
k-MERSIONS OF MANIFOLDS 

BY 

SIDNIE DRESHER FEIT(1) 

1. Introduction and statement of  results 

This paper contains a generalization of the Smale-Hirsch classification of immersions, 

and the Phillips classification of submersions. 

Let M n be an n-dimensional C ~176 manifold and W " a p-dimensional C ~ manifold. A Coo 

mapping/ :  M ~  W ~ is called a k-mersion if its rank is >~k everywhere. The set of k-mer- 

sions, endowed with the C 1 topology, is denoted Coo(M n, WP; k). A k-regular homotopy 

between k-mersions / and g is a continuous map G: I-+Coo(M n, WV; k) such that  G(0) = /  

and G(1)=g. 

A k-bundle map, ~: TM'~-->TW p between the tangent spaces of M n and W p is a con- 

tinuous fiber preserving map such that  the restriction of ~ to any fiber is a linear map of 

rank at least k. The space of k-bundle maps with the compact open topology is denoted 

T(M n, W'; k). 

An n-mersion is an immersion, and an n-regular homotopy is usually called a regular 

homotopy. In  1958 and 1959, Smale [8], [10], published papers classifying immersions of 

spheres in euclidean spaces. Smale proved that  if n <p,  the regular homotopy classes of 

immersions of S ~ in R p are in one to one corresponence with the homotopy classes of sec- 

tions of S n into the bundle associated with T S  n whose fiber is the Stiefel manifold V~.n 

of n frames in p-dimensional euclidean space. Smale obtained this classification by proving 

a stronger result, namely, that  the map d: Coo(S '~, Rv; n ) ~  T(S  n, R~'; n) defined by d( / )=d/  

is a weak homotopy equivalence if n <p.  

In  1959, Hirsch [3] extended this result to the case of immersions, Coo(M '~, W2'; n), 

of a Coo manifold in another, where n < p  and ~W ~ is empty. Poenaru's exposition of this 

result [8] was the basis of Phillips' thesis, published in 1965 as [7]. Say that  a manifold 

(1) This work was performed in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Cornell University, 1967. I wish to thank Professor R. Szczarba of Yale University, 
under whose direction this work was done. 
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is closed if it is compact and without boundary. Phillips proved tha t  if M is not  closed 

and ~W is empty,  then d: Coo(M n, WP; p)-~ T(M", WP; p) is a weak homotopy equivalence. 

Phillips called maps whose rank equalled the dimension of the image space "submersions". 

Poenaru's  exposition also is the basis of the generalization given here. As in the earlier 

work, the result will depend upon showing tha t  certain maps are fibrations (i.e., satisfy 

the covering homotopy property).  

TH~ORV.M 1. Let M n and W v be C OO mani/olds with ~W~=f~. The mappinf/ d: Coo(M n, 

Wv; k) ~ T ( M  n, Wv; k) de/ined by d(f) = d / i s  a weak homototTy equivalence i I either M ~ is not 

closed or k < p. 

COROLLARY 1. IJ M r is not closed or k < p ,  and i I aWV=O, the k-regular homotopy 

classes o/k-mersions o I M r in W p are in onc-to-one correspondence with the homotopy classes 

o1 k.bundle maps o I T M  ~ in T W  p. 

Denote by  M*(p, n; k) the set of p • n matrices of rank at  least k. 

COROLLARY 2. 11 either M n is not closed or k < p ,  the k-regular homotopy classes of 

k-mersions o / M  ~ in R p are in one-to-one correspondence with the homotopy classes o I sections 

o t M ~ into the bundle associated with T M  ~ whose/iber is M*(p, n; k). 

The next  section will contain some applications of Theorem 1 and its Corollaries. 

Sections 3, 4, and 5 will introduce some notation and general background. In  sections 6-9, 

the covering homotopy property will be shown to hold for restriction maps 

i*: Coo(V n, W~; k) --, Coo(U ~, Wr; k) 

induced by  inclusion U c  V, when either V" is the union of U" with a handle of index 

2 < n ,  or k < p .  Section l0 contains a proof of the fact  tha t  if ~vET(M ~, WP; k) (where 

~Wv=O),  if k < p  and M = is a compact manifold, then/ECOO(M ~, WP; k) may  be found so 

tha t  d / i s  homotopie to ~ through k-bundle maps, and / is an approximation of ~, the map 

covered by  ~v. 

2. Applications and examples 

Let M(p,  n; k) denote tha t  set of p • n matrices whose rank is k. (This space has 

dimension k ( n + p - k ) . )  Recall tha t  M*(p, n; k) denotes the set of p •  matrices whose 

rank is at  least k. 

Let  :r: E-+M ~ be the bundle over M associated with TM,  whose fiber is M*(p, n; k). 

By Corollary 2 of Theorem 1, if there exists a section of M in E, and either M is not closed 

or k <p ,  then there is a k-mersion of M in R ~. 
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When k=n,  the fiber of E is V~.n. From the fact tha t  g~(V~.n) = 0  when i < p - n ,  it 

follows tha t  when p =2n,  a section in E, and hence, an immersion of M in R ~, exists. 

When k =p ,  the fiber of E is V~.~. I f  M is not closed, it is easily seen tha t  there is no ob- 

struction to a section when p = 1, i.e., a 1-mersion exists. These examples and m a n y  others 

are discussed in [3] and [7]. 

Similar computations can be made when k < i n f  (n, p) by  examining the homotopy 

groups of the fibers M*(p, n; k), Now 

M*(p, n; k) = M(p, n) - (J M(p, n; i), 
O~t<k 

where M(p, n) is the space of all p • n matrices. We will have M*(p, n; k) connected and 

simply connected since the codimension of (J M(p, n; i) in M(p, n) is greater than  2 
O~i<k 

when k < i n f  (n,p). Let  X =  U M(p, n; i). Alexander duali ty can be applied to show 
l~<t<k 

tha t  when 2 <~q<pn-2, 
Hq(M*(p, n; k)) = H~-q-2(X).  

Thus, if pn - q - 2  > (k - 1) (p + n -  (k - 1)) - 1 (2.1) 

then Hq(M*(p, n; k)) =0.  Setting q = n - 1 ,  and taking p~>2, n~>2, there will be a section 

of M in E if 
p > k + [(k - 1) /(n - ( k  - 1 ) ) ] ,  (2.2) 

where Ix] denotes the greatest integer in x. Thus if 0 < k ~< 1 + n/2~ there is a k-mersion 

of M n in R k+l. More generally, there is a k-mersion of M n in euclidean b-i-r space if 

k < l  +(r/(r + l))n. 

Note tha t  when gq(M*(p, n; k))=O for 1 <~q<~n, all sections in E are homotopic. 

Setting q = n  in (2.1), this is the case when 

p n - n - 1  > ( k - 1 ) ( p + n - ( k - 1 ) ) .  (2.3) 

A result of this is the following. 

(2.4) P~oPOSITIO~.  I / p > 3 / 2 ( n - - 1 ) ,  all n - 1  mersions o / M  ~ in R ~ are homotopic 

through n -  1 mersions. In  particular, any two immersion~ are homotopic through n -  1 

mersions. 

When the fiber of E is a Stiefel manifold, the pr imary obstruction to a section in E is 

a characteristic class of the manifold. Cohomology classes giving the pr imary obstruction 

to sections when the fiber is M*(p, n; k) may  be defined similarly. Suppose tha t  M ~ is 

compact and oriented. In  [2], Chern described the relationship between real Pontrjagin 

classes and the pr imary obstruction to a section in the bundle over M with fiber 
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M*(p, n; p -  1) associated with TM, in the case tha t  n - p  is even. (By Corollary 2, this is 

also the obstruction to the existence of a p - 1 mersion in RL) The pr imary obstruction is 

an element P4m E H4m(M; Z), where m = � 8 9  + 2). The elements P4m, m = 1 ... .  , [n/4], are 

expressible in terms of polynomials in the Pontrjagin classes P4t, t ~<m, and conversely, 

P4m is a polynomial in the P~t, t ~<m. (See [11].) Note tha t  if a section in E(M*(p, n;p - 1)) 

exists, so does a section in E(M*(p-2, n; p-3)) ,  so tha t  

e4m = P4(m+a) . . . . .  e4tn/4] = 0. 

Thus, if there is an n - 1 mersion of M ~ in R n, the Pontrjagin classes of M are zero. 

3. Definitions and background 

Denote the interval [0, 1] by  I,  and the m-fold product of the interval by Im. The set 

I ~-1 may  be considered a subset of I m by  identifying q E I  ~- I  with the point (q, 0) of I ~. 

A point of I m will usually be denoted by  (if, t) where q E 1 ~-1 and t E I .  

Le t  E and :~ be spaces and j: :~-~ E be a continuous map. Call a pair (Go, g) of maps 

such tha t  Go: i ~ - 1 _ ~ ,  g: im_~E and joGo(q)=g(q, 0) an m-covering pair. The map j has 

the covering homotopy property if, given any  m-covering pair, (Go, g) where m is a positive 

integer, there always exists a mapping G: I m-~ :~ such tha t  jo G(q, t) = g(q, t) and G ] I m- ~ = G 0. 

The map j has the local covering homotopy property if for every e E ~, there exists a 

neighborhood •(e) such tha t  j has the covering homotopy property for A(e). I t  is well 

known tha t  j: ~-~ E has the covering homotopy property if and only if j has the local 

covering homotopy property.  

All manifoIds and mappings between manifolds will be assumed Coo unless otherwise 

stated. "Smooth"  or "differentiable" will mean C% Manifolds may  have boundary, 

unless otherwise stated. 

Let  X and W be smooth manifolds. Let  T(X, W) denote the set of continuous maps 

between TX and TW, carrying fibers linearly into fibers. The set T(X, W) will be assumed 

to carry the compact open topology. The set of all smooth maps from X to W will be 

denoted C~176 W). The function d: C~176 W)~ T(X, W) given by  d(])=d] gives a one to 

one correspondence of Coo(X, W) with a subset of T(X, W). The C 1 topology on Coo(X, W) 

is the topology induced by  this correspondence. The special case k = 0 in Theorem 1 says 

tha t  d is a weak homotopy equivalence, if ~ W = O  and dim W > 0 .  

A more intuitive description of the C ~ topology is given by  looking at  a particular 

subbasis. W can be embedded in euclidean space. Given a compact coordinate neighborhood 

Y in X, maps restricted to Y can be viewed as maps of euclidean spaces. A subbasis neigh- 

borhood of a map / is given by  the set of maps whose restrictions to Y have function values 



~-MERSIONS OF MANIFOLDS 177 

and derivatives close to the values of / and d 1. I f  X is itself compact, then a norm, [[/-g[[ 

can be defined by  taking the sups of all the euclidean norms of ( I -g )  and (d l -dg)  over a 

fixed covering of coordinate neighborhoods. Then the C 1 is the metric topology given by  

e(l, g)= II/-gll. (See 
I t  is easy to show tha t  if X is a compact manifold, then C~(X, W; k) is an open subset 

of C~(X, W). 

Some other sets of smooth maps will be of interest The first is the set of embeddings 

of X in W, denoted Emb (X, W). I t  is a consequence of properties of the C 1 topology tha t  

Emb  (X, W) is an open subset of C~(X, W). Next,  define Aut (W) as the set of diffeo- 

morphisms of W onto W with compact support  contained in In t  (W), i.e., each map is 

identi ty on the complement of a compact set contained in the interior of W. If  S c  In t  (W), 

the elements of Aut (W) which are identi ty on a neighborhood of W - I n t  (S) are denoted 

Auts(W). 

A number  of proofs have appeared of the following useful lemma, notably those of 

Palais, [6], and Lima, [4]. 

(3.1) PALAIS LEMMA. Let X be a compact mani/old. Given a map b EEmb (X, I n t  (W)), 

there is a neighborhood ~ o I b, B c E m b  (X, W), and a continuous map fl: ~-+Aut  (W) such 

that e =~(e)ob ]or every e e B and ~(b)=identity. 

4. The factorization of smooth maps 

Let  U = U = be a smooth compact n-dimensional manifold with boundary. Using a 

collaring of U, and identifying ~U with aU • {0}, it is easy to define a C ~ structure for 

U U ~U • [0, 2] so tha t  this set is a compact neighborhood of U, which shall be denoted 

N(U), or simply by  N. The lemma tha t  follows gives a useful property of any  smooth 

] E C~ W'), where ~ W p = O; namely, tha t  maps in some neighborhood of / can be factored 

through automorphisms of some compact manifold which contains an imbedded image of 

;V(U). 

Dimensional superscripts will be omitted where the meaning is clear. When E is a vec- 

tor bundle with a Riemannian metric, let E(a) be the bundle of vectors whose length is ~<a. 

(4.1) L~MMA. Let U ~ be a smooth compact mani/old with boundary, and W p be a smooth 

mani/old without boundary. Given ] E C~(U, W), there exists a neighborhood .,4 ol I and a 

lactorization o I the maps o/ .,4 through automorphisms o] some compact n +p dimensional 

mani]old D containing an imbedded image o I N(U); i.e., there exists a smooth imbedding 

s: N(U)-+D, a smooth map r D-->W, and a continuous map v: j 4 ~ A u t  (D) such that the 

diagram below is commutative. 

12 - 692906 Acta  mathematlca. 122. I m p r i m d  le 16 J u i n  1969. 
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D _ v(g) D 

~v(c) 
g 

U W 

Proo]. Fix a riemannian metric for TW and let exp (z, v), vETW~, denote the cor- 

responding exponential function. Clearly, there exists a smooth extension h of ] to •. 

There is a neighborhood of the zero section of h(N) on which exp (z, v) is defined and one 

to one on fibers. Let E be the bundle induced from this neighborhood by h, with the induced 

riemannian metric. The map 

~(x, v) = (x, exp (h(x), v)) (4.2) 

is one to one on fibers, and has rank n+p on E(~) for some ~ > 0 .  But ~ is one to one, for 

if ~(x, v) =~(x', v'), then x =x', and so also v =v' .  

Let s: N ~ E  be the zero section and let D be any smooth n + p  dimensional manifold 

contained in E(~), containing s(N). Then ~os is the graph of h, and ~ maps D diffeomorphi- 

cally onto a neighborhood of the graph of h in N • W. Hence, there is a neighborhood of / 

on which the map g~O(g) given by 

O(g) (x) = ~-1(~, g(x)) 

is defined and continuous. Let r =gwo~, where ~w is the projection of N • W on W. Then 

r (2) = g(x). 

In  order to replace O(g) by an automorphism v(g), note that  0(/) =s[  U is an embedding. 

Applying the Palais lemma, (3.1), there is a neighborhood B of s I U in Emb (U, D) and a 

continuous mapfl: B-+Aut (D) such that  e=fl(e)o(s I U) for every eeB, and fl(slV)= 
identity. Then for a sufficiently small neighborhood ~4 o f / ,  v=floO satisfies the require- 

ments of Lemma (4.1). 

5. A handlebody decomposit ion 

Suppose that  M s is a connected manifold. If M s is compact, then a Morse function 

may be used to obtain a handlebody decomposition of M. If  M is not compact, then the 

procedure used in [7] yields such a decomposition. By alternating the addition of a collar 

with the addition of a handle, it can be assumed that  each handle is attached in a coordinate 

neighborhood of M (see [5]). Thus M is built up from a disk D ~ by successively adding a 

collar, and then adding a handle in a coordinate neighborhood. I t  will be convenient to 

change this decomposition slightly. If  Z is Y U handle of index 2, we cut out of Z a part of 
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the handle H which is diffeomorphic to (Int  D ~) • D n-a, so tha t  the set tha t  remains con- 

tains an open subset diffeomorphie to S ~-~ • D ~-~ • ( -  1, 0]. A set obtained from a mani- 

fold in this way will be called a k-truncated manifold. 

Using this procedure of k-truncating manifolds, we can obtain a decomposition: 

D ~ = Y I = X I =  Y ~ c X 2 c  . . .=M' .  (5.1) 

(5.2) De/inition. Let  X be a smooth manifold and Y D X  be smooth or ~t-truneated. 

Then Y is coUar retractible with respect to X if, given a neighborhood S of X in Y, Y 

may  be deformed into S through diffeomorphisms of Y into Y which hold X fixed. 

Hence, M n is built up from a disk by  successive inclusion in a collar retractible neigh- 

borhood and addition of a handle. 

The proof of Theorem 1 is based on the diagram: 

C:r W; k) d ~ T(M, W; k) 

: 

C~(Y~,  W; k) ~ , T(Y~, W; k) 

C~176 W; k) d , T(X1 ' W; k) 

C:r ", W; k) ~ , T(D ~, W; k) 

(5.3) 

The proof tha t  d is a weak homotopy equivalence follows the same outlines originally 

introduced by  Smale in his work on the immersions of spheres, and Poenaru in his exposi- 

tion using handle bodies. Namely, it must  be shown tha t  the d of the bot tom row is a 

weak homotopy equivalence, tha t  all of the vertical restriction maps are fibrations (i.e., 

satisfy the covering homotopy property), and tha t  d restricted to a fiber is a weak homotopy 

equivalence in any  of the boxes of the diagram. Given these results, using the five lemma 

and induction, every d map reached after a finite number  of steps will be a weak homotopy 

equivalence. I f  the diagram is infinite, then the fact tha t  the inverse limit of weak homotopy 

equivalences of fiber spaces is a weak homotopy equivalence, which is proved in Appendix 

1 of [7], yields Theorem 1. 

The main step in establishing Theorem 1 is the proof of the local covering homotopy  

proper ty  for the restiction maps on the left side of (5.3). This property will be proved in 

three cases. These are stated below as theorems. Henceforth the target  manifold W v will 

be a manifold without boundary. 

(5.4) THEORV.M. Let V n be a compact mani/old or k-truncated mani/old, ~ <~n, and let 

Unc In t  (V ~) be a smooth compact mani/old. Suppose that ~W ~ = 0  I / V "  is collar retractible 



180 S I D N I E  I ) R E S H E R  F E I T  

with respect to U", then i*: C~176 W; k)~Coo(U, W; k) has the local covering homotopy 

property, where i* is induced by the inclusion on U in V. 

(5.5) T r r~ .OR~.  Suppose that the smooth compact mani/old V" is the union o / a  2- 

truncated Unc V" with a handle, Vn=UnO D~ • D "-~. Suppose that ~WP=O. I / 2 < n ,  then 

the map i*: Coo(V, W; k)-~C~(U, W; k) induced by the inclusion map has the local covering 

homotopy property. 

(5.6) THwORV.M. Suppose that Vn= UnO D n, i.e., Vn is U" with a handle o~ index n 

attached. Let ~W~=O. Then, i] k<p,  i*: Coo(V, W; k)-~Coo(U, W; k) induced by inclusion 

has the local covering homotopy property. 

Note that  since the handles of the decomposition (5.1) are added in coordinate neigh- 

borhoods, it will suffice to prove (5.5) and (5.6) when Unc V~c R". 

Much of the proof of these theorems will be based on [7] and [8]. The main difficulties 

raised by generalization appear in the proof of (5.6). 

The other facts required for Theorem 1 are stated here without proofs, since they may 

be proved exactly as are the corresponding facts in [7]. (The proof of (5.10) follows the 

same outline as the corresponding fact in [7], substituting (5.5) and (5.6) for the analagous 

statements about submersions.) 

(5.7) THEOR~.M. Let D" denote an n.dimensional disk. The map 

d: Coo(D", W~; k) ~ T(D", WP; k) 

de/ined by d(/)=d l, is a weak homotopy equivalence, when W p is a manifold with empty 

boundary. 

(5.8) T H ~ O R E ~. Suppose that either U ~ is smooth, Un~ In t  (Vn), where V" is 2.truncated, 

or that U n is 2-truncated and V ~ = U n U D a • D"-4 is smooth. Then the map j*: T( V, W; k)-~ 

T(U, W; k) induced by inclusion is a/ibration. 

(5.9) TH~.OR]~M. Given U n c I n t  (Vn), V collar retractible with respect to U, ~ W = O  

then the restriction maps i*: Coo(V, W; k)-~Coo(U, W; k) and ~*: T(V, W; k)--~ T(U, W; k) 

are homotopy equivalences. 

(5.10) T H E O R ~ .  Let U" be a 2-truncated mani/old and Y" = U"U D ~. • D ~-~. Let 

i*: C~176 W~; k)--> Coo(U, W~; k) and ]*: T(V, WP; k)-~ T(U, WP; k) be the restriction maps 

induced by the inclusion o~ U in V, where ~WP=O. Then i~ 2 < n  or k<p,  /or each 

/~coo(u, W;k), 
d li*-~]: i*-~(/) -~j*-~(d/) 

is a weak homotopy equivalence. 



~-MERSIONS OF MANIFOLDS 181 

6. Some extension lemmas 

Throughout this section, we will write U and V for U n and V n. Also, it will be assumed 

that  either U is smooth and V is either smooth or X-truncated, or tha t  U is X-truncated, 

1 ~<X ~<n, and V = U U D~ • D ~-~. Recall tha t  the boundary, ~W v, of the target manifold is 

always assumed empty. 

The local covering homotopy property states tha t  given /EC~(U, W; k), there is a 

neighborhood M of / such that  for each pair (Go, g) with g: Im-->A, Go: lm~C~(V ,  W; k), 

and G0(q) [ U =g(q, 0), there is a continuously varying set of extensions G(q, t) of g(q, t) to V 

such that  G(q, 0)=G0(q). The theorems (5.4), (5.5), and (5.6) are proved by finding a set 

of hypotheses for M which make possible the explicit construction of a lift of any given 

covering pair for M. The two lemmas of this section contribute to the construction in all 

three cases. In fact, (5.4) and (5.5) are easily proved in the next  section, using these lemmas. 

The first states tha t  for any small enough A, there is a neighborhood 0 of U in V 

and a lift to 0 of (Go[ 9,  g). The second shows that  a covering pair (Go, g) for M can always 

be at least partially lifted; i.e., there is an e >O and a lift over the interval [O, e]. Both of 

these extension lemmas are "general", that  is, they require no hypotheses on the size of 

k or, on the index of the handle, when V is U U handle. 

I t  will be convenient to use some special notation for certain neighborhoods of U in V. 

Let  U be the boundary of U in V. If U is smooth, G=~U,  and if U is X-truncated, U is 

S a - l •  n - a •  0 = U U U •  1 ]and  0 3 = U U O •  T ] , 0 < ~ < l .  

First note tha t  the results of section 4 can easily be extended to a X-truncated mani- 

fold U. For if ]EC~(U, W; k), let h be an extension of ] to a smooth neighborhood N of U, 

h E C~(N, W; k) and define D and the faetorization just as before. 

Thus, for U smooth or X-truncated there is a neighborhood A of ] and a factorization 

as in (4.1), i.e., if gEM, then g(x) =r xE U. Note that  the map z t ~ b o ~ o s  defines 

a continuous map from Aut (D) to C~~ W) mapping the identity onto bECk(N,  W; k). 

Hence there is a neighborhood F of the identi ty in Aut (D) mapping into C~(N, W; k). 

Denote by F' a neighborhood contained in F such that  if 71 ..... ?10EF', then ?~ . . .  V~0 ~ eF.  

We can assume that  M has been chosen with v(M)c F'. This will be a very useful property. 

For example, if fi E F'  and fil s(U) is the identity, then r o~os gives another extension 

of g to N belonging to C~(N, W; k). 

(6.1) LEMM_~. Given/EC~176 n, WV; k), (~W p =fD), let ~4 be a neighborhood o / / / o r  which 

a ]actorization g(x) =r ks de/ined as in (4.1). Suppose that I ~ and F' are defined as 

above and v(A)~F ' .  Given an re.covering pair (Go, g) with g: Im-~ ~4, there is a number "r>0 

and a map o~: l a - ~ F  ' such that 
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(a) ~(q) [8(U) = identity, 
(b) r 0))o~(q)o81 (7, = O0(q) l (7~. (6.2) 

The proof of this lemma will be given at the end of the section. I t  is purely technical, 

and the reader is advised to omit it from a first reading in order to preserve the continuity 

of the main argument. 

I t  is immediate from (6.2) tha t  ~o~,(g(q, t))ou(q)os[ (73 is a lift to (73 of (Go] (73, g). 

The next  lemma is suggested by examination of formulas (6.2). If  ~(g(q, t))oo~(q) could 

be altered so that  on a neighborhood of gr • {v}, ~,(g(q, t))oo~(q) =v(g(q, 0))on(q), then the 

extensions O(q, t) of g(q, t) could be defined on all of V simply by setting G(q, t)= Go(q) 

o n  V -  (7~. 

(6.3) L~.MMA. Suppose that the hypotheses o/(6.1) ho/d/or .,4, and, given an m-covering 

pair (Go, g), that v > 0  and ~ : /m-x-~F '  have been/(rand satislying (6.2), (a) and (b). Then there 

is an e >0 and a map t~: I m-x • [0, e]-~F' such that 

(a) g(q, O) =identity, 

(b) t~(q, t)os[ U=o~(q)-lor(q, O)-lo~](q, t)08[ U, 

(e) ~(q, t)ls(gr • [v/2, 3])=identity. 

The proof is omitted, since the proof of the corresponding fact in [7], can be adapted 

to-fit the present ease. 

Using t~, a lift over I m-1 • [0, ~] can be formulated (see (7.4)). 

Proo] o[ Lemma (6.1). Suppose given a covering pair (Go, g) for ~4. Write ~(q, t) for 

v(g(q, t)). First we have: 

(6.4) SUBLEMMA. There is a (r, 0<a~<l ,  and a map 2: I~ - l -+Emb ((7~, In t  (D)), with 

(a) ~ ( q ) l V = s l v  

(b) Coy(q, 0)o2(q)=G0(q) i (7~. 

Proo/. Let 2(q) be the map given by  

2(q)(x) -v(q ,  0)-1o~-1(x, Go(q)(x)), xE (7, 

where ~ is the map defined in (4.2). For a fixed q, there is a (~ such that  2(q) is an embedding 

on (7~. By a standard compactness argument, there is a ~ which works for all qEI  m-1. 

Clearly (a) and (b) hold for this a and 2. 

Now s] (Ta embeds (7~ in In t  (D) so that,  applying the Palais Lemma, we may define 

a neighborhood B of s] (7~ and a map fl: ]~-~Aut (D) as in (4.5). If 2(I  ~-x) were contained in 

B, then a(q)=fl(2(q)) would satisfy (6.2). In the next  sublemma, it will be shown that  the 

2(q) can be replaced by embeddings 2'(q) which are so "close" to s ] (7~ that  they will be in B. 
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Let  D be embedded in some euclidean space R m. There is a neighborhood T of D in 

R m, an open set F c I n t  (D) with 2 (q ) (0~ )c In t  (F), qGI m 1, and a smooth map r: T ~ D  

such that  r IF =identi ty.  Now r induces a continuous map 

r*: C~176 T)-~Coo(~, D) 

with r*(s) =s. In  fact, if gEC~176 T) and g(x)EF, r*(g)(x)=g(x). 

Given coordinate neighborhoods and maps for 5r, define coordinates for Lr • [ _  1, 1], 

using these maps • the identity on [ -  1, 1]. Let  ~ be a metric for C~(/~, W) defined using 

these coordinates. Define restrictions of ~, ~ 1 0r, 0 < r ~< 1, in the obvious way, and denote 

the restriction of ~ to ~r by ~r. Then there is an s > 0  such that  if gEEmb ( ~ ,  T) and 

~(g, s) <e, then r*(g) E B. Thus it suffices to show: 

(6.5) SUBLEMMA. There is a v, 0 < T < a ,  and a map ~' : I m - l ~ E m b  ( /~ ,  T) with 

(a) ~(~ ' (q) , s )<s ,  q e I  m-1 

(b) 2'(q)l~T=~(q)]0~, q e I  m-t 

Proo/. Let e(q) =~(q) - s .  Then for every q, e(q)(x) = 0 if x E U. By the usual compactness 

argument, for some (~1, 0 < a l < a ,  ~(e(q) ,  0)<s/2  for every qEI  m-1. 

Now let c: [0, a]-+ [0, al] be a C ~ map which is the identi ty on [0, al/2] and such that  

0<c'(t)  ~1.  Define 
0 xEU 

el(q) (x)= e(q) (y, c(t)) x= (y, t)EU • [0, a]. 

Let  2 '(q)=s +el(q) and let ~=al/2. Then 2'(q)l/~' ~ =2(q)l 0 ~. This completes the proof of 

(6.1). 

7. Covering homotopy  property in the collar retractible and Z < n case 

(7.1) LEMMA. Let V n be a compact mani/old or ~-truncated mani/old, and Unc V ~ be a 

smooth compact mani/old. Suppose that V is collar retractible with respect to U. Let/EC~176 

WP; k). 1] • is a neighborhood o/ / satis/ying the hypotheses o/ (6.1), then i* induced by 

inclusion) has the covering homotopy property/or .,4. 

Proo/. Given an m-covering pair, (Go, g) for A, choose T, a, and ~, s, as m (6.1) and 

(6.3). Denote v(g(q, t)) by v(q, t). There is a deformation (~: [0, 1]-~Emb (V, V) with 5(0) = 

identity, (~(t) I U =identi ty,  and (~(1) (V) c 0 3. Define, for t ~< ~, 

{~o~(q, 0)oa(q)o#(q,t)oso(~(t/s) (x), xE6-1(t/s) (0~) 

G(q, t) = Go (q) o (~(t/s) (x) otherwise. 
(7.2) 

If s~<t~<l, let 
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G(q, t) = Coy(q, t)ov-l(q, e)ov(q, 0)o~(q)o/~(q, e)osoO(1). (7.3) 

I t  is easy to check tha t  G satisfies all of the requirements. 

Note tha t  Theorem (5.4) is immediate from (7.1). 

When V =  UU handle of index ~ < n ,  the situation is not quite as simple. We do at  

least have a map 

defined by 

G': .I m-1 • [0, e] ~ C~176 W; k) 

G'(q, t)(x)=r 0)oa(q)o~(q, t)os(x) xEO~ 

G'(q, t)(x)=Go(q)(x) xEV-O~.  

(7.4) 

The problem is to change G' so tha t  an extension can be lifted all of the way across [0, 1]. 

The idea behind the change is the following. Near 8D, all of the automorphisms of D are 

the identity. I f  there were a deformation ~: [0, e]-~Emb ( ~ .  D) such tha t  U was held 

fixed (i.e., ~(t)] U=s] U) while ~2 • {2v/3} was pulled out to the boundary of D, then for 

any  eoEAut (D), r for x in U, and ~oeoo~(e)(x)=~o~(e)(x) for x 

near 0 • {2T/3}. The use of ~ would thus move all of the maps G'(q, e) to maps which all 

agree near 0 • {2~/3}. Using this, it would not be hard to paste together an extension G. 

Now there always exist such deformations ~, but  the difficulty will lie in showing the 

existence of a deformation such tha t  rank of a t  least k is preserved in the construction. 

I t  is in assuring this property tha t  the hypothesis ~ < n  (and later, k <p )  is used. All of this 

will be made precise in the definition and lemmas tha t  follow. 

We will want  to discuss embeddings of ~ in a larger manifold containing a factoring 

manifold D. First note tha t  in section 4, the extension h could have been assumed defined 

and of rank ~> k on a neighborhood N '  = N U 8N • I .  Similarly, the diffeomorphism could 

have been defined on D' = D U aD • I ,  and r could be considered as a mapping on D ' ~  D. 

All of the automorphisms v(g) may be assumed to lie in AutD (D'). 

(7.5) Definition. Suppose given a map /EC~176 ", WP; k), a factorization of maps in 

a neighborhood of [ through elements of Autn (D'), and a neighborhood r of the identi ty in 

AutD (D'). We say tha t  positioning deformations exist for D and F if, given any  % 0 < v  ~< 1, 

there is a map~: [0, 1 ] ~ E m b  ( ~ ,  D') with 

(a) r I/7~. 
(b) ~(t)(x) =s(x), for x in a neighborhood of/7~t2U 0 x {~}. 

(c) ~(1)(07) N ~D =~(1)(U • {2~/3} U U • {5T/6}1. 

(d) I f  a~ E1P, then ~owo~(t) EC~176 W; k), 0 ~ t  ~< 1. 
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(7.6) LwMMA. Suppose that maps in a neighborhood o//are/actored through elements o/ 

AutD (D'), and that there is a neighborhood F o/the identity in AutD (D') such that positioning 

de/ormations exist ]or D and F. Then the local covering homotopy property holds at/.  

Proo/. Let  ~4 be a neighborhood of / with v ( A ) c  F ' .  Given a covering pair  (Go, g) 

for A, define ~, ~, and  ~, e, as in (6.1) and  (6.3). Wri te  v(q, t) for v(g(q, t)). Let  ~ be a posi- 

t ioning deformation for ~. Define, if t ~<e, 

= I Coy(q, O)o~z(q)o#(q, t)o~(t/e) (x), xE ~'~ (7.7) 
G(q, t) 

[ Go (q) (x) x v - 

I f  e ~< t ~< 1, define 

S ~ov(q, t)ov-l(q, ~)ov(q, O)o0c(q)o#(q, e)o~(1) (x) when xE ~2~1a, 
G(q, t) (7.8) 

t G(q, e) (x), when x E V - 02~ja. 

I t  is easily verified tha t  G is well defined and  continuous a t  t =e.  Clearly G(q, O)= 

G0(q), and, by  the definition of v and  ~, G(q, t) I U =g(q, t). 

(7.9) L~MMA. Let U n be 2-truncated, 2<n.  Suppose given /EC~176 n, WP; k). There 

exists a /actoring mani]old D /or /, and a neighborhood F o/ the identity in AutD(D') ,  

(D' = D U ~D • 1) such that positioning de/ormations exist/or D and F. 

The existence of such deformations has been cited in [7]. An  explicit construct ion will 

no t  be given here, bu t  we will indicate the  idea. Take ~ and  cut off a neighborhood of the 

"corners"  to get  a smooth manifold U'. Le t  N and  N '  be collarings of U', and  construct  

D and  D'  as in section 4. Let  F be a neighborhood of the ident i ty  in AutD(D')  with 

r176176 ', W; k), y e F .  Any  de/ormation ~ occurring in s(N') will preserve rank, i.e., 

ff ~( t ) (U')cs(N') ,  then  (7.5d) holds. 

Let  us denote a disk of dimension r and  radius s by  D~. Let  D*= D~. Note  tha t  the 

parts  of N and N' surrounding S ~-1 • D ~-~ • I are S z-1 • D~ -~ • 1 and  S z-1 • D~ -~ • I .  

Also, S ~-1 • ~D~ -~ • I ~ N .  Choosing any  radial direction in D ~-a, given % then  G • 

{2~/3} U/Y • {5~/6} can be deformed to ~N holding U,~ fixed. Note  t h a t  the hypothesis  

< n is used to assure tha t  some radial direction exists. Composing s with this deformation 

gives the  desired deformation.  

8. Covering homotopy  property w h e n  ~ = n and k < p  

The only case t h a t  remains is ~t=n and  k < p .  I n  this case, we can assume tha t  V n 

is a disk and  U n is a disk whose center has been hollowed out.  For  convenience of notat ion,  

D n D n we can assume t h a t  V = 8, U = D ~ - I n t  and U = S~2. I n  case ( 3), this U is smooth.  Le t  



186 S I D N I E  D R E S H E R  F E I T  

/EC~(U, WP; k). There is an  extension h of / to  a neighborhood N ' = D ~ - I n t  (D~) with 

hEC~176 ', WP; k). Define E = h ~ ( T W )  as before. 

The lemmas of section 6 still hold, bu t  it is not  possible to define positioning deforma- 

tions (as in section 7) by  deforming the handle to aD  through the  neighborhood s(N') of 

s(U). A n y  deformation to OD must  move up along fibers of E. I t  is easy to find a deforma- 

t ion satisfying (a), (b), and (c) of (7.5), bu t  it is difficult to  satisfy (d), i.e., find a ~ s o r  o~ 

still has rank  a t  least k. 

I n  t reat ing the ease of immersions of a manifold in a manifold of higher dimension, 

Poenaru  (1) pointed out  t h a t  rank  could be preserved by  using positioning deformations 

which move the handle to  ~D through the normal  bundle of h. The sort of generalization 

t h a t  one would like here would be to take a k-dimensional subbundle of E contained in 

h~(dh(TN')), (i.e., {(x, v)EEIvEdh(TN~)}) , define its or thogonal  complement  as a "k- 

normal  bundle" ,  and  deform the handle th rough  this. Lemma (8.2) below will show tha t  

this is a useful concept. First  we introduce some convenient  notat ion.  

(8.1) Definition. Given eEC~(X n, WP; k), a set of k sections, (T 1 . . . .  , ak of X n in T X  ~ is 

called independent  with respect to e on X if the vectors de~(al(X)), ... de,(ak(x)) are l inearly 

independent  for each x EX. Note  tha t  if X ~ c  R ~ and W ~  R ", a k-tuple of t angent  vectors 

in TX~ m a y  be represented as the k columns of a matr ix  in M(n, k), the set of n • k matrices, 

and a k-tuple of sections m a y  be considered to be an element aEC(X, M(n, k)), the set of 

continuous maps  from X to M(n, k). We will denote a = (a 1 .. . . .  ak). Sometimes we shall 

refer to a as a k-frame field. 

(8.2) LEMMA. Let X n c  R n be a compact ~-truncated mani/old, where ,~ <~n. Suppose 

W~c R p. Let eECcc(X, W; k), where k<p.  Suppose that there is a smooth q = ( ~ l  . . . .  ,qk) 

de/ined on a neighborhood o/ X in X which is independent with respect to e, and that the ortho- 

gonal complement o/ the bundle spanned by e~(deoal) ..... e~(deoqk) is trivial. Then there is a 

/actoring mani/old D and a neighborhood F o/ the identity in Aut  (D) such that positioning 

de/ormations exist/or D and F. 

The proof m a y  be found in section 9. 

(8.3) COROLLARY. Under the hypotheses o/ (8.2), the local covering homotopy property 

holds at e. 

Proo/. The corollary is immediate  f rom (7.6). 

Unfor tunate ly ,  it is not  generally possible to find a k-flame field a which is independent  

(1) The referee has pointed out that Thorn presented this idea in the Seminaire Bourbaki, 
1957-1958. 
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with respect to a given function h on a neighborhood of U, although such a k-frame field 

may  be defined locally, in a neighborhood of any  given point. However, it will be our aim 

to reduce the problem to the case of (8.2). The procedure will be a little complicated, but  

the basic picture to keep in mind is the following; any  covering pair, (Go, g), could be 

immediately lifted over most of V by  defining G(q, t) to be Go(q) on a ball, say D n2-b, of 

radius a little smaller than  2. To lift over the remaining spherical shell, we will break up the 

shell into little handles, each of which is contained in a region for which a k-frame field is 

defined. 

Ident i fy U • [ -  l ,  1] with a bicollaring of U in V in such a way tha t  U • {0} = U, 

• [ - 1 ,  0 ] c  U, and each x • [ - 1 ,  1] maps into a radial ray. Let  x 1 ... .  , xn be polar co- 

ordinates with xl the radial coordinate. Choose a covering, B 1 ..... Bm of U = S~- 1 by  (n - 1)- 

dimensional neighborhoods, each of which is the intersection of U with a convex set, such 

tha t  / maps B~ • I - c ,  0] into a coordinate neighborhood W~ in W, and such tha t  there 

is a k-frame field ~ = (~/~x~ ..... , ~/Oxi~) independent with respect to / on B~ • [ - c ,  0]. 

Now choose A to be a neighborhood of / such tha t  each g in A satisfies the same con- 

ditions, i.e., 

(a) g(Bi • I - c ,  0 ] )c  W~, (8.4) 
(b) :~i is independent with respect to g on B~ • [ - c ,  0]. 

We shall prove the covering homotopy property for A. Most of this section will be devoted 

to proving the following lemma. 

(8.5) LEM~k.  Suppose given A as above and a covering pair (Go, g) with g: Im-+ ~4. 

There exists a mani/old V', where U c  V ' c  V, and V'= V minus the interiors o/ a /inite 

number o/disks, Dn(1) . . . .  , D~(r), such that 

(a) setting G0(q)=Go(q)l V', there is a lifting y over V' o/(Go, g), and 

(b) /or each i, 1 < i < r, and each (q, t) e I m there exists a k-/rame field at(q, t) de/ined in a 

neighborhood o/D~(i) and independent with respect to ~(q, t) on aD~(i). 

Throughout the remainder of this section, let (Go, g), g: I m ~ A  be a fixed covering pair. 

By  (8.4) and the compactness of Go(Ira-I), there is a number  b, 0 <b ~< 1, such that,  for 

every q in I m-l, 

(a) Go(q)(B~• , 2b])c Wi 

(b) ~ is independent with respect to Go(q) on B~ • [ - c ,  2b]. 

Ig(q,t)(x) x e U  
Now, define ~(q, t) (x) = [ Go (q) (x) x e V - - /~ .  
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Then it is only necessary to lift ~(q, t) lS~ - I  • [ - c ,  0] U [b, 2b]) over the shell S~ -1 • [ - c ,  2b] 

with, of course, the value Go(q) at  (q, 0). 

To do this, a handlebody decomposition is used, which may  be obtained as follows. 

Take a triangulation of S~-1 so fine tha t  each simplex is contained in the interior of some 

B t. We can assume tha t  the triangulation is so fine tha t  if a simplex A c I n t  (B~) then the 

convex span of the vertices of A is contained in B~ • [0, 5]2). Let  L be the euclidean polygon 

determined by  associating to each simplex of the triangulation the convex set spanned by 

its vertices. Now the complex L • I ~ L  • [0, b] can be subdivided to form a simplicial 

complex K with no additional vertices. Let K o =L x ({0} U {b}), and let A1, ..., Ar be the 

simplexes of K - K  0, arranged so tha t  dim (A~)~<dim (A~+I). We can start  with a manifold 

neighborhood of K 0, and build up to a manifold neighborhood of K by  adding a handle of 

index i for each/-s implex.  To be precise, by  the results of Cairns, [1], there are smooth 

compact manifolds, N*(A~), with At a continuous deformation retract  of its neighborhood 

manifold, such tha t  if A~c I n t  (Bj • [ - c ,  2b]), so is N*(At). Furthermore,  if Ki=KoU A1U 

... U Ai, there are smooth neighborhoods 2Y*(K0)c ... ~ N*(Kr), and 

(a) N*(Ki) =N*(Kt-1) U N*(At), 

(b) N*(Ki)=-,Y*(Kt_l)Uhandie H, whose index=d im At, 

(c) Ht is at tached to N*(K0)U handles Hj  such tha t  A j c  ~A~ (i.e., the image of the 

at taching map for H~ lies in ~Y*(Ko)U the handles which contain the faces of 

At.), 

(d) N*(Kt)~S~ -1• (-c ,  2b). 

Moreover, N*(K) can be deformed diffeomorphically along radii onto S~z-1 • [ - c ,  2b] 

in such a way tha t  N*(Ko) is carried onto S~-1 • ( [ - c ,  0]U [b, 2b]). Since points move 

radially, points of B t • [ - c ,  2b] remain in this set. 

Using this diffeomorphism, we may  assume tha t  the maps ~ have domain N*(Ko) 

and the maps G o have domain N*(K)=N*(K~). In  order to use the results of section 7, 

we 2~-truncate the manifolds N*(K~) with ) t<n,  by  cutting a disk D ~ • D =-~ out of the 

handle H t. Call the remaining manifold N'(Kt). Suppose tha t  Hi, is the first handle of 

index n. Then we have 

N*(Ko) ~ N'(K1) c N*(K1) ~... ~ N*(Kj,-1). (8.6) 

Now N*(Kj,_I) is the set g ' .  Note tha t  V' is built up from hr*(K0) by a succession of 

operations of the form of an inclusion in a 2-truncated manifold followed by  adding a handle 

of index 2. Hence, by  section 7, any  covering pair could be lifted over V', which is equal to 

N*(K) minus the interiors of a finite number  of disks. However, (8.2) can not  be applied 
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to complete a lift over V unless the lift over V' is defined with care. To clarify the problem, 

consider an individual n-simplex A. Now _N*(A) is contained in some B~ •  2b). Let  

N*(aA)=N*(A) N V'. Note that  N*(~A) is the union of the submanifold N*(Ko)N N*(A), 

which will be denoted N~, with handles of index less than n. We must lift ~ over these handles 

to a map ~ in such a way that  the hypotheses of (8.2) are satisfied for each ~(q, t). Namely, 

for each 

(1) 
(2) 

(3) 

(q, t) in I m, 

y(q, t) maps N*(~A) into a coordinate neighborhood in W, 

there exists a map 5(q, t)EC~176 M(n, k)), independent with respect to 

~(q, t), 
the k-normal bundle of ~(q, t) determined by 5(q, t) is trivial. 

Since, for each (q, t) in I m, g(q, t) maps N~ into the coordinate neighborhood W~, 

and Go(q) maps ZT*(~A) into Wi, (1) can be satisfied trivially. For  (2), it  would suffice to 

find a k-frame field ~(q, t) independent with respect to y(q, t), for such a map can be ap- 

proximated by a smooth field which is still independent with respect to ~(q, t). This will be 

done as follows; let Z(q) = Zi] N*(aA), and a(q, t) = Xi]N~. Note that  inclusion induces a 

map ~*: C(N*(~A), M(n, k))~C(N~, M(n, k)), and (Z, 0) is an m-covering pair for these 

spaces. 

Lemma (8.7) will show that  there are lifts ~ and 5 of (Go] N*(~A), g) and (Z, a), with 

independent with respect to y (i.e., each 5(q, t) is independent with respect to y(q, t)). 

But  this will also imply (3), since the k-normal bundle determined by y(q, t) and 5(q, t) is 

equivalent to the k-normal bundle given by  ~(q, 0) and 5(q, 0), and this is trivial since 

Go(q) and gi(q) determine an extension of this bundle over N*(A), which is a contractible 

space. 

(8.7) L~.MMA. Suppose that either 

(a) X n is smooth, yn is 2-truncated, X n c  Y n c  R ~, with Y homeomorphic to X U S ~-1 • 

D n-~ • [0, 1] (where S ~-1 • D ~-x • (O}c~X),  or 

(b) X n is 2-truncated, Yn=XnU handle o/ index 2, 2 < n, and X ~ Y c RL 

Assume W~.~ R p. Let (~, g) be an m-covering pair, g: Im~C~176 W.; k) and (Z,a)  

be an m-covering pair, a: lm-->C(X, M(n, k)), which is independent with respect to (~, g). 

Then there exist lilts ~ o / ( ~ ,  g) and ~ o] (Z, o) such that ~ is independent with respect toy. 

This lemma will be proved in section 9. 

This does not yet  show that  there is a lift to all of V' however, because a simplex A 

with dim (A) < n  may be contained in the boundaries of several n-simplexes, so that  when 
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a lift is taken over the handle H corresponding to A, the a-maps of all of these n-simplexes 

must be considered. However, simple changes in the proof of (8.7) will yield: 

(8.8) COROLLARY. Suppose given X ~ c  y ' c  R n, as in Lemma (8.7), and W~. an open 

subset o] R ~. Given m-covering pairs (•(1), ~(1)) .... , (Z(w), (~(w)), such that each pair is 

independent with respect to an m-covering pair (0, g), there exist lifts ~ o / ( ~ ,  g) and 5(i) o/ 

(Z(i), a(i)) such that ~(i) is independent with respect to ~, i = 1 .. . .  , w. 

Finally, the reduction to (8.2) can be completed. Let Aj ..... , A~ be the n-simplexes 

of K. For each 1, ]1 < ] ~< r, choose a Bi • ( - c, 2b) containing N*(Aj). For ~ the corresponding 

k-frame, let 
Z(j) (q) = Z, I N*(@A~), 

a(i) (q, t) = x~ I N*(Ko) fi N*i~Aj). 

Denote the neighborhood W, by W(]). 

(8.9) L ~ M A .  There exist a lift ~ o/(G0]W, y) over V', and lifts ~(~) o/(E(~), a(~)) over 

N*(OA~), i =]1, ..., r, such that 5(~) is independent with respect to y on N*(~Aj). 

Proof. (By induction.) Let  9O(q, t) =g(q, t), and a(/) ~ (q, t) =a(})(q, t), ~ =Jl ..... r. Suppose 

that  lifts gt of (G o, g) to N*(K~) and a(j) ~ of (Z(j), a(j)) to N*(K,)f3 N*(OAj), J=~'l . . . .  , r, 

have been found which satisfy the induction hypotheses: 

(a) g~(q, t) maps N*(K~) n N*(0A,) into W(~), )=~1 ... . .  r, 

(b) for each ]=Jl ,  ..., r, a(?)~(q, t) is independent with respect to gt(q, t) on N*(Kt) n 

:Now K~+~ =K~ U A~+~. Let A .. . . . . .  A,,  be the set of all n-simplexes of K whose boundaries 

contain A~+~. 

Let W , = W ( n l ) ~  ... ~ W(nw). By (a) above, g~(q, t) maps/V*(05,+~) into W.. By (b), 

a(nl) ~ (q, t) .... , a(nw) ~ (q, t) are all independent with respect to g~(q, t) on N*(~A~+~). Then by 

Corollary (8.8), the induction step can be made. 

9. Proofs of (8.2) and (8.7) 

For convenience, we restate Lemma (8.2) below. 

(9.1) R]~STA~V.MV.~T OF LEMMA (8.2). Let X ~ be a compact 2-truucated mani/otd, 

>~n, and X n ~  RL Suppose that WP~ R v. (Recall that always ~W p = 0 . )  Let efiC~(X, W; k), 

where k < p. Suppose that there is a smooth k-frame/ield, a = (ql, ..., a~) de/ined on a neighbor- 

hood of 2~ in X which is independent with respect to e, and that the orthoyonal complement o/the 

bundle spanned by e~(deoql) . . . .  , e~'(deoak) is trivial. Then there is a ]actoring mani/old D 



k-MERSIONS OF MANIFOLDS 191 

and a neighborhood F o/ the identity in Autn(D'),  ( D ' = D 0 8 D  x I), such that positioning 

de/ormations exist/or D and F. 

Proo/. For the purpose of proving the above, we need only consider a neighborhood 

of X in X, and hence we might as well assume that  X is this neighborhood, and a = (al .... ,ak) 

is defined on all of X. Let U', N, and N '  be defined as in section 8. There is a smooth 

extension a '  of a to N '  and a smooth extension h of e to N '  such that  dhoa'EC~176 ', 

M(p, k; k)). Let E = h * ( T R  ~) =N'  • R ~. Then the k smooth vector fields, h*(dhxoa~(x)), 

.... h*(dh~oag(x)) span a trivial k-dimensional subbundle of E. Let B be the orthogonal 

complement of this bundle. Since B[ X is trivial and X is a defmmation retract of N' ,  

B is trivial. Hence there is a smooth section b of N' into B given by b(x) = (x, O(x)), where 

O: N ' ~ R  ~, O(x)=(O~(x) .... .  O~(x)), and H0(x)H =1, x e N ' .  For a: N ' ~ R  ~, denote ba(x)~ 

(x, a(x)O(x)). 

Choose e ' > 0  so that  $(x, v)=(x, h(x)+v) is a diffeomorphism mapping E(r into w. 

Now the map r (see (4.1)) for N '  x R p is just h(x) +v, and r =h(x) +a(x)O(x). 

By examination of d(r there is an e, 0<r162 such that  for any a: N-~R 1 with 

[a(x)l <~e, x e N ' ,  a" is independent with respect to r and so r176176 ', RP; k). 

Now define D as follows. Let 

= {(x, v)E E( )I �9 U'U • to, II vII < (e/3)2}, 

D2 =((x,  v)~ E(e)[ x =  (y, z)~au' x [1, 2], 

and let D = D 1 U D  2. In  particular, the subset of D "over" ~TxE-1, 1] has the form 

• [ - 1 ,  1] •  with U • [ - 1 ,  1] • D' can be defined in a similar way, as 

a manifold whose "height" over 0 x [ - 1, 1] is 2r 

We claim that  there is a neighborhood F of the identity in AutD(D') such that  if 

~EI  ~, then a '  is independent with respect to r for all ba with la(x) l ~<r xEN' ;  i.e., 

~oyobaEU~176 ', W; k). This follows because the matrix for d(r has the form 

Q + (cl(a(x))O', ..., %(a(x))O') where Q is close to dhoa', and O' is a column vector close to 0. 

Now 0 is a column vector orthogonal to dhoa', and if the neighborhood F is chosen small 

enough, 0' will be independent of the k columns of Q, so that  Q + (cl(a(x))O', .... ck(a(x))O') 

will have rank k. 

Finally, given T, 0 < ~ < 1 ,  let r: RI-+R ~ be a C ~176 map which is zero outside of 

[T/2+($, v-(~] for some (~, 0<~<T/4 ,  with r(2~/3)=r(ST/6)=e/3, and such that r has a 

single maximum m with r <m <2e/3. Let 

0 x E X  
a(x) -~ 

r(z) x = (y, z) e X x [0, v]. 
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Let  ~(t)(x)=(x, ta(x)O(x)). Clearly, D, F, and ~ satisfy (7.5). This completes the proof 

of (8.2). 

In the proof of (8.7), the lifts of a covering pair (~, g) will be given by functions of the 

form in (7.2) and (7.3), and (7.7) and (7.8), respectively. Corresponding formulas for lifts 

of (E, a) will be developed. First, we restate the lemma in local form. 

(9.2) L~.MMA. Suppose given X n and yn as in (8.7). Suppose W~ is an open subset o/ 

R ~. Given any map eEC~(X, W . ;  k) and a map )~EC(X, M(n, Ic)) independent with respect 

to e, there are neighborhoods ..4 o/e and A o/Z such that given a covering pair ( ~, g), g: Im-~A, 

and a covering pair (E, a), a: I~-~A, then lifts ~ and 5 can be/ound with 5(q, t) independent 

with respect to ~(q, t), /or every (q, t) in 1". 

Proo/. Define the neighborhoods N(X), and N'(X)  as before. In  order to present a 

unified proof for both cases, the letter F will be used to denote the set in which a deforma- 

tion will take place. In the case (a), let F =  Y, ~ = ~  N F. Let h be an extension of e 

to N', and :~ an extension of Z to F = Y, which is independent with respect to h on F.  

Note that  any covering pair (Z, a) with •(q) defined on F and a(q, t) defined on X can be 

lifted over F. Call the lift Y,'(q, t). 

For (b), a little more detail is needed. Here, let F = X U S X - l x D ~ - a x [ - 1 ,  1], 

~ = X  U S ~-1 x D~ -~ x [ -  1, 3]. Again we choose'h and :~ with :~ independent with respect 

to h on F,  and also stipulate tha t  when (x, y, z) eS  a-1 • D~ -z x [ -  1, 1] and I[Y[I ~> 1, then 

z(x, y, y/llyll, 
Also note that  given a covering pair (F~, a) we could first define a lift of (~]IX1, a), 

and then extend the lift to a cube of maps defined on F, using the obvious retraction of F 

onto ~:1. The resulting map will be denoted Y,'(q, t), and will be used later in the proof. 

In  the rest of the proof, both of the cases are treated together. 

There is a (~ > 0 such that  if e(~, h) < ~ and sup~EF H Z(X) --~(X)]l < ~' then ~(x) is independ- 

ent with respect to ~ on F. Let  

A = {~ e C(X, M(n, k))] sup [[~ (x) - g(x)II < ~/2}. 

Set B = {feV~(F, W,; k)le( f, h)<~}. 

Use h to obtain a factorization of maps near e through any factoring manifold D, and 

suppose that  the neighborhood F of the identi ty in Autl)(D') is so small that  if ~ EF, then 

r176176 ', W.; k) and r  I F e B .  Let  the neighborhood A of e be chosen so that  

v(A)~ F',  using the notation of section 6. 

Now suppose that  we are given covering pairs (~, g) with g: Im-~A, and (E, a) with 
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o: Im-~A. Let  Z': Im-->C(F, M(n,/c)) be defined as above, in the remarks about the indi- 

vidual cases. Clearly, there is a T' > 0 such that  for every (q, t) E I ~, 

sup Ilz(x) - Z'(q, t) (x)ll < 8. 
XE~'~0 

Hence, for every ~ E F and each (q, t) E I m, 

d(r t)(x)EM(p, n; k), xE_~.. (9.3) 

Choose v, 0 < v < z ' / 2  and ~ as in Lemma (6.1). Find ~ and e > 0  as in Lemma (6.3). 

Let  fl represent either a collar retraction (for case (a)) as in (7.1), i.e. fl: [0, 1]--> 

Emb (F, F), or, (for case (h)) let/~ be a deformation so that  ~ =soft is a positioning defor- 

mation (see (7.5)). If 0~<t~<e, define 

t) (fl(t/e) (x)), x e  n r 

~(q, t) (x) = Z'(q, t (2~-  z)/~) (x), x = (y, z) E X • [~, 2T] N Y (9.4) 

Z(q) (x), x e  Y -  X2T. 

If e ~< t ~< 1, define 

(dfl(1) (x))-loZt(q, t) (/~(1) (x)), xE.~v N Y 

5(q, t) (x) = Z'(q, t (2~-  z)/~) (x), x = (y, z) E X • Iv, 2~] N Y (9.5) 

Z(q) (x), x Y-X2 . 

Clearly 5 is well defined and continuous, #(q, 0)=Z(q),  and d(q, t ) IX=Z'(q  , t ) lX= 
a(q, t). 

Define the lift ~ of (~, g) using the formulas (7.2) and (7.3) in the collar retractible 

case, and formulas (7.7) and (7.8) in the handle case. Then for each xE Y, d~(q, t)xof(q, t)(x) 
has one of the three forms below: 

[ d(~o~,os)uoZ'(q,t) (y), y=fl(x)E_~, 
! 

d~(q, t)~oS(q, t) (x) = ~ d~(q)xoZ'(q , t) (x), x E l ~  --_~, 
| 
( dO(q)~oE(q ) (x), xE Y -  lP~. 

By (9.3), 5 is independent with respect to ~. This completes the proof of (8.7). 

10. An appro~dmation theorem 

Let  M n be a smooth compact manifold, and W ~ be a smooth manifold with empty 

boundary. If r E T{M, W; k), let r denote the map of M to W covered by r Fix a metric 

for W, and, f o r / ,  g in C(M, W), say that  / is an e-approximation to g if supxGM ~(/(X), 

g(X)) <e. With this notation, we have an approximation theorem, similar to (5.7) of [4]. 
1 3 -  692906 Ac~a mathematica. 122. Imprim4 lo 17 Ju ln  1969. 
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(10.1) THEOREM. I/there exists CET(M, W; k), and k<p, then, given e>O, there is 

a k-mersion / E C~(M, W; k) such that d/is homotopic to r through k-bundle maps, and [ is an 

e-approximation to 4. 

Proo[. Choose a C ~ triangulation of M so fine tha t  each simplex A, is contained in a 

coordinate neighborhood of M, and also maps, under ~, into the interior of some convex 

coordinate neighborhood, call it W~, in W, of diameter less than  e. 

The proof is by induction, with induction hypotheses: 

(a) A smooth map/~ of rank ~> k is defined on a neighborhood N~ of the /-skeleton 

in M, and d/~ is homotopie to r through k-bundle maps. 

(b) I f  A belongs to the/ -skele ton and is a face of A j, then/~(A) c Wj. 

Clearly, (a) and (b) can be satisfied on the 0-skeleton. 

Suppose tha t  the hypotheses hold for the i-skeleton. Since ]~(Ar)c Wr, [~ must  be an 

e-approximation to 4. 

Now let A be an i + 1 simplex, and A be a standard i + 1 simplex imbedded in R n. 

Then there is a diffeomorphism mapping a neighborhood of A onto a neighborhood of A. 

Therefore, as in section 8, we may  map smooth manifolds N*(~A) and N*(A) diffeomorphi- 

cally to submanifolds U and V of M, so tha t  U is contained in the domain of/~, and 

V = U O handle. Let  W. be the intersection of all Wj such tha t  A is a face of Aj. Clearly 

we can assume tha t  [t(U)c W.. Consider the diagram: 

d 
c~~ w.; k) ) T(V, W.; k) 

d 
o~(u, w.; k) , T(U, W.; k) 

Since d/tl U is homotopie to ~b[ U through k-bundle maps, by the covering homotopy 

property,  there is an element v 2 lying in the fiber over d/t, which is homotopic to ~. But  then 

the fiber over / t l  U must contain an e l e m e n t / '  which is mapped by  d to the homotopy 

class of ~. Hence, d/' is homotopic to r a n d / '  is an e-approximation of ~, by  the definition 

of W.. The m a p / '  agrees wi th / t  on some neighborhood of the/-skeleton.  Continuing the 

process for the other i + 1 simplexes, and using a possibly smaller neighborhood of the 

/-skeleton, we eventually can define f+ l  which satisfies the induction hypotheses on a 

neighborhood of the i + 1 skeleton. 
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