  let ~t denote a regular probabi l i ty  

measure on (~. I f  {~n, n ~> 1} is a sequence of independent  (~ valued r andom variables 

each having # for their probabil i ty law, then  the random walk with initial point  S O is the 

Markov chain Sn =So § + . .-+ ~n. I f  @o is the minimal closed subgroup of (~ generated 

by  the support  S(#) of ~, then Po(S~ E q~o for all n >/1) = 1, where P~(. ) denotes conditional 

probabi l i ty  given S O = x. Hencefor th  we will assume tha t  (~0 = ~-  This entails no real loss 

in general i ty and  is essential for the proper  formulat ion of our results. I n  addition, through-  

out  the first 13 sections of the paper  we always assume tha t  (~ is also noncompact .  For  

a compact  (~ the corresponding results (where meaningful) are far  easier to establish. We 

will discuss these in our final w 14. 

Basic nota t ion and  concepts used th roughout  the paper  are listed in w 2. The reader  

should refer to this section while reading the introduct ion as the need arises. 

A random walk is said to be recurrent if for some compact  neighborhood N of 0, 

~ = I P o ( S ~  EN) = ~ .  Otherwise the walk is called transient. I t  is a k n o w n  fact (see Loynes  

[7]) t ha t  for a recurrent  walk ~ I P x ( S  n E_N) = c~ for all x and  open sets N,  while for a t ran-  

sient walk ~n=lPz(Sn EK) c~ for all x and compact  sets K. Moreover (Loynes [7]) in a re- 

current  walk, Px(VN < cr  for all open sets N # O .  A random walk is nonsingular if 

for some n >~ 1, /x (n) has a nonsingular component  relative to the H a a r  measure on (~. 

For  a nonsingular walk the sets N in the above s ta tements  m a y  be t aken  to be Borel 

sets of positive Haa r  measure. 

Briefly, our main goals in this paper  are five-fold. First, to  establish the renewal 

theorem for t ransient  r andom walks on (~. This will be done in w 4 and  will be the only 

place tha t  t ransient  walks are discussed. The remainder  of the paper  is devoted  to recurrent  
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walks. Our second main objective of this paper  is to establish the existence and basic 

limit properties of recurrent potentials and to use these recurrent potentials to establish 

the asymptot ic  behavior of the hitting distribution and Green's function for relatively 

compact sets. This will be carried out in w167 5-9. Our third goal is to find all solutions of the 

"Poisson" equation P/=/+cp tha t  are bounded from below. This will be done in w 10. 

Our fourth goal, carried out in w167 11 and 12, is to investigate the analytic properties of recur- 

rent  potentials. Our fifth and final goal is to investigate the behavior of Px(VB>n) for 

large n. This will be carried out in w 13. 

As in the Euclidian case our methods ~ l l  be a mixture of Fourier-analytic and proba- 

bilistic arguments.  While for the groups R ~ the prerequisite Fourier analytic facts were 

s tandard tools of the trade, this is not the case for arbi t rary locally compact  groups (~ 

In  w 3 we gather together those necessary preliminary facts which are needed to proceed 

further. Some of these may  be of intrinsic interest as, for example, the analogue of the well- 

known fact tha t  on R a, 1-Refz(O)>~clO[2. 

For a transient random walk the renewal measure v(A)=~=IP(SnEA)<c~ for all 

relatively compact sets. A pr imary problem in the s tudy of transient random walks on 

Z a was the asymptot ic  behavior of r(A +x)  as x-+oo. In  w 4 we examine this problem for 

transient walks on (~. A transient walk is said to be type two if 

(1) (~ ~= R |  or Z |  (where H is a compact group), and 

(2) the random walk induced on R or Z has a finite non-zero mean m. 

A transient walk is type one if it is not type two. The behavior of u(A + x) is given by  the 

renewal theorem (Theorem 4.1) which asserts tha t  v(A +x)-~0,  x->c~ except for a type  two 

walk. In  tha t  case if say m > 0 and A E A, then 

lim ~,(A+x)=m-l[A[ and lim v(A+x)=O. (1.1) 
X - - ~  -I- o o  X - - ~ - -  oO 

Let  Vs = min {n > 0:Sn E B} denote the first hitting time after t ime 0 of the Borel set B, 

and let 

UB(x,A) = E  1A(S~- x) (1.2) 
Lnffi 1 

be the expected number  of visits to A starting from x on or before t ime VB. The renewal 

theorem easily yields the following facts about  the behavior of Us(x, A) as x-+ co in the type 

two case. Suppose m > 0, B E (~+, ] 0B [ = 0. Then for any  A E :4, 

lim Us(x, A) =m -1 [ Pz (I~B = ~ )  dx. (1.3) 
J A  

In  particular, if A c B we obtain the first hitting distribution of B from - o ~ .  Sharper 
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forms of the renewal theorems and of the behavior of Us(x, A) are available (see Theo- 

rem 4.2) when the walk is non-singular. 

The renewal theorem for discrete groups was obtained by  Kesten and Spitzer [5] 

and the present proof is pat terned after theirs. When specialized to R ~, d/> 2, the renewal 

theorem gives the first complete proof tha t  for an arbi t rary  d-dimensional transient 

random walk lim~-~oov(x+A)=0 for all relatively compact sets A. The first results in this 

direction were obtained by  Chung. Complete results in the lattice case were obtained 

by  Spitzer [13]. When specialized to d = 1, the renewal theorem is, of course, the ordinary 

renewal theorem proven in its final form in the general ease by  Feller and Orey [2] and 

strengthened in the non-singular case by  Stone [17]. 

The remainder  of the paper  is devoted to recurrent random walks on (~. For recurrent 

walks a major problem is to find the asymptotic  behavior of UB(x, A) as x-~ oo and, dually, 

the asymptotic  behavior of UB(x, A +y) as y-~ ~ ,  when B is a relatively compact set. A 

recurrent walk is said to be type two if 

(1) (~ ~= R Q H  or Z|  where H is a compact group, and 

(2) the random walk induced on R or Z has mean 0 and finite variance a 2. 

Otherwise, the recurrent walk is called type one. In  Theorems 5.5 and 5.7 we show tha t  if 

B E A, int B :~ O, then for A E J4 there are functions LB(x), LB(x) such tha t  

lim UB (x, A + y) = IAILB(x) (1.4) 

lim UB (z, A) = faJ~B(t) dt (1.5) 

for every type one walk. For every type two walk there are functions L~ (x), L~ (x), J ~  (x), 

Z~ (x) such that  
lira UB (X, A § y) = [A I L~ (x) (1.6) 

y-->~: ~ 

lira UB (x, A) = f . ~ ( t )  dt. (1.7) 
X--> :l: 

I f  A c B then UB(x, A) is just the probabili ty tha t  the set B is first entered at  some 

point in A. Thus the result in (1.4) shows tha~ in every type one recurrent walk there is a 

well defined first hitting distribution a t  infinity tha t  is absolutely continuous. On the 

other hand, if A c B c then Us(x, A) is the expected number  of visits to A before hit t ing B. 

The results in (1.4) and (1.5) show tha t  for every type  one walk there is a well defined 

meaning to the expected number  of visits to A before hitting B starting from infinity and 

also a well defined meaning to the expected number  of visits to infinity before hitt ing B 
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starting from x. Of course, similar interpretations hold for the results in (1.6)-(1.7) for 

type two recurrent walks. 

To establish these results we follow roughly the same procedure tha t  we did in the case 

of vector groups. Let  ~ be the class of continuous functions whose Fourier transforms have 

compact support  and satisfy several other technical requirements (see Section 5). Let  

g >~ 0, g E ~ ,  J (g )  = 1. We show in Theorem 5.3 tha t  for all / E ~ the potential  

D [  (x) ~ l i m  E l (Sn  - x)] (1.8) 
, t t l  

exists and has the asymptotic  behavior 

lim [D[(x  - y) - D[(  - y)] = 0 (1.9) 
~'---~ O0 

for every type one walk while 

lim [D/ ( x  - y) - D / (  - y)] = T- a~J ( / )  v2(x) (1.10) 
y--~-I-  ~ 

for every type two walk. 

As in the Euclidian case we show tha t  (1.8)-(1.10) are equivalent to a certain problem 

in Fourier analysis. In  Theorem 5.2 this Fourier analysis problem is solved for a com- 

pact ly  generated ~ by  appealing to the basic structure theorem for such groups to reduce 

the problem to the Euclidian case where the results of Port  and Stone [11] apply. We then 

assume tha t  Theorem (5.2) holds in general to show tha t  (1.8) to (1.10) are universally valid. 

Having these results we proceed (as in the Euclidian case) to show tha t  the fundamental  

identi ty 
D l ( x )  - I IB  D l ( x )  = - GB l (x)  + J ( / )  LB(X) (1.11) 

holds for all B E B having non-empty interior and all /6  ~. The desired results (1.4)-(1.7) 

then follow from (1.8)-(1.11) just as in the Euclidian case. The remainder of Section 5 is 

devoted to establishing various additional properties of the potentials D / ( x )  and of the 

behavior of G s / ( x )  f o r / E ~  which are needed later. 

The establishment of all these results then rests upon showing tha t  Theorem 5.2 is 

indeed valid in general. By  using the methods of Stone [15] and some ideas from Kesten 

and Spitzer [5] this is shown to be the case for all nonsingular walks on an arbi t rary  1~ in 

w 6. The singular case then follows a t  once by  use of the approximation procedure spelled 

out in Theorem 3.2. 

A by-product  of the investigations w167 5 and 6 is the establishment of the conjecture of 

Kesten and Spitzer stating tha t  the random walk generated by  ft is recurrent if and only 

if for a compact neighborhood N of 0 
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fN = ~ "  (1.12) 
1 

Re i -/2(0) dO 

For a discrete group this was done by  Kesten and Spitzer in [5]. For the groups R ~ this 

was first done by  Ornstein [8] and later by  another method by  Stone [15]. 

As was outlined above, potentials of functions in ~ suffice to establish the main proba- 

bilistic results (1.4)-(1.7) for sets in A. For a singular walk ~4 is the most general class 

of sets for which these results are universally valid. For many  purposes (in particular, 

for the establishment of a rich analytic theory) it is desirable to have potentials of func- 

tions f having compact support. Counter-examples show however tha t  for singular walks 

there is no non-trivial class of these functions for which we can assure tha t  the potential  

Df exists. Thus we turn to consider nonsingular walks in w 7 where we show tha t  all these 

desired strengthenings are valid. These m a y  all be summarized by  saying tha t  for a non- 

singular walk all the results of w 5 are true when the class of set ~4 is replaced with the 

class B and the class of functions ~ is replaced with qb. 

The operator 19/was defined in the sense of Abel summabfli ty and it is natural  to 

inquire ff this mode of convergence may  be replaced by  ordinary convergence. The pro- 

cedure for doing this is outlined in w 8. 

In  w 9 we examine some further asymptotic  properties of Af(x) and LB(X). I t  is shown 

tha t  if J(f)>0 and fE D (or (I)in the nonsingular case) then limz._~ooAf(x)= co except per- 

haps if B is isomorphic to RI|  or ZI| In  the exceptional case there is a unique 

constant L, 0 ~<L < oo, such tha t  for f E ~ (or (I) in the nonsingular case), J(f) > 0, either 

lim Af(x)= ~ and lim Af(x)=L J(/) 
X* '~  + O0 ,T ."~- -  

o r  lim A/(x)= L J(/) and lim Af(x)= ~ .  

Similar results are shown to be valid for Ls(x). Results of this type were first given for 

discrete groups by  Kesten and Spitzer [5] and the method used here was pat terned after 

theirs. 

Up until now we have focused our at tention on mostly probabilistic matters.  In  

w167 10-12 we consider some analytical questions connected with potentials for recurrent 

random walks. We call a locally integrable func t ion /#Qs  superregular if / is defined on 

(~ - B, bounded from below, and Qs/<~] a.e. on ~ - B. In  w 10 (Theorem 10.2) we show tha t  

if B E ~4", I BI >0,  then when ~t generates a recurrent type one walk there is a unique 

c>~0 such tha t  /=cF~B+GB(f-Q~ f) a.e., while i f /z  generates a recurrent type two walk 

there are unique constants cl, c2 >~ 0 such tha t  f = c1s + + c~s + GB(/- QB/) a.e. 
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The operator ( P -  I)  is the analogue of the Laplace operator so the equation (P - I)  / =90 

a.e. can be considered a Poisson type equation. For potential theoretic matters the correct 

recurrent potential operator is At, T = D T - T + b J ( T )  where b is a constant. Using this 

operator we show that  potentials AoT provide solutions of the Poisson equation for T E ~+, 

(or (I) + in the nonsingular case) that  are bounded from below. For nonsingular walks we 

then show that  the Poisson equation with T E ~ or (I) has a solution bounded from below 

if and only if J(T)>~0, and that  for a type one walk the only such solutions a r e / = A  T +fl 

a.e., while for a type two walk the only such solutions are 

~J(T) v2 4-fl a.e., / = A  T -4 as 

where fl is an arbitrary constant and a a constant such that  I a I ~< 1. Results in this direction 

were found by Spitzer [13] for recurrent random walks on Z ~ and by Ornstein [8] for non- 

singular walks on R d. 

In  the singular case our uniqueness results are not as general as those in the non- 

singular case. If  we let E be the direct sum space of the bounded measurable functions 

with the one dimensional space of multiples of Ag (where g E 5, g >~0, J(g)= 1) then for 

T E 5, AT E E. In  Theorem 10.4 we show that  the only other solutions of Poisson's equation 

which are in E a r e / = A  T +/~ a.e. 

Quite a different kind of problem is the Poisson equation with boundary condition. 

Given a set B, a bounded function T on B, and a function / having support on B' we seek 

a function h bounded from below such that  ( P - I ) h =  - / a . e .  on B '  and h =  T a.e. on B. 

We conclude w 10 by showing that  for sets B E A* having nonempty interior the only lo- 

cally integrable such solutions are h=cC,+Hscf+GB/ a.e. in the type one case and 

h= c 1F~ +c 2 I~  + HBT + GB/ a.e. in the type two case. 

Our purpose in w 1 1 is to investigate to what extent the basic principles of logarithmic 

potentials have analogues for our potentials A T . Naturally since many of these have to do 

with charges having compact support we cannot expect that  there are results of this type 

in the singular case, so in the main, the section is devoted to the nonsingular case where 

we show that such things as the minimum principle, domination principle, and Balyage 

have their counterpart. Another basic principle is the equilibrium principle. In  general, 

for sets BEA*, we define the Robin's constant of B as kb(B)=limz[Abg(x)-EB(x)], 

where J ( g ) = l ,  gE~. This is actually a fairly close analogue of one definition of this 

constant in the case of logarithmic potentials. So defined, we show in Theorem 11.1 that  

k(B), as a set function of B, has all the desired properties of such a constant. In  the case of 

a nonsingular walk we show that  for B E ~, k(B) is the unique constant such that  for some 
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~, J ( T ) = I ,  having support  on B, Aq~(x)=k(B) a.e. on B. I t  turns out tha t  any  such 

must  coincide with 1B(X) a.e. We have thus an interesting hierarchy in the definitions of 

k(B). For very nice symmetric walks (e.g. those having the operator Aq~(x) = ~ a(y - x) q)(y) dy 

where a(x) is a continuous function) we can show tha t  k(B)=supr A~0), where ~0 has 

support on B and J ( ~ ) =  1. For these walks then there are three characterizations of k(B) 

as in the classical case. For general nonsingular recurrent walks there are two, and for 

arbi t rary  recurrent walks just one. This shows tha t  the limit definition of k(B) is, at  least 

from our point of view, most intrinsic. 

Potential  theoretic facts of the above type were first given by Spitzer [13] for walks 

on Z ~. The arguments used here are more or less pat terned after those of Port  [10] for the 

stable processes. 

Let  C0(G ) be the usual space of continuous functions vanishing at oo if the random 

walk is of type one and the closed subspace of the two point compactification of (~ tha t  is 

the kernel of the linear functional, /-->/( + o o ) + / ( -  oo), in the case of a type two walk. 

Further,  set Z = C0((~) • (a( - x)}. Then for a nonsingular walk A~ EZ if ~0 E Cc((~). The main 

result of w 12 is to show tha t  Z is the correct range space of A on Cc((~). More precisely, we 

show tha t  A[Cc((~)] is dense in Z and that  A[Cc(~)A N] is dense in C0((~ ) where /Y= 

{~ :J(~) =0}. Analogous facts were shown by  Port  [10] to be valid for potentials associated 

with recurrent stable processe. 

Assume [B[ > 0  and/c0(B ) 40.  Let  (I)(B) be the Banach space of bounded measurable 

functions on B with ess sup norm. Then another result of some interest in w 12 is tha t  the 

restriction of A to (I)(B) is a topological isomorphism of (I)(B) onto (I)(B). This fact is an 

extension to arbi t rary (~ for a nonsingular walk of the fact (due to Spitzer [13]) tha t  on 

Z d, A restricted to a finite set B with/c(B) :t:0 is an isomorphism of R e onto R B. 

In  w 13 we again return to probabilistic problems concerning recurrent random walks. 

Here we are interested in several questions about  the asymptotic  behavior of the hitting 

times. Let E~(n)= ~r <~ n)dx. (Two different interpretations ef EB(n) are given in the 

body of the text.) Let  B, A EA*. Then for any  type two walk, 

lim Vn Px ( V~ > n) = (2) �89 aLB(x) 
n . - . ~ o o  

uniformly on compacts, and 

lim [EB (n) -- Ea (n)] = (2 (r ~) [k(B) - k(A)], 

where /C(. ) is the Robin's  constant of B. For an arbi t rary  type one walk our results are 

much more meager. In  general, if A, B E •* I A I, I B] > 0, then, EB(n) ,,, EA(n) and 
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lim J=~~ 

n~oo ~ [ P~(VA>j)dx 
j~=o J A  

lim i=~~ 
and n / ,  

n-->oo Z | P~(V,>i)dx 
i = O J B  

I n  the general nonsingular  case we m a y  imProve (1.14) to  

P,(VB>j) 
lim j=0 

, 0f. "~r P~ (VB > j) dx 

= 1, (1.13) 

= fALB(x) dx. (1.14) 

= LB (x) (1.15) 

uniformly on compacts,  for a ny  B E B, ]B] > 0. I n  addition, in the nonsingular case, for 

A, B E B we can show tha t  EB(n)- EA(n) approximates  k(B)-k(A)in the following sense. 

Let  F E B, ] F I = 1, and  set qn =.[rPx( Vy > n) dx. Then 

N 

Y [E~ (n) - E~ (n)] 
lim n=0 = k(B) - k(A). (1.16) 

qn-J qs 

For  r andom walks on Z a or R a far  sharper results are known to be valid. I t  was shown 

by  Kesten and  Spitzer [6] t ha t  in this case ratios of individual terms ra ther  than  partial  

sums exist in (1.13) and  (1.15) and by  Por t  [9] t ha t  this is t rue also in (1.16). Ornstein [8] 

showed tha t  when A, B are intervals, then  limits of individual terms in (1.13) and  (1.15) 

also exist for all recurrent  walks (singular or not) on R a. Whether  all the strong facts known 

to be valid on Z a are true in general remains an  open problem. Perhaps  the methods  of 

Ornstein could be used to obta in  results of this na ture  on an  a rb i t ra ry  (~, hu t  we have 

made no a t t empt  in this direction. 

2. Notation 

I n  this section we will introduce the nota t ion tha t  will be used th roughout  the paper.  

will be a fixed locally compact  and, except in w 14, noncompac t  Abelian group. The 

Borel sets of ~ are the elements of the minimal a-field generated b y  the open sets. Haar 
measure on (~ will be denoted by  [ �9 ] or dx. The phrase a.e. (almost everywhere) will a lways 

be with respect to  I-Iaar measure, and the phrase essentially will mean  except on a set of 

H a a r  measure 0. 
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will be the class of all relatively compact Borel sets, and ~4 will be the subset of B 

consisting of those sets B whose boundaries ~B have 0 ~ a a r  measure. Define the class 

•* as A in the general case as B in the nonsingular case. The class ~ is the class of all 

functions / whose Fourier transforms have compact support and satisfy several other prop- 

erties (see w 3). (I) is the class of bounded measurable functions having compact support  

and Cc((~) the continuous functions having compact support. I f  Z is one of the above class 

of functions Z + will denote the nonnegative elements. 

The complement of a set B will be denoted by  B'  or B c. The nth power of the transition 

operator is P~, where p 0 =  I (identity) P/=  So/(Y +x)ju(dy), and p,~+l =PPL The hitting 

times T B and VB are respectively 

TB =min{n>O:SnEB} (=oo  if 8 , ~ B  for all n>O) 

VB = min {n > 0: Sn E B} ( = c~ if no such n). 

For  a function I set/~(x) = / ( x - y )  and set J(l) =S(~l(x)dx. For functions 1, g set (l, g) = 

Sr g(x)dx. 

Let O<; t<  1 and define operators on bounded measurable functions or nonnegative 

measurable functions as follows: 

U ~ = ~ ,U~P '~ 
n>~l 

G~= I + U a 

DZ= U~ g(O) J -  U ~, 
where g > 0 and J(g) = 1, g E {~. 

A ~ = G~g(O) J -  G a = D ~ + g(O) J -  I 

BPn](x)=Ex[/(Sn); VB~n], n>~l 

UaB = ~ 2'~BP '~ 
n>~l 

I .  l(x) = 1. (z) l(x) 

where 1B (x) is the indicator function of B., 

Ha~ = I~ + Iw 1]~ 

o~ = z~,. ( / +  v~),r ,  
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LaB (x) = (1 - 2) U~g(O) ~ P~ (Vs > n) 2" 
n=0 

s = (1 - 2) G~g(O) ~ P~ (TB > n) 2 ~. 
n=0 

When any of the above quantities have a finite limit as 2 t 1 we will denote that  limit 

by  the same symbol without the ~t, e.g. l i m ~ l H ~  ] = HB/. 
Of all the groups (~, two particular compactly generated groups will play a distin- 

guished role. These are, when (~ is isomorphic to either R I |  H or Z I |  H,  where H is a 

compact group. In  this case we will simply identify (~ with either RI|  or ZI(~H. The 

random walk on R 1 (Z 1) induced by  # is the random walk generated by the measure/~',  

where for a Borel set B of R 1 (Z1),/~'(B) =~(y~-I(B)). Here ~o is the natural  projection of 

R10H(Zl|  onto R 1 (Zl). The mean and variance of # '  will be denoted by m and a 2 re- 

spectively. We set ( ~ - = ~ - 1 ( _  oo, 0] and (~+ =~o-l(0, co). 

By  limx_~ ](x)=/(~) we mean tha t  given any  e > 0  there is a compact set K such 

tha t  ]/(x)-](~)l <e  for all x(~K. When the group can be identified with either RI |  
or ZI|  we define l imz_,i~/(x ) =/(___ oo) as limx_~c,~$~/(x). We introduce the conven- 

tion tha t  Lim~/(x) is [/( + c~) +/(  - c~ )]/2 when (~ is one of the distinguished groups. In  all 

other cases LimJ(x)=lim~_~/(x). 
The measure ~(dx)~/~(-dr.) generates a random walk on ~ ,  recurrent or transient 

according as the one generated by # is, which is called the dual random walk. Quantities 

referring to the dual walk are denoted by  ~, e .g . /~s  is the quanti ty H B for the dual walk. 

I t  easily follows tha t  for a n y / ,  g E (P or any nonnegative measurable / ,  g (g, P~/) = (D~g,/) 
and (g, BPn/) = (sP~g, /). From these, other duality relations follow for the operators defined 

above. 

I f  y is a bounded regular measure then the Fourier trans/orm ~(0) of y is ~(0)= 

~(0 ,  x~(dx), where (0, x) is a character of (~. For a function ]ELI((~), the Fourier trans- 

form ~(0) is ~$(0, x)/(x)dx. Haar  measure on (~ is chosen so t ha t / (x )=~$(O,  x)](O)dO 

whenever / is continuous and ] is integrable. 

In  future sections we will show tha t  various limits exist. For ease in reference we 

gather these together here; 
Ls (x) = lim L~ (x). 

I t  turns out tha t  Ls  (x) is also given by  

]A I L~ (x) = Lim UB (x, A + y). 
Y 

The function L~ are defined for type two walks by  
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(x) = LB (x) +_ a-~ f B IIB (x, dz) ~o(x- z) L~ 

and for a type two walk 
lira UB (x, A + y) = IA ]L~ (x). 

y - - >  4- oO 

The functions I:s and C~ are slight modifications of the functions LB and L~. 

s (x) = LB (x) 1,, (x) 
and for a type two walk 

(x) = (x) + a  JBH.(x, dz) y~(x Z). 

Let g E ~, g >1 O, J(g) = 1. The Robbin 's  constant k(B) is 

k(B) = lim lAg(x) - s (x)]. 
x 

For a nonsingular recurrent walk the po t en t i a l / 9 / can  be written as 

D/(x) = f a ( y -  x)/(y) dy - Uj (x ) ,  

where a(x) is a continuous function and Us (x, dy) = U s (0, d y -  x) is a bounded measure. 

3. Some Fourier Analysis 

In  this section we extend some of the basic properties of characteristic functions of 

probabili ty measures on Euclidean space to those on locally compact Abelian groups. 

THEOREM 3.1. Let tt be a probability measure on (~ whose support $ generates (~. Then 

1 - ~ ( x , O )  

1 - ~ f ~ ( o )  

is bounded/or x and 0 in compacts and 0 40.  

We begin the proof with 

LEMMA 3.1. Let ~ and eo be complex numbers such that ]~] = ]co I = 1. Then 

( 1 - ~ / )  + ( 1 -  ~(mT) ~> ( 1 - ~ o ) / 6 .  (3.1) 

Proo/. :Note first tha t  
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( , ~ ) 2  = 1 - ( ~ ) ~  = (1 + ~ )  (1  - ~ )  -<< 2(1 - ~ )  

and  similarly (~w) 2 < 2 ( 1 - ~ o ) .  Thus  

[ , ~ o ~  I < (~)~ + �88 < 2(1 - ~ n )  + �89 - ~ ) .  
Observe nex t  t ha t  

(1 - ~ 7 )  + (1 - ~arq) = 2(1 - ~ )  + (1 - ~w)  + ~ r / ~ o  - (1 - '3it/) (1 - ~o~) 

>~ (1 --~co) (�89 - (1 -- ~)). 

If 1 -- ~W ~< i, the result now follows immediately. If I - ~7 >~ �89 the conclusion of the lemma 

is trivial.  

COROLLARY 3.1. Let U be a subset o[ (~. Then/or x, y6(~ and OE~ 

i n f ( 1 - ~ < z ,  0 ) ) +  inf ( 1 - ~ < z ,  0 ) ) > ~  inf ( 1 - ~ < z ,  0>). (3.2) 
y+U x+y+U z+U-U 

LEMMA 3.2. Let ix be as in Theorem 3.1. Then/or every x6(~ and open neighborhood U 

o/the origin o/(~, there is a c > 0  such that 

1 - ~/2(0) ~> c inf (1 - ~ <z, 0}), 0 6 (~. (3.3) 
x + U  

Proo/. Choose x E q~ and  an  open neighborhood U of the origin of qfi. Le t  U1 be a neigh- 

borhood  of the  origin of | such t h a t  U 1 - U1 ~ U. Then  there  exist  posi t ive integers  m 

and  n and  a y E (~ such t h a t  

#(n)(y+ U1 ) > 0  and  ~t(m)(x+y+ U1)>O. 

Thus  there is a constant  c > 0 such t h a t  for 0 6 (~ 

1 - ~fi~ (0) >i 12 cn inf (1 - ~ <z, 0>) 
y+ U, 

and 1--~ftm(o)>~12cm inf (1--  ~ <z, O>). 
x + y +  U, 

ll-p(O)l~ll-f,~(O)l/u>~12c inf ( 1 - ~ < z ,  0>) 
y+ U, 

[1-ft(O)l>~12c inf (1-gt<z, 0>). 
Z+y+ U~ 

Consequent ly  

and  similarly 

Therefore,  b y  Corollary 3.1, 

] l -  ft(O)]>~c inf (1- ~ <z,O>), 
x + U  
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This proves the lemma if/t  is symmetric or, equivalently, if fi is real. The general result 

follows by  looking at  (/2 +fi)/2 = ~fi. 

LEMMA 3.3. Let V be a vector group and L a lattice group. Let C 1 be a compact subset o] 

V O L  and C~ a compact subset o/ V (~L. Then there is a constant 0 < c < ~ and an open neigh- 

borhood U 1 o] the origin o / V ( D L  and there are n points x 1 ..... x n in V • L  such that 

inf ( 1 - ~ ( z , O > ) > ~ c ( 1 - ~ ( y , O ) ) ,  y E C  1 and OEC~. (3.4) 
i=1 xl+ U1 

Proo/. The proof follows easily from the form of V |  and is left to the reader. 

Proo/ o/ Theorem 3.1. Let C be a compact subset of (~. Then there is an open compactly 

generated subgroup ~1 of (~ containing C. We can write (~1 = V |  H, where V is a vector 

group, L is a lattice group, and H is compact (see Hewitt  and Ross [4] p. 90). Let C1 be the 

projection of C into V |  Then C 1 is a compact subset of V |  

Let A denote the subgroup of (~ which annihilates H. Then A is open and closed (for 

(~/A ~ / ~  is discrete). Let C 3 be a compact subset of A. 

Let M: (~-+ V~)L  be the map which takes 0 E (~ into its restriction to V|  Then M 

is a continuous map ([4], p. 377) and, in particular, the image C 2 of C 3 under M is compact. 

Also if 0EA and x = y  + h E (~1, where y e V |  and h e l l ,  then (x,  O} = (y,  M (O) ). 

With V, L, C1, and C2 as just defined, let c, U1, and x I ..... xn be as in Lemma 3.3. 

Set U = U 1 + H. 

By Lemma 3.2 there is a constant c 1>0 such that  for 0EA and 1 ~<]~<n 

1 - ~12(0) >1 ClC-ln inf (1 - ~ (z, 0)) : ClC-ln inf (1 - ~ (z, M(O))) 
xj + UI xj + U1 

and hence for 0 E A 

1-~ f t (O)>~c lc  - 1 ~  inf ( 1 - ~ ( z , M ( O ) ) ) .  
]=i x]+UI 

Thus by  equation (3.4) (since 0 E C a if and only if M(O)E C2) 

1-~/2(0)  ~> c 1 ( 1 - ~ ( y ,  M(0))), OEC 3 and yeC1. 

Consequently for 0 E C a and x = y § h E C (y E V | L and h E H), 

] - -  ~ f i ( 0 )  ~ C1(1 - ~ ( y ,  M(O))) = c1(1 - ~}~(x, 0 ) ) .  

Now A is open and hence C a can be assumed to contain a neighborhood of 0 =0.  

Since 1 -  ~fi(O) is continuous and vanishes only at  0 = 0, the proof of the theorem is now 

complete. 
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THEOREM 3.2. Let tt be a probability measure on (~ which de/ines a recurrent random 

walk on (~. Then there is a nonsingular probability measure ~, on ~ which de/ines a recurrent 

random walk on (~ and is such that /or  some compact subset C o / (~ ,  some open neighborhood 

P o/the origin o / ~  and some 0 < c < 

I/2(0) - ~(0)1 ~< c [max (1 - ~ (x, 0))] 2, 0 e P .  (3.5) 
xeC 

If  V ~  R a' is a vector  group and L ~ Z  a" is a lattice group, the dimension of V |  is 

defined to  be d I + d  2. Note  tha t  every  closed subgroup of V |  is of the same form and  

hence has a well defined dimension. 

We begin the proof of Theorem 3.2 with 

LEMMA 3.4. Let (~1 be a compactly generated open subgroup o/ ~ written as (~1= 

V O L |  where V~- R a', L ~ - Z  ~', dl +d2=d,  and H is compact. Let ~E(~ 1 and let (~2bea 

closed subgroup o/ (~ such that O ~ (n~ + (~2) is dense in (~. Then the pro~ection o/ ( ~  N (~1 

into V Q L  is a d-dimensional closed subgroup o / V O L .  

Proo/. Note  first t ha t  (~3 = ( ~  N (~1 is a closed subgroup of ~1 and  tha t  U ~r162 + {~3) 

is dense in (~r Let  fl denote  the projection of :r on V |  and  let (~4 denote the projection of 

(~3 on V |  Then (~4 is a closed subgroup of V |  and  U~C(nfl+(~4) is dense in V |  

This clearly implies t ha t  (~4 is of the same dimension as V |  as desired. 

Let  tl, t~, ..., t k be elements of (~. Their span S(t 1 . . . . .  tz) is defined to consist of all 

t E (~ for which there exists a compact  subset C of (~ and  integer valued functions ml(n), 

..., mk(n), - r < n  < co, such tha t  

n t _ m l ( n ) t l _ . . . - m ~ ( n ) t k E C  ' - o a  < n < ~ .  

LEMMA 3.5. S(t I . . . .  , tk) is a closed subgroup o/(~. 

Proo[: The result  clearly holds if (~ is the direct sum of a vector  group and  a latt ice 

group. 

I t  is obvious, in general, t ha t  (~ is a group. To prove it is closed, let s be in the  closure 

of S(t 1 . . . .  , tk). Let  (~1 be the group generated by  tl, ..., tk and  a compact  neighborhood of s. 

Then  (~1 = V O L G H ,  as usual. Let  W be the subgroup of V |  spanned by  the  project ion 

of t 1 .. . . .  tk into F ~ L .  Then by  the first par t  of this proof, W is a closed subgroup of V |  

The points in (~1 N S(t 1 . . . . .  tk) are those which, when projected into V |  are mapped  

into W. Thus  (~IN S(tl . . . .  , tk) is a closed subset of (~1 and  hence sES( t  1 . . . . .  tk). Thus 

S(tl .. . . .  tk) is closed, as desired. 
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L E P T A  3.6. Let ~ be such that there is a finite bound to the dimension o/ lattice subgroups 

o/ ~ .  Let T denote a closed subset o/ (~ and ( ~  the subgroup o/ ~ generated by T. Let a ~ 

and suppose that [.J ~ (no~ + (~) is dense in ~ .  Then there is a compactly generated open sub- 

group ~1 O/ ~ O/ the/orm ~ = V | L | H, where V ~- R ~', L "~ Z ~-~', and H is compact, and 

such that the projection o/ Tf~ ~1 into V |  generates a d-dimensional subgroup o/ V(~L. 

Proo/. By the assumption on (~, there are nonnegative integers d I and d/> d I and there 

is a compactly generated subgroup (~a of (~ such that  if (~1 is a compactly generated sub- 

group of ~ containing (~a, then ~1 = V |  where V ~ / ~ ' ,  L =~Z ~-d', and H is compact. 

Suppose that  for all such ~i ,  the projection of T N (~1 into V~)L generates at most a 

]c-dimensional subgroup, where ]c<d. Then we can find ]c elements t 1 ..... tkE T such that  

S(tl ..... tk) ~ ( ~  by Lemma 3.5. Let {~1 be a compactly generated subgroup of (~ containing 

0~, (~3, ti, ..., tk and decomposed as (~1 = V |  as above. Then S(t I ..... tk) ~ ~1 ~ ~2 

and hence the projection of (~1 N ~2 on V ~ L  is at most k <d-dimensional, which contradicts 

Lemma 3.4. 

LE~MA 3.7. Let ~ be a finite measure on RdI| d', where O<.dl +d2=d <.2, with finite 

third moment and nonsingular covariance matrix. Then there is a finite measure g on R a' | Z d. 

which is nonsingular with respect to Haar measure on Ra~@ Z d' and whose moments o/ orders 

zero through three agree with those o/ ~. 

Proo/. The result is rather straightforward and depends on the version of the Sehwarz 

inequality involving strict inequality. The details will be omitted. 

Proo/o/  Theorem 3.2. Since # defines a recurrent random walk on (~, it follows that  

if V | L is a closed subgroup of (~, where V ~ R d' and L ~ Z d., then 0 ~< d I + d 2 ~< 2. 

Let S denote the support of/~, choose ~ E S and set T = S - ~. Let @2 denote the sub- 

group of (~ generated by T. Then by the definition of recurrence, U [r + (~2) is dense in ~ .  

Lemma 3.6 is now applicable. There is a compactly generated open subgroup (~1 of 

of the form (~1 = V ~ L |  H, where V ~ R a', L =~Z d-~', H is compact, and the projection of 

T N (~1 into V ~ L  generates a d-dimensional subgroup of V|  Note that  0 ~<d < 2. 

There is a compact subset C of (~1 such that  the projection of T N (int C) into V |  

generates a d-dimensional closed subgroup of V|  Let 2Qx denote the restriction of/~ to C, 

and let ~ denote the measure induced on V |  by the projection of ~1. Then ~ satisfies the 

assumptions of Lemma 3.7. 

Let Z be as in the conclusion of Lemma 3.7. Let ~1 be the measure on (~1 which is the 

direct product of Z on V |  and Haar measure on H (normalized to be a probability 

3 -- 692905 Acta mathematica 122. I m p r i m 6  le 19 mar s  1969 
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measure on H). Set v =/z +Xl-~1- Then v is a nonsingular probabili ty measure on (~ whose 

support  contains tha t  of/~ and hence generates all of (~. Also r - /2 = ~ 1 -  ~1. 

Let  A denote the annihilator of H. Then A is an open closed subgroup of (~. Let  

M : ( ~  V |  be the map which takes an element in ~ into its restriction to V|  I f  

0EA and x = y + h E ~ l ,  where yE V |  and hEH, then (0, x>=(M(O), y>. Consequently 

~(0) -/2(0) = ~(M(O)) - ~(M(O)), 

where ~ and ~ are functions on V|  

Let P___ A denote an open relatively compact neighborhood of the origin of ~ .  Since 

the moments of Z and ~ of orders zero through three agree, and since they both have finite 

fourth moments, there is a constant c, 0 < c <  oo, and a compact subset C 1 of V Q L  such tha t  

[;~(M(0)) - ~(M(0)) ] ~< c [max (1 - ~ (y, M(0)>)] 2, 0 E P.  
y e C ,  

Let  C~ denote the compact subset of (~1 which is projected onto C 1. Then 

Ir -/2(0)[ <<. c[max (1 - ~ (x, 0>)] 2, 0 E P.  
x E C  

I t  remains only to show that  v defines a recurrent random walk. Note first tha t  for 

0-..<2 ~.< 1 

11-2/2(o) 1/> 211 -/2r I, o e (3.6) 

and the same result holds with/2 replaced by  r Since 

1 1 I_< 1r 
-2/2(0) 1-2~(0)1"~11-/2(0)]  [1-#(0)1 1 

is uniformly bounded for �89 ~< 2 ~< 1 and 0 in some open neighborhood of the origin of (~, the 

recurrence of v follows from the recurrence o f / ,  and the Chung-Fuchs criterion (Loynes 

[7, p. 453]). This completes the proof of Theorem 3.2. 

Let  (~1 be a compactly generated subgroup of (~. Then (~1 ~ V | 1 7 4  where V "" R a', 

L = Z  d~, and H is compact. The numbers d 1 and dz and hence also d =d 1 +d 2 depend only on 

(~1, not on the choice of V or L. This justifies calling (~1 d-dimensional. 

The next result is obvious but  will be useful in a number  of places later on. 

THEOREM 3.3. Let (~1 be a d.dimensional compactly generated subgroup o/ ~ ,  let H 

be the group o/compact elements o/(~1 and let A denote the annihilator o / H .  Then there are 

/unctions ~p:(~l ~ R~ and q):ff~-~ R ~ such that: (i) ~p is a continuous homomorphism which 

maps (~1 onto a closed d-dimensional subgroup o/R~; (ii) ~ is a Borel /unction which is con- 
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tinuons near the origin, maps compact sets into relatively compact sets, and maps every neigh- 

borhood o/ the origin o / ~  onto a neighborhood o/the origin o/Ra; and (iii)/or x E (~1 and 0 EA 

( x ,  O} = e '~(~) ~(o). 

Let ~ denote the collection of functions/(x), x E (~, such that  

(i) / is a continuous, nonnegative, and integrable function with integral 

= f/(x) dx; J(/) 

(ii) / is supported by a compactly generated subgroup of ~;  

(iii) f has compact support; and 

(iv) there is a compact subset C of (~, a constant c such that  0 < c < co, and an open 

neighborhood P of the origin of ~ such that  

J(/) - ~](0) <~ c max (1 - ~ (x, 0}), 0 E P.  (3.7) 
X E C  

Let ~ denote the collection of symmetric functions in ~. 

THeOReM 3.4. Given e > 0  and an open neighborhood U o/the origin o/ (~, there is an 

/ E Us such that 

fv/(X) >~ e. (3.8) dx 1 

We begin the proof of Theorem 3.4 with 

LElWMA 3.8. Given c > 0  and an open neighborhood U o/ the origin o / ~ ,  there is a con- 

tinuous symmetric probability density/unction / on ~ such that ~ has compact support and 

(3.8) holds. 

Proo/. Let T ~ U be a relatively compact open neighborhood of t h e  origin of (~ and 

set g = l r / [ T  I. Then ]lglll=]tg�89 Let (~, 0<(5<1,  be a number to be chosen later. 

Choose (by Plancherel's theorem) h E s such that  h is continuous, ~ has compact support 

and ]lh-gtIl~<~ Then IIh[]2~<l + ~ < 2 .  Also ]hi2 is continuous and in 1: x and its Fourier 

transform has compact support. Moreover, 

H g - -  / h i  2 HI = [[gl(g~ _ h) + h(g�89 - )~)Ill ~ 3(~. 

Set/1 = I hiZ/liihl u[[r Then ]1 is a continuous probability density, L has compact support 

and 
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fr/l( x)dx>~ (1 - 3~)/(1 + 30) >~ 1 - 

if 0 is sufficiently small. Define / by / (x)  = (f l (X)+fi(-x)) /2.  Then f is the desired function. 

LEM~A 3.9. Let ~1 be an open closed subgroup o/(~ and let fE s ) have support on 

(~1. Let g denote the Fourier transform o//a.~ a/unction on ~1. I / g  has compact support, then 

f has compact support. 

Proof. Let M: (~-~ (~1 map 0 E (~ into the restriction of 0 to ~1- Then M is a continuous 

open map onto (~1 ([4, p. 377]). Furthermore g(M(O))=f(0), 0G(~. Let  C 1 be a compact  set 

supporting g. Since M is open, there is a compact subset C of (~ such tha t  M(C)= C 1. Let  

A denote the annihilator of ~1. Then A ~ (~/(~1 is compact, since {~1 is open. Choose 

0 E ~  such tha t  f(0)~:0. Then M(O)EC 1. Thus there is a 01EC such tha t  M(01)=M(0) and 

hence 0 - 0 l e A  or 0 E C + A. Thus ] is supported by  the compact set C +A,  as desired. 

We nex t  define a collection ~ of functions f on (~ as all functions which can be con- 

structed in a part icular  way. 

Let  (~1 be a compactly generated open subgroup of (~ which can be writ ten as (~1= 

V@)H, where V is a vector group and H is compact. Let  dv and dh be Haar  measures on V 

and H respectively such that ,  on ~1, dg = dv. dh. Let /1  be a continuous symmetric proba- 

bility density function on V having finite second moment  and whose Fourier transform 

(as a function on ~) has compact support. Le t /2  be a continuous symmetric probabil i ty 

density function on H whose Fourier transform (as a function on/~)  has compact  support.  

Let  /(g), g E ~ ,  be defined by  f(g)=/l(V)f2(h) for g = v + h E ~  1 with v E V  and hEH, and 

/(g) = 0  for g {~(~1- Finally let ~2 denote the collection of all functions f tha t  can be 

constructed in this manner.  

I f  / E ~2, then / is a continuous symmetric probabili ty density function. Also its Fourier 

transform, as a function on (~1, has compact support. Therefore, by  Lemma 3.9, ~(0), 

0E(~, has compact support. 

LEMMA 3.10. Let e > 0  and U an open neighborhood of the origin of (~. Then there is an 

fE~2 such that (3.8) ho/ds. 

Proof. Let W be an open subset of (~ containing the origin and such tha t  W + W ~ U. 

Consider the construction used in the definition of ~2- The function/1 can be chosen so 

tha t  

f dv >1 1 - e f, (v) 
Vfl W 2 
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and the func t ion/3  can be chosen so tha t  

f~ dh >~ 1 e_ /3 (h) 
~nw 2" 

I 

Then for the corresponding ] 

fJ(x)dx>~ fw+ /(x)dx>~l-e, 
as desired 

I n  order to complete the proof of Theorem 3.4 we need only prove 

LEMMA 3.11. For/E~2 there is a compact subset C o /~ ,  a constant c such that 0 < c <  co, 

and an open neighborhood P o/the origin o / ~  such that 

1 - ~ ] ( 0 ) ~ < c m a x  ( 1 - ~ < x ,  0>), OEP. 
XEU 

Proo/. Let  @1, V, H, etc. be as in the construct ion used in defining ~3. Let  A denote  

the annihilator of H.  Then (~/A is isomorphic to the dual  of H and  hence discrete. Thus  A 

is open and  hence is an  open closed subgroup of ~ .  Clearly <v +h ,  0> = <v, 0> for v E V, 

hEH, and  OEA. 

We can endow V with a dot  product .  Then  for every 0 E (~ there is a unique M(O) E 

such tha t  
<v, 0> = d ~'m~ v E V. 

Thus for 0 E A 

1 -  ~ ] (0 )  = f ( 1  - cos v "  m(o))/l(V)dv<~ �89 
where 0 < c 1 < oo. Also 1 - ~ ( 0 )  ~ 2 and hence 

1 - ~f(0) < r a i n  (2, c 1 IM(0) I% (3.9) 

There is a constant  c3, 0 < c3 < oo, such tha t  

_<~ max (1 - cos v.M(O)) >1c3 IM(0)I 3, IM(0)I ~ 2" 
Ivl~<l 

Then for 0 E A 

max  (1 - ~ <v, 0>) = max (1 - cos v. M(O)) >~ c 3 [M(0)] 3, IM(0) I < 2 '  
Ir iS1 I r is1  

and  max  (1 - ~<v,  0>) >~ 1, IM(0)l > 2 '  
Ivl~<l 

I n  part icular  max  (1 - ~ <v, 0>)/> rain (1, c 2 [M(0)13). 
Ivk<l 

(3.10) 
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I t  follows from equations (3.9) and (3.10) tha t  for some constant c, 0 < ~ < ~ ,  

1 - ~ ] ( O ) < c m a x ( 1 - ~ < v , O > ) ,  Oeh .  
Ivl~<l 

Since A is an open neighborhood of the origin of (~, and since {v, Iv [ ~< 1) is a compact sub- 

set of (~, this completes the proof of the lemma and hence of Theorem 3.4. 

Let  /E ~ and let ~1 be a compactly generated subgroup of ~ containing the support  

o f / .  Let  ~, ~, and A be as in Theorem 3.3. Then 

1 - ~f(0) = I _  (1 - cos ~(x)- (p(0))/(x) dx, 0 fi A. 
t 

From this we can easily get 

THEORE~I 3.5. Let lED and let (~1 be a compactly generated subgroup o/(~ containing 

the support o/ /. Then i/v? is as in Theorem 3.3, 

f~, [ VJ(x)[2/(x) dx < cr (3. I I) 

I t  is also easy to obtain from Theorems 3.3 and 3.5 and the fact tha t  A is open 

THEOREM 3.6. Let lED, let ~1 be a compactly generated subgroup o/ (~  containing the 

support o// ,  let y~ and q~ be as in Theorem 3.3, and set 

K(/) = f~(x) l(x) d=. 

Then there is an open neighborhood P ol the origin ot ~ ,  a compact subset C o/ (~x and a 

0 < c < o o  such that 

I~](O) - ~(0)-  K(/)[ ~< c max  (1 - ~ <y, 0>), 0 fi P .  (3.12) 
y e C  

4. Renewal  theory for transient random walks 

In  this section we consider probabil i ty measures # which define a transient random 

walk, so tha t  the renewal measure 

0 

assigns finite measure to compact sets. 

We say tha t  the transient random walk is of Type I if the renewal mvasure vanishes 

a t  infinity, i.e., if 
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lim v(x + C) = 0 (4.1) 

for all compact  subsets C of (~. Otherwise the t ransient  r andom walk is referred to as of 

Type  I I .  

This nomenclature  is justified by  Theorem 4.1 below. I n  this theorem (~ will be of the 

form R O H  or Z O H ,  where H is compact.  The H a a r  measures are assumed to  be of the  form 

dg=dx  dh, where dh assigns uni t  probabi l i ty  to H and  dx is either Lebesgue measure on 

R or counting measure on Z. The funct ion ~0: ~ -~  R or (~-+Z is defined by  ~p(x + h) = x. 

W e  s e t  = e Iv (x)  

and  (~- = {x E (~ I ~v(x) < 0}. 

By  "x-+ + oo" or " x ~  - co"  we mean  tha t  x-+ cr and  x E (~+ or x E (~- respectively. 

THEOREM 4.1. Let # de[ine a Type  I I  transient random walk. Then ( ~ = R |  or 

(~ ~ Z | H , where H is compact. Suppose ~ = R | H or ~ = Z @ H , the Haar measure being 

chosen as indicated above. Then 

m = j~o(x) #(dx) 

is finite and nonzero. Let +_ m > O. T h e n / o r  A E ~4 

lira v(x+ A ) = ] m ] - l ] A ]  and lira v(x+ A ) = O  (4.2) 

I f  some iterate of # is nonsingular,  then  stronger results are possible. 

THa~OREM 4.2. Let I z define a non.singular transient random walk. Then its renewal 

measure v can be written as v =v' + v ' ,  v' being a [inite measure and v" being an absolutely con- 

tinuous measure having a continuous density p such that/or any A E B 

lim (v(x + A)  - p(x) [A [) = o. (4.3) 

I n  particular, in  Theorem 4.1, A can be replaced by B. 

then 

COROLLARY 4.1. Let /z and p be as in Theorem 4.2. I / t h e  random walk is o[ Type  I ,  

lim p(x) = 0. (4.4) 

I[  the random walk is o / T y p e  I I  and m is as in Theorem 4.1, then [or +_ m > 0 

lira p( )=lm1-1 and lira p (x)=O.  (4.5) 



40 S I D N E Y  C. P O R T  A N D  C H A R L E S  J .  S T O N E  

Theorem 4.1 can be used to derive results concerning the asymptotic hitting distribu- 

tions in the Type I I  case. Let  O denote the collection of Borel subsets B of {~+ such that  

laB I = 0 or some iterate of/~ is nonsingular. For B eO set 

•s(x) =JS,(SnqB for all n~>l), 

where/5 x refers to the random walk with transition distribution ~(dy)=/~(-dy). The proof 

of the next  result will be omitted since the basic ideas of the proof can be found in Theorem 

4 of Stone [16]. 

THEOREM 4.3. Le p define a transient Type I I  random walk and suppose that m > 0 .  

Then/or A 6 A* and B 6l) 

UB(z, A) = m - I / L B  (x) dx. lim 
X"~ -- O0 dx 

We now will prove the results of this section. In doing so we will assume without 

further mention that  p defines a transient random walk on (~. We begin the proof of The- 

orem 4.1 with 

LEMMA 4.1. There is a constant L, 0~<L< c~ such that i / P  is a relatively compact open 

neighborhood o/the origin o/ ~,  then 

l i m f p ~ ( l _ r ~ ) ) d O  
r ? l  

Proo/. Equation (4.7) and also the fact that  if P is relatively compact, 

1 
lim r?l  s u p ( ~  ( 1 -  r / 2 ( 0 ) ) d  dO<co (4.8) 

are part  of the Chung-Fuchs criterion (see Loynes [7, p. 453]). Choose/E~s.  Then for 

O < r < l  
co 1 

I t  follows from (4.8), Theorem 3.1, and the nonnegativity of / that  both sides of (4.9) have 

finite limits as r ~ 1. From this (4.6) follows as desired 

LEMMA 4.2. F o r / 6 ~ ,  
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supx~ f /(x + z) v(dz) < ~o , 

lim f (/(x + z) + / (  - x + z)) v(dz) = L, 
x --r oo 

and ~-~lim f (/(x + 2 y + z) - 2 [(x + y + z) +/(x  + z)) v(dz) = 0 

uni/ormly /or y in compacts. 

Proo/. 

and the Riemann-Lebesgue Lemma yields (4.10) and (4.11). We also 

/E~s,  xE(~, and yE{~ 

f/(~ + y + ~) 2/(~ + v + z) +/ (~+ z)) ~(d~) = f<~, 0> (<v, o> 2 1) n t(o) 

and (4.12) now follows by Theorem 3.1 and the Riemann-Lebesgue lemma. 

LEMMA 4.3. F o r / E ~ 8  

lim ~ (/ (x + y + z) - / ( x  + z) ) v(dz) = 0 
x*..-> ~ d 

uni/ormly /or y in compacts. 
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(4.1o) 

(4.11) 

(4.12) 

I t  follows easily from Lemma 4.1 and Theorem 3.1 that  f o r / E ~ 8  and xE(~ 

~ ( / (x+z )+ / ( -x+z ) )~ , (dz )=~+  ~lt(x,O)[(O)~t ~ dO (4.13) 

have that  for 

1 
dO 

1 -fi(O) 

(4.14) 

P r o o ~ .  

teger N, we can find x E ~ and y E C such that  for 1 ~< n < N 

f ( f ( x + n y  z) / ( x+(n  )y  z))v(dz) s + 1 + 

f (/(x + N y  + z) - / ( x  + z)) v(dz) >1 Ns,  and hence 

which contradicts (4.10). 

L E M M A 4.4. For A e,,4 such that A = - A and I A I > 0 

sup v ( x + A ) <  ~o, 
x~q~ 

Otherwise, by  (4.12), for some s > 0 and compact set G and any positive in- 

(4.15) 
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lim (~(x + A) + v( - x + A)) = L ]A I, (4.16) 

and lim (~(x + y + A) - ~(x + A)) = 0 (4.17) 

uni/ormly /or y iu compacts. 

Proo[. Equation (4.15) follows easily from the fact that/~ defines a transient random 

walk. Choose k E ~ and define [ E ~8 by  

[(x) = IA I - l f l a  (x - y) k(y) dy. 

Then f /(x + z)u(dz)= f v ( z - x  + A) k(z)dz. 

Thus by (4.11) we have that  

lim (4.18) 

The proof of (4.16) now follows along the lines of the proof of Theorem 2.1 of Stone [14] 

by  using (4.15), (4.18), and Theorem 3.4. 

From (4.16) we obtain easily that  

lira sup u(x+A)<~LIAI ,  A E A  and A =  - A .  (4.19) 
I - - ~  0 o  

From (4.14) we see that  for symmetric A E J4 and bEDs 

lim f (v(x + y + z + A) - v(x + z + A)) k(z) dz = 0 (4.20) 
X - ~  oO J 

uniformly for y in compacts. Choose e > 0. There is a symmetric open neighborhood P of 

the origin of (~ such that  if 

B = [A o n (A + P)] U [A n (A c + P)], 

then B is symmetric and ]cl B I <~e/L. I t  follows easily from (4.19) that  

lim sup ~(x+ B) ~< e. (4.21) 
X--~oO 

Consequently lim sup sup I v(x + w + A) - v(x + A) I <<- e. (4.22) 
X.- .~O0 w E P  

Equation (4.17) now follows from (4.15), (4.20), (4.22), and Theorem 3.4. 
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LEMMA 4.5. I /  C is compact, then 

l im ~(x + C) v( - x + C) = 0. (4.23) 

Proo/. This follows b y  an  easy  probabi l i s t ic  a r g u m e n t  which asser t s  t h a t  if D is com- 

pact ,  t hen  the  p r o b a b i l i t y  t h a t  the  r a n d o m  walk  def ined  by /~  will h i t  x + C a n d  the rea f t e r  

hi t  D approaches  zero as x-~ oo. 

LEMMA 4.6. Suppose ~ has a compactly generated open subgroup ~1 such that ~1 is 

noncompact and (~/~1 is in/inite. Then/~ de/ines a Type I random walk. 

Proo]. Let  A e~4 be symmet r i c  and  such t h a t  IA] >0 .  I f  zn+(~l are  d is jo in t  for n>~l ,  

t hen  z , ~  oo as n-+ co. The zn's can  be chosen so t h a t  

l im ~(z, + A ) =  L I A  I. 
n..- .~r 

This follows f rom L e m m a s  4.4 a n d  4.5. 

Since ~1 is compac t ly  genera ted ,  bu t  no t  compact ,  we can choose x E ~1 such t h a t  

n x ~  co as n ~  c~. B y  L e m m a s  4.4 a n d  4.5 we can  assume t h a t  x is also such t h a t  

l im v(nx + A) = O. 

Now zn + kx ~ cr as n-~ c~ un i fo rmly  in k. Suppose  L > 0. Then  the re  is an  n o > 0 such 

t h a t  for al l  n >~ n o the re  is a k ,  > 0 such t h a t  

v(z, + k , x  + A ) > L I A I / 2  

a n d  ~(z, + (k, + l ) x  + A) <-~L[A [/2. 

B y  L e m m a  4.4. l im v(z, + k , x  + A) = L I A I//2, 
n - - ~  o o  

which con t rad ic t s  L e m m a s  4.4 a n d  4.5. Thus  L = 0  a n d  (4.16) yields  (4.1) as desired.  

LEMMA 4.7. Suppose (~ has a closed subgroup ~1~-1~1| ~", where d l + d ~ > l .  Then i~ 

defines a Type I random walk. 

Proo/. We can choose e lements  x and  y in (~1 such t h a t  n x + k y ~ o o  as n + k - §  a n d  

t hen  use the  proof  of L e m m a  4.6. 

LEMMA 4.8. Let H be a compact subgroup o/ (~. Then 

v(x + H) <~ ~(H), x G ~  (4.24) 

and v(x + H)~,(y + H) <~v(x + y + H)v(H), x, yE(~. (4.25) 
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Proo[. This result follows by an easy probabilistic argument based on the first passage 

into the set x § H and the fact that  H = H § H = H -  H. 

LEMMA 4.9. Suppose that every element o/ ~ is a compact element. Then/~ de/ines a 

Type I random walk. 

Proo/. We suppose that  L > 0 in Lemma 4.4 and will arrive at  a contradiction. Let H 

be an open compactly generated subgroup of ~.  Then H is compact. Without loss of 

generality we can assume that  [ H I -- 1. The remainder of the proof is exactly the same as 

that  of the corresponding result in the discrete case (Kesten and Spitzer [5, pp. 259-260]) 

upon replacing their g(x) by our v(x+H) and using Lemma 4.8 (note that  since ~/H is 

infinite there exist z n E{~ with z~-~ ~ ) .  

L~MMA 4.10. Suppose that ~ = R |  or ~ =Z| where H is compact, and that 

f ~(x) ~(dx) 

is either in/inite or undefined. Then p de/ines a Type I random walk. 

Proo/. This result reduces immediately to the corresponding one-dimensional result 

of Feller and Orey [2]. 

Proo[ o/Theorem 4.1. Let p define a Type I I  transient random walk. Then, by Lemmas 

4.6, 4.7, and 4.9, f f ~ R ( ~ H  or f f ~ Z |  where H is compact. Suppose ~ = R ( ~ H  or 

=Z| the Haar measures being chosen as indicated just prior to the statement of 

Theorem 4.1. Then 

m= I - v2(x) p(dx) 

is finite and nonzero. This follows by Lemma 4.10 and the fact that  if the integral vanished, 

the random walk would be recurrent. 

I t  now follows by Blackwell's renewal theorem that  if A = A 1 § H, where A 1 is a rela- 

tively compact subset of R or Z whose boundary has measure zero (in R or Z), then A E A 

and equation (4.2) holds for this A. From this it follows that  for A E,,4 

lira ~(x + A) = 0. (4.26) 

In  order to complete the proof of (4.2) it suffices to show that  for A E 

lira (u(x+ A) + ~( - x +  A)) = L  IA I- (4.27) 
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For this it suffices to show that  for /E 

f (/(x + z) + 1( - x + z)) v(dz) = L. (4.28) lim 
X--~ r162  d 

But we have the formula 

f f 1 ( / ( x + z ) + / ( - x + z ) ) v ( d z ) = L + 2  0t<x,O>)f(O) ~ dO. (4.29) 

Since ~t(1//(1 - fi(O))) is integrable on compacts the Riemann-Lebesgue lemma implies that  

In order to complete the proof of (4.28) it suffices to show that  

is absolutely integrable. Write • = 01 ~ / t  where 01 =/~ or Z, Since R is discrete, it sM- 

flees to show that  the above term is integrable on 01. This is true because 

3/(01) =o(Io11) 

1 

This completes the proof of Theorem 4.1. 

Proo] o/Theorem 4.2 and Corollary 4.1. The proof of these results follows from Theorem 

4.1 and the arguments found in Stone [17, pp. 271-272]. Note that  for present purposes 

the assumption in [17] that  "~v has a twice continuously differentiable density" can be 

replaced by the assumption that  q has a continuous density. 

5. The general recurrent case 

Throughout this section it will be assumed that/~ defines a recurrent random walk on 

(~. We will state in this section those results which hold in general. The proofs will not be 

given completely in this section, however. In particular Theorem 5.1, which is not needed 

for any other results of this section follows from Theorem 3.1, Theorem 3.7 and Theorem 

6.1 of the following section (the proof of Theorem 6.1 is independent of the results of 
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Section 5). Theorem 5.2 will be proven in this section only in the compactly generated case. 

The remainder of the results of this section, through Corollary 5.3, will be proven in general, 

given that  Theorem 5.2 holds. Theorem 5.2 itself follows in general immediately from 

Theorem 3.1, Theorem 3.2 and Theorem 6.3. Since Theorem 6.3 depends on Theorem 5.2 

and its consequences only in the compactly generated case, there is no danger of circular 

reasoning. 

Theorem 5.13 and the results which follow depend on Section 6. This is permissible, 

however, since Section 6 depends on Section 5 only through Corollary 5.1. 

Suppose 1~ is compactly generated. Then we can assume tha t  ~ = ( ~ I ( ~ ) H ,  where H 

is compact and (~ I=R,  Z, R G R ,  RGZ,  or ZGZ.  In  this case Haar  measure on H is nor- 

malized to be a probabili ty measure, while the Haar  measures on R and Z are Lebesgue 

measure and counting measure respectively. The function v 2 denotes the projection of 

(~ onto (~1 and ~1 denotes the probabili ty measure induced on (~1 by  # and ~f. I f  (~1 is one- 

dimensional, then x ~  _ oo is taken to mean tha t  ~,(x)--> -+ oo. I f  (~1 is one-dimensional, 

then a 2 denotes the variance of/~1. The random walk is said to be of Type I I  if (~1 is one- 

dimensional and a2 < cr Otherwise the random walk is of Type I. 

I f  (~ is not compactly generated, the random walk is always considered to be of Type I. 

THEOREM 5.1. Let P be an open neighborhood o/the origin on ~ .  Then 

Proo[. 

THEORV.M 5.2. 

dO: . 

This result follows as indicated above. 

lira ( ( x ,  O)  - 1 

~1 ~ 1 .IF 1 - )~fi(0) 

exists and is finite. In  the Type I case 

lim lim I ,  (y '  0) ((x, 0) - 1) 
~-~ ~ t t . ,~  1 - ,~fi(O) dO = O. 

In  the Type I I  case 

lim lira f e  (y '  0) (x, 0) - 1) 
y-~• ~ 1  1 -- 2fi(O) dO: ~ o ~ ( x ) ,  

= f~2  dl~. where ~2 

The convergence in these limits is uni[orm /or x in compacts. 

(5.1) 

Let Pbe a relativelycompact open neighborhood o/the origin o f~ .  Then 

dO (5.2) 

(5.3) 

(5.4) 
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Prool in the compactly generated case. We can assume tha t  P is a subset of ~1.  Suppose 

first tha t  (~1 is one-dimensional. Then 

fp (x ,  O) - 1 

1 - 2 f ~ ( O )  
f p  e t01~(x) -- 1 

dO = 1 - ~f*1(01) dOv 

In  order to prove (5.2) it suffices to show tha t  

lim f p  i01 
~ v 1 -- ~1(01) dO1 

exists and is finite. But  this is Theorem 3.V of Port  and Stone [11]. The proof there de- 

pended on results of Ornstein [8]. For a selfcontained proof see Theorem 1 of Stone [15]. 

Similarly fp(y,O)((x,O)-l) fp e'~ (e'~ - 1) 
1 - ~f,(O) dO = 1 - -  j t ]~ l (Oi)  dO1" 

Thus to complete the proof of Theorem 5.2 in this case it suffices to show that  in the Type I 

c a s e  

f p el~ iO 1 lim lim dO1 = O, (5.5) 
y--~-oo a t 1 1 - -  2 f i 1 ( 0 1 )  

while in the Type I I  case 

f p e~~ iO1 lim lira dO, = 7t- a -2. 
y-->• ~,~1 1 -  ,~jt~l(01) 

(5.6) 

Again for a proof see either Theorem 3.1" of [11] or Theorem 1 of [15]. 

I f  (~1 is two-dimensional then 101/ll-fi(01) I is integrable on compact subsets of 

~1 and the theorem follows trivially from the Riemann-Lebesgue lemma. 

Choose g E ~ such that  g is symmetric and nonnegative and J(g)= 1. Define D a for 

/ e ~  and xe(~  by 
Da/(x) = J(/) U~g(O) - U~/(x). 

THEOREM 5.3. F o r / E ~  and xE(~ 

lim J~/ (x )  = D / ( x )  
~ 1  

(5.7) 

exists and is finite. I n  the Type I case 

and in the Type I I  case 

lim (Dry(x) - D/v(O))  = 0 y-..->c~ (5.8) 

lim (D/y (x) - D/~ (0)) = ~ y # )  a-2J(l).  (5.9) 
y.-->::k oo 
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Proof. Observe that  

) . f ~ (  - 0) J ( / )  - ( x ,  0 ) / (  - 0) 
D~/(x) 

1 - ~f,(o) 
f,(O) dO (5.1o) 

and ( (x, O) (1 - (x, 0)) [( - O) fi(O) dO. (x) D~f~ (0) 
1 - ~/2(0) 

Theorem 5.3 now follows immediately from Theorem 5.2 and Theorem 3.1. 

PROPOSITION 5.1. Let BEB with int B=~O. Let /(x), xG(~, be a nonnegative Borel- 

/unction such that /or some open neighborhood Q o/ the origin o/ ~ the/unction/~ (x), x e ~,  

de/ined by 
& (x) = sup/~ (~) 

yEQ 

is integrable on ~.  Then 
lira U~/(x)= UB/(x), x E ~  (5.11) 

exists and is/inite and the convergence is uni/orm /or x in compacts. 

Proo/. Since / is nonnegative the limit in (5.11) clearly exists. We next prove it is 

finite. Let A be a nonempty open subset of (~ and R a relatively compact symmetric 

open neighborhood of the origin of (~ such that  R + R ___ Q and A + R_~ B. :For x 0 E (~ and 

xExo + R 

IRIUB/(x)=IRIf UB(~,dz) t(z)=lRIf U~§ y, dz)/~(~) 

= f$/R (Y) dy UA (Y, xo + R + R) < c~ 

since x 0 + R + R is relatively compact and consequently, UA(Y, x0 + R + R) is bounded in y. 

This proves that  the limit in (5.11) is finite and, in fact, bounded uniformly on compacts. 

In  particular for / as in the statement of the proposition and A as in the proof. 

UA/R(Z) < oo , ZE(~, and hence for x0E(~ 

lim f~ P~(x o, dz)UA/~(z) =0.  

For x E x 0 + R 
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fB, BPn(x' dz) Us/(z) <~ f B, +:~0- ~'4P" (x o, dz) Us/(z + x - Xo) 

From this it follows that  

< fAAP~(xo, dz)U~/s(z)~O as 

lim f j  sP'~(x, dz)UB/(z) =0  
n'--->O0 ~r 

n - - >  o o .  

uniformly for x in compacts and hence that  (5.11) holds uniformly for x in compacts, 

This completes the proof of Proposition 5.1. 

Let BEB and int B=I={~. Then Px(VB< oo)=1,  xE(~. As in [11] we have the funda- 

mental identity 
D~/(x) - II~ D~/(x) = - U~/(x) + L~ (x) J(/) (5.12) 

for 0 <2 < 1 , /E~ ,  and xE(~. I t  is easy to find a n / E ~  satisfying the conditions of Proposi- 

tion 5.1 and such that  J(/)>0. As a consequence of Theorem 5.3 and Proposition 5.1 we 

now have 

THEOREM 5.4. Let B E B  and int B=4=O and le t /E~.  Then 

lim L~ (x) = Ls (x) (5.13) 

and lim U~B/(X)= UB/(x) (5.14) 

exist and are/inite and the convergence is uni/orm /or x in compact subsets o/(~. Also 

D/(x) - IIBD/(x) = - Us [(x) + Ls (x) J(/). (5.15) 

From Theorems 5.1 and 5.2 we see that  in the Type I case 

and in the Type I I  case 

lim UB/~ (x) = Ls (x) J(l) 
y-.-). Oo 

lira UB/~ (x) = L~ (x) J(/), 
y--~:l: oo 

(5.16) 

(5.17) 

where L~ (x) = LB (x) • a -2 (y:(x) - fib y:(x)). 

From these results we will obtain 

THEOREM 5.5. Let B E B  and int B~=O and let A E,4. In  the Type I case 

lim UB(x,y+ A)=LB(x) IAI ,  
y--~oO 

4 - - 6 9 2 9 0 5  A c t a  m a t h e m a t i c a  122. I m p r i m 6  lo 19 m a r s  1969 

(5.18) 
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and in the Type I I  case 
lim Us(x, y+ A) =L~(x)[A].  (5.19) 

The convergence in these limits is uni/orm /or x in compact subsets o/(~. 

Proo/. This result uses Theorem 3.4 and is otherwise essentially tha t  of Theorem 3.3 

of [ l l ] .  

Using Theorem 5.5 and duality, we have 

T H E 0 R ]~ M 5.6. Let B E B and int B =4 = 0.  Let C E .,4 and let A E ~. In the Type I case 

lira f c Us (x + z' A ) dz = ]CI f A ]~s(x) dx (5.20) 
3:--->oO 

and in the Type I I  case 

lim f c U B ( x + z , A ) d z = l C ]  fAJ~(x)dx. (5.21) 

By following the proof of Theorem 3.5 of [11] we obtain 

THEOREM 5.7. Let A E.,4, BE.,4, and int B:~O. In the Type I case 

and in the Type I I  case 

lim Us (x, A) = fAZs(x) dx. (5.22) 
x - - >  r  

lim UB (x, A ) = fA j ~  (x) dx. (5.23) 

We rephrase this result in a form more useful for application in Section 6. 

COROLLARY 5.1. Let BE.,4 and int B ~:0. Let the random walk start at x. In  the Type I 

case as x-~c~ the hitting distribution o/ B has a limit which is absolutely continuous with 

density LB(x ) 1B(x). In the Type I I  case as x---~ +_ oo the hitting distribution o/ B has a limit 

which is absolutely continuous with density L~(x) 1B(X). 

In the Type II  case let 

K(/) = f y~(x) l(x) dx. 

THEOREM 5.8. L e t / E ~  with J( / )=0.  Then 

lim Ua/(x) = U/(x), xE(~, (5.24) 
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exists and is finite and the convergence is uni/orm /or x in compacts. In  the Type I case 

l im  V / ( x )  = 0 (5.~5) 
x - - ~  oo  

and in the Type H case lira U/(x)= • a-2K(h. (5.26) 
~--.~ :~ oO 

COROLLARY 5.2. L e t / , / l e  ~. In  the Type I case 

lira J(/1) D/(x) - J(/) D/1 (x) = 0 (5.27) 
x - ~ o o  

and in the Type I I  case 

lim (J(/1) D/(x) - J(/) 1)/1 (x)) = T a -e (J(/1) K(/) - K(A ) J(/)). (5.28) 

Proo/o/  Theorem 5.8. Let (~1 be an open compactly generated subgroup of (~ con- 

taining the support of/ .  Let H, ~,, % and A be as in Theorem 3.3. We have easily 

LE~MA 5.1. There is a relatively compact open neighborhood P o/ the origin o/ ~ ,  a 

compact subset C of (~ and a 0 < c < oo such that/or x e ~1 and 0 eP  

[~ (x, 0} - ~(x). ~(0)] < c I~(x)]3 max (1 - ~ (y, 0}). 
y e C  

From Lcmma 5.1 and Theorem 5.2 we have 

LEM~A 5.2. Let P be a relatively compact open neighborhood o/the origin o / ~ .  Then 

lim ( i q ~ ( O )  dO (5.29} 
t ~ 3~  1 - 2/2(0) 

exists and is finite. In  the Type I case 

lim lim ( ( x '  O} i9~(0) dO = 0 (5.30) 

and in the Type H case 

lim lim ~ (x,O}iqp(O) dO= ~ a  -~. (5.31) 
x ~ =  at1  3~  1 - ~ t ~ ( 0 )  

Theorem 5.8 follows from Lemma 5.2 and Theorems 3.1 and 3.6. 

THEOR~,M 5.9. Let (~1 be a compactly generated open subgroup o/ r o] the ]orm ~ i  = 

V Q L |  where V~= R a', L~=Z a*, d=dl  +d~, and H is compact. Let ~ be a continuous homo- 

morphism o /~1  onto a closed d-dimensional subgroup o] R a. Let B E 73 have a nonempty interior 

and let A E.,4. In  the Type I case 
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lira U s ( x , x +  A)/v?(x)=O 
.,T--:.,..oo, ,$ E (~ 1 

(5.32) 

and in the Type I I  case (setting ~1 = ~}) 

l im Us (x, x + A)/[ v?(x) I = 2 a-21AI. 
X--~oO 

(5.33) 

Proof. Choose f E ~ .  Then  f rom 5.15 

U sfx(x) = Dl(x) + DI( - x) - Dr(O) + ( [ Is  Dry(x) - D/x(0)) - I I B  Dr(x) + U BI(x). 

Now - Dr(0) +( I IB  D/~(x) - Df~(0)) - I I  B D/(x) + UBf(x) 

is bounded in x since the individual  t e rms  are bounded.  I t  now follows f rom Theorem 5.3 

t h a t  in the T y p e  I case 
lim UB f~ (x)/~(x) = 0 (5.34) 

X--~Oo, I E ~ 1  

and in the Type I I  ease 
~ UB/~(x)/i~(x)l = (f~J(/).  (5.35) 

X-4*O0 

I t  is easy to go f rom (5.34) to (5.32). To go f rom (5 .35) to  (5 .33)one need only use an 

"unsmooth ing"  argument ,  not ing firstly t h a t  (5.35) implies t h a t  

UB(X,x§  ) as x - ->~ .  

The  main  role of the functions in ~ is to act  as smoothing functions.  For  some results 

the  class ~ is too large to be easily useful. One possible out  is to  fur ther  restr ict  ~.  Another  

is provided b y  

PROPOSITION 5.2. Let k,  E ~ be supported on an open compactly generated subgroup 

~1 of ~3, uniformly bounded, let 

lira ]cn (x) = 1, x E (~D 
n - . ~ o o  

the convergence being uniform on compact subsets o/(~1, and let ]cn be nonnegative and supported 

on a comTact subset C of ~ .  For f E ~  supported by (~1 define f ,  by f~(x)=f(x)k,(x), x E ~ .  

Then fn E ~ and 
lim Dfn (x) = n/(x),  x E (~ (5.36) 

n - - ~ o o  

uniformly for x in compacts. 

Proof. Note first  t h a t  J(f,)--~J(f). Also 

fn(O) = f f (O- T) ~n(~) dr 
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and hence ~,, ] are suppor ted  b y  a compac t  set  C 1 _  (~, where C 1 is independent  of n. 

Moreover  

g(/n) = [~ (0) = j [ (  - ~) i~, (T) dz 

and  [n (0) -~[(0) uniformly  on C1. 

L e t  V, ~, and  A he as in Theorem 3.3. I t  follows t h a t  there  is an 0 < M < oo and  a 

compac t  subset  C~ of (~ such t ha t  

I~(0)]~<Mmax(1-~<x, 0>), OEC1NA. 
xeC~ 

Note  t h a t  f iV(O) < -  = iV(O)K(In) 

and  t h a t  K(]n) ~ K(/) as n-~  oo. 

For  0 6 C1 N A 

J(/,) - iq~(O) . K(/n) = f $, (~) dTf (e  'v(,)v(e) -- 1 - iq)(O) . V(x) ) < - ~, x>/(x) fo (o) dx. I 

J J 

I n  par t icular  I ~ ] ,  (0) - J(/~) I = o (maxxe c, (1 - ~ <x, 0>)) as 0-+ 0 and  hence /~ 6 5 .  The 

conclusion of the  proposi t ion now follows easily f rom the formula  

(~ (  - O) J( ln)  - <x, O> [~ ( - O) dO. D/~ (x) 
J 1-212(0 ) 

P R O P O S I T I O ~  5.3. Let (~1 and V be as in Theorem 5.9. Let B6~4 with int  B 4 : O .  

Let / 6 ~  be supported by (~z and suppose that /(x)=O(]v2(x)[ -4) as x-+oo in ~1. In  the 

Type I case 

us/(z) = |ZB (~) l( ,)  d z  (5.37) lira 
X---> O o  J 

and in the Type I I  case 

lim Uz/(x) = f J~  (x) l(x) dx. (5.38) 
X - - ~  :]: O0 

The right sides o/(5.37) and (5.38) are/inite. 

Proo[. Wri te  Us [ (x) = f Us (x, dy)/(y). 

The  desired result  now follows easily f rom Theorem 5.7, Theorem 5.9 and  the  fact  t h a t  

d~<2. 
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THEOREM 5.10. Let BE.,4 with int B . O .  In the Type I case there is a finite constant 

k( B) such that/or f E q~ 
lira (Dr(x) - Ls(x) J(f)) = J(f) k(B). (5.39) 

X - . I . ~  

In  the Type I I  case there exist finite constants k • (B) such that/or f E 

lira (D[ (x) - Ls (x) J(f)) = J(/) k* (B) -T- a-UK([). (5.40) 

Proof. One can easily find an /1E ~ of the form of Proposition 5.3 and with J ( / 0  = 1. 

I t  can also be assumed tha t  in the Type I I  case K(/1) =0.  Recall the identity 

D/(x) - II s D/(x) = - U sl(x) + LB(x) J (/). (5.41) 

In  the Type I case it follows from Theorem 5.7 and Proposition 5.3 tha t  for some 

finite constant k(B) 
lim (D/1 (x) - Ls(x)) = k(B), 

and (5.39) now follows from Corollary 5.2. 

In  the Type I I  ease it follows from Theorem 5.7 and Proposition 5.3 tha t  for some 

finite constants k+(B) 
l i m  (nfi  (x) - -  Ls (x)) = k ~ (B), 

X - - ~ •  oO 

and (5.40) now follows from Corollary 5.2. 

From Theorem 5.7, Theorem 5.10, and equation (5.41) we have 

THEOREM 5.11. Let BE.,4 with int B~=O and let /E D. In the Type I case 

lira Un/(x) = - k(B) J(f) + fsZ~(x)Df(x) dx (5.42) 

and in the Type I I  case 

lim Us f(x) = - k • (B) J(f) +_ a-2K([) + f s  ]~i (x) Dr(x) dx. (5.43) 

T~EOREM 5.12. Let BE~4 with int B # O  and let ]E~.  In  the Type I case 

f Ls (x) l(x) dx = - k(B) J(f) + f s ]~s (x) Dr(x) dx (5.44) 

and in the Type I I  case 

dx. 
J ds 

(5.45) 
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Proof. I f  f satisfies the conditions of Proposition 5.3 the result follows from Proposition 

5.3 and Theorem 5.11. The general case can be reduced to this special case by  an applica- 

tion of Proposition 5.2, since it is always possible to choose k~ as in Proposition 5.2 and such 

tha t  each kn(x ) = O(I~(x)1-4) as x-~ oo. 

From Theorem 5.11 and Theorem 5.12 we obtain immediately 

COROLLARY 5.3. Let B 6 A  with int B r  and let i e~ .  In the Type I ease 

and in the Type I I  case 

lira Us f(x) = f-gB (x) /(x) dx 
x- ->~  

lira Un/(x) = f ~ (x) ](x) dx. 
X--+ :i= oo  

(5.46) 

(5.47) 

The remainder of the results of this section depend on the results of Section 6. There 

is no danger of circular reasoning since the results of Section 6 depend on Section 5 only 

to Corollary 5.1. 

T~EOREM 5.13. Let C be a compact subset o/ (~ and P a relatively compact open neighbor- 

hood o/ the origin o /~ .  Then there is an 0 < M < oo such that 

/or yE~ ,  xEC, and 0 < ~ < 1 .  

/re  <y,O>l~__~))(<x, O>-  1)dOl< M (5.as) 

Proof. Let some #(n) be nonsingular. L e t / E ~ I  be nonnegative with J(/)>0 and let C 

be a compact subset of (~. Then by Corollary 7.1 and the arguments leading up to Lemma 

6.4 we see tha t  there is an 0 < M  < c~ such tha t  for yE(~, xEC, and 0 ~<~ < 1 

[ D~/y(z) - D~/.(0) [ < M. (5.49) 

When expressed in terms of Fourier analysis and used with Theorem 3.2, (5.49) yields 

Theorem 5.13. 

From Theorem 5.13 we easily get 

C o R O L L A R V 5.4. Let /6  ~ and C be a compact subset ol ~.  Then there is an 0 < M < oo 

such that 
I D~/~(x) - D~/y(0) I ~< M (5.50) 

/or y6@, zeC,  and 0 ~ ) ~ 1 .  

From Corollary 5.4 and the identity 
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IIBDIy (x) - Df,  (0) = .f  II t  (x, dz) (Dry (z) - D/y (0)), 

we get 

COROLLARY 5.5. Let BE.,4 with int B 4 0  and le t /E~ .  Then 

n s  Dry(x) - Dry(O) 
is bounded uniformly/or x, y E ~ .  

By exchanging the roles of x and y we also get as a consequence of Theorem 5.13 

COROLLARY 5.6. Let C be a compact subset o/(~ and P a relatively compact open neigh- 

borhood o/the origin of ~.  Then there is an 0 < M <  c~ such that for xE(~, yEC, and 0~<~t<l 

Ifv(x'O) 3(Y'O) dol<M. (5.51) 1 - -  ) . /~ ( 0 )  

THEOREM 5.14. Let P be a relatively compact open neighborhood o/the origin of ~ .  

Then there is an 0 < M < c~ such that 

fp1 - (x, O) 
-1----~(0) 4 0 > 1 - M,  x G $  and 0~<)t<l .  (5.52) 

Proof. Using Corollary 7.1 and the proof of Lemma 6.6 we can find an /E 51 + such that  

J(/) > 0 and for some 0 < M < 

D~f(x) >~ - M ,  x E ~  and 0 4 2 4 1 .  (5.53) 

When expressed in terms of Fourier analysis and used with Theorem 3.2, (5.53) yields 

Theorem 5.14. 

THEOREM 5.15. Let f E ~ with J (] ) >10. Then there is an 0 < M <  c~ such that 

Da/(x) >~ - M ,  xE(~ and 0~<~t~l. (5.54) 

COROLLARY 5.7. L e t / E ~  with J(/)=0.  Then there is an 0 < M <  ~ such that 

]U~/(x)] <~M, xE(~ and 0<~t~<l. (5.55) 

Proof of Theorem 5.15. Let (~I be an open compactly generated subgroup of (~ con- 

taining the support of f. Let ~, ~, and A be as in Theorem 3.3. 

From Theorem 3.1, Lemma 5.1 and Corollary 5.6 it follows that  there is an 0 < M  < r 

such that  if P_~ A is a relatively compact open neighborhood of the origin of 



P O T E N T I A L  T H E O R Y  OF RANDOM WAT~ES Olq AB~T.TA~T GROUPS 5 7  

f <x'O>iq~(-O)]<M, x E ~  and 0~<X~<l. (5.56) 
1 - 2/~(0) 

From Theorem 3.1, Theorem 3.6, and equation (5.56) it follows tha t  there is an 0 < M  < so 

such tha t  

Ifv<x'O>~f(-O) do l~M'  xE~.  (5.57) 
1 - ~ft(O) 

Theorem 5.15 follows from Theorem 5.15 and equation (5.57). 

6. The nonsingular  ease 

In  this section we prove those results in the nonsingular case which are necessary to 

complete the proof of Theorems 5.1 and 5.2. Further  results for the nonsingular case will 

be given in Section 7. 

Throughout this section it will be assumed tha t  # defines a recurrent random walk on 

and tha t  some iterate of # is nonsingular. 

Let  ~1 denote the collection of continuous functions on (~ having compact support  

and integrable Fourier transform. Let  ~18 denote the symmetric functions in ~1- Let  

~+ and ~ denote respectively the nonnegative functions in ~1 and ~18. 

Let  g be an element of F+8 with J(g) = 1 and let D~ be defined for /E ~1 and x E (~ by  

DX/(x) = J(/) Uag(O) - UX/(x). 
We have first 

PROPOSIT:O~ 6.1. For /E~I s 

lim (Da/(y) + D~f( - y)) 

exists and is/inite and the convergence is uni/orm for y in compacts. 

(6.1) 

Pros/. For 0 <2  < 1 

2 ~.fg( - O) g( / )  - ~ <y, O> f( - O) Da/(y) Da/( + Y) 1 - ~/a(o) ~(o) ao. 

By Theorem 3.1 we need only prove tha t  if P is a relatively compact neighborhood of the 

origin of ~ ,  then 

lira ( 1 - ~ <y, 0> dO 
atx Jv  1 - 2 ~ ( 0 )  

exists and is finite and the convergence is uniform for y in compacts. But  this result also 

follows easily from Theorem 3.1, as desired. 
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Let (~I be an open compactly generated subgroup of (~. Let ~, 9, and A be as in 

Theorem 3.3. Let  C_~ A be a compact neighborhood of the origin of ~ .  

fo  i9(0) Set dA=~ l_,~#(O) fi(O)dO, 0 < ~ < 1 .  

Also for 0 < 2 < 1 a n d  [ E ~, define the function D~o/(X), x E (~1, by 

Daol(Z) = Da /(x) + (v/(x) " d ~) J(l). 

PROPOSITION 6.2.  _For/E~ls 

lim L~o/(X ) = Do/(x ), x G (~1, (6.2) 

exists and is finite and the convergence is uni/orm /or x in compact subsets o/(~1. 

Proof. We have that  for x E (~1 

1 -- ~#(0) - 0!) fi (0) dO 

+ fc  (g ( -o )  J(/) - l( - o) + i (x) " 9(o) g(/)) ,(o) ao. 
1 -~f,(o) 

The first term causes no problems. To s tudy the second term it suffices to s tudy 

f c  ( l  + i~(x) " 9(O) - e"(x)"(~ f,(O)dO. 

Let  E be a compact subset of ~1- There is an M ,  0 < M < ~ such tha t  for x E_F and 0 E C 

]e  ~ ( ~ ~ ( ~  - 1 - i ~ ( x )  �9 9 ( 0 )  1 < M ( 1  - ~ e ~ (x~~(~  = M ( 1  - ~ ( x ,  0)). 

I t  now follows from Theorem 2.1 tha t  

lim fo( 1- ~: ~(~  ] #(0) 

exists and is finite and the convergence is uniform for x E E. This completes the proof of 

Proposition 6.2. 

Let  B be relatively compact subset of (~1 having a nonempty  interior. Then (5.12) 

holds and consequently for 0 <~t < 1, / E ~1, and x E (~1 
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Since we can choose f E ~1 such tha t  J([) 4~ 0, we get  immediately  f rom Proposi t ion 6.2 

PROPOSITION 6.3. F o r x E ~ l  

lim (L~(x) + d~. f (vd(x)-~p(z)) II~(x, dz)) (6.3) 

exists and is finite. Also the convergence is uniform/or x in compact subsets of (~1. 

Next  we will obtain  

PROPOSITIO~  6.4. d ~ is bounded in ~, 0 ~ < 1 .  

Proof. There is an M,  0 < M < oo, such tha t  

0~<2<  1, x E ( ~ p  

Suppose d ~ is unbounded.  Then  there exist ~n f 1 as n-*  co such tha t  [d~[ -* oo and 

d ~ 

We can choose x E (~1 such tha t  y~(x) �9 d > M.  Then 

and hence lim d ~' �9 ~(y~(x) - ~fl(z)) II~ (x, dz) = + c o .  

n--~o0 d 

Since L~(x)>10 for 0 ~ ~ < 1 and x E (~1, this contradicts  Proposi t ion 6.3. 

Choose 2, f 1 and d such tha t  

Clearly d is finite. By  Proposi t ion 6.3 

lim d ~ = d. (6.4) 
n-~O0 

l i m  = LB (x) ,  x 
n-~oo 

exists and is finite and the convergence is uniform on compact  subsets of (~l- 

Nex t  we will obtain  



60 S I D N E Y  C. P O R T  A N D  C ~ A R L E S  J .  S T O N E  

L]~M~IA 6.1. For  l e n a ,  

lira D~ly (x) = D/~ (x), x, y E (~, (6.5) 

exists and is finite and the convergence is uni/orm /or x and y in compacts. 

Proo/. Since D~/y (x )=Da/ (x -y ) ,  it suffices to prove the result for y = 0 .  This result 

follows from the definition of D~0, Proposition 6.2, equation {6.4) and the fact tha t  (~ is 

a-compact since ff defines a recurrent random walk on (~. 

LEM~A 6.2. For  xEg6 
lim L~(x )  = Ln (x) (6.6) 

exists and i s / in i t e  and the convergence is uni/orm /or x in compacts. For ] E ~as, x E ~ ,  and 

yEg6 
DI~(x) - I I B  Dt~(x) = - UBt~(x) + L d x )  J(l). (6.7) 

Proo]. The first statement follows from equation (5.12) and Lemma 6.1, since ] E~a s 

can be chosen so that  J(/) ~0 .  The remainder of the lemma now follows immediately. 

Let  /E ~1 be supported by a compact set C having a nonempty interior. Then for 

0~<2<1 
U~I(y) = 1~2 ~'~ (1 (Svo) + U~l(Sv~)). (6.8) 

LE~tMA 6.3. L e t / E ~ l s ,  C a a compact subset o/g~ and C a compact subset o/g~ having a 

nonempty interior and containing the support o/ ] ( - y ) ,  y E (~, and o / / ( x - y ) ,  y E C a. Then 

DI~ (x) - D/~ (0) = E~ (] (Svo) - l(x + Svc)) + E~ (Dl(x + Sv~) - DI(Sv~)). (6.9) 

Proo]. B y  {6.8) for x G C 1 

D~I~ (x) - D'~lu (0) = U a l (  - y )  - V ~ ] ( x -  y) 

= E_,, 2 v~ (i (&,~) _ l (x  + Sv~)) + E_~ 2v~ (U~l(Sv,,) _ U~/(x + Sv~)) 

= E_~ 2ve (l (Sv~) - ](x + Svc)) + E_ ~ 2vc (D ~l( x + Svo) _ Da] (Sv~)), 

and the desired result now follows from Lemma 6.1. 

L ~, M M A 6.4. For / E ~1, and C 1 a compact subset o~ ff~ there is an M,  0 < M < oo, such that 

IDI~(z)-D/~(O)I < M ,  yEg~ and x E C  r (6.10) 

Proo]. The result follows immediately from Lemmas 6.1 and 6.3. 
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L E M i ~ I i  6 .5 .  For/E~i 8 
l i e  Dl~(x) - D/y(O) 

is bounded uni/ormly /or x E (~ and y e ~ .  

Proo[. Since 

YIBD/y (x) - D/ ,  (0) = f l ib  (x, dz) (D/,  (z) - D[~ (0)), 

the desired result follows from Lemma 6.4. 

From (6.7) we see that  for l E V i  8, x E ~ ,  and yE(~ 

D/~(x) - D/(x) - D/y(O) = Ha D/~(x) - D/~(O) - I I s  D[(x) - UB/~(x) + U, / (x ) .  

61 

(6.11) 

We study now the right side of (6.11). I t  follows from Lemma 6.4 that  H . D / ~ ( x ) -  

D]y(O) is bounded uniformly for x E (~ and y E (~. Also IIB D/(x) is bounded for x E (~, since 

B is relatively compact and D/ is bounded on compacts. Clearly Us/(x)  is bounded for 

xE|  

PROPOSITIO~ 6.4.1. I / / e ~  and J([) >0, then 

lim Un/y(y )= ~o (6.12) 
y - - ~  OO 

Proo[. Note that  

VB VB VB - -  y 

Us/y  (y) = Ey 5 [~ (S~) = Ey Y. [(S~ - y) = E o 5 [(S~). (6.13) 
1 1 1 

With probability one lim VB-~ = c o .  (6 .14 )  
y- -~OO 

If / E ~ and J(/) > 0, then with probability one 

/ ( ~ )  (6.15) 

Proposition 6.4.1 follows from (6.13)--(6.15). 

PROPOSITION 6.5. I /  /E~+s and J(/) >0,  then 

lim lim (D~/(y) + D~](  - y ) )  = c o .  ( 6 . 16 )  
y~oo itl 

Proo]. From (6.11) we have that  

D/(y) + D/( - y) = D/(O) - (II~D[y(y) - Dry(o)) + H~ D/(y) + U~f~(y) - UB/(y). 
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From the discussion following (6.11) and from Proposition 6.4.1 we have tha t  

lim (D/(y) § D/( - y)) = oo. (6.17) 
y - - ~  OO 

The desired result now follows from Proposition 6.1 and Lemma 6.1. 

THEOREM 6.1. Let P be a neighborhood o/the origin o/(~. Then 

Proo/. By the proof of Proposition 6.1 it suffices to find / E ~ls with J(/) > 0 such tha t  

(6.16) holds. The desired result now follows from Proposition 6.5, since there exist /E ~ s  

with J(/)  >0.  

LEMM), 6.6. I / / E ~ ,  then D/(x), xE(~, is bounded/rom below. 

Proo/. Let C be a compact set having a nonempty interior and containing the support  

o f / .  Then by Lemma 6.1 there is a finite constant M such that  

U~/(O)-U~,/(y) >~ - M ,  n>~l and yEC. (6.19) 

We can also assume tha t  /(y) ~ M, y E ~.  (6.20) 

Then by  (6.8), (6.19), and (6.20) for xE(~ 

U~,l(O)- U~,l(x)= U~,l(O)- E , ~ o I ( S v ~ ) -  Ex~U~,,l(Svo) 

>~ Ex2~c(U~"/(O) - U~"I(Sve)) - i >1 - 2M.  

Thus by  Lemma 6.1 D/(x)-D/(O) >~ - 2 M ,  xE(~, 

from which the desired result follows. 

LEMMA 6.7. Suppose all elements o / ~  are compact elements. Then /or /E~I  ~ 

lim (D/y (x) - D/y (0)) = 0, x E (~, (6.21) 
y -->OO 

and the convergence is uni/orm /or x in compacts. 

Proo/. Let C 1 be a compact subset of (~. Let  C be an open compactly generated sub- 

group of (~ containing C 1 and the support of / .  Then C is compact and Lemma 6.3 is appli- 

cable. Note tha t  for x E C~ and y E (~ 
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E~l ( x  + Svo) = E x l ( y  + Svc +~_ ,) = E x I ( y  + Svo _,).  

For  y large, the random walk star t ing at  x will, with probabi l i ty  close to one, hit any  given 

neighborhood of the origin before hi t t ing C -  y. For  this reason, since / is continuous, 

lim E~,(l(x + Svo) - l(Svc)) = 0 
y-->oO 

uniformly for x in compacts  Similarly 

lim E~ (Dl (x  + Svo) - D/ (Svv) )  = 0 

uniformly for x in compacts.  The desired result now follows from Lemma 6.3. 

PROPOSITIO~  6.6. Suppose that (~t is a noncompact open compactly generated subgroup 

o I (~ and that C is a compact subset o/(~1. Then 

lim I]$~(y, C) = 0. (6.22) 
y--~ Oo 

Proo�91 The result says tha t  for y large the hi t t ing distr ibution of (~1 for a r andom walk 

star t ing at  y should be concentrated near infinity. If  (~/(~1 is finite the result  is obvious 

(and not  needed). Suppose (~/(~1 is infinite so tha t  

where an § (~1, n ~> 1, 

within 

(~ = U (an + (~1), 
n ~ l  

are disjoint subsets of (~. Let  N be a positive integer. I f  y-~ oo 

N 

U (a~ + (~1), 
1 

the result is again obvious. 

On the other hand, choose x 1 .. . . .  x k in (~t and P___ (~1 an open neighborhood of the 

origin such tha t  the sets 
C, xl + C + P ,  ..., x k + C + P  

are disjoint. Then zY can be chosen large enough so tha t  if yE U ~ + l ( a n §  , then for 

1 ~< ?" ~< ]c the probabil i ty t ha t  a r andom walk star t ing from y will hit y + xj + P  before hit t ing 

(~t is at  least 1. We will then have tha t  for such y for 1 ~< ?" ~< ]c 

IIr (y, C) <~ 2 [Ir 1 (y, xj + P + C) 

so tha t  IIr yE 5 (an+l~l). 
N+I 

Since k can be made arbitrari ly small, this completes the proof of (6.22). 
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P R O P O S I T I O ~  6.7. Suppose ~ has noncompact elements. Then there exist 81 and s~ 

in the support S o / #  such that s 1 - s~  is not a compact element. 

Proo/. Let  x be a noneompact  element of (~. I t  follows easily f rom the s t ructure  theorem 

t h a t  n x ~  ~ as x-+ c~. Let  cn be compact  elements of (~. Then n x + c n ~  :~ as n-~ c~. Other- 

wise we could find nj-~ oo as j-~ ~ and a compact  set C such tha t  njx+cnjEC, n>~l. Let  

(~1 be a compact ly  generated subgroup of (~ containing x and C. Then c~j and (~1. Thus  

the  c~ lie in the compact  set H of compact  elements of ~ r  Consequently the nix  lie in the  

compact  set C - H ,  which contradicts  the fact  t ha t  n x ~  ~ as n-~ c~. 

I f  all elements of S were compact ,  then S would lie in the proper closed subgroup 

consisting of the  compact  elements of (~. Thus S has noneompac t  elements. 

Suppose all elements in S are of the form x + c  where c is a compact  element and x 

is a fixed noneompact  element. I f  8= is the random walk, then with probabil i ty one S~ = 

nx+cn, where cn is compact  and Sn-~ co as n-~ co. Bu t  this contradicts the fact  t ha t  the 

r andom walk is recurrent.  Thus  we have eliminated all possibilities other  t han  the conclusion 

of Proposit ion 6.7. 

PROPOSITIO-~ ~ 6.8. Let (~1 be an open compactly generated subgroup o/ (~ which is iso- 

morphic to either R | H or Z | H, with H compact, and which contains elements 81 and 8 3 

in the support S o/t~ such that 81 - s2  is not compact. Also let ~/(~1 be in/inite. Let ~ be the 

embedded random walk on ~1. Then the one-dimensional random walk y~(~) has in/inite vari- 

ance. 

Proo/. As observed by  Kesten  and Spitzer [5], this result depends on the fact  t h a t  the  

projection of the random walk on (~/(~1 is nullrecurrent,  and hence has infinite mean  re- 

currence time. I t  follows tha t  the number  T of jumps having values in (~x before the first 

re turn  to (~l has infinite mean. Let  a~ denote the conditional variance of yJ(S1) given t h a t  

$1 ~ (~1 (starting at  the origin). Then 0 <a~ < c~. 

I t  is clear t ha t  for a r andom walk s tar t ing at  the origin 

Var [~2(~) I T] ~> ~ T. 

Since E T  = oo, it follows t h a t  Var  ~(~1) = c~, as desired. 

PRO:eOSITIO~ 6.9. Let (~ be neither compactly generated nor consisting exclusively o/ 

compact elements. Then/or  an A E.,4 having a nonempty interior the hitting distribution o / A  

/or a random walk starting at y has a limit as y ~  c~. 

Proo/. Let  (~1 be an open compact ly  generated subgroup of (~1 containing A and con- 

taining points s 1 and s~ in S such t h a t  s 1 - s  2 is not  compact .  This is possible by  Proposi- 
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tion 6.7. Now (~/(~1 is infinite. By Proposition 6.8 the embedded random walk o n  (~1  is of 

Type I and hence for this embedded random walk by Corollary 5.1, the hitting distribution 

of A has a limit distribution as the starting point y approaches infinity. Proposition 6.9 

now follows immediately from Proposition 6.6. 

LEMMA 6.8. Suppose ~ is not compactly generated. T h e n / o r / E ~ I  ~ 

lim (D/y(x)-  D/y(O))=O, x E ~ ,  (6.23) 
y-~O0 

and the convergence is uni/orm /or x in compacts. 

Proo/. We can suppose that  (~ has noncompact elements, for otherwise Lemma 6.7 

is applicable. From Lemma 6.3 and Proposition 6.9 it follows that  for /E ~ls 

lim (D/y(x)-D/y(O))=g(x),  x E ~ ,  (6.24) 
y-->oO 

and the convergence is uniform for x in compacts. 

To complete the proof of Lemma 6.8, we will show that  g(x)=O, x E ~ .  Suppose first 

that  x is a compact element. Then there is a compact set C such tha t  nx E C for n >~ 1. I t  

follows from (6.24) that  
lim (D/y (nx) - D/~ (0)) =ng  (x). 

y--> Oo 

Lemma 6.4 yields that  g(x) = O. 

Suppose now that  x is noncompact. Then n x ~ o o  as ]n I -+co and by (6.4), 

lim (D[ ((n + 1) x) - D/(nx)) = c(x). 
tn I-~=0 

Lemma 6.6 now yields that  c(x) =0. 

L E P T A  6.9. Suppose ~ is not compactly generated. T h e n / o r / E ~ I  s 

lira UB/~ (x) = Lz (x) J(/), x e @, (6.25) 
y-->r 

and the convergence is uni/orm /or x in compacts. 

Proo/. From Lemma 6.2 we have that  

D/y(x) - D/~(O) - II B( D / y -  D]~(O) ) (x) = - U B/y(X) + LB(x)J (/) 

and the desired result now follows from Lemma 6.8. 

I t  follows from Lemma 6.9 that  the value of LB(x) is independent of the choice of ~t~. 

Thus from Proposition 6.3 the value of d is independent of the choice of )l~, and hence by 

5 - -  692905 Ac ta  mathematica 122. I m p r i m 6  le 19 m a r s  1969 
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Proposition 6.2 for / E ~ I  s the value of D/(x), xE(~, is independent of the choice of 2=. 

In  other words we have 

THEORE~ 6.2. Suppose ff~ is not compactly generated. Then 

lim d a = d (6.26) 
~?1 

exists and is/inite. Also lim L~ (x) = Ls  (x), x E ~; (6.27) 

exists and is/inite. I / / E  ~ls, then 

exists and is finite and 

lim D~fy (x) = D/y (x), x, y E {~ (6.28) 

lim (D/v (x ) -  D/u(O))=O, xE~). (6.29) 
y-~OO 

The limits in (6.27)--(6.29) hoM uni/ormly on compacts. 

We finish this section with the main result. 

THEOREM 6.3. Suppose ~) is not compactly generated. Let C be a relatively compact 

neighborhood o/ the origin o/ ~.  Then/or x E (~ 

exists and is/inite and 

lim ~ ( x , O ) - I  ?1 .) c ~ -  - ~  dO (6.30) 

lira ~ (y '  0) ((x, 0) - 1) lira dO = 0. (6.31) 
~-~  ~t l  J c  1 -  ~#(O) 

The convergence in both limits is uni/orm /or x in compacts. 

Proo/. This theorem follows from Theorem 3.1, Theorem 6.2 and the formulas for 

D~/(x) and D~/~(x) -D~]~(O) given in the proof of Theorem 5.1. 

7. Further results in the nonsingular case 

We continue the assumptions of w 6, namely tha t /~  defines a recurrent random walk 

on (~ and tha t  some iterate of/~ is nonsingular. The operator D ~ can be written as 

= fD~(x, dy)/(y) D~l(x) 

in the obvious way. 
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TH~ORWM 7.1. The measures D~(x, dy) can be written as 

D ~ (x, dy) = a ~ (y - x) dy - U~ (x, dy), (7.1) 

where U~ (x, dy)= ~ ( d y -  x), /x~ being a /inite positive measure that increases as ~ ~ 1 to a 

/inite positive measure i~, 
l im a~(x) = a(x) (7.2) 

exists and is/inite,  in the Type I case 

and in the Type I I  case 

lim (a (y -  x) - a(y)) = 0, (7.3) 
y-->o0 

lim (a (y -  x) - a(y)) = ~ (~-~v2(x). (7.4) 
y--~3: oo 

The convergence in (7.2)-(7.4) is uni/orm /or x in compacts. 

Proo/. We can find an n o and probabi l i ty  measures  ~ and ~fl such t ha t  #(n0) = (~+v2)/2 

and  r has compac t  support ,  absolutely  integrable characterist ic  funct ion and  cont inuous 

density.  The  remainder  of the  proof  is, wi th  obvious modifications,  t h a t  of Theorem 4.1 

of [11]. 

Recall  t h a t  (I) denotes the  collection of bounded Borel functions. We have  immedia te ly  

f rom the above  theorem (in the  nonsingular  case) 

COROLLARY 7.1. Theorem 5.3, Theorem 5.8, and Corollary 5.2 hold when ~ is replaced 

by r 

PROPOSITION 7.1. Let BE ~ have positive measure. Then 

lim Px(V~>~n)=O (7.5) 
n--~O0 

uni/ormly /or x in compacts. 

Proo/. I t  suffices to find a n o n e m p t y  open set P,  a posit ive integer n and  a c > 0 such t h a t  

/x(n)(B-x) >~ c, xEP. (7.6) 

To this end, we can find a posit ive integer n, an x 0 E (~, a n o n e m p t y  open neighborhood 

R of the  origin of (~, and an ~ > 0 such t ha t  

/x(n-1)(dy) > ~dy, yExo § R. 

Let  Q be a n o n e m p t y  open set such t h a t  Q -  Q ~ R. Since 
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f/(B- = I BI  > o Y) dy 

there  is an  Xl E ~ such t h a t  

fx  I~(B y) dy fl > O. 
l+O 

Set P = x 1 - x o + Q and  c = ~fl. Then  for x E P 

and  (7.6) holds, as desired. 

COROLLARY 7.2. Let BE B have positive measure. Then/or A E B 

l im U~(x ,A)= Us(x ,A)  
ar  

exists and is/inite and the convergence is uni/orm /or x in compacts. 

Le t  B E B have  posi t ive measure.  Then  as before we have  the  iden t i ty  

(x, dy) - f II~ (x, dz) D ~ (z, dy) = - U~ (x, dy) + L~ (x) dy. 

F r o m  (7.8), Theorem 7.1 and  Corollary 7.2 we have  

COROLLARY 7.3. Let B E B  have positive measure. Then 

lira L~(x)=L, (x ) ,  x e ~ ,  

exists and is [inite and the convergence is uni/orm on compacts. 

( x, y) = L~ (z) - a ~ (y - x) + f II~B (x, dz) a ~ (y - z) Set U~B 

( x, dy) = V~ ix, dy) - f II~ (x, dz) U~ (z, dy). and  2U~B 

Then  V~ (x, dy) = U~B (X, y) dy + 2 V~ (x, dy). 

Clearly we have  tha t ,  as ~ l 1, 2U~(x, dy) approaches  

2Us(x, dy) = U~ (x, dy) - ( I I s  (x, dz) U2(z, dy) 
J 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 
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in the sense that  for A E 
lim 2U~(x, A) = sUB (x, A) (7.14) 

and the convergence is uniform for x in compacts. Moreover, from (7.10) 

]im U~B(X, y)= Us(X, y), (7.15) 

the convergence being uniform for x and y in compacts, where 

a ( y -  x) - f IIB (x, dz) a ( y -  z) = us (x, y) + LB (x). (7.16) 

Thus from Theorem 7.1 we get 

THV.OR~M 7.2. Let B E E  have positive measure. Then 

UB (x, dy) = us(x, y) dy + ~Us (x, dy), 

where ]or A E B lira ~Us (x, y + A) = 0, (7.17) 

in the Type I case lira us(x, y ) = I s ( x ) ,  (7.18) 

and in the Type I I  case lira us(x, y )=L~(x ) .  (7.19) 
y--~ :i: 

The convergence in (7.17) - (7.19) is uni/orm /or x in compacts. 

COROLLARY 7.4. Let A E B, BE B and B have positive measure. Then the conclusion o/ 

Theorem 5.5 holds. 

Next we will prove 

T H E O R ] ~  7.3. Let A E B, BE B and B have positive measure. Then the conclusion of 

Theorem 5.7 holds. 

Proof. We give the proof in the Type I case, the proof in the Type I I  case being es- 

sentially the same. Applying duality to Theorem 7.3 we get that  if A, B, CEB and B 

has positive measure, then 

lim foUB(x+z,A)dz=lvl faLs(x)ax. (7.20) 

Let  {~1 be the group generated by S -  S. Since some iterate of/x is nonsingular, it follows 
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tha t  I(~11 >0.  Let  C be a relatively compact subset of ( ~  having positive measure. I t  is 

easily seen tha t  for any positive integer n 

(7.21) 

There is a 0 < M < co such tha t  

Us(y,A)<~M, yE(~. 
Thus 

] f ~t<=>(dy-x-z) U.(y,A)- f g(=)(dy-x) Us(y,A)] < M f]~t(=)(dy-z)-#(n)(dy) I. (7.22) 

By the methods of Stone [18] it follows tha t  

lim =0,  z~. qS~, (7.23) 
n--+oo 

and tha t  the convergence holds uniformly for z in compact subsets of (~1. I t  follows from 

(7.21)-(7.23) tha t  
lim (U~ (x + z, A) - Us (x, A)) = 0 (7.24) 

uniformly for z in compact subsets of ~1 and hence in particular uniformly for z E C. From 

(7.20) and (7.24) we have tha t  

UB (x, A) = I- Ls(x) lira dx 
j A  

as desired. 

From Theorem 7.2 and Theorem 7.3 we get 

THEOREM 7.4. Let B E B  have positive measure and/E~P. In the Type I case 

lim Us/~ (x) = L s  (x) J(f )  (7.25) 

and x~lim UB/(x) = f J~s (X) /(X) dx. (7.26) 

In the Type I I  case 
lim UB [~ (x) = L~ (x) J(/)  

y--~4- oo 

Usl(x) = [L~(x)  l(x) a n d  lira dx. 
J 

The limit8 in (7.25) and (7.27) hold uni/ormly /or x in compacts. 

The proof~0f Theorem 5.10 now yields 

(7.27) 

(7.28) 
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T H E OR E 1~ 7.5. Let B E B have positive measure. In  the Type I case there is a/inite con- 

stant k(B) such that /or/e~P 

lim (D/(x) - Ls  (x)J(/)) = J(/) k(B).  (7.29) 

In  the Type I I  case there exist/inite constants k~ such that ]or f E 

Tim (D/(x) - Ls(x) J(/)) = J(/) k • (B) ~ (f~K(/).  (7.30) 

Extending Theorems 5.11 and 5.12, we have 

THEOREM 7.6 Let B e B  have positive measure and let/edP. In  the Type I case 

u .  l (x )  = (x) l (x)  = - k ( B )  J (1) + (x) lim Dl(x) dx (7.31) 
~--> oo J J B  

and in the Type I I  case 

lira UBf(X) = ( L ~ ( x )  /(x) dx = - k • (B) J(/) • a-9K(/) + [ ]~s (x) D/(x) dx. (7.32) 
X'-->• J JB 

From Theorem 5.13 and the definition of an(x) in Por t  and Stone [11], we easily get 

THEOREM 7.7. Let C be a compact subset o/(~. Then there is an O < M < c~ such that 

l a ~ ( y - x ) - a ~ ( y ) l < M ,  yE(~, xEC,  and 0~<2<1.  (7.33) 

COROLLARY 7.5. Let /E~9 and let C be a compact subset o/ (~. Then there is an 

0 < M < c~ such that 
]D~/~ (x) - D~/~ (0) l ~< M (7.34) 

/or yE(~, xEC, and 0~<]t~<l. 

COROLLARY 7.6. Let/E~P and let BE B with I B[ >0. Then 

H B D/~(x) - D/~(O) 

is bounded uni/ormly /or x, y E ~.  

Using the formula for aX(x) given in [11] together with the arguments that  led up to 

Theorem 5.15 we get 

THEOREM 7.8. There is an 0 < M <  oo such that 

a~(x) >~ - M ,  xE(~ and 0~<)t~<l. (7.35) 
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COROLLARY 7.7. Let/E(D with J(/) >~0. Then there is an 0 < M <  co such that 

D~/(x) >~-M, xE(~ and 0 < 2 < 1 .  (7.36) 

Prool. Note that  

f a ' ( y - x )  /(y) d y = a ' ( - x )  J(/) + f (a ' (y-x)  - a~ ( - x ) )  /(y) dy. 

The result now follows from Theorems 7.1, 7.7, and 7.8. 

COROLLARY 7.8. Let/E(b with J(l)=0. Then there is an 0 < M <  co such that 

lUll(x)[ <M,  xE(~ and 0 < 2 < 1 .  (7.37) 

8. On replacing Abel sllmmabliity by ordinary convergence 

Set Un = ~ pn 
k = l  

and for suitable g set c, = U. g(0). Let  D.  be defined for suitable / by  

D, l=cnJ( / ) -  U , /=  ~ (J(/) P~g(O)- P~/). 
k = l  

This should be compared with 

D~I = ~ 2k(j(/) pkg(0 ) _ pk/). 
k = l  

Since Abel summabflity is weaker than ordinary convergence, convergence of D~/doesn ' t  

immediately imply convergence of D J .  Even though this sharpening is not needed in 

applications it is interesting enough to be worth while. 

The key to such results, and what we will confine our attention to, is the following 

strengthening of the first part  of Theorem 5.2. 

T H E 0 R ~ M 8.1. Let/a de/ins a recurrent random walk on ~3 and let P be a relatively com- 

pact open neighborhood o/the origin o /~ .  Then 

lim f~ ( ( x ,O) -  1)(1-#n(O))  dO (8.1) 
,,~oo 1 -/2(0) 

exists and is/inite and the convergence is uni/orm /or x in compacts. 

In proving this result we let v be the probability measure given by Theorem 3.2. We 

will first prove 
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LEMMA 8.1. Let P be a relatively compact neighborhood o/the origin o /~ .  Then 

l im ~ ((x,  0 ) -  1) ( /2" (0 ) -  #n(0)) 0 
n - ~  J e  1 - ~(0) 

(8.2) 

uni/ormly /or x in compacts. 

Proo/. Le t  (~t be a compac t ly  genera ted  subgroup  of (~. Then  (~1= V|174 where  

V~: R a ,̀ L ~ Z  a', and  H is compact .  Le t  d=dl+d 2. W e  can assume t h a t  P is conta ined  in 

t he  ann ih i l a to r  of H.  Then  the re  exis t  cont inuous  funct ions  ~p f rom (~1 to R a and  M f rom 

(~ to  R a such t h a t  
(x, O} = d v(x)" M(O), X E (~1 a n d  0 E P .  

B y  L e m m a  3.6 we can assume t h a t  (~t is large enough so t h a t  if S 1 _ R a is the  image  

unde r  ~v of the  res t r i c t ion  of the  suppor t  of # to  (~1, t hen  S 1 - S  1 genera tes  a d-d imensional  

closed subgroup  of R a. I t  follows t h a t  for some 0 < c  < oo 

S imi l a r ly  we can assume t h a t  

Then  for 0 E P 

I/2(0)1<e -~176 OEP. (8.3) 

I~(O)] <~C -clM(O)i', O E P .  

l/2 '~" (o) - ~"+~ (o)l < (n + 1) I/2(0) - a(O) l c - * ' ~ ( ~  

(8.4) 

(8.5) 

W e  can also assume t h a t  P a n d  (~1 are  such t h a t  for  some compac t  subse t  C 1 of (~1 

a n d  some 0 < K 1 < oo 

]/2(0) - ~(O) l ~< K~ (max  (1 - ~ (x,  0})) 2, 0 E P .  
xeCt 

Thus  we can f ind  a 0 < K < oo such t h a t  

/2(0) ~(0) ll ~< K[M(O)I ~, 0 e P. (8.6) 
1 - ~(0) I 

Le t  C be a compac t  subset  of (~r  Then  we can f ind an  0 < L <  oo such t h a t  

I<~,o>-~1 <L]M(O)I, xEO and  OEP. (8.7) 

Then  b y  (8.5) - (8.7), for x E C and  0 EP  

I((x 'O)-  l) (/2("+l)(O)-v('+l)(O))ll -~(0) <.(n+ I)KLIM(O)I 3 exp  (-ncIM(O)[~). (8.8) 
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I t  is easily seen from elementary calculus t ha t  

lim sup ( n +  1)IM(O)I exp ( -nc lM(O) l  ~) = 0  
n.--~r OGP 

and (8.8) now yields the conclusion of L e m m a  8.1. 

By  Lemma 8.1 in order to  prove Theorem 8. I it suffices to prove 

LEMMA 8.2. Theorem 8.1 holds under the additional hypothesis that # be non~ingular. 

Pro@ The proof of L e m m a  8.2 is similar to the methods used in Section 6. We s tar t  

with the ident i ty  

p~ sIIkp n-k + B P" 
k = l  

and sum on n to get  Un = ~ s I lkUn-k  + sUn. 
k = l  

Then Dn[(x) - ~. s l IkDn-k[(x)  = -- s U j ( x )  + L~ n) (x) d(/), (8.9) 
k = l  

n 

where L (~) (x) = ~ cn_ k s IIk (x, B). 
k = l  

The remainder of the proof will be omit ted  since it follows along the lines of Section 6 

with (8.9) being used instead of (5.12). 

9. Asymptotic behavior of the recurrent potential operator 

I n  this section we s tudy  the asymptot ic  behavior  of A/(x) as x ~  r This subject  was 

initiated by  Kesten  and Spitzer in [5]. The results in the  recurrent  case are analogous 

to those in the t ransient  case, only less complete. 

Throughout  this section it will be assumed tha t  # defines a recurrent  r andom walk on 

(~. Then the results of w167 5-7 are applicable. 

THEOR]~M 9.1. I / (~  ~= R Q H or ~ ~=Z| H, where H is compact, then there is an 0 <~L <. 

such that/or / E ~ with J ([) > 0 either 

lim D/(x)=LJ( / )  and lim D[(x)= r (9.1) 

or lira D/(x)= c~ and lim D/(x)=LJ([) .  (9.2) 

I / ( ~  is not o/the above type then/or [ G ~ with J(/) > 0 
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lira D/(x)= ~ .  (9.3) 
X - - ~  

The next  result depends on the decomposit ion of Theorem 7.1. 

THEOREM 9.2. Let some #(n) be nonsingular. I /  ( ~ R |  or (~"~Z| where H is 

compact, there is an 0 <~L <~ c~ such that either 

lira a(x)= L and lim a(x)= ~ (9.4) 
X - - ) - -  Oo X - - ~ t  

or lim a(x)= c~ and lim a(x)---L. (9.5) 
X ~ - -  Oo X-"-)" + o r  

I /~J  in not o/the above type then 
lim a(x) = ~ .  (9.6) 

X - ~  

COROLLARY 9.1. Let some ~(~) be nonsingular. Then Theorem 9.1 holds with ~ replaced 

by (I). 

THEOREM 9.3. Let B E E  be such that IBI > 0  and either ]~B I = 0  or some/~(n) is non- 

singular. I /  (~"~R|  or (~ ~ Z |  where H is compact, there is a n  0 ~ 5 1 ~  oo such that 

either 
lim LB (x) = L 1 and lim L~ (x) = ~ (9.7) 

or lim L B ( X ) =  ~ and lim LB(X)  = L 1. (9.8) 
X'-')'+ O0 Z ' - ~ - -  r 

I / ( ~  is not o/the above type then 
lim L B (x )  = c ~ .  (9.9) 

Remark. Even  if (~ ~ R |  or ~ ~=Z| but  provided tha t  the  random walk is of 

Type  I I ,  then L = oo in Theorems 9.1 and 9.2 and Corollary 9.1 and L 1 = c~ in Theorem 9.3. 

LEMMA 9.1. Suppose # de/ines a Type I recurrent random walk and that some ~t (~) is 

nonsingular. Let / be continuous, nonnegative and have compact supTort and J(/) > O. Choose 

b such that inf~ec~A/(y)>O where A / = D / - / + b J ( / ) .  Then /or all O<e<infy~c~A/(y), there 

is a compact set C and an 0 < M < c~ such that/or x E (~ and y E C c 

(A/(x)+ A / ( - y ) - A / ( x - y ) - M ) < ~  (A/(y)+ A / ( - y ) +  M). (9.10) 
\ A/(y) / 

Proo/. We star t  with the ident i ty  (see Theorem 10.1) 

P A / = A / + [ .  
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Let B be a compact set including the support of / .  Let 1Qs be the subtransition probability 

operator on B c given by 

P(x, dy) A/(y) 
1QB (x, dy) = A/(x) , x, y E B ~. 

Note that  1Qs(x,j~c) <PAl (x )  = 1, x E B  ~. 
Al(x) 

Let 1Q~ denote the nth power of 1QB. I t  is easily seen that  

1Q~ (x, dy) = BPn (x, dy) A/(y) 
A/(x) , x, y E B e. 

Set I~B = ~ 1Q~. Then 
GB (x, dy) A](y) 

1O~ (x, dy) A/(x) , x, y E B ~. 

Note that  for y E (~,/y is supported by y + B. I t  is probabilistically evident that  

1GB~v(x)<~ sup 1Gs/v(z), x E B ~ , y E ~ .  (9.11) 
z eBe(y + B) 

For y E {~ and z E B c 

G 1 
1 B/y (Z) = i ~  fBe(y + C) GB (Z, du) AI(u) Iv (u). 

By Theorem 5.3 and Corollary 7.1 

A / ( u ) = A / ( y ) + % ( 1 ) ,  u E y + C ,  

~A/(y) + _oy(1)] G,(lsr (9.12) and hence 1GB/v(z) = \ A/(z) ] 

I t  follows from (6.11) that  

GB ( lz~o lv (x)) = A/(x) + A/(  - y) - A/(x  - y) + 0(1 ) (9.13) 

for xE(~ and y E ~ .  From (9.11)--(9.13) we get that  for xEB c, y E ~  

A/(y) + %(1) [A/(x)  + A / (  - y) - A / ( x -  y) + 0(1)] 
A/ (x )  

<. ~A/(y) + o~ (1)~ [A/(y) + A/( - y) + 0(1)]. (9.14) 
\ A/(y) ] 

I t  is obvious that  (9.14) holds also for x E B, since B is compact. The conclusion of the 

lemma follows easily from (9.14). 
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LEMMA 9.2. Let i~ and / be as in Lemma 9.1. Then either 

l im A/(x)= oo (9.15) 
X---~oo 

or there is an 0 <~ L < oo having the property that /or  all N > 0 there is a compact set C such 

that /or  x ~ C either 
[ A / ( x ) - L I < N  -1 or A/(x)  >~N. (9.16) 

Proo/. Suppose  (9.15) doesn ' t  hold.  Le t  

L = l im inf A/(x) .  (9.17) 
X--~ Oo 

Then  0 < L < oo. Choose y E ~ .  W e  can f ind a sequence x ,  such tha t ,  as  n-+ co, A/(xn) -~ L,  

A / (  - xn) -~ co, and  A](xn) - A/(x~ - y) -~ O. Subs t i t u t i ng  x = x n in (9.10) a n d  l e t t ing  n-> oo, 

wet  ge t  t h a t  for y E C c 

A/(y)  - e (A/(y) + \ 
(A/( - y) - M)  <~ \ A/(y)  e) (A/(y) + A/ (  - y) + M).  (9.18) 

Choose 0 < N < oo. There  is a compac t  set  C 1 ~_ C such t h a t  if y r C 1 and  A/(y)  < N ,  

t hen  A/(  - y) - M > 0 and  

A/(y)  + A]( - y) + M 
< l + e  

A / ( - y ) - i  

and  hence (A/(y) - e) < L (1 + e) (A/(y)  + e) (9.19) 
A/(y)  

Since e can be made  a r b i t r a r i l y  small ,  L e m m a  9.2 follows f rom (9.17)-(9.19). 

L~MMA 9.3. Let iz and / be as in Lemma 9.1, suppose that (9.15) doesn't hold, and 

let L be as in Lemma 9.2. I / I / ~  ~= R | H or (~ ~ Z | H,  where H is compact, then either 

l im A / ( x ) = L  and l im A / ( x ) =  co (9.20) 

or l im A / ( x ) =  oo and l im A ] ( x ) = L .  (9.21) 

Proo/. This resul t  follows easi ly  from L e m m a  9.2 and  the  facts  t h a t  

l im (A/(x) + A/ (  - x)) = oo, (9.22) 
X---) Oo 

and  l im ( A / ( x -  y) - A/(x))  = O, y E ~ ,  (9.23) 
X*-~oo 

un i fo rmly  for y in compacts .  
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L E M ~ A  9.4. Let la and / be as in Lemma 9.1 and suppose that g~ has an open noncompact 

compactly generated subgroup (~, such that (~ /~ ,  is in/inite. Then (9.15) holds. 

Proo]. Suppose  t h a t  (9.15) doesn ' t  hold  and  le t  L be as  in L e m m a  9.2. L e t  z , + |  x be 

d i s jo in t  for n >1 1. Then  z~-+ co as n-~ oo. I t  follows f rom (9.18) and  L e m m a  9.2 t h a t  the  

z , ' s  can be chosen so t h a t  
l im A/(z , )  = L. 

n - - ) o o  

Since (~, is compac t ly  genera ted  bu t  no t  compact ,  we can choose x E (~1 such t h a t  

nx-+ oo as n-+ oo. B y  (9.18), (9.22) and  (9.23), we can suppose x is such t h a t  

l ira A t ( n x ) =  co. 
n - ~ o o  

Now zn + k x o  oo as n-~ oo un i formly  in k. There  is an  % > 0  such t h a t  for all  n >~n 0 

the re  is a k,~ > 0 such t h a t  

and  

B y  (9.23) 

which cont rad ic t s  L e m m a  9.2. 

A/ ( z .  + k . x )  < L + I  

Al ( z .  + ( k .  + l )x )  > ~ L + I .  

lira A/ (z  + k,,x) = L +  1, 

LEMMA 9.5. Let # and / be as in Lemma 9.1 and suppdse that ~ has a closed subgroup 

ff~, "" R a' @Z ~' where d I + d 2 = 2. Then (9.15) holds. 

Proo]. W e  can choose e lements  x and  y in (~1 such t h a t  n x + k y ~  co as n + k - ~  oo and  

use the  proof  of L e m m a  9.4. 

LEMMA 9.6. Let 1 ~ and ] be as in Lemma 9.1 and suppose that every element o / (~  is a 

compact element. Then (9.15) holds. 

Proo/. Suppose  (9.15) doesn ' t  hold.  Le t  L be as in L e m m a  9.2. Le t  C be an open compac t  

subgroup  of ~ which conta ins  t he  suppor t  o f / .  Then  ~ / C  is infinite.  

Le t  znE(~ fl C c be such t h a t  zn + C are  d is jo in t  and  A/ ( zn )~L .  Necessar i ly  zn--> oo a n d  

Af( - z~)-~ oo. Le t  
h .  = min {m >~ 1 [mzn~H }. 

Then  h . > l .  Also ( h . - 1 ) z . E - z n + H  and  hence A / ( ( h n - 1 ) z n ) ~ c ~  as n - + ~ .  Thus  h . > 2  

for n suff ic ient ly  large.  

F o r  n suff ic ient ly  large we can choose kn to  be the  largest  pos i t ive  in teger  less t h a n  

h . -  1 such t h a t  A/(knz . )  ~< 2L + 2. Then for n suff ic ient ly  large 
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A/(k,~z~) < 2L + 2 < A/(k,~ z,, + zn). 

We have the identity (see equation (10.1)) 

A](x) - H c A / ( X  ) = - Gel(x) + s  

I t  follows tha t  

A / ( x  + y) - A/(x)  - A/(y)  = A[_y(x) - A/ (x)  - A/_r(O ) 

= HcA/_r(x)  - A/_r(O ) - H c A / ( x  ) - Gc]_r(x ) + Gel(x). 

Since / is supported by C, Gc/(x)~O.  Since / - r  and A] are nonnegative, H c A / ( x  ) >~0 and 

Gvf_~(x ) >~0. Since/~ defines a Type I recurrent random walk 

HcA/_r(x  ) -A /_r (O ) = or(1 ) as y-~ oo 

uniformly in x. Consequently 

A / ( x  + y ) - A f ( x ) - A / ( y )  <~ or(I ). 

Letting y =z n and x = Ic~zn we get that  

A/((kn + 1)z~) -A / (knzn)  <~ A/(z , )  + o~(1) = L + o~(1). 

Thus for n sufficiently large 

L + I  ~< A/(knz~) <~ 2 L + 2  ~< A/((k~+ 1)z~) ~< 3L+3.  

Since either k~z~ or (kn+ 1)zn has a subsequence which converges to infinity we have 

a contradiction to Lemma 9.1. 

Proo/o~ Corollary 9.1. In the Type II  case the result follows from Corollary 7.1 (the 

extension of Theorem 5.3). In the Type I case the result follows from Corollary 7.1 (the 

extension of Corollary 5.2) and Lemmas 9.2 to 9.5. 

From Theorem 3.2 and Corollary 9.1 we get immediately 

THEOREM 9.4. Let P be a relatively compact open neighborhood o/ the origin o / ~ .  Either 

lim lim [ 1 - (x ,  O) dO (9.24) o o  

~oo ~1'1 ,Iv 1 - ) . # ( 0 )  

or ~ ~= R | H or Z | H,  where H is compact and there is an 0 < L < oo such that either 

l i m f v l - t x ,  O) {Loo as x ~ + ~ 1 7 6  
at 1 1 - ~#(0) dO-~ as x-~ - oo, (9.25) 
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o r  lim f p l - ( x , O )  do__,{~ as x - - , + o o  
).~1 1-; t /2(0)  L as x - ~ - - o o .  

(9.26) 

Proo/ o/ Theorem 9.1. Write 

f J(/) g(-i:~(OiO) - (x, O) f( - O) dO. 1~/(~) 

We need only consider the Type I case. By  Theorem 9.4 we need only prove tha t  

f (~,o5 3f(- o) lim lira dO = O. 
�9 ~ ~ ,  1 1 - ~ /~ (0)  

But this follows from the arguments used in proving Theorem 5.8. 

Proo/ o/ Theorem 9.2. The proof of this result is similar to tha t  of Theorem 9.1, except 

tha t  the inversion formula for aa(x) (as in [11]) is used. 

Proo[ o[ Theorem 9.3. This result follows immediately from Theorem 5.10 and 

Theorem 7.5. 

I0. Poisson's equation 

Throughout this section we will assume that /~ generates a recurrent random walk on 

(~. Our main purpose is to investigate the Poisson equation (P - I ) [  =~0 a.e., and some closely 

allied facts. In  the investigation of potential theoretic matters  the operator D/is  not the 

correct potential operator since Dq0 fails to yield a solution of the Poisson equation. How- 

ever a simple modification of D / i s  correct. Define A~/, 0 <;t < 1 as 

A ~[ = G~g(O) g(/) - Ga/= D~/+ g(0) J(/)  - / 

and let A/= lim Aa[ = D/+ g(O) J([) - / .  

This operator possesses all of the properties tha t  the operator D / w a s  shown to possess in 

w 5. A simple computation shows tha t  the basic identity (5.15) translated into terms of 

A /becomes  the following relation: 

A / -  HsA/  = - Gs/ + J(/) s (10.1) 

where Hs(x,  A) = 1AnB(X ) + 1 B, (x) liB(x , A), 

GB(X, A) = 1B.(x ) Us(x, A N B') + 1B.nA(X), 

Cs(X) = 1,.(x)L~(x). 
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All of the limiting relations established in w 5 are immediate ly  translatable into limit rela- 

tions for the above quantities. I n  the  sequel we will just  refer to the  original relations in 

w 5 and leave their trivial t ranslat ion to the present quantit ies to the reader. 

Our first task is to show t h a t  potentials are solutions of Poisson's equation. 

THEOREM 10.1. Take/E~,  or i/ the walk is nonsingular, then we may also take lEaP. 

Then 
P A / =  A/+/ .  

Proo/. By replacing / with - / i f  necessary we m a y  assume tha t  J(/)  >~0. I t  then  follows 

from (7.36) i f /E(I)  in the nonsingular case or f rom (5.54) i f / E ~  in the general case, t h a t  

there is an M, 0 ~<M < oo such tha t  A~/(x)~ - M .  Now 

Oo 

pA~/= AX/ + ~ ~n(p~/_ p~+i/), 
n=O 

and for /E ~ (or (I)) P~/-->0, n-> oo, so 

lira PA~/= A/  + /, 
X t l  

Fa tou ' s  lemma then yields t ha t  PA/= A~ + / -  g, where 

g(x) = lim PAX(x) - PA/(x) >~ O. 

g(x - y) = gy (x) = lim PAl/(x - y) - PA/(x - y) = lim PAX/y (x) - PA/y (x). Then 
~ti X t l  

Hence gy (x) - g(x) = lim PA~(/y - / )  (x) - PA(]y - / )  (x). 
Xtl 

But  by  (7.34) and (5.50), for fixed y, ]A ~ (/~ - / )  [ ~< K < oo and thus bounded convergence 

yields 
g~ (x) - g ( x )  = o .  

Hence g(x)~go >~ O. 

SO 

However  as A/~> - M,  

Pn+I[A/-M]= A / - M §  ~ P J / -  ngo, 
tffi0 

0 < lim p~+l  ( A / -  M) _- _ go, 
n n 

thus go ~< 0. Hence go = 0 and the theorem is proved. 

Let BeB, ]B I >0, ]~B I =0, or in the nonsingular ease just  [B  I >0 ,  BeB. Take 

QB(X, dy) to  be the transi t ion funct ion of the random walk killed on B, i.e., Qs(x, dy) = 

/~(dy-x) for x, y E (~ - B and Q~(x, dy) = 0 elsewhere. 

6 -- 692905 Acta mathematica 122, I m p r i m ~  le 19 m a r s  1969 
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T H E OR EM 10.2. For any type one random walk the only locally integrable nonnegative 
solutions o/the equation QB/=/ a.e. are multiples o/Cs(x). For any type two random walk the 

I:~(x)= s + ~ fsHB(x, dz) y:(x-z ) (10.2) 

and s dz) v2(X--Z ). (10.3) 

We shall divide the proof into several lemmas. 

LElViMA 10.1. _For any type one random walk s is a locally integrable nonnegative 
solution o/ QB/=/. 

Proo/. Let ~ 6 ~+, J (~ )>  0. The basic identity (10.1) and the fact that  GB~ < oo shows 

that  
Aq~ -PAq~ = PHsAq~ - H s A ~  + J(~) [s - P s  - [GB~ -PGBqD]. 

But if x ~ B  then PHB=HB, and PGBq~=GBq~-q). By Theorem 10.1, Aq~-PAq~= - ~  so 

we see that  for x ~ B s  = P s  Since s 0 on B it follows that  QB s = s The non- 

negativity is clear and the local integrability follows from the fact that  s is bounded 

on compacts. 

LEMMA 10.2. For any type two random walk I~(x) and I$,s(x) are nonnegative, locally 
integrable solutions o/Q~/=/. 

Proo/. As with s all that  needs to be verified is the fact that  these are solutions of 

the equation. The same argument as used in the preceeding lemma shows that  s is a 

solution. The function 

~(x)= f H,(x, dz) ~(x-z)=W(x) - fBHs(x, dz)~(z) 

vanishes for x 6 B and for x ~ B, 

P~(x) = f P(x, dy) y~(y) - : PHB (x, dz) y:(z) 

= - f H.(x, f t,(dz)w(z+x)= - f H.(x, 

Thus s and s are solutions. 

only such solutions are appropriate linear combinations o~ s and s where 
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LEMMA 10.3. Let h be a locally integrable, essentially nonnegative solution o/QBh=h 
a.e. Then/or a type one random walk, h=cl~B, a.e. where c>~O. 

Proo/. The potential  kernel of the Markov process QB is just  

~ Q~I = a~l, n=O 

where Q~ Let  {En), int En=~O be an increasing family of compacts  wi th  

union ~ ,  and define functions ha(x ) as follows: 

ha(x ) = min (h(x), nGB(X , Ea) }. 
Then ha(x) t h(x), and 

ha(x) < nGB(x, Ea). (10.4) 

A simple computa t ion  shows tha t  if g ~> 0 a.e. then QBg >~0 a.e. Then, a.e. QBhn ~<min (Qsh, 
QB(nGB 1E,)} ~< ha, and thus setting ~n = ha- QBha we see tha t  (~a ~> 0 a.e. Bu t  

Q~Oa = ~ Q~(ha- Q~ha)= ha - QT~+lha, a.e., (10.5) 
1=0 ./=0 

and then by  (10.4) 

Q'~+lha<~n ~ Q~(x, Ea)-~O a.e. as m-~oo .  
j~  rn+l  

Hence Q~+lh n ~, 0 a.e. Thus (10.5) shows tha t  

hn(x ) = GB(~n(X), a . e .  

Let / be any  fimetion in C +. Since h is locally integrable (ha,/) ~< (h,/)  < oo. Bu t  

(ha, 1) = (a ,~ , ,  1) = (~a, 0,1) .  

Since by  (5.22) ~ , ~ ( x ) - + ( C , , 9 )  as x-~oo,  and by  Theorem 9.3 l : s ( x ) + s  we 

see tha t  there is a 9 E C + and a compact  set D such tha t  (l:s, 9) > 0 and  ~ s g ( x ) >  0, x ~ D. 

Thus 

(ha,/)=fDOS/(X)~n(x)dX+fD ,[Os/(x) a]Tn(dx)+aya(D'), (10.6) [~.9(z) 

where the measures ya(dx) are defined b y  

7a(dz) = Os cp(x) ~a(X) dx, 

(s I) and a = 
(s 9)" 
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Now observe t h a t  ~n((~) = ((~s~, ~n) = (hn, ~) ~ (h, ~v) < ~ .  Moreover,  since hn(x ) is locally 

integrable,  we see t h a t  for any  compac t  K,  

fK~n(x)dx= f hn(x)dx- f QBh~(x)dx. 
Since hn f h a.e. and  QBh= h a.e. we see t h a t  

(x) dx = o. (lO.7) 

- 

Hence  lira ~,n(K)~< sup0Bq)(X) l inm ~n(X) dx=O. (10.8) 
n Lx~K 

We will now show t h a t  for some cons tant  7, 0 ~< y < ~ ,  

(h, ]) = lira (h~, /) = ay. (10.9) 
B 

Indeed,  given e > 0, choose the  compac t  se t  K such t h a t  

~ s / ( x )  __ a[  < 
~.~0(x)  I ~ 

for  x(fK. Then  the  second integral  in (10.6) m a y  be wr i t ten  as 

f D,nK ~ f D,nK ,~ 

and  {fD,nK,~syn(D'flK')<~e(h,q~), 

Since the  first  integral  on the  r ight  in (10.6) is O(~D~n(x)dx), and (hn,/) ~ (h, [) we see t h a t  

~'n(D') converges to some n u m b e r  ~ and  t h a t  (10.9) holds. Now (10.9) asserts for any  / E Cg 

f h(x) / (x)dx=c/~ s 

where c = ) ' /(EB, ~0), and  thus  h(x) = cF~s (x) a.e. This completes  the proof.  

L]~MMA 10.4. Let h ~O a.e. be a locally integrable solution o/Qsh=h, a.e. Then/or any 
type two random walk 
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h(x) = e~ s +c~ s 

where c 1 >~0, e 2 >~0 are constants, and s ~ ( x )  are given by (10.2) and (10.3) respectively. 

Proo/. We know tha t  s  and I:B are >~ 0. Suppose s = 0  a.e. Then 

/~s(x) = ~ - 2 [ H B ( X ,  dz) ~v(z- x) a.e., 
JB 

t "  
and  thus s EB(-x )=a-2JB[HB(x ,  dz)yj(z)+ H B ( - x ,  dz)~o(z)], a . e .  

However,  as the left-hand side tends to c~ as x-+ co while the r ight-hand side is bounded,  

we see tha t  this is impossible. Thus s > 0 on a set of positive measure. A similar argu- 

ment  shows tha t  E~(x) > 0 on a set of positive measure. Using Urysohn ' s  lemma we m a y  

then find a q0 E C + such tha t  (s ~0) > 0. Since 

lim ~Bq~(x) = (s qJ), 

we see tha t  there is a compact  set D such tha t  0n~v(x) > 0  for x~D: 

Let  h,, 0,, and y~ be as in the proof of L e m m a  10.3. Then  we m a y  write 

(h., :)= foo./(x) .(x)dx + [0.~(x) c~] y.(dx) 

+ ~ tOM(x) 2] - D' �9 .~+[0~(x) c y.(dx)+c~y.(D'nq~ ):+c~r.( n(~+). 

0~I(- ~)  (s 
where c, = 0B~0( - c~) = (I:~, q0) 

0.1(+ ~ ) (s 
c~=o.~o(+~) (s 

Arguing as in the preceeding proof we m a y  conclude tha t  

(h,]) = l i m  [cay,,(D' f~ (~-) + cay,,(D' A (~+]. (10.10) 

There is a subsequence n '  such tha t  y~, (D'A (~-)-+y~, ~ ,  (D'f l  (~*)-~y~ and thus (h,/)  = 

~1CI-]-~2e2. A s  / E  Cc + w a s  arbitrary,  it follows tha t  + " " h=~, l~S+~ '~ l :  ~ a.e. This completes the  

proof. 

Theorem 10.2 now follows from the preceeding lemmas. We wil| now establish an 

extension of this theorem which will prove useful later. First  we' introduce a definition. 
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De/inition. Let  h be a local ly  in tegrab | e  funct ion def ined on B' t h a t  is bounded  f rom 

below. Le t  BE•* ,  [B  I >0 .  Then  h is called QB superreqular prov ided  Qsh<-h a.e. on B' .  

I t  is called Qs regular if QBh =h a.e. on B' .  

COROLLARY 10.1. Let h be a Qs superregular /unction, and let ~ =h - Q s h  a.e. Then in a 

type one walk there is a unique constant c >~ 0 such that 

h(x) = c~s(x) +GB~ a.e. 

while in a type two walk there are unique constants cl, c a >~0 such that 

h(x) = c 1 ~ (x) + c~ ~,~s (x) + GBO a.e. 

Moreover, the only QB reffular /unctions are the above with (~ = 0, a.e. 

Proo[. Clearly,  Q~+lh = h -  ~ ~B ( h -  Qsh). 
1=0 

B y  def ini t ion there  is an  M ,  0 ~< M < ~ such t h a t  

n + l  n - M < ~ Q B  h<.Q~h . . . .  < h  a.e. 

Thus  Q~h = lira Q~h 

~ 'n  jq] i h exis ts  a.e. and  thus  so does lira n / J=0~B~ - Q B h ) .  Moreover,  

Q ~ h = h - G n ( h - Q s h )  a.e. 

Also (by  monotone  convergence) QB Q~ h = Q~ h a.e. a n d  Q~ h >~ - M .  However  a.e.,  

Q~ h(x) = l im Q's (Q~ h + M) (x) - M l im P~ (T s > n )  = l im Q"s(Q~ h + M)  (x) >10. 
n n n 

Thus  b y  Theorem 10.2 we see t h a t  for a t y p e  one walk Q~h(x) =ClUB(X) a.e. while for a t y p e  

two walk  Q~h(x) =c x I~(x)  +c 2 s a.e. Since the  funct ions  s  ~ are  l inear ly  independ-  

en t  the  cons tan ts  c 1 and  c a are  unique.  This  completes  the  proof. 

Consider now a nons ingular  walk.  W e  a l r e a dy  know t h a t  po ten t ia l s  of funct ions  

~0 E(I), J(~0)/>0 p rov ide  solut ions of Poisson 's  equa t ion  t h a t  are  bounded  from below. We 

will  now exh ib i t  al l  such solutions.  

THEOREM 10.3. Let ~ generate a nonsingular recurrent random walk, and let q~E~. 

Consider the equation P / = [ + ~  a.e. In  order that there be a solution which is bounded/rom 
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below it is necessary that J(q~) >~ O. In  that case, /or a type one walk, the only such solutions 

are/=Aq~ + fl a.e., fl a constant. For a type two walk the only such solutions are 

a.e., where fi is an arbitrary constant and I a l <~ 1. 

We shall divide the proof into several lemmas. Our first task is to show tha t  an / 

satisfying P/=/+q~ for a nonsingular walk mus t  be locally integrable. 

LEMMA 10.5. 1/P/=/+q~ a.e. and />~0 then / is locally integrable. 

Proo/. I t  follows from the equat ion t h a t  for any  n >~ 1, p n / <  co, a.e. Bu t  since the walk 

is nonsingular there is an n such tha t / z  (n) has a component  with a densi ty  k(x) EL2((~), and 

thus  k ~e k mus t  be bounded away  from 0 on some relatively compact  open set I .  Thus  there 

is a measure/~1 and a constant  ~ > 0 such tha t  

Pn~ l/(x) = / /~(dy) /(y + x) + f k ~ k(y) /(y + x) dy >-- ~' f i/(y + x) dy. 

Since p n , + l / <  oo a.e. it follows tha t  / is locally integrable. 

Nex t  we establish a simple fact  which will be needed during the uniqueness proof. 

LEMMA 10.6. For any measurable/unction / that is bounded on B, 

lira pn  + IHB/(X ) = (~B, /).  (10.11) 
n 

Proo/. Consider a type  one random walk. Then lim~_.~ HB/(y)= (~B,/). Now 

= f p~+i(~, dz) [HM(z) - (rB, 1)] + (~8,1). p~+IHB/ 

Equa t ion  (10.11) now follows by  using the fact  t ha t  I H s / ( z ) -  (~B,/)1 < e if z is outside of 

some compact  set K and Pa l~(x)-~0 as n--> oo. The proof for a type  two random walk is 

similar. We write 

f c~+P~(x, dz) [HM(z) - H. / (  + oo)] + f c~_P'(x, dz) [H./(z)  - HM( - oo )] pn+IHB/ 

+ P ' ( x ,  (~+)HB/( + oo) + pn(x, ~ - )  H s / (  - oo). 

The central  limit theorem for the induced r andom walk on R ~ or Z 1 implies t h a t  
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limn_,~P"(x, (~+)=lim,_,~P"(x, (~-)=�89 and the desired result follows. 

We may now show that  the theorem is true. 

LEMMA 10.7. The assertions o/Theorem 10.3 hold/or any nonsingular type one walk. 

Proo]. Set 6(x)=.[BP(x, dy)/(y). Since / +  c satisfies the Poisson equation with charge 

if / does and ] is bounded from below we may assume that  //> 0. Let  B contain the support 

of 9, [B[ >0, BEE.  Then for x~B, Qs/(x)+~(x)=/(x) a.e. Since/~>0 we see that  0~>0, 

and thus / restricted to B' is a QB superregular function. I t  follows from Corollary 10.1 

then that  there is a c >~ 0 such that  

/(x) = cs +GsS(x) a.e. xr  B. 

However, for x ~ B, Gs~(x) = Hs/(x) so 

/(x) =CI~s(x)+HB/(X) a.e. x~B. (lO.12) 

Suppose J(~0) 4=0. Then it follows from (10.12) and (10.1) applied to 9(Gs9 =0) tha t  

H l = B]+'~-~ [Ag-HBAq ~] a.e. 

and thus pn+a/= pn+ltis[ + d ~  [Pn+*AcP - P" +xIInAcp]. 

n 

B y Theorem 10.1 however, P"+IAg=Aq~+j~oPJq~ 

n 

while p , ,+l /= t ~ P ' ~  a.e. 

Thus c -Pn+lHnAq0 +P '+IHB] ,  a.e. 
t=0 J ~  

or .(, ~ P ' ' [  ] - j=oPJCf=ff-~Aq~+ H s / - f f - ~ H s A c f ,  a.e. (10.13) 

Now as n-> oo the right-hand side above has a finite limit, and thus so must the left-hand 

side. An appeal to the Chacon-0rnstein ergodic theorem shows that  for any set K of 

positive measure, 

~PJq0 J-1 J (~)  
lira ~ . p , l ~  ~ - ,  a.e. 

n----~ oo  
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Thus unless J ( T ) = c  the left-hand side in (10.13) is infinite a.e. Consequently J ( T ) = c  and 

by  letting n-+ oo in (10.13) and using Lemma 10.6 we see tha t  /=Acp § a, a.e. We have thus 

shown tha t  if J(~)=~0 and P / = / §  a.e., / bounded from below, then it must  be tha t  

J(~0)>0 a n d / = A c f §  a.e. Consider now the case when J(~v)=0. Let  ZE(I)+ be such tha t  

J(2~) > 0. Then Theorem 10.1 shows tha t  / + A Z is a solution of Pg = g +Z +of tha t  is bounded 

from below. Since J ( z + ~ 0 ) = J ( z ) > 0  it follows from what  has already been shown tha t  

/ § A Z = A(Z § ~) § ~ a.e. Thus / = A~ § ~ a.e. This establishes the lemma. 

LEMM• 10.8. In  order that P / = / + ~ ,  a.e. have a solution / bounded /rombelow /or atype 

two random walk it is necessary that J(9~) >~0. In  that case/=Ag~ +ayJ(x) +b a.e. /or suitable 

constants a and b. 

Proo/. As before we need only consider solutions /~> 0. Arguing as in the proof of the 

preceeding lcmma we find tha t  if P / =  / § ~, a.e. //> 0 then 

l = c ~ , ~ + C l s  a.e., 

where I:~, l:~ are given by  (10.2) and (10.3) respectively. Thus 

( c l  - c~)  (el -- C2) ( H(x, dz) ~p(z) - y~(x) § HBI. 1(*) = (c,+ c2) C~(*) ~ ~ j ~  as 

Consequently if J ( ~ ) 4  0, then a.e. 

or 

pn+l/(x) _ c1 + c2 ,)n+lr, _ HBAq~] + ~ P~+*HBy~(x) - cl - c2 ~)(x) + P n + I H B /  
- -  J(cp) *- L~t~ a u 

[+ (I --CI+ C2~ ~ Pi-=Cl+C2A~9 CI+C2~n+IHBAq)+pn+lj~B[ 
J(~) ],-i ~ J(~) - J(~ 

(31 - -  C 2 C 1 - -  C 2 + - - = ~  ~ ~(x), a.e. 

Since the left-hand side has a finite limit as n-~ c~ we must  have c 1 +c  2 = J ( ~ )  and thus it 

is necessary that  J(~) > 0 (since c1, e~ are /> 0) and 

](x) = Aq2(x) § § (10.14) 

I f  J ( ~ ) =  0 the same argument used in the preceeding proof shows tha t  ] must  again be of 

this form. This establishes the lemma. 

Our final lemma is to establish the values of a and b. 
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L E M M i  10.9. In order that 
Aq~(x) § + b 

be bounded/rom below it is necessary and su//icient that 

aJ(q)) where [~] <~ 1. 
a =  o~ 

I t  follows from (5.9) t ha t  

Consequently,  

Proo/. Suppose there is a positive M < oo such tha t  

Aq~(x) + ~ ~) v2(x) + b >~ - M. 

lim Aq~(x)_ + J (q~) 
x - ~ •  ~ ( x )  - a ~ "  

J (r ~- sgn v2(x ) aJ (~)  >/O, 
Cr 2 O .2 

so I ~1 ~< 1 is necessary. On the other  hand, 

~J(q~) 
a" v2(x)+b+ A~(x)= f sH' (x 'dz )  [ A q ~ ( z ) + ~  ~P(z)+b] 

+ J (~ )  [ s  (x) + -~- f 
The first term on the r ight  is bounded in x. Since 

r ; fBHB(x, dz)w(x-z)> O 
we see tha t  ]a[ ~< 1 is sufficient. (The proof is t ha t  of Spitzer [13].) 

Theorem 10.3 now follows from the preceeding three lemmas. 

There are some immediate  consequences of Theorem 10.3 which are of interest. 

COROLLARY 10.2. Let/~ generate a nonsingular recurrent random walk. Then the only 

superregular /unctions /or P (i.e. /unctions/, bounded/rom below, such that P/<~/ a.e.) are 

/(x) = o~ a.e. /or o~ a constant. 

Proo/. B y  choosing ~0 = 0 we see tha t  the only solutions of P/=/a.e. ,  / bounded from 

below, are / (x)  = a a.e. But  if 1='/<~ / a.e. and/(x)  ~> - M, 0 ~< M < oo then as ~7~0PJ( / -P / )  = 

/ _ p n + l / a . e .  we see tha t  limn-,o0 ~ [ = 0 P J ( / - P / )  (x) < oo. But  by  the Chaeon-Ornste in  ergodie 

theorem this can only be the  case if J ( / -P / )=0 .  Hence /=P/  a.e. and the assertion is 

proved. 
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Remark. Suppose P/(x)=/(x) for all x and / (x )  >~ O. I t  follows from the above tha t  if 

i~(dx) < <  dx, then /(x)=:r for all x. I t  might be suspected tha t  this should hold in the 

general nonsingular case. Simple counter-examples however show tha t  this is false, so tha t  

in the general nonsingular case the most we can conclude from P/(x)=/(x)  all x, / (x)  >~0 is 

tha t  / (x )=~  a.e. In  turn, this implies tha t  for ~E(1), J(~)>/0 even if we assume P/(x)= 

/(x) +~(x) for all x we still can only conclude in the general nonsingular case tha t  solutions 

permissible by  Theorem 10.3 hold a.e. However, for bounded solutions things are different. 

COROLLARY 10.3. Let/~ generate a nonsingular recurrent random walk. In  order that 

the equation P/(x)=/(x) +~(x) have a bounded solution it is necessary that J(q~)=0. In  that 

case the only bounded solutions are / = Aq~ § fl /or some constant ft. 

Proo/. I t  follows from Theorem 10.3 tha t  J ( ~ ) = 0  is necessary, and it is clear tha t  A~ 

is a bounded solution of the equation. Since the difference of two bounded solutions is 

bounded the desired conclusion will follow provided we can show tha t  the only bounded 

solution of P/(x)=/(x),  x E (~ is fix)------/(O). To establish this fact we may  proceed as follows. 

We already know (from Corollary 10.2) tha t  / (x)=fl  a.e. xE(~, for some ft. Let  E = 

{x:/(x) =fl}. Then as I El > 0, P,(VE < ~ )---- 1. But  then for any n > 0, 

/(x)=E~/(S~)--T_ ~ P~(V~=r,S~Edz)P~-T/(z)+ P~(V~>n,S~edz) / ( z ) .  

The second term on the right is bounded in absolute value by II/ll oP (V  >n)  ~ 0 a s  

while the first term is just P~( Vs < n)fl r fl as n-+ ~ .  Thus/ (x)- - f l ,  as desired. 

For functions ~ E ~ there is a similar uniqueness result in the nonsingular case to tha t  

for functions ~ E (I). 

COROLLARY 10.4. Let t~ generate a nonsingular recurrent random walk, and let ~E.~. 
In  order that P/=/+7~ a.e. have a solution bounded/rom below it is necessary that J(q~) >70. 

In  that case/or a type one walk ]= Aq~ § ~ a.e. while/or a type two walk 

/ = A~ + J(~0) a.e., I 1<1. 

Proo/. Let g have compact support  B, J(g)=1. Then Aq~(x)-J(q~)Ag(x) is bounded, 

and by  Theorem 10.1, h(x) =/(x) + J(qg)Ag -Ac f  is a solution of Ph = h + J(q~)g a.e. which by  

Theorem 10.3 is bounded from below if and only if J(~)~>0. I t  follows tha t  / is bounded 

from below if and only if J(~)>~0. In  tha t  case Theorem 10.3 shows tha t  Ph=h+J(q~)g 
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a.e., h bounded from below, has only the solutions h=J(qJ)Ag+fl a.e. in the type one case 

and 

h = g(~o) Ag + g(q)~y)(x)-- + fl 
0 

a.e., in the type two case. This establishes the result. 

We now turn our attention to the question of uniqueness in the case of a singular 

recurrent walk. Here we have only been able to establish uniqueness in a smaller class of 

functions. Let g>~O, J(g)=1 and gE~  be fixed. For any ~E~,  AqJ-J(qg)Ag is a bounded 

continuous function. Let E be the direct sum space of the Banach space of bounded 

measurable functions with the one dimensional space generated by multiples of Ag, let 

E'={[EE: (P- I ) /=q)  a.e. for some ~0E~}, and let E c be the subspace of elements of E 

such that  for some ~ , / -  aAg is a bounded continuous function. 

THV.OR~M 10.4. Let # generate a recurrent random walk, and let qJ C ~. Then the equation 

P / = /  +q~ a.e., /EE  has only the solutions [=Acp+fl a.e. Moreover, i /]EE~ then /=A~o+fl 

/or all x E (~. 

Pro@ Suppose [=[o+~4gEE' and let g l ( [ )=~  and ~([ )=J( (P- I ) [ ) .  Both of these 

are homomorphisms of E '  onto the reals. Suppose /Eker gl, i.e. ~ = 0. Then as ] is bounded 

and 
n pn+i[_ [= ~ ps(p_ i) [ 

t=o 

we see that  ~']=oPS(P-I)] is also bounded. Let B E A ,  IBl>o. Then ~=0PSl , (x ) -+  ~ 

a.e. and the Chacon-Ornstein theorem shows that  

p s ( p _  I) [(x) 
lim s=o J((P - I) ]) 
" - " 0  a . e .  

1=0 

Thus J[(P-I)[]  =0, so ]Eker g~. I t  follows that  there is a homomorphism ~ of the reals 

onto themselves such that  g(gl([))=~2([). Hence for some real 7J, ~a=J[(P-I ) / ] .  By 

Theorem 10.1, ( P - I ) A ~ = ~  and the ~ for Acp is J(~). Thus y = l  and we see that  ~ =  

J[(P-I ) / ] .  Now suppose ] is a solution of ( P - I ) / = ~  a.e., ]EE.  Then it must be that  

/=/o +J(qg)Ag. Thus / - A ~  is bounded and satisfies the equation Ph =h a.e. I t  follows from 

a theorem of Choquet-Deny [1] that  h(x) =fl a.e. for some constant ft. Finally ff ] is required 

to be in Ec, then since both / and A~0 +fl are continuous the equality must hold everywhere. 

This completes the proof. 
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Remark. We know that  l im~_.~[Ag(x)+At(-x)] = co. Theorem 10.4 then shows tha t  

a function / satisfying the Poisson equation tha t  grows like a potential must  in fact differ 

from a potential by an additive constant. 

I f  we examine the Poisson equation in the nonsingular case in the class E then we 

always have Ag)+fl as the solutions. 

COROLLARY 10.5. Let/x generate a nonsingular walk and let 9) E ~ or r S u p p o se /EE  

and P/(x)=[(x) +9)(x) /or all xE(~. Then/(x)  =Ag)(x)+f l /or  some constant ft. 

Proo/. The same proof as in Theorem 10.4 shows t h a t / - A g )  is bounded, and P ( / - A q )  = 

] -Ag).  Corollary 10.3 then shows tha t  [ -Ag)--~fl for some ft. 

Our final results in this section concern the Poisson equation with boundary conditions. 

THEORE~ 10.5. Assume/~ generates a nonsingular recurrent walk. Let BEB ,  I B] > 0  

and let 9) E q) have support on B and / E (1) have support on B'. Then the solutions o/the equation 

( P - I ) h =  - / a . e .  on B' subject to the boundary condition h=9) a.e. on B that are bounded 

/rom below are as ]ollows: In  a type one walk 

In  a type two walk 
h=Hs9)+GB/+C~B a.e. c>~0. 

h=HB9)+G~/+c l s  a.e. c1>~0, c2>~0. 

(10.15) 

(10.16) 

Proo/. I t  is clear that  h(x)=9)@) a.e. on B and a simple computation plus Lemma ' s  

10.1 and 10.2 shows tha t  right-hand sides of (10.15) and (10.16) satisfy ( P - I ) h ( x ) =  

- / (x ) ,  xEB' .  Now consider a type one walk and assume tha t  h satisfies the require- 

ments of the theorem. Set 5(x) = [ ( P -  I)  h(x)] 1,(x). Then ( P -  I) h(x) = 8(x) - / ( x )  a.e. @, 

8(x) - / (x )  Er  and h is hounded from below on ~ .  Thus by Theorem 10.3 h = A ( ~ - / ) + f l ,  

a.e. and J(8 - / )  ~>0. Setting c = J ( ( ~ - / )  we see from the basic identity tha t  a.e. 

h = H . h -  G~((~-/) + cC.  = ~ . 9 )  + G . / +  cC.  

as desired. The proof of (10.16) for the type two walk is similar. This completes the proof. 

There is also an analogue of this result valid in the singular case. 

THEOREM 10.6. Let BE.,4, IBI >0.  Assume 9)E~P has support on B and ]E~P has sup- 

port on B'. Then the only locally integrable solutions o/the Poisson equation ( P - I ) h = - /  

a.e. on B' subject to the boundary condition h =9) a.e. on B that are bounded/rom below are as 

/ollows. In  a type one walk 

h=GB/+HBg)+c~  B a.e. c>~0, 

while in a type two walk 
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h= Gs/ + HBq~ + Cl l ~  + c2 ~ a . e .  Cl, C2>J0. 

Proo]. A simple computation shows that  the right-hand sides satisfy the equation 

with the boundary value ~0. Also it is clear that  h a = G s / + H s q  is a bounded solution. Sup- 

pose that  h is a solution that  is bounded from below. Then g = h -  h 1 is locally integrable, 

bounded from below, and satisfies the equation Pg =g a.e. on B' and g = 0  a.e. on B. Since 

9 = 0  a.e. on B this equation is the same as QBg=g a.e. Then g is QB regular and it follows 

from Corollary 10.1 g=cl~ B a.e. in the type one case and g = c l l ~  +C21~B in the type two 

case. This completes the proof. 

By the same type of argument we may establish the following. 

THEOREM 10.7. Let B fi B have nonempty interior (or in the nonsingular case [B] >0). 

Then the only bounded solution o / ( P -  I)h(x) = 0/or all x E B' and h(x) = q~(x) on B is Hsq~(x). 

Proo/. Suppose h is a solution. Set 6(x) = SsP(x, dy)h(y). Then for x $ B 

n 

Q~ lh = h - :~ QJs 6. 
t -0  

B u t  [Q"~+lh(x)]<<.sup~[h(x)[P~(Vs>n) + 0 a s  n - ~ o o ,  and thus h(x) = w~ ~j O=HBh(x)= 

HBcf(x), as desired. 

11. Recurrent potential theory 

Throughout this section we will assume that  p generates a recurrent random walk. 

Our purpose here is to show that  analogues of some of the basic principles of classical 

logarithmic potential theory are valid for our potentials. Naturally one cannot hope for 

too much in the singular case, but for the nonsingular case most of the familiar principles 

have their counterpart. A nice treatment of classical potential theory can be found in the 

lecture notes of Fuchs [3]. 

The potential operator A was defined a bit arbitrarily. I t  is clear that  all of the results 

established for A up till now also hold for the operators Av defined by Ab/= A~ + bJ(/), b 

a fixed constant. In  particular we still have the basic identity 

A~/(x) - UsAv/(x)  = - GB/(x) + g(/) EB(x). (11.1) 

Let gE~, g>~0, J ( g ) = l  be fixed. By Corollaries 5.2 and 7.1 we then see that  for [ E ~  (or 

/E(P in the nonsingular case) 

Lim [Ab/-- J(/)Abg(x)] = 0 (11.2) 

and by (11.1), Theorems 5.10 and 7.6, and Corollary 5.3 



where 

The  cons tant  
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- (~B, Abl) = - (~B, 1) + J(l) lim [Cs(x) - Abg(x)] 

1B(Y) dy = LB(y) 1B(y) dy = lim HB(X , dy). 
x 

95 

(11.3) 

L im lab g(x) - F~B (x)] = L im [Ag(x) - F~B (x)] + b = kb (B) (11.4) 
x x 

is independent  of g since if g, g' r  (or (I) in the  nonsingular  case) and  J ( g ) : l ,  then  

l im~[Abg(x)-Abg' (x)]  : 0 .  The constant  k~(B) is called the  b-Robin's constant o/ B. For  

b ~ 0  the  constant  k(B) is called the Robin's constant  of B. I f  the walk is nonsingular  then  

(iB, Ab/)= (A~/B,/) and we m a y  rewrite (11.3) as 

(Xb[B, /) = (~B, /)+J(/)kb(B). 

I t  follows t h a t  in this case 

Ab[B(X) = ~B(X)-~kb(B) a.e. (11.5) 

Applying these results to the  dual walk we see t ha t  for / r ~ (or / E (I) in the  nonsingular  case) 

L im [/~s(x) - .4g(x)] = - ~c(B) 

and in the nonsingular  case 

Abl,(x ) = s ) a.e. (11.6) 

Also in the  nonsingular  case 

k~(B) = (l~, A~[B) = (A~l,, tB) = kb(B). 

[ In  the  singular case, for B E • ,  I BI  >0 ,  it is also t rue  t h a t  kb(B)=Ico(B). See Theorem 

11.1(e) below.] 

I n  the  nonsingular  case we have  thus established 

PROPOSITION 11.1. Let BE B, ]B] >0,  and let ~]~(B) denote the collection o/all q~Er + 

having support on B such that J ( ~ ) = l .  Assume the walk is nonsingular. Then l~6~J~(B) 

and Abl~(x)=kb(B) a.e. xEB.  

Before proceeding fur ther  we pause to establish some propert ies  of the  Robin ' s  con- 

s t an t  k(B). 

THEOREM 11.1. Let sets {B~: i>~I}EA*, IB~I >0.  

(a) I] B l a B  ~ then k(B1) <~k(B2). 

(b) I / B =  N~IB~ then 

k(B) <~ ~ k(B,) - ~ k(B, U B t) + . . .  + ( - 1)n+ik(B 1 (J . . .  U Bn). 
i =1 i~:] 
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(c) I/IBI >0, and Bn+lD Bn and IB.-BI~O, n ~ o o  tZ~n Ic(B.)-->k(B). 

(d) I /  IB~I >0 and B~ ~ B~+I and I B -  B~I ~0, n-+oo then ]c(B~)~]c(B). 

(e) k(B) = k(B) = k(-B).  

Remark. Properties (a)-(d) show that  k(B) satisfies the axioms of a Choquet capacity 

on the sets B E.4*. 

Proo]. By definition, k(B)=limx[Ag(x)-Lz(x)] and IAILs(x)=limyGB(x,A+y), 
A E.4*, IAI >0. To see that  (a) holds note that  if B1cB ~ then GB,(x, A)>~Gs,(x, A) and 

thus LBI (x) ~LB.(X) and thus k(B1) ~< k(B~). Similarly if B = [7 ~1Bi then 

GB (x, A) >I~1 ~ Gs,(x, A) - ~.~jGB,u sj (x, A) + . . .  + ( - 1)~ +1Gs,u...u~.(x, A), 

because the left-hand side is just the mean number of visits to A before hitting B while the 

right-hand side is the mean number of visits to A before time max(Ts~: 1 ~<i ~<n)~< TB. 

To establish (c) note that  

GB.(x, A) = GB(x, A) - JB[.-B H~"(x' dZ) GB(z, A), 

and thus 

Hence 

C..(x) =s f H..(x, dz) F~B(z). 

k(B.) = k(B) + :~._B[B.(Z) I:.(z)dz<~ f.._ 
and the result follows. The proof of (d) is similar. 

To establish (e) we may proceed as follows. Since the dual walk is generated by ~u(- dx), 
it is clear that  GB (x, A)=  ~ - B ( - x ,  - A )  and thus LB(x)= L-B(-  x). Also it is quite easy 

to see that  Ag(x)= ~ ( -  x) where ~(x)--g(-  x). By definition of k(B), 

k ( B )  = l i m  [ A g ( x )  - LB (x)] = l i m  [ X ~ (  -- x)  -- L - B  ( - x) ]  = / ~ (  - B ) .  
X 

In the nonsingular case (e) now foflows from the fact that  k(B) = It(B). To establish this 

in the singular case requires a different argument. If we knew that  k(B)-  k(A)= It(B)- 

]~(A) for A, B E.4*, then choosing say A symmetric (and using k(B) = fc(-B)) would yield 

the desired result, That this is so is the content of our next 

LEM~A ll.1. LetA, BEA*, A c B ,  IAI, [B[>0.  The~ 
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f~ d x L B ( x ) L a ( x ) = k ( B ) - k ( A )  
9 - A  

(11.7) 

and/or  any two sets A, B E.,4* 

k(B) - k(A) = b (B) - k (A). (11.8) 

Proo/. Let K E A, and let A ~ B. 

U~ (x, K + y) = U,4 (x, K + y) - f~-A IIs (x, dz) UA (Z, K + y) 

so taking lim~ we obtain 

LB(x) = L~(x) - ~s-A IIB (X, dz)LA(z). 

(11.9) 

Thus k ( B ) -  k(A)= f B L s  (z) LA (z) dz. 

On the other hand, taking lim on x in (11.9) yields 

+ y  - s_ALs(z) UA(z,K+y)dz. 

Now take limy to obtain 

fc(B) - b(A ) = ~B- A "~ (Z) LA (Z) dz. 

Thus k ( B ) - k ( A ) = k ( B ) - k ( A )  if A c B .  Since A U BEA* if A, BEA*,  (11.8) follows. This 

completes the proof. 

For the remainder of this section we will always be dealing with a nonsingular walk. 

We already know via Theorem 10.1 that  for any q0E(I) the potential A ~  determines ~. 

We will now show that  a stronger uniqueness principle is available. 

THEOR~.M 11.2. Let i �9 generate a nonsingular walk. Let /6~P have support on BEB,  

[B[ >0. I /  k~(B)4:O then the value o /Ab /a . e ,  on B determines A J  a.e. on (~, and con- 

sequently / a.e. 

Proo/. Suppose E c B ,  and IEI =0.  Then S$Pn(x, E)dx= IE[ =0, so Pn(x, E)=O, 

a.e., and thus Px{S~GE for some n > 0 } = 0  a .e .x .  

To demonstrate the theorem we need to show that  if Ab/=0  a.e. on B = s u p p o r t  (/), 

t h e n / = 0  a.e. Set E={x:A~/(x)4:0}.  Then as GB/(x)----O, 
7 -- 692905 Acta  mathematica 122. I m p r i m ~  le 20 m a r s  1969 
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Ab/(x) = f HB (x, dz) Abf(z) + J(]) s (x). (11.10) 

Since Hs(x , E ) = 0  a.e. on B'  we see tha t  

AJ(x )  = J(/)s a.e., (11.11) 

and thus (1B, A0/)=J( / ) ( ts ,  s  Consequently 

0 = g(/)k~(B), 

and thus J ( / ) = 0 .  I t  follows from (11.10) tha t  Ab/(x)=0 a.e., and thus by  Theorem 10.1 

/ = 0  a.e. 

Examples show tha t  if kb(B ) = 0  then the above uniqueness principle fails. However, 

since we may  always choose b so tha t  kb(B) . 0  we always have the following 

COROLLARY 11.1. Assume BEB,  [B[ >0.  I /~1  and q~ have support on B and Aq)l= 

AqJ~ a.e. on B and J(~01) = J ( ~ )  then Aqh =AqJ~ a.e. on (~ and cpl =q~ a.e. 

We may  now establish the analogue of equilibrium principle. 

THEOREM 11.3. Assume # generates a nonsingular walk. Then Is is the essentially unique 

element o / ~ ( B )  whose potential Als  is essentially constant on B. The constant is the Robin's 

constant k(B) o/ B. 

Proo]. In  view of Proposition 11.1, where ~D~(B) is defined, we need only establish 

uniqueness. Suppose then tha t  q0E~FJ~(B) and Aq~ =c, a.e. on B. Then 

e = (I. ,  A ~ )  = ( : I~ . ,  ~ )  = k ( B )  

so c = k(B). Since J(q0)= J(ln) the result now follows from Corollary 11.1. 

We will next  establish an analogue of the minimum principle. 

PROPOSITION 11.2. Let i~ generate a nonsingular walk. L e t / E ~  have support on B, 

[B I >0,  and assume J (/) >~ O. I/AJ>~o~ a.e. on B then Ab / >~ a a.e. on ~ .  

Proo/. Let  E = {x : Ab /(x) < a}. Since 

A~! = HBA~! + J(/)L.(x) 

and H,(x,  E )=  0 a.e. we see tha t  

A~/(x) >! a +J(/)Ls(x) >1 a a.e. x e $ .  
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Another basic principle is the principle of domination, the analogue of which is the 

following 

THEOREM 11.4. Let /EeP have support on B, and assume b such that kb(B)>0. Let 

hECl)~. I t / o r  some ~>0, 
Abt>~Abh+~ a.e. on B, (11.12) 

then J(t) >~ J(h) and 
Ab/>~ Abh+o: a.e. on (~. (11.13) 

Proot. To begin, observe tha t  it follows easily from (11.12) that  

kb(B)J(/) = (~B, A~/) >1 (IB, Abh) + o~ >1 kb(B)g(h) 

and thus J(t)>~J(h). Next  observe t h a t  

A~h = HsAbh +J(h) E s - G s h  ~ HsAbh + J(h) s B 

while Abl = HBA~/ + J(t) s 

Thus setting E=(x:A~/(x)<Abh(x ) +a}  we see tha t  

Ab / -- Ab h - ot >1 f ElIB (x, dz) [A~/(z) - A~ h(z) - or] >1 O: a:e. 

since HB(x, E) --= 0 a.e. Thus (11.13) holds. 

Remark. I t  is clear from the proof of Proposition 11.2 that  if we know tha t  A/~> ~ every- 

where on B =suppor t  (/), then we may  conclude tha t  A/>~ o~ everywhere on (~. Likewise, 

if in Theorem 11.4 we know tha t  (11.12) holds everywhere on B we may  conclude tha t  

(11.13) holds everywhere on ~ .  

PROPOSITION 11.3. Let/~ generate a nonsingular walk. Assume BEB,  [ B I >0.  Then 

k(B) is the unique constant c such that/or any ]er having support on B such that J ( t ) = l ,  

ess in/At(x) <~ c ~ ess sup A/(x). (11.14) 
xEB zeB 

Proot. I f  there is a c satisfying (11.14) then choosing / =  1B shows tha t  c = k(B). Suppose 

ess in f~sA/(x)>k(B) .  Since J(t)= 1 we then see tha t  ess infzEsA~/(x ) >kb(B). Choosing b 

such tha t  kb(B ) > 0  we see tha t  there is a t, 0 < t  < 1 such tha t  tAb] >1 kb(B) a.e. on B. Hence 

t(~, Abt) >~ k~(B). But  (iB, Ab t) = (r t) = k~(B) J(t)  and thus t t> 1, a contradiction. The 

other inequality is proved similarly. 

Our final result in this section will be to establish an analogue of the Balyage principle. 

Another proof of this fact will be given as a corollary to Theorem 12.2, 
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T H E O R ~  11.5. Assume BEB,  ]B I > 0  and kb(B) >0.  Let I E r  +. Then there is an es- 

sentially unique q~ E ~+ having support on B whose potential Aoq~(x) = Ab/(x) a.e. on B. More- 

over, Abq~ >~ A J  a.e. on (~. The charge ~p may be computed by 

~=/+(p_/)l (~a,f) / 
t k~-~h~- ca + a./ j  

and the corresponding potential is 

(s 
A ~  = Ab[ + ~ b ( ~  s  + Oaf. (11.15) 

Proof. Since we will give another proof in the next section we will only establish the 

result here for a type one walk although a similar argument  would also work in the type 

two case. A simple computation shows tha t  ~0 >~ 0 and has support  on B. What  needs to be 

proved is tha t  the potential of ~ is given by the right-hand side of (1 I. 15). Set c = ( ~s,/)  ]k~(B). 

Then cs + Oaf >~ 0 is a solution of ( P - I ) h  = ~ - f  and it follows from Theorem 10.1 and 

(10.3) tha t  h=Ab(q~-/)+fl a.e. so 

cCs+G~/= Ab(q~-/)§ fl a.e. 

Let  g E (I) +, J(g) = 1. Then 

c [ s  - Ag]  + G . / -  [Ab(~ -- f) - J ( ~  - / )  Ag]  = [ J ( ~  - / )  - c] A g  + t ,  a.e. 

Since the left-hand side converges to 

-ek (B)  + (~, ,  /) -bJ(q~ - / )  

as x-~c~ it must  be that  J ( ~ - / )  =c  and thus 

fl = - ~ k ~ ( B )  + ( ~ a , / )  = 0.  
This completes the proof. 

12. Approximations by potentials 

Throughout this section we will assume tha t  the random walk generated by  p is recur- 

rent and nonsingular. Let N = ([ E Cc((~ ) : J ( f )=0}.  Define the space C0((~ ) as the collection 

of all continuous functions f on (~ such tha t  l i m j ( x ) = 0 ,  f o r  a type one random walk, 

C0((~) is then just the usual space of continuous functions vanishing at oo. For a type two 

walk C0((~ ) is the.closed subspace of the continuous functions on the two point compacti- 

fication of (~ which is the kernel of the linear functional [~[(+oo)+[(-c<~). Let Z =  

C0((~ ) |  denote the direct sum space of the space C0((~ ) with the one dimensional 

space of multiples of a ( - x ) ,  where a(x) is the function defined in w 7. 
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Consider the Poisson equation (P-I ) /=q~.  I t  follows from Theorem 10.3 tha t  if 

E Cc((~) then the potential A~ is the unique solution of this equation in the space Z. 

Moreover, if also J ( ~ ) = 0  then A~ is the unique solution in C0(G ). The main result of this 

section is to show tha t  X is in fact the correct range space of potentials of functions in 

Q(q~). 

THEOREM 12.1. The set {Ag:~eC~((~)} is dense in Z. The subset (A~v:~fiN} is dense 

in the closed subspace Co(q~ ). 

A continuous linear functional 7" on C0(G ) can be identified with a bounded signed 

measure ? on @ in the type one case and with a pair (7, a) in the type two case, where in 

the type two case, 
/ o  

(~,*, /) = i f ( x )  ~(dx) + or/( + oo). (12.1) 

Henceforth we will carry out the proof only for the type two ease. The proof for the type  

one case can be carried out by following the same argument  and just omitting all terms 

involving ~. To proceed we will need the following 

L~MMA 12.1. I] (7*, Aq~) = 0 / o r  all q~eN then (7*, Ah) = 0 / o r  all hE~P such that J(h) =0.  

Proo/. Let ~l(dx)=dx+ }~Uzl(dx), where U S is the measure defined in w 7. Let  e > 0  

be given. By Lusin's theorem there is an h'ECc((~) such tha t  h(x)=h'(x) except on a set 

D, I]h']r~< ]]hlJ~, and ~/(D)<e. Observe tha t  

JJ(h')J< f~)h'(x) -h(x) I dx<~K 1 ]DJ <.K le, (12.2) 

where here and in the following, Ks will denote constants. Choose g E C + (q~) such tha t  J(g) = 1 

and s e t / = h ' - J ( h ' ) g .  T h e n / E N  and for x~D,  

I h(x) - / (x ) [  = I h(x) - h'(x) + J(h')g(x)] = I J(h ') IIg(x) I < K ~ .  02.3) 

Since 7" also acts on Ah we may  write 

(7*, Ah) = @*, A(h - 1)) + (7*, A/) = (7*, A(h - / ) )  = f c A ( h  - 1) (z) r(dx) + a A ( h -  1) ( + ~ ) .  

From results in w 7 we know tha t  l i m ~ . , •  T(~v(y))/a ~, uniformly on 

compacts, and thus as a(x) is continuous, we see that  for any compact set E there is a 

constant K (dependent on E in general) such tha t  ] a ( y o x ) - a ( - x ) ]  <~K, xE(~, yEE.  

I t  follows from Urysohn's  lemma that  we may  assume tha t  the supports of the h' are all 
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contained in some: fixed compact set. Let  E be the union of the supports of f, h and the h'. 
Then 

[A(h-f)( + r x-~+~lim fo[a(y-z)-a(-x)][h(y)-l(y)]dy-x~+=lim Us(h-/)(x)/ 

= l-~ fc~ ~(y) [h(y)- f(y)] dY<----~ fD'v/(Y)[ [h(Y) - I(Y)[ dY + ~ fE_D[Y'(Y)[ 'h(Y)-- f(Y)[ dY" 

In view of (12.2) and (12.3) we then see that  

IA(h-[)( + oo)[ ~< K s /D  I + K , e  ~< Kse. (12.4) 

In a similar way, 

]fr(dx)A(a-f)(x)l<<lfT(dX)fD[a(y-x)-a(-x)][h(y)-f(y)]dy 

-- fDrU,(dy)[h(Y)- /(Y)][ + [ f ~'(dx) fE_D[a(Y-x)-a(-x)][h(Y)--/(Y)]dY 
f ~-D 7 U~(dY) [h(y) - f(y)] ~< Ke~(D) + K7 e <~ Ks e. (12.5) 

The lemma now follows from (12.4) and (12.5). 

We may now establish the theorem. 

Proof of theorem. We will establish the second assertion of the theorem first. Suppose 

then that  ~* annihilates A/for a l l / e N .  Choose geC~+((~) such that  J(g)=1. Then for any 

epEcl), ~-J(cf)g is a null function and the lemma shows (7", A(q~-J(cf)g))=0. Thus for 

any ~Eq), 
0 =(r* ,  A(q) -J(q~)g)) = (r*, HBAq~ - GBq~ +J(q~)(F~a-Ag)) (12.6) 

= (Y*, HaAcP)- (r*, GB~)+J(r s  

For any measurable function / and compact set B, let Ia f (x)=  la(x)/(x), and set Pal(x)= 
ls(x)PHaf(x). Then if f is bounded on B, 

Pilaf = Ha/+ (pa_ Ia)f 

and by iteration P"+IHaf = Ha/+ ~ pz(ps_ In) f, 
l=0 

and thus by Lemma 10.6 (Is,/) =Hs/ -A(PS- Ia) f  �9 (12.7) 

Since (pa - - I a ) f  is a null function with support B, it follows from (12.7) with f = A ~  that  
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[Y(~) + ~] ([B, Aqg) = (y*, HsAqo). 

Thus we may write (12.6) as 

0 = [y((~) + ~] (~, A~) - (r*, GB~ ~ + J(~)(Y*, • -Ag) .  (12.8) 

Let  B be compact and I B I > 0. Choose ~0 E (I) so that  ~o has support on B and J(~0) 40.  

Then from (12.8) we see that  

0 = [y((~) + a] (~B, A~0) + J(~o)(y*, s -Ag). 

Since (IB, A~o)--(~[B, ~0)= k(B)J(~o)q-(I~B, ~o), we see that  as ~o has support on B, 

[y((~) + a] k(B) + (y*, s = O. 

Thus for an arbitrary ~0 E(I) equation (12.8) and the above shows that  

I t ( (~)  + ~] (~,  ~) = (r*, G~) = fr o~(x) ~,(dx) + ~a~(  + r162 

Now yGB is a well-defined signed measure on compacts and 

O ~ ( +  ~ )  = (~:~, ~). 

Thus ([r((~) + ~] ~ , -  g ~ ,  ~o) = (yGs, qo). 

Hence {[~((~) + ~] ~ ( x )  - a~+(x)}dx = 7,OB(dx). (12.9) 

Theorem 10.2 and a simple duality argument shows that  for y E ( ~ - B ,  on the one hand, 

f ~ ( x )  Qs (x, dy) = dy, [:~(u) dx 

f k+(x) Q.(x, dy) dx= E+(y)dy. and 

On the other hand, on ( ~ -  B, 
yG, QB = )'GB --~. 

Operating on both sides of (12.9) by Qs then yields the relation 

([~((~) -t- ~] ~.(x) - a~+ (x) } dx = ra.(dx) -~(dx), x a B. 

Thus by (12.9) we see that  ~ must be the 0 measure on ( ~ - B .  Owing to the arbitrariness 

of B, y must be 0. Then for ~ EN 
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0 =  (?*, A~) = aA~0(- ~ ) =  - ~  y)(y)q~(y)dy. 

Taking ~ such that  S yj(y)q0(y) =~0 we see that  ~=0 ,  and thus ?* =0. This establishes the 

second assertion of the theorem. 

To establish the first assertion of the theorem we can proceed as follows. A continuous 

linear functional ~fl* on Z is a pair (?*, b), where ?* is a continuous linear functional on 

Co((~ ) and b is a real number, such that  for [=(]o, s)s /06Co((~), (~P*,/)=(Y*, ~0)+sb. 

Thus if y)* annihilates {Ar :~06 Cc((~)}, then 

0 = (~*, A~) = (?*, A~-J (~ )a ( - x ) )  +J(~)b. 

In particular for q0EN, (v2* , A~0) =(7*, A~0) =0. Hence by what has already been proved 

?* = 0. Choosing ~0 such that  J(~0) ~=0 then shows b = 0. Thus ~* = 0. This completes the proof. 

We will now examine the potential operator restricted to a relatively compact set. 

Theorem 12.2 given below will be extension to arbitrary (~ of the fundamental fact that  

for the groups Z a, A restricted to a finite set B is a bijeetion of R e onto R e, whenever 

k(B) 40.  

Let  BEB,  I BI >0  and let (I)(B) denote the collection of all bounded measurable 

functions on B with the essential sup as norm. (Two functions equal a.e. on B are identi- 

fied.) Define the mapping Ts:dP(B)~r by TsqJ(x)-~AbqJ(x). 

THEOREM 12.2. Assume kb(B) :~0. Then TB is a topological isomorphism o/~P(B) onto 

(b( B) having inverse Ks de/ined by 

+ (~" ~)/~. (12.10) Knq~= (PB-- IB)q~ lq,(B) 

Proo/. 

fact tha t  

The fact that  TB is a bounded linear map of (I)(B) into (I)(B) follows from the 

[ TB~0(x) ] ~< [ [a(y-- x) ~(y) I dy + [Uz~0(x) [ + b [g(q0)l, 
JB 

and the fact that  a(x) is continuous and U S a bounded measure on (~. That  K B is a bounded 

linear operator is clear. Suppose that  TB~0 = 0. Then J(~)k~(B) = 0, so J(~0) = 0, and it follows 

from the uniqueness principle that  ~0=0 a.e. on (~. Hence T B is 1 - 1 .  By (12.7) we see that  

for x6B,  
Ab(P s - I~)q~(x) = q~(x) - (IB, q~). 

Since AblB(x ) =kb(B) a.e. on B we see that  for any q~s TBKsq~-~. Setting r  for 
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yJE(I)(B) we see tha t  TsKsTB~p=Tsy~ so it must  be tha t  KsTs~fl=y~. Thus K s is a two- 

sided inverse. This completes the proof. 

Remark. I f  kb(B)=0 then it is clear tha t  Ts  is not a bijection. I t  is neither 1-1 nor 

onto for Is is annihilated by Ts  and ls annihilates the closure of the range of Ts. 

Using Theorem 12.2 we may  easily give another proof of the Balyage principle. Indeed 

from the theorem we know tha t  

y~ = K s A J  = ( p s _  Is) An/ ' (Ts, A/)  

is the essentially unique dement 'o f  (I) having support  on B whose potential A ~  =An/a .e .  

on B. What  needs to be demonstrated is tha t  y~ ~>0 a.e. To see tha t  this is true let hE(I) + 

be arbi trary and note (12.7) applied to the dual walk yields 

(ls, h) J(/) = (l, I~b h) - (l, "fin (Ds - Is)  h) >1 :s/(x) h(x) - ((ps _ Is)  An l, h). 

Thus a.e. on B (pB__ Is) An/>1 ] -  J(]) ls. 

(~, l) But  then K s A J ~ / + ] c b - ( ~  ) >~/ a.e. on B. 

Since />/0, we have the desired result. An easy computation then shows tha t  A ~  is given 

by  the right-hand side of (11.15). 

13. Time dependent behavior 

Throughout this section we will assume that /~  generates a recurrent random walk on 

(~. Define the class B* as B if the walk is nonsingular and as the subset {BE B: int B 4:0} 

in general. Set 
t ~  

EB (n) = | Px (VB < n) dx. 
J $  

We star t  our investigation with the following 

THEORrM 13.1. Assume A, BeB*,  IA], IBI >0. Then EB(n)~E~(n),n~ oo. 

Proo/. I t  suffices to establish the result for A c B. Set ~ ( x ) =  Px(VA >n) l s -A(x) .  

Then 
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E,4(n) = Es(n) - dx sPJ(x, dz) q~A-J(Z) = Es(n) - Z (BPJ~P~ -1, 1~) 
1 /ffil 

=EB(n) ~ (~ - J ,  sPJ 15) = Es(n) Px(VA>n-i)Px(Vs>ti )dx .  
1=1 t ~ l  -A 

Set an = supz~ Px (Va > n) and b,~ = .fs P~ ( VB > n) dx. Then 

(13.1) 

f B  n - 1  dx P,(V,4 > n - i )  P,(V,>~ j) <<. ~ an_l_jb ,. 
1=1 -A  ]ffi0 

Since an ~ 0 and 

(n) = (sP n Is, 1r = (ls, s/5n 15) = f s  P , (Vs  > n - 1) dx = bn-1, EB 

a simple summability argument shows that  

__1_1_ ~ f s  P~(VA>n- i )P~(Vs) i )dx=O" ~im EB(n)~=I -a 

This establishes the result. 

Using (13.2) and taking duals we obtain the following 

COROr.LARY 13.1. Let A, B6B*, IAI, IBI>O. The~ 

(13.2) 

~ f sPx(Vs  > j) dx 
lim J=o =1 .  

fA P'(VA>i)dx 
(13.3) 

The quanti ty EB(n ) has several different interpretations. Let B* = {x: x E S t + B for some 

j, 1 ~< ?" ~< n}. Then E I B* I = EB(n) so that  E~(n) is the expect volume swept out by time n in 

translating the set B by the random walk. This interpretation was introduced by Spitzer 

[13]. A second interpretation of Es(n) was given by Port  [9]. Distribute particles in 

according to a point process with rate dx, and allow each particle to move independently 

according to the random walk. Then EB(n) is the expected number of distinct particles to 

visit B by time n. I t  will be shown subsequently that  Es(n) is connected in a natural way 

with the Robin's constant k(B). For the moment however we return to the study of 

Px( Vs > n). 

We will now show how the passage times to B are linked with the recurrence times to B. 

TH~.OREM 13.2. Let BeA*, ]B] >0, and let A eB be such that ]OA[ =0. Then in any 
type one random walk 
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f APz(VB ~ ~) dx ? 
lira y=o = / L B ( x )  dx. (13.4) J.  

]=0 

I[ the walk i8 also nonsingular we may improve this to 

P=(Vs> j) 
lira y=0 Ln(x), (13.5) 

uni[ormly in x on compacts. 

The proof of this fact is the same as that  of Theorem 5.4 and 5.5 in [11] and will 

therefore be omitted. 

Remark. If  the stronger limits 

lira Px (VB > n) 

~ fBp~(VB>n) dx 

[ P~(VB>n)dx 
and lira ap f f  

| P~ (Va > n) dx 
J A  

exist, then the above theorems show that their values must be LB(x) and 1 respectively. 

For random walks on Z t or Z 2 the existence of such limits were demonstrated by Kesten 

and Spitzer [6]. In  a far reaching extension of this result Ornstein [8] demonstrated the 

existence of such limits for all recurrent random walks on R 1 or R 2 when B and A are inter- 

vals. The existence of such limits for an arbitrary recurrent random walk on a locally com- 

pact group is one of the remaining major open problems of the theory. 

If  we have some regularity properties then we can assert that  these stronger limits 

exist. Choose FE~4*, IF  I >0, and set q,=SpP~(Vp>n)dx. 

PROPOSZTIO~ 13.1. Suppose/or some g in ~, 

U~g(O), , , (1-2)-=H(l l~) ,  ~ , 1  (13.6) 

/or some slowly varying/unction H and constant ~, 0 < o~ > 1. Then 
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q ~  H(n) P(1 - ~)' n-~ oo, (13.7) 

and lira Px (V~ > n) = Ls(x). (13.8) 
n---> o o  

Proo/. If  such a 17 exists, then choosing it to be the g in the definition of D ~ yields 

o0 

lim (1 - ~) U~g(O) ~ Pz (VB > n) ~n = LB (z) 
~t l  n~O 

uniformly in x on compacts. The monotonicity of the q~ and Karamata 's  theorem then 

shows that  uniformly in x on compacts, 

L ~ ( z )  n -~  
PAVe>n)~ ~(1-a) H(n)" 

For  a type two walk we always have very strong results. 

THEOREM 13.3. Let BE ~*, {B{ >0 .  Then in any ty~e two random walk 

l imPz(Vs>n)  Vn=(2) 'aLB(x)  (13.9) 

uni/ormly in x on compacts. 

Proo/. Since the random walk is of type two we may identify (~ with either Rx(DH 
or Zt| A character 0 is then of the form 01+0 ~ where 01Edual (R 1) and 02Edual (H). 

Choose g on (~ such that  ~(0)=[(O1)~(O ~, 0) where [ is a symmetric function on R ~ or Z 1, 

J(/) = 1, and ](01) has support on [ - 5 ,  (~] where/~'(0~) ~0,  0~ 6 [ - ~ ,  ~ ] -  {0}. Here ~'  is the 

measure induced on R 1 or Z 1 by/~. Then 

U~*g(0) = (217r)~l:~ /(01) dO 1 
_ 1 - ~ (0~) 

N2(2~)_1( 1 _2)_1f ~ ](O~)dOx .~ (2 a~)_�89 _ 2)_�89 

Thus U~r satisfies the requirement of Proposition 13.1 and applying that  proposition 

we find that  (13.9) holds. 

The above result admits an immediate extension. 

COROLLARY 13.2. Let N~( B) =~k~ls (SK) ,  and let B ~ * .  Then in any type two random 
walk,/or any k >~ 1, 
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Proo I. Let  H~(x) = ~ 2"P=(N.(B)= ]r 
n = 0  

Then H~(x)= II~BH~_I(x), and an easy induction argument shows that  

lim (1 - 2) Gag(O) H~(x) = (I]B)kLB (X). 
a t 1  

Thus P,(N,(B) < k) 2" ~ [ ~ (IIs) j] Ls(x) [Gag(0) (1 - ~t)] -1 
n =0 t=0  

k 

~ [ ~  ( I I # ]  L~ (x) (2 a s) �89 (1 - ~ ) -  �89 

Monotonieity of Px (N~ (B)~  k) in n and Karamata 's  theorem now yields 

and the result follows. 

Let  

Px(N~(B) ~< k) ~ [~  (YI~) j] Ls(x) an -�89 

EB(n; A) = f P, (v. < n; Svn E A) dx 

then nf. EB(n;A)= "i~l Dy(Vs~j) dy. 

I t  follows from Theorems 13.2 and 13.3 that  the following holds 

COROLLARY 13.3. Let A, BE.,4*, [B[ >0. Then 

EB(n; A)~ [fA~B(y)dy ] EB(n), n--> o o .  

We will now return to the study of E~(n) and show there is a very interesting connec- 

tion between E~(n) and the Robin's constant k(B). 

THEOREM 13.4. Let A and B6,,4", IAI, IB[ >o, and assume/u generates a type two 
random walk. Then 

lim [E B (n) - -  E~ (n)] = [k(B) - k(A)] 2 a s (13.10) 
n - ~ r 1 6 2  

Proof. I t  suffices to establish the result for A c B .  By (13.1) 
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EB(n) -Ea(n )=~  P z ( V a > n - l - i )  Px(Vn>i)dx. 
1=0 -A 

(13.11) 

Theorem 13.3 and a simple Abelian argument shows that  

' f .  f. lim ~ P= ( Va > n - 1 - i) Px (VB > j) dx = 2 a ~ La (x) ]~ (x) dx, 
n---~ o o  I f 0  - A  -A 

uniformly on compacts. Hence 

lim [EB(n) - E A ( n ) ]  = 2 0-2fB LA(x)J~B(x) dx. 
n-->OO - - A  

I t  follows from Lemma 11.1 that  the right-hand side is just [k(B) -k(A)]20 "2. This completes 

the proof. 

THEOREM 13.5. In any nonsingular type one random walk/or any two sets A, BE~ 
having nonzero measure, 

[Es (m) -- EA (m)] 
lim m - i  - -  k(B) - k(A). (13.12) 

n---~oo n - 1 / m ~t 

 ot,Zo,,q= ,j 

Moreover, i / /or some g, Uag satis[ies the condition in Proposition 13.1, then 

lim EB (n) - Ea (n) _ k(B) - b(A), (13.13) 
r t - I  

" ~ "  7. q jq . -1 -J  
t=0 

and 
n - 1  n - 2 = + l  

qJq,-J"H(n)=F(2_ 2ot)" 1=0 

Proof. I t  suffices to consider the case A c B .  Then from (13.11) 

[Es(m)-Ea(m)]= _adx i P : ( V s > i ) P : ( V a > m - j )  �9 
m = l  Lm=O .f=O 

(13.14) 

:By Corollary 13.1 and Theorem 13.2 we know tha t  uniformly on B, 

m m 

P.(v, >i)" L~(x) Z q, 
J=O 1=0 

m m 

Y P,(Va >i )~  L~ (x) ~ q,. 
t=0  t=0 
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An Abelian type  a rgument  (see Lemma 3.2 of [9] for details) then  shows t h a t  the right- 

hand  side of (13.14) is asymptot ic  to 

and (13.12) follows from this fact  and the  identification of the integral as k(B)-k(A)  

given in L e m m a  11.1. Final ly if Uag(O) satisfies the  condition of Proposi t ion 13.1, then by  

(13.8), (13.11) and a familiar Abelian theorem we see tha t  

n 

~b - 2 t t + l  1 

~ [k(B) - k(A)]  H(n) ~ I ' ( 2 -  2 ~) 
and  (13.13) follows. 

Remark. The stronger form (13.13) was shown to be valid by  Por t  [9] for every recurrent  

r andom walk on Z ~ or Z ~. A similar a rgument  and the strong result of 0rns te in  on the 

behavior  of Px(V~ > n)  will show tha t  (13.13) also holds for every recurrent  r andom walk 

on R ~ or R 2 at  least when A and B are intervals. The behavior  of EB(n) is also of interest 

for t ransient  r andom walks. Here the behavior  is quite different and the  analysis of EB(n) 

in t h a t  case can be found in our joint paper [12]. 

For  a general singular walk we can only establish a weaker version of the above result. 

PROPOSITION 13.2. LetA, BeA*, IA I, ]BI >0. The~ 

lira (1 - 4) 2 Uag(O) ~ g(O) ~. ~" [EB (n) - E.4 (n)] = k(B) - k(A ). (13.15) 
~ 1  n = 0  

Proo/. I t  suffices to  consider the case when A c B .  F rom (13.11) we see t h a t  

nffi0 --A 

and it follows tha t  the limit on the  left in (13.15) is Sn_aJ~v(x)La(x)dx. The desired result  

now follows from L e m m a  11.1. 

14. The comlmct case 

I n  this final section we will consider a r andom walk on a compact  group ~ and discuss 

the analogues of the  preceeding results for it. Of course, all the limit theorems are out  

(since there is no infinity) so the  bulk of the difficult port ions of the  noncompac t  theory  
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evaporate. Still, there are some of the potential theoretic results which are of interest 

but  here too things are far simpler than before. We will not state any  theorems as such in 

the compact case but  merely sketch the pertinent facts. 

The main difference in the compact case is tha t  for any /EC((~) ,  n-l~=oP~[~J(/) 

uniformly on (~. (This well-known fact is an easy consequence of the ratio limit theorem 

of Stone [18]). The first thing to establish is the existence of a potential  operator. Since 

the group (~ is discrete in this case it easily foflows from the Fourier analysis tha t  if ~ is 

the class of all / such tha t  ~ is compact,  then for gE~ and ~(0) =~(x, 0) 

AI(x) = lim AaI = lim [Gaff(0) J(/)  - G~[] (14.1) 
a?1 a t l  

exists and the convergence is uniform on (~. In  the nonsingular case it easily follows 

from the ratio theorem of Stone [18] and Doeblin's condition tha t  the limit in [14.1] also 

exists for all bounded / when say g = 1. [In the nonsingular case we will take g = 1 in the 

definition of A. Note however tha t  unless $(/~) - S(/~) generates (~ these Abel limits cannot 

be replaced with ordinary convergence.] 

Using the identity 
Aa[-HsA~/  = - G ~ /  +J(/) s (14.2) 

and the fact tha t  for B having nonempty  interior, or in the nonsingular case, just positive 

measure 
lim s  (x) = Ex TB, 

we find that  for /E :~ (or (I) in the nonsingular case) tha t  

A[ - H s A [  = - GB[ + J(/) Ex TB, (14.3) 

which is what  the basic identity becomes in the present context. 

For a singular walk on (~ there is very little more tha t  can be said so from now on we 

will consider a nonsingular walk. 

Let  iB(x)dx =.~$Hn(y, dx)dy. Then it follows from (14.3) and an easy duality argument  

tha t  

~ B  (x) = ~ l(x) - f ~  (EzTB) dx a . e ,  

Setting ETB =Sr Tn)dx we see from the above tha t  

-41B = E x ~ B -  ETB a.e. (14.4) 

and, in particular, ~iB(x ) = - - E T  s a.e. on B. Thus - -ET  B is the dual Robin's constant 

k(B) of B. Since E ~ B = E T  B we see that /c(B) =k(B) and 
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Ale(x) = E~: Ts  - E T s  a.e. (14.5) 

I f  we use the operator  A~,q~=Aqo +bJ(qo), then lB, [B are still the equilibrium charges, 

bu t  now the equilibrium potential  is 

AIB(x)= E ~ : T ~ - ( E T B - b )  a.e. 

so tha t  the b-Robin 's  constant  is k b ( B ) = b - E T  a. 

I t  easily follows from (14.2) tha t  

(P - I)Abq~ = A b ( P -  I)qo = q~ -J(qJ), (14.6) 

f rom which it can easily be deduced tha t  if Ab~ 1 =Ab(p2 a.e. and J (~ l )=J(~2) ,  then ~01 =~z  

a.e. The analogue of the uniqueness, minimum, and dominat ion principles then  easily 

follow from this fact  and (14.3) just  as in w 11. 

The mapping  Ab of the bounded measurable functions on (~ into themselves is a bi- 

jection for b 4=0. Indeed  by  (14.6) given any  ~ the funct ion ( P - I ) ~ f  + (J(cf))/b = 9  has 

potential  A~0 =~,  so tha t  for A~, b 4=0 the range of A b is the entire space. This is a sharper 

version of Theorem 12.1. To see tha t  it is 1-1 note t ha t  if A d = A b g  a.e., then bJ( / )= 

(1, A~/)=(1, Abg)=bJ(g ), so J( / )=J(g)  and the conclusion follows f rom the uniqueness 

principle s tated above. Both  of these facts are clearly false if b = 0  because then A1 = 0  

and 1 annihilates the range of A. 

Let  B be such tha t  [B[ > 0  and kb(B)4=0. Then Theorem 12.2 is valid for functions in 

(I)(B). The proof is the same as in the noncompac t  case. Using the second proof of the Balyage 

principle following Theorem 12.2 we see tha t  this principle is also valid in the compact  case. 

Finally, consider the Poisson equation 

( P - I ) / =  % (14.7) 

n 

T h e n  pn+l  [ = / +t~opt~) 

and as 1/n ~ =  o Pj/-~ J(/) it follows tha t  lim a t 1 G~0 exists. Bu t  t ha t  is only possible if J(t0) = 0. 

Thus in order t ha t  there exist a solution of (14.7) at  all it is necessary tha t  ~0 be a null 

function. I t  follows at  once from (14.6) t ha t  in t ha t  case Ato is a solution and tha t  the  

only other  solutions are of the form At~ +fl  for constants  ft. Since all our functions are 

bounded we see tha t  this result is the same as in the case of a noncompac t  (~. 

8 -- 692905 Acta mathematica 122. I m p r i m 4  le 20 m a r s  1969 
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