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1. Introduction 

Let  A be a C*-algebra with identi ty 1. A physical state is a function Q: A-~C which is 

a state on each singly generated C*-subalgebra of A. Here "singly generated" means 

generated by  1 and a single self-adjoint element aEA. The present paper  is devoted to a 

discussion of whether a physical state ~ on A is linear, i.e. whether it is a state in the ordi- 

na ry  sense. In  the proper physical interpretation, this is the problem of linearity of the 

expectation functional on the algebra of observables in quantum mechanics, ef. Mackey [8] 

and Kadison [6]. 

Mathematically, the problem is also closely related to the following problem: Let  R be 

a yon Neumann algebra, and let P be the lattice of orthogonal projections in R. A function 

~: p -+R+ such that/~(0) =0  is called a completely additive measure on P if 

iel ~el 

for any  family {e~)~1 of mutual ly orthogonal projections in P. ~u is a probability measure 

if/~(1) = 1. Given a probabili ty measure/~ on P one m a y  ask whether there exists a positive 

normal state ~ on R such tha t  ~]P=/~. This question, which poses what  we may  call the 

extension problem for measures (in non-commutat ive setting), was first suggested by  

Mackey. An affirmative solution for the special case where R=s  bounded linear 

operators on a separable Hilbert  space H,  with dim H~>3, was given in an ingenious 

paper by  Gleason [5]. In  the case where the measure is the dimension-function on the 

projections of a type IQ-factor ,  the problem of extension is precisely the problem of the 

addit ivi ty of the trace [7], [9]. 

The connection between the extension problem for measures and the linearity problem 

(1) Supported in par~ by NSF-GP-7683, U.S.A. and NAVF, Norway. 

11 -692906 Aeta mathe~tlca. 122. Imprim~ le 16 Juin 1969. 
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for physical states, is established in this way: Let /~ be a probability measure on the pro- 

jections P in a yon Neumann algebra R. 

For each self-adjoint element a E R we may  define 

e(a) = fo(o)~d~(e~) 

where {ca} is the spectral resolution of a, and a(a) is the spectrum of a. Since every element 

xE R may  be writ ten x = a  1 + / a  S in a canonical way where ax, a2 are self-adjoint elements 

of R, we may  extend ~ to all of R by  

q(x) = ~(al) -t- iQCa~). 

then becomes a physical state on R, and we have ~lP=l~. Q is linear on R if and only if 

i t  solves the extension problem for ~. Hence the extension problem is a special case of the 

linearity problem for physical states. The latter, in the form it is given above, is due to 

R. V. Kadison. 

In  w 3 of the present paper  we give a complete solution for the case of a physical state 

on a commutat ive C*-algebra A. When A is non-commutative,  the problem remains un- 

solved in general. However, as Gleason's result indicates, solutions in particular cases may  

be found. In  w 4 we give a brief outline of methods and results in this direction. A detailed 

exposition will be published elsewhere. 

We are indebted to R. V. Kadison for calling our at tent ion to these questions, for his 

helpfulness through several discussions on the subject, and for his s teady encouragement. 

We also wish to express our grati tude to J .  M. G. Fell, E. G. Effros and C. Akemann for 

valuable conversations. 

Throughout this paper concepts and results from the theory of C*-algebras will be used 

quite freely. Our general reference is the book by Dixmier [4]. 

2. Physical  states and quasi-states  

Let A be a C*-algebra with an identi ty 1. A physical state is a function ~: A-~C which 

is a state on each singly generated C*-subalgebra of A. Here "singly generated" means 

generated by  1 and a single selfadjoint element aEA. 

We start  with two simple examples which show how much linearity it is reasonable 

to expect from a physical state. First, let A be non-abelian, and let a be a non-normal 

element in A (if each element in A is normal, then A is abelian, so non-normal elements 

exist). Let  ~ be a state on A such tha t  ~(a*a-aa*) 4=0. Define, for any  xEA 
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e~(x) = e(x) + e ( x * x -  xz*). 

Clearly ~ =~ on Ah ( = t h e  self-adjoint elements in A) and on any abelian C*-subalgebra 

of A, so ~ is a physical state on A. But  ~1 is not linear on A. 

Next, let A be abelian with two generators a, b EA h. Then a +ib is not contained in any 

singly generated C*-subalgebra of A, so the set N of elements not contained in any  singly 

generated C*-subalgebra is not empty. There is a state Q on A which does not vanish identi- 

cally on _h r, and we define 
= /~ (x )  if xfi, A ~ N  

~1(x) / 0 if xE~V 

Then ~ =Q1 on Ah and on any singly generated C*-subalgebra of A, but  ~1 is not linear on A. 

Hence, even in the commutative case, non-linear physical states exist. This kind of non- 

linearity is not a serious deficiency. What  we want, is to show that  a physical state is 

linear on Ah, since the bounded observables are supposed to correspond to the self-adjoint 

elements of A. However, to avoid trivial technical complications, we introduce the following 

Definition. Let  A be a C*-algebra. A positive quasi-linear /unctional is a function 

Q: A->• such that  

(i) ~ ] B is a positive linear functional for each singly generated C*-subalgebra B of A. 

(ii) ~(a)=~(al)+i~(a~), when a=al+ia ~ is the canonical decomposition of a in self- 

adjoint parts al, a S. 

If  in addition 

(iii) sup {~(a): aEA; Ilall ~<I; a>~0}=l  then we say that  e is a quasi-state on A. 

Observe that  if A has an identity, then (iii) is equivalent to the condition ~(1)= 1. 

We may also note tha t  if two positive quasi-linear functionals Q and ~ coincide on each 

singly generated C*-subalgebra of A, then ~ =~ by  (ii). Clearly (i) implies tha t  Q is real on 

self-adjoint elements, so by (ii) it follows that  Q(a*) =~(a) for all aEA. Let  us use the nota- 

tion 
[]~[[ =sup {~(a): aEA; I[a]l ~<l; a~>O) 

I t  is easily seen (by [7], 2.1.5 (vi)) that  if A does not  have an identity, then a positive quasi- 

linear functional ~ may be extended to a positive quasi-linear functional ~ on X ( = t h e  

C*-algebra obtained by adjoining an identity to A) by  defining ~(1)=K; if K>~ IleII. In 

particular a quasi-state on A extends to a quasi-state on ~ .  

We shall use the following notation: If x EAh, A(x) is the C*-subalgebra generated by 

x (and 1 if A has an identity). 
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3. Quasl-states on abellan C*-algebras 

THEOREM 1. Any positive quasi-linear/unctional ~ on an abelian C*-algebra A is linear. 

The proof of this theorem is ra ther  lengthy and essentially measure theoretic. I t  is 

obtained through a sequence of lemmas. Without  loss of generality we may  assume tha t  A 

has an identi ty 1, and tha t  0(1)~-1. 

LEMMA 1. I ]  0~<a, O<~b; a, bEA and ab=0 ,  then there is cEAh such that a, bEA(c). 

Proo]. Let  B be the C*-subalgebra of A generated by  a, b and l ,  and  let Y be the set 

of pure states on B, regarded as a compact Hansdorff space. I t  is sufficient to show tha t  Y 

is homeomorphie to a compact subset of It. For p E Y we have 

so we muy define 
0 =p(ab)  =p(a)p(b), 

=~ p(a) if p(b)=O 
(P(p) [ -p(b) if p(a)=O. 

Clearly (I)(p) = 0  if p(a)=p(b)=O. Let  p4-q, p, qE Y. Since p(1)=q(1)=l, we must  have 

p(a) ~q(a) or p(b) 4q(b), which shows tha t  (I) is one-to-one. The range of (I) is compact. Let  

p~-+p in Y; we m a y  assume p(a)~0, p(b)=0. Then p~(a)->p(a), so there is an index v0 

such tha t  v ~ ' o  implies pv(a) :~0 and hence also p~(b) =0.  I t  follows tha t  dP(pv)-~(P(p), so (I) 

is continuous and therefore a homeomorphism. 

Some notation. Let  X be the set of pure states on A, regarded as a compact Hausdorff 

space. We identify A and C ( X ) = t h e  space of all continuous complex functions on X. 

For each a EAh, let a(a) =a(X) be the spectrum of a. a(a) is a compact subset of R and there 

is an isometric isomorphism of C(a(a)) into A with range A(a). I f  ]EC((~(a)), the map 

/->/(a) EA(a) is given by  
/(a)(s)=/(a(s)), sEX. 

Let  aEAh, and suppose tha t  0 is a quasi-state on A. Then ~]A(a) is a state, and deter- 

mines a state Q~ on C(a(a)) by  

ca(l) =0(/(a)), /EC(a(a)). 

By  Riesz' theorem ~ therefore gives rise to a unique regular Borel-measure zua on a(a) such 

tha t  

=.__l.(a)/(~)dl~a(~), ~Ea(a), ~(/(a)) 

for al l /EC(a(a)) .  
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In  the sequel, we let C, E, K denote compact  sets, and  we let U, V, W denote open 

sets without necessarily further mentioning tha t  they  are compact  or open respectively. 

For any  set A, the interior of A is denoted by  A ~ 

L E P T A  2. Let a~An, K~-a(a). Suppose a-~(K)~ U~_X. Then there is an open set 

V~a(a) ;  V ~  K, such that a-~(K)~_a-~(V) ~_ U. 

Proo/. K ' = a ( X ~ . U )  is compact and disjoint from K. Hence V = a ( a ) ~ K '  satisfies 

the conditions of the lemma. 

L ~ M A  3. Let ~ be a quasi-state on A and q~ a state on A.  For each a~Aa, let ~a be the 

measure on (~(a) determined by ~, and let ~t be the regular Betel mex~ure on X determined by q~. 

Then ~ =q~ i / a n d  only i/ 
#~(g) = l.t(a-l(K)) (*) 

/or each a EAa and each compact set K ~ a(a). 

Proo/. Suppose ~ - ~ .  Take aEAh and K~a (a ) .  Choose e > 0 .  There is a continuous 

function /: a(a)-~[0, 1] such t ha t / (2 )  - 1  for 2EK,  satisfying qa(/)=~a(a)/dl~a<~lz~(K) -be. 

Now /(a): X--> [0, 1] and /(a) (s) ~ 1 for s Ea-i(K), so lz(a-l(K)) ~q~(f(a)) =eft(a)) =q~(/) <~ 

/z~(K) +e. Since e > 0  was arbitrary,  it follows tha t  i~(a-l(K))<~laa(K). On the other hand, 

for e > 0  we may  choose U~_a-I(K) such tha t  i~(U~a-i(K))<e.  We then take V as in 

Lemma 2, and a continuous function g on a(a) satisfying X~ ~<g ~gv- Then 

~a(K) < ~(g) = ~(g(a) ) = ~(g(a) ) < ~( U) </~(a-l(K)) -be. 

I t  follows tha t  #a(K) ~/~(a-l(K)) and (*) holds. 

Conversely, suppose tha t  (*) is valid for all a E Au and K ~_ a(a). Take an a E A~ and let 

Ta be the restriction of ~ to A (a), and let v a be the corresponding measure on a(a). Then, 

by  the first part  of the proof, v~(K)=g(a-l(K)) for each K~a (a ) .  By (*) it follows tha t  

v~(K) =/~(K)  for all K,  and hence by  regularity v~ =/~ .  But  then qa =~]A(a),  so q coincides 

with ~ on each singly generated C*-subalgebra, i.e. cp =~. The proof is complete. 

Hence, to prove tha t  the quasi-state ~ is linear on A, it is sufficient to construct a 

regular Betel measure ju on X satisfying (*) of Lemma 3. Let  :~ denote the collection of 

compact subsets of X, and let :~'  denote the sub-collection of compact  sets of the form 

a-l(K);  a EA h, K ~_ a(a). We start  by  defining ~u on :~ by  

/~(K) = inf {~(a): a EAh; a ~> XK}- 

Then ~t is a set-function on ~ ,  ~t(O) ~ 0,/x(X) = 1 and K 1 ~ K s implies ~t(K1) ~</z(K~). I t  is 
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clear tha t  in taking the inf above for a given K, we may assume a ~< 1. Indeed, since a ~A~,, 

rain (a, 1) 6A(a) so 9(rain (a, 1)) ~ ( a ) .  

L ~ M ~ 4 .  For K ~ ~( and e > O given, there is F ~ :K ' such that K =_ F~ and l~( F ) < #( K ) + e. 

Proo/. We first note tha t  if a 6A~ and C_= a(a), then ~u(a-l(C))<~/~a(C). Indeed, choose 

/ e  C(a(a)); / > ~ c  such that  Ca(/) ~</~(C) +~. Then /(a) >~Za-'(c), so ~(a-l(C)) <e(/(a)) = 

~(/)<~/~(C) +~ which proves the claim. Now let K e : ~  and let e > 0  be given. Choose 

a 6 A~; ZK ~< a ~< 1 such that  ~(a) < ~u(K) + s. Then choose 5 > 0 such that/~a([1 - 8, 1] ~ a(a)) < 

~u~({1})+e, and put  F = a - ~ ( [ 1 - 8 ,  1]fla(a)). Then K ~ F  ~ and 

~(F) <~/~a([1 --~, 1] f~ a(a)) </~a({1}) + 8 < f  )tdlaa(~ ) +e =q(a) + e < g ( K )  +2e 
J a  (a) 

from which the lemma follows. 

LEMM~ 5. _For any afiAa and K ~ a(a) we have Iza(K)=/~(a-l(K)). 

Proo/. By the first part  of the proof of the preceeding lemma, we already know that  

tha t  #(a-l(K))<~/~a(K). Now let K 1 =a-l(K) and choose, for e > 0 given, F _  X such that  

K I ~  F ~ and/~(F)  </z(K1) +e (Lemma 4). By  Lemma 2 there is an open set V~_a(a)such 

that  K~ ~ a-l(V) ~ F ~ Let  /G C(a(a)) satisfy ZK < /<Zv .  Then ~K, ~</(a) <X~o. Let  b be any 

element of A~ s~tisfying gv ~<b ~< 1. Then (1 - b ) / ( a ) = 0 ,  so by Lemma 1, ](a) and b belong 

to the same singly generated C*-subalgebra. Since 0 <./(a)<-b it follows tha t  ~(/(a))~<~(b). 

Thus O(/(a)) <~lz(F) by the definition of/~. Hence ~a(K) <@a(/) =@(/(a)) <g (F )  <#(a-~(K)) + e, 

so #=(K) ~<~u(a-X(K)). This, together with the opposite inequality, finishes the proof. 

LEMMA 6. Let Kfi~(. For each U ~ K  and each e>OthereisaEAasa$is/ying Z~ <~a<~Zu 

and ~(a) <~(K) +e. 

Proo/. Let  K ~ U and e >0  be given. By Lemma 4 choose F E :~' such that  K _  F ~ 

and ~u(F)<~u(K)+e. Then pick an aEAh such that  X~<~a~Zvnr,. The same argument as 

in the proof of Lemma 5 shows that  q(a) ~<~(b) for any b satisfying Zr~<b ~< 1, so that  ~(a) ~< 

~u(F)</~(K)+e, and the proof is complete. 

LEMMA 7. I /  KI, KsE~( , and K1N K 2 = 0  , then /~(K1U Ks)=I~(K1) + I~(Ks). 

Proof. Since K 1 n K s = 0 ,  there are open sets U 1 ~ K1, Us~ K s such that  U 1 • U s = O. 

By Lemma 6 we may choose a, b EAh satisfying Z~, ~<a ~<Xu,, XK, ~< b ~<Zu~, and ~(a) <~u(K1) +e, 

~(b) < ~u(Ks) +e. Now ab =0,  so by Lemma 1 

~u(K 11J Ks) ~<~(a +b) = ~(a) +~(b) </z(K1) +/~{K~) +e  
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proving that  #(K1U Ks)<~.#(K1)+I~(K2). On the other hand, Lemma 6 tells us tha t  

/~(K 1 U K~) =inf  (~(c): gK, v~, ~< c ~<Zv) for any open set U ~_ K 1 U K~. We may therefore take 

U = U 1 U U 2 as above, and choose c eA~ such that  ~(c) </z(K 1U Ks) +8, Z~,v~, <c ~<gv, v~,. 

Then c =a + b, with ab =O and ~ ,  ~ a <~ gv~, ) ~  <~ b 4 zv., so 

~(K1) +~(K2) ~<Q(a) +Q(b) = ~(c) </~(K 1 O K2) +8, 

which gives us the opposite inequality and finishes the proof. 

Now defined, for U open _ X 

~(U) = 1 - ~ ( X ~ U )  

If U is also compact, this is consistent with the previous definition of ~ on ~ ,  by Lemma 7. 

LEM~A 8. For each U, 
~(U)=~w 

Proo/. Let  K" = X ~ U .  If K g  U, KN K'  = ~ ,  so ~(K) § =/~(KU K') ~<l. Hence 

#(K) ~<1 - # ( K ' )  =/~(U) for each K _  U. 

By Lemma 4 there is FE:K' such that  F ~ K '  and /~(F)<~u(K')§ for any preas- 

signed e>0 .  We have F=a-I(C) for some aEAh, CC_(~(a). Let W = a ( a ) \ C ,  and 

put  V=a-I(W),  so V - U .  /~ is regular, so there is a compact set C1---W such that  

t~a(C1) >/~a(W) -~.  Then, by Lemma 5 

]~(a-l(G1)) = ]~a(C1) >I/a(W) - 8  

= 1 - / ~ ( C ) - t  = 1 - / ~ ( F ) - 8  

> 1 - / ~ ( K ' ) - 2 ~  = ~ ( U ) - 2 ~  
which proves the lemma. 

We observe that  if aEAh a n d / E  C(a(a)), then for any set B _ R  we have/(a)- l (B)  = 

a-l(/-l( B) ). Indeed 
/(a)-l(B) = (seX:  ](a)(s) e B} 

= ( seX:  l(a(s)) ~ B} 

= a-l(]-1(B)). 

LEMMA 9. Let K1, K2E:K with KI~_K s. Then #(Ks)-/~(K1) = i n f u ~ , \ K  , @(U). 

Proo]. Let e > 0  be given. We first choose U ~ K  s such that  /~(U)</~(Ks)+e. This 

choice can be made by virtue of Lemma 4 and the observation that  if V _  C for any V and 

C, then I~(V)<~l~(C ) (from Lemma 8). Now choose aEAn such that  XK~<~a<~xv, and let 
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_F={sEX: a(s)>~�89 Take bEAh such tha t  Zr<.b<~gv, and let W = { s e X :  b(s)>�89 Then 

we have 
K s ~ F ~  W~_ U. 

For n = l ,  2 . . . .  , let bnEA h be chosen such tha t  ZK,<bn~zFo, and ~(bn)<#(K1)+l/n 

(Lcmma 6). Pu t  Fn = {s e X: b~(s) = 1 }. Then KI ~ F~ ~ F ~ for all n; and #(K1) </z(Fn) ~< 

~(b~)<#(Kt)+l/n.  Thus #(F~)~#(K~) as n~oo.  With V~=(X~.F~)fi W, V~ is open, 

V~fi F~=O and V~U Fn= W for all n. We observe tha t  bn(1 - b ) = 0  for all n. Hence, by  

Lemma 1, there is an anEAh such tha t  b, b~EA(an); n = l ,  2 . . . . .  By  the observation pre- 

ceding this lemma, this implies that ,  for each n, there are sets V~, F~ and W'~_ a(an) such 

tha t  V n =a;~(V'~), F~ =a~(F'n) and W =a;~(W'). We have V~ N F~ = O  and V~ U F~ = W'. 

Thus, by Lemma 5 and the definition of/z(W), we get 

~(w) = ~ ( w ' )  = ~ o ~ ( v ; )  + ~ ( F ; )  = ~ ( v ~ )  + ~(~). 

With V = (X~K1)  fi W, V is open and contains K s ' \ K  1. Since F ~  K1, we get V~_ V; 

n = 1, 2 ... . .  So #(V)/> #(V~) =/z(W) -/z(Fn) -+#(W) -#(Kx) ,  so #(W) ~</z(V) +#(K1). On the 

other hand, if K _  V it follows tha t  K N Kt  = ~D and K U Kt  ___ W, so #(W)>~ #(K 1 U K s ) =  

#(K1) +#(K)  by  Lemma 7. By Lemm~ 8 we then get #(W) >~#(KI) +#(V)  which combined 

with the opposite inequality above gives ~u(V)= # ( W ) -  #(KI). Consequently 

/~(K2) - #(K~) < #(W) -#(K1) =/~(V) < •(U) -/~(K1) < g(Ks) -/~(K1) + e, 

since W_~ U. As e > 0 was arbitrary,  this inequMity completes the proof. 

LV.~MA 10. Let K1, K s e ~  with KI ~-K s. Then #(K2)-#(K1)= sup #(K). 
K ~ K z \ K I  

Proo[. First, if K ~_ Ks~K1,  then K 1 N K = O and K t tJ K ~ Ks, so ~u(K1) +~u(K) ~< #(Ks), 

i.e. #(K) ~/u(Ks) - #(K1). Now choose, by  Lemma 4, F ~  K 1 such tha t  2,o~_ K1 and #(F)  

/z(K1)+e. Pu t  K = ( X ~ F ~  so K ~ - K s ~ K  1. We observe tha t  (FNKs)~K1  ~_ 

K ~ ( K U  KI) , so, by the preceding lemma, we get p ( F  N Ks) -# (K1)~>/u(Ks) -# (K U K1). 

Hence we have 

e >i #(F) -#(K1) >~/~(F fl Ks) - #(K1) >~/~(Ks) - # ( K  U Kx) =/~(Ks) - #(K1) - #(K), 

so #(K)>#(K2)  -/~(K1) - ~  which proves the lemma. 

Let  F = {A ~_ X: A = K2~Kt;  Ks~_ K1} 

We claim tha t  F is a semi-ring of sets in the sense of Zaanen [10]. That  is, we must  check 

tha t  
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(a) A, B ~ r  * A N B ~ F  

(b) A, B E F and B ~ A =. A ~ B  = [3 ~=~ C~, where C~ ~ r for all n, and the sets C~ 

are mutual ly  disjoint 

(c) o e r .  

L ~ M A  11. F is a semi.ring. 

Proo/. (c) is evidently satisfied, O = X ~ X .  (a): If  A = K I ~ . K  s, B = C I ~ C  ~ with K 2 _ K1, 

C2_ C C a, then A N B=K~ ~ C ~ . ( ( K  2 N C~) (J (C~ ~ KI)  ) so A ~ BEF.  (b): Let  A, B e F  with 

A ~ B .  I f  A = K I ~ K 2 ,  then B c _ K  1 so B_~K~. Since B = C l ~ C s f o r  some pair of compact 

sets C~_ C2, it follows tha t  / ] ~ B  is compact. Le t  C~ =/~ U Ks, C~ = ( B ~ B )  U K s. Then 

C~_~ C~ and both sets are compact, and B = C ~ C ~  since B N K s = O. Furthermore,  

/(1 ~ C~_ C~_ K2, so we can write A ~ B  = (KI~C~) U ( C ~ K s )  which is a disjoint union 

of sets in r .  

Hence F is a semi-ring which contains all open and all compact subsets of X. I f  A e F, 

A = K 2 ~ K ~  with K2~_ K1, we define 

~u(A ) = #(Ks) -/~(K~). 

By Lemma 9 and 10 this definition is unambiguous, and we have 

/~ (A)  = s u p  p ( K )  = inf #(U). 
K~_A  U~_A 

The definition of/~ on r is clearly consistent with the previous definitions of/~ on open and 

compact sets. We are going to show tha t  ~u is a measure on F. First we need: 

LEM~A 12. (a) 1/ UI ~_ U2, then U ~ U 1 E r  and I~ (U~U1)=p(U2) -~(U1) .  

(b) For U1, U s arbitrary (open) /u(U1U U2) <~I~(U1) +~u(U2). 

Proo/. (a) U 2 ~ U  1 = ( X ~ U 1 ) ~ ( X ~ U s )  EI ~, so 

/ ~ (U~ U~ )  = /~ (X~U1)  - (X~U ~)  = 1 -/~(U1) - 1 +~u(U~) =/~(U~) - ~u(U~). 

(b) Pu t  U = U 1 U U 2. Then, by  (a),/~(U) = /~ (U~U1)  +~(U1) ~<~u(U2) § from Lemma 9, 

since U ~  U 1 ~ U2 and U ~  U 1 E F. 

LEMMA 13. ~ is a measure on F. 

Proo]. We know from the definition of lu and Lemma 9 tha t  ~(O) =0,/~(A) >/0 for all 

A E F and tha t  A ~ B ~ ~u(A) ~< ~u(B), for A, B E F. The only thing left to verify is therefore 

tha t  # is countably additive on r .  
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Let {An} ~ F with the A,  pairwise disjoint, and suppose A = U ~1  An belongs to F. 

For e > 0 ,  there is K~_A such that  p ( K ) > / z ( A ) - e ,  and there is U,D_A, such that  

#(Un) </z(An) + e/2 n for each n. Now U n~l U, ~ U , ~ l  An = A ~ K, so there is an m such 

that  U ~1Un ~ K. Hence 

oo A oo rn m 

n_~l/.~ ( n ) ~ n ~ = l ~ l ( U n ) - ~  ~ n ~ l ~ ( U n ) - ~  ~ ~(n~=i Urn) - ~ ~ ( K ) -  ~ / ~ ( A )  - 2~, 

where we have used Lemma 12(b). So p(A) ~< ~ffi lp(A,) .  On the other hand, let Kn ~- An 

be chosen in such a way that  # ( K , ) >  # (A~) -  e/2",  n = 1, 2 . . . . .  Let  p be any positive 

integer. Then U ~nffilKn is compact and contained in A. The sets Kn are clearly disjoint, so 

P P P 

from Lemma 7. Hence p(A) >t ~ =1#(An) for any p, which, combined with the inequality 

already proved, gives ~u(A)= ~n~ 

By standard arguments (see for instance [10]) it now follows that  # extends to a regular 

measure on the a-field of Borel-sets in X. By Lemma 5 # satisfies (*) of Lemma 3, so if 

we take 90 to be the state on A given by q~(a)=~za(s)d#(s); aEA, sEX, then~0=Q. The 

proof of the theorem is complete. 

4. Quasi-states on general C*-algebras 

Let  ~ be a quasi-state on / : (H)  (=al l  bounded linear operators on a Hilbert-spaee H), 

and let P denote the set of orthogonal projections on H. If we assume that  dim H >~ 3 and 

that  91P is completely additive, then Gleason's theorem [5] states tha t  there is a positive, 

normM state ~0 on s  such tha t  ~01P=~IP. I t  is now simple to show tha t  ~=~, so tha t  

in fact is linear on H. Without the assumption that  ~ IP is completely additive, i.e. tha t  

it is merely finitely additive, the problem remains unsolved. However, by a slight modi- 

fication and extension of Gleason's methods, one may show that  any quasi-state on I:C(H) 

(=al l  compact linear operators on H) is linear i/ dim H>~4. The details of this proof, 

and the proofs of the other results mentioned in this section will be published in a forth- 

coming paper [1]. 

Let  A be a C*-algebra and let Q be the set of all positive quasi-linear functionals ~ on 

A with Ilell ~< 1. Q is clearly a convex set under the pointwise operations, and if we give 

Q the topology of pointwise convergence on A, we can show that  Q is compact. Let  us say 

that  a quasi-state ~ is pure if each element 7 EQ such tha t  7 ~<~ is of the form 7 =)~, with 

0 ~<2 ~< 1, 2 E R. As for ordinary states it  turns out tha t  a quasi-state ~ is pure if and only if 
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Q is an extreme point of Q different from 0. On the basis of the Krein-Milman theorem 

it is therefore clear tha t  to show tha t  an arbi t rary ~ EQ is linear, it is sufficient to show 

tha t  any  pure quasi-state on A is linear. 

The introduction of pure quasi-states makes a subdivision of the problem possible. 

Le t  ~ be a pure quasi-state on the U*-algebra A. Suppose for a moment  tha t  ~ is actually 

linear. Then there is a standard way of associating a representation ~q of A to Q. gq is 

irreducible and I = k e r  zr 0 is a primitive ideal of A. ~ vanishes on I so it lifts to a pure state 

on A/I, and if ~: A-~A/I is the quotient homomorphism, we have ~ --~o~. This procedure 

suggests the following subdivision of the linearity problem for a pure quasi-state Q on A. 

(I) Find a primitive ideal I of A such tha t  ~(I) =0.  

(II) Lift ~ to a pure quasi-state ~ on A/I, such tha t  Q =~oq0, where ~v is the quotient 

map. 

(III)  Show tha t  ~ is linear on A/I. 

Since ~ is linear, a positive solution of (I), (II) and ( I I I )  will imply tha t  ~ =~o9~ is 
linear. 

With respect to (I), one may  show tha t  this is true if Prim A ( = the set of all primitive 

ideals of A) is a Hausdorff-space in the hull-kernel topology. The basis of the proof of this 

fact is the following recent result by  Dauns and Hofmann [2]. I f  A is a C*-algebra, Cb(Prim A) 

is the space of all bounded continuous complex-valued functions on Prim A, then for each 

xEA, hECb(Prim A) there is an element yEA such tha t  

y(mod I)  = h(I). (x(mod I))  

for all I E P r i m  A. More conveniently, this result may  be reformulated as follows. For each 

I E Prim A, let A/I  be the quotient C*-algebra, and let epl: A ~ A / I  be the canonical quotient 

homomorphism. Let  F =~e.1~PrlmA A[I be the C*-direct product of the A/I. We define a 

map ~: A-~F  by  
~ ( x )  = {~(~)}. 

then becomes an isometric isomorphism of A onto a closed C*-subalgebra of F. We may  

therefore identify A with its image under q, and write x for r In  this way x becomes a 

vector.field on Prim A with values in the various A/I, and we write x( I) =qJz(x); xEA, 
I E P r i m  A. With these conventions the Dauns--Hofmann result takes the form: For each 

xEA, and hECb(Prim A), there is yEA such tha t  

y(I) = h(I) x(I); I E  Prim A. 
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Now suppose t h a t  Pr im A is Hausdorff ,  and  let ~ be a pure quasi-state on A. The po- 

sitive solution of (I) then  takes  the  form: There is an  element I 0 E Pr im A such t h a t  if x E A, 

then  X(Io) = 0  ~ ~(x) =0 .  

The lifting problem (II) now takes  the form: if  x, y E A  and  X(Io) =Y(Io), can we show 

t h a t  ~(x)=~(y)? A simple calculation shows t h a t  if h = h * E C b ( P r i m A ) ,  and  h ( I 0 ) = l ,  

then  ~(x) = ~(hx) for all x E A. F rom this it follows t h a t  if x ( I )  = y ( I )  on some neighbourhood 

W of I 0 in Pr im A, then  ~(x) =~(y). Indeed,  choose h E Cb(Prim A) such t h a t  h >~0, h(Io) = 1 

and  h vanishes outside W. Then  hx =by,  so ~(x)=~(hx)=~(hy)=Q(y).  

I n  the special case where Pr im A is discrete, it therefore follows t h a t  (II) has a positive 

solution. 

A positive linear funct ional  on  a C*-algebra is automat ical ly  continuous.  This is far 

f rom obvious for quasi-states. However ,  if we assume t h a t  the  pure quasi-state ~ on A is 

continuous, then  ~ can indeed by  lifted to a pure quasi-state ~ on A / I  o. 

With  respect  to  pa r t  ( I I I )  of the problem, the  si tuat ion is less encourageing. Only 

very  special solutions exist. However ,  on the  basis of the  fact  ment ioned  previously, t h a t  

any  quasi-state on I::C(H) is l inear if dim H>~3, one m a y  show the  following results: 

(a) A n y  quasi-state on a dual  C*-algebra A is l inear if dim g ~ : 2  for all irreducible 

representat ions ~ of A. 

(b) I f  A is C C R  with Pr im A Hausdorff  and  dim ~ :~2 for all irreducible representa- 

t ions ~ of A, then  each pure, continuous quasi-state on A is linear. 

Some other  cases will be t rea ted  in [1]. 
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